NASA Technical Reports Server (NTRS)
Lin, Shih-Yung; Hoffman, Eric K.; Domack, Marcia S.
2007-01-01
2-D thermo-mechanical model developed to characterize distortion and residual stresses in integral structure produced by DMD. Demonstrated as a tool to guide experimental development of DMD fabrication process for aero structures. Distortion and residual stresses are local to deposit. Most distortion develops during deposition of the first few layers; Little change in distortion or residual stresses after fifth deposit layer Most of distortion is localized just beneath the build. Thicker build plates and the use of build lands results in greatest decrease in levels of distortion. Pre-straining shown to reduce distortion. Difficult to implement, particularly for complex stiffener arrays. Clamp position has complex effect on distortion and stresses. Overall distortion reduced with decreasing clamp clearance. Larger clamp clearances induce bending. Use of pre-heat and active cooling show minor influence on panel distortion. Generate changes in thermal gradients in the build plate.
Mithila, Farha J; Oyola-Reynoso, Stephanie; Thuo, Martin M; Atkinson, Manza Bj
2016-01-01
Structural distortions due to hyperconjugation in organic molecules, like norbornenes, are well captured through X-ray crystallographic data, but are sometimes difficult to visualize especially for those applying chemical knowledge and are not chemists. Crystal structure from the Cambridge database were downloaded and converted to .stl format. The structures were then printed at the desired scale using a 3D printer. Replicas of the crystal structures were accurately reproduced in scale and any resulting distortions were clearly visible from the macroscale models. Through space interactions or effect of through space hyperconjugation was illustrated through loss of symmetry or distortions thereof. The norbornene structures exhibits distortion that cannot be observed through conventional ball and stick modelling kits. We show that 3D printed models derived from crystallographic data capture even subtle distortions in molecules. We translate such crystallographic data into scaled-up models through 3D printing.
Dao, Lam; Glancy, Brian; Lucotte, Bertrand; Chang, Lin-Ching; Balaban, Robert S; Hsu, Li-Yueh
2015-01-01
SUMMARY This paper investigates a post-processing approach to correct spatial distortion in two-photon fluorescence microscopy images for vascular network reconstruction. It is aimed at in vivo imaging of large field-of-view, deep-tissue studies of vascular structures. Based on simple geometric modeling of the object-of-interest, a distortion function is directly estimated from the image volume by deconvolution analysis. Such distortion function is then applied to sub volumes of the image stack to adaptively adjust for spatially varying distortion and reduce the image blurring through blind deconvolution. The proposed technique was first evaluated in phantom imaging of fluorescent microspheres that are comparable in size to the underlying capillary vascular structures. The effectiveness of restoring three-dimensional spherical geometry of the microspheres using the estimated distortion function was compared with empirically measured point-spread function. Next, the proposed approach was applied to in vivo vascular imaging of mouse skeletal muscle to reduce the image distortion of the capillary structures. We show that the proposed method effectively improve the image quality and reduce spatially varying distortion that occurs in large field-of-view deep-tissue vascular dataset. The proposed method will help in qualitative interpretation and quantitative analysis of vascular structures from fluorescence microscopy images. PMID:26224257
Effect of pressure on the tetragonal distortion in TiH2: a first-principles study
NASA Astrophysics Data System (ADS)
de Coss, R.; Quijano, R.; Singh, D. J.
2009-03-01
The transition metal dihydride TiH2 present the fluorite structure (CaF2) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Early electronic band structure calculations have shown that TiH2 in the cubic phase display a nearly flat double degenerated band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. Nevertheless, recently we have show that the instability of fcc-TiH2 is likely to be related with a van Hove singularity. In the present work, we have performed ab-initio calculations of the electronic structure and the tetragonal distortion for TiH2 under pressure (0-30 GPa). We found that the fcc-fct energy barrier and the tetragonal distortion increases with pressure. The evolution of the tetragonal distortion is analyzed in terms of the electronic band structure. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 49985.
Wang, Yang; Sui, Yu; Ren, Peng; Wang, Lan; Wang, Xianjie; Su, Wenhui; Fan, Hong Jin
2010-04-05
Detailed structures and thermoelectric (TE) properties are investigated for the perovskite La(1-x)Ca(x)CoO(3) and La(1-x)Sr(x)CoO(3) with 0
NASA Astrophysics Data System (ADS)
Mohapatra, Shubhajyoti; Bhandari, Churna; Satpathy, Sashi; Singh, Avinash
2018-04-01
Effects of the structural distortion associated with the OsO6 octahedral rotation and tilting on the electronic band structure and magnetic anisotropy energy for the 5 d3 compound NaOsO3 are investigated using the density functional theory (DFT) and within a three-orbital model. Comparison of the essential features of the DFT band structures with the three-orbital model for both the undistorted and distorted structures provides insight into the orbital and directional asymmetry in the electron hopping terms resulting from the structural distortion. The orbital mixing terms obtained in the transformed hopping Hamiltonian resulting from the octahedral rotations are shown to account for the fine features in the DFT band structure. Staggered magnetization and the magnetic character of states near the Fermi energy indicate weak coupling behavior.
Wu, Yanfei; Fan, Lele; Liu, Qinghua; Chen, Shi; Huang, Weifeng; Chen, Feihu; Liao, Guangming; Zou, Chongwen; Wu, Ziyu
2015-01-01
The mechanism for regulating the critical temperature (TC) of metal-insulator transition (MIT) in ions-doped VO2 systems is still a matter of debate, in particular, the unclear roles of lattice distortion and charge doping effects. To rule out the charge doping effect on the regulation of TC, we investigated Ti4+-doped VO2 (TixV1-xO2) system. It was observed that the TC of TixV1-xO2 samples first slightly decreased and then increased with increasing Ti concentration. X-ray absorption fine structure (XAFS) spectroscopy was used to explore the electronic states and local lattice structures around both Ti and V atoms in TixV1-xO2 samples. Our results revealed the local structure evolution from the initial anatase to the rutile-like structure around the Ti dopants. Furthermore, the host monoclinic VO2 lattice, specifically, the VO6 octahedra would be subtly distorted by Ti doping. The distortion of VO6 octahedra and the variation of TC showed almost the similar trend, confirming the direct effect of local structural perturbations on the phase transition behavior. By comparing other ion-doping systems, we point out that the charge doping is more effective than the lattice distortion in modulating the MIT behavior of VO2 materials. PMID:25950809
Effects of inflow distortion profiles on fan tone noise calculated using a 3-D theory
NASA Technical Reports Server (NTRS)
Kobayashi, H.; Groeneweg, J. F.
1979-01-01
Calculations of the fan tone acoustic power and modal structure generated by complex distortions in axial inflow velocity are presented. The model used treats the motor as a rotating three-dimensional cascade and calculates the acoustic field from the distortion-produced dipole distribution on the blades including noncompact source effects. Radial and circumferential distortion shapes are synthesized from Fourier-Bessel components representing individual distortion modes. The relation between individual distortion modes and the generated acoustic modes is examined for particular distortion cases. Comparisons between theoretical and experimental results for distortions produced by wakes from upstream radial rods show that the analysis is a good predictor of acoustic power dependence on disturbance strength.
Local lattice distortion in high-entropy alloys
NASA Astrophysics Data System (ADS)
Song, Hongquan; Tian, Fuyang; Hu, Qing-Miao; Vitos, Levente; Wang, Yandong; Shen, Jiang; Chen, Nanxian
2017-07-01
The severe local lattice distortion, induced mainly by the large atomic size mismatch of the alloy components, is one of the four core effects responsible for the unprecedented mechanical behaviors of high-entropy alloys (HEAs). In this work, we propose a supercell model, in which every lattice site has similar local atomic environment, to describe the random distributions of the atomic species in HEAs. Using these supercells in combination with ab initio calculations, we investigate the local lattice distortion of refractory HEAs with body-centered-cubic structure and 3 d HEAs with face-centered-cubic structure. Our results demonstrate that the local lattice distortion of the refractory HEAs is much more significant than that of the 3 d HEAs. We show that the atomic size mismatch evaluated with the empirical atomic radii is not accurate enough to describe the local lattice distortion. Both the lattice distortion energy and the mixing entropy contribute significantly to the thermodynamic stability of HEAs. However the local lattice distortion has negligible effect on the equilibrium lattice parameter and bulk modulus.
Theoretical prediction of welding distortion in large and complex structures
NASA Astrophysics Data System (ADS)
Deng, De-An
2010-06-01
Welding technology is widely used to assemble large thin plate structures such as ships, automobiles, and passenger trains because of its high productivity. However, it is impossible to avoid welding-induced distortion during the assembly process. Welding distortion not only reduces the fabrication accuracy of a weldment, but also decreases the productivity due to correction work. If welding distortion can be predicted using a practical method beforehand, the prediction will be useful for taking appropriate measures to control the dimensional accuracy to an acceptable limit. In this study, a two-step computational approach, which is a combination of a thermoelastic-plastic finite element method (FEM) and an elastic finite element with consideration for large deformation, is developed to estimate welding distortion for large and complex welded structures. Welding distortions in several representative large complex structures, which are often used in shipbuilding, are simulated using the proposed method. By comparing the predictions and the measurements, the effectiveness of the two-step computational approach is verified.
NASA Astrophysics Data System (ADS)
Gustafsson, C.; Nordström, F.; Persson, E.; Brynolfsson, J.; Olsson, L. E.
2017-04-01
Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were ⩽0.02% and the radiotherapy structure mean volume deviations were <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.
Gustafsson, C; Nordström, F; Persson, E; Brynolfsson, J; Olsson, L E
2017-04-21
Dosimetric errors in a magnetic resonance imaging (MRI) only radiotherapy workflow may be caused by system specific geometric distortion from MRI. The aim of this study was to evaluate the impact on planned dose distribution and delineated structures for prostate patients, originating from this distortion. A method was developed, in which computer tomography (CT) images were distorted using the MRI distortion field. The displacement map for an optimized MRI treatment planning sequence was measured using a dedicated phantom in a 3 T MRI system. To simulate the distortion aspects of a synthetic CT (electron density derived from MR images), the displacement map was applied to CT images, referred to as distorted CT images. A volumetric modulated arc prostate treatment plan was applied to the original CT and the distorted CT, creating a reference and a distorted CT dose distribution. By applying the inverse of the displacement map to the distorted CT dose distribution, a dose distribution in the same geometry as the original CT images was created. For 10 prostate cancer patients, the dose difference between the reference dose distribution and inverse distorted CT dose distribution was analyzed in isodose level bins. The mean magnitude of the geometric distortion was 1.97 mm for the radial distance of 200-250 mm from isocenter. The mean percentage dose differences for all isodose level bins, were ⩽0.02% and the radiotherapy structure mean volume deviations were <0.2%. The method developed can quantify the dosimetric effects of MRI system specific distortion in a prostate MRI only radiotherapy workflow, separated from dosimetric effects originating from synthetic CT generation. No clinically relevant dose difference or structure deformation was found when 3D distortion correction and high acquisition bandwidth was used. The method could be used for any MRI sequence together with any anatomy of interest.
Zhu, Xuelian; Xu, Yongan; Yang, Shu
2007-12-10
We present a quantitative study of the distortion from a threeterm diamond-like structure fabricated in SU8 polymer by four-beam holographic lithography. In the study of the refraction effect, theory suggests that the lattice in SU8 should be elongated in the [111] direction but have no distortion in the (111) plane, and each triangular-like hole array in the (111) plane would rotate by ~30 degrees away from that in air. Our experiments agree with the prediction on the periodicity in the (111) plane and the rotation due to refraction effect, however, we find that the film shrinkage during lithographic process has nearly compensated the predicted elongation in the [111] direction. In study of photonic bandgap (PBG) properties of silicon photonic crystals templated by the SU8 structure, we find that the distortion has decreased quality of PBG.
JWST ISIM Distortion Analysis Challenge
NASA Technical Reports Server (NTRS)
Cifie, Emmanuel; Matzinger, Liz; Kuhn, Jonathan; Fan, Terry
2004-01-01
Very tight distortion requirements are imposed on the JWST's ISM structure due to the sensitivity of the telescope's mirror segment and science instrument positioning. The ISIM structure is a three dimensional truss with asymmetric gusseting and metal fittings. One of the primary challenges for ISIM's analysis team is predicting the thermal distortion of the structure both from the bulk cooldown from ambient to cryo, and the smaller temperature changes within the cryogenic operating environment. As a first cut to estimate thermal distortions, a finite element model of bar elements was created. Elements representing joint areas and metal fittings use effective properties that match the behavior of the stack-up of the composite tube, gusset and adhesive under mechanical and thermal loads. These properties were derived by matching tip deflections of a solid model simplified T-joint. Because of the structure s asymmetric gusseting, this effective property model is a first attempt at predicting rotations that cannot be captured with a smeared CTE approach. In addition to the finite element analysis, several first order calculations have been performed to gauge the feasibility of the material design. Because of the stringent thermal distortion requirements at cryogenic temperatures, a composite tube material with near zero or negative CTE is required. A preliminary hand analysis of the contribution of the various components along the distortion path between FGS and the other instruments, neglecting second order effects were examined. A plot of bounding tube longitudinal and transverse CTEs for thermal stability requirements was generated to help determine the feasibility of meeting these requirements. This analysis is a work in progress en route to a large degree of freedom hi-fidelity FEA model for distortion analysis. Methods of model reduction, such as superelements, are currently being investigated.
Optical analysis of thermal induced structural distortions
NASA Technical Reports Server (NTRS)
Weinswig, Shepard; Hookman, Robert A.
1991-01-01
The techniques used for the analysis of thermally induced structural distortions of optical components such as scanning mirrors and telescope optics are outlined. Particular attention is given to the methodology used in the thermal and structural analysis of the GOES scan mirror, the optical analysis using Zernike coefficients, and the optical system performance evaluation. It is pointed out that the use of Zernike coefficients allows an accurate, effective, and simple linkage between thermal/mechanical effects and the optical design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KIEFL,CHRISTOPH; SCREERAMA,NARASIMHA; LU,YI
2000-07-13
The authors have investigated the effects of heme rotational isomerism in sperm-whale carbonmonoxy myoglobin using computational techniques. Several molecular dynamics simulations have been performed for the two rotational isomers A and B, which are related by a 180{degree} rotation around the {alpha}-{gamma} axis of the heme, of sperm-whale carbonmonoxy myoglobin in water. Both neutron diffraction and NMR structures were used as starting structures. In the absence of an experimental structure, the structure of isomer B was generated by rotating the heme in the structure of isomer A. Distortions of the heme from planarity were characterized by normal coordinate structural decompositionmore » and by the angle of twist of the pyrrole rings from the heme plane. The heme distortions of the neutron diffraction structure were conserved in the MD trajectories, but in the NMR-based trajectories, where the heme distortions are less well defined, they differ from the original heme deformations. The protein matrix induced similar distortions on the heroes in orientations A and B. The results suggest that the binding site prefers a particular macrocycle conformation, and a 180{degree} rotation of the heme does not significantly alter the protein's preference for this conformation. The intrinsic rotational strengths of the two Soret transitions, separated according to their polarization in the heme plane, show strong correlations with the ruf-deformation and the average twist angle of the pyrrole rings. The total rotational strength, which includes contributions from the chromophores in the protein, shows a weaker correlation with heme distortions.« less
Probabilistic assessment of smart composite structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Shiao, Michael C.
1994-01-01
A composite wing with spars and bulkheads is used to demonstrate the effectiveness of probabilistic assessment of smart composite structures to control uncertainties in distortions and stresses. Results show that a smart composite wing can be controlled to minimize distortions and to have specified stress levels in the presence of defects. Structural responses such as changes in angle of attack, vertical displacements, and stress in the control and controlled plies are probabilistically assessed to quantify their respective uncertainties. Sensitivity factors are evaluated to identify those parameters that have the greatest influence on a specific structural response. Results show that smart composite structures can be configured to control both distortions and ply stresses to satisfy specified design requirements.
On relative distortion in fingerprint comparison.
Kalka, Nathan D; Hicklin, R Austin
2014-11-01
When fingerprints are deposited, non-uniform pressure in conjunction with the inherent elasticity of friction ridge skin often causes linear and non-linear distortions in the ridge and valley structure. The effects of these distortions must be considered during analysis of fingerprint images. Even when individual prints are not notably distorted, relative distortion between two prints can have a serious impact on comparison. In this paper we discuss several metrics for quantifying and visualizing linear and non-linear fingerprint deformations, and software tools to assist examiners in accounting for distortion in fingerprint comparisons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Effects of Distortion on Mass Flow Plug Calibration
NASA Technical Reports Server (NTRS)
Sasson, Jonathan; Davis, David O.; Barnhart, Paul J.
2015-01-01
A numerical, and experimental investigation to study the effects of flow distortion on a Mass Flow Plug (MFP) used to control and measure mass-flow during an inlet test has been conducted. The MFP was first calibrated using the WIND-US flow solver for uniform (undistorted) inflow conditions. These results are shown to compare favorably with an experimental calibration under similar conditions. The effects of distortion were investigated by imposing distorted flow conditions taken from an actual inlet test to the inflow plane of the numerical simulation. The computational fluid dynamic (CFD) based distortion study only showed the general trend in mass flow rate. The study used only total pressure as the upstream boundary condition, which was not enough to define the flow. A better simulation requires knowledge of the turbulence structure and a specific distortion pattern over a range of plug positions. It is recommended that future distortion studies utilize a rake with at least the same amount of pitot tubes as the AIP rake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maksimov, S. K., E-mail: maksimov-sk@comtv.ru; Maksimov, K. S., E-mail: kuros@rambler.ru; Sukhov, N. D.
Merohedry is considered an inseparable property of atomic structures, and uses for the refinement of structural data in a process of correct determination of structure of compounds. Transformation of faulty structures stimulated by decreasing of systemic cumulative energy leads to generation of merohedral twinning type. Ordering is accompanied by origin of antiphase domains. If ordering belongs to the CuAu type, it is accompanied by tetragonal distortions along different (100) directions. If a crystal consists of mosaic of nanodimensional antiphase domains, the conjugation of antiphase domains with different tetragonality leads to monoclinic distortions, at that, conjugated domains are distorted mirrorly. Similarmore » system undergoes further transformation by means of quasi-merohedral twinning. As a result of quasi-merohedry, straight-lines of lattices with different monoclinic distortions are transformed into coherent lattice broken-lines providing minimization of the cumulative energy. Structuring is controlled by regularities of the self-organization. However stochasticity of ordering predetermines the origin areas where few domains with different tetragonality contact which leads to the origin of faulty fields braking regular passage of structuring. Resulting crystal has been found structurally non-uniform, furthermore structural non-uniformity permits identifying elements and stages of a process. However there is no precondition preventing arising the origin of homogenous states. Effect has been revealed in Ca{sub 1–x}La{sub x}F{sub 2+x} solid solution, but it can be expected that distortions of regular alternation of ions similar to antiphase domains can be obtained in non-equilibrium conditions in compounds and similar effect of the quasi-merohedry can falsify results of structural analysis.« less
Torchinsky, D H; Chu, H; Zhao, L; Perkins, N B; Sizyuk, Y; Qi, T; Cao, G; Hsieh, D
2015-03-06
We report a global structural distortion in Sr_{2}IrO_{4} using spatially resolved optical second and third harmonic generation rotational anisotropy measurements. A symmetry lowering from an I4_{1}/acd to I4_{1}/a space group is observed both above and below the Néel temperature that arises from a staggered tetragonal distortion of the oxygen octahedra. By studying an effective superexchange Hamiltonian that accounts for this lowered symmetry, we find that perfect locking between the octahedral rotation and magnetic moment canting angles can persist even in the presence of large noncubic local distortions. Our results explain the origin of the forbidden Bragg peaks recently observed in neutron diffraction experiments and reconcile the observations of strong tetragonal distortion and perfect magnetoelastic locking in Sr_{2}IrO_{4}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerer, A.; Ilkisik, O.M.
1997-01-01
Topographic irregularities cause some distortions of magnetotelluric (MT) fields. In the vicinity of a topographic feature, the TM-mode distortion increases with the height and inclination of the slope. It is well-known that TM-mode topographic effects are much greater than TE-mode distortions. The authors have made a study of MT anomalies in TM-mode due to two-dimensional topography. In order to reduce these effects, the distortion tensor stripping technique was used. After corrections, the resulting data can be interpreted as if they were obtained over a flat surface and depend only on the subsurface structure. However, this technique sometimes causes some geometricalmore » distortions of the real subsurface structure. One of the aims is to overcome this failure. The authors have modified the correction coefficients by considering the actual one-dimensional geology. Model studies showed that this approach is especially useful in removing the terrain effects on complex 2D subsurface structures. The other purpose of this study is to emphasize the importance of a proper terrain correction for data from sites having mountainous topography over complex geology, e.g., strike-slip faults, suture zones and rift valleys. Some examples of MT data sets collected from the North Anatolian Fault Zone and from the thrust regions of the Western Taurides will be presented.« less
Ellipsoidal analysis of coordination polyhedra
Cumby, James; Attfield, J. Paul
2017-01-01
The idea of the coordination polyhedron is essential to understanding chemical structure. Simple polyhedra in crystalline compounds are often deformed due to structural complexity or electronic instabilities so distortion analysis methods are useful. Here we demonstrate that analysis of the minimum bounding ellipsoid of a coordination polyhedron provides a general method for studying distortion, yielding parameters that are sensitive to various orders in metal oxide examples. Ellipsoidal analysis leads to discovery of a general switching of polyhedral distortions at symmetry-disallowed transitions in perovskites that may evidence underlying coordination bistability, and reveals a weak off-centre ‘d5 effect' for Fe3+ ions that could be exploited in multiferroics. Separating electronic distortions from intrinsic deformations within the low temperature superstructure of magnetite provides new insights into the charge and trimeron orders. Ellipsoidal analysis can be useful for exploring local structure in many materials such as coordination complexes and frameworks, organometallics and organic molecules. PMID:28146146
Effect of epitaxial strain on ferroelectric polarization in multiferroic BiFeO3 films
NASA Astrophysics Data System (ADS)
Kim, Dae Ho; Lee, Ho Nyung; Biegalski, Michael D.; Christen, Hans M.
2008-01-01
Multiferroic BiFeO3 epitaxial films with thicknesses ranging from 40to960nm were grown by pulsed laser deposition on SrTiO3 (001) substrates with SrRuO3 bottom electrodes. X-ray characterization shows that the structure evolves from angularly distorted tetragonal with c /a≈1.04 to more bulklike distorted rhombohedral (c/a≈1.01) as the strain relaxes with increasing thickness. Despite this significant structural evolution, the ferroelectric polarization along the body diagonal of the distorted pseudocubic unit cells, as calculated from measurements along the normal direction, barely changes.
First-Principles Study of the Jahn-Teller Distortion in the Ti1-XVXH2 and Zr1-XNbxH2 Alloys
NASA Astrophysics Data System (ADS)
Quijano, Ramiro; de Coss, Romeo; Singh, David
2008-03-01
The transition metal dihydrides TiH2 and ZrH2 present the fluorite structure (CaF2) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Electronic band structure calculations have shown that TiH2 and ZrH2 in the cubic phase display a very flat band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. In order to understand the role of band filling in controlling the structural instability of the transition metal dihydrides, we have performed a first-principles total energy study of the Ti1-XVxH2 and Zr1-xNbxH2 alloys. The calculations were performed using FP-LAPW method within the (DFT) and we use the GGA for exchange correlation functional energy. The critical concentration for which the Jahn-Teller effect is suppressed, was determined from the evolution of the tetragonal-cubic energy barrier. We discuss the electronic mechanism of the structural-instability, in terms of the band filling. From the obtained results we conclude that the tetragonal distortion in TiH2 and ZrH2 is not produced only by a Jahn-Teller Effect. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 43830-F.
Bugaev, Lusegen A; Bokhoven, Jeroen A van; Khrapko, Valerii V
2009-04-09
Experimental Si K edge X-ray absorption near-edge fine structure (XANES) of zeolite faujasite, mordenite, and beta are interpreted by means of the FEFF8 code, replacing the theoretical atomic background mu(0) by a background that was extracted from an experimental spectrum. To some extent, this diminished the effect of the inaccuracy introduced by the MT potential and accounted for the intrinsic loss of photoelectrons. The agreement of the theoretical and experimental spectra at energies above the white lines enabled us to identify structural distortion around silicon, which occurs with increasing aluminum content. The Si K edge XANES spectra are very sensitive to slight distortions in the silicon coordination. Placing an aluminum atom on a nearest neighboring T site causes a distortion in the silicon tetrahedron, shortening one of the silicon-oxygen bonds relative to the other three.
NASA Astrophysics Data System (ADS)
Iikubo, S.; Kodama, K.; Takenaka, K.; Takagi, H.; Shamoto, S.
2010-11-01
Magnetic and local structures in an antiperovskite system, Mn3Cu1-xGexN, with a giant negative thermal expansion have been studied by neutron powder diffraction measurement. We discuss (1) an importance of an averaged cubic crystal structure and a ΓG5g antiferromagnetic spin structure for the large magneto-volume effect (MVE) in this itinerant electron system, (2) an unique role of a local lattice distortion well described by the low temperature tetragonal structure of Mn3GeN for the broadening of MVE.
Lee, Stephen; Hoffmann, Roald
2002-05-01
Transition metal elements, alloys, and intermetallic compounds often adopt the body centered cubic (bcc) and face centered cubic (fcc) structures. By comparing quantitative density functional with qualitative tight-binding calculations, we analyze the electronic factors which make the bcc and fcc structures energetically favorable. To do so, we develop a tight-binding function, DeltaE(star), a function that measures the energetic effects of transferring electrons within wave vector stars. This function allows one to connect distortions in solids to the Jahn-Teller effect in molecules and to provide an orbital perspective on structure determining deformations in alloys. We illustrate its use by considering first a two-dimensional square net. We then turn to three-dimensional fcc and bcc structures, and distortions of these. Using DeltaE(star), we rationalize the differences in energy of these structures. We are able to deduce which orbitals are responsible for instabilities in seven to nine valence electron per atom (e(-)/a) bcc systems and five and six e(-)/a fcc structures. Finally we demonstrate that these results account for the bcc and fcc type structures found in both the elements and binary intermetallic compounds of group 4 through 9 transition metal atoms. The outline of a theory of metal structure deformations based on loss of point group operation rather than translational symmetry is presented.
A model for the Pockels effect in distorted liquid crystal blue phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castles, F., E-mail: flynn.castles@materials.ox.ac.uk
2015-09-07
Recent experiments have found that a mechanically distorted blue phase can exhibit a primary linear electro-optic (Pockels) effect [F. Castles et al., Nat. Mater. 13, 817 (2014)]. Here, it is shown that flexoelectricity can account for the experimental results and a model, which is based on continuum theory but takes into account the sub-unit-cell structure, is proposed. The model provides a quantitative description of the effect accurate to the nearest order of magnitude and predicts that the Pockels coefficient(s) in an optimally distorted blue phase may be two orders of magnitude larger than in lithium niobate.
NASA Astrophysics Data System (ADS)
Alldredge, L. M. B.; Chang, Wontae; Qadri, Syed B.; Kirchoefer, Steven W.; Pond, Jeffrey M.
2007-05-01
Sputter-deposited Ba0.5Sr0.5TiO3 films on (001) MgO were characterized for their dielectric properties with different lattice structures. With varying Ar :O2 ratios during deposition, the films showed either in-plane (ca) tetragonal distortions, significantly affecting the dielectric constant and tunability. The dielectric constant exhibited clear hysteresis with dc bias at room temperature, indicating that the films were ferroelectric. The relationship between the dielectric properties and the distortions was the reverse of that observed in films deposited by pulsed laser deposition. The anisotropic in-plane dielectric behavior can be understood by relating polarization to film distortions and to the presence of permanent dipoles.
COBE limits on explosive structure formation scenarios
NASA Technical Reports Server (NTRS)
Levin, Janna J.; Freese, Katherine; Spergle, David N.
1992-01-01
The Compton y-distortion that would result from an epoch of explosions at moderate redshifts is estimated and compared to recent measurements of the CBR spectrum made by the COBE satellite. The temperature anisotropy on large angular scales is estimated, and it is found that in general the limits on the overall spectral distortion are more constraining than those on the temperature anisotropy. It is found that most of the y-distortion is produced during the early, noncosmological phase of bubble evolution. An expression is obtained for the y-distortion including the effects of Compton cooling. The implications of the findings are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, S.; Ganguli, B., E-mail: biplabg@nitrkl.ac.in
2013-04-15
Significant effects of p–d hybridization, structural distortion and cation-electro-negativity are found on band gap in ZnSnX{sub 2} (X=P, As, Sb). Our study suggests these compounds to be direct band gap semiconductors with band gaps of 1.23, 0.68 and 0.19 eV respectively. Lattice constants, tetragonal distortion (η), anion displacement, bond lengths and bulk moduli are calculated by Density Functional Theory based on Tight binding Linear Muffin-Tin orbital method. Our result of structural properties is in good agreement with the available experimental and other theoretical results. Calculated band gaps also agree well with the experimental works within LDA limitation. Unlike other semiconductorsmore » in the group II–IV–V{sub 2}, there is a reduction in the band gap of 0.22, 0.20 and 0.24 eV respectively in ZnSnX{sub 2} (X=P, As, Sb) due to p–d hybridization. Structural distortion decreases band gap by 0.20, 0.12 and 0.10 eV respectively. We find that cation electronegativity effect is responsible for increasing the band gap relative to their binary analogs GaInP{sub 2}, InGaAs{sub 2} and GaInSb{sub 2} respectively and increment are 0.13, 0.04 and 0.13 eV respectively. - Graphical abstract: One unit cell of ZnSnX{sub 2} (X=P, As, Sb) chalcopyrite semiconductor. Semiconductors ZnSnX{sub 2} (X=P, As, Sb) are found to be direct band gap semiconductors with band gaps 1.23, 0.68 and 0.19 eV respectively. The quantitative estimate of effects of p–d hybridization, structural distortion and cation electronegativity shows band gaps change significantly due to these effects. Highlights: ► ZnSnX{sub 2} (X=P, As, Sb) are direct band gap semiconductors. ► These have band gaps of 1.23 eV, 0.68 eV and 0.19 eV respectively. ► The band gap reduction due to p–d hybridization is 13.41%, 18.51% and 40% respectively. ► Band gap reduction due to structural distortion is 12.12%, 11.11% and 16.66% respectively. ► Band gap increases 8.38%, 3.70% and 21.31% respectively due to cation electronegativity.« less
Frequency shifts in distortion-product otoacoustic emissions evoked by swept tones
Shera, Christopher A.; Abdala, Carolina
2016-01-01
When distortion-product otoacoustic emissions (DPOAEs) are evoked using stimuli whose instantaneous frequencies change rapidly and continuously with time (swept tones), the oscillatory interference pattern known as distortion-product fine structure shifts slightly along the frequency axis in the same direction as the sweep. By analogy with the temporal mechanisms thought to underlie the differing efficacies of up- and down-swept stimuli as perceptual maskers (e.g., Schroeder-phase complexes), fine-structure shifts have been ascribed to the phase distortion associated with dispersive wave propagation in the cochlea. This paper tests an alternative hypothesis and finds that the observed shifts arise predominantly as a methodological side effect of the analysis procedures commonly used to extract delayed emissions from the measured time waveform. Approximate expressions for the frequency shifts of DPOAE distortion and reflection components are derived, validated with computer simulations, and applied to account for DPOAE fine-structure shifts measured in human subjects. Component magnitudes are shown to shift twice as much as component phases. Procedures for compensating swept-tone measurements to obtain estimates of the total DPOAE and its components measured at other sweep rates or in the sinusoidal steady state are presented. PMID:27586726
NASA Astrophysics Data System (ADS)
Cammarata, Antonio; Rondinelli, James
2012-02-01
Transition-metal oxides within the perovskite crystal family exhibit strong electron--electron correlation effects that coexist with complex structural distortions, leading to metal-insulator (MI) transitions. Using first-principles density functional calculations, we investigate the effects of cooperative octahedral rotations and dilations/contractions on the charge-ordering MI-transition in CaFeO3. By calculating the evolution in the lattice phonons, which describe the different octahedral distortions present in the low-symmetry monoclinic phase of CaFeO3 with increasing electron correlation, we show that the MI-transition results from a complex interplay between these modes and correlation effects. We combine this study with group theoretical tools to disentangle the electron--lattice interactions by computing the evolution in the low-energy electronic band structure with the lattice phonons, demonstrating the MI-transition in CaFeO3 proceeds through a symmetry-lowering transition driven by a cooperative three-dimensional octahedral dilation/contraction pattern. Finally, we suggest a possible route by which to control the charge ordering by fine-tuning the electron--lattice coupling.
Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu -Wen; ...
2015-12-16
Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni 1/2Ti 1/2)O 3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. Wemore » find, consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.« less
Zhu, Jinlong; Yang, Liuxiang; Wang, Hsiu-Wen; Zhang, Jianzhong; Yang, Wenge; Hong, Xinguo; Jin, Changqing; Zhao, Yusheng
2015-12-16
Perovskite-structure materials generally exhibit local structural distortions that are distinct from long-range, average crystal structure. The characterization of such distortion is critical to understanding the structural and physical properties of materials. In this work, we combined Pair Distribution Function (PDF) technique with Raman spectroscopy and electrical resistivity measurement to study Bi(Ni1/2Ti1/2)O3 perovskite under high pressure. PDF analysis reveals strong local structural distortion at ambient conditions. As pressure increases, the local structure distortions are substantially suppressed and eventually vanish around 4 GPa, leading to concurrent changes in the electronic band structure and anomalies in the electrical resistivity. Consistent with PDF analysis, Raman spectroscopy data suggest that the local structure changes to a higher ordered state at pressures above 4 GPa.
Doping effects on structural and magnetic properties of Heusler alloys Fe2Cr1-xCoxSi
NASA Astrophysics Data System (ADS)
Liu, Yifan; Ren, Lizhu; Zheng, Yuhong; He, Shikun; Liu, Yang; Yang, Ping; Yang, Hyunsoo; Teo, Kie Leong
2018-05-01
In this work, 30nm Fe2Cr1-xCoxSi (FCCS) magnetic films were deposited on Cr buffered MgO (100) substrates by sputtering. Fe2Cr0.5Co0.5Si exhibits the largest magnetization and optimal ordered L21 cubic structure at in-situ annealing temperature (Tia) of 450°C. The Co composition dependence of crystalline structures, surface morphology, defects, lattice distortions and their correlation with the magnetic properties are analyzed in detail. The Co-doped samples show in-plane M-H loops with magnetic squareness ratio of 1 and increasing anisotropy energy density with Co composition. Appropriate Co doping composition promotes L21 phase but higher Co composition converts L21 to B2 phase. Doping effect and lattice mismatch both are proved to increase the defect density. In addition, distortions of the FCCS lattice are found to be approximately linear with Co composition. The largest lattice distortion (c/a) is 0.969 for Fe2Cr0.25Co0.75Si and the smallest is 0.983 for Fe2CrSi. Our analyses suggest that these tetragonal distortions mainly induced by an elastic stress from Cr buffer account for the large in-plane anisotropy energy. This work paves the way for further tailoring the magnetic and structural properties of quaternary Heusler alloys.
Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers.
Sazegari, Vahid; Milani, Mohammad Reza Jafari; Jafari, Ahmad Khayat
2010-12-20
We employ a Monte Carlo ray-tracing code along with the ANSYS package to predict the optical and structural behavior in end-pumped CW Yb:YAG disk lasers. The presence of inhomogeneous temperature, stress, and strain distributions is responsible for many deleterious effects for laser action through disk fracture, strain-induced birefringence, and thermal lensing. The thermal lensing, in turn, results in the optical phase distortion in solid-state lasers. Furthermore, the dependence of optical phase distortion on variables such as the heat transfer coefficient, the cooling fluid temperature, and crystal thickness is discussed.
Effect of doping with nickel ions on the structural state of a zinc oxide crystal
NASA Astrophysics Data System (ADS)
Dubinin, S. F.; Sokolov, V. I.; Parkhomenko, V. D.; Maksimov, V. I.; Gruzdev, N. B.
2009-10-01
The fine structure of a hexagonal zinc oxide crystal doped with nickel ions of the composition Zn1 - x Ni x O has been studied using neutron diffraction and magnetic measurements. It is established that even at very low doping levels ( x = 0.0004), the crystal undergoes local distortions in basal planes of the initial hexagonal lattice. The local distortions are assumed to be sources of the formation of ferromagnetism in compounds of this class.
NASA Technical Reports Server (NTRS)
Gedge, M. R.
1979-01-01
Analytical models were developed to study the effect of flow contraction and screening on inflow distortions to identify qualitative design criteria. Results of the study are that: (1) static testing distortions are due to atmospheric turbulence, nacelle boundary layer, exhaust flow reingestion, flow over stand, ground plane, and engine casing; (2) flow contraction suppresses, initially, turbulent axial velocity distortions and magnifies turbulent transverse velocity distortions; (3) perforated plate and gauze screens suppress axial components of velocity distortions to a degree determined by the screen pressure loss coefficient; (4) honeycomb screen suppress transverse components of velocity distortions to a degree determined by the length to diameter ratio of the honeycomb; (5) acoustic transmission loss of perforated plate is controlled by the reactance of its acoustic impedance; (6) acoustic transmission loss of honeycomb screens is negligible; and (7) a model for the direction change due to a corner between honeycomb panels compares favorably with measured data.
Distorted allotropes of bi-benzene: vibronic interactions and electronic excitations
NASA Astrophysics Data System (ADS)
Krasnenko, V.; Boltrushko, V.; Hizhnyakov, V.
2017-05-01
Bi-benzene - chemically bound two benzene molecules in stuck position is studied both analytically and numerically. There are several allotropes of bi-benzene having different geometry. The reason of the existence of sundry distorted structures is the pseudo-Jahn-Teller effect. The parameters of vibronic couplings causing distortions are found. For the calculation of these parameters both, the vibronic coupling of carbon atoms in different C6 rings and the vibronic coupling in the rings are considered. The contribution of the distortion of C6-planes to the latter coupling is also found. The energies of all the electronic states of π-electrons in all bi-benzene allotropes are determined by using the calculated vibronic interaction parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Jiseung; Lee, Heesoo, E-mail: heesoo@pusan.ac.kr
2014-09-15
Changes to the local structure of Sr and Mn atoms in Sr{sub 1−x}Ce{sub x}MnO{sub 3} (SCM) according to increasing Ce content and the effect of the structural change on the polarization resistance of SCM were investigated. The reduction of manganese was confirmed by the absorption edge shift of the Mn K-edge toward lower energies. The noise of oscillation in extended X-ray absorption fine structure k{sup 3}χ data at Mn K-edge reveals the distortion of the local structure of Mn atoms, and the peak that indicates the bonding length of Mn-O, Sr/Ce, and -Mn decreased with the addition of Ce contentmore » in Fourier transformations of the Mn K-edge. The distortion of the local structure at Mn atoms was affected by the reduced manganese ions having larger ionic radii than Mn{sup 4+}. Meanwhile, few distortions of local atomic structures of Sr atoms occurred, and the average nearest neighboring distances of Sr-O and Sr-Mn are ∼2.13 Å and ∼2.95 Å, respectively. The average bonding lengths of the Ce-O and Ce-Mn increased because the ionic radius of substituted Ce ion with 12 coordination number is smaller than that of Sr ion, which leads the reduction of Mn ions and the distortion of local structure at the substituted A-site. Therefore, we reasoned that the distortion of the local atomic structure at Mn atoms in MnO{sub 6} and Ce atoms in A-site is one of the causes for interrupting oxygen ion transfers as a geometric factor, which results in an increase in the polarization resistance of SCM within the Ce composition range from 10 mol. % to 30 mol. %.« less
Dhar, Sumitrajit; Shaffer, Lauren A
2004-12-01
The use of a suppressor tone has been proposed as the method of choice in obtaining single-generator distortion product (DP) grams, the speculation being that such DP grams will be more predictive of hearing thresholds. Current distortion product otoacoustic emissions (DPOAE) theory points to the ear canal DPOAE signal being a complex interaction between multiple components. The effectiveness of a suppressor tone is predicted to be dependent entirely on the relative levels of these components. We examine the validity of using a suppressor tone through a detailed examination of the effects of a suppressor on DPOAE fine structure in individual ears. DPOAE fine structure, recorded in 10 normal-hearing individuals with a suppressor tone at 45, 55, and 65 dB SPL, was compared with recordings without a suppressor. Behavioral hearing thresholds were also measured in the same subjects, using 2-dB steps. The effect of the suppressor tone on DPOAE fine structure varied between ears and was dependent on frequency within ears. Correlation between hearing thresholds and DPOAE level measured without a suppressor was similar to previous reports. The effects of the suppressor are explained in the theoretical framework of a model involving multiple DPOAE components. Our results suggest that a suppressor tone can have highly variable effects on fine structure across individuals or even across frequency within one ear, thereby making the use of a suppressor less viable as a clinical tool for obtaining single-generator DP grams.
The Influence of the Support Structure on Residual Stress and Distortion in SLM Inconel 718 Parts
NASA Astrophysics Data System (ADS)
Mishurova, Tatiana; Cabeza, Sandra; Thiede, Tobias; Nadammal, Naresh; Kromm, Arne; Klaus, Manuela; Genzel, Christoph; Haberland, Christoph; Bruno, Giovanni
2018-07-01
The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed.
The Influence of the Support Structure on Residual Stress and Distortion in SLM Inconel 718 Parts
NASA Astrophysics Data System (ADS)
Mishurova, Tatiana; Cabeza, Sandra; Thiede, Tobias; Nadammal, Naresh; Kromm, Arne; Klaus, Manuela; Genzel, Christoph; Haberland, Christoph; Bruno, Giovanni
2018-05-01
The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed.
NASA Astrophysics Data System (ADS)
Yan, Yue; Yang, Jinzhong; Beddar, Sam; Ibbott, Geoffrey; Wen, Zhifei; Court, Laurence E.; Hwang, Ken-Pin; Kadbi, Mo; Krishnan, Sunil; Fuller, Clifton D.; Frank, Steven J.; Yang, James; Balter, Peter; Kudchadker, Rajat J.; Wang, Jihong
2018-04-01
We developed a novel technique to study the impact of geometric distortion of magnetic resonance imaging (MRI) on intensity-modulated radiation therapy treatment planning. The measured 3D datasets of residual geometric distortion (a 1.5 T MRI component of an MRI linear accelerator system) was fitted with a second-order polynomial model to map the spatial dependence of geometric distortions. Then the geometric distortion model was applied to computed tomography (CT) image and structure data to simulate the distortion of MRI data and structures. Fourteen CT-based treatment plans were selected from patients treated for gastrointestinal, genitourinary, thoracic, head and neck, or spinal tumors. Plans based on the distorted CT and structure data were generated (as the distorted plans). Dose deviations of the distorted plans were calculated and compared with the original plans to study the dosimetric impact of MRI distortion. The MRI geometric distortion led to notable dose deviations in five of the 14 patients, causing loss of target coverage of up to 3.68% and dose deviations to organs at risk in three patients, increasing the mean dose to the chest wall by up to 6.19 Gy in a gastrointestinal patient, and increases the maximum dose to the lung by 5.17 Gy in a thoracic patient.
Compensation of non-ideal beam splitter polarization distortion effect in Michelson interferometer
NASA Astrophysics Data System (ADS)
Liu, Yeng-Cheng; Lo, Yu-Lung; Liao, Chia-Chi
2016-02-01
A composite optical structure consisting of two quarter-wave plates and a single half-wave plate is proposed for compensating for the polarization distortion induced by a non-ideal beam splitter in a Michelson interferometer. In the proposed approach, the optimal orientations of the optical components within the polarization compensator are determined using a genetic algorithm (GA) such that the beam splitter can be treated as a free-space medium and modeled using a unit Mueller matrix accordingly. Two implementations of the proposed polarization controller are presented. In the first case, the compensator is placed in the output arm of Michelson interferometer such that the state of polarization of the interfered output light is equal to that of the input light. However, in this configuration, the polarization effects induced by the beam splitter in the two arms of the interferometer structure cannot be separately addressed. Consequently, in the second case, compensator structures are placed in the Michelson interferometer for compensation on both the scanning and reference beams. The practical feasibility of the proposed approach is introduced by considering a Mueller polarization-sensitive (PS) optical coherence tomography (OCT) structure with three polarization controllers in the input, reference and sample arms, respectively. In general, the results presented in this study show that the proposed polarization controller provides an effective and experimentally-straightforward means of compensating for the polarization distortion effects induced by the non-ideal beam splitters in Michelson interferometers and Mueller PS-OCT structures.
The Jahn-Teller distortion influenced ferromagnetic order in Pr1-xLaxMnO3
NASA Astrophysics Data System (ADS)
He, Feifei; Mao, Zhongquan; Tang, Lingyun; Zhang, Jiang; Chen, Xi
2018-06-01
The structural and magnetic properties of Pr1-xLaxMnO3 (0 ≤ x ≤ 1) polycrystalline powders are investigated. A structural phase transition from a large Jahn-Teller (J-T) distorted orthorhombic structure to a small J-T distorted orthorhombic phase is found at x = 0.70, while the LaMnO3 is showed to have a rhombohedral structure. All the samples exhibit ferromagnetic ordering, and meanwhile, a reentrant spin glass behavior at low temperature. The relationship between J-T distortions and the ferromagnetic order is discussed.
(In) Sensitivity to spatial distortion in natural scenes
Bex, Peter J.
2010-01-01
The perception of object structure in the natural environment is remarkably stable under large variation in image size and projection, especially given our insensitivity to spatial position outside the fovea. Sensitivity to periodic spatial distortions that were introduced into one quadrant of gray-scale natural images was measured in a 4AFC task. Observers were able to detect the presence of distortions in unfamiliar images even though they did not significantly affect the amplitude spectrum. Sensitivity depended on the spatial period of the distortion and on the image structure at the location of the distortion. The results suggest that the detection of distortion involves decisions made in the late stages of image perception and is based on an expectation of the typical structure of natural scenes. PMID:20462324
NASA Astrophysics Data System (ADS)
Mitrofanov, K. V.; Kolobov, A. V.; Fons, P.; Krbal, M.; Shintani, T.; Tominaga, J.; Uruga, T.
2014-10-01
AIVBVI crystals are believed to possess a rhombohedral (ferroelectric) structure at low temperature that changes to the rocksalt (paraelectric) structure above the Curie temperature. For GeTe it has been recently demonstrated that locally the structure retains the subsets of the shorter and longer bonds across the ferroelectric-to-paraelectric transition despite acquiring the cubic structure on average. Nothing is known about the existence of local distortions in SnTe, a prototypical topological crystalline insulator, where the crystal symmetry plays a crucial role. In this work we report the results of x-ray absorption measurements. We find that the structure is locally rhombohedrally distorted, and the distortions increase at T >100K, breaking the rocksalt average symmetry. Our density functional theory simulations performed at 0 K indicate that the role of spin-orbit coupling in the formation of the local structure of SnTe at low temperature is negligibly small. The small stochastic distortions do not affect the intrinsic band inversion of SnTe.
Mapping all the mass in the universe (with weak gravitational lensing) - Oral Presentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everett, Spencer
Recent discoveries have shown that most of the universe is made of an exotic dark matter that behaves much differently than the normal matter that we experience in everyday life. As we cannot detect dark matter directly, we must infer its location in the universe by indirect effects, such as the distortion of light from distant galaxies as it travels through large clouds of dark matter. While the degree of distortion should be proportional to the amount of dark matter present, we don't know the original shape of the galaxy so the distortion is difficult to quantify. If we hadmore » a model of how dark matter is linked to galaxies, and thus be able predict the amount of distortion that should occur, we could apply the model to galaxy surveys to map out the dark matter in our universe. In this research, I attach a spherical 'halo' of dark matter to each galaxy in a simulated universe to approximate its known complex dark matter structure. I then predict how the halos distort the light from distant galaxies generated behind the halos. As the data is simulated, the true distortion of the light is known which is compared to the halo-predicted distortion. I find that, on average, the model under-predicts the degree of distortion on all scales and fails to capture distortions from large-scale dark matter structure. These issues are likely due to missing features in the model, as the halo model is a greatly simplified version of the actual distribution of dark matter. Potential improvements to the model for future work are discussed.« less
Isolating relativistic effects in large-scale structure
NASA Astrophysics Data System (ADS)
Bonvin, Camille
2014-12-01
We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.
ERIC Educational Resources Information Center
Hong, Y. S.; And Others
1980-01-01
Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)
Maikusa, Norihide; Yamashita, Fumio; Tanaka, Kenichiro; Abe, Osamu; Kawaguchi, Atsushi; Kabasawa, Hiroyuki; Chiba, Shoma; Kasahara, Akihiro; Kobayashi, Nobuhisa; Yuasa, Tetsuya; Sato, Noriko; Matsuda, Hiroshi; Iwatsubo, Takeshi
2013-06-01
Serial magnetic resonance imaging (MRI) images acquired from multisite and multivendor MRI scanners are widely used in measuring longitudinal structural changes in the brain. Precise and accurate measurements are important in understanding the natural progression of neurodegenerative disorders such as Alzheimer's disease. However, geometric distortions in MRI images decrease the accuracy and precision of volumetric or morphometric measurements. To solve this problem, the authors suggest a commercially available phantom-based distortion correction method that accommodates the variation in geometric distortion within MRI images obtained with multivendor MRI scanners. The authors' method is based on image warping using a polynomial function. The method detects fiducial points within a phantom image using phantom analysis software developed by the Mayo Clinic and calculates warping functions for distortion correction. To quantify the effectiveness of the authors' method, the authors corrected phantom images obtained from multivendor MRI scanners and calculated the root-mean-square (RMS) of fiducial errors and the circularity ratio as evaluation values. The authors also compared the performance of the authors' method with that of a distortion correction method based on a spherical harmonics description of the generic gradient design parameters. Moreover, the authors evaluated whether this correction improves the test-retest reproducibility of voxel-based morphometry in human studies. A Wilcoxon signed-rank test with uncorrected and corrected images was performed. The root-mean-square errors and circularity ratios for all slices significantly improved (p < 0.0001) after the authors' distortion correction. Additionally, the authors' method was significantly better than a distortion correction method based on a description of spherical harmonics in improving the distortion of root-mean-square errors (p < 0.001 and 0.0337, respectively). Moreover, the authors' method reduced the RMS error arising from gradient nonlinearity more than gradwarp methods. In human studies, the coefficient of variation of voxel-based morphometry analysis of the whole brain improved significantly from 3.46% to 2.70% after distortion correction of the whole gray matter using the authors' method (Wilcoxon signed-rank test, p < 0.05). The authors proposed a phantom-based distortion correction method to improve reproducibility in longitudinal structural brain analysis using multivendor MRI. The authors evaluated the authors' method for phantom images in terms of two geometrical values and for human images in terms of test-retest reproducibility. The results showed that distortion was corrected significantly using the authors' method. In human studies, the reproducibility of voxel-based morphometry analysis for the whole gray matter significantly improved after distortion correction using the authors' method.
An evolving effective stress approach to anisotropic distortional hardening
Lester, B. T.; Scherzinger, W. M.
2018-03-11
A new yield surface with an evolving effective stress definition is proposed for consistently and efficiently describing anisotropic distortional hardening. Specifically, a new internal state variable is introduced to capture the thermodynamic evolution between different effective stress definitions. The corresponding yield surface and evolution equations of the internal variables are derived from thermodynamic considerations enabling satisfaction of the second law. A closest point projection return mapping algorithm for the proposed model is formulated and implemented for use in finite element analyses. Finally, select constitutive and larger scale boundary value problems are solved to explore the capabilities of the model andmore » examine the impact of distortional hardening on constitutive and structural responses. Importantly, these simulations demonstrate the tractability of the proposed formulation in investigating large-scale problems of interest.« less
An evolving effective stress approach to anisotropic distortional hardening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, B. T.; Scherzinger, W. M.
A new yield surface with an evolving effective stress definition is proposed for consistently and efficiently describing anisotropic distortional hardening. Specifically, a new internal state variable is introduced to capture the thermodynamic evolution between different effective stress definitions. The corresponding yield surface and evolution equations of the internal variables are derived from thermodynamic considerations enabling satisfaction of the second law. A closest point projection return mapping algorithm for the proposed model is formulated and implemented for use in finite element analyses. Finally, select constitutive and larger scale boundary value problems are solved to explore the capabilities of the model andmore » examine the impact of distortional hardening on constitutive and structural responses. Importantly, these simulations demonstrate the tractability of the proposed formulation in investigating large-scale problems of interest.« less
A new algorithm for distorted fingerprints matching based on normalized fuzzy similarity measure.
Chen, Xinjian; Tian, Jie; Yang, Xin
2006-03-01
Coping with nonlinear distortions in fingerprint matching is a challenging task. This paper proposes a novel algorithm, normalized fuzzy similarity measure (NFSM), to deal with the nonlinear distortions. The proposed algorithm has two main steps. First, the template and input fingerprints were aligned. In this process, the local topological structure matching was introduced to improve the robustness of global alignment. Second, the method NFSM was introduced to compute the similarity between the template and input fingerprints. The proposed algorithm was evaluated on fingerprints databases of FVC2004. Experimental results confirm that NFSM is a reliable and effective algorithm for fingerprint matching with nonliner distortions. The algorithm gives considerably higher matching scores compared to conventional matching algorithms for the deformed fingerprints.
Distortion of Local Atomic Structures in Amorphous Ge-Sb-Te Phase Change Materials
NASA Astrophysics Data System (ADS)
Hirata, A.; Ichitsubo, T.; Guan, P. F.; Fujita, T.; Chen, M. W.
2018-05-01
The local atomic structures of amorphous Ge-Sb-Te phase-change materials have yet to be clarified and the rapid crystal-amorphous phase change resulting in distinct optical contrast is not well understood. We report the direct observation of local atomic structures in amorphous Ge2Sb2Te5 using "local" reverse Monte Carlo modeling dedicated to an angstrom-beam electron diffraction analysis. The results corroborated the existence of local structures with rocksalt crystal-like topology that were greatly distorted compared to the crystal symmetry. This distortion resulted in the breaking of ideal octahedral atomic environments, thereby forming local disordered structures that basically satisfied the overall amorphous structure factor. The crystal-like distorted octahedral structures could be the main building blocks in the formation of the overall amorphous structure of Ge-Sb-Te.
Fabric geometry distortion during composites processing
NASA Technical Reports Server (NTRS)
Chen, Julie
1994-01-01
Waviness and tow misalignment are often cited as possible causes of data scatter and lower compression stiffness and strength in textile composites. Strength differences of as much as 40 percent have been seen in composites that appear to have the same basic material and structural properties -- i.e., yarn orientation, yarn size, interlacing geometry. Fabric geometry distortion has been suggested as a possible reason for this discrepancy, but little quantitative data or substantial evidence exists. The focus of this research is to contribute to the present understanding of the causes and effects of geometric distortion in textile composites. The initial part of the study was an attempt to gather qualitative information on a variety of textile structures. Existing and new samples confirmed that structures with a significant direction presence would be more susceptible to distortion due to the compaction process. Thus, uniweaves (fiber vol frac: 54-72 percent) biaxial braids (vf: 34-58 percent) demonstrated very little fabric geometry distortion. In stitched panels, only slight buckling of z-direction stitches was observed, primarily near the surface. In contrast, for structures with high compaction ratios -- e.g., large cylindrical yarns (2.5:1) orpowder towpreg (4:1) -- there were visible distortions where previously smooth and periodic undulations were transformed to abrupt changes in direction. A controlled study of the effect of forming pressure on distortion was conducted on type 162 glass plain weave fabrics. Panels (6 x 6 in) were produced via a resin infusion type setup, but with an EPON 815 epoxy resin. Pressures ranging from hand layup to 200 psi were used (vf: 34-54 percent). Photomicrographs indicated that at pressures up to 50 psi, large changes in thickness were due primarily to resin squeeze out. At higher pressures, when intimate contact was made between the layers, there was some tow flattening and in-plane shifting to optimize nesting. However, even at 200 psi the period and amplitude of the tow undulation remained constant, suggesting that for this relatively fine fabric, distortions from compaction were not a problem. Because of the interest in using larger tows (to reduce cost) and more complex structures, tests were also run on 2D triaxial glass braid (113 yd/lb at 0, 225 yd/lb at +/- 45). Forming pressures of 20, 50, 200, and 500 psi were used, and short block compression tests were run. The 500 psi specimen had a 10 percent decrease in modulus and an almost 50 percent decrease in strength (vs. 20 psi). Because the total fiber wgt/panel was kept constant, the thickness varied from 0.32 to 0.22 in (49-70 percent vf). Yet, the strength value is clearly below what would be expected, even with the decrease in thickness. Photomicrographs of these samples will be taken to determine if more fabric distortion exists in the 500 psi specimens. Finally, because the ultimate goal is to be able to predict and control distortion in a variety of textile structures, a model compaction test was developed to directly measure the deformation of the tows during compaction. Layers of dry glass fabric were placed in a mold with a clear plexiglass window. The yarn amplitude and period was then calculated using image analysis of the videotaped deformation. Preliminary tests demonstrated the feasibility of this technique for simple fabrics with large tows.
Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall.
Mast, T D; Hinkelman, L M; Metlay, L A; Orr, M J; Waag, R C
1999-12-01
A finite-difference time-domain model for ultrasonic pulse propagation through soft tissue has been extended to incorporate absorption effects as well as longitudinal-wave propagation in cartilage and bone. This extended model has been used to simulate ultrasonic propagation through anatomically detailed representations of chest wall structure. The inhomogeneous chest wall tissue is represented by two-dimensional maps determined by staining chest wall cross sections to distinguish between tissue types, digitally scanning the stained cross sections, and mapping each pixel of the scanned images to fat, muscle, connective tissue, cartilage, or bone. Each pixel of the tissue map is then assigned a sound speed, density, and absorption value determined from published measurements and assumed to be representative of the local tissue type. Computational results for energy level fluctuations and arrival time fluctuations show qualitative agreement with measurements performed on the same specimens, but show significantly less waveform distortion than measurements. Visualization of simulated tissue-ultrasound interactions in the chest wall shows possible mechanisms for image aberration in echocardiography, including effects associated with reflection and diffraction caused by rib structures. A comparison of distortion effects for varying pulse center frequencies shows that, for soft tissue paths through the chest wall, energy level and waveform distortion increase markedly with rising ultrasonic frequency and that arrival-time fluctuations increase to a lesser degree.
NASA Technical Reports Server (NTRS)
Farmer, Jeffrey T.; Wahls, Deborah M.; Wright, Robert L.
1990-01-01
The global change technology initiative calls for a geostationary platform for Earth science monitoring. One of the major science instruments is the high frequency microwave sounder (HFMS) which uses a large diameter, high resolution, high frequency microwave antenna. This antenna's size and required accuracy dictates the need for a segmented reflector. On-orbit disturbances may be a significant factor in its design. A study was performed to examine the effects of the geosynchronous thermal environment on the performance of the strongback structure for a proposed antenna concept for this application. The study included definition of the strongback and a corresponding numerical model to be used in the thermal and structural analyses definition of the thermal environment, determination of structural element temperature throughout potential orbits, estimation of resulting thermal distortions, and assessment of the structure's capability to meet surface accuracy requirements. Analyses show that shadows produced by the antenna reflector surface play a major role in increasing thermal distortions. Through customization of surface coating and element expansion characteristics, the segmented reflector concept can meet the tight surface accuracy requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVetter, Brent M.; Kenkel, Seth; Mittal, Shachi
Spectral distortions caused by the electric field standing wave effect were investigated for two commonly used reflective substrates: low-emissivity glass and gold-coated glass. Our analytical calculations showed that spectral distortions may arise for both incoherent and coherent light sources when performing transflectance measurements. We experimentally confirmed our predictions using a commercial mid-infrared quantum cascade laser microscope and an interferometric infrared imaging system.
Transient Signal Distortion and Coupling in Multilayer Multiconductor MIC Microstrips
1990-05-22
cess.ar1 and identify by block number) I FIELD GROUP I $..)3-{; ’\\0-:: Transient signals, distortion, dispersion, microstrip J 1 i nes , multi...printed circuit design; complex microstrip structures {multiple lines and/or dielectric layers), coupling between lines, distortion of non -periodic...signals on complex structures, and a new method to control coupling on multilayer structures, as well as presenting numerical results for each of these
Earth Walk: Touring Our Planet's Inner Structure.
ERIC Educational Resources Information Center
Muller, Eric P.
1995-01-01
Describes an excursion that effectively helps students visualize the earth's immense size and numerous structures without the usual scale and ratio distortions found in most textbooks and allows students to compare their body's height to a scaled-down earth. (JRH)
Effects of EPI distortion correction pipelines on the connectome in Parkinson's Disease
NASA Astrophysics Data System (ADS)
Galvis, Justin; Mezher, Adam F.; Ragothaman, Anjanibhargavi; Villalon-Reina, Julio E.; Fletcher, P. Thomas; Thompson, Paul M.; Prasad, Gautam
2016-03-01
Echo-planar imaging (EPI) is commonly used for diffusion-weighted imaging (DWI) but is susceptible to nonlinear geometric distortions arising from inhomogeneities in the static magnetic field. These inhomogeneities can be measured and corrected using a fieldmap image acquired during the scanning process. In studies where the fieldmap image is not collected, these distortions can be corrected, to some extent, by nonlinearly registering the diffusion image to a corresponding anatomical image, either a T1- or T2-weighted image. Here we compared two EPI distortion correction pipelines, both based on nonlinear registration, which were optimized for the particular weighting of the structural image registration target. The first pipeline used a 3D nonlinear registration to a T1-weighted target, while the second pipeline used a 1D nonlinear registration to a T2-weighted target. We assessed each pipeline in its ability to characterize high-level measures of brain connectivity in Parkinson's disease (PD) in 189 individuals (58 healthy controls, 131 people with PD) from the Parkinson's Progression Markers Initiative (PPMI) dataset. We computed a structural connectome (connectivity map) for each participant using regions of interest from a cortical parcellation combined with DWI-based whole-brain tractography. We evaluated test-retest reliability of the connectome for each EPI distortion correction pipeline using a second diffusion scan acquired directly after the participants' first. Finally, we used support vector machine (SVM) classification to assess how accurately each pipeline classified PD versus healthy controls using each participants' structural connectome.
Impact of wavefront distortion and scattering on 2-photon microscopy in mammalian brain tissue
Chaigneau, Emmanuelle; Wright, Amanda J.; Poland, Simon P.; Girkin, John M.; Silver, R. Angus
2011-01-01
Two-photon (2P) microscopy is widely used in neuroscience, but the optical properties of brain tissue are poorly understood. We have investigated the effect of brain tissue on the 2P point spread function (PSF2P) by imaging fluorescent beads through living cortical slices. By combining this with measurements of the mean free path of the excitation light, adaptive optics and vector-based modeling that includes phase modulation and scattering, we show that tissue-induced wavefront distortions are the main determinant of enlargement and distortion of the PSF2P at intermediate imaging depths. Furthermore, they generate surrounding lobes that contain more than half of the 2P excitation. These effects reduce the resolution of fine structures and contrast and they, together with scattering, limit 2P excitation. Our results disentangle the contributions of scattering and wavefront distortion in shaping the cortical PSF2P, thereby providing a basis for improved 2P microscopy. PMID:22109156
Effect of pressure on the superconducting {ital T}{sub {ital c}} of lanthanum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tissen, V.G.; Ponyatovskii, E.G.; Nefedova, M.V.
1996-04-01
The effect of pressure on the superconducting transition temperature {ital T}{sub {ital c}} of La was studied up to 50 GPa. {ital T}{sub {ital c}}({ital P}) shows a rather complicated variation with a discontinuous increase in {ital T}{sub {ital c}} at about 2.2 GPa due to the first-order phase transition from dhcp to fcc structure. At about 5.4 GPa a sharp peak is observed due to the soft-mode phase transition from fcc to the distorted fcc structure and two broad maxima are found within the stability region of the distorted fcc structure around 12 and 39 GPa. Some differences betweenmore » these and previous low-pressure data for metastable fcc La are noticed. The results are discussed in connection with pressure-induced structural phase transitions found in earlier x-ray-diffraction experiments and band-structure calculations giving evidences for van Hove singularities in the density of states. {copyright} {ital 1996 The American Physical Society.}« less
A robust fingerprint matching algorithm based on compatibility of star structures
NASA Astrophysics Data System (ADS)
Cao, Jia; Feng, Jufu
2009-10-01
In fingerprint verification or identification systems, most minutiae-based matching algorithms suffered from the problems of non-linear distortion and missing or faking minutiae. Local structures such as triangle or k-nearest structure are widely used to reduce the impact of non-linear distortion, but are suffered from missing and faking minutiae. In our proposed method, star structure is used to present local structure. A star structure contains various number of minutiae, thus, it is more robust with missing and faking minutiae. Our method consists of four steps: 1) Constructing star structures at minutia level; 2) Computing similarity score for each structure pair, and eliminating impostor matched pairs which have the low scores. As it is generally assumed that there is only linear distortion in local area, the similarity is defined by rotation and shifting. 3) Voting for remained matched pairs according to the compatibility between them, and eliminating impostor matched pairs which gain few votes. The concept of compatibility is first introduced by Yansong Feng [4], the original definition is only based on triangles. We define the compatibility for star structures to adjust to our proposed algorithm. 4) Computing the matching score, based on the number of matched structures and their voting scores. The score also reflects the fact that, it should get higher score if minutiae match in more intensive areas. Experiments evaluated on FVC 2004 show both effectiveness and efficiency of our methods.
Study of distorted octahedral structure in 3d transition metal complexes using XAFS
NASA Astrophysics Data System (ADS)
Gaur, A.; Nitin Nair, N.; Shrivastava, B. D.; Das, B. K.; Chakrabortty, Monideepa; Jha, S. N.; Bhattacharyya, D.
2018-01-01
Distortion in octahedral structure of 3d transition metal complexes (Mn, Fe, Co, Ni, Cu, Zn) has been studied using XAFS showing divergent nature of Cu complex. EXAFS analysis showed elongated metal-oxygen bonds for Cu complex leading to more distorted structure. Derivative XANES spectrum at Cu K-edge exhibits splitting of main edge which is correlated to elongated Cu-O bond length. Using these coordination geometry around metal centers, theoretical XANES spectra have been generated and features observed have been correlated to the corresponding metals p-DOS. It has been shown that distorted octahedral field in Cu complex is responsible for splitting of p-DOS.
Topological magnetic phase in LaMnO3 (111) bilayer
NASA Astrophysics Data System (ADS)
Weng, Yakui; Huang, Xin; Yao, Yugui; Dong, Shuai
2015-11-01
Candidates for correlated topological insulators, originated from the spin-orbit coupling as well as the Hubbard-type correlation, are expected in the (111) bilayer of perovskite-structural transition-metal oxides. Based on the first-principles calculation and tight-binding model, the electronic structure of a LaMnO3 (111) bilayer sandwiched in LaScO3 barriers has been investigated. For the ideal undistorted perovskite structure, the Fermi energy of LaMnO3 (111) bilayer just stays at the Dirac point, rendering a semimetal (graphenelike) which is also a half metal [different from graphene or the previously studied LaNiO3 (111) bilayer]. The Dirac cone can be opened by the spin-orbit coupling, giving rise to nontrivial topological bands corresponding to the (quantized) anomalous Hall effect. For the realistic orthorhombic distorted lattice, the Dirac point moves with increasing Hubbard repulsion (or equivalent Jahn-Teller distortion). Finally, a Mott gap opens, establishing a phase boundary between the Mott insulator and topological magnetic insulator. Our calculation finds that the gap opened by spin-orbit coupling is much smaller in the orthorhombic distorted lattice (˜1.7 meV) than the undistorted one (˜11 meV). Therefore, to suppress the lattice distortion can be helpful to enhance the robustness of the topological phase in perovskite (111) bilayers.
NASA Astrophysics Data System (ADS)
Zhu, Hongyu; Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Giusarma, Elena
2017-10-01
Large redshift surveys of galaxies and clusters are providing the first opportunities to search for distortions in the observed pattern of large-scale structure due to such effects as gravitational redshift. We focus on non-linear scales and apply a quasi-Newtonian approach using N-body simulations to predict the small asymmetries in the cross-correlation function of two galaxy different populations. Following recent work by Bonvin et al., Zhao and Peacock and Kaiser on galaxy clusters, we include effects which enter at the same order as gravitational redshift: the transverse Doppler effect, light-cone effects, relativistic beaming, luminosity distance perturbation and wide-angle effects. We find that all these effects cause asymmetries in the cross-correlation functions. Quantifying these asymmetries, we find that the total effect is dominated by the gravitational redshift and luminosity distance perturbation at small and large scales, respectively. By adding additional subresolution modelling of galaxy structure to the large-scale structure information, we find that the signal is significantly increased, indicating that structure on the smallest scales is important and should be included. We report on comparison of our simulation results with measurements from the SDSS/BOSS galaxy redshift survey in a companion paper.
Model-based correction for local stress-induced overlay errors
NASA Astrophysics Data System (ADS)
Stobert, Ian; Krishnamurthy, Subramanian; Shi, Hongbo; Stiffler, Scott
2018-03-01
Manufacturing embedded DRAM deep trench capacitors can involve etching very deep holes into silicon wafers1. Due to various design constraints, these holes may not be uniformly distributed across the wafer surface. Some wafer processing steps for these trenches results in stress effects which can distort the silicon wafer in a manner that creates localized alignment issues between the trenches and the structures built above them on the wafer. In this paper, we describe a method to model these localized silicon distortions for complex layouts involving billions of deep trench structures. We describe wafer metrology techniques and data which have been used to verify the stress distortion model accuracy. We also provide a description of how this kind of model can be used to manipulate the polygons in the mask tape out flow to compensate for predicted localized misalignments between design shapes from a deep trench mask and subsequent masks.
NASA Astrophysics Data System (ADS)
Vilarinho, R.; Passos, D. J.; Queirós, E. C.; Tavares, P. B.; Almeida, A.; Weber, M. C.; Guennou, M.; Kreisel, J.; Moreira, J. Agostinho
2018-04-01
This work reports the changes in structure and lattice dynamics induced by substituting the Jahn-Teller-active M n3 + ion by the Jahn-Teller-inactive F e3 + in TbM n1 -xF exO3 over the full composition range. The structural analysis reveals that the amplitude of the cooperative Jahn-Teller distortion decreases linearly from x =0 (pure TbMn O3 ) to x =0.5 , where it is completely suppressed. We then correlate this evolution with the behavior of the Raman modes across the solid solution. In particular, we show that the Raman modes associated with the rotation of octahedra, whose wave number is commonly considered to scale linearly with the tilt angles in orthorhombic Pnma perovskites, are also sensitive to the amplitude of the Jahn-Teller distortion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasnenko, V.; Boltrushko, V.; Hizhnyakov, V.
Chemically bound states of benzene molecules with graphene are studied both analytically and numerically. The states are formed by switching off intrabonds of π-electrons in C{sub 6} rings to interbonds. A number of different undistorted and distorted structures are established both with aligned and with transversal mutual orientation of benzene and graphene. The vibronic interactions causing distortions of bound states are found, by using a combination of analytical and numerical considerations. This allows one to determine all electronic transitions of π-electrons without explicit numerical calculations of excited states, to find the conical intersections of potentials, and to show that themore » mechanism of distortions is the pseudo-Jahn-Teller effect. It is found that the aligned distorted benzene molecule placed between two graphene sheets makes a chemical bond with both of them, which may be used for fastening of graphene sheets together.« less
STOP Analysis and Optimization of a Very-Low-Distortion Space Instrument: HST WFC3 Case Study
NASA Technical Reports Server (NTRS)
Kunt, Cengiz; Broduer, Steve (Technical Monitor)
2001-01-01
New generation optical instruments with very demanding stability requirements are being proposed and developed for space applications. STOP (Structural-Thermal-Optical Performance) analysis and optimization is crucial in meeting the very tight distortion budgets of these instruments. This presentation outlines STOP analysis and optimization approach in the context of WFC3 (Wide-Field Camera 3), which is a radial instrument designed to replace the Wide-Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope (HST). WFC3 houses two separate channels, UVIS and IR, and will have greater throughput and sensitivity than WFPC2. WFC3 line-of-sight alignment budget for the UVIS and IR channels are as small as 10 and 20 milli-arcsec, respectively. Its optical bench is the most critical subsystem effecting the optical stability of WFC3 hence our effort concentrates on the design and analysis of the bench and its interfaces. Structural analysis has accompanied the mechanical design of the bench since the initial concept study. A high fidelity structural Finite Element Model (FEM) of the bench has been developed and used for minimizing its thermally induced distortions as well as sizing it to meet the stiffness and strength requirements of a Shuttle launch. The bench is a composite honeycomb panel box structure with a very low planar Coefficient of Thermal Expansion (CTE) of approximately 0.1 ppm/C. Optic components are mounted to super-INVAR inserts bonded into the panels. The bench is kinematically supported on three HST latches via interface struts, which are tailored to exhibit negative CTE to cancel out the thermal motions of the latches. The interface struts also incorporate flexure elements to minimize the mechanical distortions coming into the bench from its enclosure. Bench FEM is coupled with the enclosure FEM to quantify these effects. Short term or on-orbit STOP analysis includes distortion due to the temperature variations of the bench, the struts, and the enclosure. Long term or ground-to-orbit STOP analysis includes distortional effects of gravity release, desorption, and assembly in addition to the ground-to-orbit temperature variations. A rigorous testing program has been implemented for verifying the material properties and the analysis predictions. STOP analysis results demonstrate that both the short-term and the long-term alignment budgets will be met. Presentation will cover design and analysis details that are critical to a successful implementation of the STOP analysis and optimization process.
Speech therapy for errors secondary to cleft palate and velopharyngeal dysfunction.
Kummer, Ann W
2011-05-01
Individuals with a history of cleft lip/palate or velopharyngeal dysfunction may demonstrate any combination of speech sound errors, hypernasality, and nasal emission. Speech sound distortion can also occur due to other structural anomalies, including malocclusion. Whenever there are structural anomalies, speech can be affected by obligatory distortions or compensatory errors. Obligatory distortions (including hypernasality due to velopharyngeal insufficiency) are caused by abnormal structure and not by abnormal function. Therefore, surgery or other forms of physical management are needed for correction. In contrast, speech therapy is indicated for compensatory articulation productions where articulation placement is changed in response to the abnormal structure. Speech therapy is much more effective if it is done after normalization of the structure. When speech therapy is appropriate, the techniques involve methods to change articulation placement using standard articulation therapy principles. Oral-motor exercises, including the use of blowing and sucking, are never indicated to improve velopharyngeal function. The purpose of this article is to provide information regarding when speech therapy is appropriate for individuals with a history of cleft palate or other structural anomalies and when physical management is needed. In addition, some specific therapy techniques are offered for the elimination of common compensatory articulation productions. © Thieme Medical Publishers.
Pothoczki, Szilvia; Temleitner, László; Pusztai, László
2011-01-28
Analyses of the intermolecular structure of molecular liquids containing slightly distorted tetrahedral molecules of the CXY(3)-type are described. The process is composed of the determination of several different distance-dependent orientational correlation functions, including ones that are introduced here. As a result, a complete structure classification could be provided for CXY(3) molecular liquids, namely for liquid chloroform, bromoform, and methyl-iodide. In the present work, the calculations have been conducted on particle configurations resulting from reverse Monte Carlo computer modeling: these particle arrangements have the advantage that they are fully consistent with structure factors from neutron and x-ray diffraction measurements. It has been established that as the separation between neighboring molecules increases, the dominant mutual orientations change from face-to-face to edge-to-edge, via the edge-to-face arrangements. Depending on the actual liquid, these geometrical elements (edges and faces of the distorted tetrahedra) were found to contain different atoms. From the set of liquids studied here, the structure of methyl-iodide was found to be easiest to describe on the basis of pure steric effects (molecular shape, size, and density) and the structure of liquid chloroform seems to be the furthest away from the corresponding "flexible fused hard spheres" like reference system.
Functional modulation of a protein folding landscape via side-chain distortion
Kelch, Brian A.; Salimi, Neema L.; Agard, David A.
2012-01-01
Ultrahigh-resolution (< 1.0 Å) structures have revealed unprecedented and unexpected details of molecular geometry, such as the deformation of aromatic rings from planarity. However, the functional utility of such energetically costly strain is unknown. The 0.83 Å structure of α-lytic protease (αLP) indicated that residues surrounding a conserved Phe side-chain dictate a rotamer which results in a ∼6° distortion along the side-chain, estimated to cost 4 kcal/mol. By contrast, in the closely related protease Streptomyces griseus Protease B (SGPB), the equivalent Phe adopts a different rotamer and is undistorted. Here, we report that the αLP Phe side-chain distortion is both functional and conserved in proteases with large pro regions. Sequence analysis of the αLP serine protease family reveals a bifurcation separating those sequences expected to induce distortion and those that would not, which correlates with the extent of kinetic stability. Structural and folding kinetics analyses of family members suggest that distortion of this side-chain plays a role in increasing kinetic stability within the αLP family members that use a large Pro region. Additionally, structural and kinetic folding studies of mutants demonstrate that strain alters the folding free energy landscape by destabilizing the transition state (TS) relative to the native state (N). Although side-chain distortion comes at a cost of foldability, it suppresses the rate of unfolding, thereby enhancing kinetic stability and increasing protein longevity under harsh extracellular conditions. This ability of a structural distortion to enhance function is unlikely to be unique to αLP family members and may be relevant in other proteins exhibiting side-chain distortions. PMID:22635267
AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition
Pham, Joyce; Miller, Gordon J.
2018-04-02
Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less
AAuAl (A = Ca, Sc, and Ti): Peierls Distortion, Atomic Coloring, and Structural Competition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Joyce; Miller, Gordon J.
Using density functional theory, the crystal structure variation of AAuAl (A = Ca, Sc, and Ti) from orthorhombic Co 2Si-type to distorted hexagonal Fe 2P-type and then Ni 2In-type structures is shown to correlate with their electronic structures and valence electron counts, sizes of the active metals A, and site preferences for Au and Al atoms, which are arranged to maximize Au–Al nearest neighbor contacts. An evaluation of chemical pressure imposed by the varying A metals using total energy vs volume calculations indicates that larger unit cell volumes favor the orthorhombic structure, whereas smaller volumes favor the hexagonal structures. Themore » electronic origin of the Mg 2Ga-type crystal structure of ScAuAl, refined as a distorted Fe 2P-type supercell doubled along the c-axis, indicates a Peierls-type distortion mechanism of the Au chains along the c-axis.« less
Transformation and Alignment in Similarity
ERIC Educational Resources Information Center
Hodgetts, Carl J.; Hahn, Ulrike; Chater, Nick
2009-01-01
This paper contrasts two structural accounts of psychological similarity: structural alignment (SA) and Representational Distortion (RD). SA proposes that similarity is determined by how readily the structures of two objects can be brought into alignment; RD measures similarity by the complexity of the transformation that "distorts" one…
3D lattice distortions and defect structures in ion-implanted nano-crystals
Hofmann, Felix; Robinson, Ian K.; Tarleton, Edmund; ...
2017-04-06
The ability of Focused Ion Beam (FIB) techniques to cut solid matter at the nano-scale revolutionized the study of material structure across the life-, earth- and material sciences. But a detailed understanding of the damage caused by the ion beam and its effect on material properties remains elusive. We examine this damage in 3D using coherent X-ray diffraction to measure the full lattice strain tensor in FIB-milled gold nano-crystals. We also found that even very low ion doses, previously thought to be negligible, cause substantial lattice distortions. At higher doses, extended self-organized defect structures appear. Combined with detailed numerical calculations,more » these observations allow fundamental insight into the nature of the damage created and the structural instabilities that lead to a surprisingly inhomogeneous morphology.« less
3D lattice distortions and defect structures in ion-implanted nano-crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, Felix; Robinson, Ian K.; Tarleton, Edmund
The ability of Focused Ion Beam (FIB) techniques to cut solid matter at the nano-scale revolutionized the study of material structure across the life-, earth- and material sciences. But a detailed understanding of the damage caused by the ion beam and its effect on material properties remains elusive. We examine this damage in 3D using coherent X-ray diffraction to measure the full lattice strain tensor in FIB-milled gold nano-crystals. We also found that even very low ion doses, previously thought to be negligible, cause substantial lattice distortions. At higher doses, extended self-organized defect structures appear. Combined with detailed numerical calculations,more » these observations allow fundamental insight into the nature of the damage created and the structural instabilities that lead to a surprisingly inhomogeneous morphology.« less
NASA Technical Reports Server (NTRS)
Cargill, Peter J.; Chen, James; Spicer, D. S.; Zalesak, S. T.
1994-01-01
Two dimensional magnetohydrodynamic simulations of the distortion of a magnetic flux tube, accelerated through ambient solar wind plasma, are presented. Vortices form on the trailing edge of the flux tube, and couple strongly to its interior. If the flux tube azimuthal field is weak, it deforms into an elongated banana-like shape after a few Alfven transit times. A significant azimuthal field component inhibits this distortion. In the case of magnetic clouds in the solar wind, it is suggested that the shape observed at 1 AU was determined by distortion of the cloud in the inner heliosphere. Distortion of the cloud beyond 1 AU takes many days. It is estimated that effective drag coefficients slightly greater than unity are appropriate for modeling flux tube propagation. Synthetic magnetic field profiles as would be seen by a spacecraft traversing the cloud are presented.
Chai, Rui-Peng; Hao, Dan-Hui; Kuang, Xiao-Yu; Liang, Liang
2015-11-05
The dependences of the EPR parameters on the local distortion parameters Δθ and ΔR as well as the crystal-field parameters have been studied by diagonalizing the 364×364 complete energy matrices for a tetragonal Er(3+) centre in the YVO4 and ScVO4 crystals. The results show that the local distortion angle Δθ and the fourth-order crystal-field parameter Ā4 are most sensitive to the EPR g-factors g// and g⊥, whereas the local distortion length ΔR and the second-order parameter Ā2 are less sensitive to the g-factors. Furthermore, we found that the abnormal EPR g-factors for the Er(3+) ion in the ScVO4 may be ascribed to the stronger nephelauxetic effect and covalent bonding effect, as a result of an expanded local distortion for the Er(3+) centre in the ScVO4 crystal. Simultaneously, the contributions of the J-J mixing effects from the terms of excited states to the EPR parameters have been evaluated quantitatively. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun
2018-01-01
In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.
NASA Astrophysics Data System (ADS)
Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong
2016-02-01
The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.
Mechanocaloric effects in shape memory alloys.
Mañosa, Lluís; Planes, Antoni
2016-08-13
Shape memory alloys (SMA) are a class of ferroic materials which undergo a structural (martensitic) transition where the associated ferroic property is a lattice distortion (strain). The sensitiveness of the transition to the conjugated external field (stress), together with the latent heat of the transition, gives rise to giant mechanocaloric effects. In non-magnetic SMA, the lattice distortion is mostly described by a pure shear and the martensitic transition in this family of alloys is strongly affected by uniaxial stress, whereas it is basically insensitive to hydrostatic pressure. As a result, non-magnetic alloys exhibit giant elastocaloric effects but negligible barocaloric effects. By contrast, in a number of magnetic SMA, the lattice distortion at the martensitic transition involves a volume change in addition to the shear strain. Those alloys are affected by both uniaxial stress and hydrostatic pressure and they exhibit giant elastocaloric and barocaloric effects. The paper aims at providing a critical survey of available experimental data on elastocaloric and barocaloric effects in magnetic and non-magnetic SMA.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. © 2016 The Author(s).
Mechanocaloric effects in shape memory alloys
2016-01-01
Shape memory alloys (SMA) are a class of ferroic materials which undergo a structural (martensitic) transition where the associated ferroic property is a lattice distortion (strain). The sensitiveness of the transition to the conjugated external field (stress), together with the latent heat of the transition, gives rise to giant mechanocaloric effects. In non-magnetic SMA, the lattice distortion is mostly described by a pure shear and the martensitic transition in this family of alloys is strongly affected by uniaxial stress, whereas it is basically insensitive to hydrostatic pressure. As a result, non-magnetic alloys exhibit giant elastocaloric effects but negligible barocaloric effects. By contrast, in a number of magnetic SMA, the lattice distortion at the martensitic transition involves a volume change in addition to the shear strain. Those alloys are affected by both uniaxial stress and hydrostatic pressure and they exhibit giant elastocaloric and barocaloric effects. The paper aims at providing a critical survey of available experimental data on elastocaloric and barocaloric effects in magnetic and non-magnetic SMA. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402931
The structure and stability of Si60 and Ge60 cages: a computational study.
Chen, Zhongfang; Jiao, Haijun; Seifert, Gotthard; Horn, Anselm H C; Yu, Dengke; Clark, Tim; Thiel, Walter; von Ragué Schleyer, Paul
2003-06-01
Structural studies of fullerene-like Si(60) and Ge(60) cages using ab initio methods were augmented by density functional tight-binding molecular dynamics (DFTB-MD) simulations of finite temperature effects. Neither the perfect I(h) symmetry nor the distorted T(h) structures are true minima. The energies of both are high relative to distorted, lower symmetry minima, C(i) and T, respectively, which still preserve C(60)-type connectivity. Both Si(60) and Ge(60) favor C(i) symmetry cages in which Si and Ge vertexes exhibit either near-trigonal or pyramidal geometries. These structural variations imply significant reactivity differences between different positions. The small magnetic shielding effects (NICS) indicate that aromaticity is not important in these systems. The inorganic fullerene cages have lower stabilities compared with their carbon analogs. Si(60) is stable towards spontaneous disintegration up to 700 K according to DFTB-MD simulations, and thus has potential for experimental observation. In contrast, Ge(60) preserves its cage structure only up to 200 K. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 948-953, 2003
Flexible Animation Computer Program
NASA Technical Reports Server (NTRS)
Stallcup, Scott S.
1990-01-01
FLEXAN (Flexible Animation), computer program animating structural dynamics on Evans and Sutherland PS300-series graphics workstation with VAX/VMS host computer. Typical application is animation of spacecraft undergoing structural stresses caused by thermal and vibrational effects. Displays distortions in shape of spacecraft. Program displays single natural mode of vibration, mode history, or any general deformation of flexible structure. Written in FORTRAN 77.
Role of distortion in the hcp vs fcc competition in rare-gas solids
NASA Astrophysics Data System (ADS)
Krainyukova, N. V.
2011-05-01
As a prototype of an initial or intermediate structure between hcp and fcc lattices we consider a distorted bcc crystal. We calculate the temperature and pressure dependences of the lattice parameters for the heavier rare gas solids Ar, Kr, Xe in a quasiharmonic approximation with Aziz potentials, and confirm earlier predictions that the hcp structure predominates over fcc in the bulk within wide ranges of P and T. The situation is different for confined clusters with up to 105 atoms, where, owing to the specific surface energetics and terminations, structures with five-fold symmetry made up of fcc fragments are dominant. As a next step we consider the free relaxation of differently distorted bcc clusters, and show that two types (monoclinic and orthorhombic) of initial distortion are a driving force for the final hcp vs fcc configurations. Possible energy relationships between the initial and final structures are obtained and analyzed.
Resonances and bound states in the continuum on periodic arrays of slightly noncircular cylinders
NASA Astrophysics Data System (ADS)
Hu, Zhen; Lu, Ya Yan
2018-02-01
Optical bound states in the continuum (BICs), especially those on periodic structures, have interesting properties and potentially important applications. Existing theoretical and numerical studies for optical BICs are mostly for idealized structures with simple and perfect geometric features, such as circular holes, rectangular cylinders and spheres. Since small distortions are always present in actual fabricated structures, we perform a high accuracy numerical study for BICs and resonances on a simple periodic structure with small distortions, i.e., periodic arrays of slightly noncircular cylinders. Our numerical results confirm that symmetries are important not only for the so-called symmetry-protected BICs, but also for the majority of propagating BICs which do not have a symmetry mismatch with the outgoing radiation waves. Typically, the BICs continue to exist if the small distortions keep the relevant symmetries, and they become resonant modes with finite quality factors if the small distortions break a required symmetry.
Lee, Bumshik; Kim, Munchurl
2016-08-01
In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distortion estimation. Since HEVC adopts quadtree structures of coding blocks with hierarchical coding depths, it becomes more difficult to estimate accurate rate and distortion values without actually performing transform, quantization, inverse transform, de-quantization, and entropy coding. Furthermore, DCT for rate-distortion optimization (RDO) is computationally high, because it requires a number of multiplication and addition operations for various transform block sizes of 4-, 8-, 16-, and 32-orders and requires recursive computations to decide the optimal depths of CU or transform unit. Therefore, full RDO-based encoding is highly complex, especially for low-power implementation of HEVC encoders. In this paper, a rate and distortion estimation scheme is proposed in CU levels based on a low-complexity integer DCT that can be computed in terms of WHT whose coefficients are produced in prediction stages. For rate and distortion estimation in CU levels, two orthogonal matrices of 4×4 and 8×8 , which are applied to WHT that are newly designed in a butterfly structure only with addition and shift operations. By applying the integer DCT based on the WHT and newly designed transforms in each CU block, the texture rate can precisely be estimated after quantization using the number of non-zero quantized coefficients and the distortion can also be precisely estimated in transform domain without de-quantization and inverse transform required. In addition, a non-texture rate estimation is proposed by using a pseudoentropy code to obtain accurate total rate estimates. The proposed rate and the distortion estimation scheme can effectively be used for HW-friendly implementation of HEVC encoders with 9.8% loss over HEVC full RDO, which much less than 20.3% and 30.2% loss of a conventional approach and Hadamard-only scheme, respectively.
The effect of band Jahn-Teller distortion on the magnetoresistivity of manganites: a model study.
Rout, G C; Panda, Saswati; Behera, S N
2011-10-05
We present a model study of magnetoresistance through the interplay of magnetisation, structural distortion and external magnetic field for the manganite systems. The manganite system is described by the Hamiltonian which consists of the s-d type double exchange interaction, Heisenberg spin-spin interaction among the core electrons, and the static and dynamic band Jahn-Teller (JT) interaction in the e(g) band. The relaxation time of the e(g) electron is found from the imaginary part of the Green's function using the total Hamiltonian consisting of the interactions due to the electron and phonon. The calculated resistivity exhibits a peak in the pure JT distorted insulating phase separating the low temperature metallic ferromagnetic phase and the high temperature paramagnetic phase. The resistivity is suppressed with the increase of the external magnetic field. The e(g) electron band splitting and its effect on magnetoresistivity is reported here. © 2011 IOP Publishing Ltd
Multiferroic Properties of o-LuMnO3 Controlled by b-Axis Strain
NASA Astrophysics Data System (ADS)
Windsor, Y. W.; Huang, S. W.; Hu, Y.; Rettig, L.; Alberca, A.; Shimamoto, K.; Scagnoli, V.; Lippert, T.; Schneider, C. W.; Staub, U.
2014-10-01
Strain is a leading candidate for controlling magnetoelectric coupling in multiferroics. Here, we use x-ray diffraction to study the coupling between magnetic order and structural distortion in epitaxial films of the orthorhombic (o-) perovskite LuMnO3. An antiferromagnetic spin canting in the E-type magnetic structure is shown to be related to the ferroelectrically induced structural distortion and to a change in the magnetic propagation vector. By comparing films of different orientations and thicknesses, these quantities are found to be controlled by b-axis strain. It is shown that compressive strain destabilizes the commensurate E-type structure and reduces its accompanying ferroelectric distortion.
Multiferroic properties of o-LuMnO3 controlled by b-axis strain.
Windsor, Y W; Huang, S W; Hu, Y; Rettig, L; Alberca, A; Shimamoto, K; Scagnoli, V; Lippert, T; Schneider, C W; Staub, U
2014-10-17
Strain is a leading candidate for controlling magnetoelectric coupling in multiferroics. Here, we use x-ray diffraction to study the coupling between magnetic order and structural distortion in epitaxial films of the orthorhombic (o-) perovskite LuMnO(3). An antiferromagnetic spin canting in the E-type magnetic structure is shown to be related to the ferroelectrically induced structural distortion and to a change in the magnetic propagation vector. By comparing films of different orientations and thicknesses, these quantities are found to be controlled by b-axis strain. It is shown that compressive strain destabilizes the commensurate E-type structure and reduces its accompanying ferroelectric distortion.
Rotational Parameters from Vibronic Eigenfunctions of Jahn-Teller Active Molecules
NASA Astrophysics Data System (ADS)
Garner, Scott M.; Miller, Terry A.
2017-06-01
The structure in rotational spectra of many free radical molecules is complicated by Jahn-Teller distortions. Understanding the magnitudes of these distortions is vital to determining the equilibrium geometric structure and details of potential energy surfaces predicted from electronic structure calculations. For example, in the recently studied {\\widetilde{A}^2E^{''} } state of the NO_3 radical, the magnitudes of distortions are yet to be well understood as results from experimental spectroscopic studies of its vibrational and rotational structure disagree with results from electronic structure calculations of the potential energy surface. By fitting either vibrationally resolved spectra or vibronic levels determined by a calculated potential energy surface, we obtain vibronic eigenfunctions for the system as linear combinations of basis functions from products of harmonic oscillators and the degenerate components of the electronic state. Using these vibronic eigenfunctions we are able to predict parameters in the rotational Hamiltonian such as the Watson Jahn-Teller distortion term, h_1, and compare with the results from the analysis of rotational experiments.
NASA Astrophysics Data System (ADS)
Augustyns, V.; van Stiphout, K.; Joly, V.; Lima, T. A. L.; Lippertz, G.; Trekels, M.; Menéndez, E.; Kremer, F.; Wahl, U.; Costa, A. R. G.; Correia, J. G.; Banerjee, D.; Gunnlaugsson, H. P.; von Bardeleben, J.; Vickridge, I.; Van Bael, M. J.; Hadermann, J.; Araújo, J. P.; Temst, K.; Vantomme, A.; Pereira, L. M. C.
2017-11-01
γ -Fe and related alloys are model systems of the coupling between structure and magnetism in solids. Since different electronic states (with different volumes and magnetic ordering states) are closely spaced in energy, small perturbations can alter which one is the actual ground state. Here, we demonstrate that the ferromagnetic state of γ -Fe nanoparticles is associated with a tetragonal distortion of the fcc structure. Combining a wide range of complementary experimental techniques, including low-temperature Mössbauer spectroscopy, advanced transmission electron microscopy, and synchrotron radiation techniques, we unambiguously identify the tetragonally distorted ferromagnetic ground state, with lattice parameters a =3.76 (2 )Å and c =3.50 (2 )Å , and a magnetic moment of 2.45(5) μB per Fe atom. Our findings indicate that the ferromagnetic order in nanostructured γ -Fe is generally associated with a tetragonal distortion. This observation motivates a theoretical reassessment of the electronic structure of γ -Fe taking tetragonal distortion into account.
Distortion analysis of subband adaptive filtering methods for FMRI active noise control systems.
Milani, Ali A; Panahi, Issa M; Briggs, Richard
2007-01-01
Delayless subband filtering structure, as a high performance frequency domain filtering technique, is used for canceling broadband fMRI noise (8 kHz bandwidth). In this method, adaptive filtering is done in subbands and the coefficients of the main canceling filter are computed by stacking the subband weights together. There are two types of stacking methods called FFT and FFT-2. In this paper, we analyze the distortion introduced by these two stacking methods. The effect of the stacking distortion on the performance of different adaptive filters in FXLMS algorithm with non-minimum phase secondary path is explored. The investigation is done for different adaptive algorithms (nLMS, APA and RLS), different weight stacking methods, and different number of subbands.
Improving MRI surface coil decoupling to reduce B1 distortion
NASA Astrophysics Data System (ADS)
Larson, Christian
As clinical MRI systems continue to advance, larger focus is being given to image uniformity. Good image uniformity begins with generating uniform magnetic fields, which are easily distorted by induced currents on receive-only surface coils. It has become an industry standard to combat these induced currents by placing RF blocking networks on surface coils. This paper explores the effect of blocking network impedance of phased array surface coils on B1 distortion. It has been found and verified, that traditional approaches for blocking network design in complex phased arrays can leave undesirable B1 distortions at 3 Tesla. The traditional approach of LC tank blocking is explored, but shifts from the idea that higher impedance equals better B1 distortion at 3T. The result is a new design principle for a tank with a finite inductive reactance at the Larmor Frequency. The solution is demonstrated via simulation using a simple, single, large tuning loop. The same loop, along with a smaller loop, is used to derive the new design principle, which is then applied to a complex phased array structure.
Effects of local and global mechanical distortions to hypervelocity boundary layers
NASA Astrophysics Data System (ADS)
Flaherty, William P.
The response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature is examined. Surface heat transfer, visual boundary layer thickness, and pressure sensitive paint (PSP) data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. It is demonstrated that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortical structures to an adverse pressure gradient is investigated. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values, though for higher turning angle cases, a relaxation to below undisturbed values is reported at turning angles between 10 and 15 degrees. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures. PSP measurements indicated that natural streaks form over concave models even when imposed vorticity is present. Correlations found between the heat transfer and natural streak formation are discussed and indicate possible vortex interactions.
NASA Astrophysics Data System (ADS)
Liang, Dong; Zhang, Zhiyao; Liu, Yong; Li, Xiaojun; Jiang, Wei; Tan, Qinggui
2018-04-01
A real-time photonic sampling structure with effective nonlinearity suppression and excellent signal-to-noise ratio (SNR) performance is proposed. The key points of this scheme are the polarization-dependent modulators (P-DMZMs) and the sagnac loop structure. Thanks to the polarization sensitive characteristic of P-DMZMs, the differences between transfer functions of the fundamental signal and the distortion become visible. Meanwhile, the selection of specific biases in P-DMZMs is helpful to achieve a preferable linearized performance with a low noise level for real-time photonic sampling. Compared with the quadrature-biased scheme, the proposed scheme is capable of valid nonlinearity suppression and is able to provide a better SNR performance even in a large frequency range. The proposed scheme is proved to be effective and easily implemented for real time photonic applications.
Cosmological Distortions in Redshift Space
NASA Astrophysics Data System (ADS)
Ryden, Barbara S.
1995-05-01
The long-sought value of q_0, the deceleration parameter, remains elusive. One method of finding q_0 is to measure the distortions of large scale structure in redshift space. If the Hubble constant changes with time, then the mapping between redshift space and real space is nonlinear, even in the absence of peculiar motions. When q_0 > -1, structures in redshift space will be distorted along the line of sight; the distortion is proportional to (1 + q_0 ) z in the limit that the redshift z is small. The cosmological distortions at z <= 0.2 can be found by measuring the shapes of voids in redshift surveys of galaxies (such as the upcoming Sloane Digital Sky Survey). The cosmological distortions are masked to some extent by the distortions caused by small-scale peculiar velocities; it is difficult to measure the shape of a void when the fingers of God are poking into it. The cosmological distortions at z ~ 1 can be found by measuring the correlation function of quasars as a function of redshift and of angle relative to the line of sight. Finding q_0 by measuring distortions in redshift space, like the classical methods of determining q_0, is simple and elegant in principle but complicated and messy in practice.
NASA Technical Reports Server (NTRS)
Maniotis, A. J.; Chen, C. S.; Ingber, D. E.
1997-01-01
We report here that living cells and nuclei are hard-wired such that a mechanical tug on cell surface receptors can immediately change the organization of molecular assemblies in the cytoplasm and nucleus. When integrins were pulled by micromanipulating bound microbeads or micropipettes, cytoskeletal filaments reoriented, nuclei distorted, and nucleoli redistributed along the axis of the applied tension field. These effects were specific for integrins, independent of cortical membrane distortion, and were mediated by direct linkages between the cytoskeleton and nucleus. Actin microfilaments mediated force transfer to the nucleus at low strain; however, tearing of the actin gel resulted with greater distortion. In contrast, intermediate filaments effectively mediated force transfer to the nucleus under both conditions. These filament systems also acted as molecular guy wires to mechanically stiffen the nucleus and anchor it in place, whereas microtubules acted to hold open the intermediate filament lattice and to stabilize the nucleus against lateral compression. Molecular connections between integrins, cytoskeletal filaments, and nuclear scaffolds may therefore provide a discrete path for mechanical signal transfer through cells as well as a mechanism for producing integrated changes in cell and nuclear structure in response to changes in extracellular matrix adhesivity or mechanics.
Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating.
Knutson, Jeremy L; Martin, James D; Mitzi, David B
2005-06-27
Structural distortions within the extensive family of organic/inorganic hybrid tin iodide perovskite semiconductors are correlated with their experimental exciton energies and calculated band gaps. The extent of the in- and out-of-plane angular distortion of the SnI4(2-) perovskite sheets is largely determined by the relative charge density and steric requirements of the organic cations. Variation of the in-plane Sn-I-Sn bond angle was demonstrated to have the greatest impact on the tuning of the band gap, and the equatorial Sn-I bond distances have a significant secondary influence. Extended Hückel tight-binding band calculations are employed to decipher the crystal orbital origins of the structural effects that fine-tune the band structure. The calculations suggest that it may be possible to tune the band gap by as much as 1 eV using the templating influence of the organic cation.
Role of the local structure in superconductivity of LaO0.5F0.5BiS2-x Se x system
NASA Astrophysics Data System (ADS)
Paris, E.; Mizuguchi, Y.; Hacisalihoglu, M. Y.; Hiroi, T.; Joseph, B.; Aquilanti, G.; Miura, O.; Mizokawa, T.; Saini, N. L.
2017-04-01
We have studied the local structure of LaO0.5F0.5BiS2-x Se x by Bi L1-edge extended x-ray absorption fine structure (EXAFS). We find a significant effect of Se substitution on the local atomic correlations with a gradual elongation of average in-plane Bi-S bondlength. The associated mean square relative displacement, measuring average local distortions in the BiS2 plane, hardly shows any change for small Se substitution, but decreases significantly for x≥slant 0.6 . The Se substitution appears to suppress the local distortions within the BiS2 plane that may optimize in-plane orbital hybridization and hence the superconductivity. The results suggest that the local structure of the BiS2-layer is one of the key ingredients to control the physical properties of the BiS2-based dichalcogenides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trump, Benjamin A., E-mail: btrump1@jhu.edu; Department of Physics and Astronomy, Institute for Quantum Matter, Johns Hopkins University, Baltimore, MD 21218; McQueen, Tyrel M., E-mail: mcqueen@jhu.edu
The synthesis and physical properties of the new distorted-Hollandite PbIr{sub 4}Se{sub 8} are reported. Powder X-ray diffraction and transmission electron microscopy show that the structure consists of edge- and corner-sharing IrSe{sub 6} octahedra, with one-dimensional channels occupied by Pb. The structure contains Se-Se anion-anion bonding, leading to an electron count of Pb{sup 2+}(Ir{sup 3+}){sub 4}(Se{sub 2}){sup 2-}(Se{sup 2−}){sub 6}, confirmed by bond-valence sums and diamagnetic behavior. Structural and heat capacity measurements demonstrate disorder on the Pb site, due to the combination of lone-pair effects and the large size of the one-dimensional channels. Comparisons are made to known Hollandite and pseudo-Hollanditemore » structures, which demonstrates that the anion-anion bonding in PbIr{sub 4}Se{sub 8} distorts its structure, to accommodate the Ir{sup 3+} state. An electronic structure calculation indicates semiconductor character with a band gap of 0.76(11) eV.« less
Canonical decomposition of magnetotelluric responses: Experiment on 1D anisotropic structures
NASA Astrophysics Data System (ADS)
Guo, Ze-qiu; Wei, Wen-bo; Ye, Gao-feng; Jin, Sheng; Jing, Jian-en
2015-08-01
Horizontal electrical heterogeneity of subsurface earth is mostly originated from structural complexity and electrical anisotropy, and local near-surface electrical heterogeneity will severely distort regional electromagnetic responses. Conventional distortion analyses for magnetotelluric soundings are primarily physical decomposition methods with respect to isotropic models, which mostly presume that the geoelectric distribution of geological structures is of local and regional patterns represented by 3D/2D models. Due to the widespread anisotropy of earth media, the confusion between 1D anisotropic responses and 2D isotropic responses, and the defects of physical decomposition methods, we propose to conduct modeling experiments with canonical decomposition in terms of 1D layered anisotropic models, and the method is one of the mathematical decomposition methods based on eigenstate analyses differentiated from distortion analyses, which can be used to recover electrical information such as strike directions, and maximum and minimum conductivity. We tested this method with numerical simulation experiments on several 1D synthetic models, which turned out that canonical decomposition is quite effective to reveal geological anisotropic information. Finally, for the background of anisotropy from previous study by geological and seismological methods, canonical decomposition is applied to real data acquired in North China Craton for 1D anisotropy analyses, and the result shows that, with effective modeling and cautious interpretation, canonical decomposition could be another good method to detect anisotropy of geological media.
Correction of image drift and distortion in a scanning electron microscopy.
Jin, P; Li, X
2015-12-01
Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Meshach Paul, D; Chadah, Tania; Senthilkumar, B; Sethumadhavan, Rao; Rajasekaran, R
2017-11-03
The major candidate for multiple sulfatase deficiency is a defective formylglycine-generating enzyme (FGE). Though adequately produced, mutations in FGE stall the activation of sulfatases and prevent their activity. Missense mutations, viz. E130D, S155P, A177P, W179S, C218Y, R224W, N259I, P266L, A279V, C336R, R345C, A348P, R349Q and R349W associated with multiple sulfatase deficiency are yet to be computationally studied. Aforementioned mutants were initially screened through ws-SNPs&GO 3D program. Mutant R345C acquired the highest score, and hence was studied in detail. Discrete molecular dynamics explored structural distortions due to amino acid substitution. Therein, comparative analyses of wild type and mutant were carried out. Changes in structural contours were observed between wild type and mutant. Mutant had low conformational fluctuation, high atomic mobility and more compactness than wild type. Moreover, free energy landscape showed mutant to vary in terms of its conformational space as compared to wild type. Subsequently, wild type and mutant were subjected to single-model analyses. Mutant had lesser intra molecular interactions than wild type suggesting variations pertaining to its secondary structure. Furthermore, simulated thermal denaturation showed dissimilar pattern of hydrogen bond dilution. Effects of these variations were observed as changes in elements of secondary structure. Docking studies of mutant revealed less favourable binding energy towards its substrate as compared to wild type. Therefore, theoretical explanations for structural distortions of mutant R345C leading to multiple sulfatase deficiency were revealed. The protocol of the study could be useful to examine the effectiveness of pharmacological chaperones prior to experimental studies.
NASA Astrophysics Data System (ADS)
Fernández, Ariel
2013-08-01
A significant episteric ("around a solid") distortion of the hydrogen-bond structure of water is promoted by solutes with nanoscale surface detail and physico-chemical complexity, such as soluble natural proteins. These structural distortions defy analysis because the discrete nature of the solvent at the interface is not upheld by the continuous laws of electrostatics. This work derives and validates an electrostatic equation that governs the episteric distortions of the hydrogen-bond matrix. The equation correlates distortions from bulk-like structural patterns with anomalous polarization components that do not align with the electrostatic field of the solute. The result implies that the interfacial energy stored in the orthogonal polarization correlates with the distortion of the water hydrogen-bond network. The result is validated vis-à-vis experimental data on protein interfacial thermodynamics and is interpreted in terms of the interaction energy between the electrostatic field of the solute and the dipole moment induced by the anomalous polarization of interfacial water. Finally, we consider solutes capable of changing their interface through conformational transitions and introduce a principle of minimal episteric distortion (MED) of the water matrix. We assess the importance of the MED principle in the context of protein folding, concluding that the native fold may be identified topologically with the conformation that minimizes the interfacial tension or disruption of the water matrix.
Helical Peierls distortion: Formation of helices of polyketone and polyisocyanide
NASA Astrophysics Data System (ADS)
Cui, Chang-Xing; Kertesz, Miklos
1990-06-01
A new type of Peierls-like distortion, the formation of a helix due to the existence of partially filled crossing bands, is reported for polyketone and polyisocyanide. The torsional potential curves, optimized geometries, band structures and phonon dispersion curves are derived. A comparison with the well-known Peierls-distorted all-trans polyacetylene indicates close similarity between the two types of Peierls distortions.
Topological magnetic phase in LaMnO3 (111) bilayer
NASA Astrophysics Data System (ADS)
Weng, Yakui; Huang, Xin; Yao, Yugui; Dong, Shuai
Candidates for correlated topological insulators, originated from the spin-orbit coupling as well as Hubbard type correlation, are expected in the (111) bilayer of perovskite-structural transition-metal oxides. Based on the first-principles calculation and tight-binding model, the electronic structure of a LaMnO3 (111) bilayer sandwiched in LaScO3 barriers has been investigated. For the ideal undistorted perovskite structure, the Fermi energy of LaMnO3 (111) bilayer just stays at the Dirac point, rendering a semi-metal (graphene-like) which is also a half-metal (different from graphene nor previous studied LaNiO3 (111) bilayer). The Dirac cone can be opened by the spin-orbit coupling, giving rise to nontrivial topological bands corresponding to the (quantized) anomalous Hall effect. For the realistic orthorhombic distorted lattice, the Dirac point moves with increasing Hubbard repulsion (or equivalent Jahn-Teller distortion). Finally, a Mott gap opens, establishing a phase boundary between the Mott insulator and topological magnetic insulator. Our calculation finds that the gap opened by spin-orbit coupling is much smaller in the orthorhombic distorted lattice (~ 1 . 7 meV) than the undistorted one (~11 meV).
Limits on the fluctuating part of y-type distortion monopole from Planck and SPT results
NASA Astrophysics Data System (ADS)
Khatri, Rishi; Sunyaev, Rashid
2015-08-01
We use the published Planck and SPT cluster catalogs [1,2] and recently published y-distortion maps [3] to put strong observational limits on the contribution of the fluctuating part of the y-type distortions to the y-distortion monopole. Our bounds are 5.4× 10-8 < langle yrangle < 2.2× 10-6. Our upper bound is a factor of 6.8 stronger than the currently best upper 95% confidence limit from COBE-FIRAS of langle yrangle <15× 10-6. In the standard cosmology, large scale structure is the only source of such distortions and our limits therefore constrain the baryonic physics involved in the formation of the large scale structure. Our lower limit, from the detected clusters in the Planck and SPT catalogs, also implies that a Pixie-like experiment should detect the y-distortion monopole at >27-σ. The biggest sources of uncertainty in our upper limit are the monopole offsets between different HFI channel maps that we estimate to be <10-6.
Effects of structural distortion induced by Sc substitution in LuFe2O4
NASA Astrophysics Data System (ADS)
Jeong, Jinwon; Noh, Han-Jin; Kim, Sung Baek
2014-06-01
We have studied the correlation between the structural distortion and the electronic/magnetic properties in single-crystalline (Lu,Sc)Fe2O4 (Sc = 0.05 and 0.3) by using X-ray diffraction (XRD), magnetic susceptibility, and X-ray absorption spectroscopy (XAS)/X-ray magnetic circular dichroism (XMCD) measurements. The Rietveld structure analysis of the XRD patterns revealed that the Sc substitution induced an elongation of the FeO5 bipyramidal cages in LuFe2O4 and increased the Fe2O4 bilayer thickness. A non-negligible decrease in the ferrimagnetic transition temperature T C is observed in the magnetic susceptibility curve of the Sc = 0.3 sample, but the XAS/XMCD spectra do not show any difference except for a small reduction of dichroism signals at the Fe3+absorption edge. We interpret this suppression of TC to be the result of a decreased spin-orbit coupling effect in the Fe2+ e 1 g doublet under D 3 h symmetry, which is induced by the weakened structural asymmetry of the FeO5 bipyramids.
Vashaee, S; Goora, F; Britton, M M; Newling, B; Balcom, B J
2015-01-01
Magnetic resonance imaging (MRI) in the presence of metallic structures is very common in medical and non-medical fields. Metallic structures cause MRI image distortions by three mechanisms: (1) static field distortion through magnetic susceptibility mismatch, (2) eddy currents induced by switched magnetic field gradients and (3) radio frequency (RF) induced eddy currents. Single point ramped imaging with T1 enhancement (SPRITE) MRI measurements are largely immune to susceptibility and gradient induced eddy current artifacts. As a result, one can isolate the effects of metal objects on the RF field. The RF field affects both the excitation and detection of the magnetic resonance (MR) signal. This is challenging with conventional MRI methods, which cannot readily separate the three effects. RF induced MRI artifacts were investigated experimentally at 2.4 T by analyzing image distortions surrounding two geometrically identical metallic strips of aluminum and lead. The strips were immersed in agar gel doped with contrast agent and imaged employing the conical SPRITE sequence. B1 mapping with pure phase encode SPRITE was employed to measure the B1 field around the strips of metal. The strip geometry was chosen to mimic metal electrodes employed in electrochemistry studies. Simulations are employed to investigate the RF field induced eddy currents in the two metallic strips. The RF simulation results are in good agreement with experimental results. Experimental and simulation results show that the metal has a pronounced effect on the B1 distribution and B1 amplitude in the surrounding space. The electrical conductivity of the metal has a minimal effect. Copyright © 2014 Elsevier Inc. All rights reserved.
First Principles Study on Topological-Phase Transition in Ferroelectric Oxides
NASA Astrophysics Data System (ADS)
Yamauchi, Kunihiko; Barone, Paolo; Picozzi, Silvia
Graphene is known as a 2D topological insulator with zero energy gap and Dirac cone. In this study, we theoretically designed a honeycomb structure of Au ions embedded in a ferroelectric host oxide, in order to exploit structural distortions to control topological properties. We show that the polar structural distortion induces the emergence of spin-valley coupling, together with a topological transition from a quantum spin-Hall insulating phase to a trivial band insulator. The phase transition also affects the Berry curvature and spin-valley selection rules. Analogously to graphene, the microscopic origin of this topological phase is ascribed to a spin-valley-sublattice coupling, which arises from the interplay between trigonal crystal field and an ``effective'' spin-orbit interaction due to virtual excitations between eg and t2g states of transition-metal ions.
Minimizing distortion and internal forces in truss structures by simulated annealing
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.; Padula, Sharon L.
1990-01-01
Inaccuracies in the length of members and the diameters of joints of large space structures may produce unacceptable levels of surface distortion and internal forces. Here, two discrete optimization problems are formulated, one to minimize surface distortion (DSQRMS) and the other to minimize internal forces (FSQRMS). Both of these problems are based on the influence matrices generated by a small-deformation linear analysis. Good solutions are obtained for DSQRMS and FSQRMS through the use of a simulated annealing heuristic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menapace, J A; Schaffers, K I; Bayramian, A J
2008-02-26
Advanced magnetorheological finishing (MRF) techniques have been applied to Ti:sapphire crystals to compensate for sub-millimeter lattice distortions that occur during the crystal growing process. Precise optical corrections are made by imprinting topographical structure onto the crystal surfaces to cancel out the effects of the lattice distortion in the transmitted wavefront. This novel technique significantly improves the optical quality for crystals of this type and sets the stage for increasing the availability of high-quality large-aperture sapphire and Ti:sapphire optics in critical applications.
Optical distortion in the field of a lithotripter shock wave
NASA Astrophysics Data System (ADS)
Carnell, M. T.; Emmony, D. C.
1995-10-01
The schlieren observation of cavitation phenomena produced in the tail of a lithotripter shock wave has indicated the presence of some interesting features. The images produced appear to indicate that cavitation transients in the field of a shock wave propagate nonsymmetrically; this is not the case. The apparent lack of symmetry exhibited by the primary cavitation transients is due to a complex optical lensing effect, which is brought about by the change in refractive index associated with the pressure profile of the shock wave. Objects seen through or immersed in the shock-wave field of an electromagnetic acoustic transducer, such as cavitation, appear highly distorted because of the strong positive and negative lensing effects of the compression and rarefaction cycles of the shock wave. A modification of the schlieren technique called the scale method has been used to model the distortion introduced by the shock wave and consequently explain the cavitation distortion. The technique has also been used to quantitatively analyze and partially reconstruct the lithotripter shock wave. The combination of schlieren and scale imaging gives more information about the refractive index field and therefore the shock-wave structure itself.
Structural instability in polyacene: A projector quantum Monte Carlo study
NASA Astrophysics Data System (ADS)
Srinivasan, Bhargavi; Ramasesha, S.
1998-04-01
We have studied polyacene within the Hubbard model to explore the effect of electron correlations on the Peierls' instability in a system marginally away from one dimension. We employ the projector quantum Monte Carlo method to obtain ground-state estimates of the energy and various correlation functions. We find strong similarities between polyacene and polyacetylene which can be rationalized from the real-space valence-bond arguments of Mazumdar and Dixit. Electron correlations tend to enhance the Peierls' instability in polyacene. This enhancement appears to attain a maximum at U/t~3.0, and the maximum shifts to larger values when the alternation parameter is increased. The system shows no tendency to destroy the imposed bond-alternation pattern, as evidenced by the bond-bond correlations. The cis distortion is seen to be favored over the trans distortion. The spin-spin correlations show that undistorted polyacene is susceptible to a spin-density-wave distortion for large interaction strength. The charge-charge correlations indicate the absence of a charge-density-wave distortion for the parameters studied.
NASA Astrophysics Data System (ADS)
Huaqin, Wang; Shiyuan, Zhang; Tongzheng, Jin; Shiying, Han; Dirong, Qiu; Hao, Wang; Ningsheng, Zhou
In this paper the differences in diffraction intensities from some crystal planes in the X-ray diffraction patterns of high Tc Y-Ba-Cu-O system superconductors prepared by different processing conditions and the difference among various structure cells in references are interpreted using computer fitting. The results suggest that there exists two structure cells in the single phase YBa2Cu3O7-x samples. Both structure cells have the same crystal symmetry and almost the same lattice parameters, a=3.821Å, b=3.892Å and c=11.676Å, but the different distortion degree of Cu2-O plane. According to EPR spectra measured on the same samples, it is considered that the improvement of superconductivity for the samples prepared by two-step annealing in flowing oxygen may be related to concentration of the structure cell with more serious distortion on the Cu2-O plane.
Temperature induced distortions in space telescope mirrors
NASA Technical Reports Server (NTRS)
Nied, H. F.; Rudmann, A. A.
1993-01-01
In this paper, it is illustrated how measured instantaneous coefficients of thermal expansion (CTE) can be accurately taken into account when modeling the structural behavior of space based optical systems. In particular, the importance of including CTE spatial variations in the analysis of optical elements is emphasized. A comparison is made between the CTE's of three optical materials commonly used in the construction of space mirrors (ULE, Zerodur, and beryllium). The overall impact that selection of any one of these materials has on thermal distortions is briefly discussed. As an example of how temperature dependent spatial variations in thermal strain can be accurately incorporated in the thermo-structural analysis of a precision optical system, a finite element model is developed, which is used to estimate the thermally induced distortions in the Hubble Space Telescope's (HST) primary mirror. In addition to the structural analysis, the optical aberrations due to thermally induced distortions are also examined. These calculations indicate that thermal distortions in HST's primary mirror contribute mainly to defocus error with a relatively small contribution to spherical aberration.
The stabilization mechanism of titanium cluster
NASA Astrophysics Data System (ADS)
Sun, Houqian; Ren, Yun; Hao, Yuhua; Wu, Zhaofeng; Xu, Ning
2015-05-01
A systematic and comparative theoretical study on the stabilization mechanism of titanium cluster has been performed by selecting the clusters Tin (n=3, 4, 5, 7, 13, 15 and 19) as representatives in the framework of density-functional theory. For small clusters Tin (n=3, 4 and 5), the binding energy gain due to spin polarization is substantially larger than that due to structural distortion. For medium clusters Ti13 and Ti15, both have about the same contribution. For Tin (n=4, 5, 13 and 15), when the undistorted high symmetric structure with spin-polarization is changed into the lowest energy structure, the energy level spelling due to distortion fails to reverse the level order of occupied and unoccupied molecular orbital (MO) of two type spin states, the spin configuration remains unchanged. In spin restricted and undistorted high symmetric structure, d orbitals participate in the hybridization in MOs, usually by way of a less distorted manner, and weak bonds are formed. In contrast, d orbitals take part in the formation of MOs in the ground state structure, usually in a distorted manner, and strong covalent metallic bonds are formed.
An Optical Flow-Based Full Reference Video Quality Assessment Algorithm.
K, Manasa; Channappayya, Sumohana S
2016-06-01
We present a simple yet effective optical flow-based full-reference video quality assessment (FR-VQA) algorithm for assessing the perceptual quality of natural videos. Our algorithm is based on the premise that local optical flow statistics are affected by distortions and the deviation from pristine flow statistics is proportional to the amount of distortion. We characterize the local flow statistics using the mean, the standard deviation, the coefficient of variation (CV), and the minimum eigenvalue ( λ min ) of the local flow patches. Temporal distortion is estimated as the change in the CV of the distorted flow with respect to the reference flow, and the correlation between λ min of the reference and of the distorted patches. We rely on the robust multi-scale structural similarity index for spatial quality estimation. The computed temporal and spatial distortions, thus, are then pooled using a perceptually motivated heuristic to generate a spatio-temporal quality score. The proposed method is shown to be competitive with the state-of-the-art when evaluated on the LIVE SD database, the EPFL Polimi SD database, and the LIVE Mobile HD database. The distortions considered in these databases include those due to compression, packet-loss, wireless channel errors, and rate-adaptation. Our algorithm is flexible enough to allow for any robust FR spatial distortion metric for spatial distortion estimation. In addition, the proposed method is not only parameter-free but also independent of the choice of the optical flow algorithm. Finally, we show that the replacement of the optical flow vectors in our proposed method with the much coarser block motion vectors also results in an acceptable FR-VQA algorithm. Our algorithm is called the flow similarity index.
Symmetry-lowering lattice distortion at the spin reorientation in MnBi single crystals
McGuire, Michael A.; Cao, Huibo; Chakoumakos, Bryan C.; ...
2014-11-18
Here we report structural and physical properties determined by measurements on large single crystals of the anisotropic ferromagnet MnBi. The findings support the importance of magnetoelastic effects in this material. X-ray diffraction reveals a structural phase transition at the spin reorientation temperature T SR = 90 K. The distortion is driven by magneto-elastic coupling, and upon cooling transforms the structure from hexagonal to orthorhombic. Heat capacity measurements show a thermal anomaly at the crystallographic transition, which is suppressed rapidly by applied magnetic fields. Effects on the transport and anisotropic magnetic properties of the single crystals are also presented. Increasing anisotropymore » of the atomic displacement parameters for Bi with increasing temperature above T SR is revealed by neutron diffraction measurements. It is likely that this is directly related to the anisotropic thermal expansion in MnBi, which plays a key role in the spin reorientation and magnetocrystalline anisotropy. Finally, the identification of the true ground state crystal structure reported here may be important for future experimental and theoretical studies of this permanent magnet material, which have to date been performed and interpreted using only the high temperature structure.« less
Mapping and distortions of auroral structures in the quiet magnetosphere
NASA Technical Reports Server (NTRS)
Kaufmann, Richard L.; Larson, Douglas J.; Lu, Chen
1990-01-01
The closed quiet magnetosphere model of Beard (1979) and Beard et al. (1982) is used to identify those features of commonly observed dayside auroras that can be explained by either of two processes: mapping distortions or distortions caused by nearby Birkeland currents. It is shown that single and multiple linear and hooked auroral forms can be easily explained in terms of mapping distortions in a quiet magnetosphere. On the other hand, the shapes of bright twisted or folded auroral forms can be more easily explained as distortions produced by localized Birkeland currents.
Numerical Investigation of Vortex Generator Flow Control for External-Compression Supersonic Inlets
NASA Astrophysics Data System (ADS)
Baydar, Ezgihan
Vortex generators (VGs) within external-compression supersonic inlets for Mach 1.6 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. Ramp and vane-type VGs were studied. The geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Previous research of downstream VGs in the low-boom supersonic inlet demonstrated improvement in radial distortion up to 24% while my work on external-compression supersonic inlets improved radial distortion up to 86%, which is significant. The design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of VGs and search for optimal VG arrays. From the analysis, VG angle-of-incidence and VG height were the most influential factors in increasing total pressure recovery and reducing distortion. The study on the two-dimensional external-compression inlet determined which passive flow control devices, such as counter-rotating vanes or ramps, reduce high distortion levels and improve the health of the boundary layer, relative to the baseline. Downstream vanes demonstrate up to 21% improvement in boundary layer health and 86% improvement in radial distortion. Upstream vanes demonstrated up to 3% improvement in boundary layer health and 9% improvement in radial distortion. Ramps showed no improvement in boundary layer health and radial distortion. Micro-VGs were preferred for their reduced viscous drag and improvement in total pressure recovery at the AIP. Although traditional VGs energize the flow with stronger vortex structures compared to micro-VGs, the AIP is affected with overwhelming amounts of reduced and enhanced flow regions. In summary, vanes are exceptional in reducing radial distortion and improving the health of the boundary layer compared to the ramps. In the study of the STEX inlet, vane-type vortex generators were the preferred devices for boundary layer flow control. In the supersonic diffuser, co-rotating vane arrays and counter-rotating vane arrays did not show improvement. In the subsonic diffuser, co-rotating vane arrays with negative angles-of-incidence and counter-rotating vane arrays were exceptional in reducing radial distortion and improving total pressure recovery. Downstream co-rotating vanes demonstrated up to 41% improvement in radial distortion whereas downstream counter-rotating vanes demonstrated up to 73% improvement. For downstream counter-rotating vanes, a polynomial trend between VG height and radial distortion indicate that increasing VG height improves inlet distortion. In summary, downstream vanes are exceptional in improving total pressure recovery compared to upstream vanes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jentzen, W.; Song, X.Z.; Shelnutt, J.A.
1997-02-27
The X-ray crystal structures of synthetic and protein-bound metalloporphyrins are analyzed using a new normal structural decomposition method for classifying and quantifying their out-of-plane and in-plane distortions. These distortions are characterized in terms of equivalent displacements along the normal coordinates of the D{sub 4h}-symmetric porphyrin macrocycle (normal deformations). It is shown that the macrocyclic structure is, even in highly distorted porphyrins, accurately represented by displacements along only the lowest-frequency normal coordinates. Accordingly, the macrocyclic structure obtained from just the out-of-plane normal deformations of the saddling (sad, B{sub 2u})-, ruffling (ruf, B{sub 1u})-, doming (dom, A{sub 2u})-, waving [wav(x), wav(y); E{submore » g}]-, and propellering (pro, A{sub 1u})-type essentially simulates the out-of-plane distortion of the X-ray crystal structure. Similarly, the observed in-plane distortions are decomposed into in-plane normal deformations corresponding to the lowest-frequency vibrational modes including macrocycle stretching in the direction of the meso-carbon atoms (meso-str, B{sub 2g}), stretching in the direction of the nitrogen atoms (N-str, B{sub 1g}), x and y pyrrole translations [trn(x), trn(y); E{sub u}], macrocycle breathing (bre, A{sub 1g}), and pyrrole rotation (rot, A{sub 2g}). 71 refs., 9 figs., 4 tabs.« less
Experimental thermal mechanics of deployable boom structures
NASA Technical Reports Server (NTRS)
Predmore, R.
1972-01-01
An apparatus was developed for thermal distortion measurements on deployable boom structures. The calibration procedure and thermal static bending plus twist measurements are considered. The thermal mechanics test facility is described. A table is presented for several examples of spacecraft applications of thermal static distortion measurements on 3-m deployable booms.
NASA Technical Reports Server (NTRS)
Kobayashi, H.
1978-01-01
Two dimensional, quasi three dimensional and three dimensional theories for the prediction of pure tone fan noise due to the interaction of inflow distortion with a subsonic annular blade row were studied with the aid of an unsteady three dimensional lifting surface theory. The effects of compact and noncompact source distributions on pure tone fan noise in an annular cascade were investigated. Numerical results show that the strip theory and quasi three-dimensional theory are reasonably adequate for fan noise prediction. The quasi three-dimensional method is more accurate for acoustic power and model structure prediction with an acoustic power estimation error of about plus or minus 2db.
Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet
NASA Technical Reports Server (NTRS)
Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.
2017-01-01
Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.
Local structures around the substituted elements in mixed layered oxides
Akama, Shota; Kobayashi, Wataru; Amaha, Kaoru; Niwa, Hideharu; Nitani, Hiroaki; Moritomo, Yutaka
2017-01-01
The chemical substitution of a transition metal (M) is an effective method to improve the functionality of a material, such as its electrochemical, magnetic, and dielectric properties. The substitution, however, causes local lattice distortion because the difference in the ionic radius (r) modifies the local interatomic distances. Here, we systematically investigated the local structures in the pure (x = 0.0) and mixed (x = 0.05 or 0.1) layered oxides, Na(M1−xM′x)O2 (M and M′ are the majority and minority transition metals, respectively), by means of extended X-ray absorption fine structure (EXAFS) analysis. We found that the local interatomic distance (dM-O) around the minority element approaches that around the majority element to reduces the local lattice distortion. We further found that the valence of the minority Mn changes so that its ionic radius approaches that of the majority M. PMID:28252008
Sang, Xiahan; LeBeau, James M
2014-03-01
We report the development of revolving scanning transmission electron microscopy--RevSTEM--a technique that enables characterization and removal of sample drift distortion from atomic resolution images without the need for a priori crystal structure information. To measure and correct the distortion, we acquire an image series while rotating the scan coordinate system between successive frames. Through theory and experiment, we show that the revolving image series captures the information necessary to analyze sample drift rate and direction. At atomic resolution, we quantify the image distortion using the projective standard deviation, a rapid, real-space method to directly measure lattice vector angles. By fitting these angles to a physical model, we show that the refined drift parameters provide the input needed to correct distortion across the series. We demonstrate that RevSTEM simultaneously removes the need for a priori structure information to correct distortion, leads to a dramatically improved signal-to-noise ratio, and enables picometer precision and accuracy regardless of drift rate. Copyright © 2013 Elsevier B.V. All rights reserved.
System overview on electromagnetic compensation for reflector antenna surface distortion
NASA Technical Reports Server (NTRS)
Acosta, R. J.; Zaman, A. J.; Terry, J. D.
1993-01-01
The system requirements and hardware implementation for electromagnetic compensation of antenna performance degradations due to thermal effects was investigated. Future commercial space communication antenna systems will utilize the 20/30 GHz frequency spectrum and support very narrow multiple beams (0.3 deg) over wide angle field of view (15-20 beamwidth). On the ground, portable and inexpensive very small aperture terminals (VSAT) for transmitting and receiving video, facsimile and data will be employed. These types of communication system puts a very stringent requirement on spacecraft antenna beam pointing stability (less than .01 deg), high gain (greater than 50 dB) and very lowside lobes (less than -25 dB). Thermal analysis performed on the advanced communication technology satellite (ACTS) has shown that the reflector surfaces, the mechanical supporting structures and metallic surfaces on the spacecraft body will distort due thermal effects from a varying solar flux. The antenna performance characteristics (e.g., pointing stability, gain, side lobe, etc.) will degrade due to thermal distortion in the reflector surface and supporting structures. Specifically, antenna RF radiation analysis has shown that pointing error is the most sensitive antenna performance parameter to thermal distortions. Other antenna parameters like peak gain, cross polarization level (beam isolation), and side lobe level will also degrade with thermal distortions. In order to restore pointing stability and in general antenna performance several compensation methods were proposed. In general these compensation methods can be classified as being either of mechanical or electromagnetic type. This paper will address only the later one. In this approach an adaptive phased array antenna feed is used to compensate for the antenna performance degradation. Extensive work has been devoted to demonstrate the feasibility of adaptive feed compensation on space communication antenna systems. This paper addresses the system requirements for such a system and identify candidate technologies (analog and digital) for possible hardware implementation.
Simultaneous measurements of density field and wavefront distortions in high speed flows
NASA Astrophysics Data System (ADS)
George, Jacob; Jenkins, Thomas; Trolinger, James; Hess, Cecil; Buckner, Benjamin
2017-09-01
This paper presents results from simultaneous measurements of fluid density and the resulting wavefront distortions in a sonic underexpanded jet. The density measurements were carried out using Rayleigh scattering, and the optical distortions were measured using a wavefront sensor based on phase shifting interferometry. The measurements represent a preliminary step toward relating wavefront distortions to a specific flow structure. The measured density field is used to compute the phase distortions using a wave propagation model based on a geometric-optics approximation, and the computed phase map shows moderate agreement with that obtained using the wavefront sensor.
Power spectrum precision for redshift space distortions
NASA Astrophysics Data System (ADS)
Linder, Eric V.; Samsing, Johan
2013-02-01
Redshift space distortions in galaxy clustering offer a promising technique for probing the growth rate of structure and testing dark energy properties and gravity. We consider the issue of to what accuracy they need to be modeled in order not to unduly bias cosmological conclusions. Fitting for nonlinear and redshift space corrections to the linear theory real space density power spectrum in bins in wavemode, we analyze both the effect of marginalizing over these corrections and of the bias due to not correcting them fully. While naively subpercent accuracy is required to avoid bias in the unmarginalized case, in the fitting approach the Kwan-Lewis-Linder reconstruction function for redshift space distortions is found to be accurately selfcalibrated with little degradation in dark energy and gravity parameter estimation for a next generation galaxy redshift survey such as BigBOSS.
Chen, I-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming
2015-10-07
Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.
Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard
2015-01-01
The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios. PMID:26016909
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roediger, E.; Kraft, R. P.; Machacek, M. E.
2012-08-01
We present results from two {approx}30 ks Chandra observations of the hot atmospheres of the merging galaxy groups centered around NGC 7618 and UGC 12491. Our images show the presence of arc-like sloshing cold fronts (CFs) wrapped around each group center and {approx}100 kpc long spiral tails in both groups. Most interestingly, the CFs are highly distorted in both groups, exhibiting 'wings' along the fronts. These features resemble the structures predicted from non-viscous hydrodynamic simulations of gas sloshing, where Kelvin-Helmholtz instabilities (KHIs) distort the CFs. This is in contrast to the structure seen in many other sloshing and merger CFs,more » which are smooth and featureless at the current observational resolution. Both magnetic fields and viscosity have been invoked to explain the absence of KHIs in these smooth CFs, but the NGC 7618/UGC 12491 pair are two in a growing number of both sloshing and merger CFs that appear distorted. Magnetic fields and/or viscosity may be able to suppress the growth of KHIs at the CFs in some clusters and groups, but clearly not in all. We propose that the presence or absence of KHI distortions in CFs can be used as a measure of the effective viscosity and/or magnetic field strengths in the intracluster medium.« less
Daneshmand, Saeed; Jahromi, Ali Jafarnia; Broumandan, Ali; Lachapelle, Gérard
2015-05-26
The use of Space-Time Processing (STP) in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its effectiveness for both narrowband and wideband interference suppression. However, the resulting distortion and bias on the cross correlation functions due to space-time filtering is a major limitation of this technique. Employing the steering vector of the GNSS signals in the filter structure can significantly reduce the distortion on cross correlation functions and lead to more accurate pseudorange measurements. This paper proposes a two-stage interference mitigation approach in which the first stage estimates an interference-free subspace before the acquisition and tracking phases and projects all received signals into this subspace. The next stage estimates array attitude parameters based on detecting and employing GNSS signals that are less distorted due to the projection process. Attitude parameters enable the receiver to estimate the steering vector of each satellite signal and use it in the novel distortionless STP filter to significantly reduce distortion and maximize Signal-to-Noise Ratio (SNR). GPS signals were collected using a six-element antenna array under open sky conditions to first calibrate the antenna array. Simulated interfering signals were then added to the digitized samples in software to verify the applicability of the proposed receiver structure and assess its performance for several interference scenarios.
Vidal, Julien; Botti, Silvana; Olsson, Pär; Guillemoles, Jean-François; Reining, Lucia
2010-02-05
We present a first-principles study of the electronic properties of CuIn(S,Se){2} (CIS) using state-of-the-art self-consistent GW and hybrid functionals. The calculated band gap depends strongly on the anion displacement u, an internal structural parameter that measures lattice distortion. This contrasts with the observed stability of the band gap of CIS solar panels under operating conditions, where a relatively large dispersion of values for u occurs. We solve this apparent paradox considering the coupled effect on the band gap of copper vacancies and lattice distortions. The correct treatment of d electrons in these materials requires going beyond density functional theory, and GW self-consistency is critical to evaluate the quasiparticle gap and the valence band maximum.
Nanoscale structural and electronic characterization of α-RuCl3 layered compound
NASA Astrophysics Data System (ADS)
Ziatdinov, Maxim; Maksov, Artem; Banerjee, Arnab; Zhou, Wu; Berlijn, Tom; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Baddorf, Arthur; Kalinin, Sergei
The exceptional interplay of spin-orbit effects, Coulomb interaction, and electron-lattice coupling is expected to produce an elaborate phase space of α-RuCl3 layered compound, which to date remains largely unexplored. Here we employ a combination of scanning transmission electron microscopy (STEM) and scanning tunneling microscopy (STM) for detailed evaluation of the system's microscopic structural and electronic orders with a sub-nanometer precision. The STM and STEM measurements are further supported by neutron scattering, X-Ray diffraction, density functional theory (DFT), and multivariate statistical analysis. Our results show a trigonal distortion of Cl octahedral ligand cage along the C3 symmetry axes in each RuCl3 layer. The lattice distortion is limited mainly to the Cl subsystem leaving the Ru honeycomb lattice nearly intact. The STM topographic and spectroscopic characterization reveals an intra unit cell electronic symmetry breaking in a spin-orbit coupled Mott insulating phase on the Cl-terminated surface of α-RuCl3. The associated long-range charge order (CO) pattern is linked to a surface component of Cl cage distortion. We finally discuss a fine structure of CO and its potential relation to variations of average unit cell geometries found in multivariate analysis of STEM data. The research was sponsored by the U.S. Department of Energy.
Input reconstruction of chaos sensors.
Yu, Dongchuan; Liu, Fang; Lai, Pik-Yin
2008-06-01
Although the sensitivity of sensors can be significantly enhanced using chaotic dynamics due to its extremely sensitive dependence on initial conditions and parameters, how to reconstruct the measured signal from the distorted sensor response becomes challenging. In this paper we suggest an effective method to reconstruct the measured signal from the distorted (chaotic) response of chaos sensors. This measurement signal reconstruction method applies the neural network techniques for system structure identification and therefore does not require the precise information of the sensor's dynamics. We discuss also how to improve the robustness of reconstruction. Some examples are presented to illustrate the measurement signal reconstruction method suggested.
Vacancy effects on the electronic and structural properties pentacene
NASA Astrophysics Data System (ADS)
Laraib, Iflah; Janotti, Anderson
Defects in organic crystals are likely to affect charge transport in organic electronic devices. Vacancies can create lattice distortions and modify electronic states associated with the molecules in its surrounding. Spectroscopy experiments indicate that molecular vacancies trap charge carriers. Experimental characterization of individual defects is challenging and unambiguous. Here we use density functional calculations including van der Waals interactions in a supercell approach to study the single vacancy in pentacene, a prototype organic semiconductor. We determine formation energies, local lattice relaxations, and discuss how vacancies locally distort the lattice and affect the electronic properties of the host organic semiconductor.
Contour sensitive saliency and depth application in image retargeting
NASA Astrophysics Data System (ADS)
Lu, Hongju; Yue, Pengfei; Zhao, Yanhui; Liu, Rui; Fu, Yuanbin; Zheng, Yuanjie; Cui, Jia
2018-04-01
Image retargeting technique requires important information preservation and less edge distortion during increasing/decreasing image size. The major existed content-aware methods perform well. However, there are two problems should be improved: the slight distortion appeared at the object edges and the structure distortion in the nonsalient area. According to psychological theories, people evaluate image quality based on multi-level judgments and comparison between different areas, both image content and image structure. The paper proposes a new standard: the structure preserving in non-salient area. After observation and image analysis, blur (slight blur) is generally existed at the edge of objects. The blur feature is used to estimate the depth cue, named blur depth descriptor. It can be used in the process of saliency computation for balanced image retargeting result. In order to keep the structure information in nonsalient area, the salient edge map is presented in Seam Carving process, instead of field-based saliency computation. The derivative saliency from x- and y-direction can avoid the redundant energy seam around salient objects causing structure distortion. After the comparison experiments between classical approaches and ours, the feasibility of our algorithm is proved.
Multidimensional incremental parsing for universal source coding.
Bae, Soo Hyun; Juang, Biing-Hwang
2008-10-01
A multidimensional incremental parsing algorithm (MDIP) for multidimensional discrete sources, as a generalization of the Lempel-Ziv coding algorithm, is investigated. It consists of three essential component schemes, maximum decimation matching, hierarchical structure of multidimensional source coding, and dictionary augmentation. As a counterpart of the longest match search in the Lempel-Ziv algorithm, two classes of maximum decimation matching are studied. Also, an underlying behavior of the dictionary augmentation scheme for estimating the source statistics is examined. For an m-dimensional source, m augmentative patches are appended into the dictionary at each coding epoch, thus requiring the transmission of a substantial amount of information to the decoder. The property of the hierarchical structure of the source coding algorithm resolves this issue by successively incorporating lower dimensional coding procedures in the scheme. In regard to universal lossy source coders, we propose two distortion functions, the local average distortion and the local minimax distortion with a set of threshold levels for each source symbol. For performance evaluation, we implemented three image compression algorithms based upon the MDIP; one is lossless and the others are lossy. The lossless image compression algorithm does not perform better than the Lempel-Ziv-Welch coding, but experimentally shows efficiency in capturing the source structure. The two lossy image compression algorithms are implemented using the two distortion functions, respectively. The algorithm based on the local average distortion is efficient at minimizing the signal distortion, but the images by the one with the local minimax distortion have a good perceptual fidelity among other compression algorithms. Our insights inspire future research on feature extraction of multidimensional discrete sources.
Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taruya, Atsushi; Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568; Nishimichi, Takahiro
2010-09-15
We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopolemore » and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.« less
NASA Astrophysics Data System (ADS)
Daengsakul, Sujittra; Saengplot, Saowalak; Kidkhunthod, Pinit; Pimsawat, Adulphan; Maensiri, Santi
2018-04-01
This work presents the structural study of La0.99-xSrx(Na, K, Ba)0.01MnO3 or LSAM nanoparticles synthesized using thermal-hydro decomposition method where A denotes Na, K, Sr and Ba, respectively. The effect of ionic radii size of A dopants or rA from the substitution of A for La and Sr on the MnO6 octrahedral structure, where the average size of the cations occupying in A-site or 〈rA〉 is fixed at ∼ 1.24 Å, is focused. The LSAM nanoparticles are carefully studied using X-ray diffraction (XRD) including Rietveld refinement and X-ray Absorption Spectroscopy (XAS) including X-ray Absorption Near edge Structure (XANES) and X-ray Absorption Fine Structure (EXAFS). The Rietveld refinement shows all nano-powder samples have rhombohedral structure. By XANES technique we found that the effect of A substitutions at A-site causes a slight change of mean oxidation state of Mn between 3.54 and 3.60. Furthermore, the structural distortion of MnO6 octrahedral in samples is analysed and obtained from EXAFS. The observed trend of ferromagnetism for all LSAM samples can be clearly explained by evidences of A-site doping, structural distortion around Mn atoms and mixing Mn3+/Mn4+ valence states.
Expertise and processing distorted structure in chess.
Bartlett, James C; Boggan, Amy L; Krawczyk, Daniel C
2013-01-01
A classic finding in research on human expertise and knowledge is that of enhanced memory for stimuli in a domain of expertise as compared to either stimuli outside that domain, or within-domain stimuli that have been degraded or distorted in some way. However, we do not understand how experts process degradation or distortion of stimuli within the expert domain (e.g., a face with the eyes, nose, and mouth in the wrong positions, or a chessboard with pieces placed randomly). Focusing on the domain of chess, we present new fMRI evidence that when experts view such distorted/within-domain stimuli, they engage an active search for structure-a kind of exploratory chunking-that involves a component of a prefrontal-parietal network linked to consciousness, attention and working memory.
Jet Engine Fan Response to Inlet Distortions Generated by Ingesting Boundary Layer Flow
NASA Astrophysics Data System (ADS)
Giuliani, James Edward
Future civil transport designs may incorporate engines integrated into the body of the aircraft to take advantage of efficiency increases due to weight and drag reduction. Additional increases in engine efficiency are predicted if the inlets ingest the lower momentum boundary layer flow that develops along the surface of the aircraft. Previous studies have shown, however, that the efficiency benefits of Boundary Layer Ingesting (BLI) inlets are very sensitive to the magnitude of fan and duct losses, and blade structural response to the non-uniform flow field that results from a BLI inlet has not been studied in-depth. This project represents an effort to extend the modeling capabilities of TURBO, an existing rotating turbomachinery unsteady analysis code, to include the ability to solve the external and internal flow fields of a BLI inlet. The TURBO code has been a successful tool in evaluating fan response to flow distortions for traditional engine/inlet integrations. Extending TURBO to simulate the external and inlet flow field upstream of the fan will allow accurate pressure distortions that result from BLI inlet configurations to be computed and used to analyze fan aerodynamics and structural response. To validate the modifications for the BLI inlet flow field, an experimental NASA project to study flush-mounted S-duct inlets with large amounts of boundary layer ingestion was modeled. Results for the flow upstream and in the inlet are presented and compared to experimental data for several high Reynolds number flows to validate the modifications to the solver. Once the inlet modifications were validated, a hypothetical compressor fan was connected to the inlet, matching the inlet operating conditions so that the effect on the distortion could be evaluated. Although the total pressure distortion upstream of the fan was symmetrical for this geometry, the pressure rise generated by the fan blades was not, because of the velocity non-uniformity of the distortion. Total pressure profiles at various axial locations are computed to identify the overall distortion pattern, how the distortion evolves through the blade passages and mixes out downstream of the blades, and where any critical performance concerns might be. Stall cells are identified that are stationary in the absolute frame and are fixed to the inlet distortion. Flow paths around the blades are examined to study the stall mechanism. Rather than a static airfoil stall, it is observed that the non-uniform pressure loading promotes a three-dimensional dynamic stall. The stall occurs at a point of rapid incidence angle oscillation, observed when a blade passes through the distortion, and re-attaches when the blade leaves the distortion.
Cooling rate dependence of structural order in Ni 62 Nb 38 metallic glass
Wen, Tongqi; Sun, Yang; Ye, Beilin; ...
2018-01-31
In this article, molecular dynamics (MD) simulations are performed to study the structure of Ni 62Nb 38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni 62Nb 38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfectmore » icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.« less
Cooling rate dependence of structural order in Ni 62 Nb 38 metallic glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Tongqi; Sun, Yang; Ye, Beilin
In this article, molecular dynamics (MD) simulations are performed to study the structure of Ni 62Nb 38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni 62Nb 38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfectmore » icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.« less
Cooling rate dependence of structural order in Ni62Nb38 metallic glass
NASA Astrophysics Data System (ADS)
Wen, Tongqi; Sun, Yang; Ye, Beilin; Tang, Ling; Yang, Zejin; Ho, Kai-Ming; Wang, Cai-Zhuang; Wang, Nan
2018-01-01
Molecular dynamics (MD) simulations are performed to study the structure of Ni62Nb38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni62Nb38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfect icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.
Effect of spatial inlet temperature and pressure distortion on turbofan engine stability
NASA Technical Reports Server (NTRS)
Mehalic, Charles M.
1988-01-01
The effects of circumferential and radial inlet temperature distortion, circumferential pressure distortion, and combined temperature and pressure distortion on the stability of an advanced turbofan engine were investigated experimentally at simulated altitude conditions. With circumferential and radial inlet temperature distortion, a flow instability generated by the fan operating near stall caused the high-pressure compressor to surge at, or near, the same time as the fan. The effect of combined distortion was dependent on the relative location of the high-temperature and low-pressure regions; high-pressure compressor stalls occurred when the regions coincided, and fan stalls occurred with the regions separated.
The design of visible system for improving the measurement accuracy of imaging points
NASA Astrophysics Data System (ADS)
Shan, Qiu-sha; Li, Gang; Zeng, Luan; Liu, Kai; Yan, Pei-pei; Duan, Jing; Jiang, Kai
2018-02-01
It has a widely applications in robot vision and 3D measurement for binocular stereoscopic measurement technology. And the measure precision is an very important factor, especially in 3D coordination measurement, high measurement accuracy is more stringent to the distortion of the optical system. In order to improving the measurement accuracy of imaging points, to reducing the distortion of the imaging points, the optical system must be satisfied the requirement of extra low distortion value less than 0.1#65285;, a transmission visible optical lens was design, which has characteristic of telecentric beam path in image space, adopted the imaging model of binocular stereo vision, and imaged the drone at the finity distance. The optical system was adopted complex double Gauss structure, and put the pupil stop on the focal plane of the latter groups, maked the system exit pupil on the infinity distance, and realized telecentric beam path in image space. The system mainly optical parameter as follows: the system spectrum rangement is visible light wave band, the optical effective length is f '=30mm, the relative aperture is 1/3, and the fields of view is 21°. The final design results show that the RMS value of the spread spots of the optical lens in the maximum fields of view is 2.3μm, which is less than one pixel(3.45μm) the distortion value is less than 0.1%, the system has the advantage of extra low distortion value and avoids the latter image distortion correction; the proposed modulation transfer function of the optical lens is 0.58(@145 lp/mm), the imaging quality of the system is closed to the diffraction limited; the system has simply structure, and can satisfies the requirements of the optical indexes. Ultimately, based on the imaging model of binocular stereo vision was achieved to measuring the drone at the finity distance.
Effect of orthorhombic distortion on dielectric and piezoelectric properties of CaBi4Ti4O15 ceramics
NASA Astrophysics Data System (ADS)
Tanwar, Amit; Sreenivas, K.; Gupta, Vinay
2009-04-01
High temperature bismuth layered piezoelectric and ferroelectric ceramics of CaBi4Ti4O15 (CBT) have been prepared using the solid state route. The formation of single phase material with orthorhombic structure was verified from x-ray diffraction and Raman spectroscopy. The orthorhombic distortion present in the CBT ceramic sintered at 1200 °C was found to be maximum. A sharp phase transition from ferroelectric to paraelectric was observed in the temperature dependent dielectric studies of all CBT ceramics. The Curie's temperature (Tc=790 °C) was found to be independent of measured frequency. The behavior of ac conductivity as a function of frequency (100 Hz-1 MHz) at low temperatures (<500 °C) follows the power law and is attributed to hopping conduction. The presence of large orthorhombic distortion in the CBT ceramic sintered at 1200 °C results in high dielectric constant, low dielectric loss, and high piezoelectric coefficient (d33). The observed results indicate the important role of orthorhombic distortion in determining the improved property of multicomponent ferroelectric material.
Interrelation between Structure Magnetic Properties in La0.5Sr0.5CoO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biegalski, Michael D; Takamura, Y; Mehta, A
Differing anisotropic strain induced from the underlying substrates not only control the long-range structural symmetries in La0.5Sr0.5CoO3 but also impact the magnetic properties of these epitaxial thin films. The two dominant structural distortions: oxygen octahedral tilts and epitaxial strain, however, have complex and non-intuitive effects on the splitting of the t2g states and consequently on magnetization.
Local atomic and electronic structures of epitaxial strained LaCoO3 thin films
NASA Astrophysics Data System (ADS)
Sterbinsky, G. E.; Ryan, P. J.; Kim, J.-W.; Karapetrova, E.; Ma, J. X.; Shi, J.; Woicik, J. C.
2012-01-01
We have examined the atomic and electronic structures of perovskite lanthanum cobaltite (LaCoO3) thin films using Co K-edge x-ray absorption fine structure (XAFS) spectroscopy. Extended XAFS (EXAFS) demonstrates that a large difference between in-plane and out-of-plane Co-O bond lengths results from tetragonal distortion in highly strained films. The structural distortions are strongly coupled to the hybridization between atomic orbitals of the Co and O atoms, as shown by x-ray absorption near edge spectroscopy (XANES). Our results indicate that increased hybridization is not the cause of ferromagnetism in strained LaCoO3 films. Instead, we suggest that the strain-induced distortions of the oxygen octahedra increase the population of eg electrons and concurrently depopulate t2g electrons beyond a stabilization threshold for ferromagnetic order.
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; McKeon, Beverley; Smith, Adam; Gordeyev, Stanislav
2014-11-01
This study examines the relationship between turbulent structures and the aero-optical distortion of a laser beam passing through a turbulent boundary layer. Previous studies by Smith et al. (AIAA, 2014--2491) have found a bulk convection velocity of 0 . 8U∞ for aero-optical distortion in turbulent boundary layers, motivating a comparison of the distortion with the outer boundary layer. In this study, a turbulent boundary layer is developed over a flat plate with a moderately-heated section of length 25 δ . Density variation in the thermal boundary layer leads to aero-optical distortion, which is measured with a Malley probe (Smith et al., AIAA, 2013--3133). Simultaneously, 2D PIV measurements are recorded in a wall-normal, streamwise plane centered on the Malley probe location. Experiments are run at Reθ = 2100 and at a Mach number of 0.03, with the heated wall 10 to 20°C above the free stream temperature. Correlations and conditional averages are carried out between Malley probe distortion angles and flow features in the PIV vector fields. Aero-optical distortion in this study will be compared to distortion in higher Mach number flows studied by Gordeyev et al. (J. Fluid Mech., 2014), with the aim of extending conclusions into compressible flows. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.
Limits on the fluctuating part of y-type distortion monopole from Planck and SPT results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khatri, Rishi; Sunyaev, Rashid, E-mail: khatri@mpa-garching.mpg.de, E-mail: sunyaev@mpa-garching.mpg.de
2015-08-01
We use the published Planck and SPT cluster catalogs [1,2] and recently published y-distortion maps [3] to put strong observational limits on the contribution of the fluctuating part of the y-type distortions to the y-distortion monopole. Our bounds are 5.4× 10{sup −8} < ( y) < 2.2× 10{sup −6}. Our upper bound is a factor of 6.8 stronger than the currently best upper 95% confidence limit from COBE-FIRAS of ( y) <15× 10{sup −6}. In the standard cosmology, large scale structure is the only source of such distortions and our limits therefore constrain the baryonic physics involved in the formation of the large scale structure. Our lower limit, from themore » detected clusters in the Planck and SPT catalogs, also implies that a Pixie-like experiment should detect the y-distortion monopole at >27-σ. The biggest sources of uncertainty in our upper limit are the monopole offsets between different HFI channel maps that we estimate to be <10{sup −6}.« less
Field-Effects in Large Axial Ratio Liquid Crystals
NASA Astrophysics Data System (ADS)
Lonberg, Franklin J.
This paper consists of an introduction and four chapters, the abstracts of which are presented below. Chapter 2. The subject of this chapter is the dynamic periodic structures which are observed in the twist Frederiks transition. It is found that, for fields above a material dependent level, a transient periodic distortion is observed. The wave vector is parallel to the unperturbed director and increases with increasing field. A theoretical model and experimental data are presented. Chapter 3. The subject of this chapter is the discovery of a new equilibrium structure in the splay Frederiks transition. Experimental observation has shown that the imposition of a field, just above the critical strength, produces a periodic distortion in the polymer liquid crystal PBG. This periodic state is not dynamic in origin but it is a true ground state. An analysis of the energy of a liquid crystal, in the splay Frederiks transition geometry, shows that in materials with K(,1)/K(,3) > 3.3 the periodic distortion will have a lower critical field than the uniform distortion. Chapter 4. The subject of this chapter is the dynamics of the bend Frederiks transition in large axial ratio nematics. Experimental evidence is presented to show that there is a distortion mode which occurs at field greater than 2H(,c), which is very fast and does not grow exponentially. An analysis of the equations of motion shows that a mode with wave length half that of the static equilibrium mode will have these properties. Chapter 5. The bend Frederiks transition is use to show that the bend and splay elastic constants are linear in concentration in PBG. Interpretation of this result is made in connection with models of the elastic energy in liquid crystal made of semi-flexible partiles.
Object-based warping: an illusory distortion of space within objects.
Vickery, Timothy J; Chun, Marvin M
2010-12-01
Visual objects are high-level primitives that are fundamental to numerous perceptual functions, such as guidance of attention. We report that objects warp visual perception of space in such a way that spatial distances within objects appear to be larger than spatial distances in ground regions. When two dots were placed inside a rectangular object, they appeared farther apart from one another than two dots with identical spacing outside of the object. To investigate whether this effect was object based, we measured the distortion while manipulating the structure surrounding the dots. Object displays were constructed with a single object, multiple objects, a partially occluded object, and an illusory object. Nonobject displays were constructed to be comparable to object displays in low-level visual attributes. In all cases, the object displays resulted in a more powerful distortion of spatial perception than comparable non-object-based displays. These results suggest that perception of space within objects is warped.
NASA Astrophysics Data System (ADS)
López-Sánchez, J.; Muñoz-Noval, A.; Castellano, C.; Serrano, A.; del Campo, A.; Cabero, M.; Varela, M.; Abuín, M.; de la Figuera, J.; Marco, J. F.; Castro, G. R.; Rodríguez de la Fuente, O.; Carmona, N.
2017-12-01
The current study unveils the structural origin of the magnetic transition of the ɛ-Fe2O3 polymorph from an incommensurate magnetic order to a collinear ferrimagnetic state at low temperature. The high crystallinity of the samples and the absence of other iron oxide polymorphs have allowed us to carry out temperature-dependent x-ray absorption fine structure spectroscopy experiments out. The deformation of the structure is followed by the Debye-Waller factor for each selected Fe-O and Fe-Fe sub-shell. For nanoparticle sizes between 7 and 15 nm, the structural distortions between the Fete and Fe-D1oc sites are localized in a temperature range before the magnetic transition starts. On the contrary, the inherent interaction between the other sub-shells (named Fe-O1,2 and Fe-Fe1) provokes cooperative magneto-structural changes in the same temperature range. This means that the Fete with Fe-D1oc polyhedron interaction seems to be uncoupled with temperature dealing with these nanoparticle sizes wherein the structural distortions are likely moderate due to surface effects.
Automated detection scheme of architectural distortion in mammograms using adaptive Gabor filter
NASA Astrophysics Data System (ADS)
Yoshikawa, Ruriha; Teramoto, Atsushi; Matsubara, Tomoko; Fujita, Hiroshi
2013-03-01
Breast cancer is a serious health concern for all women. Computer-aided detection for mammography has been used for detecting mass and micro-calcification. However, there are challenges regarding the automated detection of the architectural distortion about the sensitivity. In this study, we propose a novel automated method for detecting architectural distortion. Our method consists of the analysis of the mammary gland structure, detection of the distorted region, and reduction of false positive results. We developed the adaptive Gabor filter for analyzing the mammary gland structure that decides filter parameters depending on the thickness of the gland structure. As for post-processing, healthy mammary glands that run from the nipple to the chest wall are eliminated by angle analysis. Moreover, background mammary glands are removed based on the intensity output image obtained from adaptive Gabor filter. The distorted region of the mammary gland is then detected as an initial candidate using a concentration index followed by binarization and labeling. False positives in the initial candidate are eliminated using 23 types of characteristic features and a support vector machine. In the experiments, we compared the automated detection results with interpretations by a radiologist using 50 cases (200 images) from the Digital Database of Screening Mammography (DDSM). As a result, true positive rate was 82.72%, and the number of false positive per image was 1.39. There results indicate that the proposed method may be useful for detecting architectural distortion in mammograms.
NASA Astrophysics Data System (ADS)
Chen, I.-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming
2015-09-01
Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance. Electronic supplementary information (ESI) available: A series of Ru K-edge EXAFS spectra fitting results for RuO2 together with oxides with different Ru-Ti atomic ratios treated at 200 °C. See DOI: 10.1039/c5nr03660g
Impact of large-scale tides on cosmological distortions via redshift-space power spectrum
NASA Astrophysics Data System (ADS)
Akitsu, Kazuyuki; Takada, Masahiro
2018-03-01
Although large-scale perturbations beyond a finite-volume survey region are not direct observables, these affect measurements of clustering statistics of small-scale (subsurvey) perturbations in large-scale structure, compared with the ensemble average, via the mode-coupling effect. In this paper we show that a large-scale tide induced by scalar perturbations causes apparent anisotropic distortions in the redshift-space power spectrum of galaxies in a way depending on an alignment between the tide, wave vector of small-scale modes and line-of-sight direction. Using the perturbation theory of structure formation, we derive a response function of the redshift-space power spectrum to large-scale tide. We then investigate the impact of large-scale tide on estimation of cosmological distances and the redshift-space distortion parameter via the measured redshift-space power spectrum for a hypothetical large-volume survey, based on the Fisher matrix formalism. To do this, we treat the large-scale tide as a signal, rather than an additional source of the statistical errors, and show that a degradation in the parameter is restored if we can employ the prior on the rms amplitude expected for the standard cold dark matter (CDM) model. We also discuss whether the large-scale tide can be constrained at an accuracy better than the CDM prediction, if the effects up to a larger wave number in the nonlinear regime can be included.
Phase transitions of titanite CaTiSiO5 from density functional perturbation theory
NASA Astrophysics Data System (ADS)
Malcherek, Thomas; Fischer, Michael
2018-02-01
Phonon dispersion of titanite CaTiSiO5 has been calculated using the variational density functional perturbation theory. The experimentally known out-of-center distortion of the Ti atom is confirmed. The distortion is associated with a Bu mode that is unstable for wave vectors normal to the octahedral chain direction of the C 2 /c aristotype structure. The layer of wave vectors with imaginary mode frequencies also comprises the Brillouin zone boundary point Y (0 ,1 ,0 ) , which is critical for the transition to the P 21/c ground-state structure. The phonon branch equivalent to the imaginary branch of the titanite aristotype is found to be stable in malayaite CaSnSiO5. The unstable phonon mode in titanite leads to the formation of transoriented short and long Ti-O1 bonds. The Ti as well as the connecting O1 atom exhibit strongly anomalous Born effective charges along the octahedral chain direction [001], indicative of the strong covalency in this direction. Accordingly and in contrast to malayaite, LO-TO splitting is very large in titanite. In the C 2 /c phase of titanite, the Ti-O1-Ti distortion chain is disordered with respect to neighboring distortion chains, as all chain configurations are equally unstable along the phonon branch. This result is in agreement with diffuse x-ray scattering in layers normal to the chain direction that is observed at temperatures close to the P 21/c to C 2 /c transition temperature and above. The resulting dynamic chains of correlated Ti displacements are expected to order in two dimensions to yield the P 21/c ground-state structure of titanite.
Suppression of the ferromagnetic state in LaCoO3 films by rhombohedral distortion
NASA Astrophysics Data System (ADS)
Fuchs, D.; Dieterle, L.; Arac, E.; Eder, R.; Adelmann, P.; Eyert, V.; Kopp, T.; Schneider, R.; Gerthsen, D.; v. Löhneysen, H.
2009-01-01
Epitaxially strained LaCoO3 (LCO) thin films were grown with different film thickness, t , on (001) oriented (LaAlO3)0.3(SrAl0.5Ta0.5O3)0.7 substrates. After initial pseudomorphic growth the films start to relieve their strain partly by the formation of periodic nanotwins with twin planes predominantly along the ⟨100⟩ direction. Nanotwinning occurs already at the initial stage of growth, albeit in a more moderate way. Pseudomorphic grains, on the other hand, still grow up to a thickness of at least several tenths of nanometers. The twinning is attributed to the symmetry lowering of the epitaxially strained pseudotetragonal structure toward the relaxed rhombohedral structure of bulk LCO. However, the unit-cell volume of the pseudotetragonal structure is found to be nearly constant over a very large range of t . Only films with t>130nm show a significant relaxation of the lattice parameters toward values comparable to those of bulk LCO. Measurements of the magnetic moment indicate that the effective paramagnetic moment, meff , and thus the spin state of the Co3+ ion do not change for films with t≤100nm . However, the saturated ferromagnetic moment, ms , was found to be proportional only to the pseudotetragonal part of the film and decreases with increasing rhombohedral distortion. The measurements demonstrate that ferromagnetism of LCO is strongly affected by the rhombohedral distortion while the increased unit-cell volume mainly controls the effective paramagnetic moment and thus the spin state of the Co3+ ion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, L.; Yao, C. G.; Meng, J. L.
The crystal structures, magnetic, and dielectric properties for the ordered double perovskites LnPbCoSbO{sub 6} (Ln = La, Pr, Nd) have been investigated. The crystal structure has been solved by Rietveld refinements of X-ray diffraction data in the monoclinic space group P2{sub 1}/n (No. 14). The Co{sup 2+} and Sb{sup 5+} ions are almost fully ordered over the B-site, and the octahedral framework displays significant tilting distortion according to the Glazer's tilt system a{sup –}a{sup –}c{sup +}. As the result of lanthanide contraction from La{sup 3+} to Nd{sup 3+}, the B-site sublattice distortions become stronger accompanying with the reduction of themore » tolerance factor and coordination number. The magnetization measurements show an antiferromagnetic ordering with large effective magnetic moments (μ{sub eff}) suggesting that the orbital component is significant. The maximum values of isothermal magnetization increase with the decrease in radii of rare earth ions, which is attributed to the weakening of antiferromagnetic interaction via Co{sup 2+}–O–Sb{sup 5+}–O–Co{sup 2+} paths. The dielectric constants present frequency dependence and monotonically decrease with the ionic radii reduction from La{sup 3+} to Nd{sup 3+} due to the suppression of electron transfer. These results indicate that the magnetic and dielectric properties can be tuned by controlling the degree of lattice distortion, which is realized by introducing different Ln{sup 3+} ions at the A-site.« less
2015-11-01
induced residual stresses and distortions from weld simulations in the SYSWELD software code in structural Finite Element Analysis ( FEA ) simulations...performed in the Abaqus FEA code is presented. The translation of these results is accomplished using a newly developed Python script. Full details of...Local Weld Model in Structural FEA ....................................................15 CONCLUSIONS
Harmonic distortion in microwave photonic filters.
Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José
2012-04-09
We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.
Ab initio study of the structural phase transitions of the double perovskites Sr2MWO6 (M=Zn, Ca, Mg)
NASA Astrophysics Data System (ADS)
Petralanda, U.; Etxebarria, I.
2014-02-01
We study the interplay of structural distortions in double perovskites Sr2MWO6 (M = Zn, Ca, Mg) by means of first-principles calculations and group theoretical analysis. Structure relaxations of the cubic, tetragonal, and monoclinic phases show that the ground states of the three compounds are monoclinic, although the energy difference between the monoclinic and tetragonal structures is very small in the case of Sr2MgWO6. The symmetry analysis of the distortions involved in the experimental and calculated low-temperature structures shows that the amplitude of two primary distortions associated to rigid rotations of the MX6 and WO6 octahedra are dominant, although the amplitude of a third mode related to deformations of the MX6 groups can not be neglected. The energy maps of the space spanned by the three relevant modes are calculated, and the couplings among the modes are evaluated, showing that the role of a hard secondary mode (in the Landau sense) coupled trilinearly to the two primary instabilities is crucial to stabilize the monoclinic ground state. Results suggest that the key role of the trilinear coupling among three modes could be rather common. A phenomenological theory including the effects of the chemical pressure is also developed. We find that the evolution of the stiffness constants in terms of the atomic substitution follows an accurate linear dependence and that the influence of quantum saturation of the order parameters could stabilize the tetragonal phase of Sr2MgWO6.
NASA Astrophysics Data System (ADS)
Pfanner, Gernot; Freysoldt, Christoph; Neugebauer, Jörg; Gerstmann, Uwe
2012-05-01
A dangling bond (db) is an important point defect in silicon. It is realized in crystalline silicon by defect complexes of the monovacancy V with impurities. In this work, we present spin-polarized density-functional theory calculations of EPR parameters (g and hyperfine tensors) within the GIPAW formalism for two kinds of db defect complexes. The first class characterizes chemically saturated db systems, where three of the four dangling bonds of the isolated vacancy are saturated by hydrogen (VH3) or hydrogen and oxygen (hydrogen-oxygen complex, VOH). The second kind of db consists of systems with a Jahn-Teller distortion, where the vacancy includes either a substitutional phosphorus atom (the E center, VP) or a single hydrogen atom (VH). For all systems we obtain excellent agreement with available experimental data, and we are therefore able to quantify the effect of the Jahn-Teller distortion on the EPR parameters. Furthermore we study the influence of strain to obtain further insights into the structural and electronic characteristics of the considered defects.
Effect of exit beam phase aberrations on coherent x-ray reconstructions of Au nanocrystals
NASA Astrophysics Data System (ADS)
Hruszkewycz, Stephan; Harder, Ross; Fuoss, Paul
2010-03-01
Current studies in coherent x-ray diffractive imaging (CXDI) are focusing on in-situ imaging under a variety of environmental conditions. Such studies often involve environmental sample chambers through which the x-ray beam must pass before and after interacting with the sample: i.e. cryostats or high pressure cells. Such sample chambers usually contain polycrystalline x-ray windows with structural imperfections that can in turn interact with the diffracted beam. A phase object in the near field that interacts with the beam exiting the sample can introduce distortions at the detector plane that may affect coherent reconstructions. We investigate the effects of a thin beryllium membrane on the coherent exit beam of a gold nanoparticle. We compare three dimensional reconstructions from experimental diffraction patterns measured with and without a 380 micron thick Be dome and find that the reconstructions are reproducible within experimental errors. Simulated near-field distortions of the exit beam consistent with micron sized voids in Be establish a ``worst case scenario'' where distorted diffraction patterns inhibit accurate inversions.
Subaru Telescope limits on cosmological variations in the fine-structure constant
NASA Astrophysics Data System (ADS)
Murphy, Michael T.; Cooksey, Kathy L.
2017-11-01
Previous, large samples of quasar absorption spectra have indicated some evidence for relative variations in the fine-structure constant (Δα/α) across the sky. However, they were likely affected by long-range distortions of the wavelength calibration, so it is important to establish a statistical sample of more reliable results from multiple telescopes. Here we triple the sample of Δα/α measurements from the Subaru Telescope which have been `supercalibrated' to correct for long-range distortions. A blinded analysis of the metallic ions in six intervening absorption systems in two Subaru quasar spectra provides no evidence for α variation, with a weighted mean of Δα/α = 3.0 ± 2.8stat ± 2.0sys parts per million (1σ statistical and systematic uncertainties). The main remaining systematic effects are uncertainties in the long-range distortion corrections, absorption profile models, and errors from redispersing multiple quasar exposures on to a common wavelength grid. The results also assume that terrestrial isotopic abundances prevail in the absorbers; assuming only the dominant terrestrial isotope is present significantly lowers Δα/α, though it is still consistent with zero. Given the location of the two quasars on the sky, our results do not support the evidence for spatial α variation, especially when combined with the 21 other recent measurements which were corrected for, or resistant to, long-range distortions. Our spectra and absorption profile fits are publicly available.
Structural and electronic phase transitions of MoTe2 induced by Li ionic gating
NASA Astrophysics Data System (ADS)
Hwang, Jeongwoon; Zhang, Chenxi; Cho, Kyeongjae
2017-12-01
Monolayer MoTe2 has semiconducting and semimetallic phases with small energy difference, and the relative stability is readily reversed by gating. By first-principles calculations, we investigate the changes in atomic structure, electronic structure, and relative stability of two phases induced by Li ionic gating. To model Li ionic gating, we employ two approaches; one is direct adsorption of Li on MoTe2 and the other is introducing non-contacting Li plate over MoTe2. We show phonon instability in H-phase of MoTe2 with increasing the amount of charge transfer from Li, which implies a large electron-phonon coupling in the system resulting in a charge density wave state. Structural distortion is also observed in highly doped T d phase. The transition energy barrier from distorted H phase to distorted T d phase is reduced considerably compared to that of pristine MoTe2.
Experimental evaluation of the effect of inlet distortion on compressor blade vibrations
NASA Technical Reports Server (NTRS)
Lubomski, J. F.
1979-01-01
Compressor rotor strain gage data from an engine test conducted with an inlet screen distortion were reduced and analyzed. These data are compared to data obtained from the same engine without inlet pressure distortion to determine the net effect of the distortion on the vibratory response of the compressor blades. The results obtained are presented.
Kim, Yeong Hun; Lee, Dong Woo; Ok, Kang Min
2013-10-07
Three new quaternary scandium vanadium selenium/tellurium oxides, α-ScVSe2O8, β-ScVSe2O8, and ScVTe2O8 have been synthesized through hydrothermal and standard solid-state reactions. Although all three reported materials are stoichiometrically similar, they exhibit different crystal structures: α-ScVSe2O8 has a three-dimensional framework structure consisting of ScO6, VO6, and SeO3 groups. β-ScVSe2O8 reveals another three-dimensional framework composed of ScO7, VO5, and SeO3 polyhedra. ScVTe2O8 shows a layered structure with ScO6, VO4, and TeO4 polyhedra. Interestingly, the constituent cations, that is, Sc(3+), V(5+), Se(4+), and Te(4+) are all in a distorted coordination environment attributable to second-order Jahn-Teller (SOJT) effects. Complete characterizations including infrared spectroscopy, elemental analyses, thermal analyses, dipole moment calculation, and the magnitudes of out-of-center distortions for the compounds are reported. Transformation reactions suggest that α-ScVSe2O8 may change to β-ScVSe2O8, and then to Sc2(SeO3)3·H2O under hydrothermal conditions.
Structure and interstitial iodide migration in hybrid perovskite methylammonium lead iodide
NASA Astrophysics Data System (ADS)
Minns, J. L.; Zajdel, P.; Chernyshov, D.; van Beek, W.; Green, M. A.
2017-05-01
Hybrid perovskites form an emerging family of exceptional light harvesting compounds. However, the mechanism underpinning their photovoltaic effect is still far from understood, which is impeded by a lack of clarity on their structures. Here we show that iodide ions in the methylammonium lead iodide migrate via interstitial sites at temperatures above 280 K. This coincides with temperature dependent static distortions resulting in pseudocubic local symmetry. Based on bond distance analysis, the migrating and distorted iodines are at lengths consistent with the formation of I2 molecules, suggesting a 2I--->I2+2e- redox couple. The actual formula of this compound is thus (CH3NH3)PbI3-2x(I2)x where x~0.007 at room temperature. A crucial feature of the tetragonal structure is that the methylammonium ions do not sit centrally in the A-site cavity, but disordered around two off-centre orientations that facilitate the interstitial ion migration via a gate opening mechanism.
The Dominant Folding Route Minimizes Backbone Distortion in SH3
Lammert, Heiko; Noel, Jeffrey K.; Onuchic, José N.
2012-01-01
Energetic frustration in protein folding is minimized by evolution to create a smooth and robust energy landscape. As a result the geometry of the native structure provides key constraints that shape protein folding mechanisms. Chain connectivity in particular has been identified as an essential component for realistic behavior of protein folding models. We study the quantitative balance of energetic and geometrical influences on the folding of SH3 in a structure-based model with minimal energetic frustration. A decomposition of the two-dimensional free energy landscape for the folding reaction into relevant energy and entropy contributions reveals that the entropy of the chain is not responsible for the folding mechanism. Instead the preferred folding route through the transition state arises from a cooperative energetic effect. Off-pathway structures are penalized by excess distortion in local backbone configurations and contact pair distances. This energy cost is a new ingredient in the malleable balance of interactions that controls the choice of routes during protein folding. PMID:23166485
Finite temperature effects on the X-ray absorption spectra of energy related materials
NASA Astrophysics Data System (ADS)
Pascal, Tod; Prendergast, David
2014-03-01
We elucidate the role of room-temperature-induced instantaneous structural distortions in the Li K-edge X-ray absorption spectra (XAS) of crystalline LiF, Li2SO4, Li2O, Li3N and Li2CO3 using high resolution X-ray Raman spectroscopy (XRS) measurements and first-principles density functional theory calculations within the eXcited electron and Core Hole (XCH) approach. Based on thermodynamic sampling via ab-initio molecular dynamics (MD) simulations, we find calculated XAS in much better agreement with experiment than those computed using the rigid crystal structure alone. We show that local instantaneous distortion of the atomic lattice perturbs the symmetry of the Li 1 s core-excited-state electronic structure, broadening spectral line-shapes and, in some cases, producing additional spectral features. This work was conducted within the Batteries for Advanced Transportation Technologies (BATT) Program, supported by the U.S. Department of Energy Vehicle Technologies Program under Contract No. DE-AC02-05CH11231.
NASA Astrophysics Data System (ADS)
Kazantseva, N. V.; Pilyugin, V. P.; Danilov, S. E.; Kolosov, V. Yu.
2015-05-01
A systematic combined study of crystal lattice distortions caused by doping and by severe plastic deformation (SPD) of Ti- and Nb-doped Ni3Al intermetallic compound has been carried out using methods of X-ray diffraction, electron microscopy, and electrical-resistance measurements. The degree of imperfection of the alloys has been estimated based on the results obtained by all three methods. The degree of structural perfection of niobium-doped crystals was found to be higher than in the case of Ti doping. The character of stresses (tensile stresses after doping; and compressive stresses after SPD) in the crystal lattice has been established and their values have been calculated. A significant increase in the density of dislocations, point defects, and lattice curvature has been found after SPD. A nanocrystalline structure is formed in these alloys, but no complete disordering of the intermetallic phase is observed.
Structural changes during milling of aluminum oxide powders
NASA Technical Reports Server (NTRS)
Ziepler, G.
1984-01-01
The mechanical activation of four fused corundum powders and a calcined Al2O3 powder was studied. The milled powders were characterized by their structural properties, crystallite size, and lattice distortions. Structural changes during milling, detected by X-ray line broadening analysis, gave information about the enhanced activity of the powders caused by the lattice distortions and by the decreasing crystallite size during milling. The structural changes during milling, under the same milling conditions, can be quite different for the same ceramic material, but with different characteristics in the as received state.
A microstructure-based model for shape distortion during liquid phase sintering
NASA Astrophysics Data System (ADS)
Upadhyaya, Anish
Tight dimensional control is a major concern in consolidation of alloys via liquid phase sintering. This research demonstrates the role of microstructure in controlling the bulk dimensional changes that occur during liquid phase sintering. The dimensional changes were measured using a coordinate measuring machine and also on a real-time basis using in situ video imaging. To quantify compact distortion, a distortion parameter is formulated which takes into consideration the compact distortion in radial as well as axial directions. The microstructural attributes considered in this study are as follows: solid content, dihedral angle, grain size, grain contiguity and connectivity, and solid-solubility. Sintering experiments were conducted with the W-Ni-Cu, W-Ni-Fe, Mo-Ni-Cu, and Fe-Cu systems. The alloy systems and the compositions were selected to give a range of microstructures during liquid phase sintering. The results show that distortion correlates with the measured microstructural attributes. Systems containing a high solid content, high grain coordination number and contiguity, and large dihedral angle have more structural rigidity. The results show that a minimum two-dimensional grain coordination number of 3.0 is necessary for shape preservation. Based on the experimental observations, a model is derived that relates the critical solid content required for maintaining structural rigidity to the dihedral angle. The critical solid content decreases with an increasing dihedral angle. Consequently, W-Cu alloys, which have a dihedral angle of about 95sp°, can be consolidated without gross distortion with as little as 20 vol.% solid. To comprehensively understand the gravitational effects in the evolution of both the microstructure and the macrostructure during liquid phase sintering, W-Ni-Fe alloys with W content varying from 78 to 93 wt.% were sintered in microgravity. Compositions that slump during ground-based sintering also distort when sintered under microgravity. In ground-based sintering, low solid content alloys distort with a typical elephant-foot profile, while in microgravity, the compacts tend to spheroidize. This study shows that microstructural segregation occurs in both ground-based as well as microgravity sintering. In ground-based experiments, because of the density difference between the solid and the liquid phase, the solid content increases from top to the bottom of the sample. In microgravity, the solid content increases from periphery to the center of the samples. A model is derived to show that grain agglomeration and segregation are energetically favored events and will therefore be inherent to the system, even in the absence of gravity. Real time distortion measurement in alloys having appreciable solid-solubility in the liquid phase, such as W-Ni-Fe and Fe-Cu, show that the bulk of distortion occur within the first 5 min of melt formation. Distortion in such systems can be minimized by presaturating the matrix with the solid phase.
Broken symmetry phase transition in solid p-H 2, o-D 2 and HD: crystal field effects
NASA Astrophysics Data System (ADS)
Freiman, Yu. A.; Hemley, R. J.; Jezowski, A.; Tretyak, S. M.
1999-04-01
We report the effect of the crystal field (CF) on the broken symmetry phase transition (BSP) in solid parahydrogen, orthodeuterium, and hydrogen deuteride. The CF was calculated taking into account a distortion from the ideal HCP structure. We find that, in addition to the molecular field generated by the coupling terms in the intermolecular potential, the Hamiltonian of the system contains a crystal-field term, originating from single-molecular terms in the intermolecular potential. Ignoring the CF is the main cause of the systematic underestimation of the transition pressure, characteristic of published theories of the BSP transition. The distortion of the lattice that gives rise to the negative CF in response to the applied pressure is in accord with the general Le Chatelier-Braun principle.
ERIC Educational Resources Information Center
Bacchini, Dario; De Angelis, Grazia; Affuso, Gaetana; Brugman, Daniel
2016-01-01
This study aims to investigate the structure of self-serving cognitive distortions (CD), evaluating the psychometric properties of the How I Think Questionnaire in a sample of Italian adolescents. A confirmatory factor analysis supported the distinction between four categories of CD and the use of a single second-order dimension of CD. Reliability…
Reversal in Spreading of a Tabbed Circular Jet Under Controlled Excitation
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Raman, G.
1997-01-01
Detailed flow field measurements have been carried out for a turbulent circular jet perturbed by tabs and artificial excitation. Two "delta tabs" were placed at the nozzle exit at diametricall opposite y locations. The excitation condition involved subharmonic resonance that manifested in a periodic vortex pairing in the near flow field. While the excitation and the tabs independently increased jet spreading, a combination of the two diminished the effect. The jet spreading was most pronounced with the tabs but was reduced when excitation was applied to the tabbed jet. The tabs generated streamwise vortex pairs that caused a lateral spreading of the jet in a direction perpendicular to the plane containing the tabs. ne excitation, on the other hand, organized the azimuthal vorticity into coherent ring structures whose evolution and pairing also increased entrainment by the jet. In the tabbed case, the excitation produced coherent azimuthal structures that were distorted and asymmetric in shape. The self-induction of these structures produced an effect that opposed the tendency for the lateral spreading of the streamwise vortex pairs. The passage of the distorted vortices, and their pairing, also had a cancellation effect on the time-averaged streamwise vorticity field. These led to the reduction in jet spreading.
Analysis of Three Frameworks for Quality Assurance in Sino-Foreign Cooperation for Running Schools
ERIC Educational Resources Information Center
Chaocheng, Zhou
2009-01-01
As economic globalization sweeps across the world, cross-border higher education cooperation has witnessed remarkable achievements. Quality improvements, however, have not stepped up accordingly due to reasons including imperfect and distorted policies, incomplete governance structures, and the absence of an effective internal quality assessment…
Strainmeters and tiltmeters in geophysics
NASA Technical Reports Server (NTRS)
Goulty, N. R.
1976-01-01
Several types of sensitive strainmeters and tiltmeters have been developed, and it is now becoming clear which geophysical applications are most suitable for these instruments. In general, strainmeters and tiltmeters are used for observing ground deformation at periods of minutes to days. Small-scale lateral inhomogeneities at the instrument sites distort signals by a few percent, although the effects of large structures can be calculated. In earth tide work these lateral inhomogeneities and unknown ocean loading signals prevent accurate values of the regional tide from being obtained. This limits tidal investigations to looking for temporal variations, possibly associated with pre-earthquake dilatancy, and spatial variations caused by gross elasticity contrasts in the local geological structure. Strainmeters and tiltmeters are well suited for observing long-period seismic waves, seismic slip events on faults and volcano tumescence, where small site-induced distortions in the measured signals are seldom important.
NASA Astrophysics Data System (ADS)
Khalsa, Guru; Benedek, Nicole A.
2018-03-01
Epitaxial strain and chemical substitution have been the workhorses of functional materials design. These static techniques have shown immense success in controlling properties in complex oxides through the tuning of subtle structural distortions. Recently, an approach based on the excitation of an infrared active phonon with intense midinfrared light has created an opportunity for dynamical control of structure through special nonlinear coupling to Raman phonons. We use first-principles techniques to show that this approach can dynamically induce a magnetic phase transition from the ferromagnetic ground state to a hidden antiferromagnetic phase in the rare earth titanate GdTiO3 for realistic experimental parameters. We show that a combination of a Jahn-Teller distortion, Gd displacement, and infrared phonon motion dominate this phase transition with little effect from the octahedral rotations, contrary to conventional wisdom.
NASA Technical Reports Server (NTRS)
Steenken, William G.; Williams, John G.; Yuhas, Andrew J.; Walsh, Kevin R.
1997-01-01
The F404-GE-400-powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the quality of inlet airflow during departed flight maneuvers, that is, during flight outside the normal maneuvering envelope where control surfaces have little or no effectiveness. Six nose-left and six nose-right departures were initiated at Mach numbers between 0.3 and 0.4 at an altitude of 35 kft. The entry yaw rates were approximately 40 to 90 deg/sec. Engine surges were encountered during three of the nose-left and one of the nose-right departures. Time-variant inlet-total-pressure distortion levels at the engine face did not significantly exceed those at maximum angle-of-attack and sideslip maneuvers during controlled flight. Surges caused by inlet distortion levels resulted from a combination of high levels of inlet distortion and rapid changes in aircraft position. These rapid changes indicate a combination of engine support and gyroscopic loads being applied to the engine structure that impact the aerodynamic stability of the compressor through changes in the rotor-to-case clearances. This document presents the slides from an oral presentation.
Toyota, Azumao; Muramatsu, Takashi; Koseki, Shiro
2017-03-23
Stable geometrical structures for formonitrile imine (1) and N-substituted nitrile imines HCN 2 -R (R = Li, BeH, BH 2 , CH 3 , CN, CCH, C 6 H 5 , NH 2 , OH, and F) (2-11) were examined by using the multiconfiguration self-consistent-field (MCSCF) method followed by second-order configuration interaction (SOCI) calculations and second-order multiconfiguration quasi-degenerate perturbation theory (MCQDPT2) calculations, together with the aug-cc-pVTZ basis sets. The results show that 1 suffers a pseudo-Jahn-Teller (JT) distortion from a linear C ∞v structure to a C 1 structure via a planar bent C s structure. Each of the others is found to undergo pseudo-JT distortion from a symmetrical structure to a planar bent C s structure for 2, 3, and 7 and to a C 1 structure for 4, 5, 6, 8, 9, 10, and 11. At the stationary structures of 1-11, the structural characteristics were briefly discussed in terms of allenic and propargylic. To elucidate the nature of pseudo-JT distortions, energy component analyses were carried out at the MCSCF+SOCI level of theory at all of the stationary structures for the relevant molecules. In most of the molecules examined, pseudo-JT stabilizations were classified into two groups, one in which the stability arises from a lowering of the energy of the attractive term V en and the other in which the stability results from a lowering of the energy of the repulsive terms V nn and V ee . In addition to the above two groups, it was also found that the following three groups are responsible for the pseudo-JT stabilizations in a certain stage of the structural changes. Namely, one is a lowering of the energy of the term V ee observed in 6, another is a lowering of the energy of the terms V ee and V en observed in 9-11, and the other is a lowering of the energy of the terms V en and V nn observed in 10. These energetic behaviors were accounted in terms of an elongation or a contraction of the molecular skeleton, a migration of electrons from one part of the molecule to other parts, and the combined effects arising from these two factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Kishan; Zhang, Yubo; Jiang, Xuanyuan
Elastic strain is potentially an important approach in tuning the properties of the improperly multiferroic hexagonal ferrites, the details of which have however been elusive due to the experimental difficulties. Employing the method of restrained thermal expansion, we have studied the effect of isothermal biaxial strain in the basal plane of h-LuFeO 3 (001) films. The results indicate that a compressive biaxial strain significantly enhances the K 3 structural distortion (the order parameter of the improper ferroelectricity), and the effect is larger at higher temperatures. The compressive biaxial strain and the enhanced K 3 structural distortion together, cause an increasemore » in the electric polarization and a reduction in the canting of the weak ferromagnetic moments in h-LuFeO 3, according to our first principle calculations. These findings are important for understanding the strain effect as well as the coupling between the lattice and the improper multiferroicity in h-LuFeO 3. Finally, the experimental elucidation of the strain effect in h-LuFeO 3 films also suggests that the restrained thermal expansion can be a viable method to unravel the strain effect in many other thin film materials.« less
Sinha, Kishan; Zhang, Yubo; Jiang, Xuanyuan; ...
2017-03-14
Elastic strain is potentially an important approach in tuning the properties of the improperly multiferroic hexagonal ferrites, the details of which have however been elusive due to the experimental difficulties. Employing the method of restrained thermal expansion, we have studied the effect of isothermal biaxial strain in the basal plane of h-LuFeO 3 (001) films. The results indicate that a compressive biaxial strain significantly enhances the K 3 structural distortion (the order parameter of the improper ferroelectricity), and the effect is larger at higher temperatures. The compressive biaxial strain and the enhanced K 3 structural distortion together, cause an increasemore » in the electric polarization and a reduction in the canting of the weak ferromagnetic moments in h-LuFeO 3, according to our first principle calculations. These findings are important for understanding the strain effect as well as the coupling between the lattice and the improper multiferroicity in h-LuFeO 3. Finally, the experimental elucidation of the strain effect in h-LuFeO 3 films also suggests that the restrained thermal expansion can be a viable method to unravel the strain effect in many other thin film materials.« less
NASA Technical Reports Server (NTRS)
Miller, Franklin; Bagdanove, paul; Blake, Peter; Canavan, Ed; Cofie, Emmanuel; Crane, J. Allen; Dominquez, Kareny; Hagopian, John; Johnston, John; Madison, Tim;
2007-01-01
The James Webb Space Telescope Instrument Support Integration Module (ISIM) is being designed and developed at the Goddard Space Flight Center. The ISM Thermal Distortion Testing (ITDT) program was started with the primary objective to validate the ISM mechanical design process. The ITDT effort seeks to establish confidence and demonstrate the ability to predict thermal distortion in composite structures at cryogenic temperatures using solid element models. This-program's goal is to better ensure that ISIM meets all the mechanical and structural requirements by using test results to verify or improve structural modeling techniques. The first step to accomplish the ITDT objectives was to design, and then construct solid element models of a series 2-D test assemblies that represent critical building blocks of the ISIM structure. Second, the actual test assemblies consisting of composite tubes and invar end fittings were fabricated and tested for thermal distortion. This paper presents the development of the GSFC Cryo Distortion Measurement Facility (CDMF) to meet the requirements of the ISIM 2-D test. assemblies, and other future ISIM testing needs. The CDMF provides efficient cooling with both a single, and two-stage cryo-cooler. Temperature uniformity of the test assemblies during thermal transients and at steady state is accomplished by using sapphire windows for all of the optical ports on the radiation shields and by using .thermal straps to cool the test assemblies. Numerical thermal models of the test assemblies were used to predict the temperature uniformity of the parts during cooldown and at steady state. Results of these models are compared to actual temperature data from the tests. Temperature sensors with a 0.25K precision were used to insure that test assembly gradients did not exceed 2K lateral, and 4K axially. The thermal distortions of two assemblies were measured during six thermal cycles from 320K to 35K using laser interferometers. The standard deviation for all of the distortion measurements is less than 0.5 microns, which falls within the ISIM requirement of 3 microns.
Liang, Wei; Murakawa, Hidekazu
2014-01-01
Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results. PMID:25276856
Liang, Wei; Murakawa, Hidekazu
2014-01-01
Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.
Miller, Adam Bryant; Williams, Caitlin; Day, Catherine; Esposito-Smythers, Christianne
2017-06-01
The purpose of the present study was to examine whether cognitive distortions (e.g., cognitive errors; negative views of self, world, and future) influence the association between dating violence and problematic substance use behaviors in a sample of psychiatrically hospitalized adolescents. Participants included 155 adolescents, aged 13-17 years, who had initiated dating. Adolescents completed measures of dating violence, substance-related problems (alcohol and marijuana), and cognitive distortions. Logistic regressions were conducted to examine the direct and interactive effects of dating violence exposure and cognitive distortions on likelihood of recent problematic substance use. Results suggested a main effect of dating violence on problematic alcohol and other drug use as well as an interactive effect of dating violence and cognitive distortions. Specifically, the relationship between dating violence and odds of substance-related problems was higher among those with greater (vs. fewer) cognitive distortions. Study results suggest the need for careful screening of cognitive distortions among adolescent dating violence victims, particularly those in mental health treatment. © 2016 Wiley Periodicals, Inc.
Miller, Adam Bryant; Williams, Caitlin; Esposito-Smythers, Christianne
2016-01-01
Purpose The purpose of the present study was to examine whether cognitive distortions (e.g., cognitive errors; negative views of self, world, and future) influence the association between dating violence and problematic substance use behaviors in a sample of psychiatrically hospitalized adolescents. Methods Participants included 155 adolescents, ages 13 to 17, who had initiated dating. Adolescents completed measures of dating violence, substance related problems, (alcohol and marijuana), and cognitive distortions. Results Logistic regressions were conducted to examine the direct and interactive effects of dating violence exposure and cognitive distortions on likelihood of recent problematic substance use. Results suggested a main effect of dating violence on problematic alcohol and other drug use as well as an interactive effect of dating violence and cognitive distortions. Specifically, the relationship between dating violence and odds of substance related problems were higher among those with greater (vs. fewer) cognitive distortions. Conclusions Study results suggest the need for careful screening of cognitive distortions among adolescent dating violence victims, particularly those in mental health treatment. PMID:27552530
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Fujikawa, Gene; Svoboda, James S.; Lizanich, Paul J.
1990-01-01
Satellite communications links are subject to distortions which result in an amplitude versus frequency response which deviates from the ideal flat response. Such distortions result from propagation effects such as multipath fading and scintillation and from transponder and ground terminal hardware imperfections. Bit-error rate (BER) degradation resulting from several types of amplitude response distortions were measured. Additional tests measured the amount of BER improvement obtained by flattening the amplitude response of a distorted laboratory simulated satellite channel. The results of these experiments are presented.
2010-01-25
study builds on three basic bodies of knowledge: (1) supersonic rough wall boundary layers, (2) distorted supersonic turbulent boundary layers, and...with the boundary layer turbulence . The present study showed that secondary distortions associated with such waves significantly affect the transport...38080 14. ABSTRACT The response of a supersonic high Reynolds number turbulent boundary layer flow subjected to mechanical distortions was
Gamma model and its analysis for phase measuring profilometry.
Liu, Kai; Wang, Yongchang; Lau, Daniel L; Hao, Qi; Hassebrook, Laurence G
2010-03-01
Phase measuring profilometry is a method of structured light illumination whose three-dimensional reconstructions are susceptible to error from nonunitary gamma in the associated optical devices. While the effects of this distortion diminish with an increasing number of employed phase-shifted patterns, gamma distortion may be unavoidable in real-time systems where the number of projected patterns is limited by the presence of target motion. A mathematical model is developed for predicting the effects of nonunitary gamma on phase measuring profilometry, while also introducing an accurate gamma calibration method and two strategies for minimizing gamma's effect on phase determination. These phase correction strategies include phase corrections with and without gamma calibration. With the reduction in noise, for three-step phase measuring profilometry, analysis of the root mean squared error of the corrected phase will show a 60x reduction in phase error when the proposed gamma calibration is performed versus 33x reduction without calibration.
Controlling octahedral rotations in a perovskite via strain doping
Herklotz, Andreas; Biegalski, Michael D.; Lee, Ho Nyung; ...
2016-05-24
The perovskite unit cell is the fundamental building block of many functional materials. The manipulation of this crystal structure is known to be of central importance to controlling many technologically promising phenomena related to superconductivity, multiferroicity, mangetoresistivity, and photovoltaics. The broad range of properties that this structure can exhibit is in part due to the centrally coordinated octahedra bond flexibility, which allows for a multitude of distortions from the ideal highly symmetric structure. However, continuous and fine manipulation of these distortions has never been possible. Here, we show that controlled insertion of He atoms into an epitaxial perovskite film canmore » be used to finely tune the lattice symmetry by modifying the local distortions, i.e., octahedral bonding angle and length. Orthorhombic SrRuO 3 films coherently grown on SrTiO 3 substrates are used as a model system. Implanted He atoms are confirmed to induce out-of-plane strain, which provides the ability to controllably shift the bulk-like orthorhombically distorted phase to a tetragonal structure by shifting the oxygen octahedra rotation pattern. Lastly, these results demonstrate that He implantation offers an entirely new pathway to strain engineering of perovskite-based complex oxide thin films, useful for creating new functionalities or properties in perovskite materials.« less
The effect of abdominal wall morphology on ultrasonic pulse distortion. Part II. Simulations.
Mast, T D; Hinkelman, L M; Orr, M J; Waag, R C
1998-12-01
Wavefront propagation through the abdominal wall was simulated using a finite-difference time-domain implementation of the linearized wave propagation equations for a lossless, inhomogeneous, two-dimensional fluid as well as a simplified straight-ray model for a two-dimensional absorbing medium. Scanned images of six human abdominal wall cross sections provided the data for the propagation media in the simulations. The images were mapped into regions of fat, muscle, and connective tissue, each of which was assigned uniform sound speed, density, and absorption values. Propagation was simulated through each whole specimen as well as through each fat layer and muscle layer individually. Wavefronts computed by the finite-difference method contained arrival time, energy level, and wave shape distortion similar to that in measurements. Straight-ray simulations produced arrival time fluctuations similar to measurements but produced much smaller energy level fluctuations. These simulations confirm that both fat and muscle produce significant wavefront distortion and that distortion produced by fat sections differs from that produced by muscle sections. Spatial correlation of distortion with tissue composition suggests that most major arrival time fluctuations are caused by propagation through large-scale inhomogeneities such as fatty regions within muscle layers, while most amplitude and waveform variations are the result of scattering from smaller inhomogeneities such as septa within the subcutaneous fat. Additional finite-difference simulations performed using uniform-layer models of the abdominal wall indicate that wavefront distortion is primarily caused by tissue structures and inhomogeneities rather than by refraction at layer interfaces or by variations in layer thicknesses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qian; Li, Shourui; Wang, Kai
Searching for nontoxic and stable perovskite-like alternatives to lead-based halide perovskites for photovoltaic application is one urgent issue in photoelectricity science. Such exploration inevitably requires an effective method to accurately control both the crystalline and electronic structures. This work applies high pressure to narrow the band gap of perovskite-like organometal halide, [NH 3-(CH 2) 4-NH 3]CuCl 4 (DABCuCl4), through the crystalline-structure tuning. The band gap keeps decreasing below ~12 GPa, involving the shrinkage and distortion of CuCl 4 2–. Inorganic distortion determines both band-gap narrowing and phase transition between 6.4 and 10.5 GPa, and organic chains function as the springmore » cushion, evidenced by the structural transition at ~0.8 GPa. The supporting function of organic chains protects DABCuCl 4 from phase transition and amorphization, which also contributes to the sustaining band-gap narrowing. This work combines crystal structure and macroscopic property together and offers new strategies for the further design and synthesis of hybrid perovskite-like alternatives.« less
Friestad, Christine
2012-05-01
Most structured sex-offender programs are based on a cognitive-behavioural model of behaviour change. Within this overarching theoretical paradigm, extensive use of cognitive distortions is seen as a central core symptom among sex offenders. However, the literature on cognitive distortions lacks a clear and consistent definition of the term. It is unclear whether cognitive distortions are consciously employed excuses or unconscious processes serving to protect the offender from feelings of guilt or shame. In this article, the dominant cognitive-behavioural interpretation of cognitive distortions is contrasted with two alternative interpretations. One is based on an attributional perspective and the notion of attributional biases. The other explanation is based on a narrative approach focusing on the action elements of cognitive distortions, that is, as something people do rather than something they have. Clinical implications of these alternative conceptualizations are discussed and illustrated throughout by a case example.
Schmidt, M A; Wells, E J; Davison, K; Riddell, A M; Welsh, L; Saran, F
2017-02-01
MRI is a mandatory requirement to accurately plan Stereotactic Radiosurgery (SRS) for Vestibular Schwannomas. However, MRI may be distorted due not only to inhomogeneity of the static magnetic field and gradients but also due to susceptibility-induced effects, which are more prominent at higher magnetic fields. We assess geometrical distortions around air spaces and consider MRI protocol requirements for SRS planning at 3 T. Hardware-related distortion and the effect of incorrect shimming were investigated with structured test objects. The magnetic field was mapped over the head on five volunteers to assess susceptibility-related distortion in the naso-oro-pharyngeal cavities (NOPC) and around the internal ear canal (IAC). Hardware-related geometric displacements were found to be less than 0.45 mm within the head volume, after distortion correction. Shimming errors can lead to displacements of up to 4 mm, but errors of this magnitude are unlikely to arise in practice. Susceptibility-related field inhomogeneity was under 3.4 ppm, 2.8 ppm, and 2.7 ppm for the head, NOPC region and IAC region, respectively. For the SRS planning protocol (890 Hz/pixel, approximately 1 mm 3 isotropic), susceptibility-related displacements were less than 0.5 mm (head), and 0.4 mm (IAC and NOPC). Large displacements are possible in MRI examinations undertaken with lower receiver bandwidth values, commonly used in clinical MRI. Higher receiver bandwidth makes the protocol less vulnerable to sub-optimal shimming. The shimming volume and the CT-MR co-registration must be considered jointly. Geometric displacements can be kept under 1 mm in the vicinity of air spaces within the head at 3 T with appropriate setting of the receiver bandwidth, correct shimming and employing distortion correction. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Khorramirouz, Reza; Sabetkish, Shabnam; Akbarzadeh, Aram; Muhammadnejad, Ahad; Heidari, Reza; Kajbafzadeh, Abdol-Mohammad
2014-09-01
To determine the best method for decellularisation of aortic valve conduits (AVCs) that efficiently removes the cells while preserving the extracellular matrix (ECM) by examining the valvular and conduit sections separately. Sheep AVCs were decellularised by using three different protocols: detergent-based (1% SDS+1% SDC), detergent and enzyme-based (Triton+EDTA+RNase and DNase), and enzyme-based (Trypsin+RNase and DNase) methods. The efficacy of the decellularisation methods to completely remove the cells while preserving the ECM was evaluated by histological evaluation, scanning electron microscopy (SEM), hydroxyproline analysis, tensile test, and DAPI staining. The detergent-based method completely removed the cells and left the ECM and collagen content in the valve and conduit sections relatively well preserved. The detergent and enzyme-based protocol did not completely remove the cells, but left the collagen content in both sections well preserved. ECM deterioration was observed in the aortic valves (AVs), but the ultrastructure of the conduits was well preserved, with no media distortion. The enzyme-based protocol removed the cells relatively well; however, mild structural distortion and poor collagen content was observed in the AVs. Incomplete cell removal (better than that observed with the detergent and enzyme-based protocol), poor collagen preservation, and mild structural distortion were observed in conduits treated with the enzyme-based method. The results suggested that the detergent-based methods are the most effective protocols for cell removal and ECM preservation of AVCs. The AVCs treated with this detergent-based method may be excellent scaffolds for recellularisation. Copyright © 2014 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Effects of deterministic surface distortions on reflector antenna performance
NASA Technical Reports Server (NTRS)
Rahmat-Samii, Y.
1985-01-01
Systematic distortions of reflector antenna surfaces can cause antenna radiation patterns to be undesirably different from those of perfectly smooth reflector surfaces. In this paper, a simulation model for systematic distortions is described which permits an efficient computation of the effects of distortions in the reflector pattern. The model uses a vector diffraction physical optics analysis for the determination of both the co-polar and cross-polar fields. An interpolation scheme is also presented for the description of reflector surfaces which are prescribed by discrete points. Representative numerical results are presented for reflectors with sinusoidally and thermally distorted surfaces. Finally, comparisons are made between the measured and calculated patterns of a slowly-varying distorted offset parabolic reflector.
NASA Technical Reports Server (NTRS)
Liou, May-Fun; Lee, Byung Joon
2013-01-01
It is known that the adverse effects of shock wave boundary layer interactions in high speed inlets include reduced total pressure recovery and highly distorted flow at the aerodynamic interface plane (AIP). This paper presents a design method for flow control which creates perturbations in geometry. These perturbations are tailored to change the flow structures in order to minimize shock wave boundary layer interactions (SWBLI) inside supersonic inlets. Optimizing the shape of two dimensional micro-size bumps is shown to be a very effective flow control method for two-dimensional SWBLI. In investigating the three dimensional SWBLI, a square duct is employed as a baseline. To investigate the mechanism whereby the geometric elements of the baseline, i.e. the bottom wall, the sidewall and the corner, exert influence on the flow's aerodynamic characteristics, each element is studied and optimized separately. It is found that arrays of micro-size bumps on the bottom wall of the duct have little effect in improving total pressure recovery though they are useful in suppressing the incipient separation in three-dimensional problems. Shaping sidewall geometry is effective in re-distributing flow on the side wall and results in a less distorted flow at the exit. Subsequently, a near 50% reduction in distortion is achieved. A simple change in corner geometry resulted in a 2.4% improvement in total pressure recovery.
Magneto-structural correlation in Co0.8Cu0.2Cr2O4 cubic spinel
NASA Astrophysics Data System (ADS)
Kumar, Ram; Rayaprol, S.; Siruguri, V.; Xiao, Y.; Ji, W.; Pal, D.
2018-05-01
Neutron and X-ray diffraction, magnetic susceptibility, and specific heat measurements have been used to investigate the magneto-structural phase transitions in 20% Cu substituted multiferroic CoCr2O4 spinel. The Jahn-Teller active Cu2+ ion in the tetrahedral A-site of the spinel configuration induces the Jahn-Teller distortion slightly above the Néel temperature. In this compound, we observe a Jahn-Teller distortion of the crystal structure at 90 K. It was further observed that the high temperature cubic (Fd 3 ‾ m) structure coexists with the low temperature orthorhombic (Fddd) structure till the lowest temperature of measurement.
Orbital effects in cobaltites by neutron scattering
NASA Astrophysics Data System (ADS)
Louca, Despina
2005-03-01
The orbital degree of freedom can play a central role in the physics of transition metal perovskite oxides because of its intricate coupling with other degrees of freedom such as spin, charge and lattice. In this talk the case of La1-xSrxCoO3 will be presented. Using elastic and inelastic neutron scattering, we investigated the thermal evolution of the local atomic structure and lattice dynamics in the pure sample and with the addition of charge carriers as the system crosses over from a paramagnetic insulator to a ferromagnetic metal. In LaCoO3, the thermal activation of the Co ions from a nonmagnetic ground state to an intermediate spin state gives rise to orbital degeneracy. This leads to Jahn-Teller distortions that are dynamical in nature. Doping stabilizes the intermediate spin configuration of the Co ions in the paramagnetic insulating phase. Evidence for local static Jahn-Teller distortions is observed but without long-range ordering. The size of the JT lattice is proportional to the amount of charge. However, with cooling to the metallic phase, static JT distortions disappear for x <= 30 %, the percolation limit. This coincides with narrowing of two modes at φ=22,nd,4,eV in the phonon spectrum in which we argue is due to localized dynamical JT fluctuations^1. The implications of the orbital effects to the structural and magnetic properties will be discussed. ^1D. Louca and J. L. Sarrao, Phys. Rev. Lett. 91, 155501 (2003).
NASA Astrophysics Data System (ADS)
Kumar, Tarun; Lal, Arvind Kumar; Pathania, Ankush
2018-06-01
Anharmonic oscillations of rotating stars have been studied by various authors in literature to explain the observed features of certain variable stars. However, there is no study available in literature that has discussed the combined effect of rotation and tidal distortions on the anharmonic oscillations of stars. In this paper, we have created a model to determine the effect of rotation and tidal distortions on the anharmonic radial oscillations associated with various polytropic models of pulsating variable stars. For this study we have used the theory of Rosseland to obtain the anharmonic pulsation equation for rotationally and tidally distorted polytropicmodels of pulsating variable stars. The main objective of this study is to investigate the effect of rotation and tidal distortions on the shapes of the radial velocity curves for rotationally and tidally distorted polytropic models of pulsating variable stars. The results of the present study show that the rotational effects cause more deviations in the shapes of radial velocity curves of pulsating variable stars as compared to tidal effects.
Moore, Craig S.; Liney, Gary P.; Beavis, Andrew W.
2004-01-01
We are implementing the use of magnetic resonance (MR) images for head and neck radiotherapy planning, which involves their registration with computed tomography (CT). The quality assurance (QA) of the registration process was an initial step of this program. A phantom was built, and appropriate materials were identified to produce clinically relevant MR T1 and T2 contrast for its constituent “anatomy.” We performed a characterization of the distortion detectable within our phantom. Finally, we assessed the accuracy of image registration by contouring structures in the registered/fused data sets using the treatment planning system. Each structure was contoured using each modality, in turn, blind of the other. The position, area, and perimeter of each structure were assessed as a measure of accuracy of the entire image registration process. Distortion effects in the MR image were shown to be minimized by choosing a suitable (≥±30 kHz) receiver bandwidth. Remaining distortion was deemed clinically acceptable within ±15 cm of the magnetic field isocenter. A coefficient of agreement (A) analysis gave values to be within 9% of unity, where A=RaRp and Ra/p is the ratio of the area/perimeter of a particular structure on CT to that on MR. The center of each structure of interest agreed to within 1.8 mm. A QA process has been developed to assess the accuracy of using multimodality image registration in the planning of radiotherapy for the head and neck; we believe its introduction is feasible and safe. PACS numbers: 87.53.Xd, 87.57.Gg, 87.59.Fm; 87.61.‐c, 87.66.Xa PMID:15753931
Switchable Ni–Mn–Ga Heusler nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zayak, Alexey T.; Beckman, Scott P.; Tiago, Murilo L.
2008-10-02
Here, we examined bulk-like Heusler nanocrystals using real-space pseudopotentials constructed within density functional theory. The nanocrystals were made of various compositions of Ni-Mn-Ga in the size range from 15 up to 169 atoms. Among these compositions, the closest to the stoichiometric Ni 2MnGa were found to be the most stable. The Ni-based nanocrystals retained a tendency for tetragonal distortion, which is inherited from the bulk properties. Surface effects suppress the tetragonal structure in the smaller Ni-based nanocrystals, while bigger nanocrystals develop a bulk-like tetragonal distortion. We suggest the possibility of switchable Ni-Mn-Ga nanocrystals, which could be utilized for magnetic nano-shape-memorymore » applications.« less
NASA Astrophysics Data System (ADS)
Bridges, F.; Downward, L.; Neumeier, J. J.; Tyson, T. A.
2010-05-01
We present detailed local structure measurements (using the extended x-ray absorption fine structure technique) for the colossal magnetoresistive material La1-xCaxMnO3 (0.21
NASA Technical Reports Server (NTRS)
Wallner, L. E.; Lubick, R. J.; Chelko, L. J.
1955-01-01
During an investigation of the J57-P-1 turbojet engine in the Lewis altitude wind tunnel, effects of inlet-flow distortion on engine stall characteristics and operating limits were determined. In addition to a uniform inlet-flow profile, the inlet-pressure distortions imposed included two radial, two circumferential, and one combined radial-circumferential profile. Data were obtained over a range of compressor speeds at an altitude of 50,000 and a flight Mach number of 0.8; in addition, the high- and low-speed engine operating limits were investigated up to the maximum operable altitude. The effect of changing the compressor bleed position on the stall and operating limits was determined for one of the inlet distortions. The circumferential distortions lowered the compressor stall pressure ratios; this resulted in less fuel-flow margin between steady-state operation and compressor stall. Consequently, the altitude operating Limits with circumferential distortions were reduced compared with the uniform inlet profile. Radial inlet-pressure distortions increased the pressure ratio required for compressor stall over that obtained with uniform inlet flow; this resulted in higher altitude operating limits. Likewise, the stall-limit fuel flows required with the radial inlet-pressure distortions were considerably higher than those obtained with the uniform inlet-pressure profile. A combined radial-circumferential inlet distortion had effects on the engine similar to the circumferential distortion. Bleeding air between the two compressors eliminated the low-speed stall limit and thus permitted higher altitude operation than was possible without compressor bleed.
Cinco, Roehl M.; Rompel, Annette; Visser, Hendrik; Aromí, Guillem; Christou, George; Sauer, Kenneth; Klein, Melvin P.; Yachandra, Vittal K.
2014-01-01
X-ray absorption spectroscopy has been employed to assess the degree of similarity between the oxygen-evolving complex (OEC) in photosystem II (PS II) and a family of synthetic manganese complexes containing the distorted cubane [Mn4O3X] core (X = benzoate, acetate, methoxide, hydroxide, azide, fluoride, chloride, or bromide). These [Mn4(μ3-O)3(μ3-X)] cubanes possess C3v symmetry except for the X = benzoate species, which is slightly more distorted with only Cs symmetry. In addition, Mn4O3Cl complexes containing three or six terminal Cl ligands at three of the Mn were included in this study. The Mn K-edge X-ray absorption near edge structure (XANES) from the oxygen-ligated complexes begin to resemble general features of the PS II (S1 state) spectrum, although the second derivatives are distinct from those in PS II. The extended X-ray absorption fine structure (EXAFS) of these Mn compounds also displays superficial resemblance to that of PS II, but major differences emerge on closer examination of the phases and amplitudes. The most obvious distinction is the smaller magnitude of the Fourier transform (FT) of the PS II EXAFS compared to the FTs from the distorted cubanes. Curve fitting of the Mn EXAFS spectra verifies the known core structures of the Mn cubanes, and shows that the number of the crucial 2.7 and 3.3 Å Mn–Mn distances differs from that observed in the OEC. The EXAFS method detects small changes in the core structures as X is varied in this series, and serves to exclude the distorted cubane of C3v symmetry as a topological model for the Mn catalytic cluster of the OEC. Instead, the method shows that even more distortion of the cubane framework, altering the ratio of the Mn–Mn distances, is required to resemble the Mn cluster in PS II. PMID:11671305
[Design of a Component and Transmission Imaging Spectrometer].
Sun, Bao-peng; Zhang, Yi; Yue, Jiang; Han, Jing; Bai, Lian-fa
2015-05-01
In the reflection-based imaging spectrometer, multiple reflection(diffraction) produces stray light and it is difficult to assemble. To address that, a high performance transmission spectral imaging system based on general optical components was developed. On the basis of simple structure, the system is easy to assemble. And it has wide application and low cost compared to traditional imaging spectrometers. All components in the design can be replaced according to different application situations, having high degree of freedom. In order to reduce the influence of stray light, a method based on transmission was introduced. Two sets of optical systems with different objective lenses were simulated; the parameters such as distortion, MTF and aberration.were analyzed and optimized in the ZEMAX software. By comparing the performance of system with different objective len 25 and 50 mm, it can be concluded that the replacement of telescope lens has little effect on imaging quality of whole system. An imaging spectrometer is developed successfully according design parameters. The telescope lens uses double Gauss structures, which is beneficial to reduce field curvature and distortion. As the craftsmanship of transmission-type plane diffraction grating is mature, it can be used without modification and it is easy to assemble, so it is used as beam-split. component of the imaging spectrometer. In addition, the real imaging spectrometer was tested for spectral resolution and distortion. The result demonstrates that the system has good ability in distortion control, and spectral resolution is 2 nm. These data satisfy the design requirement, and obtained spectrum of deuterium lamp through calibrated system are ideal results.
NASA Technical Reports Server (NTRS)
Stevens, C. H.; Spong, E. D.; Hammock, M. S.
1978-01-01
Peak distortion data taken from a subscale inlet model were studied to determine if the data can be used to predict peak distortion levels for a full scale flight test vehicle, and to provide a better understanding of the time variant total pressure distortion and the attendant effects of Reynolds number/scale and frequency content. The data base used to accomplish this goal covered a range from Mach 0.4 to 2.5 and an angle of attack range from -10 degrees to +12 degrees. Data are presented which show that: (1) increasing the Reynolds number increases total pressure recovery, decreases peak distortion, and decreases turbulence, (2) increasing the filter cutoff frequency increases both peak distortion and turbulence, and (3) the effect of engine presence on total pressure recovery, peak distortion, and turbulence is small but favorable.
Analyzing the effect of the distortion compensation in reversible watermarking
NASA Astrophysics Data System (ADS)
Kim, Suah; Kim, Hyoung Joong
2014-01-01
Reversible watermarking is used to hide information in images for medical and military uses. Reversible watermarking in images using distortion compensation proposed by Vasily et al [5] embeds each pixel twice such that distortion caused by the first embedding is reduced or removed by the distortion introduced by the second embedding. In their paper, because it is not applied in its most basic form, it is not clear whether improving it can achieve better results than the existing state of the art techniques. In this paper we first provide a novel basic distortion compensation technique that uses same prediction method as Tian's [2] difference expansion method (DE), in order to measure the effect of the distortion compensation more accurately. In the second part, we will analyze what kind of improvements can be made in distortion compensation.
GdPtPb: A noncollinear antiferromagnet with distorted kagome lattice
Manni, S.; Bud'ko, Sergey L.; Canfield, Paul C.
2017-08-24
In the spirit of searching for Gd-based, frustrated, rare earth magnets, we have found antiferomagnetism (AF) in GdPtPb, which crystallizes in the ZrNiAl-type structure that has a distorted kagome lattice of Gd triangles. Single crystals were grown and investigated using structural, magnetic, transport, and thermodynamic measurements. GdPtPb orders antiferromagnetically at 15.5 K, arguably with a planar, noncollinear structure. The high temperature magnetic susceptibility data reveal an “anti-frustration” behavior having a frustration parameter, |f| = |Θ|/T N = 0.25, which can be explained by mean field theory within a two-sublattice model. Here, the study of the magnetic phase diagram down tomore » T = 1.8K reveals a change of magnetic structure through a metamagnetic transition at around 20 kOe and the disappearance of the AF ordering near 140 kOe. In total, our work indicates that GdPtPb can serve as an example of a planar, noncollinear AF with a distorted kagome magnetic sublattice.« less
Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet
NASA Technical Reports Server (NTRS)
Baydar, Ezgihan; Lu, Frank K.; Slater, John W.
2016-01-01
Vortex generators within a two-dimensional, external-compression supersonic inlet for Mach 1.6 were investigated to determine their ability to increase total pressure recovery, reduce total pressure distortion, and improve the boundary layer. The vortex generators studied included vanes and ramps. The geometric factors of the vortex generators studied included height, length, spacing, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated through the computational solution of the steady-state Reynolds-averaged Navier-Stokes equations on multi-block, structured grids. The vortex generators were simulated by either gridding the geometry of the vortex generators or modeling the vortices generated by the vortex generators. The inlet performance was characterized by the inlet total pressure recovery, total pressure distortion, and incompressible shape factor of the boundary-layer at the engine face. The results suggested that downstream vanes reduced the distortion and improved the boundary layer. The height of the vortex generators had the greatest effect of the geometric factors.
An optical technique to measure distortion in heat-treated parts in-situ
NASA Astrophysics Data System (ADS)
Sciammarella, Federico; Nash, Phillip
2005-05-01
Improvements in the properties of aluminum alloys have made them more popular for structural applications. Using the different heat treatments that are available, aluminum alloys can have a wide variation in properties for different types of applications. The appropriate heat treatments of these alloys are vital in providing the properties needed for their particular applications. Moreover, understanding the effects of heat treatments that may cause distortion to a part is critical. Most of the work carried out in this field is in the form of pre- and post-treatment analysis of a part. In this study, in-situ measurements of the distortions that a heat-treated part undergoes when subjected to rapid heating to temperatures near melting followed by slow cooling were carried out. A numerical model was built to simulate the experiment and the results are compared. This study will provide much-needed insight into the complex occurrences that aluminum parts undergo during heat treatment.
The Rapid Distortion of Two-Way Coupled Particle-Laden Turbulence
NASA Astrophysics Data System (ADS)
Kasbaoui, Mohamed; Koch, Donald; Desjardins, Olivier
2017-11-01
The modulation of sheared turbulence by dispersed particles is addressed in the two-way coupling regime. The preferential sampling of the straining regions of the flow by inertial particles in turbulence leads to the formation of clusters. These fast sedimenting particle structures cause the anisotropic alteration of turbulence at small scales in the direction of gravity. These effects are investigated in a revisited Rapid Distortion Theory (RDT), extended for two-way coupled particle-laden flows. To make the analysis tractable, we assume that particles have small but non-zero inertia. In the classical results for single-phase flows, the RDT assumption of fast shearing compared to the turbulence time scales leads to the distortion of ``frozen'' turbulence. In particle-laden turbulence, the coupling between the two phases remains strong even under fast shearing and leads to a dynamic modulation of the turbulence spectrum. Turbulence statistics obtained from RDT are compared with Euler-Lagrange simulations of homogeneously sheared particle-laden turbulence.
ERIC Educational Resources Information Center
Nagel, Joane; Snyder, Conrad W., Jr.
1989-01-01
Explains how international development projects shaped and often distorted organizational aspects of the Liberian education system from 1972 to 1985. Examines the fragmenting effects of policy conflicts among and within development agencies, of the typical structure of educational development projects, and of competition for funds. Contains 42…
Can temporal fine structure represent the fundamental frequency of unresolved harmonics?
Oxenham, Andrew J; Micheyl, Christophe; Keebler, Michael V
2009-04-01
At least two modes of pitch perception exist: in one, the fundamental frequency (F0) of harmonic complex tones is estimated using the temporal fine structure (TFS) of individual low-order resolved harmonics; in the other, F0 is derived from the temporal envelope of high-order unresolved harmonics that interact in the auditory periphery. Pitch is typically more accurate in the former than in the latter mode. Another possibility is that pitch can sometimes be coded via the TFS from unresolved harmonics. A recent study supporting this third possibility [Moore et al. (2006a). J. Acoust. Soc. Am. 119, 480-490] based its conclusion on a condition where phase interaction effects (implying unresolved harmonics) accompanied accurate F0 discrimination (implying TFS processing). The present study tests whether these results were influenced by audible distortion products. Experiment 1 replicated the original results, obtained using a low-level background noise. However, experiments 2-4 found no evidence for the use of TFS cues with unresolved harmonics when the background noise level was raised, or the stimulus level was lowered, to render distortion inaudible. Experiment 5 measured the presence and phase dependence of audible distortion products. The results provide no evidence that TFS cues are used to code the F0 of unresolved harmonics.
Rotational characterization of methyl methacrylate: Internal dynamics and structure determination
NASA Astrophysics Data System (ADS)
Herbers, Sven; Wachsmuth, Dennis; Obenchain, Daniel A.; Grabow, Jens-Uwe
2018-01-01
Rotational constants, Watson's S centrifugal distortion coefficients, and internal rotation parameters of the two most stable conformers of methyl methacrylate were retrieved from the microwave spectrum. Splittings of rotational energy levels were caused by two non equivalent methyl tops. Constraining the centrifugal distortion coefficients and internal rotation parameters to the values of the main isotopologues, the rotational constants of all single substituted 13C and 18O isotopologues were determined. From these rotational constants the substitution structures and semi-empirical zero point structures of both conformers were precisely determined.
An experimental investigation of two large annular diffusers with swirling and distorted inflow
NASA Technical Reports Server (NTRS)
Eckert, W. T.; Johnston, J. P.; Simons, T. D.; Mort, K. W.; Page, V. R.
1980-01-01
Two annular diffusers downstream of a nacelle-mounted fan were tested for aerodynamic performance, measured in terms of two static pressure recovery parameters (one near the diffuser exit plane and one about three diameters downstream in the settling duct) in the presence of several inflow conditions. The two diffusers each had an inlet diameter of 1.84 m, an area ratio of 2.3, and an equivalent cone angle of 11.5, but were distinguished by centerbodies of different lengths. The dependence of diffuser performance on various combinations of swirling, radially distorted, and/or azimuthally distorted inflow was examined. Swirling flow and distortions in the axial velocity profile in the annulus upstream of the diffuser inlet were caused by the intrinsic flow patterns downstream of a fan in a duct and by artificial intensification of the distortions. Azimuthal distortions or defects were generated by the addition of four artificial devices (screens and fences). Pressure recovery data indicated beneficial effects of both radial distortion (for a limited range of distortion levels) and inflow swirl. Small amounts of azimuthal distortion created by the artificial devices produced only small effects on diffuser performance. A large artificial distortion device was required to produce enough azimuthal flow distortion to significantly degrade the diffuser static pressure recovery.
Understanding the effects of Cr doping in rutile TiO2 by DFT calculations and X-ray spectroscopy.
Vásquez, G Cristian; Maestre, David; Cremades, Ana; Ramírez-Castellanos, Julio; Magnano, Elena; Nappini, Silvia; Karazhanov, Smagul Zh
2018-06-07
The effects of Cr on local environment and electronic structure of rutile TiO 2 are studied combining theoretical and experimental approaches. Neutral and negatively charged substitutional Cr impurities Cr Ti 0 and Cr Ti 1- as well as Cr-oxygen vacancy complex 2Cr Ti + V O are studied by the density functional theory (DFT) within the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) functional. Experimental results based on X-Ray absorption spectroscopy (XAS) and X-Ray photoelectron spectroscopy (XPS) performed on Cr doped TiO 2 at the Synchrotron facility were compared to the theoretical results. It is shown that the electrons of the oxygen vacancy tend to be localized at the t 2g states of the Cr ions in order to reach the stable oxidation state of Cr 3+ . Effects of Cr on crystal field (CF) and structural distortions in the rutile TiO 2 cell were analyzed by the DFT calculations and XAS spectra revealing that the CF and tetragonal distortions in TiO 2 are very sensitive to the concentration of Cr.
NASA Astrophysics Data System (ADS)
Zhang, Keke; Kong, D.; Schubert, G.; Anderson, J.
2012-10-01
An accurate calculation of the rotationally distorted shape and internal structure of Jupiter is required to understand the high-precision gravitational field that will be measured by the Juno spacecraft now on its way to Jupiter. We present a three-dimensional non-spherical numerical calculation of the shape and internal structure of a model of Jupiter with a polytropic index of unity. The calculation is based on a finite element method and accounts for the full effects of rotation. After validating the numerical approach against the asymptotic solution of Chandrasekhar (1933) that is valid only for a slowly rotating gaseous planet, we apply it to a model of Jupiter whose rapid rotation causes a significant departure from spherical geometry. The two-dimensional distribution of the density and the pressure within Jupiter is then determined via a hybrid inverse approach by matching the a priori unknown coefficient in the equation of state to the observed shape of Jupiter. After obtaining the two-dimensional distribution of Jupiter's density, we then compute the zonal gravity coefficients and the total mass from the non-spherical Jupiter model that takes full account of rotation-induced shape changes. Our non-spherical model with a polytrope of unit index is able to produce the known mass and zonal gravitational coefficients of Jupiter. Chandrasekhar, S. 1933, The equilibrium of distorted polytropes, MNRAS 93, 390
The effect of symmetry on the U L3 NEXAFS of octahedral coordinated uranium(vi)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagus, Paul S.; Nelin, Connie J.; Ilton, Eugene S.
2017-03-21
We describe a detailed theoretical analysis of how distortions from ideal cubic or Oh symmetry affect the shape, in particular the width, of the U L3-edge NEXAFS for U(VI) in octahedral coordination. The full-width-half-maximum (FWHM) of the L3-edge white line decreases with increasing distortion from Oh symmetry due to the mixing of symmetry broken t2g and eg components of the excited state U(6d) orbitals. The mixing is allowed because of spin-orbit splitting of the ligand field split 6d orbitals. Especially for higher distortions, it is possible to identify a mixing between one of the t2g and one of the egmore » components, allowed in the double group representation when the spin-orbit interaction is taken into account. This mixing strongly reduces the ligand field splitting, which, in turn, leads to a narrowing of the U L3 white line. However, the effect of this mixing is partially offset by an increase in the covalent anti-bonding character of the highest energy spin-orbit split eg orbital. At higher distortions, mixing overwhelms the increasing anti-bonding character of this orbital which leads to an accelerated decrease in the FWHM with increasing distortion. Additional evidence for the effect of mixing of t2g and eg components is that the FWHM of the white line narrows whether the two axial U-O bond distances shorten or lengthen. Our ab initio theory uses relativistic wavefunctions for cluster models of the structures; empirical or semi-empirical parameters were not used to adjust prediction to experiment. A major advantage is that it provides a transparent approach for determining how the character and extent of the covalent mixing of the relevant U and O orbitals affect the U L3-edge white line.« less
Müller, Jörg M; Achtergarde, Sandra; Furniss, Tilman
2011-05-01
The distorting influence of maternal depression on the ratings of child behaviour is known as the depression-distortion hypothesis. This study investigated the depression-distortion hypothesis in a clinical sample of child psychiatric preschool children and extended the depression-distortion hypothesis to maternal psychopathology-distortion hypothesis in general. Subjects were 124 children, who were referred for treatment in a Child Psychiatric Family Day Hospital for preschool children, and their parents. Children were rated on the CBCL/1.5-5 and the C-TRF/1.5-5 by their mothers, kindergarten teachers and therapists. Maternal psychopathology was assessed by self-rating with the SCL-90-R and the BDI. The appropriateness of the depression-distortion hypothesis, as well as two alternatives, the accuracy and the combinatory model, were subsequently analysed by structural equation modelling (SEM), including the ratings of all three informants. Model fit and parameter estimation supported the distortion model, suggesting that ratings of child behaviour by mothers may be biased by maternal psychopathology. Findings are discussed with regard to the existing cross-informant literature, with particular consideration of the distortion hypothesis and third person ratings of child psychopathology in preschool age.
NASA Technical Reports Server (NTRS)
Yocum, A. M., II
1978-01-01
The results of a study of total pressure and velocity circumferential distortions in an axial-flow fan are presented. Some of the fundamental experimental data needed to understand distorted flow phenomena as affected by design and operating variables are provided. The flow through an isolated rotor was examined at various operating conditions with six different distortions and three different blade stagger angles. Circumferential surveys were conducted upstream and downstream of the rotor using five-hole probes in the nonnulling mode. The total pressure and axial velocity distortion data were analyzed to determine the degree of distortion attenuation as a function of blade stagger angle, mean incidence angle, and reduced frequency. The results indicate that, for the rotors tested, the mean incidence or loading has very little effect on the distortion attenuation.
Kim, Duho; Lim, Jin-Myoung; Park, Min-Sik; Cho, Kyeongjae; Cho, Maenghyo
2016-07-06
A combined study involving experiments and multiscale computational approaches is conducted to propose a theoretical solution for the suppression of the Jahn-Teller distortion which causes severe cyclic degradation. As-synthesized pristine and Al-doped Mn spinel compounds are the focus to understand the mechanism of the cyclic degradation in terms of the Jahn-Teller distortion, and the electrochemical performance of the Al-doped sample shows enhanced cyclic performance compared with that of the pristine one. Considering the electronic structures of the two systems using first-principles calculations, the pristine spinel suffers entirely from the Jahn-Teller distortion by Mn(3+), indicating an anisotropic electronic structure, but the Al-doped spinel exhibits an isotropic electronic structure, which means the suppressed Jahn-Teller distortion. A multiscale phase field model in nanodomain shows that the phase separation of the pristine spinel occurs to inactive Li0Mn2O4 (i.e., fully delithiated) gradually during cycles. In contrast, the Al-doped spinel does not show phase separation to an inactive phase. This explains why the Al-doped spinel maintains the capacity of the first charge during the subsequent cycles. On the basis of the mechanistic understanding of the origins and mechanism of the suppression of the Jahn-Teller distortion, fundamental insight for making tremendous cuts in the cyclic degradation could be provided for the Li-Mn-O compounds of Li-ion batteries.
Mutation of the myosin converter domain alters cross-bridge elasticity
Köhler, Jan; Winkler, Gerhard; Schulte, Imke; Scholz, Tim; McKenna, William; Brenner, Bernhard; Kraft, Theresia
2002-01-01
Elastic distortion of a structural element of the actomyosin complex is fundamental to the ability of myosin to generate motile forces. An elastic element allows strain to develop within the actomyosin complex (cross-bridge) before movement. Relief of this strain then drives filament sliding, or more generally, movement of a cargo. Even with the known crystal structure of the myosin head, however, the structural element of the actomyosin complex in which elastic distortion occurs remained unclear. To assign functional relevance to various structural elements of the myosin head, e.g., to identify the elastic element within the cross-bridge, we studied mechanical properties of muscle fibers from patients with familial hypertrophic cardiomyopathy with point mutations in the head domain of the β-myosin heavy chain. We found that the Arg-719 → Trp (Arg719Trp) mutation, which is located in the converter domain of the myosin head fragment, causes an increase in force generation and fiber stiffness under isometric conditions by 48–59%. Under rigor and relaxing conditions, fiber stiffness was 45–47% higher than in control fibers. Yet, kinetics of active cross-bridge cycling were unchanged. These findings, especially the increase in fiber stiffness under rigor conditions, indicate that cross-bridges with the Arg719Trp mutation are more resistant to elastic distortion. The data presented here strongly suggest that the converter domain that forms the junction between the catalytic and the light-chain-binding domain of the myosin head is not only essential for elastic distortion of the cross-bridge, but that the main elastic distortion may even occur within the converter domain itself. PMID:11904418
Kim, Hyejin; Gim, Suji; Jeon, Tae Hwa; Kim, Hyungjun; Choi, Wonyong
2017-11-22
Carbon nitride (CN) is being intensively investigated as a low-cost visible light active photocatalyst, but its practical applications are limited because of the fast charge pair recombination and low visible light absorption. Here, we introduce a new strategy for enhancing its visible light photocatalytic activity by designing the CN structure in which the nitrogen of tertiary amine is substituted with a benzene molecule connected by three heptazine rings. The intramolecular benzene doping induced the structural changes from planar symmetric structure to distorted geometry, which could be predicted by density functional theory calculation. This structural distortion facilitated the spatial separation of photogenerated charge pairs and retarded charge recombination via exciton dissociation. Such unique properties of the benzene-incorporated CN were confirmed by the photoluminescence (PL) and photoelectrochemical analyses. The optimal loading of benzene doping reduced the PL of the conjugated ring system (π → π* transition) but enhanced the PL of the forbidden n → π* transition at the nitrogen atoms with lone pair electrons due to the distortion from the planar geometry. The photoelectrode of benzene-doped CN exhibited higher photocurrent and lower charge transfer resistance than bare CN electrode, indicating that the photogenerated charge pairs are more efficiently separated. As a result, the benzene-doped CN markedly increased the photocatalytic activity for the degradation of various organic pollutants and that for H 2 O 2 production (via O 2 reduction). This study proposes a simple strategy for chemical structural modification of carbon nitride to boost the visible light photocatalytic activity.
Wang, Zhenhai; Zhou, Xiang-Feng; Zhang, Xiaoming; Zhu, Qiang; Dong, Huafeng; Zhao, Mingwen; Oganov, Artem R
2015-09-09
Using systematic evolutionary structure searching we propose a new carbon allotrope, phagraphene [fæ'græfi:n], standing for penta-hexa-hepta-graphene, because the structure is composed of 5-6-7 carbon rings. This two-dimensional (2D) carbon structure is lower in energy than most of the predicted 2D carbon allotropes due to its sp(2)-binding features and density of atomic packing comparable to graphene. More interestingly, the electronic structure of phagraphene has distorted Dirac cones. The direction-dependent cones are further proved to be robust against external strain with tunable Fermi velocities.
Lattice effects on ferromagnetism in perovskite ruthenates
Cheng, J.-G.; Zhou, J.-S.; Goodenough, John B.
2013-01-01
Ferromagnetism and its evolution in the orthorhombic perovskite system Sr1–xCaxRuO3 have been widely believed to correlate with structural distortion. The recent development of high-pressure synthesis of the Ba-substituted Sr1–yBayRuO3 makes it possible to study ferromagnetism over a broader phase diagram, which includes the orthorhombic Imma and the cubic phases. However, the chemical substitutions introduce the A-site disorder effect on Tc, which complicates determination of the relationship between ferromagnetism and structural distortion. By clarifying the site disorder effect on Tc in several unique series of ruthenates in which the average bond length 〈A–O〉 remains the same but the bond-length variance varies, we are able to demonstrate a parabolic curve of Tc versus mean bond length 〈A–O〉. A much higher Tc ∼ 177 K than that found in orthorhombic SrRuO3 can be obtained from the curve at a bond length 〈A–O〉, which makes the geometric factor t = 〈A–O〉/(√2〈Ru–O〉) ∼ 1. This result reveals not only that the ferromagnetism in the ruthenates is extremely sensitive to the lattice strain, but also that it has an important implication for exploring the structure–property relationship in a broad range of oxides with perovskite or a perovskite-related structure. PMID:23904477
Local and average structures of BaTiO 3-Bi(Zn 1/2Ti 1/2)O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usher, Tedi-Marie; Iamsasri, Thanakorn; Forrester, Jennifer S.
The complex crystallographic structures of (1-x)BaTiO 3-xBi(Zn 1/2Ti 1/2)O 3 (BT-xBZT) are examined using high resolution synchrotron X-ray diffraction, neutron diffraction, and neutron pair distribution function (PDF) analyses. The short-range structures are characterized from the PDFs, and a combined analysis of the X-ray and neutron diffraction patterns is used to determine the long-range structures. Our results demonstrate that the structure appears different when averaged over different length scales. In all compositions, the local structures determined from the PDFs show local tetragonal distortions (i.e., c/a > 1). But, a box-car fitting analysis of the PDFs reveals variations at different length scales.more » For 0.80BT-0.20BZT and 0.90BT-0.10BZT, the tetragonal distortions decrease at longer atom-atom distances (e.g., 30 vs. 5 ). When the longest distances are evaluated (r > 40 ), the lattice parameters approach cubic. Neutron and X-ray diffraction yield further information about the long-range structure. Compositions 0.80BT-0.20BZT and 0.90BT-0.10BZT appear cubic by Bragg diffraction (no peak splitting), consistent with the PDFs at long distances. However, these patterns cannot be adequately fit using a cubic lattice model; modeling their structures with the P4mm space group allows for a better fit to the patterns because the space group allows for c-axis atomic displacements that occur at the local scale. Furthermore, for the compositions 0.92BT-0.08BZT and 0.94BT-0.06BZT, strong tetragonal distortions are observed at the local scale and a less-distorted tetragonal structure is observed at longer length scales. In Rietveld refinements, the latter is modeled using a tetragonal phase. Since the peak overlap in these two-phase compositions limits the ability to model the local-scale structures as tetragonal, it is approximated in the refinements as a cubic phase. These results demonstrate that alloying BT with BZT results in increased disorder and disrupts the long-range ferroelectric symmetry present in BT, while the large tetragonal distortion present in BZT persists at the local scale.« less
Local and average structures of BaTiO 3-Bi(Zn 1/2Ti 1/2)O 3
Usher, Tedi-Marie; Iamsasri, Thanakorn; Forrester, Jennifer S.; ...
2016-11-11
The complex crystallographic structures of (1-x)BaTiO 3-xBi(Zn 1/2Ti 1/2)O 3 (BT-xBZT) are examined using high resolution synchrotron X-ray diffraction, neutron diffraction, and neutron pair distribution function (PDF) analyses. The short-range structures are characterized from the PDFs, and a combined analysis of the X-ray and neutron diffraction patterns is used to determine the long-range structures. Our results demonstrate that the structure appears different when averaged over different length scales. In all compositions, the local structures determined from the PDFs show local tetragonal distortions (i.e., c/a > 1). But, a box-car fitting analysis of the PDFs reveals variations at different length scales.more » For 0.80BT-0.20BZT and 0.90BT-0.10BZT, the tetragonal distortions decrease at longer atom-atom distances (e.g., 30 vs. 5 ). When the longest distances are evaluated (r > 40 ), the lattice parameters approach cubic. Neutron and X-ray diffraction yield further information about the long-range structure. Compositions 0.80BT-0.20BZT and 0.90BT-0.10BZT appear cubic by Bragg diffraction (no peak splitting), consistent with the PDFs at long distances. However, these patterns cannot be adequately fit using a cubic lattice model; modeling their structures with the P4mm space group allows for a better fit to the patterns because the space group allows for c-axis atomic displacements that occur at the local scale. Furthermore, for the compositions 0.92BT-0.08BZT and 0.94BT-0.06BZT, strong tetragonal distortions are observed at the local scale and a less-distorted tetragonal structure is observed at longer length scales. In Rietveld refinements, the latter is modeled using a tetragonal phase. Since the peak overlap in these two-phase compositions limits the ability to model the local-scale structures as tetragonal, it is approximated in the refinements as a cubic phase. These results demonstrate that alloying BT with BZT results in increased disorder and disrupts the long-range ferroelectric symmetry present in BT, while the large tetragonal distortion present in BZT persists at the local scale.« less
Magnetic properties of nano-multiferroic materials
NASA Astrophysics Data System (ADS)
Ramam, Koduri; Diwakar, Bhagavathula S.; Varaprasad, Kokkarachedu; Swaminadham, Veluri; Reddy, Venu
2017-11-01
Latent magnetization in the multiferroics can be achieved via the structural distortion with respect to particle size and destroying the spiral spin structure, which plays the vital role in high-performance applications. In this investigation, multifunctional single phase Bi1-xLaxFe1-yCoyO3 nanomaterials were synthesized by co-precipitation technique. The chemical composition, phase genesis, morphology and thermal characteristics of the Bi1-xLaxFe1-yCoyO3 were studied by FTIR, XRD, SEM/EDS, TEM and TGA. XRD studies confirmed single phase distorted rhombohedral structure in Bi1-xLaxFe1-yCoyO3. The novelty in magnetic behavior of the Bi0.85La0.15Fe0.75Co0.25O3 multiferroic at room temperature showed both ferro and anti-ferromagnetic nature with higher order remanent magnetization among other nanocomposites in this study. This magnetic anomaly in Bi0.85La0.15Fe0.75Co0.25O3 is due to doping and size effects on the crystal structure that leads to spin-orbit interactions. Besides, Bi0.85La0.15Fe0.75Co0.25O3 integrated graphene oxide (GO) nanocomposite has shown the change in the magnetic hysteresis that indicates the effect of the semiconducting behavior of GO on the ordered magnetic moments in the multiferroic. This kind of magnetic anomaly could form advanced multiferroic devices.
NASA Astrophysics Data System (ADS)
Meaud, Julien; Li, Yizeng; Grosh, Karl
2011-11-01
It is generally agreed that the nonlinear response of the cochlea is due to the forward transduction of the outer hair cell (OHC) hair bundle (HB) and subsequent alteration of the active force applied to the cochlear structures, including the basilar membrane (BM). A mechanical-acoustical-electrical model of the cochlea with three-dimensional fluid representation, and feedback from OHC somatic motility coupled to nonlinear HB mechanotransduction is used to predict nonlinear distortion of the BM response to acoustic stimulus. An efficient alternating frequency time scheme is implemented to solve for the nonlinear stationary dynamics of the cochlea. The model is used to predict the location of maximum generation of nonlinear distortion during pure tone and two-tone stimulation as well as the propagation of the distortion components on the BM.
Determining the 3-D structure and motion of objects using a scanning laser range sensor
NASA Technical Reports Server (NTRS)
Nandhakumar, N.; Smith, Philip W.
1993-01-01
In order for the EVAHR robot to autonomously track and grasp objects, its vision system must be able to determine the 3-D structure and motion of an object from a sequence of sensory images. This task is accomplished by the use of a laser radar range sensor which provides dense range maps of the scene. Unfortunately, the currently available laser radar range cameras use a sequential scanning approach which complicates image analysis. Although many algorithms have been developed for recognizing objects from range images, none are suited for use with single beam, scanning, time-of-flight sensors because all previous algorithms assume instantaneous acquisition of the entire image. This assumption is invalid since the EVAHR robot is equipped with a sequential scanning laser range sensor. If an object is moving while being imaged by the device, the apparent structure of the object can be significantly distorted due to the significant non-zero delay time between sampling each image pixel. If an estimate of the motion of the object can be determined, this distortion can be eliminated; but, this leads to the motion-structure paradox - most existing algorithms for 3-D motion estimation use the structure of objects to parameterize their motions. The goal of this research is to design a rigid-body motion recovery technique which overcomes this limitation. The method being developed is an iterative, linear, feature-based approach which uses the non-zero image acquisition time constraint to accurately recover the motion parameters from the distorted structure of the 3-D range maps. Once the motion parameters are determined, the structural distortion in the range images is corrected.
Deeter, Ryan; Abel, Rebekah; Calandruccio, Lauren; Dhar, Sumitrajit
2009-11-01
Activation of medial olivocochlear efferents through contralateral acoustic stimulation (CAS) has been shown to modulate distortion product otoacoustic emission (DPOAE) level in various ways (enhancement, reduction, or no change). The goal of this study was to investigate the effect of a range of CAS levels on DPOAE fine structure. The 2f(1)-f(2) DPOAE was recorded (f(2)/f(1)=1.22, L(1)=55 dB, and L(2)=40 dB) from eight normal-hearing subjects, using both a frequency-sweep paradigm and a fixed frequency paradigm. Contamination due to the middle ear muscle reflex was avoided by monitoring the magnitude and phase of a probe in the test ear and by monitoring DPOAE stimulus levels throughout testing. Results show modulations in both level and frequency of DPOAE fine structure patterns. Frequency shifts observed at DPOAE level minima could explain reports of enhancement in DPOAE level due to efferent activation. CAS affected the magnitude and phase of the DPOAE component from the characteristic frequency region to a greater extent than the component from the overlap region between the stimulus tones. This differential effect explains the occasional enhancement observed in DPOAE level as well as the frequency shift in fine structure patterns.
NASA Astrophysics Data System (ADS)
Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan
2018-04-01
Effect of lattice distortion on diffuse phase transition in BNBTO solid solutions near Morphotropic phase boundary (MPB) has been investigated. Solid solutions of (Bi0.5Na0.5)1-xBaxTiO3 (with mole % of x= 0.04, 0.05, 0.06, 0.07 and 0.08) were prepared by the planetary ball mill method in ethanol medium. Rietveld refinement technique with rhombohedral (R3c) and tetragonal (P4bm) crystal symmetry has been employed for structural as well as phase analysis of the solid solutions. Both rhombohedral and tetragonal lattice distortion (c/a) tends toward the pseudo-cubic crystal symmetry with the increase of mole fraction of Ba2+ near MPB (x= 6 mole %). Also, the average crystallite size and grain size decrease with increase of mole fraction of Ba2+ in BNT ceramic are due to larger ionic radius of Ba2+ and grain boundary pinning process in the solid solutions respectively. Additionally, depolarization temperature (Td) and maximum temperature (Tm) reduces due to the lattice distortion of both the phases in BNBTO solid solutions, which is explained extensively. Significant increase of dielectric constant has been observed near MPB composition (x=6%) in BNBTO solid solutions.
NASA Technical Reports Server (NTRS)
Tatarenko, Valentine A.; Tsysman, Constantin L.; Oltarzhevskaya, Yelena T.
1995-01-01
The calculations in a majority of previous works for the fulleride (AqC-60) crystals were performed within the framework of the rigid-lattice model, neglecting the distortion relaxation of the host fullerene (C-60) crystal caused by the interstitial alkali-metal (A) cations. However, an each cation is a source of a static distortion field, and the resulting field is a superposition of such fields generated by all cations. This is a reason why the host-crystal distortions depend on the A-cations configurations, i.e. on a type of a spatial bulk distribution of interstitial cations. The given paper seeks to find a functional relation between the amplitudes of the doping-induced structure-distortion waves and of static concentration ones. A semiphenomenological model is constructed here within the scope of statistical-thermodynamic treatment and using the lattice-statistics simulation method(*). In this model the effects due to the presence of q solute A cations over available interstices (per unit cell) on the static inherent reorientation and/or displacements of the solvent molecules from the 'average-lattice' sites' as well as on the lattice parameter a of a elastically-anysotropic 'cubic' C-60 crystal are taken into account.
DOT National Transportation Integrated Search
2016-08-01
A steel girder twin bridge structure located near Park City, Kansas, has experienced : extensive distortion-induced fatigue cracking in its web-gap regions. Due to : the bridges skewed, staggered configuration, the majority of these cracks have : ...
Electromagnetic Waves in a Uniform Gravitational Field and Planck's Postulate
ERIC Educational Resources Information Center
Acedo, Luis; Tung, Michael M.
2012-01-01
The gravitational redshift forms the central part of the majority of the classical tests for the general theory of relativity. It could be successfully checked even in laboratory experiments on the earth's surface. The standard derivation of this effect is based on the distortion of the local structure of spacetime induced by large masses. The…
ERIC Educational Resources Information Center
Peters, Mark Anthony; Phelps, LeAddelle
2001-01-01
Compares college age bodybuilders by sex and steroid intake on two variables: body image dissatisfaction and body image distortion. Results reveal only a significant effect for gender on body distortion. No steroid-use differences were apparent for either body image dissatisfaction or body image distortion. Analyses indicate that female…
Fisheye image rectification using spherical and digital distortion models
NASA Astrophysics Data System (ADS)
Li, Xin; Pi, Yingdong; Jia, Yanling; Yang, Yuhui; Chen, Zhiyong; Hou, Wenguang
2018-02-01
Fisheye cameras have been widely used in many applications including close range visual navigation and observation and cyber city reconstruction because its field of view is much larger than that of a common pinhole camera. This means that a fisheye camera can capture more information than a pinhole camera in the same scenario. However, the fisheye image contains serious distortion, which may cause trouble for human observers in recognizing the objects within. Therefore, in most practical applications, the fisheye image should be rectified to a pinhole perspective projection image to conform to human cognitive habits. The traditional mathematical model-based methods cannot effectively remove the distortion, but the digital distortion model can reduce the image resolution to some extent. Considering these defects, this paper proposes a new method that combines the physical spherical model and the digital distortion model. The distortion of fisheye images can be effectively removed according to the proposed approach. Many experiments validate its feasibility and effectiveness.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian
2018-03-01
The measurement of microstructured components is a challenging task in optical engineering. Digital holographic microscopy has attracted intensive attention due to its remarkable capability of measuring complex surfaces. However, speckles arise in the recorded interferometric holograms, and they will degrade the reconstructed wavefronts. Existing speckle removal methods suffer from the problems of frequency aliasing and phase distortions. A reconstruction method based on the antialiasing shift-invariant contourlet transform (ASCT) is developed. Salient edges and corners have sparse representations in the transform domain of ASCT, and speckles can be recognized and removed effectively. As subsampling in the scale and directional filtering schemes is avoided, the problems of frequency aliasing and phase distortions occurring in the conventional multiscale transforms can be effectively overcome, thereby improving the accuracy of wavefront reconstruction. As a result, the proposed method is promising for the digital holographic measurement of complex structures.
Bonding Thin Mirror Segments Without Distortion for the International X-Ray Observatory
NASA Technical Reports Server (NTRS)
Evans, Tyler C.; Chan, Kai-Wing; Saha, Timo T.
2011-01-01
The International X-Ray Observatory (IXO) uses thin glass optics to maximize large effective area and precise low angular resolution. The thin glass mirror segments must be transferred from their fabricated state to a permanent structure without imparting distortion. IXO will incorporate about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arcseconds. To preserve figure and alignment, the mirror segment must be bonded with sub-micron movement at each corner. Recent advances in technology development have produced significant x-ray test results of a bonded pair of mirrors. Three specific bonding cycles will be described highlighting the improvements in procedure, temperature control, and precision bonding. This paper will highlight the recent advances in alignment and permanent bonding as well as the results they have produced.
NASA Astrophysics Data System (ADS)
Gorinchoy, N. N.; Bersuker, I. B.
2017-05-01
We show that the pseudo Jahn-Teller effect (PJTE) is instrumental in predicting and rationalizing structural changes in chemical transformations of two-dimensional (2D) molecular systems by means of analyzing the symmetries and electron occupation of the ground and lowest excited electronic states and the energy gap between them, subject to their PJT coupling along the main distortion coordinates. Special attention is paid to rationalizing the PJTE origin of non-planarity of 2D compounds and to the restoration of their planar configurations. Examples of two series of 1,2- and 1,4-dithiin containing tricyclic compounds (carbon sulfide, thianthrene, and antracene and their derivatives) are used to demonstrate in detail the mechanism of (1) enhancement and suppression of the PJTE distortions (puckering) in redox processes, and (2) PJTE induced symmetry breaking and restoration of the planar configuration by chemical substitutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pizzone, R. G.; Spitaleri, C.; La Cognata, M.
2009-08-15
Deuteron induced quasifree scattering and reactions have been extensively investigated in the past few decades as well as {sup 6}Li, {sup 3}H, {sup 3}He, and {sup 9}Be induced reactions. This was done not only for the investigation of nuclear structure and reaction mechanisms but also for important astrophysical applications (Trojan horse method). In particular the widths of the spectator momentum distributions in several nuclei, which have been used as Trojan horses, have been obtained as a function of the transferred momentum. Applications of Trojan horse method will also be discussed because the momentum distribution of the spectator particle inside themore » nucleus is a important input for this method. This gives hints on distortion effects at low energies important for nuclear astrophysics.« less
NASA Technical Reports Server (NTRS)
Gough, Douglas; Merryfield, William J.; Toomre, Juri
1998-01-01
A method is proposed for analyzing an almost monochromatic train of waves propagating in a single direction in an inhomogeneous medium that is not otherwise changing in time. An effective phase is defined in terms of the Hilbert transform of the wave function, which is related, via the JWKB approximation, to the spatial variation of the background state against which the wave is propagating. The contaminating effect of interference between the truly monochromatic components of the train is eliminated using its propagation properties. Measurement errors, provided they are uncorrelated, are manifest as rapidly varying noise; although that noise can dominate the raw phase-processed signal, it can largely be removed by low-pass filtering. The intended purpose of the analysis is to determine the distortion of solar oscillations induced by horizontal structural variation and material flow. It should be possible to apply the method directly to sectoral modes. The horizontal phase distortion provides a measure of longitudinally averaged properties of the Sun in the vicinity of the equator, averaged also in radius down to the depth to which the modes penetrate. By combining such averages from different modes, the two-dimensional variation can be inferred by standard inversion techniques. After taking due account of horizontal refraction, it should be possible to apply the technique also to locally sectoral modes that propagate obliquely to the equator and thereby build a network of lateral averages at each radius, from which the full three-dimensional structure of the Sun can, in principle, be determined as an inverse Radon transform.
Prout, Keith; Edwards, Alison; Mtetwa, Victor; Murray, Jon; Saunders, John F.; Rossotti, Francis J. C.
1997-06-18
The crystal structure of trans-diaquabis(methoxyacetato)copper(II), C(6)H(14)O(8)Cu, has been determined by neutron diffraction at 4.2 K (monoclinic, P2(1)/n, a = 6.88(1), b = 7.19(1), c = 9.77(2) Å, gamma = 95.7(1) degrees, (Z = 2)) and by X-ray diffraction at 125, 165, 205, 240, 265, 295, and 325 K. These measurements show that there is no phase change in the temperature range 4.2-325 K. The copper(II) coordination at 4.2 K is a tetragonally distorted elongated rhombic octahedron (Cu-OOC 1.955(1), Cu-OMe 2.209(1), and Cu-OH(2) 2.031(2) Å). As the temperature increases to 325 K, the Cu-OOC bonds shorten slightly to 1.934(5) Å, the Cu-OMe bonds shorten more markedly to 2.137(4) Å, and Cu-OH(2) lengthens to 2.155(6) Å to give a tetragonally distorted compressed rhombic octahedron. For comparison the structure of the isomorphous nickel(II) complex (monoclinic, P2(1)/n, a = 6.633(1), b = 7.192(1), c = 10.016(2) Å, gamma = 98.30(2) degrees, (Z = 2)) has been redetermined at 295 K and the structure of the analogous zinc(II) complex (orthorhombic, F2dd, a = 7.530(1), b = 13.212(1), c = 21.876(2) Å (Z = 8)) has also been determined. The nickel(II) complex has an almost regular trans (centrosymmetric) octahedral coordination (Ni-OOC 2.022(1), Ni-OMe 2.043(1), and Ni-OH(2) 2.077(2) Å). However, zinc(II) has a very distorted octahedral coordination with the zinc atom on a 2-fold axis with the water molecules and the methoxy ligators cis and the carboxylate ligators trans (Zn-OOC 1.985(1), Zn-OMe 2.304(2), and Zn-OH(2) 2.038(2) Å). The variation in the dimensions of the copper(II) coordination sphere is discussed in terms of static (low temperature) and planar dynamic (high temperature) pseudo-Jahn-Teller effects.
NASA Technical Reports Server (NTRS)
Williams, M.; Harris, W. L.
1984-01-01
The purpose of the analysis is to determine if inflow turbulence distortion may be a cause of experimentally observed changes in sound pressure levels when the rotor mean loading is varied. The effect of helicopter rotor mean aerodynamics on inflow turbulence is studied within the framework of the turbulence rapid distortion theory developed by Pearson (1959) and Deissler (1961). The distorted inflow turbulence is related to the resultant noise by conventional broadband noise theory. A comparison of the distortion model with experimental data shows that the theoretical model is unable to totally explain observed increases in model rotor sound pressures with increased rotor mean thrust. Comparison of full scale rotor data with the theoretical model shows that a shear-type distortion may explain decreasing sound pressure levels with increasing thrust.
Maestas, Gabrielle; Hu, Jiyao; Trevino, Jessica; Chunduru, Pranathi; Kim, Seung-Jae; Lee, Hyunglae
2018-01-01
The use of visual feedback in gait rehabilitation has been suggested to promote recovery of locomotor function by incorporating interactive visual components. Our prior work demonstrated that visual feedback distortion of changes in step length symmetry entails an implicit or unconscious adaptive process in the subjects’ spatial gait patterns. We investigated whether the effect of the implicit visual feedback distortion would persist at three different walking speeds (slow, self-preferred and fast speeds) and how different walking speeds would affect the amount of adaption. In the visual feedback distortion paradigm, visual vertical bars portraying subjects’ step lengths were distorted so that subjects perceived their step lengths to be asymmetric during testing. Measuring the adjustments in step length during the experiment showed that healthy subjects made spontaneous modulations away from actual symmetry in response to the implicit visual distortion, no matter the walking speed. In all walking scenarios, the effects of implicit distortion became more significant at higher distortion levels. In addition, the amount of adaptation induced by the visual distortion was significantly greater during walking at preferred or slow speed than at the fast speed. These findings indicate that although a link exists between supraspinal function through visual system and human locomotion, sensory feedback control for locomotion is speed-dependent. Ultimately, our results support the concept that implicit visual feedback can act as a dominant form of feedback in gait modulation, regardless of speed. PMID:29632481
Kim, Seung-Jae; Ogilvie, Mitchell; Shimabukuro, Nathan; Stewart, Trevor; Shin, Joon-Ho
2015-09-01
Visual feedback can be used during gait rehabilitation to improve the efficacy of training. We presented a paradigm called visual feedback distortion; the visual representation of step length was manipulated during treadmill walking. Our prior work demonstrated that an implicit distortion of visual feedback of step length entails an unintentional adaptive process in the subjects' spatial gait pattern. Here, we investigated whether the implicit visual feedback distortion, versus conscious correction, promotes efficient locomotor adaptation that relates to greater retention of a task. Thirteen healthy subjects were studied under two conditions: (1) we implicitly distorted the visual representation of their gait symmetry over 14 min, and (2) with help of visual feedback, subjects were told to walk on the treadmill with the intent of attaining the gait asymmetry observed during the first implicit trial. After adaptation, the visual feedback was removed while subjects continued walking normally. Over this 6-min period, retention of preserved asymmetric pattern was assessed. We found that there was a greater retention rate during the implicit distortion trial than that of the visually guided conscious modulation trial. This study highlights the important role of implicit learning in the context of gait rehabilitation by demonstrating that training with implicit visual feedback distortion may produce longer lasting effects. This suggests that using visual feedback distortion could improve the effectiveness of treadmill rehabilitation processes by influencing the retention of motor skills.
Orbital ordering-driven ferromagnetism in LaCoO3 nanowires
NASA Astrophysics Data System (ADS)
Wang, Yang; Fan, Hong Jin
2010-09-01
The structure and magnetic properties of LaCoO3 nanowires are investigated as a function of the diameter in the temperature range of 5-300 K. Ferromagnetism below 85 K is observed in these nanowires, in agreement with the recent observations in LaCoO3 epitaxial thin films and nanoparticles. With the diameter of nanowires decreasing, the unit-cell volume increases, while both the global and local structural distortions lessen, accompanied by the gradual enhancement of ferromagnetism. The structure analysis reveals that LaCoO3 nanowires exhibit a monoclinic distorted structure with I2/a space group in the entire investigated temperature range. Different from bulks, there is no clear spin-state transition occurring with temperature in LaCoO3 nanowires. There exists a noticeable Jahn-Teller (JT) distortion in the nanowires even at the lowest temperature, namely, orbital-ordered JT active Co3+ ions with intermediate-spin (IS) state persist at low temperatures, which is not observed in bulk LaCoO3. These results indicate that the ferromagnetism in the nanowires is driven by the orbital ordering of IS Co3+.
Psychological Vulnerability and Problem Gambling: The Mediational Role of Cognitive Distortions.
Lévesque, David; Sévigny, Serge; Giroux, Isabelle; Jacques, Christian
2018-01-03
Despite numerous studies demonstrating the influence of cognitive distortions on gambling problem severity, empirical data regarding the role of psychological vulnerability on the latter is limited. Hence, this study assesses the mediating effect of cognitive distortions between psychological vulnerability (personality and mood), and gambling problem severity. It also verifies whether the relationships between these variables differs according to the preferred gambling activity. The sample is composed of 272 male gamblers [191 poker players; 81 video lottery terminal (VLT) players] aged between 18 and 82 years (M = 35.2). Bootstrap analysis results revealed that cognitive distortions mediate the effect of narcissism on gambling problem severity for both groups. The level of depression for VLT players significantly predicted gambling problem severity, both directly and indirectly via the mediating effect of cognitive distortions. Mediation analyses also indicated that narcissism had an indirect impact on problem gambling through cognitive distortions for both groups. These findings suggest that certain vulnerabilities related to personality and mood may influence cognitive distortion intensity and gambling problem severity. In addition, psychological vulnerabilities could differ based on preferred gambling activity. These results may be useful for prevention policies, identifying high risk gamblers and planning psychological interventions.
Albi, Angela; Meola, Antonio; Zhang, Fan; Kahali, Pegah; Rigolo, Laura; Tax, Chantal M W; Ciris, Pelin Aksit; Essayed, Walid I; Unadkat, Prashin; Norton, Isaiah; Rathi, Yogesh; Olubiyi, Olutayo; Golby, Alexandra J; O'Donnell, Lauren J
2018-03-01
Diffusion magnetic resonance imaging (dMRI) provides preoperative maps of neurosurgical patients' white matter tracts, but these maps suffer from echo-planar imaging (EPI) distortions caused by magnetic field inhomogeneities. In clinical neurosurgical planning, these distortions are generally not corrected and thus contribute to the uncertainty of fiber tracking. Multiple image processing pipelines have been proposed for image-registration-based EPI distortion correction in healthy subjects. In this article, we perform the first comparison of such pipelines in neurosurgical patient data. Five pipelines were tested in a retrospective clinical dMRI dataset of 9 patients with brain tumors. Pipelines differed in the choice of fixed and moving images and the similarity metric for image registration. Distortions were measured in two important tracts for neurosurgery, the arcuate fasciculus and corticospinal tracts. Significant differences in distortion estimates were found across processing pipelines. The most successful pipeline used dMRI baseline and T2-weighted images as inputs for distortion correction. This pipeline gave the most consistent distortion estimates across image resolutions and brain hemispheres. Quantitative results of mean tract distortions on the order of 1-2 mm are in line with other recent studies, supporting the potential need for distortion correction in neurosurgical planning. Novel results include significantly higher distortion estimates in the tumor hemisphere and greater effect of image resolution choice on results in the tumor hemisphere. Overall, this study demonstrates possible pitfalls and indicates that care should be taken when implementing EPI distortion correction in clinical settings. Copyright © 2018 by the American Society of Neuroimaging.
Wei, Mei-Yan; Li, Dan; Shao, Chang-Lun; Deng, Dong-Sheng; Wang, Chang-Yun
2013-03-28
A new antibacterial chlorinated benzophenone derivative, (±)-pestalachloride D (1), along with a related analog, (±)-pestalachloride C (2), was recently isolated from the marine-derived fungus Pestalotiopsis sp. isolated from a soft coral Sarcophyton sp. collected from Yongxing Island in the South China Sea. Both chiral HPLC analysis and single-crystal X-ray data indicated that 1 is a racemic mixture. Interestingly, 1 did not exhibit any effect in the zebrafish embryo teratogenicity assay, while 2 led to abnormal growth. The potential impact on zebrafish embryo growth is discussed based on their crystal structures. The main difference of crystal structures between 1 and 2 is that the six-member non-aromatic ring (O4, C10, C9, C8, C2', and C3') in 1 exhibits a distorted chair conformation, while 2 shows a distorted boat conformation. Moreover, compounds 1 and 2 both exhibited moderate antibacterial activity.
Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots.
Bertolotti, Federica; Dirin, Dmitry N; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H; Kovalenko, Maksym V; Guagliardi, Antonietta; Masciocchi, Norberto
2016-09-01
Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.
Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots
NASA Astrophysics Data System (ADS)
Bertolotti, Federica; Dirin, Dmitry N.; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H.; Kovalenko, Maksym V.; Guagliardi, Antonietta; Masciocchi, Norberto
2016-09-01
Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.
Arc Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure
NASA Technical Reports Server (NTRS)
Evans, Tyler C.; Chan, Kai-Wing
2009-01-01
The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc seconds. These mirror segments are 0.4mm thick, and 200 to 400mm in size, which makes it hard not to impart distortion at the subarc second level. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced.
Arc-Second Alignment of International X-Ray Observatory Mirror Segments in a Fixed Structure
NASA Technical Reports Server (NTRS)
Evans, Tyler C.; Chan, Kai-Wing; Saha, Timo T.
2010-01-01
The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc-seconds. These mirror segments are 0.4 mm thick, and 200 to 400 mm in size, which makes it hard not to impart distortion at the subare- second level. This paper outlines the precise alignment, verification testing, and permanent bonding techniques developed at NASA's Goddard Space Flight Center (GSFC). These techniques are used to overcome the challenge of transferring thin mirror segments from a temporary mount to a fixed structure with arc-second alignment and minimal figure distortion. Recent advances in technology development in addition to the automation of several processes have produced significant results. This paper will highlight the recent advances in alignment, testing, and permanent bonding techniques as well as the results they have produced.
Wei, Mei-Yan; Li, Dan; Shao, Chang-Lun; Deng, Dong-Sheng; Wang, Chang-Yun
2013-01-01
A new antibacterial chlorinated benzophenone derivative, (±)-pestalachloride D (1), along with a related analog, (±)-pestalachloride C (2), was recently isolated from the marine-derived fungus Pestalotiopsis sp. isolated from a soft coral Sarcophyton sp. collected from Yongxing Island in the South China Sea. Both chiral HPLC analysis and single-crystal X-ray data indicated that 1 is a racemic mixture. Interestingly, 1 did not exhibit any effect in the zebrafish embryo teratogenicity assay, while 2 led to abnormal growth. The potential impact on zebrafish embryo growth is discussed based on their crystal structures. The main difference of crystal structures between 1 and 2 is that the six-member non-aromatic ring (O4, C10, C9, C8, C2′, and C3′) in 1 exhibits a distorted chair conformation, while 2 shows a distorted boat conformation. Moreover, compounds 1 and 2 both exhibited moderate antibacterial activity. PMID:23538869
The design of the intelligent monitoring system for dam safety
NASA Astrophysics Data System (ADS)
Yuan, Chun-qiao; Jiang, Chen-guang; Wang, Guo-hui
2008-12-01
Being a vital manmade water-control structure, a dam plays a very important role in the living and production of human being. To make a dam run safely, the best design and the superior construction quality are paramount; moreover, with working periods increasing, various dynamic, alternative and bad loads generate little by little various distortions on the dam structure inevitably, which shall lead to potential safety problems or further a disaster (dam burst). There are many signs before the occurrence of a dam accident, so the timely and effective surveying on the distortion of a dam is important. On the basis of the cause supra, two intelligent (automatic) monitoring systems about the dam's safety based on the RTK-GPS technology and the measuring robot has been developed. The basic principle, monitoring method and monitoring process of these two intelligent (automatic) monitoring systems are introduced. It presents examples of monitor and puts forward the basic rule of dam warning based on data of actual monitor.
Microwave background distortions from domain walls
NASA Technical Reports Server (NTRS)
Goetz, Guenter; Noetzold, Dirk
1990-01-01
Domain walls arising in a cosmic phase transition after decoupling were recently proposed as seeds for the formation of large scale structure. The distortion induced in the microwave background radiation is calculated in dependence of the wall thickness, surface density, scalar field potential, cosmic redshift and the velocity of the wall. It was found that the maximal redshift distortion for both spherical and planar walls is of the order pi G sigma H(sup -1)(sub 0), where sigma is the surface energy density and H(sup -1)(sub 0) the Hubble parameter. It was also found that, for a wall thickness smaller than the horizon, walls can be treated as infinitely thin, i.e., the redshift distortion is independent of the wall thickness and the specific form of the scalar potential. For planar walls moving with a Lorentz-factor gamma the redshift distortion is enhanced by gamma cubed.
NASA Astrophysics Data System (ADS)
Delhaye, Robert; Rath, Volker; Jones, Alan G.; Muller, Mark R.; Reay, Derek
2017-05-01
Galvanic distortions of magnetotelluric (MT) data, such as the static-shift effect, are a known problem that can lead to incorrect estimation of resistivities and erroneous modelling of geometries with resulting misinterpretation of subsurface electrical resistivity structure. A wide variety of approaches have been proposed to account for these galvanic distortions, some depending on the target area, with varying degrees of success. The natural laboratory for our study is a hydraulically permeable volume of conductive sediment at depth, the internal resistivity structure of which can be used to estimate reservoir viability for geothermal purposes; however, static-shift correction is required in order to ensure robust and precise modelling accuracy.We present here a possible method to employ frequency-domain electromagnetic data in order to correct static-shift effects, illustrated by a case study from Northern Ireland. In our survey area, airborne frequency domain electromagnetic (FDEM) data are regionally available with high spatial density. The spatial distributions of the derived static-shift corrections are analysed and applied to the uncorrected MT data prior to inversion. Two comparative inversion models are derived, one with and one without static-shift corrections, with instructive results. As expected from the one-dimensional analogy of static-shift correction, at shallow model depths, where the structure is controlled by a single local MT site, the correction of static-shift effects leads to vertical scaling of resistivity-thickness products in the model, with the corrected model showing improved correlation to existing borehole wireline resistivity data. In turn, as these vertical scalings are effectively independent of adjacent sites, lateral resistivity distributions are also affected, with up to half a decade of resistivity variation between the models estimated at depths down to 2000 m. Simple estimation of differences in bulk porosity, derived using Archie's Law, between the two models reinforces our conclusion that the suborder of magnitude resistivity contrasts induced by the correction of static shifts correspond to similar contrasts in estimated porosities, and hence, for purposes of reservoir investigation or similar cases requiring accurate absolute resistivity estimates, galvanic distortion correction, especially static-shift correction, is essential.
Compensation of relector antenna surface distortion using an array feed
NASA Technical Reports Server (NTRS)
Cherrette, A. R.; Acosta, R. J.; Lam, P. T.; Lee, S. W.
1988-01-01
The dimensional stability of the surface of a large reflector antenna is important when high gain or low sidelobe performance is desired. If the surface is distorted due to thermal or structural reasons, antenna performance can be improved through the use of an array feed. The design of the array feed and its relation to the surface distortion are examined. The sensitivity of antenna performance to changing surface parameters for fixed feed array geometries is also studied. This allows determination of the limits of usefulness for feed array compensation.
Capillary Assembly of Colloids: Interactions on Planar and Curved Interfaces
NASA Astrophysics Data System (ADS)
Liu, Iris B.; Sharifi-Mood, Nima; Stebe, Kathleen J.
2018-03-01
In directed assembly, small building blocks are assembled into an organized structure under the influence of guiding fields. Capillary interactions provide a versatile route for structure formation. Colloids adsorbed on fluid interfaces distort the interface, which creates an associated energy field. When neighboring distortions overlap, colloids interact to minimize interfacial area. Contact line pinning, particle shape, and surface chemistry play important roles in structure formation. Interface curvature acts like an external field; particles migrate and assemble in patterns dictated by curvature gradients. We review basic analysis and recent findings in this rapidly evolving literature. Understanding the roles of assembly is essential for tuning the mechanical, physical, and optical properties of the structure.
NASA Astrophysics Data System (ADS)
Praveen, P. A.; Babu, R. Ramesh; Ramamurthi, K.
2017-02-01
A coordination complex, manganese incorporated benzimidazole, thin films were prepared by chemical bath deposition method. Structural characterization of the deposited films, carried out by Fourier transform infrared spectroscopy, Raman and electron paramagnetic resonance spectral analyses, reveals the distorted tetrahedral environment of the metal ion with bis-benzimidazole ligand. Further the molecular composition of the deposited metal complex was estimated by energy-dispersive X-ray spectroscopy. The prepared thin films were thermally treated to study the effect of annealing temperature on the surface morphology and the results showed that the surface homogeneity of the films increased for thermally treated films up to 150 °C. But distortion and voids were observed for the films annealed at 200 °C. The Raman analysis reveals the molecular hydrogen bond distortion which leads to the evaporation of the metal complex from the thin film surface with respect to annealing temperature. The linear and nonlinear optical properties of the as prepared and annealed films were studied using ultraviolet-visible transmittance spectroscopy, second harmonic generation and Z-scan analyses. Films annealed at 150 °C show a better linear transmittance in the visible region and larger SHG efficiency and third order nonlinear susceptibility when compared with the other samples. Further, the film annealed at 150 °C was subjected to optical switching analysis and demonstrated to have an inverted switching behavior.
Monoclinic distortion and magnetic coupling in the double perovskite Sr{sub 2−x}Ca{sub x}YRuO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardo, P.L.; Ghivelder, L.; Eslava, G.G.
2014-12-15
Abstracts: This work investigates in the insulating double perovskites Sr{sub 2−x}Ca{sub x}YRuO{sub 6}. We address the angular dependence of the strength of the magnetic coupling due to the deviation from planarity of the basal layers of the monoclinic structure, characterized by the in-plane angle α<180°, in order to probe the impact of the structural distortions in the magnetic properties of the compounds. High resolution x-ray powder diffraction, susceptibility, and specific heat measurements were performed. The deviation from planarity significantly increases (α=144° for x=1) while the bond distances vary in a complex way as a consequence of the strong monoclinic distortion.more » We found that the magnetic transition temperature, T{sub M}, shows a linear dependence on cos [(π−α)/2]. This result is discussed in terms of t{sub 2g}(π)–e{sub g}(σ) mixing of the magnetic orbitals of the Ru{sup 5+} ions and unbalanced competitive super-exchange interactions. The deleterious effect of Ca doping for the magnetic coupling is confirmed by the reduction in the short-range antiferromagnetic correlations characteristic of the parent compound at T>>T{sub M} and the enhancement of magnetic frustration for T« less
ToF-SIMS measurements with topographic information in combined images.
Koch, Sabrina; Ziegler, Georg; Hutter, Herbert
2013-09-01
In 2D and 3D time-of-flight secondary ion mass spectrometric (ToF-SIMS) analysis, accentuated structures on the sample surface induce distorted element distributions in the measurement. The origin of this effect is the 45° incidence angle of the analysis beam, recording planar images with distortion of the sample surface. For the generation of correct element distributions, these artifacts associated with the sample surface need to be eliminated by measuring the sample surface topography and applying suitable algorithms. For this purpose, the next generation of ToF-SIMS instruments will feature a scanning probe microscope directly implemented in the sample chamber which allows the performance of topography measurements in situ. This work presents the combination of 2D and 3D ToF-SIMS analysis with topographic measurements by ex situ techniques such as atomic force microscopy (AFM), confocal microscopy (CM), and digital holographic microscopy (DHM). The concept of the combination of topographic and ToF-SIMS measurements in a single representation was applied to organic and inorganic samples featuring surface structures in the nanometer and micrometer ranges. The correct representation of planar and distorted ToF-SIMS images was achieved by the combination of topographic data with images of 2D as well as 3D ToF-SIMS measurements, using either AFM, CM, or DHM for the recording of topographic data.
Three-dimensional accuracy of plastic transfer impression copings for three implant systems.
Teo, Juin Wei; Tan, Keson B; Nicholls, Jack I; Wong, Keng Mun; Uy, Joanne
2014-01-01
The purpose of this study was to compare the three-dimensional accuracy of indirect plastic impression copings and direct implant-level impression copings from three implant systems (Nobel Biocare [NB], Biomet 3i [3i], and Straumann [STR]) at three interimplant buccolingual angulations (0, 8, and 15 degrees). Two-implant master models were used to simulate a three-unit implant fixed partial denture. Test models were made from Impregum impressions using direct implant-level impression copings (DR). Abutments were then connected to the master models for impressions using the plastic impression copings (INDR) at three different angulations for a total of 18 test groups (n = 5 in each group). A coordinate measuring machine was used to measure linear distortions, three-dimensional (3D) distortions, angular distortions, and absolute angular distortions between the master and test models. Three-way analysis of variance showed that the implant system had a significant effect on 3D distortions and absolute angular distortions in the x- and y-axes. Interimplant angulation had a significant effect on 3D distortions and absolute angular distortions in the y-axis. Impression technique had a significant effect on absolute angular distortions in the y-axis. With DR, the NB and 3i systems were not significantly different. With INDR, 3i appeared to have less distortion than the other systems. Interimplant angulations did not significantly affect the accuracy of NBDR, 3iINDR, and STRINDR. The accuracy of INDR and DR was comparable at all interimplant angulations for 3i and STR. For NB, INDR was comparable to DR at 0 and 8 degrees but was less accurate at 15 degrees. Three-dimensional accuracy of implant impressions varied with implant system, interimplant angulation, and impression technique.
Correlation and nuclear distortion effects of Cr-substituted ZnSe.
Tablero, C
2007-04-28
There is a great deal of interest in the effect of the correlation and effect of the atomic distortion in materials with a metallic intermediate band. This band, situated within the semiconductor band gaps, would be split, thus creating two bands, a full one below the Fermi energy and an empty one above it, i.e., a metal-insulator transition. This basic electronic band structure corresponds to intermediate band materials and is characteristic of transparent-conducting oxides, up and down converters, and intermediate band solar cells. A sufficiently high density of Cr in ZnSe substituting the Zn atoms leads to a microscopic intermediate band, in which these effects will be analyzed. A Hubbard term has been included to improve the description of the many-body effect. This term modifies the bandwidth of the intermediate band, the Fermi energy, and breaks the orbital-occupation degeneracy. From the results, the intermediate band is not split within the range of Hubbard term values analyzed and for Cr substituting Zn from 0.463% to 3.125% of Cr atomic concentration.
Rodriguez, Brian D.
2017-03-31
This report summarizes the results of three-dimensional (3-D) resistivity inversion simulations that were performed to account for local 3-D distortion of the electric field in the presence of 3-D regional structure, without any a priori information on the actual 3-D distribution of the known subsurface geology. The methodology used a 3-D geologic model to create a 3-D resistivity forward (“known”) model that depicted the subsurface resistivity structure expected for the input geologic configuration. The calculated magnetotelluric response of the modeled resistivity structure was assumed to represent observed magnetotelluric data and was subsequently used as input into a 3-D resistivity inverse model that used an iterative 3-D algorithm to estimate 3-D distortions without any a priori geologic information. A publicly available inversion code, WSINV3DMT, was used for all of the simulated inversions, initially using the default parameters, and subsequently using adjusted inversion parameters. A semiautomatic approach of accounting for the static shift using various selections of the highest frequencies and initial models was also tested. The resulting 3-D resistivity inversion simulation was compared to the “known” model and the results evaluated. The inversion approach that produced the lowest misfit to the various local 3-D distortions was an inversion that employed an initial model volume resistivity that was nearest to the maximum resistivities in the near-surface layer.
Assembly and analysis of eukaryotic Argonaute–RNA complexes in microRNA-target recognition
Gan, Hin Hark; Gunsalus, Kristin C.
2015-01-01
Experimental studies have uncovered a variety of microRNA (miRNA)–target duplex structures that include perfect, imperfect and seedless duplexes. However, non-canonical binding modes from imperfect/seedless duplexes are not well predicted by computational approaches, which rely primarily on sequence and secondary structural features, nor have their tertiary structures been characterized because solved structures to date are limited to near perfect, straight duplexes in Argonautes (Agos). Here, we use structural modeling to examine the role of Ago dynamics in assembling viable eukaryotic miRNA-induced silencing complexes (miRISCs). We show that combinations of low-frequency, global modes of motion of Ago domains are required to accommodate RNA duplexes in model human and C. elegans Ago structures. Models of viable miRISCs imply that Ago adopts variable conformations at distinct target sites that generate distorted, imperfect miRNA-target duplexes. Ago's ability to accommodate a duplex is dependent on the region where structural distortions occur: distortions in solvent-exposed seed and 3′-end regions are less likely to produce steric clashes than those in the central duplex region. Energetic analyses of assembled miRISCs indicate that target recognition is also driven by favorable Ago-duplex interactions. Such structural insights into Ago loading and target recognition mechanisms may provide a more accurate assessment of miRNA function. PMID:26432829
The effect of circumferential distortion on fan performance at two levels of blade loading
NASA Technical Reports Server (NTRS)
Hartmann, M. J.; Sanger, N. L.
1975-01-01
Single stage fans designed for two levels of pressure ratio or blade loading were subjected to screen-induced circumferential distortions of 90-degree extent. Both fan rotors were designed for a blade tip speed of 425 m/sec, blade solidity of 1.3 and a hub-to-tip radius ratio of 0.5. Circumferential measurements of total pressure, temperature, static pressure, and flow angle were obtained at the hub, mean and tip radii at five axial stations. Rotor loading level did not appear to have a significant influence on rotor response to distorted flow. Losses in overall pressure ratio due to distortion were most severe in the stator hub region of the more highly loaded stage. At the near stall operating condition tip and hub regions of (either) rotor demonstrated different response characteristics to the distorted flow. No effect of loading was apparent on interactions between rotor and upstream distorted flow fields.
Shatnawi, Mouath; Bozin, Emil S.; Mitchell, J. F.; ...
2016-04-25
Evolution of the average and local crystal structure of Ca-doped LaMnO 3 has been studied across the metal to insulator (MI) and the orthorhombic to rhombohedral (OR) structural phase transitions over a broad temperature range for two Ca concentrations (x = 0.18,0.22). Combined Rietveld and high real space resolution atomic pair distribution function (PDF) analysis of neutron total scattering data was carried out with aims of exploring the possibility of nanoscale phase separation (PS) in relation to MI transition, and charting the evolution of local Jahn-Teller (JT) distortion of MnO 6 octahedra across the OR transition at T S~720 K.more » The study utilized explicit two-phase PDF structural modeling, revealing that away from T MI there is no evidence for nanoscale phase coexistence. The local JT distortions disappear abruptly upon crossing into the metallic regime both with doping and temperature, with only a small temperature-independent signature of quenched disorder being observable at low temperature as compared to CaMnO 3. The results hence do not support the percolative scenario for the MI transition in La 1–xCa xMnO 3 based on PS, and question its ubiquity in the manganites. In contrast to LaMnO 3 that exhibits long-range orbital correlations and sizable octahedral distortions at low temperature, the doped samples with compositions straddling the MI boundary exhibit correlations (in the insulating regime) limited to only ~1 nm with observably smaller distortions. In the x = 0.22 sample local JT distortions are found to persist across the OR transition and deep into the R phase (up to ~1050 K), where they are crystallographically prohibited. As a result, their magnitude and subnanometer spatial extent remain unchanged.« less
Characterizing exo-ring systems around fast-rotating stars using the Rossiter-McLaughlin effect
NASA Astrophysics Data System (ADS)
de Mooij, Ernst J. W.; Watson, Christopher A.; Kenworthy, Matthew A.
2017-12-01
Planetary rings produce a distinct shape distortion in transit light curves. However, to accurately model such light curves the observations need to cover the entire transit, especially ingress and egress, as well as an out-of-transit baseline. Such observations can be challenging for long period planets, where the transits may last for over a day. Planetary rings will also impact the shape of absorption lines in the stellar spectrum, as the planet and rings cover different parts of the rotating star (the Rossiter-McLaughlin effect). These line-profile distortions depend on the size, structure, opacity, obliquity and sky-projected angle of the ring system. For slow-rotating stars, this mainly impacts the amplitude of the induced velocity shift; however, for fast-rotating stars the large velocity gradient across the star allows the line distortion to be resolved, enabling direct determination of the ring parameters. We demonstrate that by modelling these distortions we can recover ring system parameters (sky-projected angle, obliquity and size) using only a small part of the transit. Substructure in the rings, e.g. gaps, can be recovered if the width of the features (δW) relative to the size of the star is similar to the intrinsic velocity resolution (set by the width of the local stellar profile, γ) relative to the stellar rotation velocity (v sini, i.e. δW/R* ≳ vsini/γ). This opens up a new way to study the ring systems around planets with long orbital periods, where observations of the full transit, covering the ingress and egress, are not always feasible.
Boldyreva, E V; Shakhtshneider, T P; Vasilchenko, M A; Ahsbahs, H; Uchtmann, H
2000-04-01
The anisotropy of structural distortion of the monoclinic polymorph of acetaminophen induced by hydrostatic pressure up to 4.0 GPa was studied by single-crystal X-ray diffraction in a Merrill-Bassett diamond anvil cell (DAC). The space group (P2(1)/n) and the general structural pattern remained unchanged with pressure. Despite the overall decrease in the molar volume with pressure, the structure expanded in particular crystallographic directions. One of the linear cell parameters (c) passed through a minimum as the pressure increased. The intramolecular bond lengths changed only slightly with pressure, but the changes in the dihedral and torsion angles were very large. The compressibility of the intermolecular hydrogen bonds NH...O and OH...O was measured. NH...O bonds were shown to be slightly more compressible than OH...O bonds. The anisotropy of structural distortion was analysed in detail in relation to the pressure-induced changes in the molecular conformations, to the compression of the hydrogen-bond network, and to the changes in the orientation of molecules with respect to each other in the pleated sheets in the structure. Dirichlet domains were calculated in order to analyse the relative shifts of the centroids of the hydrogen-bonded cycles and of the centroids of the benzene rings with pressure.
Optical technique to measure distortion on heat treated parts
NASA Astrophysics Data System (ADS)
Sciammarella, Federico Mariano
The use of aluminum for structural applications grows with the continual improvement of their physical properties. Through the various amounts of heat treatments that are available, aluminum can vary in properties for all different types of applications. The automotive industry has benefited the most from the use of aluminum and they continue to seek more uses. The heat treatments of these parts are very vital in providing the properties needed for their particular applications. Moreover understanding the effects of heat treatments that may cause distortion to a part is critical. Most of the work carried out in this field is a pre and post measurement after part has experienced its treatment. In this study, we carry out in-situ measurements of the distortions that a heat-treated part undergoes when subjected to temperatures near melting followed by a slow cooling. In order to confirm the experimental measurements we used HOTPOINT to simulate the experiment and compare results. This study will provide much needed insight to the complex occurrences that aluminum parts undergo during heat treatment.
ERIC Educational Resources Information Center
Choi, Jeong-Sil; Kim, Ji-Soo
2017-01-01
Background: We explored the relationship between body mass index-for-age percentile, body image distortion, and unnecessary weight loss efforts in Korean adolescent girls who are underweight and normal weight and examined the mediating effect of body image distortion on weight loss efforts. Methods: This study used data from the 2013 Korea Youth…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Xiaoli; Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096; Lu, Haiqiang
2015-08-15
Highlights: • Sodalite/NaTaO{sub 3} composite is prepared by a one-pot hydrothermal synthesis. • Enhanced photodegradation is achieved due to the heterogeneous doping effect. • Structure distortion is found for NaTaO{sub 3} after removing sodalite by acid washing. - Abstract: Sodalite/NaTaO{sub 3} composite was prepared by a one-pot hydrothermal synthesis method. Sodalite and NaTaO{sub 3} grow interpenetrated, and the resulting composites have similar morphology as the pure sodalite. The sodalite/NaTaO{sub 3} composite has a lower band gap of 3.35 eV due to the heterogeneous doping effect, and exhibits an enhanced photodegradation of methyl orange under UV irradiation as compared to themore » pure NaTaO{sub 3}. A slight structure distortion is found for NaTaO{sub 3} after removing sodalite by acid washing the sodalite/NaTaO{sub 3} composite, and such result further confirms the co-growth of the two crystals. This one-pot hydrothermal method opens up new avenues for the preparation of photocatalytic composites.« less
Black, John H
2006-01-01
The simplest elements, hydrogen and helium, offer a remarkably rich chemistry, which has controlled crucial features of the early evolution of the universe. Theoretical models of the origin of structure (stars, galaxies, clusters of galaxies, etc.) now incorporate this chemistry in some detail. In addition to the origin of structure, cosmologists are concerned with observational tests of competing world models. Primordial chemistry may give rise to some of the earliest departures from thermodynamic equilibrium in the universe. These effects may be observable as broad-band spectroscopic distortions of the cosmic background radiation, which otherwise exhibits a nearly perfect blackbody spectrum. The chemical history of the expanding universe is followed through a detailed calculation of the evolution of the abundances of H, H+, H-, H2, H2+, H3+, and other minor species. It is shown that continuous absorption by the small concentration of H- can produce a distortion in the cosmic background spectrum with a maximum at a frequency near nu/c = 9 cm-1 (wavelength 1.1 mm). The predicted effect lies only a factor of 5 below current limits. Its detection would provide an important test of our understanding of the recombination epoch of the universe.
Theoretical investigations of the local distortion and spectral properties for VO2+ in SiO2 Glass
NASA Astrophysics Data System (ADS)
Li, Mu-Neng; Zhang, Zhi-Hong; Wu, Shao-Yi
2017-11-01
The local distortions and the spin Hamiltonian parameters g factors g∥, g⊥ and the hyperfine structure constants A∥ and A⊥ for isolated vanadyl ions VO2+ doped in SiO2 glass at 700°C are theoretically investigated from the perturbation formulas of these parameters for a 3d1 ion in tetragonally compressed octahedra. In these formulas, the relationships between local structure of VO2+ ions center and the tetragonal crystal field parameters are established. As a result, the distortion of the ligand octahedron is attributed to the strong axial crystal-fields associated with the short V4+-O2- bond due to the strong V=O bonding in the silica matrix. The theoretical spin Hamiltonian parameters obtained in this work show reasonable agreement with the experimental data.
Introducing causality violation for improved DPOAE component unmixing
NASA Astrophysics Data System (ADS)
Moleti, Arturo; Sisto, Renata; Shera, Christopher A.
2018-05-01
The DPOAE response consists of the linear superposition of two components, a nonlinear distortion component generated in the overlap region, and a reflection component generated by roughness in the DP resonant region. Due to approximate scaling symmetry, the DPOAE distortion component has approximately constant phase. As the reflection component may be considered as a SFOAE generated by the forward DP traveling wave, it has rapidly rotating phase, relative to that of its source, which is also equal to the phase of the DPOAE distortion component. This different phase behavior permits effective separation of the DPOAE components (unmixing), using time-domain or time-frequency domain filtering. Departures from scaling symmetry imply fluctuations around zero delay of the distortion component, which may seriously jeopardize the accuracy of these filtering techniques. The differential phase-gradient delay of the reflection component obeys causality requirements, i.e., the delay is positive only, and the fine-structure oscillations of amplitude and phase are correlated to each other, as happens for TEOAEs and SFOAEs relative to their stimulus phase. Performing the inverse Fourier (or wavelet) transform of a modified DPOAE complex spectrum, in which a constant phase function is substituted for the measured one, the time (or time-frequency) distribution shows a peak at (exactly) zero delay and long-latency specular symmetric components, with a modified (positive and negative) delay, which is that relative to that of the distortion component in the original response. Component separation, applied to this symmetrized distribution, becomes insensitive to systematic errors associated with violation of the scaling symmetry in specific frequency ranges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagatani, Hiraku; Suzuki, Issei; Kita, Masao
2015-02-15
The structure of the wurtzite-derived β-AgGaO{sub 2} was refined by Rietveld analysis of high-resolution powder diffraction data obtained using synchrotron X-ray radiation. The space group of the crystal is Pna2{sub 1} with lattice parameters of a{sub 0}=5.56175 Å, b{sub 0}=7.14749 Å, and c{sub 0}=5.46875 Å. The deviation of O–Ag–O and M–O–M bond angles from the regular tetrahedral angle of 109.5° was very large at ∼8° and ∼11°, respectively. The electronic structure of β-AgGaO{sub 2} is discussed based on its structure, and the indirect band gap of β-AgGaO{sub 2} was related to significant tetrahedral distortion. Although β-AgGaO{sub 2} decomposes into metallicmore » silver and Ga{sub 2}O{sub 3} at a high temperature in any atmosphere, β-AgGaO{sub 2} is stable up to 690 °C under an O{sub 2} atmosphere. No direct transformation from the wurtzite-derived phase to a delafossite phase occurs in β-AgGaO{sub 2}. - Graphical abstract: Crystal structure of β-AgGaO{sub 2} was refined by Rietveld analysis. AgO{sub 4} and O(Ag,Ga){sub 4} tetrahedra are significantly distorted from ideal tetrahedron. - Highlights: • Orthorhombic β-AgGaO{sub 2} with a wurtzite-derived β-NaFeO{sub 2} structure was synthesized. • Its structure was refined by Rietveld analysis of high-resolution XRD data. • Silver and oxygen tetrahedra are significantly distorted from an ideal tetrahedron. • The extent of this tetrahedral distortion is related to the band gap nature. • β-AgGaO{sub 2} is a metastable phase but is stable up to 690 °C in an O{sub 2} atmosphere.« less
The Assessment of Distortion in Neurosurgical Image Overlay Projection.
Vakharia, Nilesh N; Paraskevopoulos, Dimitris; Lang, Jozsef; Vakharia, Vejay N
2016-02-01
Numerous studies have demonstrated the superiority of neuronavigation during neurosurgical procedures compared to non-neuronavigation-based procedures. Limitations to neuronavigation systems include the need for the surgeons to avert their gaze from the surgical field and the cost of the systems, especially for hospitals in developing countries. Overlay projection of imaging directly onto the patient allows localization of intracranial structures. A previous study using overlay projection demonstrated the accuracy of image coregistration for a lesion in the temporal region but did not assess image distortion when projecting onto other anatomical locations. Our aim is to quantify this distortion and establish which regions of the skull would be most suitable for overlay projection. Using the difference in size of a square grid when projected onto an anatomically accurate model skull and a flat surface, from the same distance, we were able to calculate the degree of image distortion when projecting onto the skull from the anterior, posterior, superior, and lateral aspects. Measuring the size of a square when projected onto a flat surface from different distances allowed us to model change in lesion size when projecting a deep structure onto the skull surface. Using 2 mm as the upper limit for distortion, our results show that images can be accurately projected onto the majority (81.4%) of the surface of the skull. Our results support the use of image overlay projection in regions with ≤2 mm distortion to assist with localization of intracranial lesions at a fraction of the cost of existing methods. © The Author(s) 2015.
Investigation on centrifugal impeller in an axial-radial combined compressor with inlet distortion
NASA Astrophysics Data System (ADS)
Li, Du; Yang, Ce; Zhao, Ben; Zhou, Mi; Qi, Mingxu; Zhang, Jizhong
2011-12-01
Assembling an axial rotor and a stator at centrifugal compressor upstream to build an axial-radial combined compressor could achieve high pressure ratio and efficiency by appropriate size augment. Then upstream potential flow and wake effect appear at centrifugal impeller inlet. In this paper, the axial-radial compressor is unsteadily simulated by three-dimensional Reynolds averaged Navier-Stokes equations with uniform and circumferential distorted total pressure inlet condition to investigate upstream effect on radial rotor. The results show that span-wise nonuniform total pressure distribution is generated and radial and circumferential combined distortion is formed at centrifugal rotor inlet. The upstream stator wake deflects to rotor rotation direction and decreases with blade span increases. Circumferential distortion causes different separated flow formations at different pitch positions. The tip leakage vortex is suppressed in centrifugal blade passages. Under distorted inlet condition, flow direction of centrifugal impeller leading edge upstream varies evidently near hub and shroud but varies slightly at mid-span. In addition, compressor stage inlet distortion produces remarkable effect on blade loading of centrifugal blade both along chordwise and pitchwise.
Effects of installation caused flow distortion on noise from a fan designed for turbofan engines
NASA Technical Reports Server (NTRS)
Povinelli, F. P.; Dittmar, J. H.; Woodward, R. P.
1972-01-01
Far-field noise measurements were taken for three different installations of essentially the same fan. The installation with the most uniform inlet flow resulted in fan-blade-passage tone sound pressure levels more than 10 dB lower than the installation with more nonuniform inflow. Perceived noise levels were computed for the various installations and compared. Some measurements of inlet flow distortion were made and used in a blade-passage noise generation theory to predict the effects of distortion on noise. Good agreement was obtained between the prediction and the measured effect. Possible origins of the distortion were identified by observation of tuft action in the vicinity of the inlet.
Reactive Orthotropic Lattice Diffuser for Noise Reduction
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R. (Inventor)
2016-01-01
An orthotropic lattice structure interconnects porous surfaces of the flap with internal lattice-structured perforations to equalize the steady pressure field on the flap surfaces adjacent to the end and to reduce the amplitude of the fluctuations in the flow field near the flap end. The global communication that exists within all of the perforations provides the mechanism to lessen the pressure gradients experienced by the end portion of the flap. In addition to having diffusive effects (diffusing the incoming flow), the three-dimensional orthogonal lattice structure is also reactive (acoustic wave phase distortion) due to the interconnection of the perforations.
Correction of amplitude-phase distortion for polarimetric active radar calibrator
NASA Astrophysics Data System (ADS)
Lin, Jianzhi; Li, Weixing; Zhang, Yue; Chen, Zengping
2015-01-01
The polarimetric active radar calibrator (PARC) is extensively used as an external test target for system distortion compensation and polarimetric calibration for the high-resolution polarimetric radar. However, the signal undergoes distortion in the PARC, affecting the effectiveness of the compensation and the calibration. The system distortion compensation resulting from the distortion of the amplitude and phase in the PARC was analyzed based on the "method of paired echoes." Then the correction method was proposed, which separated the ideal signals from the distorted signals. Experiments were carried on real radar data, and the experimental results were in good agreement with the theoretical analysis. After the correction, the PARC can be better used as an external test target for the system distortion compensation.
Feasibility Study of Graphite Epoxy Antenna for a Microwave Limb Sounder Radiometer (MLSR)
NASA Technical Reports Server (NTRS)
1979-01-01
Results are presented of a feasibility study to design graphite epoxy antenna reflectors for a jet propulsion laboratory microwave limb sounder instrument (MLSR). Two general configurations of the offset elliptic parabolic reflectors are presented that will meet the requirements on geometry and reflector accuracy. The designs consist of sandwich construction for the primary reflectors, secondary reflector support structure and cross-tie members between reflector pairs. Graphite epoxy materials of 3 and 6 plies are used in the facesheets of the sandwich. An aluminum honeycomb is used for the core. A built-in adjustment system is proposed to reduce surface distortions during assembly. The manufacturing and environmental effects are expected to result in surface distortions less than .0015 inch and pointing errors less than .002 degree.
Rapid distortion theory and the 'problems' of turbulence
NASA Astrophysics Data System (ADS)
Hunt, J. C. R.; Carruthers, D. J.
1990-03-01
This paper describes some developments in the techniques of the rapid distortion theory (RDT) and in the general understanding of how it can be used. It is noted in particular that the theory provides a rational basis for analyzing rapidly changing turbulent flows (RCT), and a heuristic method for estimating certain features of slowly changing turbulent flows (SCT). Recent developments of the RDT are reviewed, including criteria for its validity and new solutions allowing for the effects of inhomogeneities and boundaries. The problems associated with analyzing different kinds of turbulent flow and different methods of solution are classified and discussed with reference to how the turbulent structure in a flow domain depends on the scale and geometry of the domain's boundary, and on the information provided in the boundary conditions.
Comparison of methods for quantitative evaluation of endoscopic distortion
NASA Astrophysics Data System (ADS)
Wang, Quanzeng; Castro, Kurt; Desai, Viraj N.; Cheng, Wei-Chung; Pfefer, Joshua
2015-03-01
Endoscopy is a well-established paradigm in medical imaging, and emerging endoscopic technologies such as high resolution, capsule and disposable endoscopes promise significant improvements in effectiveness, as well as patient safety and acceptance of endoscopy. However, the field lacks practical standardized test methods to evaluate key optical performance characteristics (OPCs), in particular the geometric distortion caused by fisheye lens effects in clinical endoscopic systems. As a result, it has been difficult to evaluate an endoscope's image quality or assess its changes over time. The goal of this work was to identify optimal techniques for objective, quantitative characterization of distortion that are effective and not burdensome. Specifically, distortion measurements from a commercially available distortion evaluation/correction software package were compared with a custom algorithm based on a local magnification (ML) approach. Measurements were performed using a clinical gastroscope to image square grid targets. Recorded images were analyzed with the ML approach and the commercial software where the results were used to obtain corrected images. Corrected images based on the ML approach and the software were compared. The study showed that the ML method could assess distortion patterns more accurately than the commercial software. Overall, the development of standardized test methods for characterizing distortion and other OPCs will facilitate development, clinical translation, manufacturing quality and assurance of performance during clinical use of endoscopic technologies.
NASA Astrophysics Data System (ADS)
Sasaki, Yutaka; Meju, Max A.
2006-05-01
Accurate interpretation of magnetotelluric (MT) data in the presence of static shift arising from near-surface inhomogeneities is an unresolved problem in three-dimensional (3-D) inversion. While it is well known in 1-D and 2-D studies that static shift can lead to erroneous interpretation, how static shift can influence the result of 3-D inversion is not fully understood and is relevant to improved subsurface analysis. Using the synthetic data generated from 3-D models with randomly distributed heterogeneous overburden and elongate homogeneous overburden that are consistent with geological observations, this paper examines the effects of near-surface inhomogeneity on the accuracy of 3-D inversion models. It is found that small-scale and shallow depth structures are severely distorted while the large-scale structure is marginally distorted in 3-D inversion not accounting for static shift; thus the erroneous near-surface structure does degrade the reconstruction of smaller-scale structure at any depth. However, 3-D joint inversion for resistivity and static shift significantly reduces the artifacts caused by static shifts and improves the overall resolution, irrespective of whether a zero-sum or Gaussian distribution of static shifts is assumed. The 3-D joint inversion approach works equally well for situations where the shallow bodies are of small size or long enough to allow some induction such that the effects of near-surface inhomogeneity are manifested as a frequency-dependent shift rather than a constant shift.
Circumferential distortion modeling of the TF30-P-3 compression system
NASA Technical Reports Server (NTRS)
Mazzawy, R. S.; Banks, G. A.
1977-01-01
Circumferential inlet pressure and temperature distortion testing of the TF30 P-3 turbofan engine was conducted. The compressor system at the test conditions run was modelled according to a multiple segment parallel compressor model. Aspects of engine operation and distortion configuration modelled include the effects of compressor bleeds, relative pressure-temperature distortion alignment and circumferential distortion extent. Model predictions for limiting distortion amplitudes and flow distributions within the compression system were compared with test results in order to evaluate predicted trends. Relatively good agreement was obtained. The model also identified the low pressure compressor as the stall-initiating component, which was in agreement with the data.
Distorted Risk Measures with Application to Military Capability Shortfalls
2005-12-15
effects of different distortions and to make basic recommendations regarding the appropriateness of certain distortion functions and parameters using...and increased limits ratemaking by proportional hazards transforms. Insurance: Mathematics and Economics, 17: 43-54. [9] Wang, S. (1996a). Premium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashin, Alexander A., E-mail: alexander-rashin@hotmail.com; Iowa State University, 112 Office and Lab Bldg, Ames, IA 50011-3020; Domagalski, Marcin J.
Conformational differences between myoglobin structures are studied. Most structural differences in whale myoglobin beyond the uncertainty threshold can be correlated with a few specific structural factors. There are always exceptions and a search for additional factors is needed. The results might have serious implications for biological insights from conformational differences. Validation of general ideas about the origins of conformational differences in proteins is critical in order to arrive at meaningful functional insights. Here, principal component analysis (PCA) and distance difference matrices are used to validate some such ideas about the conformational differences between 291 myoglobin structures from sperm whale, horsemore » and pig. Almost all of the horse and pig structures form compact PCA clusters with only minor coordinate differences and outliers that are easily explained. The 222 whale structures form a few dense clusters with multiple outliers. A few whale outliers with a prominent distortion of the GH loop are very similar to the cluster of horse structures, which all have a similar GH-loop distortion apparently owing to intermolecular crystal lattice hydrogen bonds to the GH loop from residues near the distal histidine His64. The variations of the GH-loop coordinates in the whale structures are likely to be owing to the observed alternative intermolecular crystal lattice bond, with the change to the GH loop distorting bonds correlated with the binding of specific ‘unusual’ ligands. Such an alternative intermolecular bond is not observed in horse myoglobins, obliterating any correlation with the ligands. Intermolecular bonds do not usually cause significant coordinate differences and cannot be validated as their universal cause. Most of the native-like whale myoglobin structure outliers can be correlated with a few specific factors. However, these factors do not always lead to coordinate differences beyond the previously determined uncertainty thresholds. The binding of unusual ligands by myoglobin, leading to crystal-induced distortions, suggests that some of the conformational differences between the apo and holo structures might not be ‘functionally important’ but rather artifacts caused by the binding of ‘unusual’ substrate analogs. The causes of P6 symmetry in myoglobin crystals and the relationship between crystal and solution structures are also discussed.« less
The effect of moisture on the dynamic thermomechanical properties of a graphite/epoxy composite
NASA Technical Reports Server (NTRS)
Sykes, G. F.; Burks, H. D.; Nelson, J. B.
1977-01-01
A study has been made of the effect of moisture absorption on the dynamic thermomechanical properties of a graphite/epoxy composite recently considered for building primary aircraft structures. Torsional braid analysis (TBA) and thermomechanical analysis (TMA) techniques were used to measure changes in the glass transition temperature (Tg) and the initial softening temperature (heat distortion temperature, HDT) of T-300/5209 graphite/epoxy composites exposed to room temperature water soak.
NASA Astrophysics Data System (ADS)
Mazdouri, Behnam; Mohammad Hassan Javadzadeh, S.
2017-09-01
Superconducting materials are intrinsically nonlinear, because of nonlinear Meissner effect (NLME). Considering nonlinear behaviors, such as harmonic generation and intermodulation distortion (IMD) in superconducting structures, are very important. In this paper, we proposed distributed nonlinear circuit model for superconducting split ring resonators (SSRRs). This model can be analyzed by using Harmonic Balance method (HB) as a nonlinear solver. Thereafter, we considered a superconducting metamaterial filter which was based on split ring resonators and we calculated fundamental and third-order IMD signals. There are good agreement between nonlinear results from proposed model and measured ones. Additionally, based on the proposed nonlinear model and by using a novel method, we considered nonlinear effects on main parameters in the superconducting metamaterial structures such as phase constant (β) and attenuation factor (α).
Ferroelectric performances and crystal structures of (Pb, La)(Zr, Ti, Nb)O{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitamura, Naoto; Division of Ecosystem Research, Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510; Mizoguchi, Takuma
2014-02-15
In this study, we focused on Nb and La substituted Pb(Zr, Ti)O{sub 3}: i.e., (Pb, La)(Zr, Ti, Nb)O{sub 3}. As for the samples, dependences of ferroelectric properties on La and Nb compositions were examined. In addition, the crystal structures were analyzed by the Rietveld method, and then a relationship between the metal compositions and the crystal structures were discussed. From P–E hysteresis loop measurements, it was found that the remanant polarization of Pb(Zr, Ti)O{sub 3} was increased by both the La and Nb substitutions although the heavy substitution of La had an undesirable effect. It was also indicated that themore » Curie temperature decreased with increasing La content. The Rietveld analysis using synchrotron X-ray diffraction patterns demonstrated that the structure distortion was relaxed by the La and Nb substitutions. Such a change in the crystals was well consistent with the harmful effects on the Curie temperature and the remanent polarization by the heavy La substitution. - Graphical abstract: Rietveld refinement pattern of 2 mol% PbSiO{sub 3}-added Pb{sub 0.95}La{sub 0.05}Zr{sub 0.50}Ti{sub 0.45}Nb{sub 0.05}O{sub 3} (synchrotron X-ray diffraction). Display Omitted - Highlights: • (Pb,La)(Zr,Ti,Nb)O{sub 3} were successfully synthesized. • Remanant polarization of Pb(Zr,Ti)O{sub 3} was improved by substitutions of La and Nb. • Crystal structures of (Pb,La)(Zr,Ti,Nb)O{sub 3} were refined and the distortions were estimated.« less
Grids in topographic maps reduce distortions in the recall of learned object locations.
Edler, Dennis; Bestgen, Anne-Kathrin; Kuchinke, Lars; Dickmann, Frank
2014-01-01
To date, it has been shown that cognitive map representations based on cartographic visualisations are systematically distorted. The grid is a traditional element of map graphics that has rarely been considered in research on perception-based spatial distortions. Grids do not only support the map reader in finding coordinates or locations of objects, they also provide a systematic structure for clustering visual map information ("spatial chunks"). The aim of this study was to examine whether different cartographic kinds of grids reduce spatial distortions and improve recall memory for object locations. Recall performance was measured as both the percentage of correctly recalled objects (hit rate) and the mean distance errors of correctly recalled objects (spatial accuracy). Different kinds of grids (continuous lines, dashed lines, crosses) were applied to topographic maps. These maps were also varied in their type of characteristic areas (LANDSCAPE) and different information layer compositions (DENSITY) to examine the effects of map complexity. The study involving 144 participants shows that all experimental cartographic factors (GRID, LANDSCAPE, DENSITY) improve recall performance and spatial accuracy of learned object locations. Overlaying a topographic map with a grid significantly reduces the mean distance errors of correctly recalled map objects. The paper includes a discussion of a square grid's usefulness concerning object location memory, independent of whether the grid is clearly visible (continuous or dashed lines) or only indicated by crosses.
Optimization of the axial compressor flow passage to reduce the circumferential distortion
NASA Astrophysics Data System (ADS)
Popov, G.; Kolmakova, D.; Shklovets, A.; Ermakov, A.
2015-08-01
This work is motivated by the necessity to reduce the effects of the flow circumferential distortion in the flow passage of the aircraft gas turbine engine (GTE). In previous research, the authors have proposed the approaches to decrease of the flow circumferential distortion arising from the mid-support racks of GTE compressor and having a negative impact on the blade rows, located upstream. In particular, the idea of introducing the circumferentially non-uniform blade pitch and profile stagger angle of guide vanes located in front of the support was contributed in order to redistribute the flow and decrease the dynamic stresses in the rotor wheel of the same stage. During the research presented in this paper, another principal of reduction of the flow circumferential distortion was chosen. Firstly, the variants of upgrading the existing support racks were found. Secondly, the new design of support was offered. Both the first and the second version of the support design variation took into account the availability of technological and structural limitations associated with the location of oil pipes, springs and others elements in the support racks. Investigations of modified design showed that the support with altered racks provides a reduction of dynamic stresses by 20% at resonance with the most dangerous harmonic, and the new design of support can give the decrease of 30%.
Syntheses, Raman spectroscopy and crystal structures of alkali hexafluoridorhenates(IV) revisited
Louis-Jean, James; Salamat, Ashkan; Pham, Chien Thang; Poineau, Frederic
2018-01-01
The A 2[ReF6] (A = K, Rb and Cs) salts are isotypic and crystallize in the trigonal space group type P m1, adopting the K2[GeF6] structure type. Common to all A 2[ReF6] structures are slightly distorted octahedral [ReF6]2− anions with an average Re—F bond length of 1.951 (8) Å. In those salts, symmetry lowering on the local [ReF6]2− anions from Oh (free anion) to D 3d (solid-state structure) occur. The distortions of the [ReF6]2− anions, as observed in their Raman spectra, are correlated to the size of the counter-cations.
Syntheses, Raman spectroscopy and crystal structures of alkali hexafluoridorhenates(IV) revisited
Louis-Jean, James; Mariappan Balasekaran, Samundeeswari; Smith, Dean; ...
2018-04-06
The A 2[ReF 6] (A = K, Rb and Cs) salts are isotypic and crystallize in the trigonal space group type Pmore » $$\\bar{3}$$m1, adopting the K 2[GeF 6] structure type. Common to all A 2[ReF 6] structures are slightly distorted octahedral [ReF 6] 2- anions with an average Re—F bond length of 1.951 (8) Å. In these salts, symmetry lowering on the local [ReF 6] 2- anions from O h (free anion) to D 3d (solid-state structure) occur. The distortions of the [ReF 6] 2- anions, as observed in their Raman spectra, are correlated to the size of the counter-cations.« less
New selection effect in statistical investigations of supernova remnants
NASA Astrophysics Data System (ADS)
Allakhverdiev, A. O.; Guseinov, O. Kh.; Kasumov, F. K.
1986-01-01
The influence of H II regions on the parameters of supernova remnants (SNR) is investigated. It has been shown that the projection of such regions on the SNRs leads to: a) local changes of morphological structure of young shell-type SNRs and b) considerable distortions of integral parameters of evolved shell-type SNRs (with D > 10 pc) and plerions, up to their complete undetectability on the background of classical and gigantic H II regions. A new selection effect, in fact, arises from these factors connected with additional limitations made by the real structure of the interstellar medium on the statistical investigations of SNRs. The influence of this effect on the statistical completeness of objects has been estimated.
Hu, Yi; Loizou, Philipos C
2010-01-01
Pre-processing based noise-reduction algorithms used for cochlear implants (CIs) can sometimes introduce distortions which are carried through the vocoder stages of CI processing. While the background noise may be notably suppressed, the harmonic structure and/or spectral envelope of the signal may be distorted. The present study investigates the potential of preserving the signal's harmonic structure in voiced segments (e.g., vowels) as a means of alleviating the negative effects of pre-processing. The hypothesis tested is that preserving the harmonic structure of the signal is crucial for subsequent vocoder processing. The implications of preserving either the main harmonic components occurring at multiples of F0 or the main harmonics along with adjacent partials are investigated. This is done by first pre-processing noisy speech with a conventional noise-reduction algorithm, regenerating the harmonics, and vocoder processing the stimuli with eight channels of stimulation in steady speech-shaped noise. Results indicated that preserving the main low-frequency harmonics (spanning 1 or 3 kHz) alone was not beneficial. Preserving, however, the harmonic structure of the stimulus, i.e., the main harmonics along with the adjacent partials, was found to be critically important and provided substantial improvements (41 percentage points) in intelligibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gröting, Melanie, E-mail: groeting@mm.tu-darmstadt.de; Albe, Karsten, E-mail: albe@mm.tu-darmstadt.de
2014-05-01
We investigate the possibility of enhancing chemical order in the relaxor ferroelectric Na{sub 1/2}Bi{sub 1/2}TiO{sub 3} upon substitution of Na{sup +} by other monovalent cations M{sup +} using total energy calculations based on density functional theory. All chemically available monovalent cations M{sup +}, which are Li, Na, Ag, K, Tl, Rb and Cs, are considered and an analysis of the structurally relaxed structures in terms of symmetry-adapted distortion modes is given in order to quantify the chemically induced structural distortions. We demonstrate that the replacement of Na{sup +} by other monovalent cations can hardly alter the tendency of chemical ordermore » with respect to Na{sub 1/2}Bi{sub 1/2}TiO{sub 3}. Only Tl{sub 1/2}Bi{sub 1/2}TiO{sub 3} and Ag{sub 1/2}Bi{sub 1/2}TiO{sub 3} show enhanced tendency for chemical ordering. Both heavy metals behave similar to the light alkali metals in terms of structural relaxations and relative stabilities of the ordered configurations. Although a comparison of the Goldschmidt factors of components (M TiO{sub 3}){sup −} reveals for Tl a value above the upper stability limit for perovskites, the additional lone-pair effect of Tl{sup +} stabilizes the ordered structure. - Graphical abstract: Amplitudes of chemically induced distortion modes in different ordered perovskites M{sub 1/2}Bi{sub 1/2}TiO{sub 3} and visualisation of atomic displacements associated with distortion mode X{sup +}{sub 1} in the 001-ordered compounds Li{sub 1/2}Bi{sub 1/2}TiO{sub 3} and Cs{sub 1/2}Bi{sub 1/2}TiO{sub 3}. Due to a substantial size mismatch between bismuth (green) and caesium (dark blue), incorporation of the latter leads to enhanced displacements of oxygen atoms (red) and suppresses displacements of titanium (silver) as compared to lithium (light blue) or other smaller monovalent cations. - Highlights: • Lead-free A-site mixed bismuth titanates M{sub 1/2}Bi{sub 1/2}TiO{sub 3} are studied by first-principles calculations. • Investigation of chemical ordering tendency for M=Li, Na, K, Rb, Cs, Ag, and Tl. • Group theoretical analysis of different ordered structures. • Ag and Tl compounds are the most promising candidates for study of chemical order dependent ferroelectric properties.« less
Expertise and processing distorted structure in chess
Bartlett, James C.; Boggan, Amy L.; Krawczyk, Daniel C.
2013-01-01
A classic finding in research on human expertise and knowledge is that of enhanced memory for stimuli in a domain of expertise as compared to either stimuli outside that domain, or within-domain stimuli that have been degraded or distorted in some way. However, we do not understand how experts process degradation or distortion of stimuli within the expert domain (e.g., a face with the eyes, nose, and mouth in the wrong positions, or a chessboard with pieces placed randomly). Focusing on the domain of chess, we present new fMRI evidence that when experts view such distorted/within-domain stimuli, they engage an active search for structure—a kind of exploratory chunking—that involves a component of a prefrontal-parietal network linked to consciousness, attention and working memory. PMID:24348371
NASA Astrophysics Data System (ADS)
Ranjbar, M.; Ghazi, M. E.; Izadifard, M.
2018-06-01
In this paper we have investigated the annealing temperature effect on the structure, morphology, dielectric and magnetic properties of sol-gel synthesized multiferroic BiFeO3 nanoparticles. X-ray diffraction spectroscopy revealed that all the samples have rhombohedrally distorted perovskite structure and the most pure BFO phase is obtained on the sample annealed at 800 °C. Field emission scanning electron microscopy (FESEM) revealed that increasing annealing temperature would increase the particle size. Decrease in dielectric constant was also observed by increasing annealing temperature. Vibrating sample method (VSM) analysis confirmed that samples annealed at 500-700 °C with particle size below the BFO's spiral spin structure length, have well saturated M-H curve and show ferromagnetic behavior.
Zheng, Wen-Chen; Mei, Yang; Yang, Yu-Guang; Liu, Hong-Gang
2012-11-01
Based on the defect models that the tetragonal Y(2+) (1) center in the irradiated CaF(2): Y crystal is due to Y(2+) at Ca(2+) site associated with a nearest interstitial F(-) ion along C(4) axis and the tetragonal Y(2+) (2) center is Y(2+) at Ca(2+) site where the tetragonal distortion is caused by the static Jahn-Teller effect, the two optical spectral bands and anisotropic g factors for both tetragonal Y(2+) centers are calculated. The calculations are made by using two methods based on the cluster approach, one is the complete diagonalization (of energy matrix) method (CDM) and another is the perturbation theory method (PTM). The calculated results for each Y(2+) center from CDM and PTM coincide and show reasonable agreement with the experimental values. The calculated isotropic g factor for Y(2+) (2) center at higher temperature owing to the dynamical Jahn-Teller effect is also consistent with the observed value. The defect structures (i.e., tetragonal distortion) of the two Y(2+) centers are obtained from the calculation. It appears that both theoretical methods can be applied to explain the optical and EPR data, to study the defect model and to determine the defect structures for d(1) ions in crystals. Copyright © 2012 Elsevier B.V. All rights reserved.
CRADA Final Report: Weld Predictor App
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billings, Jay Jay
Welding is an important manufacturing process used in a broad range of industries and market sectors, including automotive, aerospace, heavy manufacturing, medical, and defense. During welded fabrication, high localized heat input and subsequent rapid cooling result in the creation of residual stresses and distortion. These residual stresses can significantly affect the fatigue resistance, cracking behavior, and load-carrying capacity of welded structures during service. Further, additional fitting and tacking time is often required to fit distorted subassemblies together, resulting in non-value added cost. Using trial-and-error methods to determine which welding parameters, welding sequences, and fixture designs will most effectively reduce distortionmore » is a time-consuming and expensive process. For complex structures with many welds, this approach can take several months. For this reason, efficient and accurate methods of mitigating distortion are in-demand across all industries where welding is used. Analytical and computational methods and commercial software tools have been developed to predict welding-induced residual stresses and distortion. Welding process parameters, fixtures, and tooling can be optimized to reduce the HAZ softening and minimize weld residual stress and distortion, improving performance and reducing design, fabrication and testing costs. However, weld modeling technology tools are currently accessible only to engineers and designers with a background in finite element analysis (FEA) who work with large manufacturers, research institutes, and universities with access to high-performance computing (HPC) resources. Small and medium enterprises (SMEs) in the US do not typically have the human and computational resources needed to adopt and utilize weld modeling technology. To allow an engineer with no background in FEA and SMEs to gain access to this important design tool, EWI and the Ohio Supercomputer Center (OSC) developed the online weld application software tool “WeldPredictor” ( https://eweldpredictor.ewi.org ). About 1400 users have tested this application. This project marked the beginning of development on the next version of WeldPredictor that addresses many outstanding features of the original, including 3D models, allow more material hardening laws, model material phase transformation, and uses open source finite element solvers to quickly solve problems (as opposed to expensive commercial tools).« less
NASA Astrophysics Data System (ADS)
Syahroni, N.; Hartono, A. B. W.; Murtedjo, M.
2018-03-01
In the ship fabrication industry, welding is the most critical stage. If the quality of welding on ship fabrication is not good, then it will affect the strength and overall appearance of the structure. One of the factors that affect the quality of welding is residual stress and distortion. In this research welding simulation is performed on the inner bottom construction of Geomarin IV Ship Survey using shell element and has variation to welding sequence. In this study, welding simulations produced peak temperatures at 2490 K at variation 4. While the lowest peak temperature was produced by variation 2 with a temperature of 2339 K. After welding simulation, it continued simulating residual stresses and distortion. The smallest maximum tensile residual stress found in the inner bottom construction is 375.23 MPa, and the maximum tensile pressure is -20.18 MPa. The residual stress is obtained from variation 3. The distortion occurring in the inner bottom construction for X=720 mm is 4.2 mm and for X=-720 mm, the distortion is 4.92 mm. The distortion is obtained from the variation 3. Near the welding area, distortion value reaches its minimum point. This is because the stiffeners in the form of frames serves as anchoring.
Nketiah, Gabriel; Selnaes, Kirsten M; Sandsmark, Elise; Teruel, Jose R; Krüger-Stokke, Brage; Bertilsson, Helena; Bathen, Tone F; Elschot, Mattijs
2018-05-01
To evaluate the effect of correction for B 0 inhomogeneity-induced geometric distortion in echo-planar diffusion-weighted imaging on quantitative apparent diffusion coefficient (ADC) analysis in multiparametric prostate MRI. Geometric distortion correction was performed in echo-planar diffusion-weighted images (b = 0, 50, 400, 800 s/mm 2 ) of 28 patients, using two b 0 scans with opposing phase-encoding polarities. Histology-matched tumor and healthy tissue volumes of interest delineated on T 2 -weighted images were mapped to the nondistortion-corrected and distortion-corrected data sets by resampling with and without spatial coregistration. The ADC values were calculated on the volume and voxel level. The effect of distortion correction on ADC quantification and tissue classification was evaluated using linear-mixed models and logistic regression, respectively. Without coregistration, the absolute differences in tumor ADC (range: 0.0002-0.189 mm 2 /s×10 -3 (volume level); 0.014-0.493 mm 2 /s×10 -3 (voxel level)) between the nondistortion-corrected and distortion-corrected were significantly associated (P < 0.05) with distortion distance (mean: 1.4 ± 1.3 mm; range: 0.3-5.3 mm). No significant associations were found upon coregistration; however, in patients with high rectal gas residue, distortion correction resulted in improved spatial representation and significantly better classification of healthy versus tumor voxels (P < 0.05). Geometric distortion correction in DWI could improve quantitative ADC analysis in multiparametric prostate MRI. Magn Reson Med 79:2524-2532, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Jeong, Jinsoo
2011-01-01
This paper presents an acoustic noise cancelling technique using an inverse kepstrum system as an innovations-based whitening application for an adaptive finite impulse response (FIR) filter in beamforming structure. The inverse kepstrum method uses an innovations-whitened form from one acoustic path transfer function between a reference microphone sensor and a noise source so that the rear-end reference signal will then be a whitened sequence to a cascaded adaptive FIR filter in the beamforming structure. By using an inverse kepstrum filter as a whitening filter with the use of a delay filter, the cascaded adaptive FIR filter estimates only the numerator of the polynomial part from the ratio of overall combined transfer functions. The test results have shown that the adaptive FIR filter is more effective in beamforming structure than an adaptive noise cancelling (ANC) structure in terms of signal distortion in the desired signal and noise reduction in noise with nonminimum phase components. In addition, the inverse kepstrum method shows almost the same convergence level in estimate of noise statistics with the use of a smaller amount of adaptive FIR filter weights than the kepstrum method, hence it could provide better computational simplicity in processing. Furthermore, the rear-end inverse kepstrum method in beamforming structure has shown less signal distortion in the desired signal than the front-end kepstrum method and the front-end inverse kepstrum method in beamforming structure. PMID:22163987
Recursive optimal pruning with applications to tree structured vector quantizers
NASA Technical Reports Server (NTRS)
Kiang, Shei-Zein; Baker, Richard L.; Sullivan, Gary J.; Chiu, Chung-Yen
1992-01-01
A pruning algorithm of Chou et al. (1989) for designing optimal tree structures identifies only those codebooks which lie on the convex hull of the original codebook's operational distortion rate function. The authors introduce a modified version of the original algorithm, which identifies a large number of codebooks having minimum average distortion, under the constraint that, in each step, only modes having no descendents are removed from the tree. All codebooks generated by the original algorithm are also generated by this algorithm. The new algorithm generates a much larger number of codebooks in the middle- and low-rate regions. The additional codebooks permit operation near the codebook's operational distortion rate function without time sharing by choosing from the increased number of available bit rates. Despite the statistical mismatch which occurs when coding data outside the training sequence, these pruned codebooks retain their performance advantage over full search vector quantizers (VQs) for a large range of rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Yingge; Gu, Meng; Varga, Tamas
2014-08-27
In this paper, we show that compared to other BO6 octahedra in ABO3 structured perovskite oxides, the WO6 octahedra in tungsten trioxide (WO3) can withstand a much larger degree of distortion and tilting to accommodate interfacial strain, which in turn strongly impact the nucleation, structure, and defect formation during the epitaxial growth of WO3 on SrTiO3(001). A meta-stable tetragonal phase can be stabilized by epitaxy and a thickness dependent phase transition (tetragonal to monoclinic) is observed. In contrast to misfit dislocations to accommodate the interfacial stain, the facial WO6 octahedral distortion and tilting give rise to three types of planarmore » defects that affect more than 15 monolayers from the interface. These atomically resolved, unusual interfacial defects may significantly alter the electronic, electrochromic, and mechanical properties of the epitaxial films.« less
Anomalous structural disorder and distortion in metal-to-insulator-transition Ti{sub 2}O{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, In-Hui; Jin, Zhenlan; Park, Chang-In
2016-01-07
Mott proposed that impurity bands in corundum-symmetry Ti{sub 2}O{sub 3} at high temperatures caused a collapse in the bandgap. However, the origin of the impurity bands has not yet been clarified. We examine the local structural properties of metal-to-insulator-transition Ti{sub 2}O{sub 3} using in-situ x-ray absorption fine structure (XAFS) measurements at the Ti K edge in the temperature range from 288 to 739 K. The Ti{sub 2}O{sub 3} powder is synthesized by using a chemical reaction method. X-ray diffraction (XRD) measurements from Ti{sub 2}O{sub 3} with a Rietveld refinement demonstrate a single-phased R-3c symmetry without additional distortion. Extended-XAFS combined with XRDmore » reveals a zigzag patterned Ti position and an anomalous structural disorder in Ti-Ti pairs, accompanied by a bond length expansion of the Ti-Ti pairs along the c-axis for T > 450 K. The local structural distortion and disorder of the Ti atoms would induce impurity levels in the band gap between the Ti 3d a{sub 1g} and e{sub g}{sup π} bands, resulting in a collapse of the band gap for T > 450 K.« less
Dai, Erpeng; Zhang, Zhe; Ma, Xiaodong; Dong, Zijing; Li, Xuesong; Xiong, Yuhui; Yuan, Chun; Guo, Hua
2018-03-23
To study the effects of 2D navigator distortion and noise level on interleaved EPI (iEPI) DWI reconstruction, using either the image- or k-space-based method. The 2D navigator acquisition was adjusted by reducing its echo spacing in the readout direction and undersampling in the phase encoding direction. A POCS-based reconstruction using image-space sampling function (IRIS) algorithm (POCSIRIS) was developed to reduce the impact of navigator distortion. POCSIRIS was then compared with the original IRIS algorithm and a SPIRiT-based k-space algorithm, under different navigator distortion and noise levels. Reducing the navigator distortion can improve the reconstruction of iEPI DWI. The proposed POCSIRIS and SPIRiT-based algorithms are more tolerable to different navigator distortion levels, compared to the original IRIS algorithm. SPIRiT may be hindered by low SNR of the navigator. Multi-shot iEPI DWI reconstruction can be improved by reducing the 2D navigator distortion. Different reconstruction methods show variable sensitivity to navigator distortion or noise levels. Furthermore, the findings can be valuable in applications such as simultaneous multi-slice accelerated iEPI DWI and multi-slab diffusion imaging. © 2018 International Society for Magnetic Resonance in Medicine.
An Accurate Projector Calibration Method Based on Polynomial Distortion Representation
Liu, Miao; Sun, Changku; Huang, Shujun; Zhang, Zonghua
2015-01-01
In structure light measurement systems or 3D printing systems, the errors caused by optical distortion of a digital projector always affect the precision performance and cannot be ignored. Existing methods to calibrate the projection distortion rely on calibration plate and photogrammetry, so the calibration performance is largely affected by the quality of the plate and the imaging system. This paper proposes a new projector calibration approach that makes use of photodiodes to directly detect the light emitted from a digital projector. By analyzing the output sequence of the photoelectric module, the pixel coordinates can be accurately obtained by the curve fitting method. A polynomial distortion representation is employed to reduce the residuals of the traditional distortion representation model. Experimental results and performance evaluation show that the proposed calibration method is able to avoid most of the disadvantages in traditional methods and achieves a higher accuracy. This proposed method is also practically applicable to evaluate the geometric optical performance of other optical projection system. PMID:26492247
Characterizing structural transitions using localized free energy landscape analysis.
Banavali, Nilesh K; Mackerell, Alexander D
2009-01-01
Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic character of these biological processes. Molecular dynamics simulations combined with a variation of the Weighted Histogram Analysis Method for potential of mean force determination are applied to characterize localized structural changes for the test case of cytosine (underlined) base flipping in a GTCAGCGCATGG DNA duplex. Free energy landscapes for backbone torsion and sugar pucker degrees of freedom in the DNA are used to understand their behavior in response to the base flipping perturbation. By simplifying the base flipping structural change into a two-state model, a free energy difference of upto 14 kcal/mol can be attributed to the flipped state relative to the stacked Watson-Crick base paired state. This two-state classification allows precise evaluation of the effect of base flipping on local backbone degrees of freedom. The calculated free energy landscapes of individual backbone and sugar degrees of freedom expectedly show the greatest change in the vicinity of the flipping base itself, but specific delocalized effects can be discerned upto four nucleotide positions away in both 5' and 3' directions. Free energy landscape analysis thus provides a quantitative method to pinpoint the determinants of structural change on the atomic scale and also delineate the extent of propagation of the perturbation along the molecule. In addition to nucleic acids, this methodology is anticipated to be useful for studying conformational changes in all macromolecules, including carbohydrates, lipids, and proteins.
Tidal Distortion and Disruption of Earth-Crossing Asteriods
NASA Technical Reports Server (NTRS)
Love, Stanley G.; Bottke, William, Jr.
1997-01-01
We represent results of numerical simulations that show Earth's tidal forces can both distort and disrupt Earth-crossing asteriods (ECAs) that have weak rubble-pile structures. Building on previous studies, we consider more realistic asteriod shapes and trajectories, test a variety of spin and rates and axis orientations, and employ a dissipation algorithm to more accurately treat collisions between particles.
Iodine Incorporation in Calcite: Insights from Computational and Experimental Study
NASA Astrophysics Data System (ADS)
Feng, X.; Redfern, S. A. T.
2016-12-01
The incorporation of iodine into calcite is important both in the context of radioactive waste disposal (carbonates seem to be the principal host for iodine at the Hnaford site) as well as in paleoproxy methods applied in paleo-oceanography, where iodine content has been proposed as a proxy for fO2. Here, we report on studies of iodine incorporation into calcite carried out by a combination of earlier X-Ray absorption spectroscopy, Raman spectroscopy, X-Ray diffraction and new ab initio DFT calculations (using VASP). Our results show that iodine is principally incorporated into the calcite lattice as IO3, replacing carbon in the carbonate group. The much larger size of iodine, and different outer shell electronic configuration, leads to a distortion of the calcite structure locally. Our DFT results show that the adjacent layers of CO3 groups are significantly distorted, over a length scale of around 0.5 nm, and that this distortion leads to a slight increase in enthalpy associated with the iodine point defect. The relationship to the distorted structure of calcite II is considered, and the role of iodine as an agent of "internal pressure" will be discussed.
Optimized distortion correction technique for echo planar imaging.
Chen , N K; Wyrwicz, A M
2001-03-01
A new phase-shifted EPI pulse sequence is described that encodes EPI phase errors due to all off-resonance factors, including B(o) field inhomogeneity, eddy current effects, and gradient waveform imperfections. Combined with the previously proposed multichannel modulation postprocessing algorithm (Chen and Wyrwicz, MRM 1999;41:1206-1213), the encoded phase error information can be used to effectively remove geometric distortions in subsequent EPI scans. The proposed EPI distortion correction technique has been shown to be effective in removing distortions due to gradient waveform imperfections and phase gradient-induced eddy current effects. In addition, this new method retains advantages of the earlier method, such as simultaneous correction of different off-resonance factors without use of a complicated phase unwrapping procedure. The effectiveness of this technique is illustrated with EPI studies on phantoms and animal subjects. Implementation to different versions of EPI sequences is also described. Magn Reson Med 45:525-528, 2001. Copyright 2001 Wiley-Liss, Inc.
Multiferroic GaN nanofilms grown within Na-4 mica channels
NASA Astrophysics Data System (ADS)
Bhattacharya, Santanu; Datta, A.; Chakravorty, D.
2010-03-01
Gallium nitride nanofilms grown within nanochannels of Na-4 mica structure, exhibit ferromagnetism even at room temperature due to the presence of gallium vacancies at the surfaces of the nanofilms. These nanofilms also show a ferroelectric behavior at room temperature ascribed to a small distortion in the crystal structure of GaN due to its growth within the Na-4 mica nanochannels. A colossal increase in 338% in dielectric constant was observed for an applied magnetic field of 26 kOe. The magnetoelectric effect is ascribed to magnetostriction of magnetic GaN phase.
Bhagat, Shaum P.; Bass, Johnnie K.; White, Stephanie T.; Qaddoumi, Ibrahim; Wilson, Matthew W.; Wu, Jianrong; Rodriguez-Galindo, Carlos
2016-01-01
Objective Carboplatin is a common chemotherapy agent with potential ototoxic side effects that is used to treat a variety of pediatric cancers, including retinoblastoma. Retinoblastoma is a malignant tumor of the retina that is usually diagnosed in young children. Distortion-product otoacoustic emission tests offer an effective method of monitoring for ototoxicity in young children. This study was designed to compare measurements of distortion-product otoacoustic emissions obtained before and after several courses of carboplatin chemotherapy in order to examine if (a) mean distortion-product otoacoustic emission levels were significantly different; and (b) if criterion reductions in distortion-product otoacoustic emission levels were observed in individual children. Methods A prospective repeated measures study. Ten children with a median age of 7.6 months (range, 3–72 months) diagnosed with unilateral or bilateral retinoblastoma were examined. Distortion-product otoacoustic emissions were acquired from both ears of the children with 65/55 dB SPL primary tones (f2= 793–7996 Hz) and a frequency resolution of 3 points/octave. Distortion-product otoacoustic emission levels in dB SPL were measured before chemotherapy treatment (baseline measurement) and after 3–4 courses of chemotherapy (interim measurement). Comparisons were made between baseline and interim distortion-product otoacoustic emission levels (collapsed across ears). Evidence of ototoxicity was based on criterion reductions (≥ 6 dB) in distortion-product otoacoustic emission levels. Results Significant differences between baseline and interim mean distortion-product otoacoustic emission levels were only observed at f2=7996 Hz. Four children exhibited criterion reductions in distortion-product otoacoustic emission levels. Conclusions Mean distortion-product otoacoustic emission levels at most frequencies were not changed following 3–4 courses of carboplatin chemotherapy in children with retinoblastoma. However, on an individual basis, children receiving higher doses of carboplatin exhibited criterion reductions in distortion-product otoacoustic emission level at several frequencies. These findings suggest that higher doses of carboplatin affect outer hair cell function, and distortion-product otoacoustic emission tests can provide useful information when monitoring children at risk of developing carboplatin ototoxicity. PMID:20667604
Giachini, Lisa; Francia, Francesco; Cordone, Lorenzo; Boscherini, Federico; Venturoli, Giovanni
2007-02-15
We report on the structure and dynamics of the Fe ligand cluster of reduced horse heart cytochrome c in solution, in a dried polyvinyl alcohol (PVA) film, and in two trehalose matrices characterized by different contents of residual water. The effect of the solvent/matrix environment was studied at room temperature using Fe K-edge x-ray absorption fine structure (XAFS) spectroscopy. XAFS data were analyzed by combining ab initio simulations and multi-parameter fitting in an attempt to disentangle structural from disorder parameters. Essentially the same structural and disorder parameters account adequately for the XAFS spectra measured in solution, both in the absence and in the presence of glycerol, and in the PVA film, showing that this polymer interacts weakly with the embedded protein. Instead, incorporation in trehalose leads to severe structural changes, more prominent in the more dried matrix, consisting of 1), an increase up to 0.2 A of the distance between Fe and the imidazole N atom of the coordinating histidine residue and 2), an elongation up to 0.16 A of the distance between Fe and the fourth-shell C atoms of the heme pyrrolic units. These structural distortions are accompanied by a substantial decrease of the relative mean-square displacements of the first ligands. In the extensively dried trehalose matrix, extremely low values of the Debye Waller factors are obtained for the pyrrolic and for the imidazole N atoms. This finding is interpreted as reflecting a drastic hindering in the relative motions of the Fe ligand cluster atoms and an impressive decrease in the static disorder of the local Fe structure. It appears, therefore, that the dried trehalose matrix dramatically perturbs the energy landscape of cytochrome c, giving rise, at the level of local structure, to well-resolved structural distortions and restricting the ensemble of accessible conformational substates.
Morishita, Tetsuya
2009-05-21
We report a first-principles study of the structural, electronic, and dynamical properties of high-density amorphous (HDA) silicon, which was found to be formed by pressurizing low-density amorphous (LDA) silicon (a normal amorphous Si) [T. Morishita, Phys. Rev. Lett. 93, 055503 (2004); P. F. McMillan, M. Wilson, D. Daisenberger, and D. Machon, Nature Mater. 4, 680 (2005)]. Striking structural differences between HDA and LDA are revealed. The LDA structure holds a tetrahedral network, while the HDA structure contains a highly distorted tetrahedral network. The fifth neighboring atom in HDA tends to be located at an interstitial position of a distorted tetrahedron composed of the first four neighboring atoms. Consequently, the coordination number of HDA is calculated to be approximately 5 unlike that of LDA. The electronic density of state (EDOS) shows that HDA is metallic, which is consistent with a recent experimental measurement of the electronic resistance of HDA Si. We find from local EDOS that highly distorted tetrahedral configurations enhance the metallic nature of HDA. The vibrational density of state (VDOS) also reflects the structural differences between HDA and LDA. Some of the characteristic vibrational modes of LDA are dematerialized in HDA, indicating the degradation of covalent bonds. The overall profile of the VDOS for HDA is found to be an intermediate between that for LDA and liquid Si under pressure (high-density liquid Si).
NASA Astrophysics Data System (ADS)
Klocke, Fritz; Arntz, Kristian; Klingbeil, Nils; Schulz, Martin
2017-02-01
The wire-based laser metal deposition (LMD-W) is a new technology which enables to produce complex parts made of titanium for the aerospace and automotive industry. For establishing the LMD-W as a new production process it has to be proven that the properties are comparable or superior to conventional produced parts. The mechanical properties were investigated by analysis of microstructure and tensile test. Therefore, specimens were generated using a 4.5 kW diode laser cladding system integrated in a 5-Axis-machining center. The structural mechanical properties are mainly influence by crystal structure and thereby the thermal history of the work piece. Especially the high affinity to oxide, distortion and dual phase microstructure make titanium grade 5 (TiAl6V4) one of the most challenging material for additive manufacturing. By using a proper local multi-nozzle shielding gas concept the negative influence of oxide in the process could be eliminated. The distortion being marginal at a single bead, accumulated to a macroscopic effect on the work piece. The third critical point for additive processing of titanium, the bimodal microstructure, could not be cleared by the laser process alone. All metallurgical probes showed α-martensitic-structure. Therefore, a thermal treatment became a necessary production step in the additive production chain. After the thermal treatment the microstructure as well as the distortion was analyzed and compared with the status before. Although not all technical issues could be solved, the investigation show that LMD-W of titanium grade 5 is a promising alternative to other additive techniques as electronic beam melting or plasma deposition welding.
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.
1988-01-01
The feasibility of electromagnetic compensation for reflector antenna surface distortions is investigated. The performance characteristics of large satellite communication reflector antenna systems degrade as the reflector surface distorts, mainly due to thermal effects from solar radiation. The technique developed can be used to maintain the antenna boresight directivity and sidelobe level independent of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array fed reflector antenna systems can be achieved. MMIC arrays provide independent control of amplitude and phase for each of the many radiating elements in the feed array. By assuming a known surface distortion profile, a simulation study is carried out to examine the antenna performance as a function of feed array size and number of elements. Results indicate that the compensation technique can effectively control boresight directivity and sidelobe level under peak surface distortion in the order of tenth of a wavelength.
Experimental characterization of the effects of pneumatic tubing on unsteady pressure measurements
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Lindsey, William T.; Curry, Robert E.; Gilyard, Glenn B.
1990-01-01
Advances in aircraft control system designs have, with increasing frequency, required that air data be used as flight control feedback. This condition requires that these data be measured with accuracy and high fidelity. Most air data information is provided by pneumatic pressure measuring sensors. Typically unsteady pressure data provided by pneumatic sensing systems are distorted at high frequencies. The distortion is a result of the pressure being transmitted to the pressure sensor through a length of connective tubing. The pressure is distorted by frictional damping and wave reflection. As a result, air data provided all-flush, pneumatically sensed air data systems may not meet the frequency response requirements necessary for flight control augmentation. Both lab and flight test were performed at NASA-Ames to investigate the effects of this high frequency distortion in remotely located pressure measurement systems. Good qualitative agreement between lab and flight data are demonstrated. Results from these tests are used to describe the effects of pneumatic distortion in terms of a simple parametric model.
Analysis of inlet flow distortion and turbulence effects on compressor stability
NASA Technical Reports Server (NTRS)
Melick, H. C., Jr.
1973-01-01
The effect of steady state circumferential total pressure distortion on the loss in compressor stall pressure ratio has been established by analytical techniques. Full scale engine and compressor/fan component test data were used to provide direct evaluation of the analysis. Specifically, since a circumferential total pressure distortion in an inlet system will result in unsteady flow in the coordinate system of the rotor blades, analysis of this type distortion must be performed from an unsteady aerodynamic point of view. By application of the fundamental aerothermodynamic laws to the inlet/compressor system, parameters important in the design of such a system for compatible operation have been identified. A time constant, directly related to the compressor rotor chord, was found to be significant, indicating compressor sensitivity to circumferential distortion is directly dependent on the rotor chord.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Gaozhong; Zhang, Saifeng, E-mail: sfzhang@siom.ac.cn, E-mail: jwang@siom.ac.cn; Cheng, Xin
2014-04-07
Spatial self-phase modulation (SSPM) was observed directly when a focused He-Ne laser beam at 633 nm went through liquid-phase-exfoliated graphene dispersions. The diffraction pattern of SSPM was found to be distorted rapidly right after the incident beam horizontally passing through the dispersions, while no distortion for the vertically incident geometry. We show that the distortion is originated mainly from the non-axis-symmetrical thermal convections of the graphene nanosheets induced by laser heating, and the relative change of nonlinear refractive index can be determined by the ratio of the distortion angle to the half-cone angle. Therefore, the effective nonlinear refractive index of graphenemore » dispersions can be tuned by changing the incident intensity and the temperature of the dispersions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, Seong-eun; Pan, Zhi; Kim, Yeong Hun
Two new quaternary yttrium molybdenum selenium/tellurium oxides, Y{sub 2}MoSe{sub 3}O{sub 12} and Y{sub 2}MoTe{sub 3}O{sub 12} have been prepared by standard solid-state reactions using Y{sub 2}O{sub 3}, MoO{sub 3}, and SeO{sub 2} (or TeO{sub 2}) as reagents. Single-crystal X-ray diffraction was used to determine the crystal structures of the reported materials. Although both of the materials contain second-order Jahn–Teller (SOJT) distortive cations and are stoichiometrically similar, they reveal different structural features: while Y{sub 2}MoSe{sub 3}O{sub 12} shows a three-dimensional framework consisting of YO{sub 8}, MoO{sub 6}, and SeO{sub 3} groups, Y{sub 2}MoTe{sub 3}O{sub 12} exhibits a layered structure composed ofmore » YO{sub 8}, MoO{sub 4}, TeO{sub 3}, and TeO{sub 4} polyhedra. With the Mo{sup 6+} cations in Y{sub 2}MoSe{sub 3}O{sub 12}, a C{sub 3}-type intraoctahedral distortion toward a face is observed, in which the direction of the out-of-center distortion for Mo{sup 6+} is away from the oxide ligand linked to a Se{sup 4+} cation. The Se{sup 4+} and Te{sup 4+} cations in both materials are in asymmetric coordination environment attributed to the lone pairs. Elemental analyses, infrared spectroscopy, thermal analyses, intraoctahedral distortions, and dipole moment calculations for the compounds are also presented. - Graphical abstract: Y{sub 2}MoSe{sub 3}O{sub 12} reveals a three-dimensional framework consisting of YO{sub 8}, MoO{sub 6}, and SeO{sub 3} polyhedra, whereas Y{sub 2}MoTe{sub 3}O{sub 12} exhibits a layered structure composed of YO{sub 8}, MoO{sub 4}, TeO{sub 3}, and TeO{sub 4} groups. - Highlights: • Two new selenite and tellurite (Y{sub 2}MoQ{sub 3}O{sub 12}; Q=Se and Te) are synthesized. • Y{sub 2}MoQ{sub 3}O{sub 12} contain second-order Jahn–Teller distortive cations in asymmetric environments. • The intra-octahedral distortion of the Mo{sup 6+} is influenced by the Se{sup 4+}.« less
2015-01-01
The dimensions and arrangements of aromatic rings (topology) in adducts derived from the reactions of polycyclic aromatic hydrocarbon (PAH) diol epoxide metabolites with DNA influence the distortions and stabilities of double-stranded DNA, and hence their recognition and processing by the human nucleotide excision repair (NER) system. Dibenzo[a,l]pyrene (DB[a,l]P) is a highly tumorigenic six-ring PAH, which contains a nonplanar and aromatic fjord region that is absent in the structurally related bay region five-ring PAH benzo[a]pyrene (B[a]P). The PAH diol epoxide–DNA adducts formed include the stereoisomeric 14S and 14Rtrans-anti-DB[a,l]P-N2-dG and the stereochemically analogous 10S- and 10R-B[a]P-N2-dG (B[a]P-dG) guanine adducts. However, nuclear magnetic resonance (NMR) solution studies of the 14S-DB[a,l]P-N2-dG adduct in DNA have not yet been presented. Here we have investigated the 14S-DB[a,l]P-N2-dG adduct in two different sequence contexts using NMR methods with distance-restrained molecular dynamics simulations. In duplexes with dC opposite the adduct deleted, a well-resolved base-displaced intercalative adduct conformation can be observed. In full duplexes, in contrast to the intercalated 14R stereoisomeric adduct, the bulky DB[a,l]P residue in the 14S adduct is positioned in a greatly widened and distorted minor groove, with significant disruptions and distortions of base pairing at the lesion site and two 5′-side adjacent base pairs. These unique structural features are significantly different from those of the stereochemically analogous but smaller B[a]P-dG adduct. The greater size and different topology of the DB[a,l]P aromatic ring system lead to greater structurally destabilizing DNA distortions that are partially compensated by stabilizing DB[a,l]P-DNA van der Waals interactions, whose combined effects impact the NER response to the adduct. These structural results broaden our understanding of the structure–function relationship in NER. PMID:24617538
NASA Astrophysics Data System (ADS)
Li, Xiao-Dong; Park, Changbom; Sabiu, Cristiano G.; Park, Hyunbae; Cheng, Cheng; Kim, Juhan; Hong, Sungwook E.
2017-08-01
We develop a methodology to use the redshift dependence of the galaxy 2-point correlation function (2pCF) across the line of sight, ξ ({r}\\perp ), as a probe of cosmological parameters. The positions of galaxies in comoving Cartesian space varies under different cosmological parameter choices, inducing a redshift-dependent scaling in the galaxy distribution. This geometrical distortion can be observed as a redshift-dependent rescaling in the measured ξ ({r}\\perp ). We test this methodology using a sample of 1.75 billion mock galaxies at redshifts 0, 0.5, 1, 1.5, and 2, drawn from the Horizon Run 4 N-body simulation. The shape of ξ ({r}\\perp ) can exhibit a significant redshift evolution when the galaxy sample is analyzed under a cosmology differing from the true, simulated one. Other contributions, including the gravitational growth of structure, galaxy bias, and the redshift space distortions, do not produce large redshift evolution in the shape. We show that one can make use of this geometrical distortion to constrain the values of cosmological parameters governing the expansion history of the universe. This method could be applicable to future large-scale structure surveys, especially photometric surveys such as DES and LSST, to derive tight cosmological constraints. This work is a continuation of our previous works as a strategy to constrain cosmological parameters using redshift-invariant physical quantities.
Praveen, P A; Babu, R Ramesh; Ramamurthi, K
2017-02-15
A coordination complex, manganese incorporated benzimidazole, thin films were prepared by chemical bath deposition method. Structural characterization of the deposited films, carried out by Fourier transform infrared spectroscopy, Raman and electron paramagnetic resonance spectral analyses, reveals the distorted tetrahedral environment of the metal ion with bis-benzimidazole ligand. Further the molecular composition of the deposited metal complex was estimated by energy-dispersive X-ray spectroscopy. The prepared thin films were thermally treated to study the effect of annealing temperature on the surface morphology and the results showed that the surface homogeneity of the films increased for thermally treated films up to 150°C. But distortion and voids were observed for the films annealed at 200°C. The Raman analysis reveals the molecular hydrogen bond distortion which leads to the evaporation of the metal complex from the thin film surface with respect to annealing temperature. The linear and nonlinear optical properties of the as prepared and annealed films were studied using ultraviolet-visible transmittance spectroscopy, second harmonic generation and Z-scan analyses. Films annealed at 150°C show a better linear transmittance in the visible region and larger SHG efficiency and third order nonlinear susceptibility when compared with the other samples. Further, the film annealed at 150°C was subjected to optical switching analysis and demonstrated to have an inverted switching behavior. Copyright © 2016 Elsevier B.V. All rights reserved.
Concept Designed and Developed for Distortion- Tolerant, High-Stability Engine Control
NASA Technical Reports Server (NTRS)
1995-01-01
Engine Control Future aircraft turbine engines, both commercial and military, must be able to successfully accommodate expected increased levels of steady-state and dynamic engine-face distortion. Advanced tactical aircraft are likely to use thrust vectoring to enhance their maneuverability. As a result, the engines will see more extreme aircraft angles-of-attack and sideslip levels than are currently encountered with present-day aircraft. Also, the mixed-compression inlets needed for the High Speed Civil Transport will likely encounter disturbances similar to those seen by tactical aircraft, in addition to planar pulse, inlet buzz, and high distortion levels at low flight speed and off-design operation. The current approach of incorporating a sufficient component design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight demonstrate an advanced, high-stability, integrated engine-control system that uses measurement-based, real-time estimates of distortion to enhance engine stability. The resulting distortion-tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been designed and developed, and the software implementing the concept has successfully accommodated time-varying distortion. The NASA Lewis Research Center is currently overseeing the development and validation of the hardware and software necessary to flight test the HISTEC concept. HISTEC is a contracted effort with Pratt & Whitney of West Palm Beach, Florida. The HISTEC approach includes two major systems: A Distortion Estimation System (DES) and Stability Management Control (SMC). DES is an aircraft-mounted, high-speed processor that estimates the amount and type of distortion present and its effect on the engine. It uses high-response pressure measurements at the engine face to calculate indicators of the type and extent of distortion in real time. From these indicators, DES determines the effects of distortion on the propulsion systems and the corresponding engine match point necessary to accommodate it. DES output consists of fan and compressor pressure ratio trim commands that are passed to the SMC. In addition, DES uses maneuver information, consisting of angle-of-attack and sideslip from the flight control, to anticipate high inlet distortion conditions. The SMC, which is contained in the engine-mounted, Improved Digital Electronic Engine Control (IDEEC), includes advanced control laws to directly control the fan and compressor transient operating line (pressure ratio). These advanced control laws, with a multivariable design, have the potential for higher bandwidth and the resulting more precise control of engine match. The ability to measure and assess the distortion effects in real time coupled with a high-response controller improves engine stability at high levels of distortion. The software algorithms implementing DES have been designed, developed, and demonstrated, and integration testing of the DES and SMC software has been completed. The results show that the HISTEC system will be able to sense inlet distortion, determine the effect on engine stability, and accommodate distortion by maintaining an adequate margin for engine surge. The Pratt &Whitney Comprehensive Engine Diagnostic Unit was chosen as the DES processor. An instrumented inlet case for sensing distortion was designed and fabricated. HISTEC is scheduled for flight test on the ACTIVE F-15 aircraft at the NASA Dryden Flight Research Center in Edwards, California, in late 1996.
Lone pair effect, structural distortions, and potential for superconductivity in Tl perovskites.
Schoop, Leslie M; Müchler, Lukas; Felser, Claudia; Cava, R J
2013-05-06
Drawing the analogy to BaBiO3, we investigate via ab initio electronic structure calculations potential new superconductors of the type ATlX3 with A = Rb and Cs and X = F, Cl, and Br, with a particular emphasis on RbTlCl3. On the basis of chemical reasoning, supported by the calculations, we show that Tl-based perovskites have structural and charge instabilities driven by the lone pair effect, similar to the case of BaBiO3, effectively becoming A2Tl(+)Tl(3+)X6. We find that upon hole doping of RbTlCl3, structures without Tl(+) and Tl(3+) charge disproportionation become more stable, although the ideal cubic perovskite, often viewed as the best host for superconductivity, should not be the most stable phase in the system. The known superconductor (Sr,K)BiO3 and hole doped RbTlCl3, predicted to be most stable in the same tetragonal structure, display highly analogous calculated electronic band structures.
Towards standardized assessment of endoscope optical performance: geometric distortion
NASA Astrophysics Data System (ADS)
Wang, Quanzeng; Desai, Viraj N.; Ngo, Ying Z.; Cheng, Wei-Chung; Pfefer, Joshua
2013-12-01
Technological advances in endoscopes, such as capsule, ultrathin and disposable devices, promise significant improvements in safety, clinical effectiveness and patient acceptance. Unfortunately, the industry lacks test methods for preclinical evaluation of key optical performance characteristics (OPCs) of endoscopic devices that are quantitative, objective and well-validated. As a result, it is difficult for researchers and developers to compare image quality and evaluate equivalence to, or improvement upon, prior technologies. While endoscope OPCs include resolution, field of view, and depth of field, among others, our focus in this paper is geometric image distortion. We reviewed specific test methods for distortion and then developed an objective, quantitative test method based on well-defined experimental and data processing steps to evaluate radial distortion in the full field of view of an endoscopic imaging system. Our measurements and analyses showed that a second-degree polynomial equation could well describe the radial distortion curve of a traditional endoscope. The distortion evaluation method was effective for correcting the image and can be used to explain other widely accepted evaluation methods such as picture height distortion. Development of consensus standards based on promising test methods for image quality assessment, such as the method studied here, will facilitate clinical implementation of innovative endoscopic devices.
NASA Astrophysics Data System (ADS)
Dondi, Michele; Ardit, Matteo; Cruciani, Giuseppe
2013-06-01
An original approach has been developed herein to explore the correlations between short- and long-range structural properties of solid solutions. X-ray diffraction (XRD) and electronic absorption spectroscopy (EAS) data were combined on a (Ca,Sr,Ba)2(Mg0.7Co0.3)Si2O7 join to determine average and local distances, respectively. Instead of varying the EAS-active ion concentration along the join, as has commonly been performed in previous studies, the constant replacement of Mg2+ by a minimal fraction of a similar size cation (Co2+) has been used to assess the effects of varying second-nearest neighbor cations (Ca, Sr, Ba) on the local distances of the first shell. A comparison between doped and un-doped series has shown that, although the overall symmetry of the Co-centered T1-site was retained, greater relaxation occurs at the CoO4 tetrahedra which become increasingly large and more distorted than the MgO4 tetrahedra. This is indicated by an increase in both the quadratic elongation (λT1) and the bond angle variance (σ2T1) distortion indices, as the whole structure expands due to an increase in size in the second-nearest neighbors. This behavior highlights the effect of the different electronic configurations of Co2+ (3d7) and Mg2+ (2p6) in spite of their very similar ionic size. Furthermore, although the overall symmetry of the Co-centered T1-site is retained, relatively limited (<10 deg) angular variations in O-Co2+-O occur along the solid solution series and large changes are found in molar absorption coefficients showing that EAS Co2+-bands are highly sensitive to change in the local structure.
NASA Astrophysics Data System (ADS)
Yamamoto, Shoji; Hosokawa, Natsumi; Yokoya, Mayu; Tsumura, Norimichi
2016-12-01
In this paper, we investigated the consistency of visual perception for the change of reflection images in an augmented reality setting. Reflection images with distortion and magnification were generated by changing the capture position of the environment map. Observers evaluated the distortion and magnification in reflection images where the reflected objects were arranged symmetrically or asymmetrically. Our results confirmed that the observers' visual perception was more sensitive to changes in distortion than in magnification in the reflection images. Moreover, the asymmetrical arrangement of reflected objects effectively expands the acceptable range of distortion compared with the symmetrical arrangement.
NASA Astrophysics Data System (ADS)
Ulanov, V. A.; Zhiteitcev, E. R.; Varlamov, A. G.
2007-07-01
By means of EPR method the associative [TiF 4F 4F int] 6-(C 4v) and [NiF 4F 4F int] 7-(C 4v) centers were revealed in the fluorite type SrF 2:Ti and SrF 2:Ni crystals grown by Bridgman method in helium atmosphere containing some amount of a fluorine gas. It was found that at low temperatures the local structures of these associative centers were exposed to a static rhombic distortion. The reasons of such distortions were accounted for by the assumption that the E ⊗ ( b1 + b2) vibronic interaction became effective due to that the ground orbital states of the [TiF 4F 4F int] 6-(C 4v) and [NiF 4F 4F int] 7-(C 4v) centers occurred to be doubly degenerated.
Elastic moduli of the distorted Kagome-lattice ferromagnet Nd3Ru4Al12
NASA Astrophysics Data System (ADS)
Suzuki, Takashi; Mizuno, Takuyou; Takezawa, Kohki; Kamikawa, Shuhei; Andreev, Alexander V.; Gorbunov, Denis I.; Henriques, Margarida S.; Ishii, Isao
2018-05-01
The distorted kagome-lattice compound Nd3Ru4Al12 has the hexagonal structure. This compound is reported as a ferromagnet in which spins are aligned along the c-axis with the Curie temperature TC = 39 K . The nature of localized f-electrons is expected in Nd3Ru4Al12, and magnetic anisotropy can be attributed to a crystal electric field (CEF) effect. We performed ultrasonic measurements on a Nd3Ru4Al12 single-crystalline sample in order to investigate the phase transition at TC and the CEF effect. All longitudinal and transverse elastic moduli increase monotonically with decreasing temperature, and no clear elastic softening due to a quadrupole interaction is detected under the hexagonal CEF. This result is in contrast to an isomorphic compound Dy3Ru4Al12 with a remarkable elastic softening of the transverse modulus C44. At the ferromagnetic phase transition, the moduli show obvious elastic anomalies, suggesting characteristic couplings between a strain and a magnetic order parameter.
Audiovisual Cues and Perceptual Learning of Spectrally Distorted Speech
ERIC Educational Resources Information Center
Pilling, Michael; Thomas, Sharon
2011-01-01
Two experiments investigate the effectiveness of audiovisual (AV) speech cues (cues derived from both seeing and hearing a talker speak) in facilitating perceptual learning of spectrally distorted speech. Speech was distorted through an eight channel noise-vocoder which shifted the spectral envelope of the speech signal to simulate the properties…
Specific features of nonvalent interactions in orthorhombic perovskites
NASA Astrophysics Data System (ADS)
Serezhkin, V. N.; Pushkin, D. V.; Serezhkina, L. B.
2014-07-01
It is established that isostructural orthorhombic perovskites ABO3 (sp. gr. Pnma in different systems, no. 62, Z = 4), depending on the specificity of nonvalent interactions (which determine the combinatorial-topological type of the Voronoi-Dirichlet polyhedra (VDPs) of four basis atoms), are divided into ten different stereotypes. It is shown by the example of 259 perovskites belonging to the DyCrO3 stereotype that VDP characteristics can be used to quantitatively estimate the distortion of BO6 octahedra, including that caused by the Jahn-Teller effect. It is found that one of the causes of the distortion of the coordination polyhedra of atoms in the structure of orthorhombic perovskites is heteroatomic metal-metal interactions, for which the interatomic distances are much shorter than the sum of the Slater radii of A and B atoms.
Effect of dynamics on the elastic softening of vacancies in Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirai, Koun; Ishisada, Jun
2014-02-21
Recently, elastic softening at temperatures below 20 K has been observed in nondoped floating zone silicon. From the experimental analysis, it has been suggested that this softening is caused by an intrinsic vacancy defect through the Jahn-Teller (JT) effect. We have theoretically studied the relations between softening and the vacancies. The ground state of the JT distortion is stiff. However, by considering atomistic dynamical and anharmonic effects, it is found that low-energy excitations exist in the E-mode distortion and that different polarizations of the E-distortion can be easily interchanged. The calculated energy barriers for the reorientation of JT distortions aremore » consistent with other experiments and calculations. This low-lying mode can be the cause of softening in the elastic responses.« less
Menzies, Georgina E.; Reed, Simon H.; Brancale, Andrea; Lewis, Paul D.
2015-01-01
The mutational pattern for the TP53 tumour suppressor gene in lung tumours differs to other cancer types by having a higher frequency of G:C>T:A transversions. The aetiology of this differing mutation pattern is still unknown. Benzo[a]pyrene,diol epoxide (BPDE) is a potent cigarette smoke carcinogen that forms guanine adducts at TP53 CpG mutation hotspot sites including codons 157, 158, 245, 248 and 273. We performed molecular modelling of BPDE-adducted TP53 duplex sequences to determine the degree of local distortion caused by adducts which could influence the ability of nucleotide excision repair. We show that BPDE adducted codon 157 has greater structural distortion than other TP53 G:C>T:A hotspot sites and that sequence context more distal to adjacent bases must influence local distortion. Using TP53 trinucleotide mutation signatures for lung cancer in smokers and non-smokers we further show that codons 157 and 273 have the highest mutation probability in smokers. Combining this information with adduct structural data we predict that G:C>T:A mutations at codon 157 in lung tumours of smokers are predominantly caused by BPDE. Our results provide insight into how different DNA sequence contexts show variability in DNA distortion at mutagen adduct sites that could compromise DNA repair at well characterized cancer related mutation hotspots. PMID:26400171
Computer modeling of fan-exit-splitter spacing effects on F100 response to distortion
NASA Technical Reports Server (NTRS)
Shaw, M.; Murdoch, R. W.
1982-01-01
The distortion response of the F100(3) engine was effected by the fan exit splitter configuration. The sensitivity for a proximate splitter fan is calculated to be slightly greater than a remote splitter configuration with identical airfoils. Predicted response was based upon a multiple segment parallel compressor Model modified to include a bypass ratio representation that effects the performance characteristics of the last rotor and intermediate case struts. The predicted distortion response required an accurate definition of row pre- and post-stall undistorted operation.
Cox, Bryan D.; Muccio, Donald D.; Hamilton, Tracy P.
2013-01-01
Retinoic acids and other vitamin A analogs contain a trimethylcyclohexenyl ring in conjugation with a polyene chain joined at carbon-6 (C6) and carbon-7 (C7). A MP2-SCS/cc-pVDZ// B3LYP/6-31G(d) 2-D potential energy surface was computed for all-trans retinoic acid, which had 6 minima (3 enantiomeric pairs). The global minima were distorted s-gauche enantiomers (6–7 = 53°) with half-chair conformations of the ring. Distorted s-gauche enantiomers (6–7 = 55°) with inverted half-chair ring conformations were 1.7 kJ/mol above the global minima. The s-trans enantiomers (6–7 = 164°) were 11.3 kJ/mol above the global minima. Steric energies were computed by the method of Guo and Karplus to identify key structural elements in retinoic acids which determines their conformation. Small molecule crystal structures in the CCDC database with trimethylcyclohexenyl ring and exocyclic double bonds have ring-chain geometries near to one of the 6 energy minima of retinoic acids, except for retinaldehyde iminium cations. PMID:25798372
Cox, Bryan D; Muccio, Donald D; Hamilton, Tracy P
2013-05-01
Retinoic acids and other vitamin A analogs contain a trimethylcyclohexenyl ring in conjugation with a polyene chain joined at carbon-6 (C6) and carbon-7 (C7). A MP2-SCS/cc-pVDZ// B3LYP/6-31G(d) 2-D potential energy surface was computed for all- trans retinoic acid, which had 6 minima (3 enantiomeric pairs). The global minima were distorted s-gauche enantiomers ( 6-7 = 53°) with half-chair conformations of the ring. Distorted s-gauche enantiomers ( 6-7 = 55°) with inverted half-chair ring conformations were 1.7 kJ/mol above the global minima. The s-trans enantiomers ( 6-7 = 164°) were 11.3 kJ/mol above the global minima. Steric energies were computed by the method of Guo and Karplus to identify key structural elements in retinoic acids which determines their conformation. Small molecule crystal structures in the CCDC database with trimethylcyclohexenyl ring and exocyclic double bonds have ring-chain geometries near to one of the 6 energy minima of retinoic acids, except for retinaldehyde iminium cations.
Shape, zonal winds and gravitational field of Jupiter: a fully self-consistent, multi-layered model
NASA Astrophysics Data System (ADS)
Schubert, Gerald; Kong, Dali; Zhang, Keke
2016-10-01
We construct a three-dimensional, finite-element, fully self-consistent, multi-layered,non-spheroidal model of Jupiter consisting of an inner core, a metallic electrically conducting dynamo region and an outer molecular electrically insulating envelope. We assume that the Jovian zonal winds are on cylinders parallel to the rotation axis but, due to the effect of magnetic braking, are confined within the outer molecular envelope. Two related calculations are carried out. The first provides an accurate description of the shape and internal density profile of Jupiter; the effect of rotational distortion is not treated as a small perturbation on a spherically symmetric state. This calculation determines the density, size and shape of the inner core, the irregular shape of the 1-bar pressure level, and the internal structure of Jupiter; the full effect of rotational distortion, without the influence of the zonal winds, is accounted for. Our multi-layered model is able to produce the known mass, the known equatorial and polar radii, and the known zonal gravitational coefficient J2 of Jupiter within their error bars; it also yields the coefficients J4 and J6 within about 5% accuracy, and the core equatorial radius 0.09RJ containing 3.73 Earth masses.The second calculation determines the variation of the gravitational field caused solely by the effect of the zonal winds on the rotationally distorted non-spheroidal Jupiter. Four different cases, ranging from a deep wind profile to a very shallow profile, are considered and implications for accurate interpretation of the zonal gravitational coefficients expected from the Juno mission are discussed.
Structural and optical properties of Mg doped ZnS quantum dots and biological applications
NASA Astrophysics Data System (ADS)
Ashokkumar, M.; Boopathyraja, A.
2018-01-01
Zn1-xMgxS (x = 0, 0.2 and 0.4) quantum dots (QDs) were prepared by co-precipitation method. The Mg dopant did not modify the cubic blende structure of ZnS QDs. The Mg related secondary phase was not detected even for 40% of Mg doping. The size mismatch between host Zn ion and dopant Mg ion created distortion around the dopant. The creation of distortion centres produced small changes in the lattice parameters and diffraction peak position. All the QDs showed small sulfur deficiency and the deficiency level were increased by Mg doping. Band gap of the QD was decreased due to the dominated quantum confinement effect over compositional effect at initial doping of Mg. But at higher doping the band gap was increased due to compositional effect, since there was no change in average crystallite size. The prepared QDs had three emission bands in the UV and Visible regions corresponding to near band edge emission and defect related emissions. The electron transport reaction chain which forms free radicals was broken by sulfur vacancy trap sites. Therefore, the ZnS QDs had better antioxidant activity and the antioxidant behaviour was enhanced by Mg doping. The enhanced UV absorption and emission of 20% of Mg doped ZnS QDs let to maximize the zone of inhibition against E. Coli bacterial strain.
Effects of compositional defects on small polaron hopping in micas.
Rosso, Kevin M; Ilton, Eugene S
2005-06-22
Hartree-Fock calculations and electron transfer (ET) theory were used to model the effects of compositional defects on ET in the brucite-like octahedral sheet of mica. ET was modeled as an Fe(IIIII) valence interchange reaction across shared octahedral edges of the M2-M2 iron sublattice. The model entails the hopping of localized electrons and small polaron behavior. Hartree-Fock calculations indicate that substitution of F for structural OH bridges increases the reorganization energy lambda, decreases the electronic coupling matrix element V(AB), and thereby substantially decreases the hopping rate. The lambda increase arises from modification of the metal-ligand bond force constants, and the V(AB) decrease arises from reduction of superexchange interaction through anion bridges. Deprotonation of an OH bridge, consistent with a possible mechanism of maintaining charge neutrality during net oxidation, yields a net increase in the ET rate. Although substitution of Al or Mg for Fe in M1 sites distorts the structure of adjacent Fe-occupied M2 sites, the distortion has little net impact on ET rates through these M2 sites. Hence the main effect of Al or Mg substitution for Fe, should it occur in the M2 sublattice, is to block ET pathways. Collectively, these findings pave the way for larger-scale oxidation/reduction models to be constructed for realistic, compositionally diverse micas.
Electronic bidirectional valve circuit prevents crossover distortion and threshold effect
NASA Technical Reports Server (NTRS)
Kernick, A.
1966-01-01
Four-terminal network forms a bidirectional valve which will switch or alternate an ac signal without crossover distortion or threshold effect. In this network, an isolated control signal is sufficient for circuit turn-on.
Feature maps driven no-reference image quality prediction of authentically distorted images
NASA Astrophysics Data System (ADS)
Ghadiyaram, Deepti; Bovik, Alan C.
2015-03-01
Current blind image quality prediction models rely on benchmark databases comprised of singly and synthetically distorted images, thereby learning image features that are only adequate to predict human perceived visual quality on such inauthentic distortions. However, real world images often contain complex mixtures of multiple distortions. Rather than a) discounting the effect of these mixtures of distortions on an image's perceptual quality and considering only the dominant distortion or b) using features that are only proven to be efficient for singly distorted images, we deeply study the natural scene statistics of authentically distorted images, in different color spaces and transform domains. We propose a feature-maps-driven statistical approach which avoids any latent assumptions about the type of distortion(s) contained in an image, and focuses instead on modeling the remarkable consistencies in the scene statistics of real world images in the absence of distortions. We design a deep belief network that takes model-based statistical image features derived from a very large database of authentically distorted images as input and discovers good feature representations by generalizing over different distortion types, mixtures, and severities, which are later used to learn a regressor for quality prediction. We demonstrate the remarkable competence of our features for improving automatic perceptual quality prediction on a benchmark database and on the newly designed LIVE Authentic Image Quality Challenge Database and show that our approach of combining robust statistical features and the deep belief network dramatically outperforms the state-of-the-art.
Irfanoglu, M. Okan; Walker, Lindsay; Sarlls, Joelle; Marenco, Stefano; Pierpaoli, Carlo
2013-01-01
In this work we investigate the effects of echo planar imaging (EPI) distortions on diffusion tensor imaging (DTI) based fiber tractography results. We propose a simple experimental framework that would enable assessing the effects of EPI distortions on the accuracy and reproducibility of fiber tractography from a pilot study on a few subjects. We compare trajectories computed from two diffusion datasets collected on each subject that are identical except for the orientation of phase encode direction, either right–left (RL) or anterior–posterior (AP). We define metrics to assess potential discrepancies between RL and AP trajectories in association, commissural, and projection pathways. Results from measurements on a 3 Tesla clinical scanner indicated that the effects of EPI distortions on computed fiber trajectories are statistically significant and large in magnitude, potentially leading to erroneous inferences about brain connectivity. The correction of EPI distortion using an image-based registration approach showed a significant improvement in tract consistency and accuracy. Although obtained in the context of a DTI experiment, our findings are generally applicable to all EPI-based diffusion MRI tractography investigations, including high angular resolution (HARDI) methods. On the basis of our findings, we recommend adding an EPI distortion correction step to the diffusion MRI processing pipeline if the output is to be used for fiber tractography. PMID:22401760
Structural expansions for the ground state energy of a simple metal
NASA Technical Reports Server (NTRS)
Hammerberg, J.; Ashcroft, N. W.
1973-01-01
A structural expansion for the static ground state energy of a simple metal is derived. An approach based on single particle band structure which treats the electron gas as a non-linear dielectric is presented, along with a more general many particle analysis using finite temperature perturbation theory. The two methods are compared, and it is shown in detail how band-structure effects, Fermi surface distortions, and chemical potential shifts affect the total energy. These are of special interest in corrections to the total energy beyond third order in the electron ion interaction, and hence to systems where differences in energies for various crystal structures are exceptionally small. Preliminary calculations using these methods for the zero temperature thermodynamic functions of atomic hydrogen are reported.
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Levy, Ralph
1991-01-01
A reduced Navier-Stokes solution technique was successfully used to design vortex generator installations for the purpose of minimizing engine face distortion by restructuring the development of secondary flow that is induced in typical 3-D curved inlet ducts. The results indicate that there exists an optimum axial location for this installation of corotating vortex generators, and within this configuration, there exists a maximum spacing between generator blades above which the engine face distortion increases rapidly. Installed vortex generator performance, as measured by engine face circumferential distortion descriptors, is sensitive to Reynolds number and thereby the generator scale, i.e., the ratio of generator blade height to local boundary layer thickness. Installations of corotating vortex generators work well in terms of minimizing engine face distortion within a limited range of generator scales. Hence, the design of vortex generator installations is a point design, and all other conditions are off design. In general, the loss levels associated with a properly designed vortex generator installation are very small; thus, they represent a very good method to manage engine face distortion. This study also showed that the vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence over engine face distortion, over and above the influence of the initial arrangement of generators.
Design Rules and Scaling for Solar Sails
NASA Technical Reports Server (NTRS)
Zeiders, Glenn W.
2005-01-01
Useful design rules and simple scaling models have been developed for solar sails. Chief among the conclusions are: 1. Sail distortions contribute to the thrust and moments primarily though the mean squared value of their derivatives (slopes), and the sail behaves like a flat sheet if the value is small. The RMS slope is therefore an important figure of merit, and sail distortion effects on the spacecraft can generally be disregarded if the RMS slope is less than about 10% or so. 2. The characteristic slope of the sail distortion varies inversely with the tension in the sail, and it is the tension that produces the principle loading on the support booms. The tension is not arbitrary, but rather is the value needed to maintain the allowable RMS slope. That corresponds to a halyard force about equal to three times the normal force on the supported sail area. 3. Both the AEC/SRS and L Garde concepts appear to be structurally capable of supporting sail sizes up to a kilometer or more with 1AU solar flux, but select transverse dimensions must be changed to do so. Operational issues such as fabrication, handling, storage and deployment will be the limiting factors.
NASA Astrophysics Data System (ADS)
Krasnitsky, Y. A.; Popov, A. E.; Kalnacs, A.
2015-08-01
Distortions of the structure of a uniform electric field when a dielectric body with a toroidal shape is placed in it are considered in the quasi-static approximation. The rate of distortion is proposed to estimate through the effective permittivity of toroid determined by solving the corresponding boundary value problem. Some numerical estimates obtained using specially developed software in the language of Matlab are given. Darbā apskatīts kvazi-statisks tuvinājums viendabīga elektriskā lauka izkropļojumiem gadījumos, kad tajā tiek ievietots dielektrisks toroīda formas ķermenis. Izkropļojumu apmēru tiek piedāvāts novērtēt ar toroīda efektīvo caurlaidību, kas tiek noteikta, atrisinot atbilstošo robežvērtību uzdevumu. Tiek doti skaitliski novērtējumi, kas iegūti, lietojot speciāli valodā Matlab izstrādātu programmatūru.
NASA Astrophysics Data System (ADS)
Aczel, A. A.; Bugaris, D. E.; Li, L.; Yan, J.-Q.; de La Cruz, C.; Zur Loye, H.-C.; Nagler, S. E.
2013-03-01
The usual classical behavior of S = 3/2, B-site ordered double perovskites results in simple, commensurate magnetic ground states. In contrast, heat capacity and neutron powder diffraction measurements for the S = 3/2 systems La2NaB'O6 (B' = Ru, Os) reveal an incommensurate magnetic ground state for La2NaRuO6 and a drastically suppressed ordered moment for La2NaOsO6. This behavior is attributed to the large monoclinic structural distortions of these double perovskites. The distortions have the effect of weakening the nearest neighbor superexchange interactions, presumably to an energy scale that is comparable to the next nearest neighbor superexchange. The exotic ground states in these materials can then arise from a competition between these two types of antiferromagnetic interactions, providing a novel mechanism for achieving frustration in the double perovskite family. Work at ORNL is supported by the Division of Scientific User Facilities and the Materials Science and Engineering Division, DOE Basic Energy Sciences. Work at the University of South Carolina is supported by the Heterogeneous Functional Materials Research Center, funded by DOE under award number de-sc0001061.
3-D Inversion of the MT EarthScope Data, Collected Over the East Central United States
NASA Astrophysics Data System (ADS)
Gribenko, A. V.; Zhdanov, M. S.
2017-12-01
The magnetotelluric (MT) data collected as a part of the EarthScope project provided a unique opportunity to study the conductivity structure of the deep interior of the North American continent. Besides the scientific value of the recovered subsurface models, the data also allowed inversion practitioners to test the robustness of their algorithms applied to regional long-period data. In this paper, we present the results of MT inversion of a subset of the second footprint of the MT data collection covering the East Central United States. Our inversion algorithm implements simultaneous inversion of the full MT impedance data both for the 3-D conductivity distribution and for the distortion matrix. The distortion matrix provides the means to account for the effect of the near-surface geoelectrical inhomogeneities on the MT data. The long-period data do not have the resolution for the small near-surface conductivity anomalies, which makes an application of the distortion matrix especially appropriate. The determined conductivity model of the region agrees well with the known geologic and tectonic features of the East Central United States. The conductivity anomalies recovered by our inversion indicate a possible presence of the hot spot track in the area.
Multipole analysis of redshift-space distortions around cosmic voids
NASA Astrophysics Data System (ADS)
Hamaus, Nico; Cousinou, Marie-Claude; Pisani, Alice; Aubert, Marie; Escoffier, Stéphanie; Weller, Jochen
2017-07-01
We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h-1Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrain the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β(bar z=0.32)=0.599+0.134-0.124 and β(bar z=0.54)=0.457+0.056-0.054, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at bar z=0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15
Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index.
Xue, Wufeng; Zhang, Lei; Mou, Xuanqin; Bovik, Alan C
2014-02-01
It is an important task to faithfully evaluate the perceptual quality of output images in many applications, such as image compression, image restoration, and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy, but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local structures in a distorted image suffer different degrees of degradations. This motivates us to explore the use of global variation of gradient based local quality map for overall image quality prediction. We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy-the standard deviation of the GMS map-can predict accurately perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA methods, and delivers highly competitive prediction accuracy. MATLAB source code of GMSD can be downloaded at http://www4.comp.polyu.edu.hk/~cslzhang/IQA/GMSD/GMSD.htm.
NASA Technical Reports Server (NTRS)
Kaldschmidt, G.; Syltebo, B. E.; Ting, C. T.
1973-01-01
The results from testing of a 0.3 scale model center duct inlet (S duct) for the Pratt and Whitney Aircraft JT8D-100 engines are presented. The objective of this test was to demonstrate that the required airflow of the JT8D-100 engine (480 lb/sec as compared to 334 lb/sec for JT8D-15) can be achieved with minimum modifications to the existing 727 airplane structure at acceptable levels of total pressure recovery and distortion. Steady-state pressure recovery, steady-state pressure distortion, and dynamic pressure measurements were taken at the engine face station. Surface static pressure measurements were taken along the duct. Test results indicated that the required airflow was achieved with acceptable pressure recovery (comparable to the current 727-200 S duct). Inlet inflow angle variation within the 727 airplane operating regime (minus 5 to 5 degrees) had no effect on the inlet performance. Pressure distortion at static and forward speed at takeoff airflow conditions are within P and WA limits for the Phase II duct when equipped with vortex generators. Static crosswind operation between 10 knots and 25 knots appears feasible at full takeoff power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weygand, Joseph, E-mail: jw2899@columbia.edu; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas; Fuller, Clifton David
2016-07-15
Because magnetic resonance imaging–guided radiation therapy (MRIgRT) offers exquisite soft tissue contrast and the ability to image tissues in arbitrary planes, the interest in this technology has increased dramatically in recent years. However, intrinsic geometric distortion stemming from both the system hardware and the magnetic properties of the patient affects MR images and compromises the spatial integrity of MRI-based radiation treatment planning, given that for real-time MRIgRT, precision within 2 mm is desired. In this article, we discuss the causes of geometric distortion, describe some well-known distortion correction algorithms, and review geometric distortion measurements from 12 studies, while taking into accountmore » relevant imaging parameters. Eleven of the studies reported phantom measurements quantifying system-dependent geometric distortion, while 2 studies reported simulation data quantifying magnetic susceptibility–induced geometric distortion. Of the 11 studies investigating system-dependent geometric distortion, 5 reported maximum measurements less than 2 mm. The simulation studies demonstrated that magnetic susceptibility–induced distortion is typically smaller than system-dependent distortion but still nonnegligible, with maximum distortion ranging from 2.1 to 2.6 mm at a field strength of 1.5 T. As expected, anatomic landmarks containing interfaces between air and soft tissue had the largest distortions. The evidence indicates that geometric distortion reduces the spatial integrity of MRI-based radiation treatment planning and likely diminishes the efficacy of MRIgRT. Better phantom measurement techniques and more effective distortion correction algorithms are needed to achieve the desired spatial precision.« less
Crystal structure and superconductivity in atomic hydrogen: Deformation between I41/amd and Fddd
NASA Astrophysics Data System (ADS)
Ishikawa, T.; Nagara, H.; Oda, T.; Suzuki, N.; Shimizu, K.
2017-10-01
We investigated crystal structures of solid metallic hydrogen using the potential energy surface trekking for structure search. We applied this technique to a tetragonal I41/amd structure at pressures of 500 and 600 GPa and obtained the transformation into multiple orthorhombic Fddd structures, which are formed by distortions in the ab plane of I41/amd. The potential barriers are easily surmounted by few trekking steps, which indicates that in solid metallic hydrogen crystal structure is softened with respect to the distortion and is easily fluctuated among the I41/amd and Fddd structures. Calculated superconducting critical temperatures show 269 K for I41/amd and 263 K for Fddd at 500 GPa. The structures are softened and the electron-phonon coupling are enhanced with pressurization to 600 GPa. As the results, the superconducting critical temperature is increased to 281 K for I41/amd, whereas it is decreased to 252 K for Fddd owing to its larger phonon softening than that of I41/amd.
High-T c superconductivity in undoped ThFeAsN.
Shiroka, T; Shang, T; Wang, C; Cao, G-H; Eremin, I; Ott, H-R; Mesot, J
2017-07-31
Unlike the widely studied ReFeAsO series, the newly discovered iron-based superconductor ThFeAsN exhibits a remarkably high critical temperature of 30 K, without chemical doping or external pressure. Here we investigate in detail its magnetic and superconducting properties via muon-spin rotation/relaxation and nuclear magnetic resonance techniques and show that ThFeAsN exhibits strong magnetic fluctuations, suppressed below ~35 K, but no magnetic order. This contrasts strongly with the ReFeAsO series, where stoichiometric parent materials order antiferromagnetically and superconductivity appears only upon doping. The ThFeAsN case indicates that Fermi-surface modifications due to structural distortions and correlation effects are as important as doping in inducing superconductivity. The direct competition between antiferromagnetism and superconductivity, which in ThFeAsN (as in LiFeAs) occurs at already zero doping, may indicate a significant deviation of the s-wave superconducting gap in this compound from the standard s ± scenario.Exploring the interplay between the superconducting gap and the antiferromagnetic phase in Fe-based superconductors remains an open issue. Here, the authors show that Fermi-surface modifications by means of structural distortions and correlation effects are as important as doping in inducing superconductivity in undoped ThFeAsN.
NASA Astrophysics Data System (ADS)
Mondal, Gopinath; Santra, Ananyakumari; Bera, Pradip; Acharjya, Moumita; Jana, Sumanta; Chattopadhyay, Dipankar; Mondal, Anup; Seok, Sang Il; Bera, Pulakesh
2016-10-01
Hexagonal copper-deficient copper(I) sulfide (Cu2- x S, x = 0.03, 0.2) nanocrystals (NCs) are synthesized from a newly prepared single-source precursor (SP), [Cu(bdpa)2][CuCl2], where bdpa is benzyl 3,5-dimethyl-pyrazole-1-carbodithioate. The SP is crystallized with space group Pī and possesses a distorted tetrahedron structure with a CuN2S2 chromophore where the central copper is in +1 oxidation state. Distortion in copper(I) structure and the low decomposition temperature of SP make it favorable for the low-temperature solvent-assisted selective growth of high-copper content sulfides. The nucleation and growth of Cu2- x S ( x = 0.03, 0.2) are effectively controlled by the SP and the solvent in the solvothermal decomposition process. During decomposition, fragment benzyl thiol (PhCH2SH) from SP effectively passivates the nucleus leading to spherical nanocrystals. Further, solvent plays an important role in the selective thermochemical transformation of CuI-complex to Cu2- x S ( x = 0.03, 0.2) NCs. The chelating binders (solvent) like ethylene diamine (EN) and ethylene glycol (EG) prefer to form spherical Cu1.97S nanoparticles (djurleite), whereas nonchelating hydrazine hydrate (HH) shows the tendency to furnish hexagonal platelets of copper-deficient Cu1.8S. The optical band gap values (2.25-2.50 eV) show quantum confinement effect in the structure. The synthesized NCs display excellent catalytic activity ( 87 %) toward photodegradation of organic dyes like Congo Red (CR) and Methylene Blue (MB).
The effect of truncation on very small cardiac SPECT camerasystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohmer, Damien; Eisner, Robert L.; Gullberg, Grant T.
2006-08-01
Background: The limited transaxial field-of-view (FOV) of avery small cardiac SPECT camera system causes view-dependent truncationof the projection of structures exterior to, but near the heart. Basictomographic principles suggest that the reconstruction of non-attenuatedtruncated data gives a distortion-free image in the interior of thetruncated region, but the DC term of the Fourier spectrum of thereconstructed image is incorrect, meaning that the intensity scale of thereconstruction is inaccurate. The purpose of this study was tocharacterize the reconstructed image artifacts from truncated data, andto quantify their effects on the measurement of tracer uptake in themyocardial. Particular attention was given to instances wheremore » the heartwall is close to hot structures (structures of high activity uptake).Methods: The MCAT phantom was used to simulate a 2D slice of the heartregion. Truncated and non-truncated projections were formed both with andwithout attenuation. The reconstructions were analyzed for artifacts inthe myocardium caused by truncation, and for the effect that attenuationhas relative to increasing those artifacts. Results: The inaccuracy dueto truncation is primarily caused by an incorrect DC component. Forvisualizing theleft ventricular wall, this error is not worse than theeffect of attenuation. The addition of a small hot bowel-like structurenear the left ventricle causes few changes in counts on the wall. Largerartifacts due to the truncation are located at the boundary of thetruncation and can be eliminated by sinogram interpolation. Finally,algebraic reconstruction methods are shown to give better reconstructionresults than an analytical filtered back-projection reconstructionalgorithm. Conclusion: Small inaccuracies in reconstructed images fromsmall FOV camera systems should have little effect on clinicalinterpretation. However, changes in the degree of inaccuracy in countsfrom slice toslice are due to changes in the truncated structures. Thesecan result in a visual 3-dimensional distortion. As with conventionallarge FOV systems attenuation effects have a much more significant effecton image accuracy.« less
The Effect of a Guide Field on the Structures of Magnetic Islands: 2D PIC Simulations
NASA Astrophysics Data System (ADS)
Huang, C.; Lu, Q.; Lu, S.; Wang, P.; Wang, S.
2014-12-01
Magnetic island plays an important role in magnetic reconnection. Using a series of 2D PIC simulations, we investigate the magnetic structures of a magnetic island formed during multiple X-line magnetic reconnection, considering the effects of the guide field in symmetric and asymmetric current sheets. In a symmetric current sheet, the current in the direction forms a tripolar structure inside a magnetic island during anti-parallel reconnection, which results in a quadrupole structure of the out-of-plane magnetic field. With the increase of the guide field, the symmetry of both the current system and out-of-plane magnetic field inside the magnetic island is distorted. When the guide field is sufficiently strong, the current forms a ring along the magnetic field lines inside magnetic island. At the same time, the current carried by the energetic electrons accelerated in the vicinity of the X lines forms another ring at the edge of the magnetic island. Such a dual-ring current system enhance the out-of-plane magnetic field inside the magnetic island with a dip in the center of the magnetic island. In an asymmetric current sheet, when there is no guide field, electrons flows toward the X lines along the separatrices from the side with a higher density, and are then directed away from the X lines along the separatrices to the side with a lower density. The formed current results in the enhancement of the out-of-plane magnetic field at one end of the magnetic island, and the attenuation at the other end. With the increase of the guide field, the structures of both the current system and the out-of-plane magnetic field are distorted.
NASA Astrophysics Data System (ADS)
Huang, Can; Lu, Quanming; Lu, San; Wang, Peiran; Wang, Shui
2014-02-01
A magnetic island plays an important role in magnetic reconnection. In this paper, using a series of two-dimensional particle-in-cell simulations, we investigate the magnetic structures of a magnetic island formed during multiple X line magnetic reconnections, considering the effects of the guide field in symmetric and asymmetric current sheets. In a symmetric current sheet, the current in the x direction forms a tripolar structure inside a magnetic island during antiparallel reconnection, which results in a quadrupole structure of the out-of-plane magnetic field. With the increase of the guide field, the symmetry of both the current system and out-of-plane magnetic field inside the magnetic island is distorted. When the guide field is sufficiently strong, the current forms a ring along the magnetic field lines inside a magnetic island. At the same time, the current carried by the energetic electrons accelerated in the vicinity of the X lines forms another ring at the edge of the magnetic island. Such a dual-ring current system enhances the out-of-plane magnetic field inside the magnetic island with a dip in the center of the magnetic island. In an asymmetric current sheet, when there is no guide field, electrons flow toward the X lines along the separatrices from the side with a higher density and are then directed away from the X lines along the separatrices to the side with a lower density. The formed current results in the enhancement of the out-of-plane magnetic field at one end of the magnetic island and the attenuation at the other end. With the increase of the guide field, the structures of both the current system and the out-of-plane magnetic field are distorted.
NASA Astrophysics Data System (ADS)
Fricke, Wolfgang; Zacke, Sonja
2014-06-01
During ship design, welding-induced distortions are roughly estimated as a function of the size of the component as well as the welding process and residual stresses are assumed to be locally in the range of the yield stress. Existing welding simulation methods are very complex and time-consuming and therefore not applicable to large structures like ships. Simplified methods for the estimation of welding effects were and still are subject of several research projects, but mostly concerning smaller structures. The main goal of this paper is the application of a multi-layer welding simulation to the block joint of a ship structure. When welding block joints, high constraints occur due to the ship structure which are assumed to result in accordingly high residual stresses. Constraints measured during construction were realized in a test plant for small-scale welding specimens in order to investigate their and other effects on the residual stresses. Associated welding simulations were successfully performed with fine-mesh finite element models. Further analyses showed that a courser mesh was also able to reproduce the welding-induced reaction forces and hence the residual stresses after some calibration. Based on the coarse modeling it was possible to perform the welding simulation at a block joint in order to investigate the influence of the resulting residual stresses on the behavior of the real structure, showing quite interesting stress distributions. Finally it is discussed whether smaller and idealized models of definite areas of the block joint can be used to achieve the same results offering possibilities to consider residual stresses in the design process.
Distortion Of Pressure Signals In Pneumatic Tubes
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Gilyard, Glenn B.; Curry, Robert; Lindsey, William
1993-01-01
NASA technical memorandum describes experimental investigation of distorting effects of propagation of pressure signals along narrow pneumatic tubes from pressure-sensing orifices on surfaces of models or aircraft to pressure sensors distant from orifices. Pressure signals distorted principally by frictional damping along walls of tubes and by reflections at orifice and sensor ends.
Quadratic elongation: A quantitative measure of distortion in coordination polyhedra
Robinson, Kelly F.; Gibbs, G.V.; Ribbe, P.H.
1971-01-01
Quadratic elongation and the variance of bond angles are linearly correlated for distorted octahedral and tetrahedral coordination complexes, both of which show variations in bond length and bond angle. The quadratic elonga tion is dimensionless, giving a quantitative measure of polyhedral distortion which is independent of the effective size of the polyhedron.
Computational simulation of weld microstructure and distortion by considering process mechanics
NASA Astrophysics Data System (ADS)
Mochizuki, M.; Mikami, Y.; Okano, S.; Itoh, S.
2009-05-01
Highly precise fabrication of welded materials is in great demand, and so microstructure and distortion controls are essential. Furthermore, consideration of process mechanics is important for intelligent fabrication. In this study, the microstructure and hardness distribution in multi-pass weld metal are evaluated by computational simulations under the conditions of multiple heat cycles and phase transformation. Because conventional CCT diagrams of weld metal are not available even for single-pass weld metal, new diagrams for multi-pass weld metals are created. The weld microstructure and hardness distribution are precisely predicted when using the created CCT diagram for multi-pass weld metal and calculating the weld thermal cycle. Weld distortion is also investigated by using numerical simulation with a thermal elastic-plastic analysis. In conventional evaluations of weld distortion, the average heat input has been used as the dominant parameter; however, it is difficult to consider the effect of molten pool configurations on weld distortion based only on the heat input. Thus, the effect of welding process conditions on weld distortion is studied by considering molten pool configurations, determined by temperature distribution and history.
Preliminary Data on the Effects of Inlet Pressure Distortions on the J57-P-1 Turbojet Engine
NASA Technical Reports Server (NTRS)
Wallner, Lewis E.; Lubick, Robert J.; Einstein, Thomas H.
1954-01-01
An investigation to determine the steady-state and surge characteristics of the J57-P-1 two-spool turbojet engine with various inlet air-flow distortions was conducted in the altitude wind tunnel at the NACA Lewis laboratory. Along with a uniform inlet total-pressure distribution, one circumferential and three radial pressure distortions were investigated. Data were obtained over a complete range of compressor speeds both with and without intercompressor air bleed at a flight Mach number of 0.8 and at altitudes of 35,000 and 50,000 feet. Total-pressure distortions of the magnitudes investigated had very little effect on the steady-state operating line for either the outer or inner compressor. The small radial distortions investigated also had engine over that obtained with the uniform inlet pressure distribution. The circumferential distortion, however, raised the minimum speed at which the engine could operate without encountering surge when the intercompressor bleeds were closed. This increase in minimum speed resulted in a substantial reduction in the operable speed range accompanied by a reduction in the altitude operating limit.
Oh, Se-Hong; Chung, Jun-Young; In, Myung-Ho; Zaitsev, Maxim; Kim, Young-Bo; Speck, Oliver; Cho, Zang-Hee
2012-10-01
Despite its wide use, echo-planar imaging (EPI) suffers from geometric distortions due to off-resonance effects, i.e., strong magnetic field inhomogeneity and susceptibility. This article reports a novel method for correcting the distortions observed in EPI acquired at ultra-high-field such as 7 T. Point spread function (PSF) mapping methods have been proposed for correcting the distortions in EPI. The PSF shift map can be derived either along the nondistorted or the distorted coordinates. Along the nondistorted coordinates more information about compressed areas is present but it is prone to PSF-ghosting artifacts induced by large k-space shift in PSF encoding direction. In contrast, shift maps along the distorted coordinates contain more information in stretched areas and are more robust against PSF-ghosting. In ultra-high-field MRI, an EPI contains both compressed and stretched regions depending on the B0 field inhomogeneity and local susceptibility. In this study, we present a new geometric distortion correction scheme, which selectively applies the shift map with more information content. We propose a PSF-ghost elimination method to generate an artifact-free pixel shift map along nondistorted coordinates. The proposed method can correct the effects of the local magnetic field inhomogeneity induced by the susceptibility effects along with the PSF-ghost artifact cancellation. We have experimentally demonstrated the advantages of the proposed method in EPI data acquisitions in phantom and human brain using 7-T MRI. Copyright © 2011 Wiley Periodicals, Inc.
Quality Scalability Aware Watermarking for Visual Content.
Bhowmik, Deepayan; Abhayaratne, Charith
2016-11-01
Scalable coding-based content adaptation poses serious challenges to traditional watermarking algorithms, which do not consider the scalable coding structure and hence cannot guarantee correct watermark extraction in media consumption chain. In this paper, we propose a novel concept of scalable blind watermarking that ensures more robust watermark extraction at various compression ratios while not effecting the visual quality of host media. The proposed algorithm generates scalable and robust watermarked image code-stream that allows the user to constrain embedding distortion for target content adaptations. The watermarked image code-stream consists of hierarchically nested joint distortion-robustness coding atoms. The code-stream is generated by proposing a new wavelet domain blind watermarking algorithm guided by a quantization based binary tree. The code-stream can be truncated at any distortion-robustness atom to generate the watermarked image with the desired distortion-robustness requirements. A blind extractor is capable of extracting watermark data from the watermarked images. The algorithm is further extended to incorporate a bit-plane discarding-based quantization model used in scalable coding-based content adaptation, e.g., JPEG2000. This improves the robustness against quality scalability of JPEG2000 compression. The simulation results verify the feasibility of the proposed concept, its applications, and its improved robustness against quality scalable content adaptation. Our proposed algorithm also outperforms existing methods showing 35% improvement. In terms of robustness to quality scalable video content adaptation using Motion JPEG2000 and wavelet-based scalable video coding, the proposed method shows major improvement for video watermarking.
Distortions in 2p4d Partial Fluorescence yield for 4d elements
NASA Astrophysics Data System (ADS)
Price, Alexander; de Groot, Frank; Datta, Trinanjan
2014-03-01
X-ray absorption spectroscopy (XAS) is a standard tool to determine the electronic structure of molecules and materials. CTM4XAS and CTM4RIXS are semi-empirical programs to analyze transition metal L - and M - edge transitions by evaluating the effects of crystal field and charge transfer parameters on the atomic multiplets. We compute and compare the XAS and the fluorescence yield (FY) XAS, of the 3d and 4d transition metal ions. In the case of 2p edges of 3d elements Auger decay dominates and sets the time scale. The 2p3d X -ray emission spectra (XES) accounts for approximately 80% of the radiative decay. The 2p3d partial FY is distorted and because it dominates the FY, the total FY is also distorted. For the 4d elements the 2p4d XES decay is approximately 10% of 2p3d XES decay, implying that (the energy-constant) core-core XES and Auger channels dominate the decay. The computed 2p4d partial FY -XAS spectra are different from the 2p XAS. Although 2p4d partial FY is distorted, the total FY is not because it is dominated by 2p3d XES. We also find that the 2p3s and 2p4s XES channels contribute less than 1% and can be neglected. Cottrell Research Corporation.
Local Lattice Distortion in the Giant Negative Thermal Expansion Material Mn3Cu1-xGexN
NASA Astrophysics Data System (ADS)
Iikubo, S.; Kodama, K.; Takenaka, K.; Takagi, H.; Takigawa, M.; Shamoto, S.
2008-11-01
Giant negative thermal expansion is achieved in antiperovskite manganese nitrides when the sharp volume change associated with magnetic ordering is broadened by substitution. In this Letter, we address the unique role of the ‘‘magic” element, Ge, for such broadening in Mn3Cu1-xGexN. We present evidence for a local lattice distortion well described by the low-temperature tetragonal (T4) structure of Mn3GeN for a range of x, where the overall structure remains cubic. This structural instability shows a strong correlation with the broadness of the growth of the ordered magnetic moment and, hence, is considered to trigger the broadening of the volume change.
Nucleic acid duplexes incorporating a dissociable covalent base pair
NASA Technical Reports Server (NTRS)
Gao, K.; Orgel, L. E.; Bada, J. L. (Principal Investigator)
1999-01-01
We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure.
NASA Astrophysics Data System (ADS)
Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus
2015-11-01
Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.
Kritayakornupong, Chinapong
2009-12-01
A hybrid ab initio QM/MM molecular dynamics simulation at the Hartree-Fock level has been performed to investigate structural and dynamical parameters of the V(3+) ion in dilute aqueous solution. A distorted octahedral structure with the average V(3+)-O distance of 1.99 A is evaluated from the QM/MM simulation, which is in good agreement with the X-ray data. Several structural parameters such as angular distribution functions, theta- and tilt-angle distributions have been determined to obtain the full description of the hydration structure of the hydrated V(3+). The Jahn-Teller distortions of the V(3+) ion are pronounced in the QM/MM simulation. The mean residence time of 14.5 ps is estimated for the ligand exchange processes in the second hydration shell. (c) 2009 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petkov, Valeri; Hessel, Colin M.; Ovtchinnikoff, Justine
High-energy synchrotron X-ray diffraction coupled to atomic pair distribution function analysis and computer simulations is used to determine the atomic-scale structure of silicon (Si) nanoparticles obtained by two different synthetic routes. Results show that Si nanoparticles may have significant structural differences depending on the synthesis route and surface chemistry. In this case, one method produced Si nanoparticles that are highly crystalline but surface oxidized, whereas a different method yields organic ligand-passivated nanoparticles without surface oxide but that are structurally distorted at the atomic scale. Particular structural features of the oxide-free Si nanoparticles such as average first coordination numbers, length ofmore » structural coherence, and degree of local distortions are compared to their optical properties such as photoluminescence emission energy, quantum yield, and Raman spectra. A clear structure–properties correlation is observed indicating that the former may need to be taken into account when considering the latter.« less
Catenanes: A molecular mechanics analysis of the (C13H26)2 Structure 13-13 D2.
Lii, Jenn-Huei; Allinger, Norman L; Hu, Ching-Han; Schaefer, Henry F
2016-01-05
Molecular mechanics (MM4) studies have been carried out on the catenane (C13H26)2, specifically 13-13D2. The structure obtained is in general agreement with second-order perturbation theory. More importantly, the MM4 structure allows a breakdown of the energy of the molecule into its component classical parts. This allows an understanding of why the structure is so distorted, in terms of C-C bonding and nonbonding interactions, van der Waals repulsion, C-C-C and C-C-H angle bending, torsional energies, stretch-bend, torsion-stretch, and bend-torsion-bend interactions. Clearly, the hole in 113-membered ring is too small for the other ring to fit through comfortably. There are too many atoms trying to fit into the limited space at the same time, leading to large van der Waals repulsions. The rings distort in such a way as to enlarge this available space, and lower the total energy of the molecule. While the distortions are spread around the rings, one of the nominally tetrahedral C-C-C bond angles in each ring is opened to 147.9° by MM4 (146.8° by MP2). The stability of the compound is discussed in terms of the strain energy. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Yang, J; Wen, Z
2015-06-15
Purpose: MRI has superb soft tissue contrast but is also known for geometric distortions. The concerns and uncertainty about MRI’s geometric distortion have contributed to the hesitation of using only MRI for simulation in radiation therapy. There are two major categories of geometric distortion in MRI; system related and patient related. In this presentation, we studied the impact of system-related geometric distortion on dose distribution in a digital body phantom under an MR-Linac environment. Methods: Residual geometric distortion (after built-in geometric correction) was modeled based on phantom measurements of the system-related geometric distortions of a MRI scanner of a combinedmore » MR guided Radiation Therapy (MRgRT) system. A digital oval shaped phantom (40×25 cm) as well as one ellipsoid shaped tumor volume was created to simulate a simplified human body. The simulated tumor volume was positioned at several locations between the isocenter and the body surface. CT numbers in HUs that approximate soft tissue and tumor were assigned to the respective regions in the digital phantom. To study the effect of geometric distortion caused by system imperfections, an IMRT plan was optimized with the distorted image set with the B field. Dose distributions were re-calculated on the undistorted image set with the B field (as in MR-Linac). Results: The maximum discrepancies in both body contour and tumor boundary was less than 2 mm, which leads to small dose distribution change. For the target in the center, coverage was reduced from 98.8% (with distortion) to 98.2%; for the other peripheral target coverage was reduced from 98.4% to 95.9%. Conclusion: System related geometric distortions over the 40×25 area were within 2mm and the resulted dosimetric effects were minor for the two tumor locations in the phantom. Patient study will be needed for further investigation. The authors received a corporate research grant from Elekta.« less
Polarization Shaping for Control of Nonlinear Propagation.
Bouchard, Frédéric; Larocque, Hugo; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W
2016-12-02
We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization-radially symmetric vector beams and Poincaré beams with lemon and star topologies-in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.
Screening actuator locations for static shape control
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.
1990-01-01
Correction of shape distortion due to zero-mean normally distributed errors in structural sizes which are random variables is examined. A bound on the maximum improvement in the expected value of the root-mean-square shape error is obtained. The shape correction associated with the optimal actuators is also characterized. An actuator effectiveness index is developed and shown to be helpful in screening actuator locations in the structure. The results are specialized to a simple form for truss structures composed of nominally identical members. The bound and effectiveness index are tested on a 55-m radiometer antenna truss structure. It is found that previously obtained results for optimum actuators had a performance close to the bound obtained here. Furthermore, the actuators associated with the optimum design are shown to have high effectiveness indices. Since only a small fraction of truss elements tend to have high effectiveness indices, the proposed screening procedure can greatly reduce the number of truss members that need to be considered as actuator sites.
Multimode Jahn-Teller effect in bulk systems: A case of the N V 0 center in diamond
Zhang, Jianhua; Wang, Cai -Zhuang; Zhu, Zizhong; ...
2018-04-15
Here, the multimode Jahn-Teller (JT) effect in a bulk system of a neutral nitrogen-vacancy (NV 0) center in diamond is investigated via first-principles density-functional-theory calculations and the intrinsic distortion path (IDP) method. The adiabatic potential energy surface of the electronic ground state of the NV 0 center is calculated based on the local spin-density approximation. Our calculations confirm the presence of the dynamic Jahn-Teller effect in the ground 2E state of the NV 0 center. Within the harmonic approximation, the IDP method provides the reactive path of JT distortion from unstable high-symmetry geometry to stable low-symmetry energy minimum geometry, andmore » it describes the active normal modes participating in the distortion. We find that there is more than one vibrational mode contributing to the distortion, and their contributions change along the IDP. Several vibrational modes with large contributions to JT distortion, especially those modes close to 44 meV, are clearly observed as the phonon sideband in photoluminescence spectra in a series of experiments, indicating that the dynamic Jahn-Teller effect plays an important role in the optical transition of the NV 0 center.« less
Multimode Jahn-Teller effect in bulk systems: A case of the N V0 center in diamond
NASA Astrophysics Data System (ADS)
Zhang, Jianhua; Wang, Cai-Zhuang; Zhu, Zizhong; Liu, Qing Huo; Ho, Kai-Ming
2018-04-01
The multimode Jahn-Teller (JT) effect in a bulk system of a neutral nitrogen-vacancy (N V0 ) center in diamond is investigated via first-principles density-functional-theory calculations and the intrinsic distortion path (IDP) method. The adiabatic potential energy surface of the electronic ground state of the N V0 center is calculated based on the local spin-density approximation. Our calculations confirm the presence of the dynamic Jahn-Teller effect in the ground 2E state of the N V0 center. Within the harmonic approximation, the IDP method provides the reactive path of JT distortion from unstable high-symmetry geometry to stable low-symmetry energy minimum geometry, and it describes the active normal modes participating in the distortion. We find that there is more than one vibrational mode contributing to the distortion, and their contributions change along the IDP. Several vibrational modes with large contributions to JT distortion, especially those modes close to 44 meV, are clearly observed as the phonon sideband in photoluminescence spectra in a series of experiments, indicating that the dynamic Jahn-Teller effect plays an important role in the optical transition of the N V0 center.
Multimode Jahn-Teller effect in bulk systems: A case of the N V 0 center in diamond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianhua; Wang, Cai -Zhuang; Zhu, Zizhong
Here, the multimode Jahn-Teller (JT) effect in a bulk system of a neutral nitrogen-vacancy (NV 0) center in diamond is investigated via first-principles density-functional-theory calculations and the intrinsic distortion path (IDP) method. The adiabatic potential energy surface of the electronic ground state of the NV 0 center is calculated based on the local spin-density approximation. Our calculations confirm the presence of the dynamic Jahn-Teller effect in the ground 2E state of the NV 0 center. Within the harmonic approximation, the IDP method provides the reactive path of JT distortion from unstable high-symmetry geometry to stable low-symmetry energy minimum geometry, andmore » it describes the active normal modes participating in the distortion. We find that there is more than one vibrational mode contributing to the distortion, and their contributions change along the IDP. Several vibrational modes with large contributions to JT distortion, especially those modes close to 44 meV, are clearly observed as the phonon sideband in photoluminescence spectra in a series of experiments, indicating that the dynamic Jahn-Teller effect plays an important role in the optical transition of the NV 0 center.« less
Estimating Fluctuating Pressures From Distorted Measurements
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A.; Leondes, Cornelius T.
1994-01-01
Two algorithms extract estimates of time-dependent input (upstream) pressures from outputs of pressure sensors located at downstream ends of pneumatic tubes. Effect deconvolutions that account for distoring effects of tube upon pressure signal. Distortion of pressure measurements by pneumatic tubes also discussed in "Distortion of Pressure Signals in Pneumatic Tubes," (ARC-12868). Varying input pressure estimated from measured time-varying output pressure by one of two deconvolution algorithms that take account of measurement noise. Algorithms based on minimum-covariance (Kalman filtering) theory.
NASA Astrophysics Data System (ADS)
Narang, H. K.; Mahapatra, M. M.; Jha, P. K.; Biswas, P.
2014-05-01
Autogenous arc welds with minimum upper weld bead depression and lower weld bead bulging are desired as such welds do not require a second welding pass for filling up the upper bead depressions (UBDs) and characterized with minimum angular distortion. The present paper describes optimization and prediction of angular distortion and weldment characteristics such as upper weld bead depression and lower weld bead bulging of TIG-welded structural steel square butt joints. Full factorial design of experiment was utilized for selecting the combinations of welding process parameter to produce the square butts. A mathematical model was developed to establish the relationship between TIG welding process parameters and responses such as upper bead width, lower bead width, UBD, lower bead height (bulging), weld cross-sectional area, and angular distortions. The optimal welding condition to minimize UBD and lower bead bulging of the TIG butt joints was identified.
Zhang, Jiarui; Zhang, Yingjie; Chen, Bo
2017-12-20
The three-dimensional measurement system with a binary defocusing technique is widely applied in diverse fields. The measurement accuracy is mainly determined by out-of-focus projector calibration accuracy. In this paper, a high-precision out-of-focus projector calibration method that is based on distortion correction on the projection plane and nonlinear optimization algorithm is proposed. To this end, the paper experimentally presents the principle that the projector has noticeable distortions outside its focus plane. In terms of this principle, the proposed method uses a high-order radial and tangential lens distortion representation on the projection plane to correct the calibration residuals caused by projection distortion. The final accuracy parameters of out-of-focus projector were obtained using a nonlinear optimization algorithm with good initial values, which were provided by coarsely calibrating the parameters of the out-of-focus projector on the focal and projection planes. Finally, the experimental results demonstrated that the proposed method can accuracy calibrate an out-of-focus projector, regardless of the amount of defocusing.
Effect of the structure distortion on the high photocatalytic performance of C60/g-C3N4 composite
NASA Astrophysics Data System (ADS)
Ma, Xiaojuan; Li, Xinru; Li, Mengmeng; Ma, Xiangchao; Yu, Lin; Dai, Ying
2017-08-01
C60/g-C3N4 composite was reported experimentally to be of high photocatalytic activity in degrading organics. To investigate the underlying mechanism of high photocatalytic performance, the structural and electronic properties of g-C3N4 monolayers with adsorbing and removing fullerene C60 are studied by means of density functional theory calculations. After 25 possible configurations examination, it is found that C60 prefers to stay upon the ;junction nitrogen; with the carbon atom of fullerene being nearest to monolayers. Correspondingly, a type-I band alignment appears. Our results further demonstrate that the adsorption of C60 can lead to an irreversible structure distortion for g-C3N4 from flat to wrinkle, which plays a crucial role in improving photocatalytic performance other than the separation of carriers at interface due to the formation of type-II heterojunctions as previous report. Compared to flat one, the light absorption of wrinkled structure shows augmented, the valence band maximum shifts towards lower position along with a stronger photo-oxidation capability. Interestingly, the results indicate that the energy, light absorption and band edge all have a particular relationship with wrinkle degree. The work presented here can be helpful to understand the mechanism behind the better photocatalytic performance for C60 modified g-C3N4.
New insight into the properties of proton conducting oxides from neutron total scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proffen, Thomas E; Kim, Hyunjeong; Malavasi, Lorenzo
In recent years there has been a growing interest in searching for new proton conducting materials that could be successfully used in medium temperature solid oxide fuel cells (SOFC). In particular, proton conducting oxides have been the subject of a massive research activity. Among the most promising oxide the acceptor doped cerates appears to be those most appealing in view of practical applications. A relevant aspect of these materials is the investigation of the local distortion of the structure arising from water incorporation. This kind of study is of great help in defining how the structure changes in order tomore » accommodate the proton which is usually thought to enter the structure in form of hydroxyl group where the oxygen vacancy results from the acceptor doping on the Ce site. Atomistic simulation work confirmed that the preferential location of dopant ions is on the Ce site. To the best of our knowledge the only experimental work addressing the role of dopant and water incorporation on the local structure of V-doped cerates is a X-ray absorption spectroscopy (XAS) work carried out by Longo and coworkers at the Y K-edge. The main conclusion of that work was the observation that Y-doping induces a distortion of the parent BaCe0{sub 3} structure resulting in a significantly distorted Y local environment. However, local structure information derived from XAS study does not provide a direct structural information and depends strongly upon the model used to calcualte theoretical {chi}(k) which is not unique. Moreover, the XAS analysis usually provide significant information only up to the second shell. As a consequence, a more reliable and useful technique to investigate the local arrangement in these proton conducting oxides appears to be the Pair Distribution Function (PDF) analysis derived from total neutron scattering measurements. In the present work we investigated the pure BaCeO{sub 3} and the acceptor doped BaCe{sub 0.90}Y{sub 0.10}O{sub 2.85} compounds. In both cases the samples have been measured at room temperature and after being exposed to dry and wet air (humidification attained through bubbling air in D{sub 2}O). Aim of this work is to look at the effect of Y-doping and water doping on the local structure of the above mentioned samples.« less
Henriques, M.S.; Gorbunov, D.I.; Kriegner, D.; Vališka, M.; Andreev, A.V.; Matěj, Z.
2018-01-01
Structural changes through the first-order paramagnetic-antiferromagnetic phase transition of Dy3Ru4Al12 at 7 K have been studied by means of X-ray diffraction and thermal expansion measurements. The compound crystallizes in a hexagonal crystal structure of Gd3Ru4Al12 type (P63/mmc space group), and no structural phase transition has been found in the temperature interval between 2.5 and 300 K. Nevertheless, due to the spin-lattice coupling the crystal volume undergoes a small orthorhombic distortion of the order of 2×10-5 as the compound enters the antiferromagnetic state. We propose that the first-order phase transition is not driven by the structural changes but rather by the exchange interactions present in the system. PMID:29445250
Preston, Jonathan L; Hull, Margaret; Edwards, Mary Louise
2013-05-01
To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost 4 years later. Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 (years;months) and were followed up at age 8;3. The frequency of occurrence of preschool distortion errors, typical substitution and syllable structure errors, and atypical substitution and syllable structure errors was used to predict later speech sound production, PA, and literacy outcomes. Group averages revealed below-average school-age articulation scores and low-average PA but age-appropriate reading and spelling. Preschool speech error patterns were related to school-age outcomes. Children for whom >10% of their speech sound errors were atypical had lower PA and literacy scores at school age than children who produced <10% atypical errors. Preschoolers who produced more distortion errors were likely to have lower school-age articulation scores than preschoolers who produced fewer distortion errors. Different preschool speech error patterns predict different school-age clinical outcomes. Many atypical speech sound errors in preschoolers may be indicative of weak phonological representations, leading to long-term PA weaknesses. Preschoolers' distortions may be resistant to change over time, leading to persisting speech sound production problems.
NASA Astrophysics Data System (ADS)
Touch, M.; Clark, D. P.; Barber, W.; Badea, C. T.
2016-04-01
Spectral CT using a photon-counting x-ray detector (PCXD) can potentially increase accuracy of measuring tissue composition. However, PCXD spectral measurements suffer from distortion due to charge sharing, pulse pileup, and Kescape energy loss. This study proposes two novel artificial neural network (ANN)-based algorithms: one to model and compensate for the distortion, and another one to directly correct for the distortion. The ANN-based distortion model was obtained by training to learn the distortion from a set of projections with a calibration scan. The ANN distortion was then applied in the forward statistical model to compensate for distortion in the projection decomposition. ANN was also used to learn to correct distortions directly in projections. The resulting corrected projections were used for reconstructing the image, denoising via joint bilateral filtration, and decomposition into three-material basis functions: Compton scattering, the photoelectric effect, and iodine. The ANN-based distortion model proved to be more robust to noise and worked better compared to using an imperfect parametric distortion model. In the presence of noise, the mean relative errors in iodine concentration estimation were 11.82% (ANN distortion model) and 16.72% (parametric model). With distortion correction, the mean relative error in iodine concentration estimation was improved by 50% over direct decomposition from distorted data. With our joint bilateral filtration, the resulting material image quality and iodine detectability as defined by the contrast-to-noise ratio were greatly enhanced allowing iodine concentrations as low as 2 mg/ml to be detected. Future work will be dedicated to experimental evaluation of our ANN-based methods using 3D-printed phantoms.
Microwave spectrum, structure and dipole moment of 4-fluorophenylacetylene (4FPA)
NASA Astrophysics Data System (ADS)
Jang, Heesu; Ka, Soohyun; Dikkumbura, Asela S.; Peebles, Rebecca A.; Peebles, Sean A.; Oh, Jung Jin
2017-04-01
Using a chirped-pulse Fourier-transform microwave (CP-FTMW) spectrometer, a 6-18 GHz spectrum of 4-fluorophenylacetylene (4FPA) was measured and only a-type R-branch transitions were observed up to J = 9. Rotational constants and quartic centrifugal distortion constants for the normal isotopic species were determined based on Watson-S reduction: A = 5652.812(22) MHz, B = 966.92885(11) MHz, C = 825.67680(11) MHz, DJ = 0.01377(60) kHz, and DJK = 0.2468(61) kHz, with other three distortion constants fixed as DK = 0.6629 kHz, d1 = 2.386 Hz, and d2 = 0.989 Hz from ab initio results. For six kinds of carbon-13 isotopic species, 10-15 transitions were detected by a resonant cavity FTMW spectrometer in natural abundance, and rotational constants of each species were also determined by fitting transition frequencies. Gaseous molecular structures of 4FPA were derived via the least-squares fitting (r0) and substitution (rs) methods, and ab initio optimization (re). They were compared to the structures of benzene derivatives having fluorine and the acetylenic group as substituents. In addition, dipole moment component of 4FPA was also determined to be μa = μtotal = 0.8935(9) D from Stark effect measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishige, Ryohei; Williams, Gregory A.; Higaki, Yuji
A molded film of single-component polymer-grafted nanoparticles (SPNP), consisting of a spherical silica core and densely grafted polymer chains bearing hydrogen-bonding side groups capable of physical crosslinking, was investigated byin situultra-small-angle X-ray scattering (USAXS) measurement during a uniaxial stretching process. Static USAXS revealed that the molded SPNP formed a highly oriented twinned face-centered cubic (f.c.c.) lattice structure with the [11-1] plane aligned nearly parallel to the film surface in the initial state. Structural analysis ofin situUSAXS using a model of uniaxial deformation induced by rearrangement of the nanoparticles revealed that the f.c.c. lattice was distorted in the stretching direction inmore » proportion to the macroscopic strain until the strain reached 35%, and subsequently changed into other f.c.c. lattices with different orientations. The lattice distortion and structural transition behavior corresponded well to the elastic and plastic deformation regimes, respectively, observed in the stress–strain curve. The attractive interaction of the hydrogen bond is considered to form only at the top surface of the shell and then plays an effective role in cross-linking between nanoparticles. The rearrangement mechanism of the nanoparticles is well accounted for by a strong repulsive interaction between the densely grafted polymer shells of neighboring particles.« less
Evolution of magnetism in single-crystal C a 2 R u 1 - x I r x O 4 ( 0 ≤ x ≤ 0.65 )
Yuan, S. J.; Terzic, J.; Wang, J. C.; ...
2015-07-24
In this paper, we report structural, magnetic, transport, and thermal properties of single-crystal Ca 2Ru 1-xIr xO 4(0≤x≤0.65). Ca 2RuO 4 is a structurally driven Mott insulator with a metal-insulator transition at T MI=357K, which is well separated from antiferromagnetic order at T N=110K. Substitution of a 5d element, Ir, for Ru enhances spin-orbit coupling and locking between the structural distortions and magnetic moment canting. Ir doping intensifies the distortion or rotation of Ru/IrO 6 octahedra and induces weak ferromagnetic behavior along the c axis. In particular, Ir doping suppresses T N but concurrently causes an additional magnetic ordering Tmore » N2 at a higher temperature up to 210 K for x=0.65. The effect of Ir doping sharply contrasts with that of 3d-element doping such as Cr, Mn, and Fe, which suppresses T N and induces unusual negative volume thermal expansion. Finally, the stark difference between 3d- and 5d-element doping underlines a strong magnetoelastic coupling inherent in the Ir-rich oxides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meisner, Ludmila L.; Semin, Viktor O.; Gudimova, Ekaterina Y.
By transmission electron microscopy method the evolution of structural-phase states on a depth of close to equiatomic NiTi modified layer has been studied. Modification performed by pulse impact on its surface low-energy high-current electron beam (beam energy density 10 J/sm{sup 2}, 10 pulses, pulse duration 50mks). It is established that during the treatment in the layer thickness of 8–10 μm, the melting of primary B2 phase and contained therein as Ti2Ni phase particles occurs. The result is change in the concentration ratio of titanium and nickel in the direction of increasing titanium content, which was confirmed by X-ray analysis in themore » form of increased unit cell parameter B2 phase. Analysis of the electron diffraction pattern showed that the modified layer is characterized as a highly distorted structure on the basis of bcc lattice. Lattice distortions are maximal near the surface and extends to a depth of melt. In subjacent layer there is gradual decline lattice distortions is observed.« less
Photogrammetrically Measured Distortions of Composite Structure Microwave Reflectors at -90K
NASA Technical Reports Server (NTRS)
Mule, Peter; Hill, Michael D.; Sampler, Henry P.
2000-01-01
The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg. at 90 GHz.) map of the Cosmic Microwave Background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of -90 K is a critical element to ensure mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric metrology data taken under vacuum with the reflectors at -90 K. Contour maps showing reflector distortion were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.
NASA Technical Reports Server (NTRS)
Mule, Peter; Hill, Michael D.; Sampler, Henry P.
2000-01-01
The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of approximately 90 K is a critical element to ensuring mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric (PG) metrology data taken under vacuum with the reflectors at approximately 90 K. Contour maps showing reflector distortion analytical extrapolations were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.
Enhancement of redox- and phase-stability of thermoelectric CaMnO3-δ by substitution
NASA Astrophysics Data System (ADS)
Thiel, Philipp; Populoh, Sascha; Yoon, Songhak; Weidenkaff, Anke
2015-09-01
Redox Reactivity and structural phase transitions have a major impact on transport and me-chemical properties of thermoelectric CaMnO3-δ. In this study series of Ca1-xAxMn1-yByO3-δ (0≤x,y≤0.8) compounds, each with A-site (Dy3+, Yb3+) or B-site (Nb5+, Ta5+ and Mo6+, W6+) substitution, were synthesized and crystallographically analyzed. It was found that the high-temperature oxygen content is widely independent from the substituent. Subsequently, with increasing temperature the differences in the Seebeck coefficient vanish above 1200 K. With increasing substitution the orthorhombic distortion of the perovskite-like phase increases. The orthorhombic distortion and the upper temperature limit of the stability of the orthorhombic crystal structure show an almost linear dependency. Accordingly, the mechanical stability of all-oxides thermoelectric converters at temperatures exceeding 1000 K will be increased employing materials with high substitution level and substituents inducing a high orthorhombic distortion.
Data Processing and Experimental Design for Micrometeorite Impacts in Small Bodies
NASA Technical Reports Server (NTRS)
Jensen, E.; Lederer, S.; Smith, D.; Strojia, C.; Cintala, M.; Zolensky, M.; Keller, L.
2014-01-01
Comets and asteroids have been altered from their original "pristine" state by impacts occurring throughout their 4.5 billion year lives: [1]. Proof of shock deformation has been detected in the crystal structure of several Stardust samples from Comet Wild 2 [2, 3]. Analyses indicated that the planar dislocations in the crystal structure of the minerals had been imparted by impacts sustained during their lives, and not due to the aerogel capture process. Distortions to crystal structure also affect the ideal absorption spectra in the infrared, and [4], thus providing indirect evidence of its impact history and a means of remotely investigating the impact history of small bodies through comparing laboratory spectra with spectra observed by telescopes or spacecraft. -The effects of impacts propagating shock waves through minerals were investigated through laboratory impact experiments. Utilizing NASA Johnson Space Center's Experimental Impact Laboratory, projectiles were fired from the vertical gun at velocities ranging from 2.0 to 2.8 km/sec, projected impact velocities between Kuiper Belt Objects. Two types of projectiles were used, including spherical alumina ceramic, whose density mimics that of rock, and cylinders made from the same material that they impacted. The target materials chosen for testing included: OLIVINES forsterite (Mg2SiO4) and fayalite, Fe2SiO4); PYROXENES enstatite (Mg2Si2O6) and diopside (MgCaSi2O6); and CARBONATES magnesite (MgCO3) and siderite (FeCO3). Targets were impacted at either 25 C or cooled to -20 C to examine the effects of temperature, if any, on lattice distortions during the shock propagation. As comets and asteroids can undergo a wide range of temperatures in their orbital lifetimes, the effect of temperature on the equation of state of minerals being shocked needs to be examined for interpreting the results of these experiments. The porosity of the target mineral is varied by either grinding it into a powder/granular texture or as whole mineral rocks to investigate the differences in shock propagation when voids are present. By varying velocity, ambient temperature, and porosity, we can investigate different variables affecting impacts in the solar system. -Data indicates that there is a non-linear relationship between peak shock pressure and the variation in infrared spectral absorbances by the distorted crystal structure. The maximum variability occurs around 37 GPa in enstatite and forsterite. The particle size distribution of the impacted material similarly changes with velocity/peak shock pressure. -The experiments described above are designed to measure the near- to mid-IR effects from these changes to the mineral structure. See Lederer et al., this meeting for additional experimental results.
NASA Astrophysics Data System (ADS)
Shi, Ao; Lu, Bo; Yang, Dangguo; Wang, Xiansheng; Wu, Junqiang; Zhou, Fangqi
2018-05-01
Coupling between aero-acoustic noise and structural vibration under high-speed open cavity flow-induced oscillation may bring about severe random vibration of the structure, and even cause structure to fatigue destruction, which threatens the flight safety. Carrying out the research on vibro-acoustic experiments of scaled down model is an effective means to clarify the effects of high-intensity noise of cavity on structural vibration. Therefore, in allusion to the vibro-acoustic experiments of cavity in wind tunnel, taking typical elastic cavity as the research object, dimensional analysis and finite element method were adopted to establish the similitude relations of structural inherent characteristics and dynamics for distorted model, and verifying the proposed similitude relations by means of experiments and numerical simulation. Research shows that, according to the analysis of scale-down model, the established similitude relations can accurately simulate the structural dynamic characteristics of actual model, which provides theoretic guidance for structural design and vibro-acoustic experiments of scaled down elastic cavity model.
NASA Technical Reports Server (NTRS)
Plotkin, Kenneth J.; Maglieri, Domenic J.; Sullivan, Brenda M.
2005-01-01
Turbulence has two distinctive effects on sonic booms: there is distortion in the form of random perturbations that appear behind the shock waves, and shock rise times are increased randomly. A first scattering theory by S.C. Crow in the late 1960s quantified the random distortions, and Crow's theory was shown to agree with available flight test data. A variety of theories for the shock thickness have been presented, all supporting the role of turbulence in increasing rise time above that of a basic molecular-relaxation structure. The net effect of these phenomena on the loudness of shaped minimized booms is of significant interest. Initial analysis suggests that there would be no change to average loudness, but this had not been experimentally investigated. The January 2004 flight test of the Shaped Sonic Boom Demonstrator (SSBD), together with a reference unmodified F-5E, included a 12500- foot linear ground sensor array with 28 digitally recorded sensor sites. This data set provides an opportunity to re-test Crow's theory for the post-shock perturbations, and to examine the net effect of turbulence on the loudness of shaped sonic booms.
The Measurement of Distortion Tendencies Induced by the Win-Lose Nature of In-Group Loyalty.
ERIC Educational Resources Information Center
Burton, Gene E.
1990-01-01
Examined the effects of group loyalty and distortion tendencies during a nominal grouping exercise involving 42 members of a management team in a decision-making seminar, divided into 5 groups to generate ideas on developing a program of flextime scheduling. Results showed distortion of judgment resulting from in-group loyalty in both…
DNA minicircles clarify the specific role of DNA structure on retroviral integration
Pasi, Marco; Mornico, Damien; Volant, Stevenn; Juchet, Anna; Batisse, Julien; Bouchier, Christiane; Parissi, Vincent; Ruff, Marc; Lavery, Richard; Lavigne, Marc
2016-01-01
Chromatin regulates the selectivity of retroviral integration into the genome of infected cells. At the nucleosome level, both histones and DNA structure are involved in this regulation. We propose a strategy that allows to specifically study a single factor: the DNA distortion induced by the nucleosome. This strategy relies on mimicking this distortion using DNA minicircles (MCs) having a fixed rotational orientation of DNA curvature, coupled with atomic-resolution modeling. Contrasting MCs with linear DNA fragments having identical sequences enabled us to analyze the impact of DNA distortion on the efficiency and selectivity of integration. We observed a global enhancement of HIV-1 integration in MCs and an enrichment of integration sites in the outward-facing DNA major grooves. Both of these changes are favored by LEDGF/p75, revealing a new, histone-independent role of this integration cofactor. PFV integration is also enhanced in MCs, but is not associated with a periodic redistribution of integration sites, thus highlighting its distinct catalytic properties. MCs help to separate the roles of target DNA structure, histone modifications and integrase (IN) cofactors during retroviral integration and to reveal IN-specific regulation mechanisms. PMID:27439712
Linear Instability of a Uni-Directional Transversely Sheared Mean Flow
NASA Technical Reports Server (NTRS)
Wundrow, David W.
1996-01-01
The effect of spanwise-periodic mean-flow distortions (i.e. streamwise-vortex structures) on the evolution of small-amplitude, single-frequency instability waves in an otherwise two-dimensional shear flow is investigated. The streamwise-vortex structures are taken to be just weak enough so that the spatially growing instability waves behave (locally) like linear perturbations about a uni-directional transversely sheared mean flow. Numerical solutions are computed and discussed for both the mean flow and the instability waves. The influence of the streamwise-vortex wavelength on the properties of the most rapidly growing instability wave is also discussed.
Metallographic study of metallic fragment of lunar surface material
NASA Technical Reports Server (NTRS)
Mints, R. I.; Petukhova, T. M.; Ivanov, A. V.
1974-01-01
A high precision investigation of a metallic fragment from the lunar material returned by the Soviet Luna 16 automatic station revealed three characteristic temperature intervals with different kinetics of solid solution decomposition. The following were found in the structure of the iron-nickel-cobalt alloy: (1) delta-phase and alpha-ferrite of diffusional, displacement origin in the grain boundary and acicular forms; and (2) martensite of isothermal and athermal nature, acicular, lamellar, massive, and dendritic. The diversity of the shapes of structural constituents is associated with the effect on their formation of elastic distortions and various mechanisms of deformation relaxation processes.
The nature of operating flight loads and their effect on propulsion system structures
NASA Technical Reports Server (NTRS)
Dickenson, K. H.; Martin, R. L.
1981-01-01
Past diagnostics studies revealed the primary causes of performance deterioration of high by-pass turbofan engines to be flight loads, erosion, and thermal distortion. The various types of airplane loads that are imposed on the engine throughout the lifetime of an airplane are examined. These include flight loads from gusts and maneuvers and ground loads from takeoff, landing, and taxi conditions. Clarification is made in definitions of the airframer's limit and ultimate design loads and the engine manufacturer's operating design loads. Finally, the influence of these loads on the propulsion system structures is discussed.
Scaling of heat transfer augmentation due to mechanical distortions in hypervelocity boundary layers
NASA Astrophysics Data System (ADS)
Flaherty, W.; Austin, J. M.
2013-10-01
We examine the response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature. Surface heat transfer and visual boundary layer thickness data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. This scaling may be explained by the application of Lees similarity. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortices to an adverse pressure gradient is investigated. Surface streak evolution is visualized over the different surface geometries using fast response pressure sensitive paint. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures.
Non-rigid precession of magnetic stars
NASA Astrophysics Data System (ADS)
Lander, S. K.; Jones, D. I.
2017-06-01
Stars are, generically, rotating and magnetized objects with a misalignment between their magnetic and rotation axes. Since a magnetic field induces a permanent distortion to its host, it provides effective rigidity even to a fluid star, leading to bulk stellar motion that resembles free precession. This bulk motion is, however, accompanied by induced interior velocity and magnetic field perturbations, which are oscillatory on the precession time-scale. Extending previous work, we show that these quantities are described by a set of second-order perturbation equations featuring cross-terms scaling with the product of the magnetic and centrifugal distortions to the star. For the case of a background toroidal field, we reduce these to a set of differential equations in radial functions, and find a method for their solution. The resulting magnetic field and velocity perturbations show complex multipolar structure and are strongest towards the centre of the star.
de Vries, Sanne L A; Hoeve, Machteld; Stams, Geert Jan J M; Asscher, Jessica J
2016-02-01
The aim of this study was to test whether the associations between adolescent-parent attachment and externalizing problem behavior of adolescents were mediated by adolescent cognitive distortions, self-esteem, parental monitoring and association with deviant peers. A total of 102 adolescents (71 % male; aged 12-19 years) at risk for developing delinquent behaviors reported on attachment, parental monitoring, aggressive and delinquent behavior and peers. Mediation effects were tested by using structural equation modeling. Different pathways were found depending on the type of externalizing behavior. The association between attachment and direct and indirect aggressive behavior was mediated by cognitive distortions. The relation between attachment and delinquency was mediated by deviant peers and parental monitoring. We argue that clinical practice should focus on the attachment relationship between adolescent and parents in order to positively affect risk and protective factors for adolescents' aggressive and delinquent behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, S.L.; Song, X.Z.; Ma, J.G.
1998-08-24
Axial ligation of nickel(II) 5,10,15,20-tetraphenylporphyrin (NiTPP) with pyrrolidine or piperidine has been investigated using X-ray crystallography, UV-visible spectroscopy, resonance Raman spectroscopy, and molecular mechanics (MM) calculations. Distinct v{sub 4} Raman lines are found for the 4-, 5-, and 6-coordinate species of NiTPP. The equilibrium constants for addition of the first and second pyrrolidine axial ligands are 1.1 and 3.8 M{sup {minus}1}, respectively. The differences in the calculated energies of the conformers having different ligand rotational angles are small so they may coexist in solution. Because of the similarity in macrocyclic structural parameters of these conformers and the free rotation ofmore » the axial ligands, narrow and symmetric v{sub 2} and v{sub 8} Raman lines are observed. Nonetheless, the normal-coordinate structural-decomposition analysis of the nonplanar distortions of the calculated structures and the crystal structure of the bis(piperidine) complex reveals a relationship between the orientations of axial ligand(s) and the macrocyclic distortions. For the 5-coordinate complex with the plane of the axial ligand bisecting the Ni-N{sub pyrrole} bonds, a primarily ruffled deformation results. With the ligand plane eclipsing the Ni-N{sub pyrrole} bonds, a mainly saddled deformation occurs. With the addition of the second axial ligand, the small doming of the 5-coordinate complexes disappears, and ruffling or saddling deformations change depending on the relative orientation of the two axial ligands. The crystal structure of the NiTPP bis(piperidine) complex shows a macrocycle distortion composed of wav(x) and wav(y) symmetric deformations, but no ruffling, saddling, or doming. The difference in the calculated and observed distortions results partly from the phenyl group orientation imposed by crystal packing forces. MM calculations predict three stable conformers (ruf, sad, and planar) for 4-coordinate NiTPP, and resonance Raman evidence for these conformers was given previously.« less
Ground-state energies of simple metals
NASA Technical Reports Server (NTRS)
Hammerberg, J.; Ashcroft, N. W.
1974-01-01
A structural expansion for the static ground-state energy of a simple metal is derived. Two methods are presented, one an approach based on single-particle band structure which treats the electron gas as a nonlinear dielectric, the other a more general many-particle analysis using finite-temperature perturbation theory. The two methods are compared, and it is shown in detail how band-structure effects, Fermi-surface distortions, and chemical-potential shifts affect the total energy. These are of special interest in corrections to the total energy beyond third order in the electron-ion interaction and hence to systems where differences in energies for various crystal structures are exceptionally small. Preliminary calculations using these methods for the zero-temperature thermodynamic functions of atomic hydrogen are reported.
Effective collision strengths for the electron impact excitation of Mg
NASA Astrophysics Data System (ADS)
Hudson, C. E.; Ramsbottom, C. A.; Norrington, P. H.; Scott, M. P.
2008-05-01
Electron impact excitation collision strengths for fine structure transitions of Mg,have been determined by a Breit-Pauli R-matrix calculation. The target states are represented by configuration interaction wavefunctions and consist of the 19 lowest LS states, having configurations 2s^22p^4, 2s2p^5, 2p^6, 2s^22p^33s and 2s^22p^33p. These target states give rise to 37 fine structure levels and 666 possible transitions. The effective collision strengths are calculated by averaging the electron collision strengths over a Maxwellian distribution of electron velocities. Effective collision strengths for transitions between the fine structure levels are given for electron temperatures in the range 10Te(K) = 3.0 - 7.0. Results are compared with the previous R-matrix calculation of Butler & Zeippen (AASS, 1994) and the recent Distorted Wave evaluations of Bhatia, Landi & Eissner (ADNDT, 2006).
NASA Astrophysics Data System (ADS)
Zhang, Hongguang; Wang, Jianhua; Xie, Liang; Fu, Dexiang; Guo, Yanyan; Li, Yongtao
2017-11-01
We report the crystal and electronic structures and magnetic properties of non-magnetic Y3+ ion doped SmCrO3 crystals. Structural distortion and electronic structure variation are caused by cation disorder due to Y doping. Although the spin moment of Sm3+ is diluted by nonmagnetic Y ions, spin reorientation continues to exist, and the temperature-dependent magnetization reversal effect and the spontaneous exchange bias effect under zero field cooling are simultaneously induced below Neel temperature. Significantly, the method of doping promotes the achievement of temperature dependent tunable switching of magnetization and sign of a spontaneous exchange bias from positive to negative. Our work provides more tunable ways to the sign reversal of magnetization and exchange bias, which have potential application in designing magnetic random access memory devices, thermomagnetic switches and spin-valve devices.
NASA Technical Reports Server (NTRS)
Sandercock, D. M.; Sanger, N. L.
1974-01-01
A single rotating blade row was tested with two magnitudes of tip radial distortion and two magnitudes of hub radial distortion imposed on the inlet flow. The rotor was about 50 centimeters (20 in.) in diameter and had a design operating tip speed of approximately 420 meters per second (1380 ft/sec). Overall performance at 60, 80, and 100 percent of equivalent design speed generally showed a decrease (compared to undistorted flow) in rotor stall margin with tip radial distortion but no change, or a slight increase, in rotor stall margin with hub radial distortion. At design speed there was a decrease in rotor overall total pressure ratio and choke flow with all inlet flow distortions. Radial distributions of blade element parameters are presented for selected operating conditions at design speed.
Daneshmand, Saeed; Marathe, Thyagaraja; Lachapelle, Gérard
2016-10-31
The use of antenna arrays in Global Navigation Satellite System (GNSS) applications is gaining significant attention due to its superior capability to suppress both narrowband and wideband interference. However, the phase distortions resulting from array processing may limit the applicability of these methods for high precision applications using carrier phase based positioning techniques. This paper studies the phase distortions occurring with the adaptive blind beamforming method in which satellite angle of arrival (AoA) information is not employed in the optimization problem. To cater to non-stationary interference scenarios, the array weights of the adaptive beamformer are continuously updated. The effects of these continuous updates on the tracking parameters of a GNSS receiver are analyzed. The second part of this paper focuses on reducing the phase distortions during the blind beamforming process in order to allow the receiver to perform carrier phase based positioning by applying a constraint on the structure of the array configuration and by compensating the array uncertainties. Limitations of the previous methods are studied and a new method is proposed that keeps the simplicity of the blind beamformer structure and, at the same time, reduces tracking degradations while achieving millimetre level positioning accuracy in interference environments. To verify the applicability of the proposed method and analyze the degradations, array signals corresponding to the GPS L1 band are generated using a combination of hardware and software simulators. Furthermore, the amount of degradation and performance of the proposed method under different conditions are evaluated based on Monte Carlo simulations.
Evaluating the Validity Indices of the Personality Assessment Inventory-Adolescent Version.
Meyer, Justin K; Hong, Sang-Hwang; Morey, Leslie C
2015-08-01
Past research has established strong psychometric properties of several indicators of response distortion on the Personality Assessment Inventory (PAI). However, to date, it has been unclear whether the response distortion indicators of the adolescent version of the PAI (PAI-A) operate in an equally valid manner. The current study sought to examine several response distortion indicators on the PAI-A to determine their relative efficacy at the detection of distorted responding, including both positive distortion and negative distortion. Protocols of 98 college students asked to either overreport or underreport were compared with 98 age-matched individuals sampled from the clinical standardization sample and the community standardization sample, respectively. Comparisons between groups were accomplished through the examination of effect sizes and receiver operating characteristic curves. All indicators demonstrated the ability to distinguish between actual and feigned responding, including several newly developed indicators. This study provides support for the ability of distortion indicators developed for the PAI to also function appropriately on the PAI-A. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Jo, Vinna; Woo Lee, Dong; Koo, Hyun-Joo; Ok, Kang Min
2011-04-01
Three new uni-dimensional alkali metal titanium fluoride materials, A2TiF 5· nH 2O ( A=K, Rb, or Cs; n=0 or 1) have been synthesized by hydrothermal reactions. The structures of A2TiF 5· nH 2O have been determined by single-crystal X-ray diffraction. The Ti 4+ cations have been reduced to Ti 3+ during the synthesis reactions. All three A2TiF 5· nH 2O materials contain novel 1-D chain structures that are composed of the slightly distorted Ti 3+F 6 corner-sharing octahedra attributable to the Jahn-Teller distortion. The coordination environment of the alkali metal cations plays an important role to determine the degree of turning in the chain structures. Complete structural analyses, Infrared and UV-vis diffuse reflectance spectra, and thermal analyses are presented, as are electronic structure calculations.
Mao, Lingling; Wu, Yilei; Stoumpos, Constantinos C; Wasielewski, Michael R; Kanatzidis, Mercouri G
2017-03-29
Hybrid inorganic-organic perovskites are developing rapidly as high performance semiconductors. Recently, two-dimensional (2D) perovskites were found to have white-light, broadband emission in the visible range that was attributed mainly to the role of self-trapped excitons (STEs). Here, we describe three new 2D lead bromide perovskites incorporating a series of bifunctional ammonium dications as templates which also emit white light: (1) α-(DMEN)PbBr 4 (DMEN = 2-(dimethylamino)ethylamine), which adopts a unique corrugated layered structure in space group Pbca with unit cell a = 18.901(4) Å, b = 11.782(2) Å, and c = 23.680(5) Å; (2) (DMAPA)PbBr 4 (DMAPA = 3-(dimethylamino)-1-propylamine), which crystallizes in P2 1 /c with a = 10.717(2) Å, b = 11.735(2) Å, c = 12.127(2) Å, and β = 111.53(3)°; and (3) (DMABA)PbBr 4 (DMABA = 4-dimethylaminobutylamine), which adopts Aba2 with a = 41.685(8) Å, b = 23.962(5) Å, and c = 12.000(2) Å. Photoluminescence (PL) studies show a correlation between the distortion of the "PbBr 6 " octahedron in the 2D layer and the broadening of PL emission, with the most distorted structure having the broadest emission (183 nm full width at half-maximum) and longest lifetime (τ avg = 1.39 ns). The most distorted member α-(DMEN)PbBr 4 exhibits white-light emission with a color rendering index (CRI) of 73 which is similar to a fluorescent light source and correlated color temperature (CCT) of 7863 K, producing "cold" white light.
Using a plenoptic sensor to reconstruct vortex phase structures.
Wu, Chensheng; Ko, Jonathan; Davis, Christopher C
2016-07-15
A branch point problem and its solution commonly involve recognizing and reconstructing a vortex phase structure around a singular point. In laser beam propagation through random media, the destructive phase contributions from various parts of a vortex phase structure will cause a dark area in the center of the beam's intensity profile. This null of intensity can, in turn, prevent the vortex phase structure from being recognized. In this Letter, we show how to use a plenoptic sensor to transform the light field of a vortex beam so that a simple and direct reconstruction algorithm can be applied to reveal the vortex phase structure. As a result, we show that the plenoptic sensor is effective in detecting branch points and can be used to reconstruct phase distortion in a beam in a wide sense.
ERIC Educational Resources Information Center
Robbins, Rachel; McKone, Elinor; Edwards, Mark
2007-01-01
Adaptation to distorted faces is commonly interpreted as a shift in the face-space norm for the adapted attribute. This article shows that the size of the aftereffect varies as a function of the distortion level of the adapter. The pattern differed for different facial attributes, increasing with distortion level for symmetric deviations of eye…
Deviation rectification for dynamic measurement of rail wear based on coordinate sets projection
NASA Astrophysics Data System (ADS)
Wang, Chao; Ma, Ziji; Li, Yanfu; Zeng, Jiuzhen; Jin, Tan; Liu, Hongli
2017-10-01
Dynamic measurement of rail wear using a laser imaging system suffers from random vibrations in the laser-based imaging sensor which cause distorted rail profiles. In this paper, a simple and effective method for rectifying profile deviation is presented to address this issue. There are two main steps: profile recognition and distortion calibration. According to the constant camera and projector parameters, efficient recognition of measured profiles is achieved by analyzing the geometric difference between normal profiles and distorted ones. For a distorted profile, by constructing coordinate sets projecting from it to the standard one on triple projecting primitives, including the rail head inner line, rail waist curve and rail jaw, iterative extrinsic camera parameter self-compensation is implemented. The distortion is calibrated by projecting the distorted profile onto the x-y plane of a measuring coordinate frame, which is parallel to the rail cross section, to eliminate the influence of random vibrations in the laser-based imaging sensor. As well as evaluating the implementation with comprehensive experiments, we also compare our method with other published works. The results exhibit the effectiveness and superiority of our method for the dynamic measurement of rail wear.
NASA Technical Reports Server (NTRS)
Mcrae, Glenn A.; Cohen, Edward A.; Sponsler, Michael B.; Dougherty, Dennis A.
1986-01-01
The microwave spectra of five isotopic species of bicyclo (1.1.1) pentanone have been investigated. The rotational constants along with various centrifugal distortion constants for each species have been determined. From the rotational constants, a complete r(s) structure has been determined for the heavy atoms. Analysis of Stark effect measurements has shown the dipole moment to be along the a principal inertial axis with a magnitude of 3.164 (5) D. These results are compared with those obtained by four current theoretical methods: molecular mechanics (MM2), MNDO, and Hartree-Fock ab initio theory with STO-3G and 3-21G basis sets.
Nucleic acid duplexes incorporating a dissociable covalent base pair
Gao, Kui; Orgel, Leslie E.
1999-01-01
We have used molecular modeling techniques to design a dissociable covalently bonded base pair that can replace a Watson-Crick base pair in a nucleic acid with minimal distortion of the structure of the double helix. We introduced this base pair into a potential precursor of a nucleic acid double helix by chemical synthesis and have demonstrated efficient nonenzymatic template-directed ligation of the free hydroxyl groups of the base pair with appropriate short oligonucleotides. The nonenzymatic ligation reactions, which are characteristic of base paired nucleic acid structures, are abolished when the covalent base pair is reduced and becomes noncoplanar. This suggests that the covalent base pair linking the two strands in the duplex is compatible with a minimally distorted nucleic acid double-helical structure. PMID:10611299
Receiver IQ mismatch estimation in PDM CO-OFDM system using training symbol
NASA Astrophysics Data System (ADS)
Peng, Dandan; Ma, Xiurong; Yao, Xin; Zhang, Haoyuan
2017-07-01
Receiver in-phase/quadrature (IQ) mismatch is hard to mitigate at the receiver via using conventional method in polarization division multiplexed (PDM) coherent optical orthogonal frequency division multiplexing (CO-OFDM) system. In this paper, a novel training symbol structure is proposed to estimate IQ mismatch and channel distortion. Combined this structure with Gram Schmidt orthogonalization procedure (GSOP) algorithm, we can get lower bit error rate (BER). Meanwhile, based on this structure one estimation method is deduced in frequency domain which can achieve the estimation of IQ mismatch and channel distortion independently and improve the system performance obviously. Numerical simulation shows that the proposed two methods have better performance than compared method at 100 Gb/s after 480 km fiber transmission. Besides, the calculation complexity is also analyzed.
Schacht, Julia; Gaston, Nicola
2016-10-18
The electronic properties of doped thiolate-protected gold clusters are often referred to as tunable, but their study to date, conducted at different levels of theory, does not allow a systematic evaluation of this claim. Here, using density functional theory, the applicability of the superatomic model to these clusters is critically evaluated, and related to the degree of structural distortion and electronic inhomogeneity in the differently doped clusters, with dopant atoms Pd, Pt, Cu, and Ag. The effect of electron number is systematically evaluated by varying the charge on the overall cluster, and the nominal number of delocalized electrons, employed in the superatomic model, is compared to the numbers obtained from Bader analysis of individual atomic charges. We find that the superatomic model is highly applicable to all of these clusters, and is able to predict and explain the changing electronic structure as a function of charge. However, significant perturbations of the model arise due to doping, due to distortions of the core structure of the Au 13 [RS(AuSR) 2 ] 6 - cluster. In addition, analysis of the electronic structure indicates that the superatomic character is distributed further across the ligand shell in the case of the doped clusters, which may have implications for the self-assembly of these clusters into materials. The prediction of appropriate clusters for such superatomic solids relies critically on such quantitative analysis of the tunability of the electronic structure. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Mitchell, Roger H.; Alexander, Malcolm; Cranswick, Lachlan M. D.; Swainson, Ian P.
2007-12-01
The cell dimensions and crystal structures of the fluoroperovskite NaMgF3 (neighborite), synthesized by solid state methods, have been determined by powder neutron diffraction and Rietveld refinement over the temperature range 300 3.6 K using Pt metal as an internal standard for calibration of the neutron wavelength. These data show that Pbnm NaMgF3 does not undergo any phase transitions to structures of lower symmetry with decreasing temperature. The cell dimensions and atomic coordinates together with polyhedron volumes and distortion indices are given for Pbnm NaMgF3 at 25 K intervals from 300 to 3.6 K. Decreases in the a and c cell dimensions reach a saturation point at 50 K, whereas the b dimension becomes saturated at 150 K. The distortion of the structure of Pbnm NaMgF3 from the aristotype cubic Pmifmmodeexpandafterbarelseexpandafter\\=fi{3}m structure is described in terms of the tilting of the MgF6 octahedra according to the tilt scheme a - a - c + . With decreasing temperature the antiphase tilt ( a -) increases from 14.24° to 15.39°, whereas the in-phase tilt ( c + ) remains effectively constant at ˜10.7°. Changes in the tilt angles are insufficient to cause changes in the coordination sphere of Na that might induce a low temperature phase transition. The structure of Pbnm NaMgF3 is also described in terms of normal mode analysis and displacements of the condensed normal modes are compared with those of Pbnm KCaF3.
Wang, Lingrui; Wang, Kai; Xiao, Guanjun; Zeng, Qiaoshi; Zou, Bo
2016-12-15
Organometal halide perovskites are promising materials for optoelectronic devices. Further development of these devices requires a deep understanding of their fundamental structure-property relationships. The effect of pressure on the structural evolution and band gap shifts of methylammonium lead chloride (MAPbCl 3 ) was investigated systematically. Synchrotron X-ray diffraction and Raman experiments provided structural information on the shrinkage, tilting distortion, and amorphization of the primitive cubic unit cell. In situ high pressure optical absorption and photoluminescence spectra manifested that the band gap of MAPbCl 3 could be fine-tuned to the ultraviolet region by pressure. The optical changes are correlated with pressure-induced structural evolution of MAPbCl 3 , as evidenced by band gap shifts. Comparisons between Pb-hybrid perovskites and inorganic octahedra provided insights on the effects of halogens on pressure-induced transition sequences of these compounds. Our results improve the understanding of the structural and optical properties of organometal halide perovskites.
Intrinsic Local Distortions and charge carrier behavior in CMR manganites and cobaltites
NASA Astrophysics Data System (ADS)
Bridges, Frank
2010-03-01
We compare and contrast the local structure and electronic configurations in two oxide systems La1-xSrxCoO3 (LSCO) and La1-yCayMnO3 (LCMO). Although these oxides may appear quite similar they have rather different properties. At x=0, LaCoO3 (LCO) has unusual magnetic properties - diamagnetic at low T but developing a moment near 100K. The Sr doped LSCO materials show ferromagnetism for x > 0.2. For LCO, one of the possible spin state configurations called the intermediate spin (IS) state (S=1), should be Jahn-Teller (JT) active, while the low spin (S=0) and high spin (S=2) states have no JT distortion. Early local structure measurements suggested a JT distortion was present in LCO and therefore supported an IS spin model. However we find no evidence for any significant JT distortion (and hence no support for the IS model) for a range of bulk and nanoparticle cobaltites La1-xSrxCoO3, x = 0 - 0.35. In contrast there are large JT distortions in the manganites LCMO, 0.2 < x < 0.5 (Mn-O bonds), for which CMR behavior is observed. We have shown that the JT distortions in the manganites depend on both temperature T and magnetic field B, and from the B-field dependence, propose the size and nature of the polarons in LCMO. We also present Co K-edge XANES data that shown no significant shift of the edge for the cobaltites as the Sr concentration increases from x =0 to 0.35 indicating essentially no change in the electronic configuration about Co; consequently, the holes introduced via Sr doping appear to go primarily into the O bands. In contrast there is a large shift of the Mn K-edge with Ca doping indicating a change in the average Mn valence, and a corresponding change in the Mn electronic configuration. We briefly discuss some possible models.
Correction of dichroic mirror-induced PSF distortion in STED microscopy
NASA Astrophysics Data System (ADS)
Li, Yanghui; Zhou, Hui; Liu, Xiaoyu; Xia, Chengliang; Wang, Le
2018-07-01
Due to its spectral transmission/reflection properties, dichroic mirror (DM) is widely applied in nearly all microscopes to separate and combine beams with diverse wavelengths. However, its potential distortion effects to the point-spread function (PSF) have been ignored to a large extent. Here, we built a mathematical model to quantify these effects. Specifically, we focus on STED microscopy, whose performance is extremely sensitive to the systematic deficiencies. Both excitation and depletion beams are analysed, and the peak intensity and the shape of the effective PSF are calculated accordingly. More importantly, the strategy to compensate the DM-induced PSF distortion is also given in this paper.
The Potential-Well Distortion Effect and Coherent Instabilities of Electron Bunches in Storage Rings
NASA Astrophysics Data System (ADS)
Korchuganov, V. N.; Smygacheva, A. S.; Fomin, E. A.
2018-05-01
The effect of electromagnetic interaction between electron bunches and the vacuum chamber of a storage ring on the longitudinal motion of bunches is studied. Specifically, the potential-well distortion effect and the so-called coherent instabilities of coupled bunches are considered. An approximate analytical solution for the frequencies of incoherent oscillations of bunches distributed arbitrarily within the ring is obtained for a distorted potential well. A new approach to determining frequencies of coherent oscillations and an approximate analytical relation for estimating the stability of a system of bunches as a function of their distribution in the accelerator orbit are presented.
Exploring the effect of nanoholes on arsenene: a density functional theory study
NASA Astrophysics Data System (ADS)
Mushtaq, M.; Zhou, Y. G.; Xiang, X.
2018-05-01
Effectively modulating the electronic and magnetic properties of a two-dimensional system is critical for the application of it in nanoscale devices. In this work, we explore the effect of nanohole on arsenene on the basis of density functional theory calculations. Our calculations show that, except slight distortion at the corner of nanoholes, geometries of both un-hydrogenated nanohole-embedded arsenene (As-NH) structure and hydrogenated nanohole-embedded arsenene (H-As-NH) structure are well maintained after optimization. Interestingly, the As-NH structure can be magnetized so that it can represent ferromagnetic, ferrimagnetic or antiferromagnetic behavior depending on the shape of the nanoholes. Furthermore, As-NH structure with triangle nanoholes is expected to exhibit remarkable magnetism. Besides, owning to the induction of flat defect levels by the nanoholes, As-NH structure can represent a relatively small band gap. In contrast, the H-As-NH structure is shown to lack the magnetism due to the saturation of unpaired As atoms. In this case, the H-As-NH structure exhibits a relatively large band gap due to the quantum confinement effect. These results indicate an opportunity for the design of arsenene-based nanoscale devices with potential applications in spintronic and optical fields.
Exploring the effect of nanoholes on arsenene: a density functional theory study.
Mushtaq, M; Zhou, Y G; Xiang, X
2018-05-16
Effectively modulating the electronic and magnetic properties of a two-dimensional system is critical for the application of it in nanoscale devices. In this work, we explore the effect of nanohole on arsenene on the basis of density functional theory calculations. Our calculations show that, except slight distortion at the corner of nanoholes, geometries of both un-hydrogenated nanohole-embedded arsenene (As-NH) structure and hydrogenated nanohole-embedded arsenene (H-As-NH) structure are well maintained after optimization. Interestingly, the As-NH structure can be magnetized so that it can represent ferromagnetic, ferrimagnetic or antiferromagnetic behavior depending on the shape of the nanoholes. Furthermore, As-NH structure with triangle nanoholes is expected to exhibit remarkable magnetism. Besides, owning to the induction of flat defect levels by the nanoholes, As-NH structure can represent a relatively small band gap. In contrast, the H-As-NH structure is shown to lack the magnetism due to the saturation of unpaired As atoms. In this case, the H-As-NH structure exhibits a relatively large band gap due to the quantum confinement effect. These results indicate an opportunity for the design of arsenene-based nanoscale devices with potential applications in spintronic and optical fields.
Application-Driven No-Reference Quality Assessment for Dermoscopy Images With Multiple Distortions.
Xie, Fengying; Lu, Yanan; Bovik, Alan C; Jiang, Zhiguo; Meng, Rusong
2016-06-01
Dermoscopy images often suffer from blur and uneven illumination distortions that occur during acquisition, which can adversely influence consequent automatic image analysis results on potential lesion objects. The purpose of this paper is to deploy an algorithm that can automatically assess the quality of dermoscopy images. Such an algorithm could be used to direct image recapture or correction. We describe an application-driven no-reference image quality assessment (IQA) model for dermoscopy images affected by possibly multiple distortions. For this purpose, we created a multiple distortion dataset of dermoscopy images impaired by varying degrees of blur and uneven illumination. The basis of this model is two single distortion IQA metrics that are sensitive to blur and uneven illumination, respectively. The outputs of these two metrics are combined to predict the quality of multiply distorted dermoscopy images using a fuzzy neural network. Unlike traditional IQA algorithms, which use human subjective score as ground truth, here ground truth is driven by the application, and generated according to the degree of influence of the distortions on lesion analysis. The experimental results reveal that the proposed model delivers accurate and stable quality prediction results for dermoscopy images impaired by multiple distortions. The proposed model is effective for quality assessment of multiple distorted dermoscopy images. An application-driven concept for IQA is introduced, and at the same time, a solution framework for the IQA of multiple distortions is proposed.
NASA Technical Reports Server (NTRS)
Braithwaite, W. M.
1973-01-01
The effects of circumferential distortion of the total temperature entering 25, 50, and 75 percent of the inlet circumferential annulus of a turbofan engine were determined. Complete compressor stall resulted from distortions of from 14 to 20 percent of the face averaged temperature. Increasing the temperature level in one sector resulted in that sector moving toward stall by decreasing the equivalent rotor speeds while the pressure ratio remained approximately constant. Stall originated as a rotating zone in the low-pressure compressor which resulted as a terminal stall in the high-pressure compressor. Decreasing the Reynolds number index to 0.25 from 0.5 reduced the required distortion for stall by 50 percent for the conditions investigated.
Lattice distortions in complex oxides and their relation to the thermal properties
NASA Astrophysics Data System (ADS)
Srivastava, Archana; Gaur, N. K.
2018-05-01
We have investigated the various lattice distortions in complex oxides Ca1-xLaxMnO3 and its effect on elastic and thermal properties of these perovskite manganites, especially Debye temperature of these complex oxides. The revealed data on Bulk modulus and Debye temperature studied as a function of lattice distortions using a novel atomistic approach of Atom in Molecules(AIM) theory and Modified Rigid Ion Model (MRIM) are in closer agreement with the available experimental data for some concentrations (x) of Ca1-xLaxMnO3. We demonstrate that the distortions introduced due to electron concentration, size mismatch and JT effects are the dominant factor, whereas charge mismatch and buckling of Mn-O-Mn angle influence the thermal properties to a lesser degree in the ferromagnetic state.
NASA Astrophysics Data System (ADS)
Boltersdorf, Jonathan; Maggard, Paul A.
2015-09-01
The PbTa4O11 and BiTa7O19 phases were prepared by ion-exchange and solid-state methods, respectively, and their structures were characterized by neutron time-of-flight diffraction and Rietveld refinement methods (PbTa4O11, R 3 (No. 146), a=6.23700(2) Å, c=36.8613(1) Å; BiTa7O19, P 6 bar c 2 (No. 188), a=6.2197(2) Å, c=20.02981(9) Å). Their structures are comprised of layers of TaO6 octahedra surrounded by three 7-coordinate Pb(II) cations or two 8-coordinate Bi(III) cations. These layers alternate down the c-axis with α-U3O8 types of single and double TaO7 pentagonal bipyramid layers. In contrast to earlier studies, both phases are found to crystallize in noncentrosymmetric structures. Symmetry-lowering structural distortions within PbTa4O11, i.e. R 3 bar c →R3, are found to be a result of the displacement of the Ta atoms within the TaO7 and TaO6 polyhedra, towards the apical and facial oxygen atoms, respectively. In BiTa7O19, relatively lower reaction temperatures leads to an ordering of the Bi/Ta cations within a lower-symmetry structure, i.e., P63/mcm→ P 6 bar c 2 . In the absence of Bi/Ta site disorder, the Ta-O-Ta bond angles decrease and the Ta-O bond distances increase within the TaO7 double layers. Scanning electron microscopy images reveal two particle morphologies for PbTa4O11, hexagonal rods and finer irregularly-shaped particles, while BiTa7O19 forms as aggregates of irregularly-shaped particles. Electronic-structure calculations confirm the highest-energy valence band states are comprised of O 2p-orbitals and the respective Pb 6s-orbital and Bi 6s-orbital contributions. The lowest-energy conduction band states are composed of Ta 5d-orbital contributions that are delocalized over the TaO6 octahedra and layers of TaO7 pentagonal bipyramids. The symmetry-lowering distortions in the PbTa4O11 structure, and the resulting effects on its electronic structure, lead to its relatively higher photocatalytic activity compared to similar structures without these distortions.
NASA Technical Reports Server (NTRS)
Bagg, Stacey D.; Sochalski-Kolbus, Lindsay M.; Bunn, Jeffrey R.
2016-01-01
The NASA Marshall Space Flight Center (MSFC) is developing Additive Manufacturing (AM) - both in-space AM for on-demand parts, tools, or structures, and on-earth AM for rapid, reduced-cost, small volume production of complex space-flight hardware. Selective Laser Melting (SLM) is an on-earth AM technology that MSFC is using to build Alloy 718 rocket engine components. An understanding of the SLM-718 material properties is required to design, build, and qualify these components for space flight. Residual stresses and are of particular interest for this AM process, since SLM is a series of approximately 100 micron-wide welds, where highly non-linear heating and cooling, severe thermal gradients and repeated thermal cycling can result in high residual stresses within the component. These stresses may cause degraded material properties, and warp or distort the geometry of the SLM component. The distortions can render the component out-of-tolerance when inspected, and even interrupt or halt the build process if the warped material prevents the SLM machine from operating properly. The component must be scrapped and re-designed, which is time consuming and costly. If residual stresses are better understood, and can be predicted, these effects can be mitigated early in the component's design. the compressive residual stresses in the z-direction were highest in the chess sample, followed by island then continuous. This may be due to the binding nature of the segments
Chung, Kuo-Liang; Hsu, Tsu-Chun; Huang, Chi-Chao
2017-10-01
In this paper, we propose a novel and effective hybrid method, which joins the conventional chroma subsampling and the distortion-minimization-based luma modification together, to improve the quality of the reconstructed RGB full-color image. Assume the input RGB full-color image has been transformed to a YUV image, prior to compression. For each 2×2 UV block, one 4:2:0 subsampling is applied to determine the one subsampled U and V components, U s and V s . Based on U s , V s , and the corresponding 2×2 original RGB block, a main theorem is provided to determine the ideally modified 2×2 luma block in constant time such that the color peak signal-to-noise ratio (CPSNR) quality distortion between the original 2×2 RGB block and the reconstructed 2×2 RGB block can be minimized in a globally optimal sense. Furthermore, the proposed hybrid method and the delivered theorem are adjusted to tackle the digital time delay integration images and the Bayer mosaic images whose Bayer CFA structure has been widely used in modern commercial digital cameras. Based on the IMAX, Kodak, and screen content test image sets, the experimental results demonstrate that in high efficiency video coding, the proposed hybrid method has substantial quality improvement, in terms of the CPSNR quality, visual effect, CPSNR-bitrate trade-off, and Bjøntegaard delta PSNR performance, of the reconstructed RGB images when compared with existing chroma subsampling schemes.
Image Quality Assessment Based on Local Linear Information and Distortion-Specific Compensation.
Wang, Hanli; Fu, Jie; Lin, Weisi; Hu, Sudeng; Kuo, C-C Jay; Zuo, Lingxuan
2016-12-14
Image Quality Assessment (IQA) is a fundamental yet constantly developing task for computer vision and image processing. Most IQA evaluation mechanisms are based on the pertinence of subjective and objective estimation. Each image distortion type has its own property correlated with human perception. However, this intrinsic property may not be fully exploited by existing IQA methods. In this paper, we make two main contributions to the IQA field. First, a novel IQA method is developed based on a local linear model that examines the distortion between the reference and the distorted images for better alignment with human visual experience. Second, a distortion-specific compensation strategy is proposed to offset the negative effect on IQA modeling caused by different image distortion types. These score offsets are learned from several known distortion types. Furthermore, for an image with an unknown distortion type, a Convolutional Neural Network (CNN) based method is proposed to compute the score offset automatically. Finally, an integrated IQA metric is proposed by combining the aforementioned two ideas. Extensive experiments are performed to verify the proposed IQA metric, which demonstrate that the local linear model is useful in human perception modeling, especially for individual image distortion, and the overall IQA method outperforms several state-of-the-art IQA approaches.
Perceptual quality prediction on authentically distorted images using a bag of features approach
Ghadiyaram, Deepti; Bovik, Alan C.
2017-01-01
Current top-performing blind perceptual image quality prediction models are generally trained on legacy databases of human quality opinion scores on synthetically distorted images. Therefore, they learn image features that effectively predict human visual quality judgments of inauthentic and usually isolated (single) distortions. However, real-world images usually contain complex composite mixtures of multiple distortions. We study the perceptually relevant natural scene statistics of such authentically distorted images in different color spaces and transform domains. We propose a “bag of feature maps” approach that avoids assumptions about the type of distortion(s) contained in an image and instead focuses on capturing consistencies—or departures therefrom—of the statistics of real-world images. Using a large database of authentically distorted images, human opinions of them, and bags of features computed on them, we train a regressor to conduct image quality prediction. We demonstrate the competence of the features toward improving automatic perceptual quality prediction by testing a learned algorithm using them on a benchmark legacy database as well as on a newly introduced distortion-realistic resource called the LIVE In the Wild Image Quality Challenge Database. We extensively evaluate the perceptual quality prediction model and algorithm and show that it is able to achieve good-quality prediction power that is better than other leading models. PMID:28129417
Bending Distortion Analysis of a Steel Shaft Manufacturing Chain from Cold Drawing to Grinding
NASA Astrophysics Data System (ADS)
Dias, Vinicius Waechter; da Silva Rocha, Alexandre; Zottis, Juliana; Dong, Juan; Epp, Jérémy; Zoch, Hans Werner
2017-04-01
Shafts are usually manufactured from bars that are cold drawn, cut machined, induction hardened, straightened, and finally ground. The main distortion is characterized by bending that appears after induction hardening and is corrected by straightening and/or grinding. In this work, the consequence of the variation of manufacturing parameters on the distortion was analyzed for a complete manufacturing route for production of induction hardened shafts made of Grade 1045 steel. A DoE plan was implemented varying the drawing angle, cutting method, induction hardening layer depth, and grinding penetration depth. The distortion was determined by calculating curvature vectors from dimensional analysis by 3D coordinate measurements. Optical microscopy, microhardness testing, residual stress analysis, and FEM process simulation were used to evaluate and understand effects of the main carriers of distortion potential. The drawing process was identified as the most significant influence on the final distortion of the shafts.
Long, Xianming; Zhang, Yanping; Lu, Jie; Long, Changcai
2015-09-01
To study the relationship of distortion product in cochlea with cochlear activity and hearing. Time variances of distortion product of basilar membrane vibration in vitro guineapig cochlea were observed by laser interferometry. Within half hour after a cochlea was isolated from a guineapig, distortion product accompanied with two-tone inhibition in cochlea, can be observed. As time passed, distortion product and two-tone inhibition effect disappeared at the same time. After that, the membrane contiune vibrating in response to the sound stimulus, but the vibration amplitude decreased obviously and continued decreasing until it disappeared completely. Distortion product in cochlea is a symbol of cochlear activity which makes the membrane respond in large amplitude vibration to sound stimulus and exhibit two-tone inhibition. The former makes the hearing highly sensitive to sound stimulus, the later makes the hearing perform information abstract well.
Structural analysis of LaVO3 thin films under epitaxial strain
NASA Astrophysics Data System (ADS)
Meley, H.; Karandeep, Oberson, L.; de Bruijckere, J.; Alexander, D. T. L.; Triscone, J.-M.; Ghosez, Ph.; Gariglio, S.
2018-04-01
Rare earth vanadate perovskites exhibit a phase diagram in which two different types of structural distortions coexist: the strongest, the rotation of the oxygen octahedra, comes from the small tolerance factor of the perovskite cell (t = 0.88 for LaVO3) and the smaller one comes from inter-site d-orbital interactions manifesting as a cooperative Jahn-Teller effect. Epitaxial strain acts on octahedral rotations and crystal field symmetry to alter this complex lattice-orbit coupling. In this study, LaVO3 thin film structures have been investigated by X-ray diffraction and scanning transmission electron microscopy. The analysis shows two different orientations of octahedral tilt patterns, as well as two distinct temperature behaviors, for compressive and tensile film strain states. Ab initio calculations capture the strain effect on the tilt pattern orientation in agreement with experimental data.
Aytekin, Merve; Gursoy, R Neslihan; Ide, Semra; Soylu, Elif H; Hekimoglu, Sueda
2013-02-01
The aim of this study is to prepare and characterize azelaic acid (AzA) containing liquid crystal (LC) drug delivery systems for topical use. Two ternary phase diagrams, containing liquid paraffin as the oil component and a mixture of two nonionic surfactants (Brij 721P and Brij 72), were constructed. Formulations chosen from the phase diagrams were characterized by polarized light microscopy, rheological analyses, differential scanning calorimetry (DSC), and small angle x-ray scattering spectroscopy. Polarized light microscopy proved that except the oil/water emulsion (O/W E), other formulations showed lamellar LC structure. In vitro release studies indicated that the fastest release was achieved by the Lamellar LC (LLC) and O/W E systems, whereas slower release was obtained from the emulsion containing lamellar LC (E-LLC) and distorted lamellar LC (D-LLC) systems. Results of rheological measurements both supported the results of in vitro release studies and showed that the emulsion containing the LC (E-LLC) system had the most stable structure. The formulations and their effect on stratum corneum (SC) were evaluated by DSC studies. The lamellar LC (LLC), emulsion containing lamellar liquid crystal (E-LLC), and O/W E formulations had an effect on both lipid and protein components of SC, whereas distorted lamellar liquid crystal (D-LLC) system had an effect on only the lipid components of SC. LLC systems could be considered promising for the topical delivery of AzA.
NASA Astrophysics Data System (ADS)
Shao, D. F.; Xiao, R. C.; Lu, W. J.; Lv, H. Y.; Li, J. Y.; Zhu, X. B.; Sun, Y. P.
2016-09-01
The transition-metal dichalcogenide 1 T -TaS2 exhibits a rich set of charge-density-wave (CDW) orders. Recent investigations suggested that using light or an electric field can manipulate the commensurate CDW (CCDW) ground state. Such manipulations are considered to be determined by charge-carrier doping. Here we use first-principles calculations to simulate the carrier-doping effect on the CCDW in 1 T -TaS2 . We investigate the charge-doping effects on the electronic structures and phonon instabilities of the 1 T structure, and we analyze the doping-induced energy and distortion ratio variations in the CCDW structure. We found that both in bulk and monolayer 1 T -TaS2 , the CCDW is stable upon electron doping, while hole doping can significantly suppress the CCDW, implying different mechanisms of such reported manipulations. Light or positive perpendicular electric-field-induced hole doping increases the energy of the CCDW, so that the system transforms to a nearly commensurate CDW or a similar metastable state. On the other hand, even though the CCDW distortion is more stable upon in-plane electric-field-induced electron injection, some accompanied effects can drive the system to cross over the energy barrier from the CCDW to a nearly commensurate CDW or a similar metastable state. We also estimate that hole doping can introduce potential superconductivity with a Tc of 6-7 K. Controllable switching of different states such as a CCDW/Mott insulating state, a metallic state, and even a superconducting state can be realized in 1 T -TaS2 . As a result, this material may have very promising applications in future electronic devices.
Compensation for 6.5 K cryogenic distortion of a fused quartz mirror by refiguring
NASA Technical Reports Server (NTRS)
Augason, Gordon C.; Young, Jeffrey A.; Melugin, Ramsey K.; Clarke, Dana S.; Howard, Steven D.; Scanlan, Michael; Wong, Steven; Lawton, Kenneth C.
1993-01-01
A 46 cm diameter, lightweight, Amersil TO8E, fused-natural-quartz mirror with a single-arch cross section was tested at the NASA-Ames Research Center Cryogenic Optical Test Facility to measure its cryogenic distortion at 6.5 K. Then the mirror was refigured with the inverse of the measured cryogenic distortion to compensate for this figure defect. The mirror was retested at 6.5 K and found to have a significantly improved figure. The compensation for cryogenic distortion was not complete, but preliminary analysis indicates that the compensation was better than 0.25 waves P-V if edge effects are ignored. The feasibility of compensating for cryogenic distortion by refiguring has thus been verified.
Experimental evaluation of thermal ratcheting behavior in UO2 fuel elements
NASA Technical Reports Server (NTRS)
Phillips, W. M.
1973-01-01
The effects of thermal cycling of UO2 at high temperatures has been experimentally evaluated to determine the rates of distortion of UO2/clad fuel elements. Two capsules were rested in the 1500 C range, one with a 50 C thermal cycle, the other with a 100 C thermal cycle. It was observed that eight hours at the lower cycle temperature produced sufficient UO2 redistribution to cause clad distortion. The amount of distortion produced by the 100 C cycle was less than double that produced by the 50 C, indicating smaller thermal cycles would result in clad distortion. An incubation period was observed to occur before the onset of distortion with cycling similar to fuel swelling observed in-pile at these temperatures.
Williams, Neil J; Gan, Wei; Reibenspies, Joseph H; Hancock, Robert D
2009-02-16
The idea is examined that steric crowding in ligands can lead to diminution of the chelation enhanced fluorescence (CHEF) effect in complexes of the small Zn(II) ion as compared to the larger Cd(II) ion. Steric crowding is less severe for the larger ion and for the smaller Zn(II) ion leads to Zn-N bond length distortion, which allows some quenching of fluorescence by the photoinduced electron transfer (PET) mechanism. Some metal ion complexing properties of the ligand tris(2-quinolylmethyl)amine (TQA) are presented in support of the idea that more sterically efficient ligands, which lead to less M-N bond length distortion with the small Zn(II) ion, will lead to a greater CHEF effect with Zn(II) than Cd(II). The structures of [Zn(TQA)H(2)O](ClO(4))(2).1.5 H(2)O (1), ([Pb(TQA)(NO(3))(2)].C(2)H(5)OH) (2), ([Ag(TQA)(ClO(4))]) (3), and (TQA).C(2)H(5)OH (4) are reported. In 1, the Zn(II) is 5-coordinate, with four N-donors from the ligand and a water molecule making up the coordination sphere. The Zn-N bonds are all of normal length, showing that the level of steric crowding in 1 is not sufficient to cause significant Zn-N bond length distortion. This leads to the observation that, as expected, the CHEF effect in the Zn(II)/TQA complex is much stronger than that in the Cd(II)/TQA complex, in contrast to similar but more sterically crowded ligands, where the CHEF effect is stronger in the Cd(II) complex. The CHEF effect for TQA with the metal ions examined varies as Zn(II) > Cd(II) > Ni(II) > Pb(II) > Hg(II) > Cu(II). The structure of 2 shows an 8-coordinate Pb(II), with evidence of a stereochemically active lone pair, and normal Pb-N bond lengths. In 3, the Ag(I) is 5-coordinate, with four N-donors from the TQA and an oxygen from the perchlorate. The Ag(I) shows no distortion toward linear 2-coordinate geometry, and the Ag-N bonds fall slightly into the upper range for Ag-N bonds in 5-coordinate complexes. The structure of 4 shows the TQA ligand to be involved in pi-stacking between quinolyl groups from adjacent TQA molecules. Formation constants determined by UV-visible spectroscopy are reported in 0.1 M NaClO(4) at 25 degrees C for TQA with Zn(II), Cd(II), and Pb(II). When compared with other similar ligands, one sees that, as the level of steric crowding increases, the stability decreases most with the small Zn(II) ion and least with the large Pb(II) ion. This is in accordance with the idea that TQA has a moderate level of steric crowding and that steric crowding increases for TQA analogs tris(2-pyridylmethyl)amine (TPyA) < TQA < tris(6-methyl-2-pyridyl)amine (TMPyA).
Moon, Hankyu; Lu, Tsai-Ching
2015-01-01
Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of—how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description — of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible. PMID:25822423
NASA Astrophysics Data System (ADS)
Moon, Hankyu; Lu, Tsai-Ching
2015-03-01
Critical events in society or biological systems can be understood as large-scale self-emergent phenomena due to deteriorating stability. We often observe peculiar patterns preceding these events, posing a question of--how to interpret the self-organized patterns to know more about the imminent crisis. We start with a very general description -- of interacting population giving rise to large-scale emergent behaviors that constitute critical events. Then we pose a key question: is there a quantifiable relation between the network of interactions and the emergent patterns? Our investigation leads to a fundamental understanding to: 1. Detect the system's transition based on the principal mode of the pattern dynamics; 2. Identify its evolving structure based on the observed patterns. The main finding of this study is that while the pattern is distorted by the network of interactions, its principal mode is invariant to the distortion even when the network constantly evolves. Our analysis on real-world markets show common self-organized behavior near the critical transitions, such as housing market collapse and stock market crashes, thus detection of critical events before they are in full effect is possible.
An audio-magnetotelluric investigation in Terceira Island (Azores)
NASA Astrophysics Data System (ADS)
Monteiro Santos, Fernando A.; Trota, António; Soares, António; Luzio, Rafael; Lourenço, Nuno; Matos, Liliana; Almeida, Eugénio; Gaspar, João L.; Miranda, Jorge M.
2006-08-01
Ten audio-magnetotelluric soundings have been carried out along a profile crossing the Serra do Cume caldera in the eastern part of the Terceira Island (Azores). The main objectives of this investigation were to detect geoelectrical features related with tectonic structures and to characterize regional hydrological and hydrothermal aspects mainly those related to geothermal fluid dynamics. Three-dimensional numerical investigation showed that the data acquired at periods shorter than 1 s are not significantly affected by ocean effect. The data was analysed using the Smith's decomposition method in order to investigate possible distortions caused by superficial structures and to estimate a global regional strike. The results suggest that in general the soundings were not distorted. A regional N55°W strike was chosen for the two-dimensional data inversion. The low-resistivity zones (10-30 ohm-m) displayed in the central part of the 2-D geoelectrical model have been interpreted as caused by hydrothermal circulation. The low-resistivity anomalies at the ends of the profile might be attributed to alteration zones with interaction of seawater intrusion. High-resistivity (> 300 ohm-m) values have been related with less permeable zones in the SW of Cinco Picos and Guilherme Moniz caldera walls.
NASA Astrophysics Data System (ADS)
Chen, Zhanbin
2018-05-01
The process of excitation of highly charged Fe XXIV ion embedded in weakly coupled plasmas by electron impact is studied, together with the subsequent radiative decay. For the target structure, the calculation is performed using the multiconfiguration Dirac-Hartree-Fock method incorporating the Debye-Hückel potential for the electron-nucleus interaction. Fine-structure levels of the 1s22p and 1s2s2p configurations and the transition properties among these levels are presented over a wide range of screening parameters. For the collision dynamics, the distorted-wave method in the relativistic frame is adopted to include the effect of plasma background, in which the interparticle interactions in the system are described by screened interactions of the Debye-Hückel type. The continuum wave function of the projectile electron is obtained by solving the modified Dirac equations. The influence of plasma strength on the cross section, the linear polarization, and the angular distribution of x-ray photon emission are investigated in detail. Comparison of the present results with experimental data and other theoretical predictions, when available, is made.
Emerging From Water: Underwater Image Color Correction Based on Weakly Supervised Color Transfer
NASA Astrophysics Data System (ADS)
Li, Chongyi; Guo, Jichang; Guo, Chunle
2018-03-01
Underwater vision suffers from severe effects due to selective attenuation and scattering when light propagates through water. Such degradation not only affects the quality of underwater images but limits the ability of vision tasks. Different from existing methods which either ignore the wavelength dependency of the attenuation or assume a specific spectral profile, we tackle color distortion problem of underwater image from a new view. In this letter, we propose a weakly supervised color transfer method to correct color distortion, which relaxes the need of paired underwater images for training and allows for the underwater images unknown where were taken. Inspired by Cycle-Consistent Adversarial Networks, we design a multi-term loss function including adversarial loss, cycle consistency loss, and SSIM (Structural Similarity Index Measure) loss, which allows the content and structure of the corrected result the same as the input, but the color as if the image was taken without the water. Experiments on underwater images captured under diverse scenes show that our method produces visually pleasing results, even outperforms the art-of-the-state methods. Besides, our method can improve the performance of vision tasks.
Redshift sensitivity of the Kaiser effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, Fergus
2010-02-15
We explore potential strategies for testing general relativity via the coherent motions of galaxies. Our position at z=0 provides the reference point for distance measures in cosmology. By contrast, the cosmic microwave background at z{approx_equal}1100 acts as the point of reference for the growth of a large-scale structure. As a result, we find there is a lack of synergy between growth and distance measures. We show that, when measuring the gravitational growth index {gamma} using redshift-space distortions, typically 80% of the signal corresponds to the local growth rate at the galaxy bin location, while the remaining fraction is determined bymore » its behavior at higher redshifts. In order to clarify whether modified gravity may be responsible for the dark energy phenomenon, the aim is to search for a modification to the growth of structure. One might expect the magnitude of this deviation to be commensurate with the apparent dark energy density {Omega}{sub {Lambda}}(z). This provides an incentive to study redshift-space distortions at as low a redshift as is practical. Specifically, we find the region around z=0.5 offers the optimal balance of available volume and signal strength.« less
NASA Astrophysics Data System (ADS)
Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.
2017-03-01
Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.
Sang, Xiahan; Lupini, Andrew R; Ding, Jilai; Kalinin, Sergei V; Jesse, Stephen; Unocic, Raymond R
2017-03-08
Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. "Archimedean" spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.
Raman Study of the Structural Distortion in the Ni 1–xCo xTiO 3 Solid Solution
Fujioka, Yukari; Frantti, Johannes; Puretzky, Alexander; ...
2016-09-08
In this paper, Raman spectra were collected on Ni 1–xCo xTiO 3 (0 ≤ x ≤ 1) ilmenite samples as a function of the temperature between 4 and 1200 K. An evident symmetry lowering from the prototype Rmore » $$\\bar{3}$$symmetry is observed. The distortion was largest for the x = 0.40 and 0.50 samples and significantly diminished for small and large values of x. The distortion was preserved in the whole temperature range and, except for the x = 0.50 sample, did not show significant changes. Notably, between 25 and 69 K, distortion of the x = 0.40 sample is accompanied by ferromagnetic order. The direct cation–cation and O-mediated indirect interactions are discussed as mechanisms behind the distortion and magnetic order. A reversible order–disorder phase transformation, assigned to occur between the ilmenite and corundum phases, took place at 973 K in the x = 0.50 sample. Completion of the transformation took over 1 h. Finally, the role of the overlap of Co/Ni and Ti 3d orbitals through O octahedral faces for charge transfer is discussed.« less
Strain-induced metal-insulator transitions in d1 perovskites within DFT+DMFT
NASA Astrophysics Data System (ADS)
Dymkowski, Krzysztof; Ederer, Claude
2014-03-01
We present results of combined density functional theory plus dynamical mean-field theory (DFT+DMFT) calculations, assessing the effect of epitaxial strain on the electronic properties of the Mott insulator LaTiO3 and the correlated metal SrVO3. In particular, we take into account the effect of strain on the collective tilts and rotations of the oxygen octahedra in the orthorhombically distorted Pbnm perovskite structure of LaTiO3. We find that LaTiO3 undergoes an insulator-to-metal transition under a compressive strain of about - 2 %, consistent with recent experimental observations. We show that this transition is driven mainly by strain-induced changes in the crystal-field splitting between the Ti t2 g orbitals, which in turn are related to changes in the octahedral tilt distortion. We compare this with the case of SrVO3, without octahedral tilts, where we find a metal-to-insulator transition under tensile epitaxial strain. Similar to LaTiO3, this metal-insulator transition is linked to the strain-induced change in the crystal-field splitting within the t2 g orbitals.
Controlling Thermal Expansion: A Metal–Organic Frameworks Route
2016-01-01
Controlling thermal expansion is an important, not yet resolved, and challenging problem in materials research. A conceptual design is introduced here, for the first time, for the use of metal–organic frameworks (MOFs) as platforms for controlling thermal expansion devices that can operate in the negative, zero, and positive expansion regimes. A detailed computer simulation study, based on molecular dynamics, is presented to support the targeted application. MOF-5 has been selected as model material, along with three molecules of similar size and known differences in terms of the nature of host–guest interactions. It has been shown that adsorbate molecules can control, in a colligative way, the thermal expansion of the solid, so that changing the adsorbate molecules induces the solid to display positive, zero, or negative thermal expansion. We analyze in depth the distortion mechanisms, beyond the ligand metal junction, to cover the ligand distortions, and the energetic and entropic effect on the thermo-structural behavior. We provide an unprecedented atomistic insight on the effect of adsorbates on the thermal expansion of MOFs as a basic tool toward controlling the thermal expansion. PMID:28190918
First-principles study of intermetallic phase stability in the ternary Ti-Al-Nb alloy system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asta, M.; Ormeci, A.; Wills, J.M.
The stability of bcc-based phases in the Ti-Al-Nb alloy system has been studied from first-principles using a combination of ab-initio total energy and cluster variation method (CVM) calculations. Total energies have been computed for 18 binary and ternary bcc superstructures in order to determine low temperature ordering tendencies. From the results of these calculations a set of effective cluster interaction parameters have been derived. These interaction parameters are required input for CVM computations of alloy thermodynamic properties. The CVM has been used to study the effect of composition on finite-temperature ordering tendencies and site preferences for bcc-based phases. Strong orderingmore » tendencies are observed for binary Nb-Al and Ti-Al bcc phases as well as for ternary alloys with compositions near Ti{sub 2}AlNb. For selected superstructures we have also analyzed structural stabilities with respect to tetragonal distortions which transform the bcc into an fcc lattice. Instabilities with respect to such distortions are found to exist for binary but not ternary bcc compounds.« less
Perceived crosstalk assessment on patterned retarder 3D display
NASA Astrophysics Data System (ADS)
Zou, Bochao; Liu, Yue; Huang, Yi; Wang, Yongtian
2014-03-01
CONTEXT: Nowadays, almost all stereoscopic displays suffer from crosstalk, which is one of the most dominant degradation factors of image quality and visual comfort for 3D display devices. To deal with such problems, it is worthy to quantify the amount of perceived crosstalk OBJECTIVE: Crosstalk measurements are usually based on some certain test patterns, but scene content effects are ignored. To evaluate the perceived crosstalk level for various scenes, subjective test may bring a more correct evaluation. However, it is a time consuming approach and is unsuitable for real time applications. Therefore, an objective metric that can reliably predict the perceived crosstalk is needed. A correct objective assessment of crosstalk for different scene contents would be beneficial to the development of crosstalk minimization and cancellation algorithms which could be used to bring a good quality of experience to viewers. METHOD: A patterned retarder 3D display is used to present 3D images in our experiment. By considering the mechanism of this kind of devices, an appropriate simulation of crosstalk is realized by image processing techniques to assign different values of crosstalk to each other between image pairs. It can be seen from the literature that the structures of scenes have a significant impact on the perceived crosstalk, so we first extract the differences of the structural information between original and distorted image pairs through Structural SIMilarity (SSIM) algorithm, which could directly evaluate the structural changes between two complex-structured signals. Then the structural changes of left view and right view are computed respectively and combined to an overall distortion map. Under 3D viewing condition, because of the added value of depth, the crosstalk of pop-out objects may be more perceptible. To model this effect, the depth map of a stereo pair is generated and the depth information is filtered by the distortion map. Moreover, human attention is one of important factors for crosstalk assessment due to the fact that when viewing 3D contents, perceptual salient regions are highly likely to be a major contributor to determining the quality of experience of 3D contents. To take this into account, perceptual significant regions are extracted, and a spatial pooling technique is used to combine structural distortion map, depth map and visual salience map together to predict the perceived crosstalk more precisely. To verify the performance of the proposed crosstalk assessment metric, subjective experiments are conducted with 24 participants viewing and rating 60 simuli (5 scenes * 4 crosstalk levels * 3 camera distances). After an outliers removal and statistical process, the correlation with subjective test is examined using Pearson and Spearman rank-order correlation coefficient. Furthermore, the proposed method is also compared with two traditional 2D metrics, PSNR and SSIM. The objective score is mapped to subjective scale using a nonlinear fitting function to directly evaluate the performance of the metric. RESULIS: After the above-mentioned processes, the evaluation results demonstrate that the proposed metric is highly correlated with the subjective score when compared with the existing approaches. Because the Pearson coefficient of the proposed metric is 90.3%, it is promising for objective evaluation of the perceived crosstalk. NOVELTY: The main goal of our paper is to introduce an objective metric for stereo crosstalk assessment. The novelty contributions are twofold. First, an appropriate simulation of crosstalk by considering the characteristics of patterned retarder 3D display is developed. Second, an objective crosstalk metric based on visual attention model is introduced.
NASA Astrophysics Data System (ADS)
Dmitriev, A. V.; Suvorova, A. V.
2012-08-01
Here, we present a case study of THEMIS and ground-based observations of the perturbed dayside magnetopause and the geomagnetic field in relation to the interaction of an interplanetary directional discontinuity (DD) with the magnetosphere on 16 June 2007. The interaction resulted in a large-scale local magnetopause distortion of an "expansion - compression - expansion" (ECE) sequence that lasted for ˜15 min. The compression was caused by a very dense, cold, and fast high-βmagnetosheath plasma flow, a so-called plasma jet, whose kinetic energy was approximately three times higher than the energy of the incident solar wind. The plasma jet resulted in the effective penetration of magnetosheath plasma inside the magnetosphere. A strong distortion of the Chapman-Ferraro current in the ECE sequence generated a tripolar magnetic pulse "decrease - peak- decrease" (DPD) that was observed at low and middle latitudes by some ground-based magnetometers of the INTERMAGNET network. The characteristics of the ECE sequence and the spatial-temporal dynamics of the DPD pulse were found to be very different from any reported patterns of DD interactions with the magnetosphere. The observed features only partially resembled structures such as FTE, hot flow anomalies, and transient density events. Thus, it is difficult to explain them in the context of existing models.
Multipole analysis of redshift-space distortions around cosmic voids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamaus, Nico; Weller, Jochen; Cousinou, Marie-Claude
We perform a comprehensive redshift-space distortion analysis based on cosmic voids in the large-scale distribution of galaxies observed with the Sloan Digital Sky Survey. To this end, we measure multipoles of the void-galaxy cross-correlation function and compare them with standard model predictions in cosmology. Merely considering linear-order theory allows us to accurately describe the data on the entire available range of scales and to probe void-centric distances down to about 2 h {sup −1}Mpc. Common systematics, such as the Fingers-of-God effect, scale-dependent galaxy bias, and nonlinear clustering do not seem to play a significant role in our analysis. We constrainmore » the growth rate of structure via the redshift-space distortion parameter β at two median redshifts, β( z-bar =0.32)=0.599{sup +0.134}{sub −0.124} and β( z-bar =0.54)=0.457{sup +0.056}{sub −0.054}, with a precision that is competitive with state-of-the-art galaxy-clustering results. While the high-redshift constraint perfectly agrees with model expectations, we observe a mild 2σ deviation at z-bar =0.32, which increases to 3σ when the data is restricted to the lowest available redshift range of 0.15< z <0.33.« less
Radiation effects and tolerance mechanism in β-eucryptite
NASA Astrophysics Data System (ADS)
Narayanan, Badri; Reimanis, Ivar E.; Huang, Hanchen; Ciobanu, Cristian V.
2013-01-01
Previous studies on Li-silicates have shown that these materials are resistant to radiation damage even in extreme physical and chemical environments, and are thus promising solid-state breeder materials in fusion reactors. Here, we focus on β-eucryptite as a member of Li-Al silicate class of ceramics with potential for nuclear applications, and study the atomic-scale processes induced by radiation. Using molecular dynamics simulations based on a reactive force field, we have found that upon radiation dosage of 0.21 displacements-per-atom or less, the structure largely retains its long-range order while exhibiting (a) disordering of the Li atoms, (b) distortion of the Si and Al tetrahedra defined as the change in their oxygen-coordination number, and (c) tilting of the Si and Al tetrahedra with respect to one another. We find that Si tetrahedra that distort to SiO3 during exposure to radiation recover significantly upon thermal relaxation, and provide the mechanism for this recovery. This mechanism consists in the tilting of AlO5 polyhedra formed upon exposure so as to satisfy the oxygen-coordination of distorted Si tetrahedra. Doubling the dosage results in a significant increase of the concentration of Si-Al antisite defects, which renders the tolerance mechanism inefficient and leads to amorphization.
NASA Astrophysics Data System (ADS)
Ames, A.; Bruni, R.; Cotroneo, V.; Johnson-Wilke, R.; Kester, T.; Reid, P.; Romaine, S.; Tolier-McKinstry, S.; Wilke, R. H. T.
2015-09-01
Adjustable X-ray optics represent a potential enabling technology for simultaneously achieving large effective area and high angular resolution for future X-ray Astronomy missions. The adjustable optics employ a bimorph mirror composed of a thin (1.5 μm) film of piezoelectric material deposited on the back of a 0.4 mm thick conical mirror segment. The application of localized electric fields in the piezoelectric material, normal to the mirror surface, result in localized deformations in mirror shape. Thus, mirror fabrication and mounting induced figure errors can be corrected, without the need for a massive reaction structure. With this approach, though, film stresses in the piezoelectric layer, resulting from deposition, crystallization, and differences in coefficient of thermal expansion, can distort the mirror. The large relative thickness of the piezoelectric material compared to the glass means that even 100MPa stresses can result in significant distortions. We have examined compensating for the piezoelectric processing related distortions by the deposition of controlled stress chromium/iridium films on the front surface of the mirror. We describe our experiments with tuning the product of the chromium/iridium film stress and film thickness to balance that resulting from the piezoelectric layer. We also evaluated the repeatability of this deposition process, and the robustness of the iridium coating.
Duarte, Leonardo J; Richter, Wagner E; Silva, Arnaldo F; Bruns, Roy E
2017-10-26
Fundamental infrared vibrational transition intensities of gas-phase molecules are sensitive probes of changes in electronic structure accompanying small molecular distortions. Models containing charge, charge transfer, and dipolar polarization effects are necessary for a successful classification of the C-H, C-F, and C-Cl stretching and bending intensities. C-H stretching and in-plane bending vibrations involving sp 3 carbon atoms have small equilibrium charge contributions and are accurately modeled by the charge transfer-counterpolarization contribution and its interaction with equilibrium charge movement. Large C-F and C═O stretching intensities have dominant equilibrium charge movement contributions compared to their charge transfer-dipolar polarization ones and are accurately estimated by equilibrium charge and the interaction contribution. The C-F and C-Cl bending modes have charge and charge transfer-dipolar polarization contribution sums that are of similar size but opposite sign to their interaction values resulting in small intensities. Experimental in-plane C-H bends have small average intensities of 12.6 ± 10.4 km mol -1 owing to negligible charge contributions and charge transfer-counterpolarization cancellations, whereas their average out-of-plane experimental intensities are much larger, 65.7 ± 20.0 km mol -1 , as charge transfer is zero and only dipolar polarization takes place. The C-F bending intensities have large charge contributions but very small intensities. Their average experimental out-of-plane intensity of 9.9 ± 12.6 km mol -1 arises from the cancellation of large charge contributions by dipolar polarization contributions. The experimental average in-plane C-F bending intensity, 5.8 ± 7.3 km mol -1 , is also small owing to charge and charge transfer-counterpolarization sums being canceled by their interaction contributions. Models containing only atomic charges and their fluxes are incapable of describing electronic structure changes for simple molecular distortions that are of interest in classifying infrared intensities. One can expect dipolar polarization effects to also be important for larger distortions of chemical interest.
2008-01-15
grading scheme involves embedding particles only in the outer layers of a laminate , achieving maximal increases in bending stiffness with a minimum...by Eq. (19), with d=2. Longitudinal-transverse shear modulus The shear modulus for distortion of the laminate in axes with one direction aligned...The effective Poisson’s ratio νeLT is dictated by the other material constants of the laminate (Hill, 1964; Torquato, 2001): 12 νe LT = ν f + ν
Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect
NASA Astrophysics Data System (ADS)
Wu, Meng; Shi, Jun-jie; Zhang, Min; Ding, Yi-min; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang; Zhu, Yao-hui
2018-05-01
Quite recently, the two-dimensional (2D) InSe nanosheet has become a hot material with great promise for advanced functional nano-devices. In this work, for the first time, we perform first-principles calculations on the structural, electronic, magnetic and transport properties of 1D InSe nanoribbons with/without hydrogen or halogen saturation. We find that armchair ribbons, with various edges and distortions, are all nonmagnetic semiconductors, with a direct bandgap of 1.3 (1.4) eV for bare (H-saturated) ribbons, and have the same high electron mobility of about 103 cm2V‑1s‑1 as the 2D InSe nanosheet. Zigzag InSe nanoribbons exhibit metallic behavior and diverse intrinsic ferromagnetic properties, with the magnetic moment of 0.5–0.7 μ B per unit cell, especially for their single-edge spin polarization. The edge spin orientation, mainly dominated by the unpaired electrons of the edge atoms, depends sensitively on the edge chirality. Hydrogen or halogen saturation can effectively recover the structural distortion, and modulate the electronic and magnetic properties. The binding energy calculations show that the stability of InSe nanoribbons is analogous to that of graphene and better than in 2D InSe nanosheets. These InSe nanoribbons, with novel electronic and magnetic properties, are thus very promising for use in electronic, spintronic and magnetoresistive nano-devices.
Modulation of electronic and magnetic properties in InSe nanoribbons: edge effect.
Wu, Meng; Shi, Jun-Jie; Zhang, Min; Ding, Yi-Min; Wang, Hui; Cen, Yu-Lang; Guo, Wen-Hui; Pan, Shu-Hang; Zhu, Yao-Hui
2018-05-18
Quite recently, the two-dimensional (2D) InSe nanosheet has become a hot material with great promise for advanced functional nano-devices. In this work, for the first time, we perform first-principles calculations on the structural, electronic, magnetic and transport properties of 1D InSe nanoribbons with/without hydrogen or halogen saturation. We find that armchair ribbons, with various edges and distortions, are all nonmagnetic semiconductors, with a direct bandgap of 1.3 (1.4) eV for bare (H-saturated) ribbons, and have the same high electron mobility of about 10 3 cm 2 V -1 s -1 as the 2D InSe nanosheet. Zigzag InSe nanoribbons exhibit metallic behavior and diverse intrinsic ferromagnetic properties, with the magnetic moment of 0.5-0.7 μ B per unit cell, especially for their single-edge spin polarization. The edge spin orientation, mainly dominated by the unpaired electrons of the edge atoms, depends sensitively on the edge chirality. Hydrogen or halogen saturation can effectively recover the structural distortion, and modulate the electronic and magnetic properties. The binding energy calculations show that the stability of InSe nanoribbons is analogous to that of graphene and better than in 2D InSe nanosheets. These InSe nanoribbons, with novel electronic and magnetic properties, are thus very promising for use in electronic, spintronic and magnetoresistive nano-devices.
The Crystal Structure of Ba 17Sm 10Cl 64
NASA Astrophysics Data System (ADS)
Liu, Guo; Eick, Harry A.
1999-08-01
The structure of Ba17Sm10Cl64, prepared by solvolytic extraction of a program-cooled 1:1 BaCl2:SmCl3 molar mixture sealed in a quartz tube and heated to 750°C, was determined from single-crystal X-ray diffraction data. The compound exhibits cubic symmetry, space group Pa3 (No. 205) with a=21.366(2) Å and Z=4. Refinement effected with I>2σ(I) yielded R1= 0.0926 and wR2=0.216. One Ba atom is 12-coordinated by Cl atoms in a distorted icosahedral arrangement; the three other Ba atoms are 10-coordinated in a distorted bicapped cubic arrangement. There are two Sm atom sites. The coordination around one Sm atom is best described as square antiprismatic, but one Sm-Cl distance is too long for effective bonding. The other Sm atom site, occupied statistically by {1}/{3}Ba and {2}/{3}Sm atoms, is 9-coordinated by Cl atoms in a monocapped square antiprismatic arrangement. The two types of Sm sites combine to form an M6Cl37 cuboctahedral cluster of the composition BaSm5Cl37. It is shown that the cβ phase identified previously in the Yb-F and related fluoride systems is probably isostructural with Ba17Sm10Cl64.
NASA Astrophysics Data System (ADS)
Ishii, Masashi; Crowe, Iain F.; Halsall, Matthew P.; Hamilton, Bruce; Hu, Yongfeng; Sham, Tsun-Kong; Harako, Susumu; Zhao, Xin-Wei; Komuro, Shuji
2013-10-01
The local structure of luminescent Sm dopants was investigated using an X-ray absorption fine-structure technique with X-ray-excited optical luminescence. Because this technique evaluates X-ray absorption from luminescence, only optically active sites are analyzed. The Sm L3 near-edge spectrum contains split 5d states and a shake-up transition that are specific to luminescent Sm. Theoretical calculations using cluster models identified an atomic-scale distortion that can reproduce the split 5d states. The model with C4v local symmetry and compressive bond length of Sm-O of a six-fold oxygen (SmO6) cluster is most consistent with the experimental results.
Structural similitude and scaling laws for laminated beam-plates
NASA Technical Reports Server (NTRS)
Simitses, George J.; Rezaeepazhand, Jalil
1992-01-01
The establishment of similarity conditions between two structural systems is discussed. Similarity conditions provide the relationship between a scale model and its prototype and can be used to predict the behavior of the prototype by extrapolating the experimental data of the corresponding small-scale model. Since satisfying all the similarity conditions simultaneously is difficult or even impossible, distorted models with partial similarity (with at least one similarity condition relaxed) are more practical. Establishing similarity conditions based on both dimensional analysis and direct use of governing equations is discussed, and the possibility of designing distorted models is investigated. The method is demonstrated through analysis of the cylindrical bending of orthotropic laminated beam-plates subjected to transverse line loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cammin, Jochen, E-mail: jcammin1@jhmi.edu, E-mail: ktaguchi@jhmi.edu; Taguchi, Katsuyuki, E-mail: jcammin1@jhmi.edu, E-mail: ktaguchi@jhmi.edu; Xu, Jennifer
Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra andmore » count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi et al., “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102 (2011)]. The agreement between the x-ray spectra calculated by the cascaded SRE+PPE model and the measured spectra was evaluated for various levels of deadtime loss ratios (DLR) and incident spectral shapes, realized using different attenuators, in terms of the weighted coefficient of variation (COV{sub W}), i.e., the root mean square difference weighted by the statistical errors of the data and divided by the mean. Results: At low count rates, when DLR < 10%, the distorted spectra measured by the DXMCT-1 were in agreement with those calculated by SRE only, with COV{sub W}'s less than 4%. At higher count rates, the measured spectra were also in agreement with the ones calculated by the cascaded SRE+PPE model; with PMMA as attenuator, COV{sub W} was 5.6% at a DLR of 22% and as small as 6.7% for a DLR as high as 55%. Conclusions: The x-ray spectra calculated by the proposed model agreed with the measured spectra over a wide range of count rates and spectral shapes. The SRE model predicted the distorted, recorded spectra with low count rates over various types and thicknesses of attenuators. The study also validated the hypothesis that the complex spectral distortions in a PCD can be adequately modeled by cascading the count-rate independent SRE and the count-rate dependent PPE.« less
Cammin, Jochen; Xu, Jennifer; Barber, William C.; Iwanczyk, Jan S.; Hartsough, Neal E.; Taguchi, Katsuyuki
2014-01-01
Purpose: Energy discriminating, photon-counting detectors (PCDs) are an emerging technology for computed tomography (CT) with various potential benefits for clinical CT. The photon energies measured by PCDs can be distorted due to the interactions of a photon with the detector and the interaction of multiple coincident photons. These effects result in distorted recorded x-ray spectra which may lead to artifacts in reconstructed CT images and inaccuracies in tissue identification. Model-based compensation techniques have the potential to account for the distortion effects. This approach requires only a small number of parameters and is applicable to a wide range of spectra and count rates, but it needs an accurate model of the spectral distortions occurring in PCDs. The purpose of this study was to develop a model of those spectral distortions and to evaluate the model using a PCD (model DXMCT-1; DxRay, Inc., Northridge, CA) and various x-ray spectra in a wide range of count rates. Methods: The authors hypothesize that the complex phenomena of spectral distortions can be modeled by: (1) separating them into count-rate independent factors that we call the spectral response effects (SRE), and count-rate dependent factors that we call the pulse pileup effects (PPE), (2) developing separate models for SRE and PPE, and (3) cascading the SRE and PPE models into a combined SRE+PPE model that describes PCD distortions at both low and high count rates. The SRE model describes the probability distribution of the recorded spectrum, with a photo peak and a continuum tail, given the incident photon energy. Model parameters were obtained from calibration measurements with three radioisotopes and then interpolated linearly for other energies. The PPE model used was developed in the authors’ previous work [K. Taguchi , “Modeling the performance of a photon counting x-ray detector for CT: Energy response and pulse pileup effects,” Med. Phys. 38(2), 1089–1102 (2011)]. The agreement between the x-ray spectra calculated by the cascaded SRE+PPE model and the measured spectra was evaluated for various levels of deadtime loss ratios (DLR) and incident spectral shapes, realized using different attenuators, in terms of the weighted coefficient of variation (COVW), i.e., the root mean square difference weighted by the statistical errors of the data and divided by the mean. Results: At low count rates, when DLR < 10%, the distorted spectra measured by the DXMCT-1 were in agreement with those calculated by SRE only, with COVW's less than 4%. At higher count rates, the measured spectra were also in agreement with the ones calculated by the cascaded SRE+PPE model; with PMMA as attenuator, COVW was 5.6% at a DLR of 22% and as small as 6.7% for a DLR as high as 55%. Conclusions: The x-ray spectra calculated by the proposed model agreed with the measured spectra over a wide range of count rates and spectral shapes. The SRE model predicted the distorted, recorded spectra with low count rates over various types and thicknesses of attenuators. The study also validated the hypothesis that the complex spectral distortions in a PCD can be adequately modeled by cascading the count-rate independent SRE and the count-rate dependent PPE. PMID:24694136
NASA Astrophysics Data System (ADS)
Müller, Jörg; Janssen, Thomas; Heppelmann, Guido; Wagner, Wolfgang
2005-12-01
The aim of this study was to investigate the activity of the medial olivocochlear (MOC) efferents during contralateral (CAS) and ipsilateral acoustic stimulation (IAS) by recording distortion product otoacoustic emission (DPOAE) suppression and DPOAE adaptation in humans. The main question was: do large bipolar changes in DPOAE level (transition from enhancement to suppression) also occur in humans when changing the primary tone level within a small range as described by Maison and Liberman for guinea pigs [J. Neurosci. 20, 4701-4707 (2000)]? In the present study, large bipolar changes in DPOAE level (14 dB on average across subjects) were found during CAS predominantly at frequencies where dips in the DPOAE fine structure occurred. Thus, effects of the second DPOAE source might be responsible for the observed bipolar effect. In contrast, comparable effects were not found during IAS as was reported in guinea pigs. Reproducibility of CAS DPOAEs was better than that for IAS DPOAEs. Thus, contralateral DPOAE suppression is suggested to be superior to ipsilateral DPOAE adaptation with regard to measuring the MOC reflex strength and for evaluating the vulnerability of the cochlea to acoustic overexposure in a clinical context.
Levin, E. M.; Iowa State Univ., Ames, IA; Kramer, M. J.; ...
2016-07-14
Composition and crystal structure of complex materials can significantly change the Seebeck effect, i.e., heat to electrical energy conversion, which is utilized in thermoelectric materials. Despite decades of studies of various thermoelectric materials and their application, the fundamental understanding of this effect still is limited. One of the most efficient groups of thermoelectric materials is based on GeTe, where Ge is replaced by [Ag + Sb], i.e., Ag xSb xGe 50-2xTe 50 alloys, traditionally shown as (GeTe) m(AgSbTe 2) 100-m (TAGS-m series). Here, in this article, we report on the discovery of two unique phenomena in TAGS materials attributed tomore » the effects from [Ag + Sb] atoms: (i) a linear relation between the Seebeck coefficient and rhombohedral lattice distortion, and (ii) resonance-like temperature-induced behavior of the contribution to the Seebeck coefficient produced by [Ag + Sb] atoms. Finally, our findings show that heat to electrical energy conversion strongly depends on the temperature- and compositionally-induced rhombohedral to cubic transformation where [Ag + Sb] atoms play a crucial mediating role.« less
NASA Astrophysics Data System (ADS)
Javdanitehran, M.; Hoffmann, R.; Groh, J.; Vossiek, M.; Ziegmann, G.
2016-06-01
The embedding of dielectric chipless sensors for cure monitoring into fiber-reinforced thermosets allows for monitoring and controlling the curing process and consequently higher quality in production. The embedded sensors remain after the processing in the structure. This affects the integrity of the composite structure locally. In order to investigate these effects on the mechanical behavior of the glass fiber-reinforced polymer (GFRP), sensors made on special low loss substrates are integrated into laminates with different lay-ups and thicknesses using vacuum assisted resin transfer molding (VARTM) method. In a parametric study the size of the sensor is varied to observe its influence on the strength and the stiffness of the laminates according to its lay-up and thickness. The size and orientation of the resin rich areas near sensors as well as the distortion in load bearing area as the consequences of the introduction of the sensors are investigated in conjunction with the strength of the structure. An empirical model is proposed by the authors which involves the previously mentioned factors and is used as a rapid tool for the prediction of the changes in bending and tensile strength of simple structures with embedded sensors. The methodology for model’s calibration as well as the validation of the model against the experimental data of different laminates with distinct lay-ups and thicknesses are presented in this work. Mechanical tests under tensile and bending loading indicate that the reduction of the structure’s strength due to sensor integration can be attributed to the size and the orientation of rich resin zones and depends over and above on the size of distorted load bearing area. Depending on the sensor’s elastic modulus the stiffness of the structure may vary through the introduction of a sensor.
Unexpected Huge Dimerization Ratio in One-Dimensional Carbon Atomic Chains.
Lin, Yung-Chang; Morishita, Shigeyuki; Koshino, Masanori; Yeh, Chao-Hui; Teng, Po-Yuan; Chiu, Po-Wen; Sawada, Hidetaka; Suenaga, Kazutomo
2017-01-11
Peierls theory predicted atomic distortion in one-dimensional (1D) crystal due to its intrinsic instability in 1930. Free-standing carbon atomic chains created in situ in transmission electron microscope (TEM)1-3 are an ideal example to experimentally observe the dimerization behavior of carbon atomic chain within a finite length. We report here a surprisingly huge distortion found in the free-standing carbon atomic chains at 773 K, which is 10 times larger than the value expected in the system. Such an abnormally distorted phase only dominates at the elevated temperatures, while two distinct phases, distorted and undistorted, coexist at lower or ambient temperatures. Atom-by-atom spectroscopy indeed shows considerable variations in the carbon 1s spectra at each atomic site but commonly observes a slightly downshifted π* peak, which proves its sp 1 bonding feature. These results suggest that the simple model, relaxed and straight, is not fully adequate to describe the realistic 1D structure, which is extremely sensitive to perturbations such as external force or boundary conditions.
Calis, G; Leeuwenberg, E
1981-12-01
Coding rules can be formulated in which the shortest description of a figure-ground pattern exhibits a hierarchical structure, with the ground playing a primary and the figure a secondary role. We hypothesized that the process of perception involves and assimilation phase followed by a test phase in which the ground is tested before the figure. Experiments are described in which pairs of consecutive, superimposed patterns are presented in rapid succession, resulting in a subjective impression of seeing one pattern only. In these presentations, the second pattern introduces some deliberate distortion of the figure or ground displayed in the first pattern. Maximal distortions of the ground occur at shorter stimulus onset asynchronies than maximal distortions of the figure, suggesting that the ground codes are processed before figure codes. Moreover, patterns presenting the ground first are more likely to be perceived as ground, regardless of the distortions, than patterns presenting the figure first. This quasi masking or microgenetic approach might be relevant to theories on :mediations of immediate, or direct" perception.
Cosenza, Marina; Nigro, Giovanna
2015-12-01
This study investigated the relationship of cognitive distortions, self-reported impulsivity, delay discounting, and time perspective to gambling severity in Italian adolescents. One thousand and thirty high school students were administered the South Oaks Gambling Screen Revised for Adolescents (SOGS-RA), the Gambling Related Cognitions Scale (GRCS), the Barratt Impulsiveness Scale (BIS-11), the Monetary Choice Questionnaire (MCQ), and the Consideration of Future Consequences Scale (CFC-14). A factor analysis, used to evaluate common factors assessed by the different measures, revealed a three-factor structure of Cognitive distortions, Impulsive present orientation, and Delay discounting. The results of regression analysis using factor scores showed that males scored higher than females on the SOGS-RA and that gambling severity correlated positively with high scores on the three factors. These results indicate that cognitive distortions associated with gambling are a powerful predictor of gambling severity, and that adolescent gamblers are impaired in their abilities to think about the future. Copyright © 2015. Published by Elsevier Ltd.
Close coupling of pre- and post-processing vision stations using inexact algorithms
NASA Astrophysics Data System (ADS)
Shih, Chi-Hsien V.; Sherkat, Nasser; Thomas, Peter D.
1996-02-01
Work has been reported using lasers to cut deformable materials. Although the use of laser reduces material deformation, distortion due to mechanical feed misalignment persists. Changes in the lace patten are also caused by the release of tension in the lace structure as it is cut. To tackle the problem of distortion due to material flexibility, the 2VMethod together with the Piecewise Error Compensation Algorithm incorporating the inexact algorithms, i.e., fuzzy logic, neural networks and neural fuzzy technique, are developed. A spring mounted pen is used to emulate the distortion of the lace pattern caused by tactile cutting and feed misalignment. Using pre- and post-processing vision systems, it is possible to monitor the scalloping process and generate on-line information for the artificial intelligence engines. This overcomes the problems of lace distortion due to the trimming process. Applying the algorithms developed, the system can produce excellent results, much better than a human operator.
Stretching single fibrin fibers hampers their lysis.
Li, Wei; Lucioni, Tomas; Li, Rongzhong; Bonin, Keith; Cho, Samuel S; Guthold, Martin
2017-09-15
Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.