NASA Technical Reports Server (NTRS)
Bales, K. S.
1983-01-01
The objectives, expected results, approach, and milestones for research projects of the IPAD Project Office and the impact dynamics, structural mechanics, and structural dynamics branches of the Structures and Dynamics Division are presented. Research facilities are described. Topics covered include computer aided design; general aviation/transport crash dynamics; aircraft ground performance; composite structures; failure analysis, space vehicle dynamics; and large space structures.
Structural dynamics technology research in NASA: Perspective on future needs
NASA Technical Reports Server (NTRS)
1979-01-01
The perspective of a NASA ad hoc study group on future research needs in structural dynamics within the aerospace industry is presented. The common aspects of the design process across the industry are identified and the role of structural dynamics is established through a discussion of various design considerations having their basis in structural dynamics. The specific structural dynamics issues involved are identified and assessed as to their current technological status and trends. Projections of future requirements based on this assessment are made and areas of research to meet them are identified.
Structural dynamics branch research and accomplishments
NASA Technical Reports Server (NTRS)
1990-01-01
Summaries are presented of fiscal year 1989 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's major work areas include aeroelasticity, vibration control, dynamic systems, and computation structural methods. A listing of the fiscal year 1989 branch publications is given.
Test facilities of the structural dynamics branch of NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Montague, Gerald T.; Kielb, Robert E.
1988-01-01
The NASA Lewis Research Center Structural Dynamics Branch conducts experimental and analytical research related to the structural dynamics of aerospace propulsion and power systems. The experimental testing facilities of the branch are examined. Presently there are 10 research rigs and 4 laboratories within the branch. These facilities are described along with current and past research work.
Lewis Structures Technology, 1988. Volume 1: Structural Dynamics
NASA Technical Reports Server (NTRS)
1988-01-01
The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the Structures Division of the Lewis Research Center and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive testing, dynamical systems, fatigue and damage, wind turbines, hot section technology, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics.
Structural Dynamics Branch research and accomplishments for FY 1990
NASA Technical Reports Server (NTRS)
1991-01-01
Presented here is a collection of FY 1990 research highlights from the Structural Dynamics Branch at the NASA Lewis Research Center. Highlights are from the branch's major work areas: aeroelasticity, vibration control, dynamic systems, and computational structural methods. A listing is given of FY 1990 branch publications.
Program of Research in Structures and Dynamics
NASA Technical Reports Server (NTRS)
1988-01-01
The Structures and Dynamics Program was first initiated in 1972 with the following two major objectives: to provide a basic understanding and working knowledge of some key areas pertinent to structures, solid mechanics, and dynamics technology including computer aided design; and to provide a comprehensive educational and research program at the NASA Langley Research Center leading to advanced degrees in the structures and dynamics areas. During the operation of the program the research work was done in support of the activities of both the Structures and Dynamics Division and the Loads and Aeroelasticity Division. During the period of 1972 to 1986 the Program provided support for two full-time faculty members, one part-time faculty member, three postdoctoral fellows, one research engineer, eight programmers, and 28 graduate research assistants. The faculty and staff of the program have published 144 papers and reports, and made 70 presentations at national and international meetings, describing their research findings. In addition, they organized and helped in the organization of 10 workshops and national symposia in the structures and dynamics areas. The graduate research assistants and the students enrolled in the program have written 20 masters theses and 2 doctoral dissertations. The overall progress is summarized.
Structural dynamics branch research and accomplishments to FY 1992
NASA Technical Reports Server (NTRS)
Lawrence, Charles
1992-01-01
This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications.
Advanced structures technology and aircraft safety
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr.
1983-01-01
NASA research and development on advanced aeronautical structures technology related to flight safety is reviewed. The effort is categorized as research in the technology base and projects sponsored by the Aircraft Energy Efficiency (ACEE) Project Office. Base technology research includes mechanics of composite structures, crash dynamics, and landing dynamics. The ACEE projects involve development and fabrication of selected composite structural components for existing commercial transport aircraft. Technology emanating from this research is intended to result in airframe structures with improved efficiency and safety.
Lewis Structures Technology, 1988. Volume 2: Structural Mechanics
NASA Technical Reports Server (NTRS)
1988-01-01
Lewis Structures Div. performs and disseminates results of research conducted in support of aerospace engine structures. These results have a wide range of applicability to practitioners of structural engineering mechanics beyond the aerospace arena. The engineering community was familiarized with the depth and range of research performed by the division and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive evaluation, constitutive models and experimental capabilities, dynamic systems, fatigue and damage, wind turbines, hot section technology (HOST), aeroelasticity, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics, and structural mechanics computer codes.
NASA Technical Reports Server (NTRS)
Bales, K. S.
1984-01-01
The Objectives, Expected Results, Approach, and Fiscal Year FY 1984 Milestones for the Structures and Dynamics Division's research programs are examined. The FY 1983 Accomplishments are presented where applicable.
Research in Structures and Dynamics, 1984
NASA Technical Reports Server (NTRS)
Hayduk, R. J. (Compiler); Noor, A. K. (Compiler)
1984-01-01
A symposium on advanced and trends in structures and dynamics was held to communicate new insights into physical behavior and to identify trends in the solution procedures for structures and dynamics problems. Pertinent areas of concern were (1) multiprocessors, parallel computation, and database management systems, (2) advances in finite element technology, (3) interactive computing and optimization, (4) mechanics of materials, (5) structural stability, (6) dynamic response of structures, and (7) advanced computer applications.
Structures and Dynamics Division research and technology plans, fiscal year, 1981
NASA Technical Reports Server (NTRS)
Bales, K. S.
1981-01-01
The objectives, expected results, approach, and FY 81 milestones for the Structures and Dynamics Division's research program are presented. This information will be useful in program coordination with other government organizations in areas of mutual interest.
Research in structures, structural dynamics and materials, 1989
NASA Technical Reports Server (NTRS)
Hunter, William F. (Compiler); Noor, Ahmed K. (Compiler)
1989-01-01
Topics addressed include: composite plates; buckling predictions; missile launch tube modeling; structural/control systems design; optimization of nonlinear R/C frames; error analysis for semi-analytic displacement; crack acoustic emission; and structural dynamics.
NASA Technical Reports Server (NTRS)
1988-01-01
The charter of the Structures Division is to perform and disseminate results of research conducted in support of aerospace engine structures. These results have a wide range of applicability to practioners of structural engineering mechanics beyond the aerospace arena. The specific purpose of the symposium was to familiarize the engineering structures community with the depth and range of research performed by the division and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive evaluation, constitutive models and experimental capabilities, dynamic systems, fatigue and damage, wind turbines, hot section technology (HOST), aeroelasticity, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics, and structural mechanics computer codes.
NASA Technical Reports Server (NTRS)
Bales, Kay S.
1988-01-01
Presented are the Objectives, FY 1988 Plans, Approach, and FY 1988 Milestones for the Structures and Dynamics Division (Langley Research Center) research programs. FY 1987 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.
Vaughn, Lisa M; Jacquez, Farrah; Zhen-Duan, Jenny
2018-04-01
Equitable partnership processes and group dynamics, including individual, relational, and structural factors, have been identified as key ingredients to successful community-based participatory research partnerships. The purpose of this qualitative study was to investigate the key aspects of group dynamics and partnership from the perspectives of community members serving as co-researchers. Semistructured, in-depth interviews were conducted with 15 Latino immigrant co-researchers from an intervention project with Latinos Unidos por la Salud (LU-Salud), a community research team composed of Latino immigrant community members and academic investigators working in a health research partnership. A deductive framework approach guided the interview process and qualitative data analysis. The LU-Salud co-researchers described relationships, personal growth, beliefs/identity motivation (individual dynamics), coexistence (relational dynamics), diversity, and power/resource sharing (structural dynamics) as key foundational aspects of the community-academic partnership. Building on existing CBPR and team science frameworks, these findings demonstrate that group dynamics and partnership processes are fundamental drivers of individual-level motivation and meaning making, which ultimately sustain efforts of community partners to engage with the research team and also contribute to the achievement of intended research outcomes.
NASA Technical Reports Server (NTRS)
Wynne, Eleanor C.
1991-01-01
The research accomplishments of the Structural Dynamics Division for F.Y. 1991 are presented. The work is discussed in terms of highlights of accomplishments during the past year and plans for the current year as they relate to 5-year plans and the objectives of each technical area. Included is research on unsteady aerodynamics, helicopter rotors, computational fluid dynamics, oscillations of leading edge flaps of a delta wing, and aircraft wing loads.
NASA Technical Reports Server (NTRS)
1993-01-01
A description is given of each of the following Langley research and test facilities: 0.3-Meter Transonic Cryogenic Tunnel, 7-by 10-Foot High Speed Tunnel, 8-Foot Transonic Pressure Tunnel, 13-Inch Magnetic Suspension & Balance System, 14-by 22-Foot Subsonic Tunnel, 16-Foot Transonic Tunnel, 16-by 24-Inch Water Tunnel, 20-Foot Vertical Spin Tunnel, 30-by 60-Foot Wind Tunnel, Advanced Civil Transport Simulator (ACTS), Advanced Technology Research Laboratory, Aerospace Controls Research Laboratory (ACRL), Aerothermal Loads Complex, Aircraft Landing Dynamics Facility (ALDF), Avionics Integration Research Laboratory, Basic Aerodynamics Research Tunnel (BART), Compact Range Test Facility, Differential Maneuvering Simulator (DMS), Enhanced/Synthetic Vision & Spatial Displays Laboratory, Experimental Test Range (ETR) Flight Research Facility, General Aviation Simulator (GAS), High Intensity Radiated Fields Facility, Human Engineering Methods Laboratory, Hypersonic Facilities Complex, Impact Dynamics Research Facility, Jet Noise Laboratory & Anechoic Jet Facility, Light Alloy Laboratory, Low Frequency Antenna Test Facility, Low Turbulence Pressure Tunnel, Mechanics of Metals Laboratory, National Transonic Facility (NTF), NDE Research Laboratory, Polymers & Composites Laboratory, Pyrotechnic Test Facility, Quiet Flow Facility, Robotics Facilities, Scientific Visualization System, Scramjet Test Complex, Space Materials Research Laboratory, Space Simulation & Environmental Test Complex, Structural Dynamics Research Laboratory, Structural Dynamics Test Beds, Structures & Materials Research Laboratory, Supersonic Low Disturbance Pilot Tunnel, Thermal Acoustic Fatigue Apparatus (TAFA), Transonic Dynamics Tunnel (TDT), Transport Systems Research Vehicle, Unitary Plan Wind Tunnel, and the Visual Motion Simulator (VMS).
Study on Human-structure Dynamic Interaction in Civil Engineering
NASA Astrophysics Data System (ADS)
Gao, Feng; Cao, Li Lin; Li, Xing Hua
2018-06-01
The research of human-structure dynamic interaction are reviewed. Firstly, the influence of the crowd load on structural dynamic characteristics is introduced and the advantages and disadvantages of different crowd load models are analyzed. Then, discussing the influence of structural vibration on the human-induced load, especially the influence of different stiffness structures on the crowd load. Finally, questions about human-structure interaction that require further study are presented.
Testing of Composite Fan Vanes With Erosion-Resistant Coating Accelerated
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.; Sutter, James K.; Otten, Kim D.; Samorezov, Sergey; Perusek, Gail P.
2004-01-01
The high-cycle fatigue of composite stator vanes provided an accelerated life-state prior to insertion in a test stand engine. The accelerated testing was performed in the Structural Dynamics Laboratory at the NASA Glenn Research Center under the guidance of Structural Mechanics and Dynamics Branch personnel. Previous research on fixturing and test procedures developed at Glenn determined that engine vibratory conditions could be simulated for polymer matrix composite vanes by using the excitation of a combined slip table and electrodynamic shaker in Glenn's Structural Dynamics Laboratory. Bench-top testing gave researchers the confidence to test the coated vanes in a full-scale engine test.
NASA Dryden Flight Loads Laboratory
NASA Technical Reports Server (NTRS)
Horn, Tom
2008-01-01
This viewgraph presentation reviews the work of the Dryden Flight Loads Laboratory. The capabilities and research interests of the lab are: Structural, thermal, & dynamic analysis; Structural, thermal, & dynamic ground-test techniques; Advanced structural instrumentation; and Flight test support.
NASA Technical Reports Server (NTRS)
Bales, K. S.
1986-01-01
Presented are the Objectives, FY 1986 Plans, Approach, and FY 1986 Milestones for the Structures and Dynamics Division's research programs. FY 1985 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.
NASA Lewis Research Center/university graduate research program on engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1985-01-01
NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.
NASA Lewis Research Center/University Graduate Research Program on Engine Structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1985-01-01
NASA Lewis Research Center established a graduate research program in support of the Engine Structures Research activities. This graduate research program focuses mainly on structural and dynamics analyses, computational mechanics, mechanics of composites and structural optimization. The broad objectives of the program, the specific program, the participating universities and the program status are briefly described.
Structural dynamics verification facility study
NASA Technical Reports Server (NTRS)
Kiraly, L. J.; Hirchbein, M. S.; Mcaleese, J. M.; Fleming, D. P.
1981-01-01
The need for a structural dynamics verification facility to support structures programs was studied. Most of the industry operated facilities are used for highly focused research, component development, and problem solving, and are not used for the generic understanding of the coupled dynamic response of major engine subsystems. Capabilities for the proposed facility include: the ability to both excite and measure coupled structural dynamic response of elastic blades on elastic shafting, the mechanical simulation of various dynamical loadings representative of those seen in operating engines, and the measurement of engine dynamic deflections and interface forces caused by alternative engine mounting configurations and compliances.
of NREL's Computational Science Center, where he uses electronic structure calculations and other introductory chemistry and physical chemistry. Research Interests Electronic structure and dynamics in the quantum/classical molecular dynamics simulation|Coupling of molecular electronic structure to
NASA Technical Reports Server (NTRS)
Bales, Kay S.
1987-01-01
This paper presents the Objectives, FY 1987 Plans, Approach, and FY 1987 Milestones for the Structures and Dynamics Division's research programs. FY 1986 Accomplishments are presented where applicable. This information is useful in program coordination with other governmental organizations in areas of mutual interest.
NASA Technical Reports Server (NTRS)
Bales, K. S.
1985-01-01
The objectives, FY 1985 plans, approach, and FY 1985 milestones for the Structures and Dynamics Division's research programs are presented. The FY 1984 accomplishments are presented where applicable. This information is useful in program coordination with other government organizations in areas of mutual interest.
NASA Astrophysics Data System (ADS)
Shi, Ao; Lu, Bo; Yang, Dangguo; Wang, Xiansheng; Wu, Junqiang; Zhou, Fangqi
2018-05-01
Coupling between aero-acoustic noise and structural vibration under high-speed open cavity flow-induced oscillation may bring about severe random vibration of the structure, and even cause structure to fatigue destruction, which threatens the flight safety. Carrying out the research on vibro-acoustic experiments of scaled down model is an effective means to clarify the effects of high-intensity noise of cavity on structural vibration. Therefore, in allusion to the vibro-acoustic experiments of cavity in wind tunnel, taking typical elastic cavity as the research object, dimensional analysis and finite element method were adopted to establish the similitude relations of structural inherent characteristics and dynamics for distorted model, and verifying the proposed similitude relations by means of experiments and numerical simulation. Research shows that, according to the analysis of scale-down model, the established similitude relations can accurately simulate the structural dynamic characteristics of actual model, which provides theoretic guidance for structural design and vibro-acoustic experiments of scaled down elastic cavity model.
Effect of structural mount dynamics on a pair of operating Stirling Convertors
NASA Astrophysics Data System (ADS)
Goodnight, Thomas W.; Suárez, Vicente J.; Hughes, William O.; Samorezov, Sergey
2002-01-01
The U.S. Department of Energy (DOE), in conjunction with NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic base-shake tests were conducted on a dynamic simulation of the structural mount for a pair of Operating Stirling Convertors. These tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of these tests was to identify the changes in transmissibility and the effect on structural dynamic response on a pair of operating Stirling Technology Demonstration Convertors (TDCs). This paper addresses the base-shake test, setup, procedure and results conducted on the Stirling TDC mount simulator in April 2001. .
Hristovski, Robert; Aceski, Aleksandar; Balague, Natalia; Seifert, Ludovic; Tufekcievski, Aleksandar; Cecilia, Aguirre
2017-02-01
The article discusses general structure and dynamics of the sports science research content as obtained from the analysis of 21998 European College of Sport Science abstracts belonging to 12 science topics. The structural analysis showed intertwined multidisciplinary and unifying tendencies structured along horizontal (scope) and vertical (level) axes. Methodological (instrumental and mode of inquiry) integrative tendencies are dominant. Theoretical integrative tendencies are much less detectable along both horizontal and vertical axes. The dynamic analysis of written abstracts text content over the 19 years reveals the contextualizing and guiding role of thematic skeletons of each sports science topic in forming more detailed contingent research ideas and the role of the latter in stabilizing and procreating the former. This circular causality between both hierarchical levels and functioning on separate characteristic time scales is crucial for understanding how stable research traditions self-maintain and self-procreate through innovative contingencies. The structure of sports science continuously rebuilds itself through use and re-use of contingent research ideas. The thematic skeleton ensures its identity and the contingent conceptual sets its flexibility and adaptability to different research or applicative problems.
NASA Technical Reports Server (NTRS)
1989-01-01
The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.
CSM parallel structural methods research
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.
1989-01-01
Parallel structural methods, research team activities, advanced architecture computers for parallel computational structural mechanics (CSM) research, the FLEX/32 multicomputer, a parallel structural analyses testbed, blade-stiffened aluminum panel with a circular cutout and the dynamic characteristics of a 60 meter, 54-bay, 3-longeron deployable truss beam are among the topics discussed.
Grave, Daniel A; Yatom, Natav; Ellis, David S; Toroker, Maytal Caspary; Rothschild, Avner
2018-03-05
In recent years, hematite's potential as a photoanode material for solar hydrogen production has ignited a renewed interest in its physical and interfacial properties, which continues to be an active field of research. Research on hematite photoanodes provides new insights on the correlations between electronic structure, transport properties, excited state dynamics, and charge transfer phenomena, and expands our knowledge on solar cell materials into correlated electron systems. This research news article presents a snapshot of selected theoretical and experimental developments linking the electronic structure to the photoelectrochemical performance, with particular focus on optoelectronic properties and charge carrier dynamics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Woodrow Whitlow, Jr. (Editor); Todd, Emily N. (Editor)
1999-01-01
These proceedings represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.
Terrain Mechanics and Modeling Research Program: Enhanced Vehicle Dynamics Module
2009-05-01
ER D C/ G SL T R- 09 -8 Terrain Mechanics and Modeling Research Program Enhanced Vehicle Dynamics Module Daniel C. Creighton, George...public release; distribution is unlimited. Terrain Mechanics and Modeling Research Program ERDC/GSL TR-09-8 May 2009 Enhanced Vehicle Dynamics...Module Daniel C. Creighton, George B. McKinley, and Randolph A. Jones Geotechnical and Structures Laboratory U.S. Army Engineer Research and
ERIC Educational Resources Information Center
Olijnyk, Nicholas Victor
2014-01-01
The central aim of the current research is to explore and describe the profile, dynamics, and structure of the information security specialty. This study's objectives are guided by four research questions: 1. What are the salient features of information security as a specialty? 2. How has the information security specialty emerged and evolved from…
A Historical Perspective on Dynamics Testing at the Langley Research Center
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Kvaternik, Raymond G.
2000-01-01
The history of structural dynamics testing research over the past four decades at the Langley Research Center of the National Aeronautics and Space Administration is reviewed. Beginning in the early sixties, Langley investigated several scale model and full-scale spacecraft including the NIMBUS and various concepts for Apollo and Viking landers. Langley engineers pioneered the use of scaled models to study the dynamics of launch vehicles including Saturn I, Saturn V, and Titan III. In the seventies, work emphasized the Space Shuttle and advanced test and data analysis methods. In the eighties, the possibility of delivering large structures to orbit by the Space Shuttle shifted focus towards understanding the interaction of flexible space structures with attitude control systems. Although Langley has maintained a tradition of laboratory-based research, some flight experiments were supported. This review emphasizes work that, in some way, advanced the state of knowledge at the time.
Computational methods and software systems for dynamics and control of large space structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Felippa, C. A.; Farhat, C.; Pramono, E.
1990-01-01
This final report on computational methods and software systems for dynamics and control of large space structures covers progress to date, projected developments in the final months of the grant, and conclusions. Pertinent reports and papers that have not appeared in scientific journals (or have not yet appeared in final form) are enclosed. The grant has supported research in two key areas of crucial importance to the computer-based simulation of large space structure. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area, as reported here, involves massively parallel computers.
Hierarchical structure and dynamics of oligocarbonate-functionalized PEG block copolymer gels
NASA Astrophysics Data System (ADS)
Prabhu, Vivek; Wei, Guangmin; Ali, Samim; Venkataraman, Shrinivas; Yang, Yi Yan; Hedrick, James
Hierarchical, self-assembled block copolymers in aqueous solutions provide advanced materials for biomaterial applications. Recent advancements in the synthesis of aliphatic polycarbonates have shown nontraditional micellar and hierarchical structures driven by the supramolecular assembly of the carbonate block functionality that includes cholesterol, vitamin D, and fluorene. This presentation shall describe the supramolecular assembly structure and dynamics observed by static and dynamic light scattering, small-angle neutron scattering and transmission electron microscopy in a model pi-pi stacking driven fluorene system. The combination of real-space and reciprocal space methods to develop appropriate models that quantify the structure from the micelle to transient gel network will be discussed. 1) Biomedical Research Council, Agency for Science, Technology and Research, Singapore, 2) NIST Materials Genome Initiative.
ERIC Educational Resources Information Center
Krapp, Andreas
2002-01-01
Presents a collection of theoretical concepts and models that can be used to describe and explore structural and dynamic aspects of interest development from an ontogenic research perspective. Outlines basic ideas of an educational-psychological conceptualization of interest that is based on a dynamic theory of personality. (SLD)
NASA Astrophysics Data System (ADS)
Nguyen, T. P.; Pham, D. T.; Ngo, K. T.
2018-04-01
Reducing vibration in structures under lateral load always attracts many researchers in during pastime, hence the mainly purpose of paper analyzes effectiveness of multiple-tuned liquid dampers for reducing dynamic responses of structures under ground acceleration of earthquakes. In this study, the multi-tuned liquid damper with slat screens (M-TLDWSS) is considered in detail for analyzing dynamic response of multi-degrees of freedom structure due to earthquake, which is more different previous studies. Then, the general equation of motion of the structure and M-TLDWSS under ground acceleration of earthquake is established based on dynamic balance of principle and solved by numerical method in the time domain. The effects of characteristic parameters of M-TLDWSS on dynamic response of the structure are investigated. The results obtained in this study demonstrate that the M-TLDWSS has significantly effectiveness for reducing dynamic response of the structure.
Recent Advances in Heliogyro Solar Sail Structural Dynamics, Stability, and Control Research
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Warren, Jerry E.; Horta, Lucas G.; Lyle, Karen H.; Juang, Jer-Nan; Gibbs, S. Chad; Dowell, Earl H.; Guerrant, Daniel V.; Lawrence, Dale
2015-01-01
Results from recent NASA sponsored research on the structural dynamics, stability, and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, and solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment. Recent results from terrestrial 1-g blade dynamics and control experiments on "rope ladder" membrane blade analogs, and small-scale in vacuo system identification experiments with hanging and spinning high-aspect ratio membranes will also be presented. A low-cost, rideshare payload heliogyro technology demonstration mission concept is used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, and is also described. Blade torsional dynamic response and control are also shown to be significantly improved through the use of edge stiffening structural features or inclusion of modest tip masses to increase centrifugal stiffening of the blade structure. An output-only system identification procedure suitable for on-orbit blade dynamics investigations is also developed and validated using ground tests of spinning sub-scale heliogyro blade models. Overall, analytical and experimental investigations to date indicate no intractable stability or control issues for the heliogyro solar sail concept.
NASA Astrophysics Data System (ADS)
Maslennikov, O. V.; Nekorkin, V. I.
2017-10-01
Dynamical networks are systems of active elements (nodes) interacting with each other through links. Examples are power grids, neural structures, coupled chemical oscillators, and communications networks, all of which are characterized by a networked structure and intrinsic dynamics of their interacting components. If the coupling structure of a dynamical network can change over time due to nodal dynamics, then such a system is called an adaptive dynamical network. The term ‘adaptive’ implies that the coupling topology can be rewired; the term ‘dynamical’ implies the presence of internal node and link dynamics. The main results of research on adaptive dynamical networks are reviewed. Key notions and definitions of the theory of complex networks are given, and major collective effects that emerge in adaptive dynamical networks are described.
NASA Technical Reports Server (NTRS)
Abel, Irving
1997-01-01
An overview of recently completed programs in aeroelasticity and structural dynamics research at the NASA Langley Research Center is presented. Methods used to perform flutter clearance studies in the wind-tunnel on a high performance fighter are discussed. Recent advances in the use of smart structures and controls to solve aeroelastic problems, including flutter and gust response are presented. An aeroelastic models program designed to support an advanced high speed civil transport is described. An extension to transonic small disturbance theory that better predicts flows involving separation and reattachment is presented. The results of a research study to determine the effects of flexibility on the taxi and takeoff characteristics of a high speed civil transport are presented. The use of photogrammetric methods aboard Space Shuttle to measure spacecraft dynamic response is discussed. Issues associated with the jitter response of multi-payload spacecraft are discussed. Finally a Space Shuttle flight experiment that studied the control of flexible spacecraft is described.
Recent Progress in Heliogyro Solar Sail Structural Dynamics
NASA Technical Reports Server (NTRS)
Wilkie, William K.; Warren, Jerry E.; Horta, Lucas G.; Juang, Jer-Nan; Gibbs, Samuel C.; Dowell, E.; Guerrant, Daniel; Lawrence Dale
2014-01-01
Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.
NASA Technical Reports Server (NTRS)
Wynne, Eleanor C.
1994-01-01
The purpose is to present the Structural Dynamics Division's research accomplishments for F.Y. 1993 and research plans for F.Y. 1994. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5-year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.
NASA Technical Reports Server (NTRS)
Smith, Jacqueline G.; Gardner, James E.
1990-01-01
The purpose is to present the Structural Dynamics Division's research accomplishments for FY 1989 and research plans for FY 1990. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to five year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.
NASA Astrophysics Data System (ADS)
Wang, Xiang-qiu; Zhang, Huojun; Xie, Wen-xi
2017-08-01
Based on the similar material model test of full tunnel, the theory of elastic wave propagation and the testing technology of intelligent ultrasonic wave had been used to research the dynamic accumulative damage characteristics of tunnel’s lining structure under the dynamic loads of high speed train. For the more, the dynamic damage variable of lining structure of high speed railway’s tunnel was obtained. The results shown that the dynamic cumulative damage of lining structure increases nonlinearly with the times of cumulative vibration, the weakest part of dynamic cumulative damage is the arch foot of tunnel. Much more attention should be paid to the design and operation management of high speed railway’s tunnel.
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.
1997-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.
A review on bridge dynamic displacement monitoring using global positioning system and accelerometer
NASA Astrophysics Data System (ADS)
Yunus, Mohd Zulkifli Mohd; Ibrahim, Nuremira; Ahmad, Fatimah Shafinaz
2018-02-01
This paper reviews previous research on bridge dynamic displacement monitoring using Global Positioning System (GPS) and an accelerometer for Structural Health Monitoring (SHM) of bridge. These include the review of the advantages and disadvantages of the measurement as well as the methodology of the measurements used in the recent research study. This review could provide a preliminary decision overview for students or researchers before initiating a research related to the bridge dynamic displacement monitoring.
Research in Structures, Structural Dynamics and Materials, 1990
NASA Technical Reports Server (NTRS)
Barthelemy, Jean-Francois M. (Compiler); Noor, Ahmed K. (Compiler)
1990-01-01
The Structural Dynamics and Materials (SDM) Conference was held on April 2 to 4, 1990 in Long Beach, California. This publication is a compilation of presentations of the work-in-progress sessions and does not contain papers from the regular sessions since those papers are published by AIAA in the conference proceedings.
Introducing Students to Structural Dynamics and Earthquake Engineering
ERIC Educational Resources Information Center
Anthoine, Armelle; Marazzi, Francesco; Tirelli, Daniel
2010-01-01
The European Laboratory for Structural Assessment (ELSA) is one of the world's main laboratories for seismic studies. Besides its research activities, it also aims to bring applied science closer to the public. This article describes teaching activities based on a demonstration shaking table which is used to introduce the structural dynamics of…
1989-08-01
NASA Langley Research Center, Hampton, Virginia, and Wright Research Development Center, Wright-Patterson Air Force Base, Ohio, and held in San Diego...427 Shalom Fisher SPACE TRUSS ZERO GRAVITY DYNAMICS. ............................... 445 Captain Andy Swanson UNITED STATES AIR FORCE ACADEMY GET-AWAY...HOUSE EXPERIMENTS IN LARGE SPACE STRUCTURES AT THE AIR FORCE WRIGHT AERONAUTICAL LABORATORIES FLIGHT DYNAMICS LABORATORY
NASA Armstrong Flight Research Center Dynamics and Controls Branch
NASA Technical Reports Server (NTRS)
Jacobson, Steve
2015-01-01
NASA Armstrong continues its legacy of exciting work in the area of Dynamics and Control of advanced vehicle concepts. This presentation describes Armstrongs research in control of flexible structures, peak seeking control and adaptive control in the Spring of 2015.
NASA Astrophysics Data System (ADS)
Harne, Ryan L.; Goodpaster, Benjamin A.
2018-01-01
Structural components susceptible to adverse, post-buckled dynamic behaviors have long challenged the success of applications requiring lightweight, slender curved structures, while researchers have begun to leverage such bistable systems in emerging applications for novel energy attenuation and shape-changing properties. To expedite development and deployment of these built-up platforms containing post-buckled constituents, efficient approaches are required to complement time-consuming full-field models in the prediction of the near- and far-from-equilibrium dynamics. This research meets the need by introducing a semi-analytical model framework to enable the characterization of steady-state responses in multi degree-of-freedom (DOF) and multistable structural systems subjected to harmonic excitation. In so doing, the pathway for assessing impedance measures is created here so as to identify how energy travels and returns within built-up multistable structures. Verified by simulations and qualitatively validated by experiments, the analysis is shown to accurately reproduce both near- and far-from-equilibrium responses including different classes of energetic snap-through dynamics that only exist in such multistable structures. A first look at the impedance measures of different dynamic regimes reveals a connection between damping in multistable structures and the sustainability of far-from-equilibrium oscillations.
Piezoceramic devices and PVDF films as sensors and actuators for intelligent structures
NASA Astrophysics Data System (ADS)
Hanagud, S.; Obal, M. W.; Calise, A. G.
The use of bonded piezoceramic sensors and piezoceramic actuators to control vibrations in structural dynamic systems is discussed. Equations for developing optimum control strategies are derived. An example of a cantilever beam is considered to illustrate the development procedure for optimal vibration control of structures by the use of piezoceramic sensors, actuators, and rate feedbacks with appropriate gains. Research areas and future directions are outlined, including dynamic coupling and constitutive equations; load and energy transfer; composite structures; optimal dynamic compensation; estimation and identification; and distributed control.
Status of DSMT research program
NASA Technical Reports Server (NTRS)
Mcgowan, Paul E.; Javeed, Mehzad; Edighoffer, Harold H.
1991-01-01
The status of the Dynamic Scale Model Technology (DSMT) research program is presented. DSMT is developing scale model technology for large space structures as part of the Control Structure Interaction (CSI) program at NASA Langley Research Center (LaRC). Under DSMT a hybrid-scale structural dynamics model of Space Station Freedom was developed. Space Station Freedom was selected as the focus structure for DSMT since the station represents the first opportunity to obtain flight data on a complex, three-dimensional space structure. Included is an overview of DSMT including the development of the space station scale model and the resulting hardware. Scaling technology was developed for this model to achieve a ground test article which existing test facilities can accommodate while employing realistically scaled hardware. The model was designed and fabricated by the Lockheed Missile and Space Co., and is assembled at LaRc for dynamic testing. Also, results from ground tests and analyses of the various model components are presented along with plans for future subassembly and matted model tests. Finally, utilization of the scale model for enhancing analysis verification of the full-scale space station is also considered.
Composite mechanics for engine structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1987-01-01
Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.
Composite mechanics for engine structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1989-01-01
Recent research activities and accomplishments at Lewis Research Center on composite mechanics for engine structures are summarized. The activities focused mainly on developing procedures for the computational simulation of composite intrinsic and structural behavior. The computational simulation encompasses all aspects of composite mechanics, advanced three-dimensional finite-element methods, damage tolerance, composite structural and dynamic response, and structural tailoring and optimization.
NASA Technical Reports Server (NTRS)
Wynne, Eleanor C.
1993-01-01
The purpose of this paper is to present the Structural Dynamics Division's research accomplishments for F.Y. 1992 and research plans for F.Y. 1993. The work under each Branch (technical area) is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5-year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest.
Division H Commission 33: Structure & Dynamics of the Galactic System
NASA Astrophysics Data System (ADS)
Nordström, Birgitta; Bland-Hawthorn, Joss; Wyse, Rosemary; Athanassoula, Lia; Feltzing, Sofia; Jog, Chanda; Lockman, Jay; Minniti, Dante; Robin, Annie
2016-04-01
Research on the structure and dynamics of the Galactic System covers a large field of research, from formation scenarios to long-term evolution and secular processes. Today we speak of near-field cosmology where the oldest parts of the Galaxy are used to probe back to early times, e.g. studying the chemical signatures of the oldest star clusters and dwarf galaxies to learn about the byproducts of the first stars. Some of the most detailed work relates to the structure of the dark matter and baryons in order to compare with expectation from N-body models. Secular processes have been identified (e.g. stellar migration) where material within the Galaxy is being reorganized by dynamical resonances and feedback processes.
Computational Methods for Structural Mechanics and Dynamics, part 1
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)
1989-01-01
The structural analysis methods research has several goals. One goal is to develop analysis methods that are general. This goal of generality leads naturally to finite-element methods, but the research will also include other structural analysis methods. Another goal is that the methods be amenable to error analysis; that is, given a physical problem and a mathematical model of that problem, an analyst would like to know the probable error in predicting a given response quantity. The ultimate objective is to specify the error tolerances and to use automated logic to adjust the mathematical model or solution strategy to obtain that accuracy. A third goal is to develop structural analysis methods that can exploit parallel processing computers. The structural analysis methods research will focus initially on three types of problems: local/global nonlinear stress analysis, nonlinear transient dynamics, and tire modeling.
Photogrammetry Methodology Development for Gossamer Spacecraft Structures
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Jones, Thomas W.; Walford, Alan; Black, Jonathan T.; Robson, Stuart; Shortis, Mark R.
2002-01-01
Photogrammetry--the science of calculating 3D object coordinates from images-is a flexible and robust approach for measuring the static and dynamic characteristics of future ultralightweight and inflatable space structures (a.k.a., Gossamer structures), such as large membrane reflectors, solar sails, and thin-film solar arrays. Shape and dynamic measurements are required to validate new structural modeling techniques and corresponding analytical models for these unconventional systems. This paper summarizes experiences at NASA Langley Research Center over the past three years to develop or adapt photogrammetry methods for the specific problem of measuring Gossamer space structures. Turnkey industrial photogrammetry systems were not considered a cost-effective choice for this basic research effort because of their high purchase and maintenance costs. Instead, this research uses mainly off-the-shelf digital-camera and software technologies that are affordable to most organizations and provide acceptable accuracy.
NASA Astrophysics Data System (ADS)
Sun, Jiwen; Wei, Ling; Fu, Danying
2002-01-01
resolution and wide swath. In order to assure its high optical precision smoothly passing the rigorous dynamic load of launch, it should be of high structural rigidity. Therefore, a careful study of the dynamic features of the camera structure should be performed. Pro/E. An interference examination is performed on the precise CAD model of the camera for mending the structural design. for the first time in China, and the analysis of structural dynamic of the camera is accomplished by applying the structural analysis code PATRAN and NASTRAN. The main research programs include: 1) the comparative calculation of modes analysis of the critical structure of the camera is achieved by using 4 nodes and 10 nodes tetrahedral elements respectively, so as to confirm the most reasonable general model; 2) through the modes analysis of the camera from several cases, the inherent frequencies and modes are obtained and further the rationality of the structural design of the camera is proved; 3) the static analysis of the camera under self gravity and overloads is completed and the relevant deformation and stress distributions are gained; 4) the response calculation of sine vibration of the camera is completed and the corresponding response curve and maximum acceleration response with corresponding frequencies are obtained. software technique is accurate and efficient. sensitivity, the dynamic design and engineering optimization of the critical structure of the camera are discussed. fundamental technology in design of forecoming space optical instruments.
Unsymmetric Lanczos model reduction and linear state function observer for flexible structures
NASA Technical Reports Server (NTRS)
Su, Tzu-Jeng; Craig, Roy R., Jr.
1991-01-01
This report summarizes part of the research work accomplished during the second year of a two-year grant. The research, entitled 'Application of Lanczos Vectors to Control Design of Flexible Structures' concerns various ways to use Lanczos vectors and Krylov vectors to obtain reduced-order mathematical models for use in the dynamic response analyses and in control design studies. This report presents a one-sided, unsymmetric block Lanczos algorithm for model reduction of structural dynamics systems with unsymmetric damping matrix, and a control design procedure based on the theory of linear state function observers to design low-order controllers for flexible structures.
NASA Technical Reports Server (NTRS)
Hsieh, Shang-Hsien
1993-01-01
The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.
transition metal systems, macromolecular dynamics, comparative chemical bonding analysis, electron transfer . Research Interests Dynamics and control on discrete structures, including excited-state transition metal
NASA Technical Reports Server (NTRS)
McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.
1998-01-01
An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption
NASA Technical Reports Server (NTRS)
Wynne, Eleanor C.
1992-01-01
The work under each technical area is described in terms of highlights of accomplishments during the past year and highlights of plans for the current year as they relate to 5 year plans for each technical area. This information will be useful in program coordination with other government organizations and industry in areas of mutual interest. The structural dynamics division consist of the following branches: configuration aeroelasticity; unsteady aerodynamics; aeroservoelasticity; landing and impact dynamics; and spacecraft dynamics.
Dynamic load environment of bridge-mounted sign support structures : research implementation plan.
DOT National Transportation Integrated Search
2005-09-01
Welded aluminum highway sign support trusses must withstand in-service dynamic loads, which largely : constitute the fatigue environment. Sources of these dynamic loads include the natural wind and seismic : environment, the artificial wind environme...
Development of finite element models to predict dynamic bridge response.
DOT National Transportation Integrated Search
1997-10-01
Dynamic response has long been recognized as one of the significant factors affecting the service life and safety of bridge structures. Even though considerable research, both analytical and experimental, has been devoted to dynamic bridge behavior, ...
Photogrammetry and optical methods in structural dynamics - A review
NASA Astrophysics Data System (ADS)
Baqersad, Javad; Poozesh, Peyman; Niezrecki, Christopher; Avitabile, Peter
2017-03-01
In the last few decades, there has been a surge of research in the area of non-contact measurement techniques. Photogrammetry has received considerable attention due to its ability to achieve full-field measurement and its robustness to work in testing environments and on testing articles in which using other measurement techniques may not be practical. More recently, researchers have used this technique to study transient phenomena and to perform measurements on vibrating structures. The current paper reviews the most current trends in the photogrammetry technique (point tracking, digital image correlation, and target-less approaches) and compares the applications of photogrammetry to other measurement techniques used in structural dynamics (e.g. laser Doppler vibrometry and interferometry techniques). The paper does not present the theoretical background of the optical techniques, but instead presents the general principles of each approach and highlights the novel structural dynamic measurement concepts and applications that are enhanced by utilizing optical techniques.
Carton, Flavia; Calderan, Laura; Malatesta, Manuela
2017-11-28
Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus). We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h.
Carton, Flavia; Calderan, Laura; Malatesta, Manuela
2017-01-01
Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus). We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h. PMID:29313601
Optimization of rotor blades for combined structural, dynamic, and aerodynamic properties
NASA Technical Reports Server (NTRS)
He, Cheng-Jian; Peters, David A.
1990-01-01
Optimal helicopter blade design with computer-based mathematical programming has received more and more attention in recent years. Most of the research has focused on optimum dynamic characteristics of rotor blades to reduce vehicle vibration. There is also work on optimization of aerodynamic performance and on composite structural design. This research has greatly increased our understanding of helicopter optimum design in each of these aspects. Helicopter design is an inherently multidisciplinary process involving strong interactions among various disciplines which can appropriately include aerodynamics; dynamics, both flight dynamics and structural dynamics; aeroelasticity: vibrations and stability; and even acoustics. Therefore, the helicopter design process must satisfy manifold requirements related to the aforementioned diverse disciplines. In our present work, we attempt to combine several of these important effects in a unified manner. First, we design a blade with optimum aerodynamic performance by proper layout of blade planform and spanwise twist. Second, the blade is designed to have natural frequencies that are placed away from integer multiples of the rotor speed for a good dynamic characteristics. Third, the structure is made as light as possible with sufficient rotational inertia to allow for autorotational landing, with safe stress margins and flight fatigue life at each cross-section, and with aeroelastical stability and low vibrations. Finally, a unified optimization refines the solution.
Photogrammetry Methodology Development for Gossamer Spacecraft Structures
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Jones, Thomas W.; Black, Jonathan T.; Walford, Alan; Robson, Stuart; Shortis, Mark R.
2002-01-01
Photogrammetry--the science of calculating 3D object coordinates from images--is a flexible and robust approach for measuring the static and dynamic characteristics of future ultra-lightweight and inflatable space structures (a.k.a., Gossamer structures), such as large membrane reflectors, solar sails, and thin-film solar arrays. Shape and dynamic measurements are required to validate new structural modeling techniques and corresponding analytical models for these unconventional systems. This paper summarizes experiences at NASA Langley Research Center over the past three years to develop or adapt photogrammetry methods for the specific problem of measuring Gossamer space structures. Turnkey industrial photogrammetry systems were not considered a cost-effective choice for this basic research effort because of their high purchase and maintenance costs. Instead, this research uses mainly off-the-shelf digital-camera and software technologies that are affordable to most organizations and provide acceptable accuracy.
NASA Astrophysics Data System (ADS)
Dyachenko, Leonid K.; Benin, Andrey V.
2017-06-01
When the high-speed railway traffic is being organized, it becomes necessary to elaborate bridge design standards for high-speed railways (HSR). Methodology of studying the issues of HSR bridge design is based on the comprehensive analysis of domestic research as well as international experience in design, construction and operation of high-speed railways. Serious requirements are imposed on the HSR artificial structures, which raise a number of scientific tasks associated mainly with the issues of the dynamic interaction of the rolling stock and the bridge elements. To ensure safety of traffic and reliability of bridges during the whole period of operation one needs to resolve the dynamic problems of various types of high-speed trains moving along the structures. The article analyses dependences of the magnitude of inertial response on the external stress parameters and proposes a simplified method of determination of the dynamic live load factor caused by the passage of high-speed trains. The usefulness of the given research arises from the reduction of complexity of the complicated dynamic calculations needed to describe a high-speed train travelling along the artificial structures.
Dynamics of a bistable Miura-origami structure
NASA Astrophysics Data System (ADS)
Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K. W.
2017-05-01
Origami-inspired structures and materials have shown extraordinary properties and performances originating from the intricate geometries of folding. However, current state of the art studies have mostly focused on static and quasistatic characteristics. This research performs a comprehensive experimental and analytical study on the dynamics of origami folding through investigating a stacked Miura-Ori (SMO) structure with intrinsic bistability. We fabricate and experimentally investigated a bistable SMO prototype with rigid facets and flexible crease lines. Under harmonic base excitation, the SMO exhibits both intrawell and interwell oscillations. Spectrum analyses reveal that the dominant nonlinearities of SMO are quadratic and cubic, which generate rich dynamics including subharmonic and chaotic oscillations. The identified nonlinearities indicate that a third-order polynomial can be employed to approximate the measured force-displacement relationship. Such an approximation is validated via numerical study by qualitatively reproducing the phenomena observed in the experiments. The dynamic characteristics of the bistable SMO resemble those of a Helmholtz-Duffing oscillator (HDO); this suggests the possibility of applying the established tools and insights of HDO to predict origami dynamics. We also show that the bistability of SMO can be programmed within a large design space via tailoring the crease stiffness and initial stress-free configurations. The results of this research offer a wealth of fundamental insights into the dynamics of origami folding, and provide a solid foundation for developing foldable and deployable structures and materials with embedded dynamic functionalities.
Computational methods and software systems for dynamics and control of large space structures
NASA Technical Reports Server (NTRS)
Park, K. C.; Felippa, C. A.; Farhat, C.; Pramono, E.
1990-01-01
Two key areas of crucial importance to the computer-based simulation of large space structures are discussed. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area involves massively parallel computers.
Dynamic Structural Health Monitoring of slender structures using optical sensors.
Antunes, Paulo; Travanca, Rui; Rodrigues, Hugo; Melo, José; Jara, José; Varum, Humberto; André, Paulo
2012-01-01
In this paper we summarize the research activities at the Instituto de Telecomunicações--Pólo de Aveiro and University of Aveiro, in the field of fiber Bragg grating based sensors and their applications in dynamic measurements for Structural Health Monitoring of slender structures such as towers. In this work we describe the implementation of an optical biaxial accelerometer based on fiber Bragg gratings inscribed on optical fibers. The proof-of-concept was done with the dynamic monitoring of a reinforced concrete structure and a slender metallic telecommunication tower. Those structures were found to be suitable to demonstrate the feasibility of FBG accelerometers to obtain the structures' natural frequencies, which are the key parameters in Structural Health Monitoring and in the calibration of numerical models used to simulate the structure behavior.
McGillewie, Lara; Ramesh, Muthusamy; Soliman, Mahmoud E
2017-10-01
Aspartic proteases are a class of hydrolytic enzymes that have been implicated in a number of diseases such as HIV, malaria, cancer and Alzheimer's. The flap region of aspartic proteases is a characteristic unique structural feature of these enzymes; and found to have a profound impact on protein overall structure, function and dynamics. Flap dynamics also plays a crucial role in drug binding and drug resistance. Therefore, understanding the structure and dynamic behavior of this flap regions is crucial in the design of potent and selective inhibitors against aspartic proteases. Defining metrics that can describe the flap motion/dynamics has been a challenging topic in literature. This review is the first attempt to compile comprehensive information on sequence, structure, motion and metrics used to assess the dynamics of the flap region of different aspartic proteases in "one pot". We believe that this review would be of critical importance to the researchers from different scientific domains.
Analysis and Test Support for Phillips Laboratory Precision Structures
1998-11-01
Air Force Research Laboratory ( AFRL ), Phillips Research Site . Task objectives centered...around analysis and structural dynamic test support on experiments within the Space Vehicles Directorate at Kirtland Air Force Base. These efforts help...support for Phillips Laboratory Precision Structures." Mr. James Goodding of CSA Engineering was the principal investigator for this task. Mr.
Exploring Protein Structure and Dynamics through a Project-Oriented Biochemistry Laboratory Module
ERIC Educational Resources Information Center
Lipchock, James M.; Ginther, Patrick S.; Douglas, Bonnie B.; Bird, Kelly E.; Loria, J. Patrick
2017-01-01
Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant…
Understanding of Relation Structures of Graphical Models by Lower Secondary Students
ERIC Educational Resources Information Center
van Buuren, Onne; Heck, André; Ellermeijer, Ton
2016-01-01
A learning path has been developed on system dynamical graphical modelling, integrated into the Dutch lower secondary physics curriculum. As part of the developmental research for this learning path, students' understanding of the relation structures shown in the diagrams of graphical system dynamics based models has been investigated. One of our…
Telerobotic research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Sliwa, Nancy E.
1987-01-01
An overview of Automation Technology Branch facilities and research is presented. Manipulator research includes dual-arm coordination studies, space manipulator dynamics, end-effector controller development, automatic space structure assembly, and the development of a dual-arm master-slave telerobotic manipulator system. Sensor research includes gravity-compensated force control, real-time monovision techniques, and laser ranging. Artificial intelligence techniques are being explored for supervisory task control, collision avoidance, and connectionist system architectures. A high-fidelity dynamic simulation of robotic systems, ROBSIM, is being supported and extended. Cooperative efforts with Oak Ridge National Laboratory have verified the ability of teleoperators to perform complex structural assembly tasks, and have resulted in the definition of a new dual-arm master-slave telerobotic manipulator. A bibliography of research results and a list of technical contacts are included.
Structural dynamic and aeroelastic considerations for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Cazier, F. W., Jr.; Doggett, Robert V., Jr.; Ricketts, Rodney H.
1991-01-01
The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out.
NASA Astrophysics Data System (ADS)
Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke
2017-05-01
Graph network models in dementia have become an important computational technique in neuroscience to study fundamental organizational principles of brain structure and function of neurodegenerative diseases such as dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional connections of the graph network, which is mostly based on simple Pearson correlation links. In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct correlations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connectivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based on combining dynamic graph network theory and modeling strategies at different time scales. We present the theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters pertaining to node and area parameters, as well as dynamic parameters, such as system's eigenvalues. By implementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we reveal differences in the structure of these network that play an important role in the temporal evolution of this disease. The described research is key to advance biomedical research on novel disease prediction trajectories and dementia therapies.
Dynamic Structural Health Monitoring of Slender Structures Using Optical Sensors
Antunes, Paulo; Travanca, Rui; Rodrigues, Hugo; Melo, José; Jara, José; Varum, Humberto; André, Paulo
2012-01-01
In this paper we summarize the research activities at the Instituto de Telecomunicações—Pólo de Aveiro and University of Aveiro, in the field of fiber Bragg grating based sensors and their applications in dynamic measurements for Structural Health Monitoring of slender structures such as towers. In this work we describe the implementation of an optical biaxial accelerometer based on fiber Bragg gratings inscribed on optical fibers. The proof-of-concept was done with the dynamic monitoring of a reinforced concrete structure and a slender metallic telecommunication tower. Those structures were found to be suitable to demonstrate the feasibility of FBG accelerometers to obtain the structures' natural frequencies, which are the key parameters in Structural Health Monitoring and in the calibration of numerical models used to simulate the structure behavior. PMID:22778661
Dynamics of systems on the nanoscale
NASA Astrophysics Data System (ADS)
Korol, Andrei V.; Solov'yov, Andrey V.
2017-12-01
Various aspects of the structure formation and dynamics of animate and inanimate matter on the nanoscale is a highly interdisciplinary field of rapidly emerging research interest by both experimentalists and theorists. The International Conference on Dynamics of Systems on the Nanoscale (DySoN) is the premier forum to present cutting-edge research in this field. It was established in 2010 and the most recent conference was held in Bad Ems, Germany in October of 2016. This Topical Issue presents original research results from some of the participants, who attended this conference. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.
Fahrutdinova, Liliya Raifovna; Nugmanova, Dzhamilia Renatovna
2015-01-01
Dynamics of experience as such and its corporeal, emotional and cognitive elements in the situation of psychological consulting provisioning is covered. The aim of research was to study psychological crisis experience dynamics in the situation when psychological consulting by gestalt therapy methods is provided. Theoretical analysis of the problem of crisis situations, phenomenon and structural, and dynamic organization of experience of the subject of consulting have been carried out. To fulfill research project test subjects experience crisis situation have been selected, studied in the situation when they provided psychological consulting by methods of gestalt therapy, and methodology of study of crisis situations experience has been prepared. Specifics of psychological crisis experience have been revealed and its elements in different stages of psychological consulting by gestalt therapy methods. Dynamics of experience of psychological crisis and its structural elements have been revealed and reliable changes in it have been revealed. Dynamics of psychological crisis experience and its structural elements have been revealed and reliable changes in it have been revealed. "Desiccation" of experience is being observed, releasing its substantiality of negative impression to the end of consulting and development of the new experience of control over crisis situation. Interrelations of structural elements of experience in the process of psychological consulting have been shown. Effecting one structure causes reliable changes in all others structural elements of experience. Giving actual psychological help to clients in crisis situation by methods of gestalt therapy is possible as it was shown in psychological consulting sessions. Structure of client's request has been revealed - problems of personal sense are fixed as the most frequent cause of clients' applications, as well as absence of choices, obtrusiveness of negative thoughts, tend to getting stuck on events took place in the past, drawing into oneself, etc.
CFD Investigation of Effect of Depth to Diameter Ratio on Dimple Flow Dynamics
2007-06-01
contained dynamic vortical flow structures with behavior varying between each dimple studied. This dynamic vortex activity was observed to be linked... 1 1.1 Research Goals . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation for Research . . . . . . . . . . . . . . . . . . 1 1.3...59 F. 1 . Pressure tap for ReD 20500 Rex 5000 0.05 h/D dimple . . . . . 66 F.2. Pressure tap for ReD 20500 Rex 77000 0.05 h/D dimple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rundle, John B.; Klein, William
We have carried out research to determine the dynamics of failure in complex geomaterials, specifically focusing on the role of defects, damage and asperities in the catastrophic failure processes (now popularly termed “Black Swan events”). We have examined fracture branching and flow processes using models for invasion percolation, focusing particularly on the dynamics of bursts in the branching process. We have achieved a fundamental understanding of the dynamics of nucleation in complex geomaterials, specifically in the presence of inhomogeneous structures.
ONR Ocean Wave Dynamics Workshop
NASA Astrophysics Data System (ADS)
In anticipation of the start (in Fiscal Year 1988) of a new Office of Naval Research (ONR) Accelerated Research Initiative (ARI) on Ocean Surface Wave Dynamics, a workshop was held August 5-7, 1986, at Woods Hole, Mass., to discuss new ideas and directions of research. This new ARI on Ocean Surface Wave Dynamics is a 5-year effort that is organized by the ONR Physical Oceanography Program in cooperation with the ONR Fluid Mechanics Program and the Physical Oceanography Branch at the Naval Ocean Research and Development Activity (NORDA). The central theme is improvement of our understanding of the basic physics and dynamics of surface wave phenomena, with emphasis on the following areas: precise air-sea coupling mechanisms,dynamics of nonlinear wave-wave interaction under realistic environmental conditions,wave breaking and dissipation of energy,interaction between surface waves and upper ocean boundary layer dynamics, andsurface statistical and boundary layer coherent structures.
Application of Lanczos vectors to control design of flexible structures, part 2
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Su, Tzu-Jeng
1992-01-01
This report covers the period of the grant from January 1991 until its expiration in June 1992. Together with an Interim Report (Ref. 9), it summarizes the research conducted under NASA Grant NAG9-357 on the topic 'Application of Lanczos Vectors to Control Design of Flexible Structures.' The research concerns various ways to obtain reduced-order mathematical models of complex structures for use in dynamics analysis and in the design of control systems for these structures. This report summarizes the research.
Structural Integrity and Durability of Reusable Space Propulsion Systems
NASA Technical Reports Server (NTRS)
1989-01-01
Presentations were made by industry, university, and government researchers organized into four sessions: aerothermodynamic loads; instrumentation; fatigue, fracture, and constitutive modeling; and structural dynamics.
Hierarchical Process Composition: Dynamic Maintenance of Structure in a Distributed Environment
1988-01-01
One prominent hne of research stresses the independence of address space and thread of control, and the resulting efficiencies due to shared memory...cooperating processes. StarOS focuses on case of use and a general capability mechanism, while Medusa stresses the effect of distributed hardware on system...process structure and the asynchrony among agents and between agents and sources of failure. By stressing dynamic structure, we are led to adopt an
NASA Astrophysics Data System (ADS)
Namazi, Hamidreza; Kulish, Vladimir V.; Akrami, Amin
2016-05-01
One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the ‘complex’ visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders.
An overview of the crash dynamics failure behavior of metal and composite aircraft structures
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.
1991-01-01
An overview of failure behavior results is presented from some of the crash dynamics research conducted with concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. Experimental and analytical data are presented that indicate some general trends in the failure behavior of a class of composite structures that includes fuselage panels, individual fuselage sections, fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame stringer structure. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.
Dynamic tests of composite panels of an aircraft wing
NASA Astrophysics Data System (ADS)
Splichal, Jan; Pistek, Antonin; Hlinka, Jiri
2015-10-01
The paper describes the analysis of aerospace composite structures under dynamic loading. Today, it is common to use design procedures based on assumption of static loading only, and dynamic loading is rarely assumed and applied in design and certification of aerospace structures. The paper describes the application of dynamic loading for the design of aircraft structures, and the validation of the procedure on a selected structure. The goal is to verify the possibility of reducing the weight through improved design/modelling processes using dynamic loading instead of static loading. The research activity focuses on the modelling and testing of a composite panel representing a local segment of an aircraft wing section, investigating in particular the buckling behavior under dynamic loading. Finite Elements simulation tools are discussed, as well as the advantages of using a digital optical measurement system for the evaluation of the tests. The comparison of the finite element simulations with the results of the tests is presented.
Shock wave facilities at Pulter Laboratory of SRI international
NASA Astrophysics Data System (ADS)
Murri, W. J.
1982-04-01
Shock wave research in the Poulter Laboratory covers two broad areas: dynamic material response and dynamic structural response. Workers in both areas use common facilities. The Laboratory has several guns and the facilities to perform various types of high explosive loading experiments. The use of these facilities and experimental techniques is illustrated with examples from research projects.
Sathyamoorthy, Bharathwaj; Shi, Honglue; Zhou, Huiqing; Xue, Yi; Rangadurai, Atul; Merriman, Dawn K; Al-Hashimi, Hashim M
2017-05-19
In the canonical DNA double helix, Watson-Crick (WC) base pairs (bps) exist in dynamic equilibrium with sparsely populated (∼0.02-0.4%) and short-lived (lifetimes ∼0.2-2.5 ms) Hoogsteen (HG) bps. To gain insights into transient HG bps, we used solution-state nuclear magnetic resonance spectroscopy, including measurements of residual dipolar couplings and molecular dynamics simulations, to examine how a single HG bp trapped using the N1-methylated adenine (m1A) lesion affects the structural and dynamic properties of two duplexes. The solution structure and dynamic ensembles of the duplexes reveals that in both cases, m1A forms a m1A•T HG bp, which is accompanied by local and global structural and dynamic perturbations in the double helix. These include a bias toward the BI backbone conformation; sugar repuckering, major-groove directed kinking (∼9°); and local melting of neighboring WC bps. These results provide atomic insights into WC/HG breathing dynamics in unmodified DNA duplexes as well as identify structural and dynamic signatures that could play roles in m1A recognition and repair. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Structural and Dynamical Details of Biotin
NASA Astrophysics Data System (ADS)
Korter, Timothy; Dunmire, David; Romero, Danilo; Middleton, Chris; Jenkins, Tim; Hudson, Bruce; Hight Walker, Angela
2003-03-01
Biotin, one of the B vitamins, is a key cofactor of enzymes that transfer units of CO2. Chemically linked to a lysine residue via its carboxylic acid side chain, biotin exhibits incredible flexibility when performing its intraprotein transport role. Not only does Biotin play a critical role in gluconeogenesis, it also is commonly used throughout biotechnology research due to its strong binding affinity for attachment, tethering and labeling chemistries. Therefore, a detailed probe of the structure and dynamics of biotin is important both metabolically and to aid further research. Here, we used several vibrational techniques, THz, IR, Raman and Inelastic Neutron Scattering, to gain a comprehensive understanding of biotin's structure, flexibility and dynamics. Specifically our interests are in hydrogen bonding interactions, torsional vibrations, and conformational changes with varying environments, which frequently lie in the far-infrared region of the spectrum below 200 cm-1. Interpretation and comparison of our multi-technique data are guided by high-level ab initio calculations.
Theoretical and software considerations for nonlinear dynamic analysis
NASA Technical Reports Server (NTRS)
Schmidt, R. J.; Dodds, R. H., Jr.
1983-01-01
In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented.
Workshop on High-Field NMR and Biological Applications
NASA Astrophysics Data System (ADS)
Scientists at the Pacific Northwest Laboratory have been working toward the establishment of a new Molecular Science Research Center (MSRC). The primary scientific thrust of this new research center is in the areas of theoretical chemistry, chemical dynamics, surface and interfacial science, and studies on the structure and interactions of biological macromolecules. The MSRC will provide important new capabilities for studies on the structure of biological macromolecules. The MSRC program includes several types of advanced spectroscopic techniques for molecular structure analysis, and a theory and modeling laboratory for molecular mechanics/dynamics calculations and graphics. It is the goal to closely integrate experimental and theoretical studies on macromolecular structure, and to join these research efforts with those of the molecular biological programs to provide new insights into the structure/function relationships of biological macromolecules. One of the areas of structural biology on which initial efforts in the MSRC will be focused is the application of high field, 2-D NMR to the study of biological macromolecules. First, there is interest in obtaining 3-D structural information on large proteins and oligonucleotides. Second, one of the primary objectives is to closely link theoretical approaches to molecular structure analysis with the results obtained in experimental research using NMR and other spectroscopies.
Recent Developments in Smart Adaptive Structures for Solar Sailcraft
NASA Technical Reports Server (NTRS)
Whorton, M. S.; Kim, Y. K.; Oakley, J.; Adetona, O.; Keel, L. H.
2007-01-01
The "Smart Adaptive Structures for Solar Sailcraft" development activity at MSFC has investigated issues associated with understanding how to model and scale the subsystem and multi-body system dynamics of a gossamer solar sailcraft with the objective of designing sailcraft attitude control systems. This research and development activity addressed three key tasks that leveraged existing facilities and core competencies of MSFC to investigate dynamics and control issues of solar sails. Key aspects of this effort included modeling and testing of a 30 m deployable boom; modeling of the multi-body system dynamics of a gossamer sailcraft; investigation of control-structures interaction for gossamer sailcraft; and development and experimental demonstration of adaptive control technologies to mitigate control-structures interaction.
Integrating protein structural dynamics and evolutionary analysis with Bio3D.
Skjærven, Lars; Yao, Xin-Qiu; Scarabelli, Guido; Grant, Barry J
2014-12-10
Popular bioinformatics approaches for studying protein functional dynamics include comparisons of crystallographic structures, molecular dynamics simulations and normal mode analysis. However, determining how observed displacements and predicted motions from these traditionally separate analyses relate to each other, as well as to the evolution of sequence, structure and function within large protein families, remains a considerable challenge. This is in part due to the general lack of tools that integrate information of molecular structure, dynamics and evolution. Here, we describe the integration of new methodologies for evolutionary sequence, structure and simulation analysis into the Bio3D package. This major update includes unique high-throughput normal mode analysis for examining and contrasting the dynamics of related proteins with non-identical sequences and structures, as well as new methods for quantifying dynamical couplings and their residue-wise dissection from correlation network analysis. These new methodologies are integrated with major biomolecular databases as well as established methods for evolutionary sequence and comparative structural analysis. New functionality for directly comparing results derived from normal modes, molecular dynamics and principal component analysis of heterogeneous experimental structure distributions is also included. We demonstrate these integrated capabilities with example applications to dihydrofolate reductase and heterotrimeric G-protein families along with a discussion of the mechanistic insight provided in each case. The integration of structural dynamics and evolutionary analysis in Bio3D enables researchers to go beyond a prediction of single protein dynamics to investigate dynamical features across large protein families. The Bio3D package is distributed with full source code and extensive documentation as a platform independent R package under a GPL2 license from http://thegrantlab.org/bio3d/ .
Vincent J. Pacific; Kelsey G. Jencso; Brian L. McGlynn
2010-01-01
Stream DOC dynamics during snowmelt have been the focus of much research, and numerous DOC mobilization and delivery mechanisms from riparian and upland areas have been proposed. However, landscape structure controls on DOC export from riparian and upland landscape elements remains poorly understood. We investigated stream and groundwater DOC dynamics across three...
Membrane solid-state NMR in Canada: A historical perspective.
Auger, Michèle
2017-11-01
This manuscript presents an overview of more than 40years of membrane solid-state nuclear magnetic resonance (NMR) research in Canada. This technique is a method of choice for the study of the structure and dynamics of lipid bilayers; bilayer interactions with a variety of molecules such as membrane peptides, membrane proteins and drugs; and to investigate membrane peptide and protein structure, dynamics, and topology. Canada has a long tradition in this field of research, starting with pioneering work on natural and model membranes in the 1970s in a context of emergence of biophysics in the country. The 1980s and 1990s saw an emphasis on studying lipid structures and dynamics, and peptide-lipid and protein-lipid interactions. The study of bicelles began in the 1990s, and in the 2000s there was a rise in the study of membrane protein structures. Novel perspectives include using dynamic nuclear polarization (DNP) for membrane studies and using NMR in live cells. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.
Research and development activities in unified control-structure modeling and design
NASA Technical Reports Server (NTRS)
Nayak, A. P.
1985-01-01
Results of work sponsored by JPL and other organizations to develop a unified control/structures modeling and design capability for large space structures is presented. Recent analytical results are presented to demonstrate the significant interdependence between structural and control properties. A new design methodology is suggested in which the structure, material properties, dynamic model and control design are all optimized simultaneously. The development of a methodology for global design optimization is recommended as a long term goal. It is suggested that this methodology should be incorporated into computer aided engineering programs, which eventually will be supplemented by an expert system to aid design optimization. Recommendations are also presented for near term research activities at JPL. The key recommendation is to continue the development of integrated dynamic modeling/control design techniques, with special attention given to the development of structural models specially tailored to support design.
The research of suspen-dome structure
NASA Astrophysics Data System (ADS)
Gong, Shengyuan
2017-09-01
After overcoming the shortcomings of single-layer latticed shell and cable dome structure, the suspen-dome was developed by inheriting the advantages of them, and it was recognized and applied as a new type of prestressed force large span space structure. Based on the analysis of the background and mechanical principle, the researches of suspen-dome are reviewed, including form-finding analysis, the analysis of static force and stability, the dynamic behaviors and the earthquake resistant behavior, the analysis of prestressing force and optimization design, and the research status of the design of the fir-resistant performance etc. This thesis summarizes the methods of various researches, being a reference for further structural performance research and structural engineering application.
Impact Testing of a Stirling Converter's Linear Alternator
NASA Technical Reports Server (NTRS)
Suarez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey
2002-01-01
The U.S. Department of Energy (DOE), in conjunction with the NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic impact tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of this test was to identify dynamic structural characteristics of the Stirling Technology Demonstration Convertor (TDC). This paper addresses the test setup, procedure, and results of the impact testing conducted on the Stirling TDC in May 2001.
Impact testing of a Stirling convertor's linear alternator
NASA Astrophysics Data System (ADS)
Suárez, Vicente J.; Goodnight, Thomas W.; Hughes, William O.; Samorezov, Sergey
2002-01-01
The U.S. Department of Energy (DOE), in conjunction with NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic impact tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of this test was to identify dynamic structural characteristics of the Stirling Technology Demonstration Convertor (TDC). This paper addresses the test setup, procedure and results of the impact testing conducted on the Stirling TDC in May 2001. .
Minimal complexity control law synthesis
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Haddad, Wassim M.; Nett, Carl N.
1989-01-01
A paradigm for control law design for modern engineering systems is proposed: Minimize control law complexity subject to the achievement of a specified accuracy in the face of a specified level of uncertainty. Correspondingly, the overall goal is to make progress towards the development of a control law design methodology which supports this paradigm. Researchers achieve this goal by developing a general theory of optimal constrained-structure dynamic output feedback compensation, where here constrained-structure means that the dynamic-structure (e.g., dynamic order, pole locations, zero locations, etc.) of the output feedback compensation is constrained in some way. By applying this theory in an innovative fashion, where here the indicated iteration occurs over the choice of the compensator dynamic-structure, the paradigm stated above can, in principle, be realized. The optimal constrained-structure dynamic output feedback problem is formulated in general terms. An elegant method for reducing optimal constrained-structure dynamic output feedback problems to optimal static output feedback problems is then developed. This reduction procedure makes use of star products, linear fractional transformations, and linear fractional decompositions, and yields as a byproduct a complete characterization of the class of optimal constrained-structure dynamic output feedback problems which can be reduced to optimal static output feedback problems. Issues such as operational/physical constraints, operating-point variations, and processor throughput/memory limitations are considered, and it is shown how anti-windup/bumpless transfer, gain-scheduling, and digital processor implementation can be facilitated by constraining the controller dynamic-structure in an appropriate fashion.
NASA Technical Reports Server (NTRS)
Sreekantamurthy, Tham; Gaspar, James L.; Mann, Troy; Behun, Vaughn; Pearson, James C., Jr.; Scarborough, Stephen
2007-01-01
Ultra-light weight and ultra-thin membrane inflatable antenna concepts are fast evolving to become the state-of-the-art antenna concepts for deep-space applications. NASA Langley Research Center has been involved in the structural dynamics research on antenna structures. One of the goals of the research is to develop structural analysis methodology for prediction of the static and dynamic response characteristics of the inflatable antenna concepts. This research is focused on the computational studies to use nonlinear large deformation finite element analysis to characterize the ultra-thin membrane responses of the antennas. Recently, structural analyses have been performed on a few parabolic reflector antennas of varying size and shape, which are referred in the paper as 0.3 meters subscale, 2 meters half-scale, and 4 meters full-scale antenna. The various aspects studied included nonlinear analysis methodology and solution techniques, ways to speed convergence in iterative methods, the sensitivities of responses with respect to structural loads, such as inflation pressure, gravity, and pretension loads in the ground and in-space conditions, and the ultra-thin membrane wrinkling characteristics. Several such intrinsic aspects studied have provided valuable insight into evaluation of structural characteristics of such antennas. While analyzing these structural characteristics, a quick study was also made to assess the applicability of dynamics scaling of the half-scale antenna. This paper presents the details of the nonlinear structural analysis results, and discusses the insight gained from the studies on the various intrinsic aspects of the analysis methodology. The predicted reflector surface characteristics of the three inflatable ultra-thin membrane parabolic reflector antenna concepts are presented as easily observable displacement fringe patterns with associated maximum values, and normal mode shapes and associated frequencies. Wrinkling patterns are presented to show how surface wrinkle progress with increasing tension loads. Antenna reflector surface accuracies were found to be very much dependent on the type and size of the antenna, the reflector surface curvature, reflector membrane supports in terms of spacing of catenaries, as well as the amount of applied load.
Strogatz, S H
2001-03-08
The study of networks pervades all of science, from neurobiology to statistical physics. The most basic issues are structural: how does one characterize the wiring diagram of a food web or the Internet or the metabolic network of the bacterium Escherichia coli? Are there any unifying principles underlying their topology? From the perspective of nonlinear dynamics, we would also like to understand how an enormous network of interacting dynamical systems-be they neurons, power stations or lasers-will behave collectively, given their individual dynamics and coupling architecture. Researchers are only now beginning to unravel the structure and dynamics of complex networks.
Survey of NASA research on crash dynamics
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Carden, H. D.; Hayduk, R. J.
1984-01-01
Ten years of structural crash dynamics research activities conducted on general aviation aircraft by the National Aeronautics and Space Administration (NASA) are described. Thirty-two full-scale crash tests were performed at Langley Research Center, and pertinent data on airframe and seat behavior were obtained. Concurrent with the experimental program, analytical methods were developed to help predict structural behavior during impact. The effects of flight parameters at impact on cabin deceleration pulses at the seat/occupant interface, experimental and analytical correlation of data on load-limiting subfloor and seat configurations, airplane section test results for computer modeling validation, and data from emergency-locator-transmitter (ELT) investigations to determine probable cause of false alarms and nonactivations are assessed. Computer programs which provide designers with analytical methods for predicting accelerations, velocities, and displacements of collapsing structures are also discussed.
Veluraja, Kasinadar; Selvin, Jeyasigamani F A; Venkateshwari, Selvakumar; Priyadarzini, Thanu R K
2010-09-23
The inherent flexibility and lack of strong intramolecular interactions of oligosaccharides demand the use of theoretical methods for their structural elucidation. In spite of the developments of theoretical methods, not much research on glycoinformatics is done so far when compared to bioinformatics research on proteins and nucleic acids. We have developed three dimensional structural database for a sialic acid-containing carbohydrates (3DSDSCAR). This is an open-access database that provides 3D structural models of a given sialic acid-containing carbohydrate. At present, 3DSDSCAR contains 60 conformational models, belonging to 14 different sialic acid-containing carbohydrates, deduced through 10 ns molecular dynamics (MD) simulations. The database is available at the URL: http://www.3dsdscar.org. Copyright 2010 Elsevier Ltd. All rights reserved.
Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research.
Ke, Yonggang; Castro, Carlos; Choi, Jong Hyun
2018-06-04
Structural DNA nanotechnology utilizes synthetic or biologic DNA as designer molecules for the self-assembly of artificial nanostructures. The field is founded upon the specific interactions between DNA molecules, known as Watson-Crick base pairing. After decades of active pursuit, DNA has demonstrated unprecedented versatility in constructing artificial nanostructures with significant complexity and programmability. The nanostructures could be either static, with well-controlled physicochemical properties, or dynamic, with the ability to reconfigure upon external stimuli. Researchers have devoted considerable effort to exploring the usability of DNA nanostructures in biomedical research. We review the basic design methods for fabricating both static and dynamic DNA nanostructures, along with their biomedical applications in fields such as biosensing, bioimaging, and drug delivery.
Mechanical Engineering Department engineering research: Annual report, FY 1986
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, R.M.; Essary, K.L.; Genin, M.S.
1986-12-01
This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstractsmore » were prepared for each of the 13 reports in this publication. (JDH)« less
Aeroelastic modeling for the FIT (Functional Integration Technology) team F/A-18 simulation
NASA Technical Reports Server (NTRS)
Zeiler, Thomas A.; Wieseman, Carol D.
1989-01-01
As part of Langley Research Center's commitment to developing multidisciplinary integration methods to improve aerospace systems, the Functional Integration Technology (FIT) team was established to perform dynamics integration research using an existing aircraft configuration, the F/A-18. An essential part of this effort has been the development of a comprehensive simulation modeling capability that includes structural, control, and propulsion dynamics as well as steady and unsteady aerodynamics. The structural and unsteady aerodynamics contributions come from an aeroelastic mode. Some details of the aeroelastic modeling done for the Functional Integration Technology (FIT) team research are presented. Particular attention is given to work done in the area of correction factors to unsteady aerodynamics data.
Aeroelastic, CFD, and Dynamics Computation and Optimization for Buffet and Flutter Applications
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1997-01-01
Accomplishments achieved during the reporting period are listed. These accomplishments included 6 papers published in various journals or presented at various conferences; 1 abstract submitted to a technical conference; production of 2 animated movies; and a proposal for use of the National Aerodynamic Simulation Facility at NASA Ames Research Center for further research. The published and presented papers and animated movies addressed the following topics: aeroelasticity, computational fluid dynamics, structural dynamics, wing and tail buffet, vortical flow interactions, and delta wings.
Using the prisms of gender and rank to interpret research collaboration power dynamics.
Gaughan, Monica; Bozeman, Barry
2016-08-01
Collaboration is central to modern scientific inquiry, and increasingly important to the professional experiences of academic scientists. While the effects of collaboration have been widely studied, much less is understood about the motivations to collaborate and collaboration dynamics that generate scientific outcomes. A particular interest of this study is to understand how collaboration experiences differ between women and men, and the attributions used to explain these differences. We use a multi-method study of university Science, Technology, Engineering, and Mathematics faculty research collaborators. We employ 177 anonymous open-ended responses to a web-based survey, and 60 semi-structured interviews of academic scientists in US research universities. We find similarities and differences in collaborative activity between men and women. Open-ended qualitative textual analysis suggests that some of these differences are attributed to power dynamics - both general ones related to differences in organizational status, and in power dynamics related specifically to gender. In analysis of semi-structured interviews, we find that both status and gender were used as interpretive frames for collaborative behavior, with more emphasis placed on status than gender differences. Overall, the findings support that gender structures some part of the collaborative experience, but that status hierarchy exerts more clear effects.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.
A Historical Perspective on Dynamics Testing at the Langley Research Center
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Kvaternik, Raymond G.; Hanks, Brantley R.
2000-01-01
The experience and advancement of Structural dynamics testing for space system applications at the Langley Research Center of the National Aeronautics and Space Administration (NASA) over the past four decades is reviewed. This experience began in the 1960's with the development of a technology base using a variety of physical models to explore dynamic phenomena and to develop reliable analytical modeling capability for space systems. It continued through the 1970's and 80's with the development of rapid, computer-aided test techniques, the testing of low-natural frequency, gravity-sensitive systems, the testing of integrated structures with active flexible motion control, and orbital flight measurements, It extended into the 1990's where advanced computerized system identification methods were developed for estimating the dynamic states of complex, lightweight, flexible aerospace systems, The scope of discussion in this paper includes ground and flight tests and summarizes lessons learned in both successes and failures.
Effects of Dimerization of Serratia marcescens Endonuclease on Water Dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chuanying; Beck, Brian W.; Krause, Kurt
2007-02-15
The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The dynamics and structure of Serratia marcescens endonuclease and its neighboring solvent are investigated by molecular dynamics (MD). Comparisons are made with structural and biochemical experiments. The dimer form is physiologic and functions more processively than the monomer. We previously found a channel formed by connected clusters of waters from the active site to the dimer interface. Here, we showmore » that dimerization clearly changes correlations in the water structure and dynamics in the active site not seen in the monomer. Our results indicate that water at the active sites of the dimer is less affected compared with bulk solvent than in the monomer where it has much slower characteristic relaxation times. Given that water is a required participant in the reaction, this gives a clear advantage to dimerization in the absence of an apparent ability to use both active sites simultaneously.« less
Designing for aircraft structural crashworthiness
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Caiafa, C.
1981-01-01
This report describes structural aviation crash dynamics research activities being conducted on general aviation aircraft and transport aircraft. The report includes experimental and analytical correlations of load-limiting subfloor and seat configurations tested dynamically in vertical drop tests and in a horizontal sled deceleration facility. Computer predictions using a finite-element nonlinear computer program, DYCAST, of the acceleration time-histories of these innovative seat and subfloor structures are presented. Proposed application of these computer techniques, and the nonlinear lumped mass computer program KRASH, to transport aircraft crash dynamics is discussed. A proposed FAA full-scale crash test of a fully instrumented radio controlled transport airplane is also described.
NASA Technical Reports Server (NTRS)
Whitlow, Jr., Woodrow (Editor); Todd, Emily N. (Editor)
1999-01-01
The proceedings of a workshop sponsored by the Confederation of European Aerospace Societies (CEAS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), Washington, D.C., and the Institute for Computer Applications in Science and Engineering (ICASE), Hampton, Virginia, and held in Williamsburg, Virginia June 22-25, 1999 represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.
Computational neuropharmacology: dynamical approaches in drug discovery.
Aradi, Ildiko; Erdi, Péter
2006-05-01
Computational approaches that adopt dynamical models are widely accepted in basic and clinical neuroscience research as indispensable tools with which to understand normal and pathological neuronal mechanisms. Although computer-aided techniques have been used in pharmaceutical research (e.g. in structure- and ligand-based drug design), the power of dynamical models has not yet been exploited in drug discovery. We suggest that dynamical system theory and computational neuroscience--integrated with well-established, conventional molecular and electrophysiological methods--offer a broad perspective in drug discovery and in the search for novel targets and strategies for the treatment of neurological and psychiatric diseases.
Structural Dynamics Experimental Activities in Ultra-Lightweight and Inflatable Space Structures
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Lassiter, John O.; Ross, Brian P.
2001-01-01
This paper reports recently completed structural dynamics experimental activities with new ultralightweight and inflatable space structures (a.k.a., "Gossamer" spacecraft) at NASA Langley Research Center, NASA Marshall Space Flight Center, and NASA Goddard Space Flight Center. Nine aspects of this work are covered, as follows: 1) inflated, rigidized tubes, 2) active control experiments, 3) photogrammetry, 4) laser vibrometry, 5) modal tests of inflatable structures, 6) in-vacuum modal tests, 7) tensioned membranes, 8) deployment tests, and 9) flight experiment support. Structural dynamics will play a major role in the design and eventual in-space deployment and performance of Gossamer spacecraft, and experimental R&D work such as this is required now to validate new analytical prediction methods. The activities discussed in the paper are pathfinder accomplishments, conducted on unique components and prototypes of future spacecraft systems.
Research in solar plasma theory
NASA Technical Reports Server (NTRS)
Vanhoven, Gerard
1992-01-01
The main thrust and significance of our research results are presented. The topics covered include: (1) coronal structure and dynamics; (2) coronal heating; (3) filament formation; and (4) flare energy release.
NASA Technical Reports Server (NTRS)
1988-01-01
The Conference Proceedings is a compilation of over 30 technical papers presented which report on the advances in rotorcraft technical knowledge resulting from NASA, Army, and industry research programs over the last 5 to 10 years. Topics addressed in this volume include: materials and structures; propulsion and drive systems; flight dynamics and control; and acoustics.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Muhammad, Iqbal; Yue, Chao
2017-10-01
We extend two known dynamical systems obtained by Blaszak, et al. via choosing Casimir functions and utilizing Novikov-Lax equation so that a series of novel dynamical systems including generalized Burgers dynamical system, heat equation, and so on, are followed to be generated. Then we expand some differential operators presented in the paper to deduce two types of expanding dynamical models. By taking the generalized Burgers dynamical system as an example, we deform its expanding model to get a half-expanding system, whose recurrence operator is derived from Lax representation, and its Hamiltonian structure is also obtained by adopting a new way. Finally, we expand the generalized Burgers dynamical system to the (2+1)-dimensional case whose Hamiltonian structure is derived by Poisson tensor and gradient of the Casimir function. Besides, a kind of (2+1)-dimensional expanding dynamical model of the (2+1)-dimensional dynamical system is generated as well. Supported by the Fundamental Research Funds for the Central University under Grant No. 2017XKZD11
Between timelessness and historiality: on the dynamics of the epistemic objects of mathematics.
Epple, Moritz
2011-09-01
In order to discuss the temporal structure of mathematical research, this essay offers four related definitions of a mathematical object from different times and places. It is argued that in order to appreciate the differences between these definitions, the historian needs to understand that none of them made sense in mathematical practice without a technical framework, referred to but not explained in the definitions themselves (an "epistemic configuration of research"); that the dynamics of the epistemic objects of mathematical research are secondary to the dynamics of these epistemic configurations as a whole; and that the dynamics of epistemic configurations of mathematical research do not follow law-like processes. Very different types of change may happen, and some of them link the dynamics of epistemic configurations with events and developments far beyond the bounds of the research field in question. These insights have historiographical consequences that require us to rethink the kind of temporality ascribed to mathematics.
Structures and Dynamics Division research and technology plans, FY 1982
NASA Technical Reports Server (NTRS)
Bales, K. S.
1982-01-01
Computational devices to improve efficiency for structural calculations are assessed. The potential of large arrays of microprocessors operating in parallel for finite element analysis is defined, and the impact of specialized computer hardware on static, dynamic, thermal analysis in the optimization of structural analysis and design calculations is determined. General aviation aircraft crashworthiness and occupant survivability is also considered. Mechanics technology required for design coefficient, fault tolerant advanced composite aircraft components subject to combined loads, impact, postbuckling effects and local discontinuities are developed.
NASA Astrophysics Data System (ADS)
Esmaeilzad, Armin; Khanlari, Karen
2018-07-01
As the number of degrees of freedom (DOFs) in structural dynamic problems becomes larger, the analyzing complexity and CPU usage of computers increase drastically. Condensation (or reduction) method is an efficient technique to reduce the size of the full model or the dimension of the structural matrices by eliminating the unimportant DOFs. After the first presentation of condensation method by Guyan in 1965 for undamped structures, which ignores the dynamic effects of the mass term, various forms of dynamic condensation methods were presented to overcome this issue. Moreover, researchers have tried to expand the dynamic condensation method to non-classically damped structures. Dynamic reduction of such systems is far more complicated than undamped systems. The proposed non-iterative method in this paper is introduced as 'Maclaurin Expansion of the frequency response function in Laplace Domain' (MELD) applied for dynamic reduction of non-classically damped structures. The present approach is implemented in four numerical examples of 2D bending-shear-axial frames with various numbers of stories and spans and also a floating raft isolation system. The results of natural frequencies and dynamic responses of models are compared with each other before and after the dynamic reduction. It is shown that the result accuracy has acceptable convergence in both cases. In addition, it is indicated that the result of the proposed method is more accurate than the results of some other existing condensation methods.
Noise-induced relations between network connectivity and dynamics
NASA Astrophysics Data System (ADS)
Ching, Emily Sc
Many biological systems of interest can be represented as networks of many nodes that are interacting with one another. Often these systems are subject to external influence or noise. One of the central issues is to understand the relation between dynamics and the interaction pattern of the system or the connectivity structure of the network. In particular, a challenging problem is to infer the network connectivity structure from the dynamics. In this talk, we show that for stochastic dynamical systems subjected to noise, the presence of noise gives rise to mathematical relations between the network connectivity structure and quantities that can be calculated using solely the time-series measurements of the dynamics of the nodes. We present these relations for both undirected networks with bidirectional coupling and directed networks with directional coupling and discuss how such relations can be utilized to infer the network connectivity structure of the systems. Work supported by the Hong Kong Research Grants Council under Grant No. CUHK 14300914.
Active influence in dynamical models of structural balance in social networks
NASA Astrophysics Data System (ADS)
Summers, Tyler H.; Shames, Iman
2013-07-01
We consider a nonlinear dynamical system on a signed graph, which can be interpreted as a mathematical model of social networks in which the links can have both positive and negative connotations. In accordance with a concept from social psychology called structural balance, the negative links play a key role in both the structure and dynamics of the network. Recent research has shown that in a nonlinear dynamical system modeling the time evolution of “friendliness levels” in the network, two opposing factions emerge from almost any initial condition. Here we study active external influence in this dynamical model and show that any agent in the network can achieve any desired structurally balanced state from any initial condition by perturbing its own local friendliness levels. Based on this result, we also introduce a new network centrality measure for signed networks. The results are illustrated in an international-relations network using United Nations voting record data from 1946 to 2008 to estimate friendliness levels amongst various countries.
NASA Astrophysics Data System (ADS)
Zhu, Ning; Sun, Shouguang; Li, Qiang; Zou, Hua
2016-05-01
When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test evaluation standard and design criteria of bogie frames are all based on the quasi-static deformation hypothesis. Structural fatigue damage generated by structural elastic vibrations has not yet been included. In this paper, theoretical research and experimental validation are done on elastic dynamic load spectra on bogie frame of high-speed train. The construction of the load series that correspond to elastic dynamic deformation modes is studied. The simplified form of the load series is obtained. A theory of simplified dynamic load-time histories is then deduced. Measured data from the Beijing-Shanghai Dedicated Passenger Line are introduced to derive the simplified dynamic load-time histories. The simplified dynamic discrete load spectra of bogie frame are established. Based on the damage consistency criterion and a genetic algorithm, damage consistency calibration of the simplified dynamic load spectra is finally performed. The computed result proves that the simplified load series is reasonable. The calibrated damage that corresponds to the elastic dynamic discrete load spectra can cover the actual damage at the operating conditions. The calibrated damage satisfies the safety requirement of damage consistency criterion for bogie frame. This research is helpful for investigating the standardized load spectra of bogie frame of high-speed train.
Jetha, Arif; Pransky, Glenn; Hettinger, Lawrence J
2016-01-01
Work disability (WD) is characterized by variable and occasionally undesirable outcomes. The underlying determinants of WD outcomes include patterns of dynamic relationships among health, personal, organizational and regulatory factors that have been challenging to characterize, and inadequately represented by contemporary WD models. System dynamics modeling (SDM) methodology applies a sociotechnical systems thinking lens to view WD systems as comprising a range of influential factors linked by feedback relationships. SDM can potentially overcome limitations in contemporary WD models by uncovering causal feedback relationships, and conceptualizing dynamic system behaviors. It employs a collaborative and stakeholder-based model building methodology to create a visual depiction of the system as a whole. SDM can also enable researchers to run dynamic simulations to provide evidence of anticipated or unanticipated outcomes that could result from policy and programmatic intervention. SDM may advance rehabilitation research by providing greater insights into the structure and dynamics of WD systems while helping to understand inherent complexity. Challenges related to data availability, determining validity, and the extensive time and technical skill requirements for model building may limit SDM's use in the field and should be considered. Contemporary work disability (WD) models provide limited insight into complexity associated with WD processes. System dynamics modeling (SDM) has the potential to capture complexity through a stakeholder-based approach that generates a simulation model consisting of multiple feedback loops. SDM may enable WD researchers and practitioners to understand the structure and behavior of the WD system as a whole, and inform development of improved strategies to manage straightforward and complex WD cases.
NASA Astrophysics Data System (ADS)
Kuklin, A. I.; Rogachev, A. V.; Soloviov, D. V.; Ivankov, O. I.; Kovalev, Yu S.; Utrobin, P. K.; Kutuzov, S. A.; Soloviev, A. G.; Rulev, M. I.; Gordeliy, V. I.
2017-05-01
Abstract.The work is a review of neutronographic investigations of supramolecular structures on upgraded small-angle spectrometer YuMO. Here, key parameters of small-angle spectrometers are considered. It is shown that two-detector system is the basis of YuMO upgrade. It allows to widen the dynamic q-range twice. In result, the available q-range is widened and dynamic q-range and data collection rate are doubled. The detailed description of YuMO spectrometer is given.The short review of experimental researches made on the spectrometer in the polymers field, biology, material science and physical chemistry is given. The current investigations also have a methodological aspect. It is shown that upgraded spectrometer provides advanced world level of research of supramolecular structures.
Report of the panel on earth structure and dynamics, section 6
NASA Technical Reports Server (NTRS)
Dziewonski, Adam M.; Mcadoo, David C.; Oconnell, Richard J.; Smylie, Douglas E.; Yoder, Charles F.
1991-01-01
The panel identified problems related to the dynamics of the core and mantle that should be addressed by NASA programs. They include investigating the geodynamo based on observations of the Earth's magnetic field, determining the rheology of the mantle from geodetic observations of post-glacial vertical motions and changes in the gravity field, and determining the coupling between plate motions and mantle flow from geodetic observations of plate deformation. Also emphasized is the importance of support for interdisciplinary research to combine various data sets with models which couple rheology, structure and dynamics.
X-56A MUTT: Aeroservoelastic Modeling
NASA Technical Reports Server (NTRS)
Ouellette, Jeffrey A.
2015-01-01
For the NASA X-56a Program, Armstrong Flight Research Center has been developing a set of linear states space models that integrate the flight dynamics and structural dynamics. These high order models are needed for the control design, control evaluation, and test input design. The current focus has been on developing stiff wing models to validate the current modeling approach. The extension of the modeling approach to the flexible wings requires only a change in the structural model. Individual subsystems models (actuators, inertial properties, etc.) have been validated by component level ground tests. Closed loop simulation of maneuvers designed to validate the flight dynamics of these models correlates very well flight test data. The open loop structural dynamics are also shown to correlate well to the flight test data.
Overview of Glenn Mechanical Components Branch Research
NASA Astrophysics Data System (ADS)
Zakrajsek, James
2002-09-01
Mr. James Zakrajsek, chief of the Mechanical Components Branch, gave an overview of research conducted by the branch. Branch members perform basic research on mechanical components and systems, including gears and bearings, turbine seals, structural and thermal barrier seals, and space mechanisms. The research is focused on propulsion systems for present and advanced aerospace vehicles. For rotorcraft and conventional aircraft, we conduct research to develop technology needed to enable the design of low noise, ultra safe geared drive systems. We develop and validate analytical models for gear crack propagation, gear dynamics and noise, gear diagnostics, bearing dynamics, and thermal analyses of gear systems using experimental data from various component test rigs. In seal research we develop and test advanced turbine seal concepts to increase efficiency and durability of turbine engines. We perform experimental and analytical research to develop advanced thermal barrier seals and structural seals for current and next generation space vehicles. Our space mechanisms research involves fundamental investigation of lubricants, materials, components and mechanisms for deep space and planetary environments.
Structural Dynamics and Control of Large Space Structures, 1982
NASA Technical Reports Server (NTRS)
Brumfield, M. L. (Compiler)
1983-01-01
Basic research in the control of large space structures is discussed. Active damping and control of flexible beams, active stabilization of flexible antenna feed towers, spacecraft docking, and robust pointing control of large space platform payloads are among the topics discussed.
Structural Integrity and Durability of Reusable Space Propulsion Systems
NASA Technical Reports Server (NTRS)
1987-01-01
A two-day conference on the structural integrity and durability of reusable space propulsion systems was held on May 12 and 13, 1987, at the NASA Lewis research Center. Aerothermodynamic loads; instrumentation; fatigue, fracture, and constitutive modeling; and structural dynamics were discussed.
Dynamic field testing of the Route 58 Meherrin River bridge.
DOT National Transportation Integrated Search
1996-01-01
Dynamic response has long been recognized as one of the significant factors affecting the service life and safety of bridge structures, and considerable research, both analytical and experimental, has been devoted to this area of behavior. In the des...
Planetary Gearbox Fault Diagnosis Using a Single Piezoelectric Strain Sensor
2014-12-23
However, the fault detection of planetary gearbox is very complicate since the c omplex nature of dynamic rolling structure of p lanetary gearbox...vibration transfer paths due to the unique dynamic structure of rotating planet gears. Therefore, it is difficult to diagnose PGB faults via vibration...al. 2014). To overcome the above mentioned challenges in developing effective PGB fau lt diagnosis capability , a research investigation on
Structural Design Exploration of an Electric Powered Multi-Propulsor Wing Configuration
NASA Technical Reports Server (NTRS)
Moore, James B.; Cutright, Steve
2017-01-01
Advancements in aircraft electric propulsion may enable an expanded operational envelope for electrically powered vehicles compared to their internal combustion engine counterparts. High aspect ratio wings provide additional lift and drag reduction for a proposed multi-propulsor design, however, the challenge is to reduce the weight of wing structures while maintaining adequate structural and aeroelastic margins. Design exploration using a conventional design-and-build philosophy coupled with a finite element method (FEM)-based design of experiments (DOE) strategy are presented to examine high aspect ratio wing structures that have spanwise distributed electric motors. Multiple leading-edge-mounted engine masses presented a challenge to design a wing within acceptable limits for dynamic and aeroelastic stability. Because the first four primary bending eigenmodes of the proposed wing structure are very sensitive to outboard motor placement, safety-of-flight requirements drove the need for multiple spars, rib attachments, and outboard structural reinforcements in the design. Global aeroelasticity became an increasingly important design constraint during the on-going design process, with outboard motor pod flutter ultimately becoming a primary design constraint. Designers successively generated models to examine stress, dynamics, and aeroelasticity concurrently. This research specifically addressed satisfying multi-disciplinary design criteria to generate fluid-structure interaction solution sets, and produced high aspect ratio primary structure designs for the NASA Scalable Convergent Electric Propulsion Technology and Operations Research (SCEPTOR) project in the Aeronautic Research Mission Directorate at NASA. In this paper, a dynamics-driven, quasi-inverse design methodology is presented to address aerodynamic performance goals and structural challenges encountered for the SCEPTOR demonstrator vehicle. These results are compared with a traditional computer aided design based approach.
Research and development activities in unified control-structure modeling and design
NASA Technical Reports Server (NTRS)
Nayak, A. P.
1985-01-01
Results of work to develop a unified control/structures modeling and design capability for large space structures modeling are presented. Recent analytical results are presented to demonstrate the significant interdependence between structural and control properties. A new design methodology is suggested in which the structure, material properties, dynamic model and control design are all optimized simultaneously. Parallel research done by other researchers is reviewed. The development of a methodology for global design optimization is recommended as a long-term goal. It is suggested that this methodology should be incorporated into computer aided engineering programs, which eventually will be supplemented by an expert system to aid design optimization.
A curved piezo-structure model: implications on active structural acoustic control.
Henry, J K; Clark, R L
1999-09-01
Current research in Active Structural Acoustic Control (ASAC) relies heavily upon accurately capturing the application physics associated with the structure being controlled. The application of ASAC to aircraft interior noise requires a greater understanding of the dynamics of the curved panels which compose the skin of an aircraft fuselage. This paper presents a model of a simply supported curved panel with attached piezoelectric transducers. The model is validated by comparison to previous work. Further, experimental results for a simply supported curved panel test structure are presented in support of the model. The curvature is shown to affect substantially the dynamics of the panel, the integration of transducers, and the bandwidth required for structural acoustic control.
Shockwave dynamics: a comparison between stochastic and periodic porous architectures
NASA Astrophysics Data System (ADS)
Branch, Brittany; Ionite, Axinte; Clements, Bradford; Montgomery, David; Schmalzer, Andrew; Patterson, Brian; Mueller, Alexander; Jensen, Brian; Dattelbaum, Dana
Polymeric foams are used extensively as structural supports and load mitigating materials in which they are subjected to compressive loading at a range of strain rates, up to the high strain rates encountered in blast and shockwave loading. To date, there have been few insights into compaction phenomena in porous structures at the mesoscale, and the influence of structure on shockwave localization. Of particular interest is when the properties of the inherent mesoscopic, periodic structure begin to emerge, versus the discrete behavior of the individual cell. Here, we illustrate, for the first time, modulation of shockwave dynamics controlled at micron-length scales in additively manufactured periodic porous structures measured using in situ, time-resolved x-ray phase contrast imaging at the Advanced Photon Source. Further, we demonstrate how the shockwave dynamics in periodic structures differ from stochastic foams of similar density and we conclude that microstructural control in elastomer foams has a dramatic effect on shockwave dynamics and can be tailored towards a variety of applications. Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory (project# 20160103DR) and DOE/NNSA Campaign 2.
Eganian, R A; Kalinina, A M; Izmaĭlova, O V; Shaternikova, I N
2000-01-01
On the basis of three-multiple research of character of a feed of the inhabitants of one of Moscow district by the standardized method of the 24-th hour interrogation reveals significant changes in structure of a feed of the population from 1986 to 1996. The shifts have appeared more dynamical in the second five-year from 1991 to 1996. Nevertheless, atherogenicity of ration of a researched population with superfluous consumption of the saturated fats and simple carbohydrates remains. Is established, in a feed of the women there were large shifts, than at the men. The structure of a feed of the inhabitants of Moscow differed from structure of a feed of the inhabitants of Russia.
In-space research, technology and engineering experiments and Space Station
NASA Technical Reports Server (NTRS)
Tyson, Richard; Gartrell, Charles F.
1988-01-01
The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.
Reaction-diffusion processes at the nano- and microscales
NASA Astrophysics Data System (ADS)
Epstein, Irving R.; Xu, Bing
2016-04-01
The bottom-up fabrication of nano- and microscale structures from primary building blocks (molecules, colloidal particles) has made remarkable progress over the past two decades, but most research has focused on structural aspects, leaving our understanding of the dynamic and spatiotemporal aspects at a relatively primitive stage. In this Review, we draw inspiration from living cells to argue that it is now time to move beyond the generation of structures and explore dynamic processes at the nanoscale. We first introduce nanoscale self-assembly, self-organization and reaction-diffusion processes as essential features of cells. Then, we highlight recent progress towards designing and controlling these fundamental features of life in abiological systems. Specifically, we discuss examples of reaction-diffusion processes that lead to such outcomes as self-assembly, self-organization, unique nanostructures, chemical waves and dynamic order to illustrate their ubiquity within a unifying context of dynamic oscillations and energy dissipation. Finally, we suggest future directions for research on reaction-diffusion processes at the nano- and microscales that we find hold particular promise for a new understanding of science at the nanoscale and the development of new kinds of nanotechnologies for chemical transport, chemical communication and integration with living systems.
Data Reduction and Analysis of Pioneer Venus Orbital Ion Mass Spectrometer
NASA Technical Reports Server (NTRS)
Cloutier, Paul A.
1996-01-01
Research was carried out on developing a flow field interaction model for both the dayside and nightside ionosphere of Venus. Specific topics related to the dayside ionosphere included: (1) wave particle mechanisms at the ionopause, (2) structure and dynamics of the Venus ionopause and Ionosphere, and (3) flows and fields in the Venus Ionosphere. The structure and dynamics of ion troughs was also studied in the nightside ionosphere of Venus.
Dong, Zheng; Zhou, Hongyu; Tao, Peng
2018-02-01
PAS domains are widespread in archaea, bacteria, and eukaryota, and play important roles in various functions. In this study, we aim to explore functional evolutionary relationship among proteins in the PAS domain superfamily in view of the sequence-structure-dynamics-function relationship. We collected protein sequences and crystal structure data from RCSB Protein Data Bank of the PAS domain superfamily belonging to three biological functions (nucleotide binding, photoreceptor activity, and transferase activity). Protein sequences were aligned and then used to select sequence-conserved residues and build phylogenetic tree. Three-dimensional structure alignment was also applied to obtain structure-conserved residues. The protein dynamics were analyzed using elastic network model (ENM) and validated by molecular dynamics (MD) simulation. The result showed that the proteins with same function could be grouped by sequence similarity, and proteins in different functional groups displayed statistically significant difference in their vibrational patterns. Interestingly, in all three functional groups, conserved amino acid residues identified by sequence and structure conservation analysis generally have a lower fluctuation than other residues. In addition, the fluctuation of conserved residues in each biological function group was strongly correlated with the corresponding biological function. This research suggested a direct connection in which the protein sequences were related to various functions through structural dynamics. This is a new attempt to delineate functional evolution of proteins using the integrated information of sequence, structure, and dynamics. © 2017 The Protein Society.
Karaton, Muhammet
2014-01-01
A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched. PMID:24578667
Complex networks under dynamic repair model
NASA Astrophysics Data System (ADS)
Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao
2018-01-01
Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.
NASA Astrophysics Data System (ADS)
Awwaluddin, Muhammad; Kristedjo, K.; Handono, Khairul; Ahmad, H.
2018-02-01
This analysis is conducted to determine the effects of static and dynamic loads of the structure of mechanical system of Ultrasonic Scanner i.e., arm, column, and connection systems for inservice inspection of research reactors. The analysis is performed using the finite element method with 520 N static load. The correction factor of dynamic loads used is the Gerber mean stress correction (stress life). The results of the analysis show that the value of maximum equivalent von Mises stress is 1.3698E8 Pa for static loading and value of the maximum equivalent alternating stress is 1.4758E7 Pa for dynamic loading. These values are below the upper limit allowed according to ASTM A240 standards i.e. 2.05E8 Pa. The result analysis of fatigue life cycle are at least 1E6 cycle, so it can be concluded that the structure is in the high life cycle category.
Recent advances in integrated multidisciplinary optimization of rotorcraft
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Walsh, Joanne L.; Pritchard, Jocelyn I.
1992-01-01
A joint activity involving NASA and Army researchers at NASA LaRC to develop optimization procedures to improve the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines is described. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure are closely coupled while acoustics and airframe dynamics are decoupled and are accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is integrated with the first three disciplines. Finally, in phase 3, airframe dynamics is integrated with the other four disciplines. Representative results from work performed to date are described. These include optimal placement of tuning masses for reduction of blade vibratory shear forces, integrated aerodynamic/dynamic optimization, and integrated aerodynamic/dynamic/structural optimization. Examples of validating procedures are described.
Recent advances in multidisciplinary optimization of rotorcraft
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Walsh, Joanne L.; Pritchard, Jocelyn I.
1992-01-01
A joint activity involving NASA and Army researchers at NASA LaRC to develop optimization procedures to improve the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines is described. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure are closely coupled while acoustics and airframe dynamics are decoupled and are accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is integrated with the first three disciplines. Finally, in phase 3, airframe dynamics is integrated with the other four disciplines. Representative results from work performed to date are described. These include optimal placement of tuning masses for reduction of blade vibratory shear forces, integrated aerodynamic/dynamic optimization, and integrated aerodynamic/dynamic/structural optimization. Examples of validating procedures are described.
2015-06-23
T. Bates, S. Brocklebank, S. Pauls, and D.Rockmore, A spectral clustering approach to the structure of personality: contrasting the FFM and...A spectral clustering approach to the structure of personality: contrasting the FFM and HEXACO models, Journal of Research in Personality, Volume 57
Ultrafast electron diffraction and electron microscopy: present status and future prospects
NASA Astrophysics Data System (ADS)
Ishchenko, A. A.; Aseyev, S. A.; Bagratashvili, V. N.; Panchenko, V. Ya; Ryabov, E. A.
2014-07-01
Acting as complementary research tools, high time-resolved spectroscopy and diffractometry techniques proceeding from various physical principles open up new possibilities for studying matter with necessary integration of the 'structure-dynamics-function' triad in physics, chemistry, biology and materials science. Since the 1980s, a new field of research has started at the leading research laboratories, aimed at developing means of filming the coherent dynamics of nuclei in molecules and fast processes in biological objects ('atomic and molecular movies'). The utilization of ultrashort laser pulse sources has significantly modified traditional electron beam approaches to and provided high space-time resolution for the study of materials. Diffraction methods using frame-by-frame filming and the development of the main principles of the study of coherent dynamics of atoms have paved the way to observing wave packet dynamics, the intermediate states of reaction centers, and the dynamics of electrons in molecules, thus allowing a transition from the kinetics to the dynamics of the phase trajectories of molecules in the investigation of chemical reactions.
Stabilities and Dynamics of Protein Folding Nuclei by Molecular Dynamics Simulation
NASA Astrophysics Data System (ADS)
Song, Yong-Shun; Zhou, Xin; Zheng, Wei-Mou; Wang, Yan-Ting
2017-07-01
To understand how the stabilities of key nuclei fragments affect protein folding dynamics, we simulate by molecular dynamics (MD) simulation in aqueous solution four fragments cut out of a protein G, including one α-helix (seqB: KVFKQYAN), two β-turns (seqA: LNGKTLKG and seqC: YDDATKTF), and one β-strand (seqD: DGEWTYDD). The Markov State Model clustering method combined with the coarse-grained conformation letters method are employed to analyze the data sampled from 2-μs equilibrium MD simulation trajectories. We find that seqA and seqB have more stable structures than their native structures which become metastable when cut out of the protein structure. As expected, seqD alone is flexible and does not have a stable structure. Throughout our simulations, the native structure of seqC is stable but cannot be reached if starting from a structure other than the native one, implying a funnel-shape free energy landscape of seqC in aqueous solution. All the above results suggest that different nuclei have different formation dynamics during protein folding, which may have a major contribution to the hierarchy of protein folding dynamics. Supported by the National Basic Research Program of China under Grant No. 2013CB932804, the National Natural Science Foundation of China under Grant No. 11421063, and the CAS Biophysics Interdisciplinary Innovation Team Project
Wind Energy Program Summary. Volume 2: Research summaries, fiscal year 1988
NASA Astrophysics Data System (ADS)
1989-04-01
Activities by the Federal Wind Energy program since the early 1980s have focused on developing a technology base necessary for industry to demonstrate the viability of wind energy as an alternative energy supply. The Federal Wind Energy Program's research has targeted the sciences of wind turbine dynamics and the development of advanced components and systems. These efforts have resulted in major advancements toward the development and commercialization of wind technology as an alternative energy source. The installation of more than 16,000 wind turbines in California by the end of 1987 provides evidence that commercial use of wind energy technology can be a viable source of electric power. Research in wind turbine sciences has focused on atmospheric fluid dynamics, aerodynamics, and structural dynamics. As outlines in the projects that are described in this document, advancements in atmospheric fluid dynamics have been made through the development and refinement of wind characterization models and wind/rotor interaction prediction codes. Recent gains in aerodynamics can be attributed to a better understanding of airfoil operations, using innovative research approaches such as flow-visualization techniques. Qualitative information and data from laboratory and field tests are being used to document fatigue damage processes. These data are being used to develop new theories and data bases for structural dynamics, and will help to achieve long-term unit life and lower capital and maintenance costs. Material characterization and modeling techniques have been improved to better analyze effects of stress and fatigue on system components.
DOT National Transportation Integrated Search
2011-09-01
This report presents the test results and finite element correlations of a full-scale dynamic collision test with rail vehicles as part of the Federal Railroad Administrations research program on improved crashworthiness of locomotive structures. ...
DOT National Transportation Integrated Search
2007-02-01
This research combines Particle Image Velocimetry (PIV) and transparent soil to investigate the dynamic rigid block and soil interaction. In order to get a low viscosity pore fluid for the transparent soil, 12 different types of chemical solvents wer...
Fluid-Structure Interaction in Composite Structures
2014-03-01
polymer composite structures. Some previous experimental observations were confirmed using the results from the computer simulations , which also...computer simulations , which also enhanced understanding the effect of FSI on dynamic responses of composite structures. vi THIS PAGE INTENTIONALLY...forces) are applied. A great amount of research has been made using the FEM to study and simulate the cases when the structures are surrounded by
NASA Technical Reports Server (NTRS)
Dermott, Stanley F.
2002-01-01
The ongoing aim of the research is to investigate the dynamical and physical evolution of interplanetary dust particles in order to produce a detailed global model of the zodiacal cloud and its constituent components that is capable of predicting thermal fluxes in mid-infrared wave bands to an accuracy of 1% or better; with the additional aim of exploiting this research as a basis for predicting structure in exozodiacal clouds that may be signatures of unseen planets.
NASA Technical Reports Server (NTRS)
Lung, Shun-fat; Pak, Chan-gi
2008-01-01
Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization (MDAO) tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.
NASA Technical Reports Server (NTRS)
Lung, Shun-fat; Pak, Chan-gi
2008-01-01
Updating the finite element model using measured data is a challenging problem in the area of structural dynamics. The model updating process requires not only satisfactory correlations between analytical and experimental results, but also the retention of dynamic properties of structures. Accurate rigid body dynamics are important for flight control system design and aeroelastic trim analysis. Minimizing the difference between analytical and experimental results is a type of optimization problem. In this research, a multidisciplinary design, analysis, and optimization [MDAO] tool is introduced to optimize the objective function and constraints such that the mass properties, the natural frequencies, and the mode shapes are matched to the target data as well as the mass matrix being orthogonalized.
Structural dynamics and control of large space structures. [conference
NASA Technical Reports Server (NTRS)
Lightner, E. B. (Compiler)
1981-01-01
The focus of the workshop was the basic research program assembled by LaRC to address the fundamental technology deficiencies that were identified in several studies on large space systems (LSS) conducted by NASA in the last several years. The staffs of the respective participants were assembled at the workshop to review the current state of research in the control technology for large structural systems and to plan the efforts that would be pursued by their respective organizations.
Overview Of Structural Behavior and Occupant Responses from Crash Test of a Composite Airplane
NASA Technical Reports Server (NTRS)
Jones, Lisa E.; Carden, Huey D.
1995-01-01
As part of NASA's composite structures crash dynamics research, a general aviation aircraft with composite wing, fuselage and empennage (but with metal subfloor structure) was crash tested at the NASA Langley Research Center Impact Research Facility. The test was conducted to determine composite aircraft structural behavior for crash loading conditions and to provide a baseline for a similar aircraft test with a modified subfloor. Structural integrity and cabin volume were maintained. Lumbar loads for dummy occupants in energy absorbing seats wer substantially lower than those in standard aircraft seats; however, loads in the standard seats were much higher that those recorded under similar conditions for an all-metallic aircraft.
Application of Lanczos vectors to control design of flexible structures
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Su, Tzu-Jeng
1990-01-01
This report covers research conducted during the first year of the two-year grant. The research, entitled 'Application of Lanczos Vectors to Control Design of Flexible Structures' concerns various ways to obtain reduced-order mathematical models for use in dynamic response analyses and in control design studies. This report summarizes research described in several reports and papers that were written under this contract. Extended abstracts are presented for technical papers covering the following topics: controller reduction by preserving impulse response energy; substructuring decomposition and controller synthesis; model reduction methods for structural control design; and recent literature on structural modeling, identification, and analysis.
Analysis on pseudo excitation of random vibration for structure of time flight counter
NASA Astrophysics Data System (ADS)
Wu, Qiong; Li, Dapeng
2015-03-01
Traditional computing method is inefficient for getting key dynamical parameters of complicated structure. Pseudo Excitation Method(PEM) is an effective method for calculation of random vibration. Due to complicated and coupling random vibration in rocket or shuttle launching, the new staging white noise mathematical model is deduced according to the practical launch environment. This deduced model is applied for PEM to calculate the specific structure of Time of Flight Counter(ToFC). The responses of power spectral density and the relevant dynamic characteristic parameters of ToFC are obtained in terms of the flight acceptance test level. Considering stiffness of fixture structure, the random vibration experiments are conducted in three directions to compare with the revised PEM. The experimental results show the structure can bear the random vibration caused by launch without any damage and key dynamical parameters of ToFC are obtained. The revised PEM is similar with random vibration experiment in dynamical parameters and responses are proved by comparative results. The maximum error is within 9%. The reasons of errors are analyzed to improve reliability of calculation. This research provides an effective method for solutions of computing dynamical characteristic parameters of complicated structure in the process of rocket or shuttle launching.
Integration of dynamic, aerodynamic, and structural optimization of helicopter rotor blades
NASA Technical Reports Server (NTRS)
Peters, David A.
1991-01-01
Summarized here is the first six years of research into the integration of structural, dynamic, and aerodynamic considerations in the design-optimization process for rotor blades. Specifically discussed here is the application of design optimization techniques for helicopter rotor blades. The reduction of vibratory shears and moments at the blade root, aeroelastic stability of the rotor, optimum airframe design, and an efficient procedure for calculating system sensitivities with respect to the design variables used are discussed.
NASA Technical Reports Server (NTRS)
Singh, Rajendra; Houser, Donald R.
1993-01-01
This paper discusses analytical and experimental approaches that will be needed to understand dynamic, vibro-acoustic and design characteristics of high power density rotorcraft transmissions. Complexities associated with mathematical modeling of such systems will be discussed. An overview of research work planned during the next several years will be presented, with emphasis on engineering science issues such as gear contact mechanics, multi-mesh drive dynamics, parameter uncertainties, vibration transmission through bearings, and vibro-acoustic characteristics of geared rotor systems and housing-mount structures. A few examples of work in progress are cited.
Operational Modal Analysis of Bridge Structures with Data from GNSS/Accelerometer Measurements.
Xiong, Chunbao; Lu, Huali; Zhu, Jinsong
2017-02-23
Real-time dynamic displacement and acceleration responses of the main span section of the Tianjin Fumin Bridge in China under ambient excitation were tested using a Global Navigation Satellite System (GNSS) dynamic deformation monitoring system and an acceleration sensor vibration test system. Considering the close relationship between the GNSS multipath errors and measurement environment in combination with the noise reduction characteristics of different filtering algorithms, the researchers proposed an AFEC mixed filtering algorithm, which is an combination of autocorrelation function-based empirical mode decomposition (EMD) and Chebyshev mixed filtering to extract the real vibration displacement of the bridge structure after system error correction and filtering de-noising of signals collected by the GNSS. The proposed AFEC mixed filtering algorithm had high accuracy (1 mm) of real displacement at the elevation direction. Next, the traditional random decrement technique (used mainly for stationary random processes) was expanded to non-stationary random processes. Combining the expanded random decrement technique (RDT) and autoregressive moving average model (ARMA), the modal frequency of the bridge structural system was extracted using an expanded ARMA_RDT modal identification method, which was compared with the power spectrum analysis results of the acceleration signal and finite element analysis results. Identification results demonstrated that the proposed algorithm is applicable to analyze the dynamic displacement monitoring data of real bridge structures under ambient excitation and could identify the first five orders of the inherent frequencies of the structural system accurately. The identification error of the inherent frequency was smaller than 6%, indicating the high identification accuracy of the proposed algorithm. Furthermore, the GNSS dynamic deformation monitoring method can be used to monitor dynamic displacement and identify the modal parameters of bridge structures. The GNSS can monitor the working state of bridges effectively and accurately. Research results can provide references to evaluate the bearing capacity, safety performance, and durability of bridge structures during operation.
Operational Modal Analysis of Bridge Structures with Data from GNSS/Accelerometer Measurements
Xiong, Chunbao; Lu, Huali; Zhu, Jinsong
2017-01-01
Real-time dynamic displacement and acceleration responses of the main span section of the Tianjin Fumin Bridge in China under ambient excitation were tested using a Global Navigation Satellite System (GNSS) dynamic deformation monitoring system and an acceleration sensor vibration test system. Considering the close relationship between the GNSS multipath errors and measurement environment in combination with the noise reduction characteristics of different filtering algorithms, the researchers proposed an AFEC mixed filtering algorithm, which is an combination of autocorrelation function-based empirical mode decomposition (EMD) and Chebyshev mixed filtering to extract the real vibration displacement of the bridge structure after system error correction and filtering de-noising of signals collected by the GNSS. The proposed AFEC mixed filtering algorithm had high accuracy (1 mm) of real displacement at the elevation direction. Next, the traditional random decrement technique (used mainly for stationary random processes) was expanded to non-stationary random processes. Combining the expanded random decrement technique (RDT) and autoregressive moving average model (ARMA), the modal frequency of the bridge structural system was extracted using an expanded ARMA_RDT modal identification method, which was compared with the power spectrum analysis results of the acceleration signal and finite element analysis results. Identification results demonstrated that the proposed algorithm is applicable to analyze the dynamic displacement monitoring data of real bridge structures under ambient excitation and could identify the first five orders of the inherent frequencies of the structural system accurately. The identification error of the inherent frequency was smaller than 6%, indicating the high identification accuracy of the proposed algorithm. Furthermore, the GNSS dynamic deformation monitoring method can be used to monitor dynamic displacement and identify the modal parameters of bridge structures. The GNSS can monitor the working state of bridges effectively and accurately. Research results can provide references to evaluate the bearing capacity, safety performance, and durability of bridge structures during operation. PMID:28241472
Coherent structures: Comments on mechanisms
NASA Technical Reports Server (NTRS)
Hunt, J. C. R.
1987-01-01
There is now overwhelming evidence that in most turbulent flows there exist regions moving with the flow where the velocity and vorticity have a characteristic structure. These regions are called coherent structures because within them the large-scale distributions of velocity and/or vorticity remain coherent even as these structures move through the flow and interact with other structures. Since the flow enters and leaves the bounding surfaces of these structures, a useful definition for coherent structures is that they are open volumes with distinctive large-scale vorticity distributions. Possible fruitful directions for the study of the dynamics of coherent structures are suggested. Most coherent structures research to data was concentrated on measurement and kinematical analysis; there is now a welcome move to examine the dynamics of coherent structures, by a variety of different methods. A few of them will be described.
Knowledge Management in Role Based Agents
NASA Astrophysics Data System (ADS)
Kır, Hüseyin; Ekinci, Erdem Eser; Dikenelli, Oguz
In multi-agent system literature, the role concept is getting increasingly researched to provide an abstraction to scope beliefs, norms, goals of agents and to shape relationships of the agents in the organization. In this research, we propose a knowledgebase architecture to increase applicability of roles in MAS domain by drawing inspiration from the self concept in the role theory of sociology. The proposed knowledgebase architecture has granulated structure that is dynamically organized according to the agent's identification in a social environment. Thanks to this dynamic structure, agents are enabled to work on consistent knowledge in spite of inevitable conflicts between roles and the agent. The knowledgebase architecture is also implemented and incorporated into the SEAGENT multi-agent system development framework.
Wiebrands, Michael; Malajczuk, Chris J; Woods, Andrew J; Rohl, Andrew L; Mancera, Ricardo L
2018-06-21
Molecular graphics systems are visualization tools which, upon integration into a 3D immersive environment, provide a unique virtual reality experience for research and teaching of biomolecular structure, function and interactions. We have developed a molecular structure and dynamics application, the Molecular Dynamics Visualization tool, that uses the Unity game engine combined with large scale, multi-user, stereoscopic visualization systems to deliver an immersive display experience, particularly with a large cylindrical projection display. The application is structured to separate the biomolecular modeling and visualization systems. The biomolecular model loading and analysis system was developed as a stand-alone C# library and provides the foundation for the custom visualization system built in Unity. All visual models displayed within the tool are generated using Unity-based procedural mesh building routines. A 3D user interface was built to allow seamless dynamic interaction with the model while being viewed in 3D space. Biomolecular structure analysis and display capabilities are exemplified with a range of complex systems involving cell membranes, protein folding and lipid droplets.
Global patterns of phytoplankton dynamics in coastal ecosystems
Paerl, H.; Yin, Kedong; Cloern, J.
2011-01-01
Scientific Committee on Ocean Research Working Group 137 Meeting; Hangzhou, China, 17-21 October 2010; Phytoplankton biomass and community structure have undergone dramatic changes in coastal ecosystems over the past several decades in response to climate variability and human disturbance. These changes have short- and long-term impacts on global carbon and nutrient cycling, food web structure and productivity, and coastal ecosystem services. There is a need to identify the underlying processes and measure the rates at which they alter coastal ecosystems on a global scale. Hence, the Scientific Committee on Ocean Research (SCOR) formed Working Group 137 (WG 137), "Global Patterns of Phytoplankton Dynamics in Coastal Ecosystems: A Comparative Analysis of Time Series Observations" (http://wg137.net/). This group evolved from a 2007 AGU-sponsored Chapman Conference entitled "Long Time-Series Observations in Coastal Ecosystems: Comparative Analyses of Phytoplankton Dynamics on Regional to Global Scales.".
Principle research on a single mass piezoelectric six-degrees-of-freedom accelerometer.
Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng
2013-08-16
A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work.
Principle Research on a Single Mass Piezoelectric Six-Degrees-of-Freedom Accelerometer
Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng
2013-01-01
A signal mass piezoelectric six-degrees-of-freedom (six-DOF) accelerometer is put forward in response to the need for health monitoring of the dynamic vibration characteristics of high grade digitally controlled machine tools. The operating principle of the piezoelectric six-degrees-of-freedom accelerometer is analyzed, and its structure model is constructed. The numerical simulation model (finite element model) of the six axis accelerometer is established. Piezoelectric quartz is chosen for the acceleration sensing element and conversion element, and its static sensitivity, static coupling interference and dynamic natural frequency, dynamic cross coupling are analyzed by ANSYS software. Research results show that the piezoelectric six-DOF accelerometer has advantages of simple and rational structure, correct sensing principle and mathematic model, good linearity, high rigidity, and theoretical natural frequency is more than 25 kHz, no nonlinear cross coupling and no complex decoupling work. PMID:23959243
Algorithms and software for nonlinear structural dynamics
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Gilbertsen, Noreen D.; Neal, Mark O.
1989-01-01
The objective of this research is to develop efficient methods for explicit time integration in nonlinear structural dynamics for computers which utilize both concurrency and vectorization. As a framework for these studies, the program WHAMS, which is described in Explicit Algorithms for the Nonlinear Dynamics of Shells (T. Belytschko, J. I. Lin, and C.-S. Tsay, Computer Methods in Applied Mechanics and Engineering, Vol. 42, 1984, pp 225 to 251), is used. There are two factors which make the development of efficient concurrent explicit time integration programs a challenge in a structural dynamics program: (1) the need for a variety of element types, which complicates the scheduling-allocation problem; and (2) the need for different time steps in different parts of the mesh, which is here called mixed delta t integration, so that a few stiff elements do not reduce the time steps throughout the mesh.
Evolution and Social Dynamics of Acknowledged Research Groups
ERIC Educational Resources Information Center
López-Yáñez, Julián; Altopiedi, Mariana
2015-01-01
Changes in higher education institutions characteristic of a knowledge society are strongly affecting academic life, scientists' working conditions and the social dynamics of scientific groups. In such situations, it is important to understand the different ways in which these groups are tackling the structural dilemmas posed by the changes…
The dynamic properties of sandwich structures based on metal-ceramic foams.
DOT National Transportation Integrated Search
2014-01-01
The present research program has studied the fracture properties of closed pore metal-ceramic foams for their potential applications as core systems in sandwich structures. The composite foams were created at Fireline, Inc. (Youngstown, OH) using the...
Using Grand Challenges For Innovative Teaching in Structural Geology, Geophysics, and Tectonics
NASA Astrophysics Data System (ADS)
McDaris, J. R.; Tewksbury, B. J.; Wysession, M. E.
2012-12-01
An innovative approach to teaching involves using the "Big Ideas" or "Grand Challenges" of a field, as determined by the research community in that area, as the basis for classroom activities. There have been several recent efforts in the areas of structural geology, tectonics, and geophysics to determine these Grand Challenges, including the areas of seismology ("Seismological Grand Challenges in Understanding Earth's Dynamic Systems"), mineral physics ("Unlocking the Building Blocks of the Planet"), EarthScope-related science ("Unlocking the Secrets of the North American Continent: An EarthScope Science Plan for 2010-2020"), and structural geology and tectonics (at the Structural Geology and Tectonics Forum held at Williams College in June, 2012). These research community efforts produced frameworks of the essential information for their fields with the aim of guiding future research. An integral part of this, however, is training the next generation of scientists, and using these Big Ideas as the basis for course structures and activities is a powerful way to make this happen. When activities, labs, and homeworks are drawn from relevant and cutting-edge research topics, students can find the material more fascinating and engaging, and can develop a better sense of the dynamic process of scientific discovery. Many creative ideas for incorporating the Grand Challenges of structural geology, tectonics, and geophysics in the classroom were developed at a Cutting Edge workshop on "Teaching Structural Geology, Geophysics, and Tectonics in the 21st Century" held at the University of Tennessee in July, 2012.
Structural damage identification using damping: a compendium of uses and features
NASA Astrophysics Data System (ADS)
Cao, M. S.; Sha, G. G.; Gao, Y. F.; Ostachowicz, W.
2017-04-01
The vibration responses of structures under controlled or ambient excitation can be used to detect structural damage by correlating changes in structural dynamic properties extracted from responses with damage. Typical dynamic properties refer to modal parameters: natural frequencies, mode shapes, and damping. Among these parameters, natural frequencies and mode shapes have been investigated extensively for their use in damage characterization by associating damage with reduction in local stiffness of structures. In contrast, the use of damping as a dynamic property to represent structural damage has not been comprehensively elucidated, primarily due to the complexities of damping measurement and analysis. With advances in measurement technologies and analysis tools, the use of damping to identify damage is becoming a focus of increasing attention in the damage detection community. Recently, a number of studies have demonstrated that damping has greater sensitivity for characterizing damage than natural frequencies and mode shapes in various applications, but damping-based damage identification is still a research direction ‘in progress’ and is not yet well resolved. This situation calls for an overall survey of the state-of-the-art and the state-of-the-practice of using damping to detect structural damage. To this end, this study aims to provide a comprehensive survey of uses and features of applying damping in structural damage detection. First, we present various methods for damping estimation in different domains including the time domain, the frequency domain, and the time-frequency domain. Second, we investigate the features and applications of damping-based damage detection methods on the basis of two predominant infrastructure elements, reinforced concrete structures and fiber-reinforced composites. Third, we clarify the influential factors that can impair the capability of damping to characterize damage. Finally, we recommend future research directions for advancing damping-based damage detection. This work holds the promise of (a) helping researchers identify crucial components in damping-based damage detection theories, methods, and technologies, and (b) leading practitioners to better implement damping-based structural damage identification.
Research on the control of large space structures
NASA Technical Reports Server (NTRS)
Denman, E. D.
1983-01-01
The research effort on the control of large space structures at the University of Houston has concentrated on the mathematical theory of finite-element models; identification of the mass, damping, and stiffness matrix; assignment of damping to structures; and decoupling of structure dynamics. The objective of the work has been and will continue to be the development of efficient numerical algorithms for analysis, control, and identification of large space structures. The major consideration in the development of the algorithms has been the large number of equations that must be handled by the algorithm as well as sensitivity of the algorithms to numerical errors.
Structural Integrity and Durability of Reusable Space Propulsion Systems
NASA Technical Reports Server (NTRS)
1991-01-01
A two-day conference on the structural integrity and durability of reusable space propulsion systems was held on 14 to 15 May 1991 at the NASA Lewis Research Center. Presentations were made by industry, university, and government researchers organized into four sessions: (1) aerothermodynamic loads; (2) instrumentation; (3) fatigue, fracture, and constitutive modeling; and (4) structural dynamics. The principle objectives were to disseminate research results and future plans in each of four areas. This publication contains extended abstracts and the visual material presented during the conference. Particular emphasis is placed on the Space Shuttle Main Engine (SSME) and the SSME turbopump.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.; Bartlett, Felton D., Jr.; Cline, John H.
1988-01-01
The requirement for low vibrations has achieved the status of a critical design consideration in modern helicopters. There is now a recognized need to account for vibrations during both the analytical and experimental phases of design. Research activities in this area were both broad and varied and notable advances were made in recent years in the critical elements of the technology base needed to achieve the goal of a jet smooth ride. The purpose is to present an overview of accomplishments and current activities of govern and government-sponsored research in the area of rotorcraft vibrations and structural dynamics, focusing on NASA and Army contributions over the last decade or so. Specific topics addressed include: airframe finite-element modeling for static and dynamic analyses, analysis of coupled rotor-airframe vibrations, optimization of airframes subject to vibration constraints, active and passive control of vibrations in both the rotating and fixed systems, and integration of testing and analysis in such guises as modal analysis, system identification, structural modification, and vibratory loads measurement.
Effects of potentization in aqueous solutions.
Schulte, J
1999-10-01
Over the past two decades, research into structure formation and structure conservation in water has created a significant interest among the homeopathy research community. The formation of sustained static and dynamic structures in aqueous solutions is thought to be synonymous with the possible storage of information in associated liquids. Prominent models and experiments considering this possibility are presented in this paper, and some of their subtleties, which were not given much room in the respective original publications, will be elucidated in more detail here.
An adaptive learning control system for large flexible structures
NASA Technical Reports Server (NTRS)
Thau, F. E.
1985-01-01
The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.
NASA Astrophysics Data System (ADS)
Campbell, Ralph Ian
This analytic paper asks one question: How does Basil Bernstein's concept of the structure of pedagogic discourse (SPD) contribute to our understanding of the role of teacher-student interactions in science learning in the classroom? Applying Bernstein's theory of the SPD to an analysis of current research in science education explores the structure of Bernstein's theory as a tool for understanding the challenges and questions related to current concerns about classroom science learning. This analysis applies Bernstein's theory of the SPD as a heuristic through a secondary reading of selected research from the past fifteen years and prompts further consideration of Bernstein's ideas. This leads to a reevaluation of the categories of regulative discourse (RD) and instructional discourse (ID) as structures that frame learning environments and the dynamics of student-teacher interactions, which determine learning outcomes. The SPD becomes a simple but flexible heuristic, offering a useful deconstruction of teaching and learning dynamics in three different classroom environments. Understanding the framing interactions of RD and ID provides perspectives on the balance of agency and expectation, suggesting some causal explanations for the student learning outcomes described by the authors. On one hand, forms of open inquiry and student-driven instruction may lack the structure to ensure the appropriation of desired forms of scientific thinking. On the other hand, well-designed pathways towards the understanding of fundamental concepts in science may lack the forms of more open-ended inquiry that develop transferable understanding. Important ideas emerge about the complex dynamics of learning communities, the materials of learning, and the dynamic role of the teacher as facilitator and expert. Simultaneously, the SPD as a flexible heuristic proves ambiguous, prompting a reevaluation of Bernstein's organization of RD and ID. The hierarchical structure of pedagogic discourse becomes a problematic distinction. Regulative discourse is often more instructional and instructional discourse more instrumental in shaping roles and relationships within the learning community. This analysis suggests an agenda for future classroom research and the education of teachers, capitalizing on the SPD as heuristic and reevaluating the ways that social dynamics and structures for domain-specific learning interact in the realization of classroom learning.
Investigation of the small-scale structure and dynamics of Uranus' atmosphere
NASA Technical Reports Server (NTRS)
Eshleman, Von R.; Hinson, David P.
1991-01-01
This document constitutes the final technical report of the Uranus Analysis Program. Papers and/or abstracts resulting from this research are presented. The following topics are covered: (1) past and future of radio occultation studies of planetary atmospheres; (2) equatorial waves in the stratosphere of Uranus; (3) the atmosphere of Uranus- results of radio occultation measurements with Voyager 2; (4) Uranus' atmospheric dynamics and circulation; (5) small-scale structure and dynamics in the atmosphere of Uranus; (6) evidence for inertia-gravity waves in the stratosphere of Uranus derived from Voyager 2 radio occultation data; and (7) planetary waves in the equatorial stratosphere of Uranus.
Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim
2016-09-01
In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation. Copyright © 2016 Elsevier B.V. All rights reserved.
Structural Engineering Managers - Innovation Challenges for their Skills
NASA Astrophysics Data System (ADS)
Linkeschová, D.; Tichá, A.
2015-11-01
The profession of a structural engineer is highly responsible, because the consequences of a structural engineer's errors result not only in economic damage to the property and often irreversible damage to the environment, they can also lead to direct loss of lives. In the current turbulent, dynamically developing society the managerial methods of structural engineers should not stagnate at the level of the last century applications. This paper deals with the challenges which the ongoing century poses to structural engineers and managers. It compares the results of research regarding the current state of managerial skills of structural engineers in Czech building companies to the defined skills of the 21st century's managers according to the global research programme ITL Research and according to the Vision for the Future of Structural Engineering, drawn up by Structural Engineering Institute - SEI ASCE.
Review of Aircraft Crash Structural Response Research.
1982-08-01
structures consisting of conventional built-up metallic construction and those consisting of advanced composite materials were of interest. The latter...increasing importance. Some recent theoretical and experimental studies of the behavior of composite - material structures subjected to severe static...dynamic, and/or impact conditions are noted. Such topics as crashworthiness testing ot composite fuselage structures, the impact resistance of graphite and
2015-06-01
structure at the micro- and nanoscale. In other words, development of nanocomposites, multilayers, and superlattices via appropriate design and control of...C-B and C-N bonds as C-C and B-N bonds. Later, the same research group , based on first-principles total-energy, and dynamic phonon calculations...Vickers hardness values.7 Another research group employed an ab initio evolutionary algorithm42 to resolve the crystal structure of the observed
General approach and scope. [rotor blade design optimization
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Mantay, Wayne R.
1989-01-01
This paper describes a joint activity involving NASA and Army researchers at the NASA Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure will be closely coupled, while acoustics and airframe dynamics will be decoupled and be accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is to be integrated with the first three disciplines. Finally, in phase 3, airframe dynamics will be fully integrated with the other four disciplines. This paper deals with details of the phase 1 approach and includes details of the optimization formulation, design variables, constraints, and objective function, as well as details of discipline interactions, analysis methods, and methods for validating the procedure.
Dynamic Loading and Characterization of Fiber-Reinforced Composites
NASA Astrophysics Data System (ADS)
Sierakowski, Robert L.; Chaturvedi, Shive K.
1997-02-01
Emphasizing polymer based fiber-reinforced composites, this book is designed to provide readers with a significant understanding of the complexities involved in characterizing dynamic events and the corresponding response of advanced fiber composite materials and structures. These elements include dynamic loading devices, material properties characterization, analytical and experimental techniques to assess the damage and failure modes associated with various dynamic loading events. Concluding remarks are presented throughout the text which summarize key points and raise issues related to important research needed.
Alex, J; Kolisch, G; Krause, K
2002-01-01
The objective of this presented project is to use the results of an CFD simulation to automatically, systematically and reliably generate an appropriate model structure for simulation of the biological processes using CSTR activated sludge compartments. Models and dynamic simulation have become important tools for research but also increasingly for the design and optimisation of wastewater treatment plants. Besides the biological models several cases are reported about the application of computational fluid dynamics ICFD) to wastewater treatment plants. One aim of the presented method to derive model structures from CFD results is to exclude the influence of empirical structure selection to the result of dynamic simulations studies of WWTPs. The second application of the approach developed is the analysis of badly performing treatment plants where the suspicion arises that bad flow behaviour such as short cut flows is part of the problem. The method suggested requires as the first step the calculation of fluid dynamics of the biological treatment step at different loading situations by use of 3-dimensional CFD simulation. The result of this information is used to generate a suitable model structure for conventional dynamic simulation of the treatment plant by use of a number of CSTR modules with a pattern of exchange flows between the tanks automatically. The method is explained in detail and the application to the WWTP Wuppertal Buchenhofen is presented.
Transport composite fuselage technology: Impact dynamics and acoustic transmission
NASA Technical Reports Server (NTRS)
Jackson, A. C.; Balena, F. J.; Labarge, W. L.; Pei, G.; Pitman, W. A.; Wittlin, G.
1986-01-01
A program was performed to develop and demonstrate the impact dynamics and acoustic transmission technology for a composite fuselage which meets the design requirements of a 1990 large transport aircraft without substantial weight and cost penalties. The program developed the analytical methodology for the prediction of acoustic transmission behavior of advanced composite stiffened shell structures. The methodology predicted that the interior noise level in a composite fuselage due to turbulent boundary layer will be less than in a comparable aluminum fuselage. The verification of these analyses will be performed by NASA Langley Research Center using a composite fuselage shell fabricated by filament winding. The program also developed analytical methodology for the prediction of the impact dynamics behavior of lower fuselage structure constructed with composite materials. Development tests were performed to demonstrate that the composite structure designed to the same operating load requirement can have at least the same energy absorption capability as aluminum structure.
Heat Transfer Principles in Thermal Calculation of Structures in Fire
Zhang, Chao; Usmani, Asif
2016-01-01
Structural fire engineering (SFE) is a relatively new interdisciplinary subject, which requires a comprehensive knowledge of heat transfer, fire dynamics and structural analysis. It is predominantly the community of structural engineers who currently carry out most of the structural fire engineering research and design work. The structural engineering curriculum in universities and colleges do not usually include courses in heat transfer and fire dynamics. In some institutions of higher education, there are graduate courses for fire resistant design which focus on the design approaches in codes. As a result, structural engineers who are responsible for structural fire safety and are competent to do their jobs by following the rules specified in prescriptive codes may find it difficult to move toward performance-based fire safety design which requires a deep understanding of both fire and heat. Fire safety engineers, on the other hand, are usually focused on fire development and smoke control, and may not be familiar with the heat transfer principles used in structural fire analysis, or structural failure analysis. This paper discusses the fundamental heat transfer principles in thermal calculation of structures in fire, which might serve as an educational guide for students, engineers and researchers. Insights on problems which are commonly ignored in performance based fire safety design are also presented. PMID:26783379
Eirín-López, José M
2013-01-01
The study of chromatin constitutes one of the most active research fields in life sciences, being subject to constant revisions that continuously redefine the state of the art in its knowledge. As every other rapidly changing field, chromatin biology requires clear and straightforward educational strategies able to efficiently translate such a vast body of knowledge to the classroom. With this aim, the present work describes a multidisciplinary computer lab designed to introduce undergraduate students to the dynamic nature of chromatin, within the context of the one semester course "Chromatin: Structure, Function and Evolution." This exercise is organized in three parts including (a) molecular evolutionary biology of histone families (using the H1 family as example), (b) histone structure and variation across different animal groups, and (c) effect of histone diversity on nucleosome structure and chromatin dynamics. By using freely available bioinformatic tools that can be run on common computers, the concept of chromatin dynamics is interactively illustrated from a comparative/evolutionary perspective. At the end of this computer lab, students are able to translate the bioinformatic information into a biochemical context in which the relevance of histone primary structure on chromatin dynamics is exposed. During the last 8 years this exercise has proven to be a powerful approach for teaching chromatin structure and dynamics, allowing students a higher degree of independence during the processes of learning and self-assessment. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.
NASA Technical Reports Server (NTRS)
Tezduyar, Tayfun E.
1998-01-01
This is a final report as far as our work at University of Minnesota is concerned. The report describes our research progress and accomplishments in development of high performance computing methods and tools for 3D finite element computation of aerodynamic characteristics and fluid-structure interactions (FSI) arising in airdrop systems, namely ram-air parachutes and round parachutes. This class of simulations involves complex geometries, flexible structural components, deforming fluid domains, and unsteady flow patterns. The key components of our simulation toolkit are a stabilized finite element flow solver, a nonlinear structural dynamics solver, an automatic mesh moving scheme, and an interface between the fluid and structural solvers; all of these have been developed within a parallel message-passing paradigm.
Design optimization of aircraft landing gear assembly under dynamic loading
NASA Astrophysics Data System (ADS)
Wong, Jonathan Y. B.
As development cycles and prototyping iterations begin to decrease in the aerospace industry, it is important to develop and improve practical methodologies to meet all design metrics. This research presents an efficient methodology that applies high-fidelity multi-disciplinary design optimization techniques to commercial landing gear assemblies, for weight reduction, cost savings, and structural performance dynamic loading. Specifically, a slave link subassembly was selected as the candidate to explore the feasibility of this methodology. The design optimization process utilized in this research was sectioned into three main stages: setup, optimization, and redesign. The first stage involved the creation and characterization of the models used throughout this research. The slave link assembly was modelled with a simplified landing gear test, replicating the behavior of the physical system. Through extensive review of the literature and collaboration with Safran Landing Systems, dynamic and structural behavior for the system were characterized and defined mathematically. Once defined, the characterized behaviors for the slave link assembly were then used to conduct a Multi-Body Dynamic (MBD) analysis to determine the dynamic and structural response of the system. These responses were then utilized in a topology optimization through the use of the Equivalent Static Load Method (ESLM). The results of the optimization were interpreted and later used to generate improved designs in terms of weight, cost, and structural performance under dynamic loading in stage three. The optimized designs were then validated using the model created for the MBD analysis of the baseline design. The design generation process employed two different approaches for post-processing the topology results produced. The first approach implemented a close replication of the topology results, resulting in a design with an overall peak stress increase of 74%, weight savings of 67%, and no apparent cost savings due to complex features present in the design. The second design approach focused on realizing reciprocating benefits for cost and weight savings. As a result, this design was able to achieve an overall peak stress increase of 6%, weight and cost savings of 36%, and 60%, respectively.
Jonathan P. Dandois; Erle C. Ellis
2013-01-01
High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing...
Collisional and dynamical processes in moon and planet formation
NASA Technical Reports Server (NTRS)
Chapman, C. R.; Davis, D. R.; Weidenschilling, S. J.; Hartmann, W. K.; Spaute, D.
1987-01-01
Research on a variety of dynamical processes relevant to the formation of planets, satellites and ring systems is discussed. The main focus is on studies of accretionary formation of early protoplanets using a numerical model, structures and evolution of ring systems and individual bodies within planetary rings, and theories of lunar origin.
Estimation of Unsteady Aerodynamic Models from Dynamic Wind Tunnel Data
NASA Technical Reports Server (NTRS)
Murphy, Patrick; Klein, Vladislav
2011-01-01
Demanding aerodynamic modelling requirements for military and civilian aircraft have motivated researchers to improve computational and experimental techniques and to pursue closer collaboration in these areas. Model identification and validation techniques are key components for this research. This paper presents mathematical model structures and identification techniques that have been used successfully to model more general aerodynamic behaviours in single-degree-of-freedom dynamic testing. Model parameters, characterizing aerodynamic properties, are estimated using linear and nonlinear regression methods in both time and frequency domains. Steps in identification including model structure determination, parameter estimation, and model validation, are addressed in this paper with examples using data from one-degree-of-freedom dynamic wind tunnel and water tunnel experiments. These techniques offer a methodology for expanding the utility of computational methods in application to flight dynamics, stability, and control problems. Since flight test is not always an option for early model validation, time history comparisons are commonly made between computational and experimental results and model adequacy is inferred by corroborating results. An extension is offered to this conventional approach where more general model parameter estimates and their standard errors are compared.
Interfacial ionic 'liquids': connecting static and dynamic structures
Uysal, Ahmet; Zhou, Hua; Feng, Guang; ...
2014-12-05
It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. For this research, we used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene–RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can bemore » described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. Lastly, the potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (~0.15 eV).« less
Neighborhood Age Structure and its Implications for Health
2006-01-01
Age structure at the neighborhood level is rarely considered in contextual studies of health. However, age structure can play a critical role in shaping community life, the availability of resources, and the opportunities for social engagement—all factors that, research suggests, have direct and indirect effects on health. Age structure can be theorized as a compositional effect and as a contextual effect. In addition, the dynamic nature of age structure and the utility of a life course perspective as applied to neighborhood effects research merits attention. Four Chicago neighborhoods are summarized to illustrate how age structure varies across small space, suggesting that neighborhood age structure should be considered a key structural covariate in contextual research on health. Considering age structure implies incorporating not only meaningful cut points for important age groups (e.g., proportion 65 years and over) but attention to the shape of the distribution as well. PMID:16865558
Hati, Sanchita; Bhattacharyya, Sudeep
2016-01-01
A project-based biophysical chemistry laboratory course, which is offered to the biochemistry and molecular biology majors in their senior year, is described. In this course, the classroom study of the structure-function of biomolecules is integrated with the discovery-guided laboratory study of these molecules using computer modeling and simulations. In particular, modern computational tools are employed to elucidate the relationship between structure, dynamics, and function in proteins. Computer-based laboratory protocols that we introduced in three modules allow students to visualize the secondary, super-secondary, and tertiary structures of proteins, analyze non-covalent interactions in protein-ligand complexes, develop three-dimensional structural models (homology model) for new protein sequences and evaluate their structural qualities, and study proteins' intrinsic dynamics to understand their functions. In the fourth module, students are assigned to an authentic research problem, where they apply their laboratory skills (acquired in modules 1-3) to answer conceptual biophysical questions. Through this process, students gain in-depth understanding of protein dynamics-the missing link between structure and function. Additionally, the requirement of term papers sharpens students' writing and communication skills. Finally, these projects result in new findings that are communicated in peer-reviewed journals. © 2016 The International Union of Biochemistry and Molecular Biology.
Design and analysis of a new high frequency double-servo direct drive rotary valve
NASA Astrophysics Data System (ADS)
Zhu, Muzhi; Zhao, Shengdun; Li, Jingxiang
2016-12-01
Researchers have investigated direct drive valve for many years to solve problems, such as fluid force imbalance and switching frequency. The structure of the rotary valve has received considerable research interest because of its favorable dynamic properties and simple structure. This paper studied the high frequency doubleservo direct drive rotary valve (DDRV), and proposed a novel structure and drive method satisfying high reversing frequency and adequate quantity of flow. Servo motors are integrated into the valve by the innovative structure, which is designed to equilibrate the unbalanced radial fluid force with the symmetric distributed oil ports. Aside from the fast reversing function of the valve, the DDRV presented high performance in linearity of the flow quantity and valve opening as a result of the fan-shaped flow ports. In addition, a computational fluid dynamics (CFD) method based on Fluent was conducted to verify the flux regulation effect of the height change of the adjustable boss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollias, Pavlos
2017-04-23
With the vast upgrades to the ARM program radar measurement capabilities in 2010 and beyond, our ability to probe the 3D structure of clouds and associated precipitation has increased dramatically. This project build on the PI's and co-I's expertisein the analysis of radar observations. The first research thrust aims to document the 3D morphological (as depicted by the radar reflectivity structure) and 3D dynamical (cloud$-$scale eddies) structure of boundary layer clouds. Unraveling the 3D dynamical structure of stratocumulus and shallow cumulus clouds requires decomposition of the environmental wind contribution and particle sedimentation velocity from the observed radial Doppler velocity. Themore » second thrust proposes to unravel the mechanism of cumulus entrainment (location, scales) and its impact on microphysics utilizing radar measurements from the vertically pointing and new scanning radars at the ARM sites. The third research thrust requires the development of a cloud$-$tracking algorithm that monitors the properties of cloud.« less
2008-02-01
Livermore, California. 32. Martini, K. (1996a). “Research in the out-of-plane behavior of unreinforced masonry.” Ancient Reconstruction of the Pompeii Forum...plane behavior of unreinforced masonry,” Ancient Reconstruction of the Pompeii Forum. School of Architecture, University of Virginia
Building a Village through Data: A Research-Practice Partnership to Improve Youth Outcomes
ERIC Educational Resources Information Center
Biag, Manuelito
2017-01-01
There is growing recognition that the traditional research paradigm fails to address the needs of school practitioners. As such, more collaborative and participatory approaches are being encouraged. Yet few articles examine the structures, processes, and dynamics of research-practice partnerships. To address this gap, this essay analyzes a…
Research Reports: 1988 NASA/ASEE Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Freeman, L. Michael (Editor); Chappell, Charles R. (Editor); Cothran, Ernestine K. (Editor); Karr, Gerald R. (Editor)
1988-01-01
The basic objectives are to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA: to enrich and refresh the research and teaching activities of the participants' institutions; and to contribute to the research objectives of the NASA centers. Topics addressed include: cryogenics; thunderstorm simulation; computer techniques; computer assisted instruction; system analysis weather forecasting; rocket engine design; crystal growth; control systems design; turbine pumps for the Space Shuttle Main engine; electron mobility; heat transfer predictions; rotor dynamics; mathematical models; computational fluid dynamics; and structural analysis.
NASA Technical Reports Server (NTRS)
Chu, R. W.; Mitchell, C. M.; Govindaraj, T.
1989-01-01
This paper discusses the motivation and goals of a research project which addresses the problems and issues of operator training in complex engineering sytems. The research proposes a tutor/aid paradigm for the design of an intelligent tutoring system (ITS) that evolves from a tutor to an operator's assistant for supervisory control of complex dynamic systems. Characteristics of an intelligent tutoring/aiding system are identified with respect to the representation of domain knowledge, the tutor's pedagogical structure, and the student knowledge representation. The research represents a first step in the design of an intelligent complex dynamic systems.
NASA Astrophysics Data System (ADS)
Wang, Yi Jiao; Feng, Qing Yi; Chai, Li He
As one of the most important financial markets and one of the main parts of economic system, the stock market has become the research focus in economics. The stock market is a typical complex open system far from equilibrium. Many available models that make huge contribution to researches on market are strong in describing the market however, ignoring strong nonlinear interactions among active agents and weak in reveal underlying dynamic mechanisms of structural evolutions of market. From econophysical perspectives, this paper analyzes the complex interactions among agents and defines the generalized entropy in stock markets. Nonlinear evolutionary dynamic equation for the stock markets is then derived from Maximum Generalized Entropy Principle. Simulations are accordingly conducted for a typical case with the given data, by which the structural evolution of the stock market system is demonstrated. Some discussions and implications are finally provided.
Zhang, F.; Allen, A.J.; Levine, L.E.; Espinal, L.; Antonucci, J.M.; Skrtic, D.; O’Donnell, J.N.R.; Ilavsky, J.
2012-01-01
The local structural changes in amorphous calcium phosphate (ACP) based dental composites were studied under isothermal conditions using both static, bulk measurement techniques and a recently developed methodology based on combined ultra-small angle X-ray scattering – X-ray photon correlation spectroscopy (USAXS-XPCS), which permits a dynamic approach. While results from conventional bulk measurements do not show clear signs of structural change, USAXS-XPCS results reveal unambiguous evidence for local structural variations on a similar time scale to that of water loss in the ACP fillers. A thermal-expansion based simulation indicates that thermal behavior alone does not account for the observed dynamics. Together, these results suggest that changes in the water content of ACP affect the composite morphology due to changes in ACP structure that occur without an amorphous-to-crystalline conversion. It is also noted that biomedical materials research could benefit greatly from USAXS-XPCS, a dynamic approach. PMID:22374649
Coarse-grained description of cosmic structure from Szekeres models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sussman, Roberto A.; Gaspar, I. Delgado; Hidalgo, Juan Carlos, E-mail: sussman@nucleares.unam.mx, E-mail: ismael.delgadog@uaem.edu.mx, E-mail: hidalgo@fis.unam.mx
2016-03-01
We show that the full dynamical freedom of the well known Szekeres models allows for the description of elaborated 3-dimensional networks of cold dark matter structures (over-densities and/or density voids) undergoing ''pancake'' collapse. By reducing Einstein's field equations to a set of evolution equations, which themselves reduce in the linear limit to evolution equations for linear perturbations, we determine the dynamics of such structures, with the spatial comoving location of each structure uniquely specified by standard early Universe initial conditions. By means of a representative example we examine in detail the density contrast, the Hubble flow and peculiar velocities ofmore » structures that evolved, from linear initial data at the last scattering surface, to fully non-linear 10–20 Mpc scale configurations today. To motivate further research, we provide a qualitative discussion on the connection of Szekeres models with linear perturbations and the pancake collapse of the Zeldovich approximation. This type of structure modelling provides a coarse grained—but fully relativistic non-linear and non-perturbative —description of evolving large scale cosmic structures before their virialisation, and as such it has an enormous potential for applications in cosmological research.« less
Corradi, Luca; Porro, Ivan; Schenone, Andrea; Momeni, Parastoo; Ferrari, Raffaele; Nobili, Flavio; Ferrara, Michela; Arnulfo, Gabriele; Fato, Marco M
2012-10-08
Robust, extensible and distributed databases integrating clinical, imaging and molecular data represent a substantial challenge for modern neuroscience. It is even more difficult to provide extensible software environments able to effectively target the rapidly changing data requirements and structures of research experiments. There is an increasing request from the neuroscience community for software tools addressing technical challenges about: (i) supporting researchers in the medical field to carry out data analysis using integrated bioinformatics services and tools; (ii) handling multimodal/multiscale data and metadata, enabling the injection of several different data types according to structured schemas; (iii) providing high extensibility, in order to address different requirements deriving from a large variety of applications simply through a user runtime configuration. A dynamically extensible data structure supporting collaborative multidisciplinary research projects in neuroscience has been defined and implemented. We have considered extensibility issues from two different points of view. First, the improvement of data flexibility has been taken into account. This has been done through the development of a methodology for the dynamic creation and use of data types and related metadata, based on the definition of "meta" data model. This way, users are not constrainted to a set of predefined data and the model can be easily extensible and applicable to different contexts. Second, users have been enabled to easily customize and extend the experimental procedures in order to track each step of acquisition or analysis. This has been achieved through a process-event data structure, a multipurpose taxonomic schema composed by two generic main objects: events and processes. Then, a repository has been built based on such data model and structure, and deployed on distributed resources thanks to a Grid-based approach. Finally, data integration aspects have been addressed by providing the repository application with an efficient dynamic interface designed to enable the user to both easily query the data depending on defined datatypes and view all the data of every patient in an integrated and simple way. The results of our work have been twofold. First, a dynamically extensible data model has been implemented and tested based on a "meta" data-model enabling users to define their own data types independently from the application context. This data model has allowed users to dynamically include additional data types without the need of rebuilding the underlying database. Then a complex process-event data structure has been built, based on this data model, describing patient-centered diagnostic processes and merging information from data and metadata. Second, a repository implementing such a data structure has been deployed on a distributed Data Grid in order to provide scalability both in terms of data input and data storage and to exploit distributed data and computational approaches in order to share resources more efficiently. Moreover, data managing has been made possible through a friendly web interface. The driving principle of not being forced to preconfigured data types has been satisfied. It is up to users to dynamically configure the data model for the given experiment or data acquisition program, thus making it potentially suitable for customized applications. Based on such repository, data managing has been made possible through a friendly web interface. The driving principle of not being forced to preconfigured data types has been satisfied. It is up to users to dynamically configure the data model for the given experiment or data acquisition program, thus making it potentially suitable for customized applications.
2012-01-01
Background Robust, extensible and distributed databases integrating clinical, imaging and molecular data represent a substantial challenge for modern neuroscience. It is even more difficult to provide extensible software environments able to effectively target the rapidly changing data requirements and structures of research experiments. There is an increasing request from the neuroscience community for software tools addressing technical challenges about: (i) supporting researchers in the medical field to carry out data analysis using integrated bioinformatics services and tools; (ii) handling multimodal/multiscale data and metadata, enabling the injection of several different data types according to structured schemas; (iii) providing high extensibility, in order to address different requirements deriving from a large variety of applications simply through a user runtime configuration. Methods A dynamically extensible data structure supporting collaborative multidisciplinary research projects in neuroscience has been defined and implemented. We have considered extensibility issues from two different points of view. First, the improvement of data flexibility has been taken into account. This has been done through the development of a methodology for the dynamic creation and use of data types and related metadata, based on the definition of “meta” data model. This way, users are not constrainted to a set of predefined data and the model can be easily extensible and applicable to different contexts. Second, users have been enabled to easily customize and extend the experimental procedures in order to track each step of acquisition or analysis. This has been achieved through a process-event data structure, a multipurpose taxonomic schema composed by two generic main objects: events and processes. Then, a repository has been built based on such data model and structure, and deployed on distributed resources thanks to a Grid-based approach. Finally, data integration aspects have been addressed by providing the repository application with an efficient dynamic interface designed to enable the user to both easily query the data depending on defined datatypes and view all the data of every patient in an integrated and simple way. Results The results of our work have been twofold. First, a dynamically extensible data model has been implemented and tested based on a “meta” data-model enabling users to define their own data types independently from the application context. This data model has allowed users to dynamically include additional data types without the need of rebuilding the underlying database. Then a complex process-event data structure has been built, based on this data model, describing patient-centered diagnostic processes and merging information from data and metadata. Second, a repository implementing such a data structure has been deployed on a distributed Data Grid in order to provide scalability both in terms of data input and data storage and to exploit distributed data and computational approaches in order to share resources more efficiently. Moreover, data managing has been made possible through a friendly web interface. The driving principle of not being forced to preconfigured data types has been satisfied. It is up to users to dynamically configure the data model for the given experiment or data acquisition program, thus making it potentially suitable for customized applications. Conclusions Based on such repository, data managing has been made possible through a friendly web interface. The driving principle of not being forced to preconfigured data types has been satisfied. It is up to users to dynamically configure the data model for the given experiment or data acquisition program, thus making it potentially suitable for customized applications. PMID:23043673
Efficient Relaxation of Protein-Protein Interfaces by Discrete Molecular Dynamics Simulations.
Emperador, Agusti; Solernou, Albert; Sfriso, Pedro; Pons, Carles; Gelpi, Josep Lluis; Fernandez-Recio, Juan; Orozco, Modesto
2013-02-12
Protein-protein interactions are responsible for the transfer of information inside the cell and represent one of the most interesting research fields in structural biology. Unfortunately, after decades of intense research, experimental approaches still have difficulties in providing 3D structures for the hundreds of thousands of interactions formed between the different proteins in a living organism. The use of theoretical approaches like docking aims to complement experimental efforts to represent the structure of the protein interactome. However, we cannot ignore that current methods have limitations due to problems of sampling of the protein-protein conformational space and the lack of accuracy of available force fields. Cases that are especially difficult for prediction are those in which complex formation implies a non-negligible change in the conformation of the interacting proteins, i.e., those cases where protein flexibility plays a key role in protein-protein docking. In this work, we present a new approach to treat flexibility in docking by global structural relaxation based on ultrafast discrete molecular dynamics. On a standard benchmark of protein complexes, the method provides a general improvement over the results obtained by rigid docking. The method is especially efficient in cases with large conformational changes upon binding, in which structure relaxation with discrete molecular dynamics leads to a predictive success rate double that obtained with state-of-the-art rigid-body docking.
DARPA Helicopter Quieting Program W911NF0410424
2009-05-01
Leishman , J. G. and Beddoes , T. S., “A Semi-Empirical Model for Dynamic Stall ,” Journal of the American Heli- copter Society, Vol. 34, No. 3, July 1989...of physical phenomena that include transonic and compressibility effects on the advancing blade, dynamic stall on the retreating blades and the...research approach is that even the most advanced models of a given discipline, e.g., comprehensive structural or flight dynamics codes , concentrate on a very
Pressure Studies of Protein Dynamics.
1987-02-20
applicable ) Office of Naval Research ONR N00014-86-K-0270 kc. ADDRESS (City, State,and ZIP Code) 10. SOURCE OF FUNDING NUMBERS - PROGRAM PROJECT I TASK IWORK...Pressure Studies of Protein Dynamics 12. PERSONAL AUTHOR(S) Hans Frauenfelder and Robert D. Young 13a. TYPE OF REPORT |13b. TIME COVERED 114 DATE OF...relatioihbetween dynamic structure and function of protein protein dyna -bsey observing the phenomena induced by flash photolysis using near ultravfilet
A Dynamic Model of Sustainment Investment
2015-02-01
Sustainment System Dynamics Model 11 Figure 7: Core Structure of Sustainment Work 12 Figure 8: Bandwagon Effect Loop 13 Figure 9: Limits to Growth Loop 14...Dynamics Model sustainment capacity sustainment performance gap Bandwagon Effect R1 Limits to Growth B1 S Work Smarter B3 Work Bigger B2 desired...which is of concern primarily when using the model as a vehicle for research. Figure 8 depicts a reinforcing loop called the “ Bandwagon Effect
Inelastic and Dynamic Fracture and Stress Analyses
NASA Technical Reports Server (NTRS)
Atluri, S. N.
1984-01-01
Large deformation inelastic stress analysis and inelastic and dynamic crack propagation research work is summarized. The salient topics of interest in engine structure analysis that are discussed herein include: (1) a path-independent integral (T) in inelastic fracture mechanics, (2) analysis of dynamic crack propagation, (3) generalization of constitutive relations of inelasticity for finite deformations , (4) complementary energy approaches in inelastic analyses, and (5) objectivity of time integration schemes in inelastic stress analysis.
A Survey of Research Performed at NASA Langley Research Center's Impact Dynamics Research Facility
NASA Technical Reports Server (NTRS)
Jackson, K. E.; Fasanella, E. L.
2003-01-01
The Impact Dynamics Research Facility (IDRF) is a 240-ft-high gantry structure located at NASA Langley Research Center in Hampton, Virginia. The facility was originally built in 1963 as a lunar landing simulator, allowing the Apollo astronauts to practice lunar landings under realistic conditions. The IDRF was designated a National Historic Landmark in 1985 based on its significant contributions to the Apollo Program. In 1972, the facility was converted to a full-scale crash test facility for light aircraft and rotorcraft. Since that time, the IDRF has been used to perform a wide variety of impact tests on full-scale aircraft and structural components in support of the General Aviation (GA) aircraft industry, the US Department of Defense, the rotorcraft industry, and NASA in-house aeronautics and space research programs. The objective of this paper is to describe most of the major full-scale crash test programs that were performed at this unique, world-class facility since 1974. The past research is divided into six sub-topics: the civil GA aircraft test program, transport aircraft test program, military test programs, space test programs, basic research, and crash modeling and simulation.
STS-74/Mir photogrammetric appendage structural dynamics experiment
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Gilbert, Michael G.
1996-01-01
The Photogrammetric Appendage Structural Dynamics Experiment (PASDE) is an International Space Station (ISS) Phase-1 risk mitigation experiment. Phase-1 experiments are performed during docking missions of the U.S. Space Shuttle to the Russian Space Station Mir. The purpose of the experiment is to demonstrate the use of photogrammetric techniques for determination of structural dynamic mode parameters of solar arrays and other spacecraft appendages. Photogrammetric techniques are a low cost alternative to appendage mounted accelerometers for the ISS program. The objective of the first flight of PASDE, on STS-74 in November 1995, was to obtain video images of Mir Kvant-2 solar array response to various structural dynamic excitation events. More than 113 minutes of high quality structural response video data was collected during the mission. The PASDE experiment hardware consisted of three instruments each containing two video cameras, two video tape recorders, a modified video signal time inserter, and associated avionics boxes. The instruments were designed, fabricated, and tested at the NASA Langley Research Center in eight months. The flight hardware was integrated into standard Hitchhiker canisters at the NASA Goddard Space Flight Center and then installed into the Space Shuttle cargo bay in locations selected to achieve good video coverage and photogrammetric geometry.
coordinates research in support of the PEER mission in performance-based earthquake engineering. The broad system dynamic response; assessment of the performance of the structural and nonstructural systems ; consequences in terms of casualties, capital costs, and post-earthquake functionality; and decision-making to
NASA Astrophysics Data System (ADS)
Silberschmidt, Vadim V.
2013-07-01
Intensification of manufacturing processes and expansion of usability envelopes of modern components and structures in many cases result in dynamic loading regimes that cannot be resented adequately employing quasi-static formulations of respective problems of solid mechanics. Specific features of dynamic deformation, damage and fracture processes are linked to various factors, most important among them being: a transient character of load application; complex scenarios of propagation, attenuation and reflection of stress waves in real materials, components and structures; strain-rate sensitivity of materials properties; various thermo-mechanical regimes. All these factors make both experimental characterisation and theoretical (analytical and numerical) analysis of dynamic deformation and fracture rather challenging; for instance, besides dealing with a spatial realisation of these processes, their evolution with time should be also accounted for. To meet these challenges, an International Symposium on Dynamic Deformation and Fracture of Advanced Materials D2FAM 2013 was held on 9-11 September 2013 in Loughborough, UK. Its aim was to bring together specialists in mechanics of materials, applied mathematics, physics, continuum mechanics, materials science as well as various areas of engineering to discuss advances in experimental and theoretical analysis, and numerical simulations of dynamic mechanical phenomena. Some 50 papers presented at the Symposium by researchers from 12 countries covered various topics including: high-strain-rate loading and deformation; dynamic fracture; impact and blast loading; high-speed penetration; impact fatigue; damping properties of advanced materials; thermomechanics of dynamic loading; stress waves in micro-structured materials; simulation of failure mechanisms and damage accumulation; processes in materials under dynamic loading; a response of components and structures to harsh environment. The materials discussed at D2FAM 2013 ranged from traditional ones such as metals, alloys, polymers and composites to advanced and emerging materials, such as foams, cellular materials and metallic glasses, as well as bio-materials. Within the framework of the Symposium, a Special Session 'Parametric Resonance, Vibro-impact and Related Phenomena' was organised by partners of the FP7 IAPP project PARM-2: 'Vibro-impact machines based on parametric resonance: Concepts, mathematical modelling, experimental verification and implementation.' The Session focused on the topics, directly related to the project: excitation, stabilization, control and applications of parametric resonance (PR); multiple degrees of freedom of PR-excited systems; basic principles of PR-based macro and micro tools; design and technological aspects of PR-based machines; vibro-assisted machining; fatigue under high-amplitude vibro-impact conditions and corresponding optimal design; localisation near defects in dynamic response of elastic lattices and structures; dispersive waves and dynamic fracture in non-uniform lattice systems; thermally induced surface-breaking cracks, etc. This issue presents a selection of research papers presented at the International Symposium on Dynamic Deformation and Fracture of Advanced Materials D2FAM 2013. The Symposium Organisers would like to acknowledge its sponsors: Institute of Physics, International Centre of Vibro-Impact Systems and Marie Curie Action: Industry-Academia Partnerships and Pathways of the Seventh Framework Programme (FP7) of the European Commission (PARM-2 consortium). The PARM-2 consortium sponsored twenty scholarships for early-stage researchers to participate in this Symposium.
U.S. perspective on technology demonstration experiments for adaptive structures
NASA Technical Reports Server (NTRS)
Aswani, Mohan; Wada, Ben K.; Garba, John A.
1991-01-01
Evaluation of design concepts for adaptive structures is being performed in support of several focused research programs. These include programs such as Precision Segmented Reflector (PSR), Control Structure Interaction (CSI), and the Advanced Space Structures Technology Research Experiment (ASTREX). Although not specifically designed for adaptive structure technology validation, relevant experiments can be performed using the Passive and Active Control of Space Structures (PACOSS) testbed, the Space Integrated Controls Experiment (SPICE), the CSI Evolutionary Model (CEM), and the Dynamic Scale Model Test (DSMT) Hybrid Scale. In addition to the ground test experiments, several space flight experiments have been planned, including a reduced gravity experiment aboard the KC-135 aircraft, shuttle middeck experiments, and the Inexpensive Flight Experiment (INFLEX).
Control of Flexible Structures (COFS) Flight Experiment Background and Description
NASA Technical Reports Server (NTRS)
Hanks, B. R.
1985-01-01
A fundamental problem in designing and delivering large space structures to orbit is to provide sufficient structural stiffness and static configuration precision to meet performance requirements. These requirements are directly related to control requirements and the degree of control system sophistication available to supplement the as-built structure. Background and rationale are presented for a research study in structures, structural dynamics, and controls using a relatively large, flexible beam as a focus. This experiment would address fundamental problems applicable to large, flexible space structures in general and would involve a combination of ground tests, flight behavior prediction, and instrumented orbital tests. Intended to be multidisciplinary but basic within each discipline, the experiment should provide improved understanding and confidence in making design trades between structural conservatism and control system sophistication for meeting static shape and dynamic response/stability requirements. Quantitative results should be obtained for use in improving the validity of ground tests for verifying flight performance analyses.
Dynamic research of masonry vault in a technical scale
NASA Astrophysics Data System (ADS)
Golebiewski, Michal; Lubowiecka, Izabela; Kujawa, Marcin
2017-03-01
The paper presents preliminary results of dynamic tests of the masonry barrel vault in a technical scale. Experimental studies are intended to identify material properties of homogenized masonry vaults under dynamic loads. The aim of the work is to create numerical models to analyse vault's dynamic response to dynamic loads in a simplest and accurate way. The process of building the vault in a technical scale is presented in the paper. Furthermore a excitation of vibrations with an electrodynamic modal exciter placed on the vault, controlled by an arbitrary waveform function generator, is discussed. Finally paper presents trends in the research for homogenization algorithm enabling dynamic analysis of masonry vaults. Experimental results were compared with outcomes of so-called macromodels (macromodel of a brick masonry is a model in which masonry, i.e. a medium consisting of two different fractions - bricks and mortar, is represented by a homogenized, uniformed, material). Homogenization entail significant simplifications, nevertheless according to the authors, can be a useful approach in a static and dynamic analysis of masonry structures.
NASA Technical Reports Server (NTRS)
Flowers, George T.
1995-01-01
This semiannual status report lists specific accomplishments made on the research of the influence of backup bearings and support structure dynamics on the behavior of rotors with active supports. Papers have been presented representing work done on the T-501 engine model; an experimental/simulation study of auxiliary bearing rotordynamics; and a description of a rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects. A finite element model for a foil bearing has been developed. Additional studies of rotor/bearing/housing dynamics are currently being performed as are studies of the effects of sideloading on auxiliary bearing rotordynamics using the magnetic bearing supported rotor model.
NASA Astrophysics Data System (ADS)
Sears, Nicholas C.; Harne, Ryan L.
2018-01-01
The performance, integrity, and safety of built-up structural systems are critical to their effective employment in diverse engineering applications. In conflict with these goals, harmonic or random excitations of structural panels may promote large amplitude oscillations that are particularly harmful when excitation energies are concentrated around natural frequencies. This contributes to fatigue concerns, performance degradation, and failure. While studies have considered active or passive damping treatments that adapt material characteristics and configurations for structural control, it remains to be understood how vibration properties of structural panels may be tailored via internal material transitions. Motivated to fill this knowledge gap, this research explores an idea of adapting the static and dynamic material distribution of panels through embedded microvascular channels and strategically placed voids that permit the internal movement of fluids within the panels for structural dynamic control. Finite element model and experimental investigations probe how redistributing material in the form of microscale voids influences the global vibration modes and natural frequencies of structural panels. Through parameter studies, the relationships among void shape, number, size, and location are quantified towards their contribution to the changing structural dynamics. For the panel composition and boundary conditions considered in this report, the findings reveal that transferring material between strategically placed voids may result in eigenfrequency changes as great as 10.0, 5.0, and 7.4% for the first, second, and third modes, respectively.
Integrated multidisciplinary analysis tool IMAT users' guide
NASA Technical Reports Server (NTRS)
Meissner, Frances T. (Editor)
1988-01-01
The Integrated Multidisciplinary Analysis Tool (IMAT) is a computer software system developed at Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite controls systems influenced by structural dynamics. Using a menu-driven executive system, IMAT leads the user through the program options. IMAT links a relational database manager to commercial and in-house structural and controls analysis codes. This paper describes the IMAT software system and how to use it.
Parallel aeroelastic computations for wing and wing-body configurations
NASA Technical Reports Server (NTRS)
Byun, Chansup
1994-01-01
The objective of this research is to develop computationally efficient methods for solving fluid-structural interaction problems by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures on parallel computers. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.
Synthesis of aircraft structures using integrated design and analysis methods
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, J.; Goetz, R. C.
1978-01-01
A systematic research is reported to develop and validate methods for structural sizing of an airframe designed with the use of composite materials and active controls. This research program includes procedures for computing aeroelastic loads, static and dynamic aeroelasticity, analysis and synthesis of active controls, and optimization techniques. Development of the methods is concerned with the most effective ways of integrating and sequencing the procedures in order to generate structural sizing and the associated active control system, which is optimal with respect to a given merit function constrained by strength and aeroelasticity requirements.
Musical structure analysis using similarity matrix and dynamic programming
NASA Astrophysics Data System (ADS)
Shiu, Yu; Jeong, Hong; Kuo, C.-C. Jay
2005-10-01
Automatic music segmentation and structure analysis from audio waveforms based on a three-level hierarchy is examined in this research, where the three-level hierarchy includes notes, measures and parts. The pitch class profile (PCP) feature is first extracted at the note level. Then, a similarity matrix is constructed at the measure level, where a dynamic time warping (DTW) technique is used to enhance the similarity computation by taking the temporal distortion of similar audio segments into account. By processing the similarity matrix, we can obtain a coarse-grain music segmentation result. Finally, dynamic programming is applied to the coarse-grain segments so that a song can be decomposed into several major parts such as intro, verse, chorus, bridge and outro. The performance of the proposed music structure analysis system is demonstrated for pop and rock music.
NASA Astrophysics Data System (ADS)
Gao, Zilin; Wang, Yinhe; Zhang, Lili
2018-02-01
In the existing research results of the complex dynamical networks controlled, the controllers are mainly used to guarantee the synchronization or stabilization of the nodes’ state, and the terms coupled with connection relationships may affect the behaviors of nodes, this obviously ignores the dynamic common behavior of the connection relationships between the nodes. In fact, from the point of view of large-scale system, a complex dynamical network can be regarded to be composed of two time-varying dynamic subsystems, which can be called the nodes subsystem and the connection relationships subsystem, respectively. Similar to the synchronization or stabilization of the nodes subsystem, some characteristic phenomena can be also emerged in the connection relationships subsystem. For example, the structural balance in the social networks and the synaptic facilitation in the biological neural networks. This paper focuses on the structural balance in dynamic complex networks. Generally speaking, the state of the connection relationships subsystem is difficult to be measured accurately in practical applications, and thus it is not easy to implant the controller directly into the connection relationships subsystem. It is noted that the nodes subsystem and the relationships subsystem are mutually coupled, which implies that the state of the connection relationships subsystem can be affected by the controllable state of nodes subsystem. Inspired by this observation, by using the structural balance theory of triad, the controller with the parameter adaptive law is proposed for the nodes subsystem in this paper, which may ensure the connection relationship matrix to approximate a given structural balance matrix in the sense of the uniformly ultimately bounded (UUB). That is, the structural balance may be obtained by employing the controlling state of the nodes subsystem. Finally, the simulations are used to show the validity of the method in this paper.
In vivo optical imaging and dynamic contrast methods for biomedical research
Hillman, Elizabeth M. C.; Amoozegar, Cyrus B.; Wang, Tracy; McCaslin, Addason F. H.; Bouchard, Matthew B.; Mansfield, James; Levenson, Richard M.
2011-01-01
This paper provides an overview of optical imaging methods commonly applied to basic research applications. Optical imaging is well suited for non-clinical use, since it can exploit an enormous range of endogenous and exogenous forms of contrast that provide information about the structure and function of tissues ranging from single cells to entire organisms. An additional benefit of optical imaging that is often under-exploited is its ability to acquire data at high speeds; a feature that enables it to not only observe static distributions of contrast, but to probe and characterize dynamic events related to physiology, disease progression and acute interventions in real time. The benefits and limitations of in vivo optical imaging for biomedical research applications are described, followed by a perspective on future applications of optical imaging for basic research centred on a recently introduced real-time imaging technique called dynamic contrast-enhanced small animal molecular imaging (DyCE). PMID:22006910
NASA Technical Reports Server (NTRS)
Scholl, R. E. (Editor)
1979-01-01
Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.
Night and Day: The Interaction Between an Academic Institution and Its Evening College.
ERIC Educational Resources Information Center
Jacobson, Myrtle S.
An organizational study of the dynamics of interaction between the parent college and one of its component units is presented. The analysis is not limited to formal organizational structure and function. At relevant points, the dynamics of informal groupings and relationships are introduced. The research involved examination of a vast number of…
Bimolecular dynamics by computer analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eilbeck, J.C.; Lomdahl, P.S.; Scott, A.C.
1984-01-01
As numerical tools (computers and display equipment) become more powerful and the atomic structures of important biological molecules become known, the importance of detailed computation of nonequilibrium biomolecular dynamics increases. In this manuscript we report results from a well developed study of the hydrogen bonded polypeptide crystal acetanilide, a model protein. Directions for future research are suggested. 9 references, 6 figures.
Multidisciplinary analysis of actively controlled large flexible spacecraft
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Young, John W.; Sutter, Thomas R.
1986-01-01
The control of Flexible Structures (COFS) program has supported the development of an analysis capability at the Langley Research Center called the Integrated Multidisciplinary Analysis Tool (IMAT) which provides an efficient data storage and transfer capability among commercial computer codes to aid in the dynamic analysis of actively controlled structures. IMAT is a system of computer programs which transfers Computer-Aided-Design (CAD) configurations, structural finite element models, material property and stress information, structural and rigid-body dynamic model information, and linear system matrices for control law formulation among various commercial applications programs through a common database. Although general in its formulation, IMAT was developed specifically to aid in the evaluation of the structures. A description of the IMAT system and results of an application of the system are given.
1994-04-01
were then fibrous composites and a detailed machined at the mid-span using a rotating saw understanding of these materials response to blade. The...Cruciform shaped samples were used. Testing was performed on a Most work on joints in composite biaxial machine developed and built plates or shells...Apr 94 Final 1 Feb 93-30 Sep 93 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Dynamic Response of Composite Structures DAAHO4-93-G-0052 IL AUTHOR(S) David
Entering an era of dynamic structural biology….
Orville, Allen M
2018-05-31
A recent paper in BMC Biology presents a general method for mix-and-inject serial crystallography, to facilitate the visualization of enzyme intermediates via time-resolved serial femtosecond crystallography (tr-SFX). They apply their method to resolve in near atomic detail the cleavage and inactivation of the antibiotic ceftriaxone by a β-lactamase enzyme from Mycobacterium tuberculosis. Their work demonstrates the general applicability of time-resolved crystallography, from which dynamic structures, at atomic resolution, can be obtained.See research article: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-018-0524-5 .
Adaptive identification and control of structural dynamics systems using recursive lattice filters
NASA Technical Reports Server (NTRS)
Sundararajan, N.; Montgomery, R. C.; Williams, J. P.
1985-01-01
A new approach for adaptive identification and control of structural dynamic systems by using least squares lattice filters thar are widely used in the signal processing area is presented. Testing procedures for interfacing the lattice filter identification methods and modal control method for stable closed loop adaptive control are presented. The methods are illustrated for a free-free beam and for a complex flexible grid, with the basic control objective being vibration suppression. The approach is validated by using both simulations and experimental facilities available at the Langley Research Center.
UHPC and NSFRC in Severe Environmental Conditions
NASA Astrophysics Data System (ADS)
Rehacek, S.; Citek, D.; Kolisko, J.
2017-10-01
Structure and properties of cement composite are time-varying characteristics, depending among others on environmental conditions. The key idea is a struggle for complex research of joint effect of physical, chemical and dynamic loads on the internal structure of cement composite and understanding the correlation between changes in microstructure and macro-scale properties. During the experimental program, specimens will be exposed to combined influence of freeze-thaw cycles, aggressive chemical agents and dynamic loading. The aim is to create a theoretical basis for design of effective cement composites meant to be used in severe environmental conditions.
NASA Technical Reports Server (NTRS)
Mikic, Zoran; Grebowsky, Joseph M. (Technical Monitor)
2001-01-01
This report covers technical progress during the fourth quarter of the second year of NASA Sun-Earth Connections Theory Program (SECTP) contract 'The Structure and Dynamics of the Solar Corona and Inner Heliosphere,' NAS5-99188, between NASA and Science Applications International Corporation, and covers the period May 16,2001 to August 15, 2001. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD model.
The Structure and Dynamics of the Solar Corona and Inner Heliosphere
NASA Technical Reports Server (NTRS)
Mikic, Zoran; Grebowsky, J. (Technical Monitor)
2002-01-01
This report covers technical progress during the fourth quarter of the second year of NASA Sun-Earth Connections Theory Program (SECTP) contract "The Structure and Dynamics of the Solar Corona and Inner Heliosphere," NAS5-99188, between NASA and Science Applications International Corporation (SAIC), and covers the period May 16, 2001 to August 15, 2001. Under this contract SAIC and the University of California, Irvine (UCI) have conducted research into theoretical modeling of active regions, the solar corona, and the inner heliosphere, using the MHD (magnetohydrodynamic) model.
NASA Technical Reports Server (NTRS)
Fertis, D. G.; Simon, A. L.
1981-01-01
The requisite methodology to solve linear and nonlinear problems associated with the static and dynamic analysis of rotating machinery, their static and dynamic behavior, and the interaction between the rotating and nonrotating parts of an engine is developed. Linear and nonlinear structural engine problems are investigated by developing solution strategies and interactive computational methods whereby the man and computer can communicate directly in making analysis decisions. Representative examples include modifying structural models, changing material, parameters, selecting analysis options and coupling with interactive graphical display for pre- and postprocessing capability.
NASA Astrophysics Data System (ADS)
Rusek, Janusz; Kocot, Wojciech
2017-10-01
The article presents the method for assessing dynamic resistance of the existing industrial portal frame building structures subjected to mining tremors. The study was performed on two industrial halls of a reinforced concrete structure and a steel structure. In order to determine the dynamic resistances of these objects, static and dynamic numerical analysis in the FEA environment was carried out. The scope of numerical calculations was adapted to the guidelines contained in the former and current design standards. This allowed to formulate the criteria, on the basis of which the maximum permissible value of the horizontal ground acceleration was obtained, constituting resistance of the analyzed objects. The permissible range of structural behaviour was determined by comparing the effects of load combinations adopted at the design stage with a seismic combination recognized in Eurocode 8. The response spectrum method was used in the field of dynamic analysis, taking into account the guidelines contained in Eurocode 8 and the guidelines of National. Finally, in accordance with the established procedure, calculations were carried out and the results for the two model portal frame buildings of reinforced concrete and steel structures were presented. The results allowed for the comparison of the dynamic resistance of two different types of material and design, and a sensitivity analysis with respect to their constituent bearing elements. The conclusions drawn from these analyses helped to formulate the thesis for the next stage of the research, in which it is expected to analyze a greater number of objects using a parametric approach, in relation to the geometry and material properties.
Impact Landing Dynamics Facility Crash Test
1975-08-03
Photographed on: 08/03/75. -- By 1972 the Lunar Landing Research Facility was no longer in use for its original purpose. The 400-foot high structure was swiftly modified to allow engineers to study the dynamics of aircraft crashes. "The Impact Dynamics Research Facility is used to conduct crash testing of full-scale aircraft under controlled conditions. The aircraft are swung by cables from an A-frame structure that is approximately 400 ft. long and 230 foot high. The impact runway can be modified to simulate other grand crash environments, such as packed dirt, to meet a specific test requirement." "In 1972, NASA and the FAA embarked on a cooperative effort to develop technology for improved crashworthiness and passenger survivability in general aviation aircraft with little or no increase in weight and acceptable cost. Since then, NASA has "crashed" dozens of GA aircraft by using the lunar excursion module (LEM) facility originally built for the Apollo program." This photograph shows Crash Test No. 7. Crash Test: Test #7
Research in nonlinear structural and solid mechanics
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)
1980-01-01
Nonlinear analysis of building structures and numerical solution of nonlinear algebraic equations and Newton's method are discussed. Other topics include: nonlinear interaction problems; solution procedures for nonlinear problems; crash dynamics and advanced nonlinear applications; material characterization, contact problems, and inelastic response; and formulation aspects and special software for nonlinear analysis.
Behavior of plywood and fiberglass steel composite tube structures subjected to impact loading
NASA Astrophysics Data System (ADS)
Armaghani, Seyamend Bilind
Paratransit buses are custom built as the major vehicle manufacturer produces the custom built passenger cage installed on the chassis for the Paratransit bus. In order for these Paratransit bus members to be sufficient, they have to be evaluated for crashworthiness and energy absorption. This has prompted Florida Department of Transportation (FDOT) to fund research for the safety evaluation of Paratransit busses consisting of crash and safety analysis. There has been a large body of research done on steel subjected to static loads, but more research is needed for steel applied under dynamic loading and high speeds in order to improve crashworthiness in events such as rollovers and side impacts. Bare steel Hollow Structural Section (HSS) tubing are used a lot as structural members of Paratransit buses because of their lightness and progressive buckling under loading. The research will be conducted on quantifying the tubing's behavior under bending by conducting static three point bending and impact loading tests. In addition to the bare tubing, plywood and fiberglass composites are investigated because they are both strong and lightweight and their behavior under dynamic loading hasn't been quantified. As a result, the main purpose of this research is to quantify the differences between the dynamic and static behavior of plywood steel composite and fiberglass steel composite tubing and compare these findings with those of bare steel tubing. The differences will be quantified using detailed and thorough experiments that will examine the composites behavior under both static and dynamic loading. These tests will determine if there are any advantages of using the composite materials and thus allow for recommendations to be made to the FDOT with the goal of improving the safety of Paratransit busses. Tensile tests were conducted to determine the material properties of the tested specimens. Before the static and dynamic experiments are run to investigate the differences between static and dynamic behavior, Preliminary three point bending testing was conducted to determine the parameters for the final experiments. Static bending testing was conducted on the bare, plywood composite, and fiberglass composite steel tubing. The point of these experiments was to produce a Moment vs. Rotation plot to determine the specimens' maximum moments and their associated rotation, as that is when the steel buckles and fails. The dynamic three point bending experiments were conducted using the impact loading apparatus and had the same purpose as the static experiments. For both static and dynamic experiments, the performances of the different types of specimens were compared based upon their Moment vs. Rotation plots. This will determine the effect that the composite has on the rotation and maximum moment at which the tubing fails. After conducting these experiments, amplification factors were established for each specimen by comparing the maximum moment and their associated rotation between static and dynamic testing. lambda was calculated to quantify the ratio between the static and dynamic maximum moments. beta was used to quantify the ratio between the rotation needed to produce the maximum moment between static and dynamic events. A small amplification factor denotes that material performs well under impact loading and the material doesn't experience dramatic change in behavior during dynamic events. Amplification factors were compared between the bare, plywood, and fiberglass composite steel tubing in order to evaluate the performance of the composites. After comparing the amplification factors of the different types of tubing, recommendations can be made. Fiberglass and plywood composite were shown to be valuable because it decreased the effect of dynamic forces as beta was reduced by a factor of 2 in comparison to bare tubing. Based upon the amplification factors, it was recommended to use 14 gauge fiberglass composite tubing as Paratransit bus structural members because it was affected the least by dynamic loading.
DOT National Transportation Integrated Search
2017-05-01
This report is a summary of the research done on dynamic segregation of self-consolidating concrete (SCC) including the casting of pre-stressed beams at Coreslab Structures. SCC is a highly flowable concrete that spreads into place with little to no ...
Shannon, Kate; Goldenberg, Shira M.; Deering, Kathleen N.; Strathdee, Steffanie A.
2014-01-01
Purpose of review This article reviews the current state of the epidemiological literature on female sex work and HIV from the past 18 months. We offer a conceptual framework for structural HIV determinants and sex work that unpacks intersecting structural, interpersonal, and individual biological and behavioural factors. Recent findings Our review suggests that despite the heavy HIV burden among female sex workers (FSWs) globally, data on the structural determinants shaping HIV transmission dynamics have only begun to emerge. Emerging research suggests that factors operating at macrostructural (e.g., migration, stigma, criminalized laws), community organization (e.g., empowerment) and work environment levels (e.g., violence, policing, access to condoms HIV testing, HAART) act dynamically with interpersonal (e.g., dyad factors, sexual networks) and individual biological and behavioural factors to confer risks or protections for HIV transmission in female sex work. Summary Future research should be guided by a Structural HIV Determinants Framework to better elucidate the complex and iterative effects of structural determinants with interpersonal and individual biological and behavioural factors on HIV transmission pathways among FSWs, and meet critical gaps in optimal access to HIV prevention, treatment, and care for FSWs globally. PMID:24464089
NASA Technical Reports Server (NTRS)
Graves, Sharon S.; Burner, Alpheus W.; Edwards, John W.; Schuster, David M.
2001-01-01
The techniques used to acquire, reduce, and analyze dynamic deformation measurements of an aeroelastic semispan wind tunnel model are presented. Single-camera, single-view video photogrammetry (also referred to as videogrammetric model deformation, or VMD) was used to determine dynamic aeroelastic deformation of the semispan 'Models for Aeroelastic Validation Research Involving Computation' (MAVRIC) model in the Transonic Dynamics Tunnel at the NASA Langley Research Center. Dynamic deformation was determined from optical retroreflective tape targets at five semispan locations located on the wing from the root to the tip. Digitized video images from a charge coupled device (CCD) camera were recorded and processed to automatically determine target image plane locations that were then corrected for sensor, lens, and frame grabber spatial errors. Videogrammetric dynamic data were acquired at a 60-Hz rate for time records of up to 6 seconds during portions of this flutter/Limit Cycle Oscillation (LCO) test at Mach numbers from 0.3 to 0.96. Spectral analysis of the deformation data is used to identify dominant frequencies in the wing motion. The dynamic data will be used to separate aerodynamic and structural effects and to provide time history deflection data for Computational Aeroelasticity code evaluation and validation.
Mapping the Structure and Dynamics of Genomics-Related MeSH Terms Complex Networks
Siqueiros-García, Jesús M.; Hernández-Lemus, Enrique; García-Herrera, Rodrigo; Robina-Galatas, Andrea
2014-01-01
It has been proposed that the history and evolution of scientific ideas may reflect certain aspects of the underlying socio-cognitive frameworks in which science itself is developing. Systematic analyses of the development of scientific knowledge may help us to construct models of the collective dynamics of science. Aiming at scientific rigor, these models should be built upon solid empirical evidence, analyzed with formal tools leading to ever-improving results that support the related conclusions. Along these lines we studied the dynamics and structure of the development of research in genomics as represented by the entire collection of genomics-related scientific papers contained in the PubMed database. The analyzed corpus consisted in more than 49,000 articles published in the years 1987 (first appeareance of the term Genomics) to 2011, categorized by means of the Medical Subheadings (MeSH) content-descriptors. Complex networks were built where two MeSH terms were connected if they are descriptors of the same article(s). The analysis of such networks revealed a complex structure and dynamics that to certain extent resembled small-world networks. The evolution of such networks in time reflected interesting phenomena in the historical development of genomic research, including what seems to be a phase-transition in a period marked by the completion of the first draft of the Human Genome Project. We also found that different disciplinary areas have different dynamic evolution patterns in their MeSH connectivity networks. In the case of areas related to science, changes in topology were somewhat fast while retaining a certain core-stucture, whereas in the humanities, the evolution was pretty slow and the structure resulted highly redundant and in the case of technology related issues, the evolution was very fast and the structure remained tree-like with almost no overlapping terms. PMID:24699262
Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly.
Hanski, Ilkka A
2011-08-30
Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time.
Ding, Hang
2014-01-01
Structures in recurrence plots (RPs), preserving the rich information of nonlinear invariants and trajectory characteristics, have been increasingly analyzed in dynamic discrimination studies. The conventional analysis of RPs is mainly focused on quantifying the overall diagonal and vertical line structures through a method, called recurrence quantification analysis (RQA). This study extensively explores the information in RPs by quantifying local complex RP structures. To do this, an approach was developed to analyze the combination of three major RQA variables: determinism, laminarity, and recurrence rate (DLR) in a metawindow moving over a RP. It was then evaluated in two experiments discriminating (1) ideal nonlinear dynamic series emulated from the Lorenz system with different control parameters and (2) data sets of human heart rate regulations with normal sinus rhythms (n = 18) and congestive heart failure (n = 29). Finally, the DLR was compared with seven major RQA variables in terms of discriminatory power, measured by standardized mean difference (DSMD). In the two experiments, DLR resulted in the highest discriminatory power with DSMD = 2.53 and 0.98, respectively, which were 7.41 and 2.09 times the best performance from RQA. The study also revealed that the optimal RP structures for the discriminations were neither typical diagonal structures nor vertical structures. These findings indicate that local complex RP structures contain some rich information unexploited by RQA. Therefore, future research to extensively analyze complex RP structures would potentially improve the effectiveness of the RP analysis in dynamic discrimination studies.
Game theory and extremal optimization for community detection in complex dynamic networks.
Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca
2014-01-01
The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.
The Use of Web Search Engines in Information Science Research.
ERIC Educational Resources Information Center
Bar-Ilan, Judit
2004-01-01
Reviews the literature on the use of Web search engines in information science research, including: ways users interact with Web search engines; social aspects of searching; structure and dynamic nature of the Web; link analysis; other bibliometric applications; characterizing information on the Web; search engine evaluation and improvement; and…
Jane Gamal-Eldin
1998-01-01
The Bartlett Experimental Forest is a field laboratory for research on the ecology and management of northern forest ecosystems. Research on the Bartlett includes: 1) extensive investigations on structure and dynamics of forests at several levels, and developing management alternatives to reflect an array of values and benefits sought by users of forest lands, 2) a...
Structural Influence of Dynamics of Bottom Loads
2014-02-10
using the Numerette research craft, are underway. Early analytic research on slamming was done by von Karman [5] using a momentum approach, and by...pressure q{x,t) as two constant pressures, qi and qj, traveling at a constant speed c. Using the Euler- Bernoulli beam assumptions the governing
Evaluation of Participatory Research in Developing Community Leadership Skills.
ERIC Educational Resources Information Center
Karim, Wazir-Jahan B.
1982-01-01
This paper attempts to evaluate and explain the dynamic processes of decision-making and leadership development through participatory research, using the Malaysian experience as a case study. The focus is on the structural and situational constraints in the Malaysian rural society, the formal political machinery and the implementation of…
The dynamics of fresh fruit and vegetable pricing in the supermarket channel.
McLaughlin, Edward W
2004-09-01
This paper explains the major factors that contribute to the complicated price formation process, as several levels, of fresh fruit and vegetables in the US. Several factors are explored: marketing channels, market structure changes, pricing techniques and promotional impacts, retail responses to supply changes, and price versus value. The paper illustrates with recent examples and research findings that the fresh produce system is dynamic and that simplistic solutions to complex problems are not likely. The paper finishes by suggesting some areas for needed additional research.
NASA Aeronautics: Research and Technology Program Highlights
NASA Technical Reports Server (NTRS)
1990-01-01
This report contains numerous color illustrations to describe the NASA programs in aeronautics. The basic ideas involved are explained in brief paragraphs. The seven chapters deal with Subsonic aircraft, High-speed transport, High-performance military aircraft, Hypersonic/Transatmospheric vehicles, Critical disciplines, National facilities and Organizations & installations. Some individual aircraft discussed are : the SR-71 aircraft, aerospace planes, the high-speed civil transport (HSCT), the X-29 forward-swept wing research aircraft, and the X-31 aircraft. Critical disciplines discussed are numerical aerodynamic simulation, computational fluid dynamics, computational structural dynamics and new experimental testing techniques.
Beyond Our Boundaries: Research and Technology
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: Propulsion and Fluid Management; Structures and Dynamics; Materials and Manufacturing Processes; Sensor Technology; Software Technology; Optical Systems; Microgravity Science; Earth System Science; Astrophysics; Solar Physics; and Technology Transfer.
Richard D. Periman
1999-01-01
The successful restoration of riparian ecosystems to sustainable conditions requires that we understand the dynamic historical relationships between humans and the environment. Research is needed that measures the continuing effects of past human activities on contemporary ecosystem structure and function. An interdisciplinary approach is needed that incorporates...
Multi-body Dynamic Contact Analysis Tool for Transmission Design
2003-04-01
frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using assumed time domain... modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal format (dataset 55...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by
Integrated Multiscale Modeling of Molecular Computing Devices. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tim Schulze
2012-11-01
The general theme of this research has been to expand the capabilities of a simulation technique, Kinetic Monte Carlo (KMC) and apply it to study self-assembled nano-structures on epitaxial thin films. KMC simulates thin film growth and evolution by replacing the detailed dynamics of the system's evolution, which might otherwise be studied using molecular dynamics, with an appropriate stochastic process.
Characterizing RNA ensembles from NMR data with kinematic models
Fonseca, Rasmus; Pachov, Dimitar V.; Bernauer, Julie; van den Bedem, Henry
2014-01-01
Functional mechanisms of biomolecules often manifest themselves precisely in transient conformational substates. Researchers have long sought to structurally characterize dynamic processes in non-coding RNA, combining experimental data with computer algorithms. However, adequate exploration of conformational space for these highly dynamic molecules, starting from static crystal structures, remains challenging. Here, we report a new conformational sampling procedure, KGSrna, which can efficiently probe the native ensemble of RNA molecules in solution. We found that KGSrna ensembles accurately represent the conformational landscapes of 3D RNA encoded by NMR proton chemical shifts. KGSrna resolves motionally averaged NMR data into structural contributions; when coupled with residual dipolar coupling data, a KGSrna ensemble revealed a previously uncharacterized transient excited state of the HIV-1 trans-activation response element stem–loop. Ensemble-based interpretations of averaged data can aid in formulating and testing dynamic, motion-based hypotheses of functional mechanisms in RNAs with broad implications for RNA engineering and therapeutic intervention. PMID:25114056
Structures technology for a new generation of rotorcraft
NASA Technical Reports Server (NTRS)
Bartlett, Felton D., Jr.
1989-01-01
This paper presents an overview of structures research at the U. S. Army Aerostructures Directorate. The objectives of this research are to investigate, explore, and demonstrate emerging technologies that will provide lighter, safer, more survivable, and more cost-effective structures for rotorcraft in the 1990s and beyond. The emphasis of today's R&D is to contribute proven structures technology to the U. S. rotorcraft industry and Army aviation that directly impacts tomorrow's fleet readiness and mission capabilities. The primary contributor toward meeting these challenges is the development of high-strength and durable composites to minimize structural weight while maximizing cost effectiveness. Special aviation issues such as delamination of dynamic components, impact damage to thin skins, crashworthiness, and affordable manufacturing need to be resolved before the full potential of composites technology can be realized. To that end, this paper highlights research into composites structural integrity, crashworthiness, and materials applications which addresses these issues.
Test and Analysis of an Inflatable Parabolic Dish Antenna
NASA Technical Reports Server (NTRS)
Gaspar, james L.; Sreekantamurthy, Tham; Mann, Troy; Behun, Vaughn; Romanofsky, Robert; Lambert, Kevin; Pearson, James
2006-01-01
NASA is developing ultra-lightweight structures technology for large communication antennas for application to space missions. With these goals in mind, SRS Technologies has been funded by NASA Glenn Research Center (GRC) to undertake the development of a subscale ultra-thin membrane inflatable antenna for deep-space applications. One of the research goals is to develop approaches for prediction of the radio frequency and structural characteristics of inflatable and rigidizable membrane antenna structures. GRC has teamed with NASA Langley Research Center (LaRC) to evaluate inflatable and rigidizable antenna concepts for potential space missions. GRC has completed tests to evaluate RF performance, while LaRC completed structural tests and analysis to evaluate the static shape and structural dynamic responses of a laboratory model of a 0.3 meter antenna. This paper presents the details of the tests and analysis completed to evaluate the radio frequency and structural characteristics of the antenna.
Passive and Active Control of Space Structures (PACOSS)
NASA Astrophysics Data System (ADS)
Morosow, G.; Harcrow, H.; Rogers, L.
1985-04-01
Passive and Active Control of Space Structures (PACOSS) is a five-year program designed to investigate highly damped structures in conjunction with active control systems, and in particular to develop technology that integrates passive damping and active control to achieve precise pointing control. Major areas of research include metal matrix composites; viscoelastic materials; damping devices; dynamic test article design, fabrication and testing; and active damping.
Application of the Spectral Element Method to Acoustic Radiation
NASA Technical Reports Server (NTRS)
Doyle, James F.; Rizzi, Stephen A. (Technical Monitor)
2000-01-01
This report summarizes research to develop a capability for analysis of interior noise in enclosed structures when acoustically excited by an external random source. Of particular interest was the application to the study of noise and vibration transmission in thin-walled structures as typified by aircraft fuselages. Three related topics are focused upon. The first concerns the development of a curved frame spectral element, the second shows how the spectral element method for wave propagation in folded plate structures is extended to problems involving curved segmented plates. These are of significance because by combining these curved spectral elements with previously presented flat spectral elements, the dynamic response of geometrically complex structures can be determined. The third topic shows how spectral elements, which incorporate the effect of fluid loading on the structure, are developed for analyzing acoustic radiation from dynamically loaded extended plates.
Validation of Laser-Induced Fluorescent Photogrammetric Targets on Membrane Structures
NASA Technical Reports Server (NTRS)
Jones, Thomas W.; Dorrington, Adrian A.; Shortis, Mark R.; Hendricks, Aron R.
2004-01-01
The need for static and dynamic characterization of a new generation of inflatable space structures requires the advancement of classical metrology techniques. A new photogrammetric-based method for non-contact ranging and surface profiling has been developed at NASA Langley Research Center (LaRC) to support modal analyses and structural validation of this class of space structures. This full field measurement method, known as Laser-Induced Fluorescence (LIF) photogrammetry, has previously yielded promising experimental results. However, data indicating the achievable measurement precision had not been published. This paper provides experimental results that indicate the LIF-photogrammetry measurement precision for three different target types used on a reflective membrane structure. The target types were: (1) non-contact targets generated using LIF, (2) surface attached retro-reflective targets, and (3) surface attached diffuse targets. Results from both static and dynamic investigations are included.
A Teacher Education for Sustainable Development System: An Institutional Responsibility
ERIC Educational Resources Information Center
Bentham, Hayley; Sinnes, Astrid; Gjøtterud, Sigrid
2015-01-01
Soft systems methodology is commonly used in organizational research and can be very useful when attempting to understand both organizational structures and dynamics. A teacher education institution is identified here as an organization. Soft systems methodology is employed to gain a picture of the current organizational structure of a Science and…
HBCUs Research Conference Agenda and Abstracts
NASA Technical Reports Server (NTRS)
Dutta, Sunil (Compiler)
1997-01-01
The purpose of this Historically Black Colleges and Universities (HBCUS) Research Conference was to provide an opportunity for principal investigators and their students to present research progress reports. The abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Lewis Research Center to HBCUS. The conference generated extensive networking between students, principal investigators, Lewis technical monitors, and other Lewis researchers.
HBCUs Research Conference Agenda and Abstracts
NASA Technical Reports Server (NTRS)
Dutta, Sunil (Compiler)
1998-01-01
The purpose of this Historically Black Colleges and Universities (HBCUs) Research Conference was to provide an opportunity for principal investigators and their students to present research progress reports. The abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Lewis Research Center to HBCUs. The conference generated extensive networking between students, principal investigators, Lewis technical monitors, and other Lewis researchers.
HBCUs Research Conference agenda and abstracts
NASA Technical Reports Server (NTRS)
Dutta, Sunil (Compiler)
1995-01-01
The purpose of this Historically Black Colleges and Universities (HBCUs) Research conference was to provide an opportunity for principal investigators and their students to present research progress reports. The abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Lewis Research Center to HBCUs. The conference generated extensive networking between students, principal investigators, Lewis technical monitors, and other Lewis researchers.
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi
2013-01-01
Modern aircraft employ a significant fraction of their weight in composite materials to reduce weight and improve performance. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to the composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test-bed (MUTT) aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of MUTT aircraft. The ground vibration test-validated structural dynamic finite element model of the MUTT aircraft is created in this study. The structural dynamic finite element model of MUTT aircraft is improved using the in-house Multi-disciplinary Design, Analysis, and Optimization tool. In this study, two different weight configurations of MUTT aircraft have been improved simultaneously in a single model tuning procedure.
Computational structures technology and UVA Center for CST
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1992-01-01
Rapid advances in computer hardware have had a profound effect on various engineering and mechanics disciplines, including the materials, structures, and dynamics disciplines. A new technology, computational structures technology (CST), has recently emerged as an insightful blend between material modeling, structural and dynamic analysis and synthesis on the one hand, and other disciplines such as computer science, numerical analysis, and approximation theory, on the other hand. CST is an outgrowth of finite element methods developed over the last three decades. The focus of this presentation is on some aspects of CST which can impact future airframes and propulsion systems, as well as on the newly established University of Virginia (UVA) Center for CST. The background and goals for CST are described along with the motivations for developing CST, and a brief discussion is made on computational material modeling. We look at the future in terms of technical needs, computing environment, and research directions. The newly established UVA Center for CST is described. One of the research projects of the Center is described, and a brief summary of the presentation is given.
[Review of dynamic global vegetation models (DGVMs)].
Che, Ming-Liang; Chen, Bao-Zhang; Wang, Ying; Guo, Xiang-Yun
2014-01-01
Dynamic global vegetation model (DGVM) is an important and efficient tool for study on the terrestrial carbon circle processes and vegetation dynamics. This paper reviewed the development history of DGVMs, introduced the basic structure of DGVMs, and the outlines of several world-widely used DGVMs, including CLM-DGVM, LPJ, IBIS and SEIB. The shortages of the description of dynamic vegetation mechanisms in the current DGVMs were proposed, including plant functional types (PFT) scheme, vegetation competition, disturbance, and phenology. Then the future research directions of DGVMs were pointed out, i. e. improving the PFT scheme, refining the vegetation dynamic mechanism, and implementing a model inter-comparison project.
Molecular Dynamical Simulation of Thermal Conductivity in Amorphous Structures
NASA Astrophysics Data System (ADS)
Deangelis, Freddy; Henry, Asegun
While current descriptions of thermal transport exists for well-ordered materials such as crystal latices, new methods are needed to describe thermal transport in disordered materials, including amorphous solids. Because such structures lack periodic, long-range order, a group velocity cannot be defined for thermal modes of vibration; thus, the phonon gas model cannot be applied to these structures. Instead, a new framework must be applied to analyze such materials. Using a combination of density functional theory and molecular dynamics, we have analyzed thermal transport in amorphous structures, chiefly amorphous germanium. The analysis allows us to categorize vibrational modes as propagons, diffusons, or locons, and to determine how they contribute to thermal conductivity within amorphous structures. This method is also being extended to other disordered structures such as amorphous polymers. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1148903.
Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory
NASA Technical Reports Server (NTRS)
Lucia, David J.; Beran, Philip S.; Silva, Walter A.
2003-01-01
This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.
Generalized topology for resonators having N commensurate harmonics
NASA Astrophysics Data System (ADS)
Danzi, Francesco; Gibert, James M.; Frulla, Giacomo; Cestino, Enrico
2018-04-01
Despite the ubiquity of both linear and nonlinear multimember resonators in MEMS and kinetic energy harvesting devices very few research efforts examine the orientation of members in the resonator on its dynamic behavior. Previous efforts to design this type of resonator constrains the members to have relative orientations that are 0○ or 90○ to each other, i.e., the elements are connected inline with adjoining members or are perpendicular to adjoining members. The work expands upon the existing body of research by considering the effect of the relative orientation between members on the dynamic behavior of the system. In this manuscript, we derive a generalized reduced-order model for the design of a multi-member planar resonator that has integer multiple modal frequencies. The model is based on a Rayleigh Ritz approximation where the number of degrees of freedom equals the number of structural members in the resonator. The analysis allows the generation of design curves, representing all the possible solutions for modal frequencies that are commensurate. The generalized model, valid for an N-DOF structure, is then restricted for a 2- and 3-DOF system/member resonator, where the linear dynamic behavior of the resonator is investigated in depth. Furthermore, this analysis demonstrates a rule of thumb; relaxing restrictions on the relative orientation of members in a planar structure, allows the structure to exhibit exactly N commensurable frequencies if it contains N members.
A graphical vector autoregressive modelling approach to the analysis of electronic diary data
2010-01-01
Background In recent years, electronic diaries are increasingly used in medical research and practice to investigate patients' processes and fluctuations in symptoms over time. To model dynamic dependence structures and feedback mechanisms between symptom-relevant variables, a multivariate time series method has to be applied. Methods We propose to analyse the temporal interrelationships among the variables by a structural modelling approach based on graphical vector autoregressive (VAR) models. We give a comprehensive description of the underlying concepts and explain how the dependence structure can be recovered from electronic diary data by a search over suitable constrained (graphical) VAR models. Results The graphical VAR approach is applied to the electronic diary data of 35 obese patients with and without binge eating disorder (BED). The dynamic relationships for the two subgroups between eating behaviour, depression, anxiety and eating control are visualized in two path diagrams. Results show that the two subgroups of obese patients with and without BED are distinguishable by the temporal patterns which influence their respective eating behaviours. Conclusion The use of the graphical VAR approach for the analysis of electronic diary data leads to a deeper insight into patient's dynamics and dependence structures. An increasing use of this modelling approach could lead to a better understanding of complex psychological and physiological mechanisms in different areas of medical care and research. PMID:20359333
Lee, Jongsuh; Wang, Semyung; Pluymers, Bert; Desmet, Wim; Kindt, Peter
2015-02-01
Generally, the dynamic characteristics (natural frequency, damping, and mode shape) of a structure can be estimated by experimental modal analysis. Among these dynamic characteristics, mode shape requires multiple measurements of the structure at different positions, which increases the experimental cost and time. Recently, the Hilbert-Huang transform (HHT) method has been introduced to extract mode-shape information from a continuous measurement, which requires vibration measurements from one position to another position continuously with a non-contact sensor. In this research study, an effort has been made to estimate the mode shapes of a rolling tire with a single measurement instead of using the conventional experimental setup (i.e., measurement of the vibration of a rolling tire at multiple positions similar to the case of a non-rotating structure), which is used to estimate the dynamic behavior of a rolling tire. For this purpose, HHT, which was used in the continuous measurement of a non-rotating structure in previous research studies, has been used for the case of a rotating system in this study. Ambiguous mode combinations can occur in this rotating system, and therefore, a method to overcome this ambiguity is proposed in this study. In addition, the specific phenomenon for a rotating system is introduced, and the effect of this phenomenon with regard to the obtained results through HHT is investigated.
Attitude Dynamics, Stability, and Control of a Heliogyro Solar Sail
NASA Astrophysics Data System (ADS)
Pimienta-Penalver, Adonis Reinier
A heliogyro solar sail concept, dubbed `HELIOS', is proposed as an alternative to deep space missions without the need for on-board propellant. Although this type of solar sail has existed in concept for several decades, and some previous studies have investigated certain aspects of its operation, a significant amount of research is still needed to analyze the dynamic and control characteristics of the structure under the projected range of orbital conditions. This work presents an improvement upon the existing discrete-mass models of the heliogyro blade, and the extension of its application from a single membrane blade to a fully-coupled approximation of the dynamics of the HELIOS system with multiple spinning membrane blades around a central hub. The incorporation of structural stiffness and external forcing effects into the model is demonstrated to add a further degree of fidelity in simulating the stability properties of the system. Additionally, the approximated dynamics of multiple-blade heliogyro structures are examined under the effect of solar radiation pressure. Lastly, this study evaluates a control algorithm at each blade root to impose structural integrity and attitude control by coordinating well-known helicopter blade pitching profiles.
On the Role of Interchange Reconnection in the Generation of the Slow Solar Wind
NASA Astrophysics Data System (ADS)
Edmondson, J. K.
2012-11-01
The heating of the solar corona and therefore the generation of the solar wind, remain an active area of solar and heliophysics research. Several decades of in situ solar wind plasma observations have revealed a rich bimodal solar wind structure, well correlated with coronal magnetic field activity. Therefore, the reconnection processes associated with the large-scale dynamics of the corona likely play a major role in the generation of the slow solar wind flow regime. In order to elucidate the relationship between reconnection-driven coronal magnetic field structure and dynamics and the generation of the slow solar wind, this paper reviews the observations and phenomenology of the solar wind and coronal magnetic field structure. The geometry and topology of nested flux systems, and the (interchange) reconnection process, in the context of coronal physics is then explained. Once these foundations are laid out, the paper summarizes several fully dynamic, 3D MHD calculations of the global coronal system. Finally, the results of these calculations justify a number of important implications and conclusions on the role of reconnection in the structural dynamics of the coronal magnetic field and the generation of the solar wind.
The Emergence of Temporal Structures in Dynamical Systems
NASA Astrophysics Data System (ADS)
Mainzer, Klaus
2010-10-01
Dynamical systems in classical, relativistic and quantum physics are ruled by laws with time reversibility. Complex dynamical systems with time-irreversibility are known from thermodynamics, biological evolution, growth of organisms, brain research, aging of people, and historical processes in social sciences. Complex systems are systems that compromise many interacting parts with the ability to generate a new quality of macroscopic collective behavior the manifestations of which are the spontaneous emergence of distinctive temporal, spatial or functional structures. But, emergence is no mystery. In a general meaning, the emergence of macroscopic features results from the nonlinear interactions of the elements in a complex system. Mathematically, the emergence of irreversible structures is modelled by phase transitions in non-equilibrium dynamics of complex systems. These methods have been modified even for chemical, biological, economic and societal applications (e.g., econophysics). Emergence of irreversible structures can also be simulated by computational systems. The question arises how the emergence of irreversible structures is compatible with the reversibility of fundamental physical laws. It is argued that, according to quantum cosmology, cosmic evolution leads from symmetry to complexity of irreversible structures by symmetry breaking and phase transitions. Thus, arrows of time and aging processes are not only subjective experiences or even contradictions to natural laws, but they can be explained by quantum cosmology and the nonlinear dynamics of complex systems. Human experiences and religious concepts of arrows of time are considered in a modern scientific framework. Platonic ideas of eternity are at least understandable with respect to mathematical invariance and symmetry of physical laws. Heraclit’s world of change and dynamics can be mapped onto our daily real-life experiences of arrows of time.
Failure behavior of generic metallic and composite aircraft structural components under crash loads
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Robinson, Martha P.
1990-01-01
Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs incorporating improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures including individual fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.
Automating the parallel processing of fluid and structural dynamics calculations
NASA Technical Reports Server (NTRS)
Arpasi, Dale J.; Cole, Gary L.
1987-01-01
The NASA Lewis Research Center is actively involved in the development of expert system technology to assist users in applying parallel processing to computational fluid and structural dynamic analysis. The goal of this effort is to eliminate the necessity for the physical scientist to become a computer scientist in order to effectively use the computer as a research tool. Programming and operating software utilities have previously been developed to solve systems of ordinary nonlinear differential equations on parallel scalar processors. Current efforts are aimed at extending these capabilities to systems of partial differential equations, that describe the complex behavior of fluids and structures within aerospace propulsion systems. This paper presents some important considerations in the redesign, in particular, the need for algorithms and software utilities that can automatically identify data flow patterns in the application program and partition and allocate calculations to the parallel processors. A library-oriented multiprocessing concept for integrating the hardware and software functions is described.
Development and application of structural dynamics analysis capabilities
NASA Technical Reports Server (NTRS)
Heinemann, Klaus W.; Hozaki, Shig
1994-01-01
Extensive research activities were performed in the area of multidisciplinary modeling and simulation of aerospace vehicles that are relevant to NASA Dryden Flight Research Facility. The efforts involved theoretical development, computer coding, and debugging of the STARS code. New solution procedures were developed in such areas as structures, CFD, and graphics, among others. Furthermore, systems-oriented codes were developed for rendering the code truly multidisciplinary and rather automated in nature. Also, work was performed in pre- and post-processing of engineering analysis data.
IMAT (Integrated Multidisciplinary Analysis Tool) user's guide for the VAX/VMS computer
NASA Technical Reports Server (NTRS)
Meissner, Frances T. (Editor)
1988-01-01
The Integrated Multidisciplinary Analysis Tool (IMAT) is a computer software system for the VAX/VMS computer developed at the Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite control systems influenced by structural dynamics. Using a menu-driven executive system, IMAT leads the user through the program options. IMAT links a relational database manager to commercial and in-house structural and controls analysis codes. This paper describes the IMAT software system and how to use it.
Neutron and X-ray Scattering Study of Structure and Dynamics of Condensed Matters
NASA Astrophysics Data System (ADS)
Fujii, Yasuhiko
In this article, I have reviewed a series of research on a various phase transitions such as (1) structural phase transitions of perovskite compounds driven by soft phonons, (2) pressure-induced molecular dissociation and metallization observed in solid halogens, and (3) the “Devil's Flower” type phase diagram observed in two compounds with frustrating interactions. Also commented is on the so-called “Small Science at Large Facility” typically symbolized by neutron and synchrotron radiation experiments like the present research.
Vibration-based monitoring for performance evaluation of flexible civil structures in Japan.
Fujino, Yozo
2018-01-01
The vibration-based monitoring of flexible civil structures and performance evaluation from this monitoring are reviewed, with an emphasis on research and practice in Japan and the author's experiences. Some new findings and unexpected vibrations from the monitoring of real bridges and buildings are reported to emphasize the importance of monitoring. Future developments and applications of vibration-based monitoring to civil infrastructure management are also described. Many examples are taken from the author's past 30 years' experience of research on bridge dynamics.
Identification of Rotorcraft Structural Dynamics from Flight and Wind Tunnel Data
NASA Technical Reports Server (NTRS)
McKillip, Robert M., Jr.
1997-01-01
Excessive vibration remains one one of the most difficult problems that faces the helicopter industry today, affecting all production helicopters at some phase of their development. Vibrations in rotating structures may arise from external periodic dynamic airloads whose frequencies are are close to the natural frequencies of the rotating system itself. The goal for the structures engineer would thus be to design a structure as free from resonance effects as possible. In the case of a helicopter rotor blade these dynamic loads are a consequence of asymmetric airload distribution on the rotor blade in forward flight, leading to a rich collection of higher harmonic airloads that force rotor and airframe response. Accurate prediction of the dynamic characteristics of a helicopter rotor blade will provide the opportunity to affect in a positive manner noise intensity, vibration level, durability, reliability and operating costs by reducing objectionable frequencies or moving them to a different frequency range and thus providing us with a lower vibration rotor. In fact, the dynamic characteristics tend to define the operating limits of a rotorcraft. As computing power has increased greatly over the last decade, researchers and engineers have turned to analyzing the vibrational characteristics of aerospace structures at the design and development stage of the production of an aircraft. Modern rotor blade construction methods lead to products with low mass and low inherent damping so careful design and analysis is required to avoid resonance and an undesirable dynamic performance. In addition, accurate modal analysis is necessary for several current approaches in elastic system identification and active control.
NASA/Howard University Large Space Structures Institute
NASA Technical Reports Server (NTRS)
Broome, T. H., Jr.
1984-01-01
Basic research on the engineering behavior of large space structures is presented. Methods of structural analysis, control, and optimization of large flexible systems are examined. Topics of investigation include the Load Correction Method (LCM) modeling technique, stabilization of flexible bodies by feedback control, mathematical refinement of analysis equations, optimization of the design of structural components, deployment dynamics, and the use of microprocessors in attitude and shape control of large space structures. Information on key personnel, budgeting, support plans and conferences is included.
Experiments In Characterizing Vibrations Of A Structure
NASA Technical Reports Server (NTRS)
Yam, Yeung; Hadaegh, Fred Y.; Bayard, David S.
1993-01-01
Report discusses experiments conducted to test methods of identification of vibrational and coupled rotational/vibrational modes of flexible structure. Report one in series that chronicle development of integrated system of methods, sensors, actuators, analog and digital signal-processing equipment, and algorithms to suppress vibrations in large, flexible structure even when dynamics of structure partly unknown and/or changing. Two prior articles describing aspects of research, "Autonomous Frequency-Domain Indentification" (NPO-18099), and "Automated Characterization Of Vibrations Of A Structure" (NPO-18141).
Testing the FLI in the region of the Pallas asteroid family
NASA Astrophysics Data System (ADS)
Todorović, N.; Novaković, B.
2015-08-01
Computation of the fast Lyapunov indicator (FLI) is one of the most efficient numerical ways to characterize dynamical nature of motion and to detect phase-space structures in a large variety of dynamical models. Despite its effectiveness, FLI was mainly used for symplectic maps or simple Hamiltonians, but it has never been used to study dynamics of asteroids to a greater extent. This research shows that FLI could also be successfully applied to real (Solar system) dynamics. For this purpose, we focus on the main belt region where the Pallas asteroid family is located. By using the full Solar system model, different sets of initial conditions and different integration times, we managed not only to visualize a large multiplet of resonances located in the region, but also their structures, chaotic boundaries, stability islands therein and the positions of their mutual interaction. In the end, we have identified some of the most dominant resonances present in the region and established a link between these resonances and chaotic areas visible in our maps. We have illustrated that FLI once again has shown its efficiency to detect dynamical structures in the main belt, e.g. in the Pallas asteroid family, with a surprisingly good clarity.
Unstructured grid research and use at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Potapczuk, Mark G.
1993-01-01
Computational fluid dynamics applications of grid research at LRC include inlets, nozzles, and ducts; turbomachinery; propellers - ducted and unducted; and aircraft icing. Some issues related to internal flow grid generation are resolution requirements on several boundaries, shock resolution vs. grid periodicity, grid spacing at blade/shroud gap, grid generation in turbine blade passages, and grid generation for inlet/nozzle geometries. Aircraft icing grid generation issues include (1) small structures relative to airfoil chord must be resolved; (2) excessive number of grid points in far-field using structured grid; and (3) grid must be recreated as ice shape grows.
Chemistry Division annual progress report for period ending April 30, 1993
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poutsma, M.L.; Ferris, L.M.; Mesmer, R.E.
1993-08-01
The Chemistry Division conducts basic and applied chemical research on projects important to DOE`s missions in sciences, energy technologies, advanced materials, and waste management/environmental restoration; it also conducts complementary research for other sponsors. The research are arranged according to: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, chemistry of advanced inorganic materials, structure and dynamics of advanced polymeric materials, chemistry of transuranium elements and compounds, chemical and structural principles in solvent extraction, surface science related to heterogeneous catalysis, photolytic transformations of hazardous organics, DNA sequencing and mapping, and special topics.
Dynamics in Complex Coacervates
NASA Astrophysics Data System (ADS)
Perry, Sarah
Understanding the dynamics of a material provides detailed information about the self-assembly, structure, and intermolecular interactions present in a material. While rheological methods have long been used for the characterization of complex coacervate-based materials, it remains a challenge to predict the dynamics for a new system of materials. Furthermore, most work reports only qualitative trends exist as to how parameters such as charge stoichiometry, ionic strength, and polymer chain length impact self-assembly and material dynamics, and there is little information on the effects of polymer architecture or the organization of charges within a polymer. We seek to link thermodynamic studies of coacervation phase behavior with material dynamics through a carefully-controlled, systematic study of coacervate linear viscoelasticity for different polymer chemistries. We couple various methods of characterizing the dynamics of polymer-based complex coacervates, including the time-salt superposition methods developed first by Spruijt and coworkers to establish a more mechanistic strategy for comparing the material dynamics and linear viscoelasticity of different systems. Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research.
Hamaker, E L; Asparouhov, T; Brose, A; Schmiedek, F; Muthén, B
2018-04-06
With the growing popularity of intensive longitudinal research, the modeling techniques and software options for such data are also expanding rapidly. Here we use dynamic multilevel modeling, as it is incorporated in the new dynamic structural equation modeling (DSEM) toolbox in Mplus, to analyze the affective data from the COGITO study. These data consist of two samples of over 100 individuals each who were measured for about 100 days. We use composite scores of positive and negative affect and apply a multilevel vector autoregressive model to allow for individual differences in means, autoregressions, and cross-lagged effects. Then we extend the model to include random residual variances and covariance, and finally we investigate whether prior depression affects later depression scores through the random effects of the daily diary measures. We end with discussing several urgent-but mostly unresolved-issues in the area of dynamic multilevel modeling.
NASA Astrophysics Data System (ADS)
Miritello, Giovanna; Lara, Rubén; Moro, Esteban
Recent research has shown the deep impact of the dynamics of human interactions (or temporal social networks) on the spreading of information, opinion formation, etc. In general, the bursty nature of human interactions lowers the interaction between people to the extent that both the speed and reach of information diffusion are diminished. Using a large database of 20 million users of mobile phone calls we show evidence this effect is not homogeneous in the social network but in fact, there is a large correlation between this effect and the social topological structure around a given individual. In particular, we show that social relations of hubs in a network are relatively weaker from the dynamical point than those that are poorer connected in the information diffusion process. Our results show the importance of the temporal patterns of communication when analyzing and modeling dynamical process on social networks.
2016-12-22
assumptions of behavior. This research proposes an information theoretic methodology to discover such complex network structures and dynamics while overcoming...the difficulties historically associated with their study. Indeed, this was the first application of an information theoretic methodology as a tool...1 Research Objectives and Questions..............................................................................2 Methodology
NASA Technical Reports Server (NTRS)
1989-01-01
The Marshall Space Flight Center annual report summarizes their advanced studies, research programs, and technological developments. Areas covered include: transportation systems; space systems such as Gravity Probe-B and Gamma Ray Imaging Telescope; data systems; microgravity science; astronomy and astrophysics; solar, magnetospheric, and atomic physics; aeronomy; propulsion; materials and processes; structures and dynamics; automated systems; space systems; and avionics.
Our research will investigate the mechanisms by which increased loading of nutrients to coastal waters alters the structure and dynamics of food webs, resulting in declines in populations of ecologically and commercially important organisms. Research across NHEERL Divisions will...
NASA Technical Reports Server (NTRS)
1990-01-01
A brief but comprehensive review is given of the technical accomplishments of the NASA Lewis Research Center during the past year. Topics covered include instrumentation and controls technology; internal fluid dynamics; aerospace materials, structures, propulsion, and electronics; space flight systems; cryogenic fluids; Space Station Freedom systems engineering, photovoltaic power module, electrical systems, and operations; and engineering and computational support.
Protocols for Molecular Dynamics Simulations of RNA Nanostructures.
Kim, Taejin; Kasprzak, Wojciech K; Shapiro, Bruce A
2017-01-01
Molecular dynamics (MD) simulations have been used as one of the main research tools to study a wide range of biological systems and bridge the gap between X-ray crystallography or NMR structures and biological mechanism. In the field of RNA nanostructures, MD simulations have been used to fix steric clashes in computationally designed RNA nanostructures, characterize the dynamics, and investigate the interaction between RNA and other biomolecules such as delivery agents and membranes.In this chapter we present examples of computational protocols for molecular dynamics simulations in explicit and implicit solvent using the Amber Molecular Dynamics Package. We also show examples of post-simulation analysis steps and briefly mention selected tools beyond the Amber package. Limitations of the methods, tools, and protocols are also discussed. Most of the examples are illustrated for a small RNA duplex (helix), but the protocols are applicable to any nucleic acid structure, subject only to the computational speed and memory limitations of the hardware available to the user.
A space station Structures and Assembly Verification Experiment, SAVE
NASA Technical Reports Server (NTRS)
Russell, R. A.; Raney, J. P.; Deryder, L. J.
1986-01-01
The Space Station structure has been baselined to be a 5 M (16.4 ft) erectable truss. This structure will provide the overall framework to attach laboratory modules and other systems, subsystems and utilities. The assembly of this structure represents a formidable EVA challenge. To validate this capability the Space Station Structures/Dynamics Technical Integration Panel (TIP) met to develop the necessary data for an integrated STS structures flight experiment. As a result of this meeting, the Langley Research Center initiated a joint Langley/Boeing Aerospace Company study which supported the structures/dynamics TIP in developing the preliminary definition and design of a 5 M erectable space station truss and the resources required for a proposed flight experiment. The purpose of the study was to: (1) devise methods of truss assembly by astronauts; (2) define a specific test matrix for dynamic characterization; (3) identify instrumentation and data system requirements; (4) determine the power, propulsion and control requirements for the truss on-orbit for 3 years; (5) study the packaging of the experiment in the orbiter cargo bay; (6) prepare a preliminary cost estimate and schedule for the experiment; and (7) provide a list of potential follow-on experiments using the structure as a free flyer. The results of this three month study are presented.
Connectingthe puzzle pieces between cytoskeleton andsecretory pathway
Gurel, Pinar S.; Hatch, Anna L.; Higgs, Henry N.
2014-01-01
A tendency in cell biology is to divide and conquer. For example, decades of painstaking work have led to an understanding of endoplasmic reticulum (ER) and Golgi structure, dynamics, and transport. In parallel, cytoskeletal researchers have revealed a fantastic diversity of structure and cellular function in both actin and microtubules. Increasingly, these areas overlap, necessitating an understanding of both organelle and cytoskeletal biology. This review addressesconnections between the actin/microtubule cytoskeletons and organelles in animal cells, focusing on threetopics: ER structure/function, ER-to-Golgi transport; and Golgi structure/function. Making these connections has been challenging, due to 1) the small sizes and dynamic characteristics of some components, 2) the fact that organelle-specific cytoskeleton can easily be obscured by more abundant cytoskeletal structures, and 3) the difficulties in imaging membranes and cytoskeleton simultaneously, especially at the ultra-structural level. One major concept is that the cytoskeleton is frequently used to generate force for membrane movement, with two potential consequences: translocation of the organelle, or deformation of the organelle membrane. While initially discussing issues common to metazoan cells in general, we subsequently highlight specific features of neurons, since these highly polarized cells present unique challenges for organellar distribution and dynamics. PMID:25050967
Exploring protein structure and dynamics through a project-oriented biochemistry laboratory module.
Lipchock, James M; Ginther, Patrick S; Douglas, Bonnie B; Bird, Kelly E; Patrick Loria, J
2017-09-01
Here, we present a 10-week project-oriented laboratory module designed to provide a course-based undergraduate research experience in biochemistry that emphasizes the importance of biomolecular structure and dynamics in enzyme function. This module explores the impact of mutagenesis on an important active site loop for a biomedically-relevant human enzyme, protein tyrosine phosphatase 1B (PTP1B). Over the course of the semester students guide their own mutant of PTP1B from conception to characterization in a cost-effective manner and gain exposure to fundamental techniques in biochemistry, including site-directed DNA mutagenesis, bacterial recombinant protein expression, affinity column purification, protein quantitation, SDS-PAGE, and enzyme kinetics. This project-based approach allows an instructor to simulate a research setting and prepare students for productive research beyond the classroom. Potential modifications to expand or contract this module are also provided. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):403-410, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Multi-Body Dynamic Contact Analysis. Tool for Transmission Design SBIR Phase II Final Report
2003-04-01
shapes and natural frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using...COSMIC NASTRAN via modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by
ERIC Educational Resources Information Center
Lubbers, Miranda J.; Snijders, Tom A. B.; Van Der Werf, Margaretha P. C.
2011-01-01
This article examines the dynamics of peer relationships across the first 2 grades of Dutch junior high schools (average age 13-14). Specifically, we studied how gender and compositional changes in classrooms structured the changes in peer relationships between the 2 grades. Expectations were derived from past research, and we tested whether these…
Eco-evolutionary spatial dynamics in the Glanville fritillary butterfly
Hanski, Ilkka A.
2011-01-01
Demographic population dynamics, gene flow, and local adaptation may influence each other and lead to coupling of ecological and evolutionary dynamics, especially in species inhabiting fragmented heterogeneous environments. Here, I review long-term research on eco-evolutionary spatial dynamics in the Glanville fritillary butterfly inhabiting a large network of approximately 4,000 meadows in Finland. The metapopulation persists in a balance between frequent local extinctions and recolonizations. The genetic spatial structure as defined by neutral markers is much more coarse-grained than the demographic spatial structure determined by the fragmented habitat, yet small-scale spatial structure has important consequences for the dynamics. I discuss three examples of eco-evolutionary spatial dynamics. (i) Extinction-colonization metapopulation dynamics influence allele frequency changes in the phosphoglucose isomerase (Pgi) gene, which leads to strong associations between genetic variation in Pgi and dispersal, recolonization, and local population dynamics. (ii) Inbreeding in local populations increases their risk for extinction, whereas reciprocal effects between inbreeding, population size, and emigration represent likely eco-evolutionary feedbacks. (iii) Genetically determined female oviposition preference for two host plant species exhibits a cline paralleling a gradient in host plant relative abundances, and host plant preference of dispersing females in relation to the host plant composition of habitat patches influences immigration (gene flow) and recolonization (founder events). Eco-evolutionary spatial dynamics in heterogeneous environments may not lead to directional evolutionary changes unless the environment itself changes, but eco-evolutionary dynamics may contribute to the maintenance of genetic variation attributable to fluctuating selection in space and time. PMID:21788506
Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers
2017-01-01
Conspectus Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition, molecular biodynamers are commonly produced in aqueous media under mild or even physiological conditions to suit their biorelated applications. In contrast to static biopolymers emphasizing structural stability and unity by using irreversible covalent bonds, molecular biodynamers are seeking relative structural adaptability and diversity through the formation of reversible covalent bonds. Based on these considerations, molecular biodynamers are capable of reorganizing their monomers, generating, identifying, and amplifying the fittest structures in response to environmental factors. Hence, molecular biodynamers have received considerable research attention over the past decades. Accordingly, the construction of molecular biodynamers through equilibrium polymerization of nucleobase-, carbohydrate- or amino-acid-based monomers can lead to the fabrication of dynamic analogues of nucleic acids (DyNAs), polysaccharides (glycodynamers), or proteins (dynamic proteoids), respectively. In this Account, we summarize recent advances in developing different types of molecular biodynamers as structural or functional biomimetics of biopolymers, including DyNAs, glycodynamers, and dynamic proteoids. We introduce how chemists utilize various reversible reactions to generate molecular biodynamers with specific sequences and well-ordered structures in aqueous medium. We also discuss and list their potential applications in various research fields, such as drug delivery, drug discovery, gene sensing, cancer diagnosis, and treatment. PMID:28169527
HBCUs/OMUs Research Conference Agenda and Abstracts
NASA Technical Reports Server (NTRS)
Dutta, Sunil (Compiler)
2000-01-01
The purpose of this Historically Black Colleges and Universities (HBCUs) Research Conference was to provide an opportunity for principal investigators and their students to present research progress reports. The Abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Glenn Research Center to HBCUs. The conference generated extensive networking between students, principal investigators, Glenn technical monitors, and other Glenn researchers.
HBCUs/OMUs Research Conference Agenda and Abstracts
NASA Technical Reports Server (NTRS)
Dutta, Sunil (Compiler)
2003-01-01
The purpose of this Historically Black Colleges and Universities (HBCUs/OMUs) Research Conference was to provide an opportunity for principal investigators and their students to present research progress reports. The abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Glenn Research Center to HBCUs. The conference generated extensive networking between students, principal investigators, Glenn technical monitors, and other Glenn researchers.
HBCUs/OMUs Research Conference Agenda and Abstracts
NASA Technical Reports Server (NTRS)
Dutta, Sunil (Compiler)
2001-01-01
The purpose of this Historically Black Colleges and Universities (HBCUs) Research Conference was to provide an opportunity for principal investigators and their students to present research progress reports. The abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Glenn Research Center to HBCUs. The conference generated extensive networking between students, principal investigators, Glenn technical monitors, and other Glenn researchers.
Structural and dynamical properties of the porins OmpF and OmpC: insights from molecular simulations
NASA Astrophysics Data System (ADS)
Kumar, Amit; Hajjar, Eric; Ruggerone, Paolo; Ceccarelli, Matteo
2010-11-01
In this paper we investigate the structural and dynamical properties of the two major porins (OmpF and OmpC) in Escherichia coli, using molecular dynamics (MD) simulations. In particular we characterized the atomic fluctuations, correlated motions, temperature dependence, solvent-accessible cross-sectional area and water dynamics in the key regions of the two channels. Our in-depth analysis allows us to highlight the importance of both the key conserved and substituted residues between OmpF and OmpC. The latter is characterized by a narrower and longer constriction region with respect to OmpF. OmpC also showed a higher stability upon increasing temperature. We then present the results of transport properties by using accelerated MD simulations to probe the diffusion of norfloxacin (a fluoroquinolone antibiotic) through the two porins OmpF/OmpC. Our study constitutes a step forward towards understanding the structure-function relationship of the two porins' channels. This will benefit the research of antibacterials with improved permeation properties and nanopores that aim to use these porins as sensing systems.
A structured overview of trends and technologies used in dynamic hand orthoses.
Bos, Ronald A; Haarman, Claudia J W; Stortelder, Teun; Nizamis, Kostas; Herder, Just L; Stienen, Arno H A; Plettenburg, Dick H
2016-06-29
The development of dynamic hand orthoses is a fast-growing field of research and has resulted in many different devices. A large and diverse solution space is formed by the various mechatronic components which are used in these devices. They are the result of making complex design choices within the constraints imposed by the application, the environment and the patient's individual needs. Several review studies exist that cover the details of specific disciplines which play a part in the developmental cycle. However, a general collection of all endeavors around the world and a structured overview of the solution space which integrates these disciplines is missing. In this study, a total of 165 individual dynamic hand orthoses were collected and their mechatronic components were categorized into a framework with a signal, energy and mechanical domain. Its hierarchical structure allows it to reach out towards the different disciplines while connecting them with common properties. Additionally, available arguments behind design choices were collected and related to the trends in the solution space. As a result, a comprehensive overview of the used mechatronic components in dynamic hand orthoses is presented.
Surface dynamics of micellar diblock copolymer films
NASA Astrophysics Data System (ADS)
Song, Sanghoon; Cha, Wonsuk; Kim, Hyunjung; Jiang, Zhang; Narayanan, Suresh
2011-03-01
We studied the structure and surface dynamics of poly(styrene)-b-poly(dimethylsiloxane) (PS-b-PDMS) diblock copolymer films with micellar PDMS surrounded by PS shells. By `in-situ' high resolution synchrotron x-ray reflectivity and diffuse scattering, we obtained exact thickness, electron density and surface tension. A segregation layer near the top surface was appeared with increasing temperature Surface dynamics were measured as a function of film thickness and temperature by x-ray photon correlation spectroscopy. The best fit to relaxation time constants as a function of in-plane wavevectors were analyzed with a theory based on capillary waves with hydrodynamics with bilayer model Finally the viscosities for the top segregated layer as well as for the bottom layer are obtained at given temperatures This work was supported by National Research Foundation of Korea (R15-2008-006-01001-0), Seoul Research and Business Development Program (10816), and Sogang University Research Grant (2010).
Advanced Modeling and Uncertainty Quantification for Flight Dynamics; Interim Results and Challenges
NASA Technical Reports Server (NTRS)
Hyde, David C.; Shweyk, Kamal M.; Brown, Frank; Shah, Gautam
2014-01-01
As part of the NASA Vehicle Systems Safety Technologies (VSST), Assuring Safe and Effective Aircraft Control Under Hazardous Conditions (Technical Challenge #3), an effort is underway within Boeing Research and Technology (BR&T) to address Advanced Modeling and Uncertainty Quantification for Flight Dynamics (VSST1-7). The scope of the effort is to develop and evaluate advanced multidisciplinary flight dynamics modeling techniques, including integrated uncertainties, to facilitate higher fidelity response characterization of current and future aircraft configurations approaching and during loss-of-control conditions. This approach is to incorporate multiple flight dynamics modeling methods for aerodynamics, structures, and propulsion, including experimental, computational, and analytical. Also to be included are techniques for data integration and uncertainty characterization and quantification. This research shall introduce new and updated multidisciplinary modeling and simulation technologies designed to improve the ability to characterize airplane response in off-nominal flight conditions. The research shall also introduce new techniques for uncertainty modeling that will provide a unified database model comprised of multiple sources, as well as an uncertainty bounds database for each data source such that a full vehicle uncertainty analysis is possible even when approaching or beyond Loss of Control boundaries. Methodologies developed as part of this research shall be instrumental in predicting and mitigating loss of control precursors and events directly linked to causal and contributing factors, such as stall, failures, damage, or icing. The tasks will include utilizing the BR&T Water Tunnel to collect static and dynamic data to be compared to the GTM extended WT database, characterizing flight dynamics in off-nominal conditions, developing tools for structural load estimation under dynamic conditions, devising methods for integrating various modeling elements into a real-time simulation capability, generating techniques for uncertainty modeling that draw data from multiple modeling sources, and providing a unified database model that includes nominal plus increments for each flight condition. This paper presents status of testing in the BR&T water tunnel and analysis of the resulting data and efforts to characterize these data using alternative modeling methods. Program challenges and issues are also presented.
Recent literature on structural modeling, identification, and analysis
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.
1990-01-01
The literature on the mathematical modeling of large space structures is first reviewed, with attention given to continuum models, model order reduction, substructuring, and computational techniques. System identification and mode verification are then discussed with reference to the verification of mathematical models of large space structures. In connection with analysis, the paper surveys recent research on eigensolvers and dynamic response solvers for large-order finite-element-based models.
The Mini-Mast CSI testbed: Lessons learned
NASA Technical Reports Server (NTRS)
Tanner, Sharon E.; Belvin, W. Keith; Horta, Lucas G.; Pappa, R. S.
1993-01-01
The Mini-Mast testbed was one of the first large scale Controls-Structure-Interaction (CSI) systems used to evaluate state-of-the-art methodology in flexible structure control. Now that all the testing at Langley Research Center has been completed, a look back is warranted to evaluate the program. This paper describes some of the experiences and technology development studies by NASA, university, and industry investigators. Lessons learned are presented from three categories: the testbed development, control methods, and the operation of a guest investigator program. It is shown how structural safety margins provided a realistic environment to simulate on-orbit CSI research, even though they also reduced the research flexibility afforded to investigators. The limited dynamic coupling between the bending and torsion modes of the cantilevered test article resulted in highly successful SISO and MIMO controllers. However, until accurate models were obtained for the torque wheel actuators, sensors, filters, and the structure itself, most controllers were unstable. Controls research from this testbed should be applicable to cantilevered appendages of future large space structures.
Interdisciplinary analysis procedures in the modeling and control of large space-based structures
NASA Technical Reports Server (NTRS)
Cooper, Paul A.; Stockwell, Alan E.; Kim, Zeen C.
1987-01-01
The paper describes a computer software system called the Integrated Multidisciplinary Analysis Tool, IMAT, that has been developed at NASA Langley Research Center. IMAT provides researchers and analysts with an efficient capability to analyze satellite control systems influenced by structural dynamics. Using a menu-driven interactive executive program, IMAT links a relational database to commercial structural and controls analysis codes. The paper describes the procedures followed to analyze a complex satellite structure and control system. The codes used to accomplish the analysis are described, and an example is provided of an application of IMAT to the analysis of a reference space station subject to a rectangular pulse loading at its docking port.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. James Kirkpatrick; Andrey G. Kalinichev
2008-11-25
Research supported by this grant focuses on molecular scale understanding of central issues related to the structure and dynamics of geochemically important fluids, fluid-mineral interfaces, and confined fluids using computational modeling and experimental methods. Molecular scale knowledge about fluid structure and dynamics, how these are affected by mineral surfaces and molecular-scale (nano-) confinement, and how water molecules and dissolved species interact with surfaces is essential to understanding the fundamental chemistry of a wide range of low-temperature geochemical processes, including sorption and geochemical transport. Our principal efforts are devoted to continued development of relevant computational approaches, application of these approaches tomore » important geochemical questions, relevant NMR and other experimental studies, and application of computational modeling methods to understanding the experimental results. The combination of computational modeling and experimental approaches is proving highly effective in addressing otherwise intractable problems. In 2006-2007 we have significantly advanced in new, highly promising research directions along with completion of on-going projects and final publication of work completed in previous years. New computational directions are focusing on modeling proton exchange reactions in aqueous solutions using ab initio molecular dynamics (AIMD), metadynamics (MTD), and empirical valence bond (EVB) approaches. Proton exchange is critical to understanding the structure, dynamics, and reactivity at mineral-water interfaces and for oxy-ions in solution, but has traditionally been difficult to model with molecular dynamics (MD). Our ultimate objective is to develop this capability, because MD is much less computationally demanding than quantum-chemical approaches. We have also extended our previous MD simulations of metal binding to natural organic matter (NOM) to a much longer time scale (up to 10 ns) for significantly larger systems. These calculations have allowed us, for the first time, to study the effects of metal cations with different charges and charge density on the NOM aggregation in aqueous solutions. Other computational work has looked at the longer-time-scale dynamical behavior of aqueous species at mineral-water interfaces investigated simultaneously by NMR spectroscopy. Our experimental NMR studies have focused on understanding the structure and dynamics of water and dissolved species at mineral-water interfaces and in two-dimensional nano-confinement within clay interlayers. Combined NMR and MD study of H2O, Na+, and Cl- interactions with the surface of quartz has direct implications regarding interpretation of sum frequency vibrational spectroscopic experiments for this phase and will be an important reference for future studies. We also used NMR to examine the behavior of K+ and H2O in the interlayer and at the surfaces of the clay minerals hectorite and illite-rich illite-smectite. This the first time K+ dynamics has been characterized spectroscopically in geochemical systems. Preliminary experiments were also performed to evaluate the potential of 75As NMR as a probe of arsenic geochemical behavior. The 75As NMR study used advanced signal enhancement methods, introduced a new data acquisition approach to minimize the time investment in ultra-wide-line NMR experiments, and provides the first evidence of a strong relationship between the chemical shift and structural parameters for this experimentally challenging nucleus. We have also initiated a series of inelastic and quasi-elastic neutron scattering measurements of water dynamics in the interlayers of clays and layered double hydroxides. The objective of these experiments is to probe the correlations of water molecular motions in confined spaces over the scale of times and distances most directly comparable to our MD simulations and on a time scale different than that probed by NMR. This work is being done in collaboration with Drs. C.-K. Loong, N. de Souza, and A.I. Kolesnikov at the Intense Pulsed Neutron Source facility of the Argonne National Lab, and Dr. A. Faraone at the NIST Center for Neutron Research. A manuscript reporting the first results of these experiments, which are highly complimentary to our previous NMR, X-ray, and infra-red results for these phases, is currently in preparation. In total, in 2006-2007 our work has resulted in the publication of 14 peer-reviewed research papers. We also devoted considerable effort to making our work known to a wide range of researchers, as indicated by the 24 contributed abstracts and 14 invited presentations.« less
A multi-stakeholder framework for sustainable energy behavior: A multidisciplinary systems study
NASA Astrophysics Data System (ADS)
Khansari, Nasrin
Growth of population and moving towards over-consumption and over-pollution are significant threats to the environment and therefore necessitate moving towards sustainability approaches. CO2 emissions are considered to be the main basis of the incredible increase in the earth's surface temperature in recent years. Most emissions result from human activities. Thus, developing a detailed framework representing the parameters affecting individuals' energy behaviors is required. This dissertation offers an integrated conceptual framework to increase the efficiency of energy systems under complex and uncertainty conditions, facilitate energy consumption problem solving, and support the development of capacities at the individual, social, and technical levels to improve managing energy consumptions in the future. This research presents a conceptual soft systems model to explore the process of individuals' energy behavior change based on socio-structural and techno-structural contexts. In addition, a comprehensive model based on systems dynamics principles is presented to address the issue of CO2 emissions related to the households' energy consumption behavior. The proposed systems dynamics model provides a broad overview of the key agents affecting energy consumption, including government/public sector, households, and power industry. The model is created based on the research in the literature discussing the causal relations between various variables. The proposed systems dynamics model is verified by simulating different scenarios. In this research a survey is designed and conducted to investigate the role of individual, social and technical behaviors in reducing energy consumption, energy costs and carbon footprints based on the energy use profile. In sum, this study investigates the process of energy behavior change based on socio-structural and techno-structural contexts.
Jennifer Moore-Kucera; Richard P. Dick
2008-01-01
The impact and frequency of forest harvesting could significantly affect soil microbial community (SMC) structure and functioning. The ability of soil microorganisms to perform biogeochemical processes is critical for sustaining forest productivity and has a direct impact on decomposition dynamics and carbon storage potential. The Wind River Canopy Crane Research...
Dynamics of American Universities. Research & Occasional Paper Series: CSHE.1.12
ERIC Educational Resources Information Center
Smelser, Neil J.
2012-01-01
The history of higher education has revealed all the forms of structural change associated with growth. The following focuses on a special form that involves growth, specialization, and proliferation, and applies mainly but not exclusively to universities. In search for a descriptive term, I have settled on the concept of "structural accretion," a…
Solid earth science in the 1990s. Volume 2: Panel reports
NASA Technical Reports Server (NTRS)
1991-01-01
This is the second volume of a three-volume report. Volume 2, Panel Reports, outlines a plan for solid Earth science research for the next decade. The science panels addressed the following fields: plate motion and deformation, lithospheric structure and evolution, volcanology, Earth structure and dynamics, Earth rotation and reference frames, and geopotential fields.
Controlled Structures Technology Steering Committee Workshop
NASA Technical Reports Server (NTRS)
1992-01-01
Viewgraphs on controlled structures technology presented at the steering committee workshop on 22-23 Jan. 1992 are included. Topics addressed include: interferometer testbed; middeck 0-gravity dynamics experiment; middeck active control experiment; multivariable identification for control; strain actuated aeroelastic control; sensor/actuator technology development; input command shaping; and other research projects. A description of the organization and committee are included.
Insights on Forest Structure and Composition from Long-Term Research in the Luquillo Mountains
Tamara Heartsill Scalley
2017-01-01
The science of ecology fundamentally aims to understand species and their relation to the environment. At sites where hurricane disturbance is part of the environmental context, permanent forest plots are critical to understand ecological vegetation dynamics through time. An overview of forest structure and species composition from two of the longest continuously...
The business of addiction treatment: A research agenda.
Kimberly, John R; McLellan, A Thomas
2006-10-01
The social and economic costs of addiction are substantial and of great concern to society. Research in the past decade has led to promising therapies that appear to be highly effective but not widely diffused. This leads one to wonder if there is something about the structure, dynamics, or structure and dynamics of the addiction treatment industry that is getting in the way. However, there has been very little research in the areas of organization, finance, or management practices within the substance abuse treatment field-the kinds of issues that reduce the potential impact of addiction treatment industrywide. With this as background, this article introduces the Center for Organization and Management in Addiction Treatment (COMAT) and a special section on research in the "business of addiction treatment." Many other industries have experienced significant problems that are similar, in many respects, to those seen in substance abuse treatment, but research in leadership, innovation, investment, organization, and consolidation strategies has helped to overcome those problems. COMAT is dedicated to implementing and testing evidence-based methods from other industries to improve the outcomes performance and, ultimately, the clinical effectiveness of service providers in the addiction treatment field.
Computational strategies to address chromatin structure problems
NASA Astrophysics Data System (ADS)
Perišić, Ognjen; Schlick, Tamar
2016-06-01
While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin’s dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber’s structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure.
Reponse dynamique des structures sous charges de vent
NASA Astrophysics Data System (ADS)
Gani, Ferawati
The main purpose of this research is to assemble numerical tools that allows realistic dynamic study of structures under wind loading. The availability of such numerical tools is becoming more important for the industry, following previous experiences in structural damages after extreme wind events. The methodology of the present study involves two main steps: (i) preparing the wind loading according to its spatial and temporal correlations by using digitally generated wind or real measured wind; (ii) preparing the numerical model that captures the characteristics of the real structures and respects all the necessary numerical requirements to pursue transient dynamic analyses. The thesis is presented as an ensemble of four articles written for refereed journals and conferences that showcase the contributions of the present study to the advancement of transient dynamic study of structures under wind loading, on the wind model itself (the first article) and on the application of the wind study on complex structures (the next three articles). The articles presented are as follows: (a) the evaluation of three-dimensional correlations of wind, an important issue for more precise prediction of wind loading for flexible and line-like structures, the results presented in this first article helps design engineers to choose a more suitable models to define three-dimensional wind loading; (b) the refinement of design for solar photovoltaic concentrator-tracker structure developed for utility scale, this study addressed concerns related strict operational criteria and fatigue under wind load for a large parabolic truss structure; (c) the study of guyed towers for TLs, the applicability of the static-equivalent method from the current industry documents for the design of this type of flexible TL support was questioned, a simplified method to improve the wind design was proposed; (d) the fundamental issue of nonlinear behaviour under extreme wind loading for single-degree-of-freedom systems is evaluated here, the use of real measured hurricane and winter storm have highlighted the possible interest of taking into account the ductility in the extreme wind loading design. The present research project has shown the versatility of the use of the developed wind study methodology to solve concerns related to different type of complex structures. In addition, this study proposes simplified methods that are useful for practical engineers when there is the need to solve similar problems. Key words: nonlinear, dynamic, wind, guyed tower, parabolic structure, ductility.
Nonlinear coherent structures in granular crystals
NASA Astrophysics Data System (ADS)
Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.
2017-10-01
The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.
Aortic root dynamics and surgery: from craft to science.
Cheng, Allen; Dagum, Paul; Miller, D Craig
2007-08-29
Since the fifteenth century beginning with Leonardo da Vinci's studies, the precise structure and functional dynamics of the aortic root throughout the cardiac cycle continues to elude investigators. The last five decades of experimental work have contributed substantially to our current understanding of aortic root dynamics. In this article, we review and summarize the relevant structural analyses, using radiopaque markers and sonomicrometric crystals, concerning aortic root three-dimensional deformations and describe aortic root dynamics in detail throughout the cardiac cycle. We then compare data between different studies and discuss the mechanisms responsible for the modes of aortic root deformation, including the haemodynamics, anatomical and temporal determinants of those deformations. These modes of aortic root deformation are closely coupled to maximize ejection, optimize transvalvular ejection haemodynamics and-perhaps most importantly-reduce stress on the aortic valve cusps by optimal diastolic load sharing and minimizing transvalvular turbulence throughout the cardiac cycle. This more comprehensive understanding of aortic root mechanics and physiology will contribute to improved medical and surgical treatment methods, enhanced therapeutic decision making and better post-intervention care of patients. With a better understanding of aortic root physiology, future research on aortic valve repair and replacement should take into account the integrated structural and functional asymmetry of aortic root dynamics to minimize stress on the aortic cusps in order to prevent premature structural valve deterioration.
NASA Technical Reports Server (NTRS)
Carpenter, D. L.
1992-01-01
The objective of this research was to obtain new understanding of the thermal plasma structure and dynamics of the plasmasphere bulge region of the magnetosphere, with special emphasis on the erosion process that results in a reduction in plasmasphere size and on the manner in which erosion leads to the presence of patches of dense plasma in the middle and outer afternoon-dusk magnetosphere. Case studies involving data from the DE 1, GEOS 2, and ISEE 1 satellites and from ground whistler stations Siple, Halley, and Kerguelen were used. A copy of the published paper entitled 'A case study of plasma structure in the dusk sector associated with enhanced magnetospheric convection,' is included.
Charney's Influence on Modern Oceanography
NASA Astrophysics Data System (ADS)
Cane, M. A.
2017-12-01
In this talk I will review some of Jule Charney's impacts on current oceanographic research. He was of course a major seminal figure in geophysical fluid dynamics, an approach to understanding the atmosphere and oceans that has been thoroughly absorbed in contemporary thinking. In oceanography, his publications make vorticity dynamics the centerpiece of his analysis. Here I pursue two other aspects of his work. The first is to note that his 1955 paper "The Gulf Stream as an inertial boundary layer" appears to be the earliest numerical model in oceanography. The second is that his work on the equatorial undercurrent leads to a simplification of equatorial ocean structure that was exploited by Zebiak and Cane in their model for ENSO, and thus structures later views of how equatorial ocean dynamics influence sea surface temperature.
Dynamic impact testing with servohydraulic testing machines
NASA Astrophysics Data System (ADS)
Bardenheier, R.; Rogers, G.
2006-08-01
The design concept of “Crashworthiness” requires the information on material behaviour under dynamic impact loading in order to describe and predict the crash behaviour of structures. Especially the transport related industries, like car, railway or aircraft industry, pursue the concept of lightweight design for a while now. The materials' maximum constraint during loading is pushed to permanently increasing figures. This means in terms of crashworthiness that the process of energy absorption in structures and the mechanical behaviour of materials must well understood and can be described appropriately by material models. In close cooperation with experts from various industries and research institutes Instron has developed throughout the past years a new family of servohydraulic testing machines specifically designed to cope with the dynamics of high rate testing. Main development steps are reflected versus their experimental necessities.
Cellular Imaging | Center for Cancer Research
Innovative imaging methods developed and refined within CCR revealed atomic-level structures of biological molecules and unveiled dynamic views of a cell’s interior that are driving the design of new treatments and diagnostics for cancer.
Locomotive crashworthiness research : modeling, simulation, and validation
DOT National Transportation Integrated Search
2001-07-01
A technique was developed to realistically simulate the dynamic, nonlinear structural behavior of moving rail vehicles and objects struck during a collision. A new approach considered the interdependence of the many vehicles connected in typical rail...
The dynamics of variability in introductory physics students' thinking: Examples from kinematics
NASA Astrophysics Data System (ADS)
Frank, Brian W.
Physics education research has long emphasized the need for physics instruction to address students' existing intuitions about the physical world as an integral part of learning physics. Researchers, however, have not reached a consensus-view concerning the nature of this intuitive knowledge or the specific role that it does (or might) play in physics learning. While many early characterizations of student misconceptions cast students' intuitive thinking as largely static, unitary in structure, and counter-productive for the purpose of learning correct physics, much of contemporary research supports a conceptualization of intuitive thought as dynamic, manifold in structure, and generative in the development of expertise. This dissertation contributes to ongoing inquiry into the nature of students' intuitive thought and its role in learning physics through the pursuit of dynamic systems characterizations of student reasoning, with a particular focus on how students settle into and shift among multiple patterns of reasoning about motion. In one thread of this research, simple experimental designs are used to demonstrate how individual students can be predictably biased toward and away from different ways of thinking about the same physical situation when specific parameters of questions posed to students are varied. I qualitatively model students' thinking in terms of the activations and interactions among fine-grained intuitive knowledge and static features of the context. In a second thread of this research, case studies of more dynamic shifts in students' conceptual reasoning are developed from videos of student discussions during collaborative classroom activities. These show multiple local stabilities of students' thinking as well, with evidence of group-level dynamics shifting on the time scale of minutes. This work contributes to existing research paradigms that aim to characterize student thinking in physics education in two important ways: (1) through the use of methods that allow for forms of empirical accountability that connect descriptive models of student thinking to experimental data, and (2) through the theoretical development of explanatory mechanisms that account for patterns in students' reasoning at multiple levels of analysis.
On the modal characteristics of damaging structures subjected to earthquakes
NASA Astrophysics Data System (ADS)
Carlo Ponzo, Felice; Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Mossucca, Antonello; Nigro, Antonella; Nigro, Domenico
2015-04-01
Structural Health Monitoring, especially for structures located in seismic prone areas, has assumed a meaning of great importance in last years, for the possibility to make a more objective and more rapid estimation of the damage occurred on buildings after a seismic event. In the last years many researchers are working to set-up new methodologies for Non-destructive Damage Evaluation based on the variation of the dynamic behaviour of structures under seismic loads. The NDE methods for damage detection and evaluation can be classified into four levels, according to the specific criteria provided by the Rytter. Each level of identification is correlated with specific information related to monitored structure. In fact, by increasing the level it is possible to obtain more information about the state of the health of the structures, to know if damage occurred on the structures, to quantify and localize the damage and to evaluate its impact on the monitored structure. Several authors discussed on the possibility to use the mode shape curvature to localize damage on structural elements, for example, by applying the curvature-based method to frequency response function instead of mode shape, and demonstrated the potential of this approach by considering real data. Damage detection approach based on dynamic monitoring of structural properties over time has received a considerable attention in recent scientific literature. In earthquake engineering field, the recourse to experimental research is necessary to understand the mechanical behaviour of the various structural and non-structural components. In this paper a new methodology to detect and localize a possible damage occurred on a framed structure after an earthquake is presented and discussed. The main outcomes retrieved from many numerical non linear dynamic models of reinforced concrete framed structures characterized by 3, 5 and 8 floors with different geometric configurations and designed for gravity loads only are here presented. In addition, the main results of experimental shaking table tests carried out on a steel framed model are also showed to confirm the effectiveness of the proposed procedure. Acknowledgements This study was partially funded by the Italian Civil Protection Department within the project DPC-RELUIS 2014 - RS4 ''Seismic observatory of structures and health monitoring''.
An investigation into NVC characteristics of vehicle behaviour using modal analysis
NASA Astrophysics Data System (ADS)
Hanouf, Zahir; Faris, Waleed F.; Ahmad, Kartini
2017-03-01
NVC characterizations of vehicle behavior is one essential part of the development targets in automotive industries. Therefore understanding dynamic behavior of each structural part of the vehicle is a major requirement in improving the NVC characteristics of a vehicle. The main focus of this research is to investigate structural dynamic behavior of a passenger car using modal analysis part by part technique and apply this method to derive the interior noise sources. In the first part of this work computational modal analysis part by part tests were carried out to identify the dynamic parameters of the passenger car. Finite elements models of the different parts of the car are constructed using VPG 3.2 software. Ls-Dyna pre and post processing was used to identify and analyze the dynamic behavior of each car components panels. These tests had successfully produced natural frequencies and their associated mode shapes of such panels like trunk, hood, roof and door panels. In the second part of this research, experimental modal analysis part by part is performed on the selected car panels to extract modal parameters namely frequencies and mode shapes. The study establishes the step-by-step procedures to carry out experimental modal analysis on the car structures, using single input excitation and multi-output responses (SIMO) technique. To ensure the validity of the results obtained by the previous method an inverse method was done by fixing the response and moving the excitation and the results found were absolutely the same. Finally, comparison between results obtained from both analyses showed good similarity in both frequencies and mode shapes. Conclusion drawn from this part of study was that modal analysis part-by-part can be strongly used to establish the dynamic characteristics of the whole car. Furthermore, the developed method is also can be used to show the relationship between structural vibration of the car panels and the passengers’ noise comfort inside the cabin.
NASA Astrophysics Data System (ADS)
Zhang, Hua-qing; Sun, Xi-ping; Wang, Yuan-zhan; Yin, Ji-long; Wang, Chao-yang
2015-10-01
There has been a growing trend in the development of offshore deep-water ports in China. For such deep sea projects, all-vertical-piled wharves are suitable structures and generally located in open waters, greatly affected by wave action. Currently, no systematic studies or simplified numerical methods are available for deriving the dynamic characteristics and dynamic responses of all-vertical-piled wharves under wave cyclic loads. In this article, we compare the dynamic characteristics of an all-vertical-piled wharf with those of a traditional inshore high-piled wharf through numerical analysis; our research reveals that the vibration period of an all-vertical-piled wharf under cyclic loading is longer than that of an inshore high-piled wharf and is much closer to the period of the loading wave. Therefore, dynamic calculation and analysis should be conducted when designing and calculating the characteristics of an all-vertical-piled wharf. We establish a dynamic finite element model to examine the dynamic response of an all-vertical-piled wharf under wave cyclic loads and compare the results with those under wave equivalent static load; the comparison indicates that dynamic amplification of the structure is evident when the wave dynamic load effect is taken into account. Furthermore, a simplified dynamic numerical method for calculating the dynamic response of an all-vertical-piled wharf is established based on the P-Y curve. Compared with finite element analysis, the simplified method is more convenient to use and applicable to large structural deformation while considering the soil non-linearity. We confirmed that the simplified method has acceptable accuracy and can be used in engineering applications.
Computed and Experimental Flutter/LCO Onset for the Boeing Truss-Braced Wing Wind-Tunnel Model
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Scott, Robert C.; Funk, Christie J.; Allen, Timothy J.; Sexton, Bradley W.
2014-01-01
This paper presents high fidelity Navier-Stokes simulations of the Boeing Subsonic Ultra Green Aircraft Research truss-braced wing wind-tunnel model and compares the results to linear MSC. Nastran flutter analysis and preliminary data from a recent wind-tunnel test of that model at the NASA Langley Research Center Transonic Dynamics Tunnel. The simulated conditions under consideration are zero angle of attack, so that structural nonlinearity can be neglected. It is found that, for Mach number greater than 0.78, the linear flutter analysis predicts flutter onset dynamic pressure below the wind-tunnel test and that predicted by the Navier-Stokes analysis. Furthermore, the wind-tunnel test revealed that the majority of the high structural dynamics cases were wing limit cycle oscillation (LCO) rather than flutter. Most Navier-Stokes simulated cases were also LCO rather than hard flutter. There is dip in the wind-tunnel test flutter/LCO onset in the Mach 0.76-0.80 range. Conditions tested above that Mach number exhibited no aeroelastic instability at the dynamic pressures reached in the tunnel. The linear flutter analyses do not show a flutter/LCO dip. The Navier-Stokes simulations also do not reveal a dip; however, the flutter/LCO onset is at a significantly higher dynamic pressure at Mach 0.90 than at lower Mach numbers. The Navier-Stokes simulations indicate a mild LCO onset at Mach 0.82, then a more rapidly growing instability at Mach 0.86 and 0.90. Finally, the modeling issues and their solution related to the use of a beam and pod finite element model to generate the Navier-Stokes structure mode shapes are discussed.
CollaborationViz: Interactive Visual Exploration of Biomedical Research Collaboration Networks
Bian, Jiang; Xie, Mengjun; Hudson, Teresa J.; Eswaran, Hari; Brochhausen, Mathias; Hanna, Josh; Hogan, William R.
2014-01-01
Social network analysis (SNA) helps us understand patterns of interaction between social entities. A number of SNA studies have shed light on the characteristics of research collaboration networks (RCNs). Especially, in the Clinical Translational Science Award (CTSA) community, SNA provides us a set of effective tools to quantitatively assess research collaborations and the impact of CTSA. However, descriptive network statistics are difficult for non-experts to understand. In this article, we present our experiences of building meaningful network visualizations to facilitate a series of visual analysis tasks. The basis of our design is multidimensional, visual aggregation of network dynamics. The resulting visualizations can help uncover hidden structures in the networks, elicit new observations of the network dynamics, compare different investigators and investigator groups, determine critical factors to the network evolution, and help direct further analyses. We applied our visualization techniques to explore the biomedical RCNs at the University of Arkansas for Medical Sciences – a CTSA institution. And, we created CollaborationViz, an open-source visual analytical tool to help network researchers and administration apprehend the network dynamics of research collaborations through interactive visualization. PMID:25405477
Effective Governance and Hospital Boards Revisited: Reflections on 25 Years of Research.
Erwin, Cathleen O; Landry, Amy Yarbrough; Livingston, Avery C; Dias, Ashley
2018-01-01
This study reviews and synthesizes empirical research literature focusing on the relationship between boards of directors and organizational effectiveness of U.S. hospitals. The study examines literature published in scholarly journals during the period of 1991-2017. Fifty-one empirical articles were identified that met the study's inclusion criteria. A framework from the corporate governance and nonprofit governance literature is used to classify the articles according to level of analysis (individual actors, governing bodies, organizations, and networks, alliances and multiorganizational initiatives) and focus of research (formal structure and behavioral dynamics-including informal structures and processes). Results are discussed, emerging trends are identified, and recommendations are made for future research.
Structural response of transport airplanes in crash situations
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Caiafa, C.
1983-01-01
This report highlights the results of contractural studies of transport accident data undertaken in a joint research program sponsored by the FAA and NASA. From these accident data studies it was concluded that the greatest potential for improved transport crashworthiness is in the reduction of fire related fatalities. Accident data pertaining to fuselage integrity, main landing gear collapse, fuel tank rupture, wing breaks, tearing of tank lower surfaces, and engine pod scrubbing are discussed. In those accidents where the energy absorbing protective capability of the fuselage structure is expended and the airplane experiences major structural damage, trauma caused fatalities are also discussed. The dynamic performance of current seat/restraint systems are examined but it is concluded that the accident data does not adequately define the relationship between occupant response and the dynamic interaction with the seat, floor and fuselage structure.
Axis switching and spreading of an asymmetric jet: Role of vorticity dynamics
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.
1994-01-01
The effects of vortex generators and periodic excitation on vorticity dynamics and the phenomenon of axis switching in a free asymmetric jet are studied experimentally. Most of the data reported are for a 3:1 rectangular jet at a Reynolds number of 450,000 and a Mach number of 0.31. The vortex generators are in the form of 'delta tabs', triangular shaped protrusions into the flow, placed at the nozzle exit. With suitable placement of the tabs, axis switching could be either stopped or augmented. Two mechanisms are identified governing the phenomenon. One, as described by previous researchers and referred to here as the omega(sub theta)-induced dynamics, is due to difference in induced velocities for different segments of a rolled up azimuthal vortical structure. The other, omega(sub x)-induced dynamics, is due to the induced velocities of streamwise vortex pairs in the flow. Both dynamics can be active in a natural asymmetric jet; the tendency for axis switching caused by the omega(sub theta)-induced dynamics may be, depending on the streamwise vorticity distribution, either resisted or enhanced by the omega(sub x)-induced dynamics. While this simple framework qualitatively explains the various observations made on axis switching, mechanisms actually in play may be much more complex. The two dynamics are not independent as the flow field is replete with both azimuthal and streamwise vortical structures which continually interact. Phase averaged flow field data for a periodically forced case, over a volume of the flow field, are presented and discussed in an effort to gain insight into the dynamics of these vortical structures.
Preliminary results on the dynamics of large and flexible space structures in Halo orbits
NASA Astrophysics Data System (ADS)
Colagrossi, Andrea; Lavagna, Michèle
2017-05-01
The global exploration roadmap suggests, among other ambitious future space programmes, a possible manned outpost in lunar vicinity, to support surface operations and further astronaut training for longer and deeper space missions and transfers. In particular, a Lagrangian point orbit location - in the Earth- Moon system - is suggested for a manned cis-lunar infrastructure; proposal which opens an interesting field of study from the astrodynamics perspective. Literature offers a wide set of scientific research done on orbital dynamics under the Three-Body Problem modelling approach, while less of it includes the attitude dynamics modelling as well. However, whenever a large space structure (ISS-like) is considered, not only the coupled orbit-attitude dynamics should be modelled to run more accurate analyses, but the structural flexibility should be included too. The paper, starting from the well-known Circular Restricted Three-Body Problem formulation, presents some preliminary results obtained by adding a coupled orbit-attitude dynamical model and the effects due to the large structure flexibility. In addition, the most relevant perturbing phenomena, such as the Solar Radiation Pressure (SRP) and the fourth-body (Sun) gravity, are included in the model as well. A multi-body approach has been preferred to represent possible configurations of the large cis-lunar infrastructure: interconnected simple structural elements - such as beams, rods or lumped masses linked by springs - build up the space segment. To better investigate the relevance of the flexibility effects, the lumped parameters approach is compared with a distributed parameters semi-analytical technique. A sensitivity analysis of system dynamics, with respect to different configurations and mechanical properties of the extended structure, is also presented, in order to highlight drivers for the lunar outpost design. Furthermore, a case study for a large and flexible space structure in Halo orbits around one of the Earth-Moon collinear Lagrangian points, L1 or L2, is discussed to point out some relevant outcomes for the potential implementation of such a mission.
Special issue dedicated to the 70th birthday of Glenn F. Webb. Preface.
Hinow, Peter; Magal, Pierre; Ruan, Shigui
2015-08-01
This special issue is dedicated to the 70th birthday of Glenn F. Webb. The topics of the 12 articles appearing in this special issue include evolutionary dynamics of population growth, spatio-temporal dynamics in reaction-diffusion biological models, transmission dynamics of infectious diseases, modeling of antibiotic-resistant bacteria in hospitals, analysis of Prion models, age-structured models in ecology and epidemiology, modeling of immune response to infections, modeling of cancer growth, etc. These topics partially represent the broad areas of Glenn's research interest.
An evaluation of dynamic mutuality measurements and methods in cyclic time series
NASA Astrophysics Data System (ADS)
Xia, Xiaohua; Huang, Guitian; Duan, Na
2010-12-01
Several measurements and techniques have been developed to detect dynamic mutuality and synchronicity of time series in econometrics. This study aims to compare the performances of five methods, i.e., linear regression, dynamic correlation, Markov switching models, concordance index and recurrence quantification analysis, through numerical simulations. We evaluate the abilities of these methods to capture structure changing and cyclicity in time series and the findings of this paper would offer guidance to both academic and empirical researchers. Illustration examples are also provided to demonstrate the subtle differences of these techniques.
On Human Resource Diversity in Distributed Energy Technology
NASA Technical Reports Server (NTRS)
Kalu, A.; Emrich, C.; Ventre, G.; Acosta, Roberto J.
2003-01-01
The purpose of this Historically Black Colleges and Universities (HBCUs/OMUs) Research Conference was to provide an opportunity for principal investigators and their students to present research progress reports. The abstracts included in this report indicate the range and quality of research topics such as aeropropulsion, space propulsion, space power, fluid dynamics, designs, structures and materials being funded through grants from Glenn Research Center to HBCUs. The conference generated extensive networking between students, principal investigators, Glenn technical monitors, and other Glenn researchers.
Young Children's Knowledge about the Moon: A Complex Dynamic System
ERIC Educational Resources Information Center
Venville, Grady J.; Louisell, Robert D.; Wilhelm, Jennifer A.
2012-01-01
The purpose of this research was to use a multidimensional theoretical framework to examine young children's knowledge about the Moon. The research was conducted in the interpretive paradigm and the design was a multiple case study of ten children between the ages of three and eight from the USA and Australia. A detailed, semi-structured interview…
Chapter 6: Research needs for the conservation of the cactus ferruginous pygmy-owl in Arizona
Jean-Luc E. Cartron; W. Scott Richardson; Deborah M. Finch; David J. Krueper
2000-01-01
In this chapter, we describe research needs for the conservation of the cactus ferruginous pygmy-owl (Glaucidium brasilianum cactorum) in Arizona. Estimates of population size, structure, and dynamics, as well as demographic data, are needed for the recovery team to formulate sound population objectives. Habitat loss due to residential development...
ERIC Educational Resources Information Center
Alkharusi, Hussain
2010-01-01
Since its origin in the late 1970s and early 1980s, achievement goal theory has provided significant contributions to the research and practice in education and psychology. The theory has been considered to be an influential framework for conceptualizing student motivation. The term motivation refers to the interaction dynamics of many factors in…
ERIC Educational Resources Information Center
Liu, Xiaojing; Magjuka, Richard J.; Lee, Seung-hee
2008-01-01
The emergence of new technologies has made it increasingly easy for distributed collaboration in both educational and noneducational settings. Although the effectiveness in traditional settings of the dynamics of small group work has been widely researched, there is limited research that offers evidence on how teams can work effectively in a…
NASA Technical Reports Server (NTRS)
Potter, P. Y.
1990-01-01
The annual report of the Marshall Space Flight Center for 1990 is presented. Brief summaries of research are presented for work in the fields of transportation systems, space systems, data systems, microgravity science, astronomy, astrophysics, solar physics, magnetospheric physics, atomic physics, aeronomy, Earth science and applications, propulsion technology, materials and processes, structures and dynamics, automated systems, space systems, and avionics.
ERIC Educational Resources Information Center
Çelik, Çetin
2017-01-01
Resilience research has increasingly gained ground in the field of education research, due to its potential for ameliorating inequalities. This article deals with the emergence of educational resilience, with particular attention to parental network structure, by employing a Bourdieusian social and cultural capital approach. While much of the…
Research Update: Emerging chalcostibite absorbers for thin-film solar cells
de Souza Lucas, Francisco Willian; Zakutayev, Andriy
2018-06-04
Copper antimony chalcogenides CuSbCh 2 (Ch=S, Se) are an emerging family of absorbers studied for thin-film solar cells. These non-toxic and Earth-abundant materials show a layered low-dimensional chalcostibite crystal structure, leading to interesting optoelectronic properties for applications in photovoltaic (PV) devices. This research update describes the CuSbCh 2 crystallographic structures, synthesis methods, competing phases, band structures, optoelectronic properties, point defects, carrier dynamics, and interface band offsets, based on experimental and theoretical data. Correlations between these absorber properties and PV device performance are discussed, and opportunities for further increase in the efficiency of the chalcostibite PV devices are highlighted.
Research Update: Emerging chalcostibite absorbers for thin-film solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Souza Lucas, Francisco Willian; Zakutayev, Andriy
Copper antimony chalcogenides CuSbCh 2 (Ch=S, Se) are an emerging family of absorbers studied for thin-film solar cells. These non-toxic and Earth-abundant materials show a layered low-dimensional chalcostibite crystal structure, leading to interesting optoelectronic properties for applications in photovoltaic (PV) devices. This research update describes the CuSbCh 2 crystallographic structures, synthesis methods, competing phases, band structures, optoelectronic properties, point defects, carrier dynamics, and interface band offsets, based on experimental and theoretical data. Correlations between these absorber properties and PV device performance are discussed, and opportunities for further increase in the efficiency of the chalcostibite PV devices are highlighted.
Workshop on Closed System Ecology
NASA Technical Reports Server (NTRS)
1982-01-01
Self maintaining laboratory scale ecological systems completely isolated from exchanges of matter with external systems were demonstrated. These research tools are discussed in terms of their anticipated value in understanding (1) global ecological material and energy balances, (2) the dynamics of stability and instability in ecosystems, (3) the effects of man-made substances and structures on ecosystems, and (4) the precise requirements for dynamic control of controlled ecology life support systems (CELSS).
Vincent J. Pacific; Brian L. McGlynn; Diego A. Riveros-Iregui; Daniel L. Welsch; Howard E. Epstein
2011-01-01
Variability in soil respiration at various spatial and temporal scales has been the focus of much research over the last decade aimed to improve our understanding and parameterization of physical and environmental controls on this flux. However, few studies have assessed the control of landscape position and groundwater table dynamics on the spatiotemporal variability...
NASA Astrophysics Data System (ADS)
Sewell, Thomas
2013-06-01
The results of recent theoretical atomic-scale studies of CHNO plastic-bonded explosive constituent materials will be presented, emphasizing the effects of static and dynamic compression on structure, vibrational spectroscopy, energy redistribution, and dynamic deformation processes. Among the chemical compounds to be discussed are pentaerythritol tetranitrate (PETN), hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX), nitromethane, and hydroxyl-terminated polybutadiene (HTPB). Specific topics to be discussed include pressure-dependent terahertz IR absorption spectra in crystalline PETN and RDX, microscopic material flow characteristics and energy localization during and after pore collapse in shocked (100)-oriented RDX, establishment of local thermodynamic temperature and the approach to thermal equilibrium in shocked (100)-oriented nitromethane, and structural changes and relaxation phenomena that occur in shocked amorphous cis-HTPB. In the case of shocked HTPB, comparisons will be made between results obtained using fully-atomic and coarse-grained (united atom) molecular dynamics force field models. Rather than attempting to discuss any given topic in extended detail, 3-4 vignettes will be presented that highlight outstanding scientific questions and the predictive methods and tools we are developing to answer them. The U.S. Defense Threat Reduction Agency and Office of Naval Research supported this research.
Advances in structural monitoring with Global Positioning System technology: 1997-2006
NASA Astrophysics Data System (ADS)
Ogaja, Clement; Li, Xiaojing; Rizos, Chris
2007-11-01
Over the last decade, users of the Global Positioning System (GPS) have developed the technology capable of meeting stringent requirements to study the dynamics of tall buildings, towers, and bridges during earthquakes, wind-induced deformation and traffic loading. Dynamic measurements of relative displacements of structures is currently possible using real-time kinematic (RTK) positioning techniques, now advanced to record typically at 10-20 Hz (or higher - e.g., 100 Hz) with an accuracy of ±1 cm horizontally and ±2 cm vertically. With further advances in the technology and improvements in sampling capability, it is possible to meet the needs of real-time displacement information for the structural engineering community. After a decade of great strides in proving the feasibility of the technology, focus is moving to sensor integration and operational systems. Several investigators are now routinely researching the integration of GPS with other sensors (accelerometers, fibre optics, pseudolites, etc.) to utilise the complementary benefits and overcome limitations of the individual systems. Examples of real-time operational systems exist to demonstrate the significance of GPS technology in measuring the dynamic behaviour of large engineering structures.
Neighbourhood reaction in the evolution of cooperation.
Yang, Guoli; Zhang, Weiming; Xiu, Baoxin
2015-05-07
Combining evolutionary games with adaptive networks, an entangled model between strategy evolution and structure adaptation is researched in this paper. We consider a large population of cooperators C and defectors D placed in the networks, playing the repeated prisoner׳s dilemma (PD) games. Because of the conflicts between social welfare and personal rationality, both strategy and structure are allowed to change. In this paper, the dynamics of strategy originates form the partner imitation based on social learning and the dynamics of structure is driven by the active linking and neighbourhood reaction. Notably, the neighbourhood reaction is investigated considering the changes of interfaces between cooperators and defectors, where some neighbours may get away from the interface once the focal agent changes to different strategy. A rich landscape is demonstrated by changing various embedding parameters, which sheds light upon that reacting promptly to the shifted neighbour will promote the prevalence of cooperation. Our model encapsulates the dynamics of strategy, reaction and structure into the evolutionary games, which manifests some intriguing principles in the competition between two groups in natural populations, artificial systems and even human societies. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Shock and Vibration Bulletin. Part 4. Damping and Machinery Dynamics
1983-05-01
Y. S. Shin, Naval Postgraduate School, Monterey, CA and M. K. Chargin, NASA Ames Research Center, Moffett Field, CA FLUID-STRUCTURE INTERACTION BY...Wright Aeronautical Laboratories, Wright-Patterson AFB, OH, and J. R. McGehee, NASA Langley Research Center, Hampton, VA ON THE MODAL... NASA Langley Missile Command, Redstone Arsenal, AL Research Center, Hampton, VA Mr. R. E. Seely, Naval Weapons Handlinj Center. Earle, Colts
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Editor); Venneri, Samuel L. (Editor)
1993-01-01
Various papers on flight vehicle materials, structures, and dynamics are presented. Individual topics addressed include: general modeling methods, component modeling techniques, time-domain computational techniques, dynamics of articulated structures, structural dynamics in rotating systems, structural dynamics in rotorcraft, damping in structures, structural acoustics, structural design for control, structural modeling for control, control strategies for structures, system identification, overall assessment of needs and benefits in structural dynamics and controlled structures. Also discussed are: experimental aeroelasticity in wind tunnels, aeroservoelasticity, nonlinear aeroelasticity, aeroelasticity problems in turbomachines, rotary-wing aeroelasticity with application to VTOL vehicles, computational aeroelasticity, structural dynamic testing and instrumentation.
Simbody: multibody dynamics for biomedical research.
Sherman, Michael A; Seth, Ajay; Delp, Scott L
Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an open source, extensible, high performance toolkit including a multibody mechanics library aimed at the needs of biomedical researchers. The resulting code, Simbody, supports research in a variety of fields including neuromuscular, prosthetic, and biomolecular simulation, and related research such as biologically-inspired design and control of humanoid robots and avatars. Simbody is the dynamics engine behind OpenSim, a widely used biomechanics simulation application. This article reviews issues that arise uniquely in biomedical research, and reports on the architecture, theory, and computational methods Simbody uses to address them. By addressing these needs explicitly Simbody provides a better match to the needs of researchers than can be obtained by adaptation of mechanical engineering or gaming codes. Simbody is a community resource, free for any purpose. We encourage wide adoption and invite contributions to the code base at https://simtk.org/home/simbody.
EDITORIAL: The FDR Prize The FDR Prize
NASA Astrophysics Data System (ADS)
Funakoshi, Mitsuaki
2011-08-01
From the 56 papers published in 2010 in Fluid Dynamics Research the following paper has been selected for the fourth FDR prize: 'Baroclinic multipole formation from heton interaction' by M A Sokolovskiy and X J Carton, published in volume 42 (August 2010) 045501. Coherent vortices are a universal feature of fluids at moderate and large Reynolds number, and have particular relevance to the quasi-two-dimensional flows used to model phenomena in the atmosphere and ocean. The structure and interaction of such vortices have proved a fascinating area for the researchers of fluid dynamics, including thoreticians, observers and experimentalists, together with related problems of how they mix fluids and how they transport scalars such as temperature and salinity. In this paper 'hetons' are considered; they are vortices of dipolar structures in a multilayer rotating fluid, carry thermal anomalies, and are relevant to transport in flows such as the Gulf Stream. The paper is a comprehensive study of the structure, invariants and interactions of two opposite-signed hetons in a two-layer fluid for several initial configurations and for several values of the Rossby radius of deformation, using models based on point vortex dynamics and contour dynamics of finite-area vortex regions. Different types of coupling and interactions are isolated and discussed. Depending on the initial configuration and the value of the radius of deformation, the time evolutions toward horizonal dipoles, vertically tilted dipoles, L-shaped dipoles, and Z-shaped tripoles are observed in the case of finite-area vortices. Using point vortex dynamics a rigorous analysis based on trilinear coordinates is performed, and the appearance of similar structures is shown analytically, except for the L-shaped dipoles. The contribution of this paper to the important problem of heton interaction is both profound and substantial. The study will be of great interest to a wide variety of readers and is likely to inspire further numerical and experimental work, as well being helpful in the interpretation and analysis of observations. Overall, the paper will undoubtedly have a large impact on the fluid dynamics community.
Numerical modelling of closed-cell aluminium foam under dynamic loading
NASA Astrophysics Data System (ADS)
Hazell, Paul; Kader, M. A.; Islam, M. A.; Escobedo, J. P.; Saadatfar, M.
2015-06-01
Closed-cell aluminium foams are extensively used in aerospace and automobile industries. The understanding of their behaviour under impact loading conditions is extremely important since impact problems are directly related to design of these engineering structures. This research investigates the response of a closed-cell aluminium foam (CYMAT) subjected to dynamic loading using the finite element software ABAQUS/explicit. The aim of this research is to numerically investigate the material and structural properties of closed-cell aluminium foam under impact loading conditions with interest in shock propagation and its effects on cell wall deformation. A μ-CT based 3D foam geometry is developed to simulate the local cell collapse behaviours. A number of numerical techniques are applied for modelling the crush behaviour of aluminium foam to obtain the more accurate results. The simulation results are compared with experimental data. Comparison of the results shows a good correlation between the experimental results and numerical predictions.
In-plane free vibration analysis of cable arch structure
NASA Astrophysics Data System (ADS)
Zhao, Yueyu; Kang, Houjun
2008-05-01
Cable-stayed arch bridge is a new type of composite bridge, which utilizes the mechanical characters of cable and arch. Based on the supporting members of cable-stayed arch bridge and of erection of arch bridge using of the cantilever construction method with tiebacks, we propose a novel mechanical model of cable-arch structure. In this model, the equations governing vibrations of the cable-arch are derived according to Hamilton's principle for dynamic problems in elastic body under equilibrium state. Then, the program of solving the dynamic governing equations is ultimately established by the transfer matrix method for free vibration of uniform and variable cross-section, and the internal characteristics of the cable-arch are investigated. After analyzing step by step, the research results approve that the program is accurate; meanwhile, the mechanical model and method are both valuable and significant not only in theoretical research and calculation but also in design of engineering.
NASA Technical Reports Server (NTRS)
Brown, A. M.
1998-01-01
Accounting for the statistical geometric and material variability of structures in analysis has been a topic of considerable research for the last 30 years. The determination of quantifiable measures of statistical probability of a desired response variable, such as natural frequency, maximum displacement, or stress, to replace experience-based "safety factors" has been a primary goal of these studies. There are, however, several problems associated with their satisfactory application to realistic structures, such as bladed disks in turbomachinery. These include the accurate definition of the input random variables (rv's), the large size of the finite element models frequently used to simulate these structures, which makes even a single deterministic analysis expensive, and accurate generation of the cumulative distribution function (CDF) necessary to obtain the probability of the desired response variables. The research presented here applies a methodology called probabilistic dynamic synthesis (PDS) to solve these problems. The PDS method uses dynamic characteristics of substructures measured from modal test as the input rv's, rather than "primitive" rv's such as material or geometric uncertainties. These dynamic characteristics, which are the free-free eigenvalues, eigenvectors, and residual flexibility (RF), are readily measured and for many substructures, a reasonable sample set of these measurements can be obtained. The statistics for these rv's accurately account for the entire random character of the substructure. Using the RF method of component mode synthesis, these dynamic characteristics are used to generate reduced-size sample models of the substructures, which are then coupled to form system models. These sample models are used to obtain the CDF of the response variable by either applying Monte Carlo simulation or by generating data points for use in the response surface reliability method, which can perform the probabilistic analysis with an order of magnitude less computational effort. Both free- and forced-response analyses have been performed, and the results indicate that, while there is considerable room for improvement, the method produces usable and more representative solutions for the design of realistic structures with a substantial savings in computer time.
Probabilistic structural mechanics research for parallel processing computers
NASA Technical Reports Server (NTRS)
Sues, Robert H.; Chen, Heh-Chyun; Twisdale, Lawrence A.; Martin, William R.
1991-01-01
Aerospace structures and spacecraft are a complex assemblage of structural components that are subjected to a variety of complex, cyclic, and transient loading conditions. Significant modeling uncertainties are present in these structures, in addition to the inherent randomness of material properties and loads. To properly account for these uncertainties in evaluating and assessing the reliability of these components and structures, probabilistic structural mechanics (PSM) procedures must be used. Much research has focused on basic theory development and the development of approximate analytic solution methods in random vibrations and structural reliability. Practical application of PSM methods was hampered by their computationally intense nature. Solution of PSM problems requires repeated analyses of structures that are often large, and exhibit nonlinear and/or dynamic response behavior. These methods are all inherently parallel and ideally suited to implementation on parallel processing computers. New hardware architectures and innovative control software and solution methodologies are needed to make solution of large scale PSM problems practical.
Morphological characteristics of motile plants for dynamic motion
NASA Astrophysics Data System (ADS)
Song, Kahye; Yeom, Eunseop; Kim, Kiwoong; Lee, Sang Joon
2014-11-01
Most plants have been considered as non-motile organisms. However, plants move in response to environmental changes for survival. In addition, some species drive dynamic motions in a short period of time. Mimosa pudica is a plant that rapidly shrinks its body in response to external stimuli. It has specialized organs that are omnidirectionally activated due to morphological features. In addition, scales of pinecone open or close up depending on humidity for efficient seed release. A number of previous studies on the dynamic motion of plants have been investigated in a biochemical point of view. In this study, the morphological characteristics of those motile organs were investigated by using X-ray CT and micro-imaging techniques. The results show that the dynamic motions of motile plants are supported by structural features related with water transport. These studies would provide new insight for better understanding the moving mechanism of motile plant in morphological point of view. This research was financially supported by the Creative Research Initiative of the Ministry of Science, ICT and Future Planning (MSIP) and the National Research Foundation (NRF) of Korea (Grant Number: 2008-0061991).
NASA Astrophysics Data System (ADS)
Destyanto, A. R.; Silalahi, T. D.; Hidayatno, A.
2017-11-01
System dynamic modeling is widely used to predict and simulate the energy system in several countries. One of the applications of system dynamics is to evaluate national energy policy alternatives, and energy efficiency analysis. Using system dynamic modeling, this research aims to evaluate the energy transition policy that has been implemented in Indonesia on the past conversion program of kerosene to LPG for household cook fuel consumption, which considered as successful energy transition program implemented since 2007. This research is important since Indonesia considered not yet succeeded to execute another energy transition program on conversion program of oil fuel to gas fuel for transportation that has started since 1989. The aim of this research is to explore which policy intervention that has significant contribution to support or even block the conversion program. Findings in this simulation show that policy intervention to withdraw the kerosene supply and government push to increase production capacity of the support equipment industries (gas stove, regulator, and LPG Cylinder) is the main influence on the success of the program conversion program.
Neural control of tuneable skin iridescence in squid
Wardill, T. J.; Gonzalez-Bellido, P. T.; Crook, R. J.; Hanlon, R. T.
2012-01-01
Fast dynamic control of skin coloration is rare in the animal kingdom, whether it be pigmentary or structural. Iridescent structural coloration results when nanoscale structures disrupt incident light and selectively reflect specific colours. Unlike animals with fixed iridescent coloration (e.g. butterflies), squid iridophores (i.e. aggregations of iridescent cells in the skin) produce dynamically tuneable structural coloration, as exogenous application of acetylcholine (ACh) changes the colour and brightness output. Previous efforts to stimulate iridophores neurally or to identify the source of endogenous ACh were unsuccessful, leaving researchers to question the activation mechanism. We developed a novel neurophysiological preparation in the squid Doryteuthis pealeii and demonstrated that electrical stimulation of neurons in the skin shifts the spectral peak of the reflected light to shorter wavelengths (greater than 145 nm) and increases the peak reflectance (greater than 245%) of innervated iridophores. We show ACh is released within the iridophore layer and that extensive nerve branching is seen within the iridophore. The dynamic colour shift is significantly faster (17 s) than the peak reflectance increase (32 s), revealing two distinct mechanisms. Responses from a structurally altered preparation indicate that the reflectin protein condensation mechanism explains peak reflectance change, while an undiscovered mechanism causes the fast colour shift. PMID:22896651
NASA Astrophysics Data System (ADS)
Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram
2018-06-01
The application of energy harvesting technology for monitoring civil infrastructure is a bourgeoning topic of interest. The ability of kinetic energy harvesters to scavenge ambient vibration energy can be useful for large civil infrastructure under operational conditions, particularly for bridge structures. The experimental integration of such harvesters with full scale structures and the subsequent use of the harvested energy directly for the purposes of structural health monitoring shows promise. This paper presents the first experimental deployment of piezoelectric vibration energy harvesting devices for monitoring a full-scale bridge undergoing forced dynamic vibrations under operational conditions using energy harvesting signatures against time. The calibration of the harvesters is presented, along with details of the host bridge structure and the dynamic assessment procedures. The measured responses of the harvesters from the tests are presented and the use the harvesters for the purposes of structural health monitoring (SHM) is investigated using empirical mode decomposition analysis, following a bespoke data cleaning approach. Finally, the use of sequential Karhunen Loeve transforms to detect train passages during the dynamic assessment is presented. This study is expected to further develop interest in energy-harvesting based monitoring of large infrastructure for both research and commercial purposes.
NASA Astrophysics Data System (ADS)
Yang, Ding-Shyue; He, Xing; Wu, Chengyi
Due to their large scattering cross sections with matter, electrons are suitable for contactless probing of solid-supported surface assemblies, especially in a reflection geometry. Direct visualization of assembly structures through electron diffraction further enables studies of ultrafast structural dynamics through the pump-probe scheme as well as discoveries of hidden phase changes in equilibrium that have been obscure in spectroscopic measurements. In this presentation, we report our first observation of unique two-stage transformations of interfacial methanol on smooth hydrophobic surfaces. The finding may reconcile the inconsistent previous reports of the crystallization temperature using various indirect methods. Dynamically, energy transfer across a solid-molecule interface following photoexcitation of the substrate is found to be highly dependent on the structure of interfacial methanol. If it is only 2-dimensionally ordered, as the film thickness increases, a prolonged time in the decrease of diffraction intensity is seen, signifying an inefficient vibrational coupling in the surface normal direction. Implications of the dynamics results and an outlook of interfacial studies using time-resolved and averaged electron diffraction will be discussed. We gratefully acknowledge the support from the R. A. Welch Foundation (Grant No. E-1860), the Donors of the American Chemical Society Petroleum Research Fund (ACS-PRF), and the University of Houston.
Service climate as a mediator of organizational empowerment in customer-service employees.
Mendoza-Sierra, Maria Isabel; Orgambídez-Ramos, Alejandro; Carrasco-González, Ana María; León-Jariego, José Carlos
2014-01-01
The aim of this study is to examine the mediating role of the service climate between organizational empowerment (i.e., dynamic structural framework, control of workplace decisions, fluidity in information sharing) and service quality (functional and relational). 428 contact employees from 46 hotels participated in the survey. Correlations demonstrated that dynamic structural framework, control decisions, and fluidity in information sharing are related to both functional and relational service quality. Regression analyses and Sobel tests revealed that service climate totally mediated the relationship between all three dimensions of organizational empowerment and relational service quality. Implications for practice and future research are discussed.
Evaluation of dynamic response for monopole and hybrid wind mill tower
NASA Astrophysics Data System (ADS)
Shah, Hemal J.; Desai, Atul K.
2017-07-01
The wind mill towers are constructed using monopoles or lattice type tower. As the height of tower increases it gives more power but it becomes uneconomical, so in the present research work innovative wind mill tower such as combination of monopole and lattice tower is analyzed using FEM software. When the tall structures are constructed on soft soil it becomes dynamically sensitive so 3 types of soil such as hard, medium and soft soil is also modeled and the innovative tower is studied for different operating frequencies of wind turbine. From study it is concluded that the innovative tower will reduce resonance condition considering soil structure interaction.
Research of TREETOPS Structural Dynamics Controls Simulation Upgrade
NASA Technical Reports Server (NTRS)
Yates, Rose M.
1996-01-01
Under the provisions of contract number NAS8-40194, which was entitled 'TREETOPS Structural Dynamics and Controls Simulation System Upgrade', Oakwood College contracted to produce an upgrade to the existing TREETOPS suite of analysis tools. This suite includes the main simulation program, TREETOPS, two interactive preprocessors, TREESET and TREEFLX, an interactive post processor, TREEPLOT, and an adjunct program, TREESEL. A 'Software Design Document', which provides descriptions of the argument lists and internal variables for each subroutine in the TREETOPS suite, was established. Additionally, installation guides for both DOS and UNIX platforms were developed. Finally, updated User's Manuals, as well as a Theory Manual, were generated.
Vibration-based monitoring for performance evaluation of flexible civil structures in Japan
FUJINO, Yozo
2018-01-01
The vibration-based monitoring of flexible civil structures and performance evaluation from this monitoring are reviewed, with an emphasis on research and practice in Japan and the author’s experiences. Some new findings and unexpected vibrations from the monitoring of real bridges and buildings are reported to emphasize the importance of monitoring. Future developments and applications of vibration-based monitoring to civil infrastructure management are also described. Many examples are taken from the author’s past 30 years’ experience of research on bridge dynamics. PMID:29434082
Solid earth science in the 1990s. Volume 1: Program plan
NASA Technical Reports Server (NTRS)
1991-01-01
This is volume one of a three volume series. A plan for solid earth science research for the next decade is outlined. The following topics are addressed: scientific requirements; status of current research; major new emphasis in the 1990's; interagency and international participation; and the program implementation plan. The following fields are represented: plate motion and deformation; lithospheric structure and evolution; volcanology; land surface (processes of change); earth structure and dynamics; earth rotation and reference frames; and geopotential fields. Other topics of discussion include remote sensing, space missions, and space techniques.
NASA Technical Reports Server (NTRS)
Gardner, J. E.; Dixon, S. C.
1984-01-01
Research was done in the following areas: development and validation of solution algorithms, modeling techniques, integrated finite elements for flow-thermal-structural analysis and design, optimization of aircraft and spacecraft for the best performance, reduction of loads and increase in the dynamic structural stability of flexible airframes by the use of active control, methods for predicting steady and unsteady aerodynamic loads and aeroelastic characteristics of flight vehicles with emphasis on the transonic range, and methods for predicting and reducing helicoper vibrations.
Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps.
Singharoy, Abhishek; Teo, Ivan; McGreevy, Ryan; Stone, John E; Zhao, Jianhua; Schulten, Klaus
2016-07-07
Two structure determination methods, based on the molecular dynamics flexible fitting (MDFF) paradigm, are presented that resolve sub-5 Å cryo-electron microscopy (EM) maps with either single structures or ensembles of such structures. The methods, denoted cascade MDFF and resolution exchange MDFF, sequentially re-refine a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution. Application of sequential re-refinement enables MDFF to achieve a radius of convergence of ~25 Å demonstrated with the accurate modeling of β-galactosidase and TRPV1 proteins at 3.2 Å and 3.4 Å resolution, respectively. The MDFF refinements uniquely offer map-model validation and B-factor determination criteria based on the inherent dynamics of the macromolecules studied, captured by means of local root mean square fluctuations. The MDFF tools described are available to researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web Services.
The effect of glycosylation on the transferrin structure: A molecular dynamic simulation analysis.
Ghanbari, Z; Housaindokht, M R; Bozorgmehr, M R; Izadyar, M
2016-09-07
Transferrins have been defined by the highly cooperative binding of iron and a carbonate anion to form a Fe-CO3-Tf ternary complex. As such, the layout of the binding site residues affects transferrin function significantly; In contrast to N-lobe, C-lobe binding site of the transferrin structure has been less characterized and little research which surveyed the interaction of carbonate with transferrin in the C-lobe binding site has been found. In the present work, molecular dynamic simulation was employed to gain access into the molecular level understanding of carbonate binding site and their interactions in each lobe. Residues responsible for carbonate binding of transferrin structure were pointed out. In addition, native human transferrin is a glycoprotein that two N-linked complex glycan chains located in the C-lobe. Usually, in the molecular dynamic simulation for simplifying, glycan is removed from the protein structure. Here, we explore the effect of glycosylation on the transferrin structure. Glycosylation appears to have an effect on the layout of the binding site residue and transferrin structure. On the other hand, sometimes the entire transferrin formed by separated lobes that it allows the results to be interpreted in a straightforward manner rather than more parameters required for full length protein. But, it should be noted that there are differences between the separated lobe and full length transferrin, hence, a comparative analysis by the molecular dynamic simulation was performed to investigate such structural variations. Results revealed that separation in C-lobe caused a significant structural variation in comparison to N-lobe. Consequently, the separated lobes and the full length one are different, showing the importance of the interlobe communication and the impact of the lobes on each other in the transferrin structure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Research on application of intelligent computation based LUCC model in urbanization process
NASA Astrophysics Data System (ADS)
Chen, Zemin
2007-06-01
Global change study is an interdisciplinary and comprehensive research activity with international cooperation, arising in 1980s, with the largest scopes. The interaction between land use and cover change, as a research field with the crossing of natural science and social science, has become one of core subjects of global change study as well as the front edge and hot point of it. It is necessary to develop research on land use and cover change in urbanization process and build an analog model of urbanization to carry out description, simulation and analysis on dynamic behaviors in urban development change as well as to understand basic characteristics and rules of urbanization process. This has positive practical and theoretical significance for formulating urban and regional sustainable development strategy. The effect of urbanization on land use and cover change is mainly embodied in the change of quantity structure and space structure of urban space, and LUCC model in urbanization process has been an important research subject of urban geography and urban planning. In this paper, based upon previous research achievements, the writer systematically analyzes the research on land use/cover change in urbanization process with the theories of complexity science research and intelligent computation; builds a model for simulating and forecasting dynamic evolution of urban land use and cover change, on the basis of cellular automation model of complexity science research method and multi-agent theory; expands Markov model, traditional CA model and Agent model, introduces complexity science research theory and intelligent computation theory into LUCC research model to build intelligent computation-based LUCC model for analog research on land use and cover change in urbanization research, and performs case research. The concrete contents are as follows: 1. Complexity of LUCC research in urbanization process. Analyze urbanization process in combination with the contents of complexity science research and the conception of complexity feature to reveal the complexity features of LUCC research in urbanization process. Urban space system is a complex economic and cultural phenomenon as well as a social process, is the comprehensive characterization of urban society, economy and culture, and is a complex space system formed by society, economy and nature. It has dissipative structure characteristics, such as opening, dynamics, self-organization, non-balance etc. Traditional model cannot simulate these social, economic and natural driving forces of LUCC including main feedback relation from LUCC to driving force. 2. Establishment of Markov extended model of LUCC analog research in urbanization process. Firstly, use traditional LUCC research model to compute change speed of regional land use through calculating dynamic degree, exploitation degree and consumption degree of land use; use the theory of fuzzy set to rewrite the traditional Markov model, establish structure transfer matrix of land use, forecast and analyze dynamic change and development trend of land use, and present noticeable problems and corresponding measures in urbanization process according to research results. 3. Application of intelligent computation research and complexity science research method in LUCC analog model in urbanization process. On the basis of detailed elaboration of the theory and the model of LUCC research in urbanization process, analyze the problems of existing model used in LUCC research (namely, difficult to resolve many complexity phenomena in complex urban space system), discuss possible structure realization forms of LUCC analog research in combination with the theories of intelligent computation and complexity science research. Perform application analysis on BP artificial neural network and genetic algorithms of intelligent computation and CA model and MAS technology of complexity science research, discuss their theoretical origins and their own characteristics in detail, elaborate the feasibility of them in LUCC analog research, and bring forward improvement methods and measures on existing problems of this kind of model. 4. Establishment of LUCC analog model in urbanization process based on theories of intelligent computation and complexity science. Based on the research on abovementioned BP artificial neural network, genetic algorithms, CA model and multi-agent technology, put forward improvement methods and application assumption towards their expansion on geography, build LUCC analog model in urbanization process based on CA model and Agent model, realize the combination of learning mechanism of BP artificial neural network and fuzzy logic reasoning, express the regulation with explicit formula, and amend the initial regulation through self study; optimize network structure of LUCC analog model and methods and procedures of model parameters with genetic algorithms. In this paper, I introduce research theory and methods of complexity science into LUCC analog research and presents LUCC analog model based upon CA model and MAS theory. Meanwhile, I carry out corresponding expansion on traditional Markov model and introduce the theory of fuzzy set into data screening and parameter amendment of improved model to improve the accuracy and feasibility of Markov model in the research on land use/cover change.
Automation software for a materials testing laboratory
NASA Technical Reports Server (NTRS)
Mcgaw, Michael A.; Bonacuse, Peter J.
1990-01-01
The software environment in use at the NASA-Lewis Research Center's High Temperature Fatigue and Structures Laboratory is reviewed. This software environment is aimed at supporting the tasks involved in performing materials behavior research. The features and capabilities of the approach to specifying a materials test include static and dynamic control mode switching, enabling multimode test control; dynamic alteration of the control waveform based upon events occurring in the response variables; precise control over the nature of both command waveform generation and data acquisition; and the nesting of waveform/data acquisition strategies so that material history dependencies may be explored. To eliminate repetitive tasks in the coventional research process, a communications network software system is established which provides file interchange and remote console capabilities.
Analytical and experimental study of vibrations in a gear transmission
NASA Technical Reports Server (NTRS)
Choy, F. K.; Ruan, Y. F.; Zakrajsek, J. J.; Oswald, Fred B.; Coy, J. J.
1991-01-01
An analytical simulation of the dynamics of a gear transmission system is presented and compared to experimental results from a gear noise test rig at the NASA Lewis Research Center. The analytical procedure developed couples the dynamic behaviors of the rotor-bearing-gear system with the response of the gearbox structure. The modal synthesis method is used in solving the overall dynamics of the system. Locally each rotor-gear stage is modeled as an individual rotor-bearing system using the matrix transfer technique. The dynamics of each individual rotor are coupled with other rotor stages through the nonlinear gear mesh forces and with the gearbox structure through bearing support systems. The modal characteristics of the gearbox structure are evaluated using the finite element procedure. A variable time steping integration routine is used to calculate the overall time transient behavior of the system in modal coordinates. The global dynamic behavior of the system is expressed in a generalized coordinate system. Transient and steady state vibrations of the gearbox system are presented in the time and frequency domains. The vibration characteristics of a simple single mesh gear noise test rig is modeled. The numerical simulations are compared to experimental data measured under typical operating conditions. The comparison of system natural frequencies, peak vibration amplitudes, and gear mesh frequencies are generally in good agreement.
Stochastic Time Models of Syllable Structure
Shaw, Jason A.; Gafos, Adamantios I.
2015-01-01
Drawing on phonology research within the generative linguistics tradition, stochastic methods, and notions from complex systems, we develop a modelling paradigm linking phonological structure, expressed in terms of syllables, to speech movement data acquired with 3D electromagnetic articulography and X-ray microbeam methods. The essential variable in the models is syllable structure. When mapped to discrete coordination topologies, syllabic organization imposes systematic patterns of variability on the temporal dynamics of speech articulation. We simulated these dynamics under different syllabic parses and evaluated simulations against experimental data from Arabic and English, two languages claimed to parse similar strings of segments into different syllabic structures. Model simulations replicated several key experimental results, including the fallibility of past phonetic heuristics for syllable structure, and exposed the range of conditions under which such heuristics remain valid. More importantly, the modelling approach consistently diagnosed syllable structure proving resilient to multiple sources of variability in experimental data including measurement variability, speaker variability, and contextual variability. Prospects for extensions of our modelling paradigm to acoustic data are also discussed. PMID:25996153
NASA Astrophysics Data System (ADS)
Kalfarisi, Rony G.
Solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy has proven to be a powerful method to probe the local structure and dynamics of a system. In powdered solids, the nuclear spins experience various anisotropic interactions which depend on the molecular orientation. These anisotropic interactions make ssNMR very useful as they give a specific appearance to the resonance lines of the spectra. The position and shape of these resonance lines can be related to local structure and dynamics of the system under study. My research interest has focused around studying local structures and dynamics of quadrupolar nuclei in materials using ssNMR spectroscopy. 7Li and 93Nb ssNMR magic angle spinning (MAS) spectra, acquired at 17.6 and 7.06 T, have been used to evaluate the structural and dynamical properties of cation-ordered microwave dielectric materials. Microwave dielectric materials are essential in the application of wireless telecommunication, biomedical engineering, and other scientific and industrial implementations that use radio and microwave signals. The study of the local environment with respect to average structure, such as X-ray diffraction study, is essential for the better understanding of the correlations between structures and properties of these materials. The investigation for short and medium range can be performed with the use of ssNMR techniques. Even though XRD results show cationic ordering at the B-site (third coordination sphere), NMR spectra show a presence of disorder materials. This was indicated by the observation of a distribution in NMR parameters derived from experimental . {93}Nb NMR spectraand supported by theoretical calculations.
Resource Letter BH-1: Black Holes.
ERIC Educational Resources Information Center
Detweiler, Steven
1981-01-01
Lists resources on black holes, including: (1) articles of historical interest; (2) books and journal articles on elementary expositions; (3) elementary and advanced textbooks; and (4) research articles on analytic structure of black holes, black hole dynamics, and astrophysical processes. (SK)
Revising the magnetic structure and dynamics of Yttrium Iron Garnet
NASA Astrophysics Data System (ADS)
Princep, Andrew; Boothroyd, Andrew; Ewings, Russell; Ward, Simon; Dubs, Carsten
Yttrium iron garnet (YIG) is the `miracle material' of microwave magnetics. Since its synthesis by Geller and Gilleo in 1957, it is widely acknowledged to have contributed more to the understanding of electronic spin-wave and magnon dynamics than any other substance. Its astonishingly narrow excitation linewidth allows magnon propagation to be observed over centimetre distances, making it both a superior model system for the experimental study of fundamental aspects of microwave magnetic dynamics and an ideal platform for the development of microwave magnetic technologies. Our experiments on a large, pristine single crystal at the ISIS facility using both diffraction and time-of-flight spectroscopy have provided new results on both the magnetic structure and the excitation spectrum, which revise nearly 60 years of scientific research and will be essential insights for the fledgling scientific field of Magnonics. EPSRC, UK.
Music and language perception: expectations, structural integration, and cognitive sequencing.
Tillmann, Barbara
2012-10-01
Music can be described as sequences of events that are structured in pitch and time. Studying music processing provides insight into how complex event sequences are learned, perceived, and represented by the brain. Given the temporal nature of sound, expectations, structural integration, and cognitive sequencing are central in music perception (i.e., which sounds are most likely to come next and at what moment should they occur?). This paper focuses on similarities in music and language cognition research, showing that music cognition research provides insight into the understanding of not only music processing but also language processing and the processing of other structured stimuli. The hypothesis of shared resources between music and language processing and of domain-general dynamic attention has motivated the development of research to test music as a means to stimulate sensory, cognitive, and motor processes. Copyright © 2012 Cognitive Science Society, Inc.
Wang, Rong; Tanjasiri, Sora Park; Palmer, Paula; Valente, Thomas W
2016-08-01
This study applies an ecological perspective to the context of community-based participatory research (CBPR). Specifically, it examines how endogenous and exogenous factors influence the dynamics of CBPR partnerships, including the tendency toward reciprocity and transitivity, the organizational type, the level of resource sufficiency, the level of organizational influence, and the perceived CBPR effect on organizations. The results demonstrate that network structure is related to the selection and retention of interorganizational networks over time, and organizations of the same type are more likely to form partnerships with each other. It shows that the dynamics of the CBPR initiative presented in this article were driven by the structure of the interorganizational networks rather than their individual organizational attributes. Implications for sustaining CBPR partnerships are drawn from the findings.
Wang, Rong; Tanjasiri, Sora Park; Palmer, Paula; Valente, Thomas W.
2017-01-01
This study applies an ecological perspective to the context of community-based participatory research (CBPR). Specifically, it examines how endogenous and exogenous factors influence the dynamics of CBPR partnerships, including the tendency toward reciprocity and transitivity, the organizational type, the level of resource sufficiency, the level of organizational influence, and the perceived CBPR effect on organizations. The results demonstrate that network structure is related to the selection and retention of interorganizational networks over time, and organizations of the same type are more likely to form partnerships with each other. It shows that the dynamics of the CBPR initiative presented in this article were driven by the structure of the interorganizational networks rather than their individual organizational attributes. Implications for sustaining CBPR partnerships are drawn from the findings. PMID:29430067
Ion-Neutral Coupling in Solar Prominence
NASA Technical Reports Server (NTRS)
Gilbert, H.; DeVore, C. R.; Karpen, J.; Kucera, T.; Antiochos, S.; Kawashima, R.
2011-01-01
Coupling between ions and neutrals in magnetized plasmas is fundamentally important to many aspects of heliophysics, including our ionosphere, the solar chromosphere, the solar wind interaction with planetary atmospheres, and the interface between the heliosphere and the interstellar medium. Ion-neutral coupling also plays a major role in the physics of solar prominences. By combining theory, modeling, and observations we are working toward a better understanding of the structure and dynamics of partially ionized prominence plasma. Two key questions are addressed in the present work: 1) what physical mechanism(s) sets the cross-field scale of prominence threads? 2) Are ion-neutral interactions responsible for the vertical flows and structure in prominences? We present initial results from a study investigating what role ion-neutral interactions play in prominence dynamics and structure. This research was supported by NASA.
Optical studies of dynamical processes in disordered materials
NASA Astrophysics Data System (ADS)
Yen, William M.
1990-12-01
The research continues to focus on the study of the structure and the dynamic behavior of insulating solids which can be activated optically. The physical processes which produce relaxation and energy transfer in the optical excited states were of particular interest. The studies were based principally on optical laser spectroscopic techniques which reveal a more detailed view of the materials of interest and which will ultimately lead to the development of more efficient optoelectronic materials.
Marshall Space Flight Center Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Six, N. F. (Compiler)
2015-01-01
The Faculty Fellowship program was revived in the summer of 2015 at NASA Marshall Space Flight Center, following a period of diminished faculty research activity here since 2006 when budget cuts in the Headquarters' Education Office required realignment. Several senior Marshall managers recognized the need to involve the Nation's academic research talent in NASA's missions and projects to the benefit of both entities. These managers invested their funds required to establish the renewed Faculty Fellowship program in 2015, a 10-week residential research involvement of 16 faculty in the laboratories and offices at Marshall. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2015 Marshall Faculty Fellowship program, along with the Program Announcement (appendix A) and the Program Description (appendix B). The research touched on seven areas-propulsion, materials, instrumentation, fluid dynamics, human factors, control systems, and astrophysics. The propulsion studies included green propellants, gas bubble dynamics, and simulations of fluid and thermal transients. The materials investigations involved sandwich structures in composites, plug and friction stir welding, and additive manufacturing, including both strength characterization and thermosets curing in space. The instrumentation projects involved spectral interfero- metry, emissivity, and strain sensing in structures. The fluid dynamics project studied the water hammer effect. The human factors project investigated the requirements for close proximity operations in confined spaces. Another team proposed a controls system for small launch vehicles, while in astrophysics, one faculty researcher estimated the practicality of weather modification by blocking the Sun's insolation, and another found evidence in satellite data of the detection of a warm-hot intergalactic medium filament. Our goal is to continue the Faculty Fellowship effort with Center funds in succeeding summers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottes, S.A.; Bojanowski, C.; Shen, J.
2012-04-09
The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of October through December 2011.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottes, S.A.; Bojanowski, C.; Shen, J.
2012-06-28
The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of January through March 2012.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lottes, S.A.; Kulak, R.F.; Bojanowski, C.
2011-08-26
The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of April through June 2011.« less
Quantitative Restoration of the Evolution of Mantle Structures Using Data Assimilation
NASA Astrophysics Data System (ADS)
Ismail-Zadeh, A.; Schubert, G.; Tsepelev, I.
2008-12-01
Rapid progress in imaging deep Earth structures and in studies of physical and chemical properties of mantle rocks facilitates research in assimilation of data related to mantle dynamics. We present a quantitative approach to assimilation of geophysical and geodetic data, which allows for incorporating observations and unknown initial conditions for mantle temperature and flow into a three-dimensional dynamic model in order to determine the initial conditions in the geological past. Once the conditions are determined the evolution of mantle structures can be restore backward in time. We apply data assimilation techniques to model the evolution of mantle plumes and lithospheric slabs. We show that the geometry of the mantle structures changes with time diminishing the degree of surface curvature of the structures, because the heat conduction smoothes the complex thermal surfaces of mantle bodies with time. Present seismic tomography images of mantle structures do not allow definition of the sharp shapes of these structures. Assimilation of mantle temperature and flow to the geological past instead provides a quantitative tool to restore thermal shapes of prominent structures in the past from their diffusive shapes at present.
NASA Astrophysics Data System (ADS)
Soklaski, Ryan
Central to the field of condensed matter physics is a decades old outstanding problem in the study of glasses -- namely explaining the extreme slowing of dynamics in a liquid as it is supercooled towards the so-called glass transition. Efforts to universally describe the stretched relaxation processes and heterogeneous dynamics that characteristically develop in supercooled liquids remain divided in both their approaches and successes. Towards this end, a consensus on the role that atomic and molecular structures play in the liquid is even more tenuous. However, mounting material science research efforts have culminated to reveal that the vast diversity of metallic glass species and their properties are rooted in an equally-broad set of structural archetypes. Herein lies the motivation of this dissertation: the detailed information available regarding the structure-property relationships of metallic glasses provides a new context in which one can study the evolution of a supercooled liquid by utilizing a structural motif that is known to dominate the glass. Cu64Zr36 is a binary alloy whose good glass-forming ability and simple composition makes it a canonical material to both empirical and numerical studies. Here, we perform classical molecular dynamics simulations and conduct a comprehensive analysis of the dynamical regimes of liquid Cu64Zr36, while focusing on the roles played by atomic icosahedral ordering -- a structural motif which ultimately percolates the glass' structure. Large data analysis techniques are leveraged to obtain uniquely detailed structural and dynamical information in this context. In doing so, we develop the first account of the origin of icosahedral order in this alloy, revealing deep connections between this incipient structural ordering, frustration-limited domain theory, and recent important empirical findings that are relevant to the nature of metallic liquids at large. Furthermore, important dynamical landmarks such as the breakdown of the Stokes-Einstein relationship, the decoupling of particle diffusivities, and the development of general "glassy" relaxation features are found to coincide with successive manifestation of icosahedral ordering that arise as the liquid is supercooled. Remarkably, we detect critical-like features in the growth of the icosahedron network, with signatures that suggest that a liquid-liquid phase transition may occur in the deeply supercooled regime to precede glass formation. Such a transition is predicted to occur in many supercooled liquids, although explicit evidence of this phenomenon in realistic systems is scarce. Ultimately this work concludes that icosahedral order characterizes all dynamical regimes of Cu64Zr 36, demonstrating the importance and utility of studying supercooled liquids in the context of locally-preferred structure. More broadly, it serves to confirm and inform recent theoretical and empirical findings that are central to understanding the physics underlying the glass transition.
Summary of research in applied mathematics, numerical analysis, and computer sciences
NASA Technical Reports Server (NTRS)
1986-01-01
The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.
Characterization of Metakaolin-Based Geopolymer (Briefing chart)
2014-08-31
High Strain Rate Dynamic Characterization of Metakaolin and Fly Ash Bsed Geopolymers for Structural Applications The concrete community has...mechanical properties and microstructure of metakaolin geopolymer , obtain the static properties of metakaolin geopolymer for high strain rate Hopkinson...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Metakaolin, fly ash, geopolymer , characterization, high strain rate
Taking the plunge: chemical reaction dynamics in liquids.
Orr-Ewing, Andrew J
2017-12-11
The dynamics of chemical reactions in liquid solutions are now amenable to direct study using ultrafast laser spectroscopy techniques and advances in computer simulation methods. The surrounding solvent affects the chemical reaction dynamics in numerous ways, which include: (i) formation of complexes between reactants and solvent molecules; (ii) modifications to transition state energies and structures relative to the reactants and products; (iii) coupling between the motions of the reacting molecules and the solvent modes, and exchange of energy; (iv) solvent caging of reactants and products; and (v) structural changes to the solvation shells in response to the changing chemical identity of the solutes, on timescales which may be slower than the reactive events. This article reviews progress in the study of bimolecular chemical reaction dynamics in solution, concentrating on reactions which occur on ground electronic states. It illustrates this progress with reference to recent experimental and computational studies, and considers how the various ways in which a solvent affects the chemical reaction dynamics can be unravelled. Implications are considered for research in fields such as mechanistic synthetic chemistry.
Deformation effect simulation and optimization for double front axle steering mechanism
NASA Astrophysics Data System (ADS)
Wu, Jungang; Zhang, Siqin; Yang, Qinglong
2013-03-01
This paper research on tire wear problem of heavy vehicles with Double Front Axle Steering Mechanism from the flexible effect of Steering Mechanism, and proposes a structural optimization method which use both traditional static structural theory and dynamic structure theory - Equivalent Static Load (ESL) method to optimize key parts. The good simulated and test results show this method has high engineering practice and reference value for tire wear problem of Double Front Axle Steering Mechanism design.
NASA Astrophysics Data System (ADS)
Konstantopoulos, Nikolaos; Trivellas, Panagiotis; Reklitis, Panagiotis
2007-12-01
According to many researchers of organizational theory, a great number of problems encountered by the manufacturing firms are due to their failure to foster innovative behaviour by aligning business strategy and structure. From this point of view, the fit between strategy and structure is essential in order to facilitate firms' innovative behaviour. In the present paper, we adopt Porter's typology to operationalise business strategy (cost leadership, innovative and marketing differentiation, and focus). Organizational structure is built on four dimensions (centralization, formalization, complexity and employees' initiatives to implement new ideas). Innovativeness is measured as product innovation, process and technological innovation. This study provides the necessary theoretical framework for the development of a dynamic simulation method, although the simulation of social events is a quite difficult task, considering that there are so many alternatives (not all well understood).
Research on FBG-Based CFRP Structural Damage Identification Using BP Neural Network
NASA Astrophysics Data System (ADS)
Geng, Xiangyi; Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Lv, Shanshan; Xiao, Hang; Jia, Yuxi; Jia, Lei
2018-06-01
A damage identification system of carbon fiber reinforced plastics (CFRP) structures is investigated using fiber Bragg grating (FBG) sensors and back propagation (BP) neural network. FBG sensors are applied to construct the sensing network to detect the structural dynamic response signals generated by active actuation. The damage identification model is built based on the BP neural network. The dynamic signal characteristics extracted by the Fourier transform are the inputs, and the damage states are the outputs of the model. Besides, damages are simulated by placing lumped masses with different weights instead of inducing real damages, which is confirmed to be feasible by finite element analysis (FEA). At last, the damage identification system is verified on a CFRP plate with 300 mm × 300 mm experimental area, with the accurate identification of varied damage states. The system provides a practical way for CFRP structural damage identification.
Spacecraft Dynamics and Control Program at AFRPL
NASA Technical Reports Server (NTRS)
Das, A.; Slimak, L. K. S.; Schloegel, W. T.
1986-01-01
A number of future DOD and NASA spacecraft such as the space based radar will be not only an order of magnitude larger in dimension than the current spacecraft, but will exhibit extreme structural flexibility with very low structural vibration frequencies. Another class of spacecraft (such as the space defense platforms) will combine large physical size with extremely precise pointing requirement. Such problems require a total departure from the traditional methods of modeling and control system design of spacecraft where structural flexibility is treated as a secondary effect. With these problems in mind, the Air Force Rocket Propulsion Laboratory (AFRPL) initiated research to develop dynamics and control technology so as to enable the future large space structures (LSS). AFRPL's effort in this area can be subdivided into the following three overlapping areas: (1) ground experiments, (2) spacecraft modeling and control, and (3) sensors and actuators. Both the in-house and contractual efforts of the AFRPL in LSS are summarized.
Form follows function: the importance of endoplasmic reticulum shape.
Westrate, L M; Lee, J E; Prinz, W A; Voeltz, G K
2015-01-01
The endoplasmic reticulum (ER) has a remarkably complex structure, composed of a single bilayer that forms the nuclear envelope, along with a network of sheets and dynamic tubules. Our understanding of the biological significance of the complex architecture of the ER has improved dramatically in the last few years. The identification of proteins and forces required for maintaining ER shape, as well as more advanced imaging techniques, has allowed the relationship between ER shape and function to come into focus. These studies have also revealed unexpected new functions of the ER and novel ER domains regulating alterations in ER dynamics. The importance of ER structure has become evident as recent research has identified diseases linked to mutations in ER-shaping proteins. In this review, we discuss what is known about the maintenance of ER architecture, the relationship between ER structure and function, and diseases associated with defects in ER structure.
Historical Contributions to Vertical Flight at the NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Hodges, William T.; Gorton, Susan A.; Jackson, Karen E.
2016-01-01
The NASA Langley Research Center has had a long and distinguished history in powered lift technology development. This research has formed the foundation of knowledge for the powered lift community worldwide. From aerodynamics to structures, aeromechanics, powered lift, acoustics, materials, stability & control, structural dynamics and human factors, Langley has made significant contributions to the advancement of vertical lift technologies. This research has encompassed basic phenomenological studies through subscale laboratory testing, analytical tool development, applied demonstrations and full scale flight-testing. Since the dedication of Langley in 1920, it has contributed to the understanding, design, analysis, and flight test development of experimental and production V/STOL configurations. This paper will chronicle significant areas of research through the decades from 1920 to 2015 with historical photographs and references.
Detailed Multidimensional Simulations of the Structure and Dynamics of Flames
NASA Technical Reports Server (NTRS)
Patnaik, G.; Kailasanath, K.
1999-01-01
Numerical simulations in which the various physical and chemical processes can be independently controlled can significantly advance our understanding of the structure, stability, dynamics and extinction of flames. Therefore, our approach has been to use detailed time-dependent, multidimensional, multispecies numerical models to perform carefully designed computational experiments of flames on Earth and in microgravity environments. Some of these computational experiments are complementary to physical experiments performed under the Microgravity Program while others provide a fundamental understanding that cannot be obtained from physical experiments alone. In this report, we provide a brief summary of our recent research highlighting the contributions since the previous microgravity combustion workshop. There are a number of mechanisms that can cause flame instabilities and result in the formation of dynamic multidimensional structures. In the past, we have used numerical simulations to show that it is the thermo-diffusive instability rather than an instability due to preferential diffusion that is the dominant mechanism for the formation of cellular flames in lean hydrogen-air mixtures. Other studies have explored the role of gravity on flame dynamics and extinguishment, multi-step kinetics and radiative losses on flame instabilities in rich hydrogen-air flames, and heat losses on burner-stabilized flames in microgravity. The recent emphasis of our work has been on exploring flame-vortex interactions and further investigating the structure and dynamics of lean hydrogen-air flames in microgravity. These topics are briefly discussed after a brief discussion of our computational approach for solving these problems.
Molecular structures and intramolecular dynamics of pentahalides
NASA Astrophysics Data System (ADS)
Ischenko, A. A.
2017-03-01
This paper reviews advances of modern gas electron diffraction (GED) method combined with high-resolution spectroscopy and quantum chemical calculations in studies of the impact of intramolecular dynamics in free molecules of pentahalides. Some recently developed approaches to the electron diffraction data interpretation, based on direct incorporation of the adiabatic potential energy surface parameters to the diffraction intensity are described. In this way, complementary data of different experimental and computational methods can be directly combined for solving problems of the molecular structure and its dynamics. The possibility to evaluate some important parameters of the adiabatic potential energy surface - barriers to pseudorotation and saddle point of intermediate configuration from diffraction intensities in solving the inverse GED problem is demonstrated on several examples. With increasing accuracy of the electron diffraction intensities and the development of the theoretical background of electron scattering and data interpretation, it has become possible to investigate complex nuclear dynamics in fluxional systems by the GED method. Results of other research groups are also included in the discussion.
Ram, Nilam; Gerstorf, Denis
2009-01-01
The study of intraindividual variability is the study of fluctuations, oscillations, adaptations, and “noise” in behavioral outcomes that manifest on micro-time scales. This paper provides a descriptive frame for the combined study of intraindividual variability and aging/development. At the conceptual level, we highlight that the study of intraindividual variability provides access to dynamic characteristics – construct-level descriptions of individuals' capacities for change (e.g., lability), and dynamic processes – the systematic changes individuals' exhibit in response to endogenous and exogenous influences (e.g., regulation). At the methodological level, we review how quantifications of net intraindividual variability (e.g., iSD) and models of time-structured intraindividual variability (e.g., time-series) are being used to measure and describe dynamic characteristics and processes. At the research design level, we point to the benefits of measurement burst study designs, wherein data are obtained across multiple time scales, for the study of development. PMID:20025395
Using molecular simulation to explore the nanoscale dynamics of the plant kinome.
Moffett, Alexander S; Shukla, Diwakar
2018-03-09
Eukaryotic protein kinases (PKs) are a large family of proteins critical for cellular response to external signals, acting as molecular switches. PKs propagate biochemical signals by catalyzing phosphorylation of other proteins, including other PKs, which can undergo conformational changes upon phosphorylation and catalyze further phosphorylations. Although PKs have been studied thoroughly across the domains of life, the structures of these proteins are sparsely understood in numerous groups of organisms, including plants. In addition to efforts towards determining crystal structures of PKs, research on human PKs has incorporated molecular dynamics (MD) simulations to study the conformational dynamics underlying the switching of PK function. This approach of experimental structural biology coupled with computational biophysics has led to improved understanding of how PKs become catalytically active and why mutations cause pathological PK behavior, at spatial and temporal resolutions inaccessible to current experimental methods alone. In this review, we argue for the value of applying MD simulation to plant PKs. We review the basics of MD simulation methodology, the successes achieved through MD simulation in animal PKs, and current work on plant PKs using MD simulation. We conclude with a discussion of the future of MD simulations and plant PKs, arguing for the importance of molecular simulation in the future of plant PK research. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
NASA Technical Reports Server (NTRS)
Calise, A. J.; Kadushin, I.; Kramer, F.
1981-01-01
The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.
NASA Astrophysics Data System (ADS)
Theresia, L.; Lahuddin, A. H.; Bangun, R.
2017-12-01
Balanced Scorecard (BSC) is a powerful tool in decision making process. Nevertheless, it is not rare that the BSC does not give satisfactory results because the indicators chosen do not reflect the needs of the organization. Therefore, indicator establishment is very crucial in the utilization of BSC. This research aims to determine the indicators BSC for a university and the research is a case study in Institut Teknologi Indonesia (ITI). In this study, BSC structure and indicators, comparison made by 4 previous researchers was used as the initial guide to determine the structure and indicators of ITI. And then, questionnaires were distributed to selected respondents and a focus group discussion (FGD) was conducted in order to produce indicators of BSC based on the mental model of the ITI. It is found 15 indicators based on the mental model of ITI. Furthermore, the relationships between the indicators are seen as dynamic relationships, and by using system dynamics, some feedback loops that are considered critical to organizational success can be identified and isolated.
Rating of Dynamic Coefficient for Simple Beam Bridge Design on High-Speed Railways
NASA Astrophysics Data System (ADS)
Diachenko, Leonid; Benin, Andrey; Smirnov, Vladimir; Diachenko, Anastasia
2018-06-01
The aim of the work is to improve the methodology for the dynamic computation of simple beam spans during the impact of high-speed trains. Mathematical simulation utilizing numerical and analytical methods of structural mechanics is used in the research. The article analyses parameters of the effect of high-speed trains on simple beam spanning bridge structures and suggests a technique of determining of the dynamic index to the live load. Reliability of the proposed methodology is confirmed by results of numerical simulation of high-speed train passage over spans with different speeds. The proposed algorithm of dynamic computation is based on a connection between maximum acceleration of the span in the resonance mode of vibrations and the main factors of stress-strain state. The methodology allows determining maximum and also minimum values of the main efforts in the construction that makes possible to perform endurance tests. It is noted that dynamic additions for the components of the stress-strain state (bending moments, transverse force and vertical deflections) are different. This condition determines the necessity for differentiated approach to evaluation of dynamic coefficients performing design verification of I and II groups of limiting state. The practical importance: the methodology of determining the dynamic coefficients allows making dynamic calculation and determining the main efforts in split beam spans without numerical simulation and direct dynamic analysis that significantly reduces the labour costs for design.
2013-03-01
Dominated Research 21 2.2.3 Trend 3 : Biomimicked Wing Design 23 2.2.4 Knowledge Gap: Beneficial Flexibility 25 2.2.5 Controversy: The Aeroelastic...Aerovironment Inc. ........................................................................................ 3 Figure 2: The “Hummingbird” developed...5 Figure 3 The number of UAS hours flown by the DOD from 1996
Methods for Computationally Efficient Structured CFD Simulations of Complex Turbomachinery Flows
NASA Technical Reports Server (NTRS)
Herrick, Gregory P.; Chen, Jen-Ping
2012-01-01
This research presents more efficient computational methods by which to perform multi-block structured Computational Fluid Dynamics (CFD) simulations of turbomachinery, thus facilitating higher-fidelity solutions of complicated geometries and their associated flows. This computational framework offers flexibility in allocating resources to balance process count and wall-clock computation time, while facilitating research interests of simulating axial compressor stall inception with more complete gridding of the flow passages and rotor tip clearance regions than is typically practiced with structured codes. The paradigm presented herein facilitates CFD simulation of previously impractical geometries and flows. These methods are validated and demonstrate improved computational efficiency when applied to complicated geometries and flows.
Research Reports: 1983 NASA/ASEE Summer Faculty Fellowship Program
NASA Technical Reports Server (NTRS)
Karr, G. R.; Dozier, J. B.; Osborn, L.; Freeman, M.
1983-01-01
Thirty-five technical reports contain results of investigations in information and electronic systems; materials and processing; systems dynamics; structures and propulsion; and space sciences. Ecology at KSC, satellite de-spin, and the X-ray source monitor were also studied.
Social Adjustment of At-Risk Technology Education Students
ERIC Educational Resources Information Center
Ernst, Jeremy V.; Moye, Johnny J.
2013-01-01
Individual technology education students' subgroup dynamic informs progressions of research while apprising technology teacher educators and classroom technology education teachers of intricate differences between students. Recognition of these differences help educators realize that classroom structure, instruction, and activities must be…
Malti, Tina; Noam, Gil G; Beelmann, Andreas; Sommer, Simon
2016-01-01
Children's and adolescents' mental health needs emphasize the necessity of a new era of translational research to enhance development and yield better lives for children, families, and communities. Developmental, clinical, and translational research serves as a powerful tool for managing the inevitable complexities in pursuit of these goals. This article proposes key ideas that will strengthen current evidence-based intervention practices by creating stronger links between research, practice, and complex systems contexts, with the potential of extending applicability, replicability, and impact. As exemplified in some of the articles throughout this special issue, new research and innovative implementation models will likely contribute to better ways of assessing and dynamically adapting structure and intervention practice within mental health systems. We contend that future models for effective interventions with children and adolescents will involve increased attention to (a) the connection of research on the developmental needs of children and adolescents to practice models; (b) consideration of informed contextual and cultural adaptation in implementation; and (c) a rational model of evidence-based planning, using a dynamic, inclusive approach with high support for adaptation, flexibility, and implementation fidelity. We discuss future directions for translational research for researchers, practitioners, and administrators in the field to continue and transform these ideas and their illustrations.
Buffet test in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.
1992-01-01
A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk for the facility. Presented here are the test results from a structural dynamics and aeroelastic response point of view. The activities required for the safety analysis and risk assessment are described. The test was conducted in the same manner as a flutter test and employed on-board dynamic instrumentation, real time dynamic data monitoring, and automatic and manual tunnel interlock systems for protecting the model.
A Government/Industry Summary of the Design Analysis Methods for Vibrations (DAMVIBS) Program
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G. (Compiler)
1993-01-01
The NASA Langley Research Center in 1984 initiated a rotorcraft structural dynamics program, designated DAMVIBS (Design Analysis Methods for VIBrationS), with the objective of establishing the technology base needed by the rotorcraft industry for developing an advanced finite-element-based dynamics design analysis capability for vibrations. An assessment of the program showed that the DAMVIBS Program has resulted in notable technical achievements and major changes in industrial design practice, all of which have significantly advanced the industry's capability to use and rely on finite-element-based dynamics analyses during the design process.
Coupled disease-behavior dynamics on complex networks: A review
NASA Astrophysics Data System (ADS)
Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.
2015-12-01
It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.
Reduction of gas flow nonuniformity in gas turbine engines by means of gas-dynamic methods
NASA Astrophysics Data System (ADS)
Matveev, V.; Baturin, O.; Kolmakova, D.; Popov, G.
2017-08-01
Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and as a consequence to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity as the source of dynamic stresses in the rotor blades. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. On the basis of existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.
Buffet test in the National Transonic Facility
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.
1992-01-01
A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk to the facility. This paper presents the test results from a structural dynamics and aeroelastic response point of view and describes the activities required for the safety analysis and risk assessment. The test was conducted in the same manner as a flutter test and employed onboard dynamic instrumentation, real time dynamic data monitoring, automatic, and manual tunnel interlock systems for protecting the model. The procedures and test techniques employed for this test are expected to serve as the basis for future aeroelastic testing in the National Transonic Facility. This test program was a cooperative effort between the Boeing Commercial Airplane Company and the NASA Langley Research Center.
The Mechanical Response of Multifunctional Battery Systems
NASA Astrophysics Data System (ADS)
Tsutsui, Waterloo
The current state of the art in the field of the mechanical behavior of electric vehicle (EV) battery cells is limited to quasi-static analysis. The lack of published data in the dynamic mechanical behavior of EV battery cells blinds engineers and scientists with the uncertainty of what to expect when EVs experience such unexpected events as intrusions to their battery systems. To this end, the recent occurrences of several EVs catching fire after hitting road debris even make this topic timelier. In order to ensure the safety of EV battery, it is critical to develop quantitative understanding of battery cell mechanical behavior under dynamic compressive loadings. Specifically, the research focuses on the dynamic mechanical loading effect on the standard "18650" cylindrical lithium-ion battery cells. In the study, the force-displacement and voltage-displacement behavior of the battery cells were analyzed experimentally at two strain rates, two state-of-charges, and two unit-cell configurations. The results revealed the strain rate sensitivity of their mechanical responses with the solid sacrificial elements. When the hollow sacrificial cells are used, on the other hand, effect was negligible up to the point of densification strength. Also, the high state-of-charge appeared to increase the stiffness of the battery cells. The research also revealed the effectiveness of the sacrificial elements on the mechanical behavior of a unit cell that consists of one battery cell and six sacrificial elements. The use of the sacrificial elements resulted in the delayed initiation of electric short circuit. Based on the analysis of battery behavior at the cell level, granular battery assembly, a battery pack, was designed and fabricated. The behavior of the granular battery assembly was analyzed both quasistatically and dynamically. Building on the results of the research, various research plans were proposed. Through conducting the research, we sought to answer the following research questions: Could we use battery cells and packs as a part of vehicle structures? Could we use battery cells and packs as a part of vehicle impact energy absorption structure? Based on the research results, the answer to the first question is "yes." However, the granular battery assembly configuration is not suitable as a load-bearing battery structure since the main purpose of granular battery assembly, apart from energy storage for vehicle propulsion, is to work as a kinetic energy dissipation device. The answer to the second question is also "yes." However, the kinetic energy dissipation is mainly performed by the sacrificial elements surrounding the battery cells.
Molecular Dynamics of the ZIKA Virus NS3 Helicase
NASA Astrophysics Data System (ADS)
Raubenolt, Bryan; Rick, Steven; The Rick Group Team
The recent outbreaks of the ZIKA virus (ZIKV) and its connection to microcephaly in newborns has raised its awareness as a global threat and many scientific research efforts are currently underway in attempt to create a vaccine. Molecular Dynamics is a powerful method of investigating the physical behavior of protein complexes. ZIKV is comprised of 3 structural and 7 nonstructural proteins. The NS3 helicase protein appears to play a significant role in the replication complex and its inhibition could be a crucial source of antiviral drug design. This research primarily focuses on studying the structural dynamics, over the course of few hundred nanoseconds, of NS3 helicase in the free state, as well as in complex form with human ssRNA, ATP, and an analogue of GTP. RMSD and RMSF plots of each simulation will provide details on the forces involved in the overall stability of the active and inactive states. Furthermore, free energy calculations on a per residue level will reveal the most interactive residues between states and ultimately the primary driving force behind these interactions. Together these analyses will provide highly relevant information on the binding surface chemistry and thus serve as the basis for potential drug design.
Spectral Dynamics Inc., ships hybrid, 316-channel data acquisition system to Sandia Labs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Douglas
2003-09-01
Spectral Dynamics announced the shipment of a 316-channel data acquisition system. The system was custom designed for the Light Initiated High Explosive (LIHE) facility at Sandia Labs in Albuquerque, New Mexico by Spectral Dynamics Advanced Research Products Group. This Spectral Dynamics data acquisition system was tailored to meet the unique LIHE environmental and testing requirements utilizing Spectral Dynamics commercial off the shelf (COTS) Jaguar and VIDAS products supplemented by SD Alliance partner's (COTS) products. 'This system is just the beginning of our cutting edge merged technology solutions,' stated Mark Remelman, Manager for the Spectral Dynamics Advanced Research Products Group. 'Thismore » Hybrid system has 316-channels of data acquisition capability, comprised of 102.4kHz direct to disk acquisition and 2.5MHz, 200Mhz & 500Mhz RAM based capabilities. In addition it incorporates the advanced bridge conditioning and dynamic configuration capabilities offered by Spectral Dynamics new Smart Interface Panel System (SIPS{trademark}).' After acceptance testing, Tony King, the Instrumentation Engineer facilitating the project for the Sandia LIHE group commented; 'The LIHE staff was very impressed with the design, construction, attention to detail and overall performance of the instrumentation system'. This system combines VIDAS, a leading edge fourth generation SD-VXI hardware and field-proven software system from SD's Advanced Research Products Group with SD's Jaguar, a multiple Acquisition Control Peripheral (ACP) system that allows expansion to hundreds of channels without sacrificing signal processing performance. Jaguar incorporates dedicated throughput disks for each ACP providing time streaming to disk at up to the maximum sample rate. Spectral Dynamics, Inc. is a leading worldwide supplier of systems and software for advanced computer-automated data acquisition, vibration testing, structural dynamics, explosive shock, high-speed transient capture, acoustic analysis, monitoring, measurement, control and backup. Spectral Dynamics products are used for research, design verification, product testing and process improvement by manufacturers of all types of electrical, electronic and mechanical products, as well as by universities and government-funded agencies. The Advanced Research Products Group is the newest addition to the Spectral Dynamics family. Their newest VXI data acquisition hardware pushes the envelope on capabilities and embodies the same rock solid design methodologies, which have always differentiated Spectral Dynamics from its competition.« less
NASA Astrophysics Data System (ADS)
Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Nigro, Antonella; Carlo Ponzo, Felice
2017-04-01
In this paper, several nonlinear numerical models of reinforced concrete framed structures have been defined in order to evaluate the effects of non-structural elements and soil-structure interaction on the elastic dynamic behaviour of buildings. In the last few years, many and various studies have highlighted the significant effects derived from the interaction between structural and non-structural components on the main dynamic characteristics of a building. Usually, structural and non-structural elements act together, adding both masses and stiffness. The presence of infill panels is generally neglected in the design process of structural elements, although these elements can significantly increase the lateral stiffness of a structure leading to a modification in the dynamic properties. Particularly, at the Damage Limit State (where an elastic behaviour is expected), soil-structure interaction effects and non-structural elements may further affect the elastic natural period of buildings, changing the spectral accelerations compared with those provided by seismic codes in case of static analyses. In this work, a parametric study has been performed in order to evaluate the elastic fundamental period of vibration of buildings as a function of structural morphology (height, plan area, ratio between plan dimensions), infills presence and distribution and soil characteristics. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".
Raman Optical Activity of Biological Molecules
NASA Astrophysics Data System (ADS)
Blanch, Ewan W.; Barron, Laurence D.
Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.
A suite of optical fibre sensors for structural condition monitoring
NASA Astrophysics Data System (ADS)
Sun, T.; Grattan, K. T. V.; Carlton, J.
2015-05-01
This paper is to review the research activities at City University London in the development of a range of fibre Bragg grating (FBG)-based sensors, including strain, temperature, relative humidity, vibration and acoustic sensors, with an aim to meet the increasing demands from industry for structural condition monitoring. As a result, arrays of optical fibre sensors have been instrumented into various types of structures, including concrete, limestone, marine propellers, pantograph and electrical motors, allowing for both static and dynamic monitoring and thus enhanced structural reliability and integrity.
Stability Analysis of Plates and Shells
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr. (Compiler); Nemeth, Michael P. (Compiler)
1998-01-01
This special publication contains the papers presented at the special sessions honoring Dr. Manuel Stein during the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference held in Kissimmee, Florida, Apdl 7-10, 1997. This volume, and the SDM special sessions, are dedicated to the memory of Dr. Manuel Stein, a major pioneer in structural mechanics, plate and shell buckling, and composite structures. Many of the papers presented are the work of Manny's colleagues and co-workers and are a result, directly or indirectly, of his influence. Dr. Stein earned his Ph.D. in Engineering Mechanics from Virginia Polytechnic Institute and State University in 1958. He worked in the Structural Mechanics Branch at the NASA Langley Research Center from 1943 until 1989. Following his retirement, Dr. Stein continued his involvement with NASA as a Distinguished Research Associate.
Concepts and tools for predictive modeling of microbial dynamics.
Bernaerts, Kristel; Dens, Els; Vereecken, Karen; Geeraerd, Annemie H; Standaert, Arnout R; Devlieghere, Frank; Debevere, Johan; Van Impe, Jan F
2004-09-01
Description of microbial cell (population) behavior as influenced by dynamically changing environmental conditions intrinsically needs dynamic mathematical models. In the past, major effort has been put into the modeling of microbial growth and inactivation within a constant environment (static models). In the early 1990s, differential equation models (dynamic models) were introduced in the field of predictive microbiology. Here, we present a general dynamic model-building concept describing microbial evolution under dynamic conditions. Starting from an elementary model building block, the model structure can be gradually complexified to incorporate increasing numbers of influencing factors. Based on two case studies, the fundamentals of both macroscopic (population) and microscopic (individual) modeling approaches are revisited. These illustrations deal with the modeling of (i) microbial lag under variable temperature conditions and (ii) interspecies microbial interactions mediated by lactic acid production (product inhibition). Current and future research trends should address the need for (i) more specific measurements at the cell and/or population level, (ii) measurements under dynamic conditions, and (iii) more comprehensive (mechanistically inspired) model structures. In the context of quantitative microbial risk assessment, complexity of the mathematical model must be kept under control. An important challenge for the future is determination of a satisfactory trade-off between predictive power and manageability of predictive microbiology models.
Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim
2016-11-01
Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.
High pressure hydrogen stabilised by quantum nuclear motion
NASA Astrophysics Data System (ADS)
Needs, Richard; Monserrat, Bartomeu; Pickard, Chris
Hydrogen under extreme pressures is of fundamental interest, as it might exhibit exotic physical phenomena, and of practical interest, as it is a major component of many astrophysical objects. Structure searches have been successful at identifying promising candidates for the known phases of high pressure hydrogen. However, these searches have so far been restricted to the location of minima of the potential energy landscape. In this talk, we will describe a new structure searching method, ``saddle-point ab initio random structure searching'' (sp-AIRSS), that allows us to identify structures associated with saddle points of the potential energy landscape. Using sp-AIRSS, we find two new high-pressure hydrogen structures that exhibit a harmonic dynamical instability, but quantum and thermal anharmonic motion render them dynamically stable. These structures are formed by mixed layers of strongly and softly bound hydrogen molecules, and become thermodynamically competitive at the highest pressures reached in experiment. The experimental implications of these new structures will also be discussed. BM is supported by Robinson College, Cambridge, and the Cambridge Philosophical Society. RJN and CJP are supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK.
Belov, V G; Parfenov, Iu A; Zaplutanov, V A; Khaĭrutdinov, D R
2013-01-01
The article presents the analysis of the structure and dynamics of psychopathology associated with addictive disorders in elderly patients with alcohol dependence. In terms of syndromic approach the structure of neurotic disease in elderly patients with a verified diagnosis of mental and behavioral disorders associated with alcohol consumption was evaluated. In the overall structure of neurotic pathology in these patients the analysis of symptoms of neurotic diseases, the research of the structure of syndromes and their dynamics were carried out, as well as the patient's attitude to the disease and to its manifestations was determined. A factor model of the pathogenesis of neurotic pathology connected with mental and behavioral disorders due to alcohol use in elderly patients was developed. The high clinical effectiveness of the drug "Cytoflavin" used in the reduction of psychiatric symptoms in patients aged from 62 to 74 years with a diagnosis of mental and behavioral disorders associated with alcohol consumption has been shown.
Jiang, Xi Zhuo; Feng, Muye; Ventikos, Yiannis; Luo, Kai H
2018-04-10
Flow patterns on surfaces grafted with complex structures play a pivotal role in many engineering and biomedical applications. In this research, large-scale molecular dynamics (MD) simulations are conducted to study the flow over complex surface structures of an endothelial glycocalyx layer. A detailed structure of glycocalyx has been adopted and the flow/glycocalyx system comprises about 5,800,000 atoms. Four cases involving varying external forces and modified glycocalyx configurations are constructed to reveal intricate fluid behaviour. Flow profiles including temporal evolutions and spatial distributions of velocity are illustrated. Moreover, streamline length and vorticity distributions under the four scenarios are compared and discussed to elucidate the effects of external forces and glycocalyx configurations on flow patterns. Results show that sugar chain configurations affect streamline length distributions but their impact on vorticity distributions is statistically insignificant, whilst the influence of the external forces on both streamline length and vorticity distributions are trivial. Finally, a regime diagram for flow over complex surface structures is proposed to categorise flow patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Jincheng; Rimsza, Jessica; Deng, Lu
This NEUP Project aimed to generate accurate atomic structural models of nuclear waste glasses by using large-scale molecular dynamics-based computer simulations and to use these models to investigate self-diffusion behaviors, interfacial structures, and hydrated gel structures formed during dissolution of these glasses. The goal was to obtain realistic and accurate short and medium range structures of these complex oxide glasses, to provide a mechanistic understanding of the dissolution behaviors, and to generate reliable information with predictive power in designing nuclear waste glasses for long-term geological storage. Looking back of the research accomplishments of this project, most of the scientific goalsmore » initially proposed have been achieved through intensive research in the three and a half year period of the project. This project has also generated a wealth of scientific data and vibrant discussions with various groups through collaborations within and outside of this project. Throughout the project one book chapter and 14 peer reviewed journal publications have been generated (including one under review) and 16 presentations (including 8 invited talks) have been made to disseminate the results of this project in national and international conference. Furthermore, this project has trained several outstanding graduate students and young researchers for future workforce in nuclear related field, especially on nuclear waste immobilization. One postdoc and four PhD students have been fully or partially supported through the project with intensive training in the field material science and engineering with expertise on glass science and nuclear waste disposal« less
2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher Benning
2011-02-04
This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. Themore » goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.« less
The dynamic response and shock-recovery of porcine skeletal muscle tissue
NASA Astrophysics Data System (ADS)
Wilgeroth, James Michael; Hazell, Paul; Appleby-Thomas, Gareth James
2012-03-01
A soft-capture system allowing for one-dimensional shock loading and release of soft tissues via the plate-impact technique has been developed. In addition, we present the numerical simulation of a shock-recovery experiment involving porcine skeletal muscle and further investigate the effects of the transient wave on the structure of the tissue via transmission electron microscope (TEM). This paper forms part of an ongoing research programme on the dynamic behaviour of skeletal muscle tissue.
Viljoen, Jodi L.; Gray, Andrew L.; Shaffer, Catherine; Latzman, Natasha E.; Scalora, Mario J.; Ullman, Daniel
2018-01-01
Although the Juvenile Sex Offender Assessment Protocol–II (J-SOAP-II) and the Structured Assessment of Violence Risk in Youth (SAVRY) include an emphasis on dynamic, or modifiable factors, there has been little research on dynamic changes on these tools. To help address this gap, we compared admission and discharge scores of 163 adolescents who attended a residential, cognitive-behavioral treatment program for sexual offending. Based on reliable change indices, one half of youth showed a reliable decrease on the J-SOAP-II Dynamic Risk Total Score and one third of youth showed a reliable decrease on the SAVRY Dynamic Risk Total Score. Contrary to expectations, decreases in risk factors and increases in protective factors did not predict reduced sexual, violent nonsexual, or any reoffending. In addition, no associations were found between scores on the Psychopathy Checklist:Youth Version and levels of change. Overall, the J-SOAP-II and the SAVRY hold promise in measuring change, but further research is needed. PMID:26199271
Viljoen, Jodi L; Gray, Andrew L; Shaffer, Catherine; Latzman, Natasha E; Scalora, Mario J; Ullman, Daniel
2017-06-01
Although the Juvenile Sex Offender Assessment Protocol-II (J-SOAP-II) and the Structured Assessment of Violence Risk in Youth (SAVRY) include an emphasis on dynamic, or modifiable factors, there has been little research on dynamic changes on these tools. To help address this gap, we compared admission and discharge scores of 163 adolescents who attended a residential, cognitive-behavioral treatment program for sexual offending. Based on reliable change indices, one half of youth showed a reliable decrease on the J-SOAP-II Dynamic Risk Total Score and one third of youth showed a reliable decrease on the SAVRY Dynamic Risk Total Score. Contrary to expectations, decreases in risk factors and increases in protective factors did not predict reduced sexual, violent nonsexual, or any reoffending. In addition, no associations were found between scores on the Psychopathy Checklist:Youth Version and levels of change. Overall, the J-SOAP-II and the SAVRY hold promise in measuring change, but further research is needed.
NASA Astrophysics Data System (ADS)
Setiawan, Jody; Nakazawa, Shoji
2017-10-01
This paper discusses about comparison of seismic response behaviors, seismic performance and seismic loss function of a conventional special moment frame steel structure (SMF) and a special moment frame steel structure with base isolation (BI-SMF). The validation of the proposed simplified estimation method of the maximum deformation of the base isolation system by using the equivalent linearization method and the validation of the design shear force of the superstructure are investigated from results of the nonlinear dynamic response analysis. In recent years, the constructions of steel office buildings with seismic isolation system are proceeding even in Indonesia where the risk of earthquakes is high. Although the design code for the seismic isolation structure has been proposed, there is no actual construction example for special moment frame steel structure with base isolation. Therefore, in this research, the SMF and BI-SMF buildings are designed by Indonesian Building Code which are assumed to be built at Padang City in Indonesia. The material of base isolation system is high damping rubber bearing. Dynamic eigenvalue analysis and nonlinear dynamic response analysis are carried out to show the dynamic characteristics and seismic performance. In addition, the seismic loss function is obtained from damage state probability and repair cost. For the response analysis, simulated ground accelerations, which have the phases of recorded seismic waves (El Centro NS, El Centro EW, Kobe NS and Kobe EW), adapted to the response spectrum prescribed by the Indonesian design code, that has, are used.
10.2 Thermal-Structural Testing
NASA Technical Reports Server (NTRS)
Hudson, Larry D.
2008-01-01
Objective: Test a C/SiC Ruddervator Subcomponent under relevant thermal, mechanical & dynamic loading a) Thermal-structural mission cycling for re-entry and hypersonic cruise conditions; b) High-temperature modal survey to study the effect of heating on mode shapes, natural frequencies and damping. Supports NASA ARMD Hypersonics Material & Structures Program. Partners: NASA Dryden / Langley / Glenn, Lockheed-Martin, Materials Research & Design, GE CCP Test Phases - Phase 1: Acoustic-Vibration Testing (LaRC) completed - Phase 2: Thermal-Mechanical Testing (DFRC) in assembly - Phase 3: Mechanical Testing (DFRC) in assembly
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Rizzi, Stephen A.; Rice, Chad E.
2004-01-01
This document represents a compilation of three informal reports from reverberant acoustic tests performed on X-37 hot structure control surfaces in the NASA Langley Research Center Structural Acoustics Loads and Transmission (SALT) facility. The first test was performed on a carbon-silicone carbide flaperon subcomponent on February 24, 2004. The second test was performed on a carbon-carbon ruddervator subcomponent on May 27, 2004. The third test was performed on a carbon-carbon flaperon subcomponent on June 30, 2004.
Analysis and control of the vibration of doubly fed wind turbine
NASA Astrophysics Data System (ADS)
Yu, Manye; Lin, Ying
2017-01-01
The fault phenomena of the violent vibration of certain doubly-fed wind turbine were researched comprehensively, and the dynamic characteristics, load and fault conditions of the system were discussed. Firstly, the structural dynamics analysis of wind turbine is made, and the dynamics mold is built. Secondly, the vibration testing of wind turbine is done with the German test and analysis systems BBM. Thirdly, signal should be analyzed and dealt with. Based on the experiment, spectrum analysis of the motor dynamic balance can be made by using signal processing toolbox of MATLAB software, and the analysis conclusions show that the vibration of wind turbine is caused by dynamic imbalance. The results show that integrating mechanical system dynamics theory with advanced test technology can solve the vibration problem more successfully, which is important in vibration diagnosis of mechanical equipment.
Aeroelasticity of wing and wing-body configurations on parallel computers
NASA Technical Reports Server (NTRS)
Byun, Chansup
1995-01-01
The objective of this research is to develop computationally efficient methods for solving aeroelasticity problems on parallel computers. Both uncoupled and coupled methods are studied in this research. For the uncoupled approach, the conventional U-g method is used to determine the flutter boundary. The generalized aerodynamic forces required are obtained by the pulse transfer-function analysis method. For the coupled approach, the fluid-structure interaction is obtained by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.
Dynamic Stability of Uncertain Laminated Beams Under Subtangential Loads
NASA Technical Reports Server (NTRS)
Goyal, Vijay K.; Kapania, Rakesh K.; Adelman, Howard (Technical Monitor); Horta, Lucas (Technical Monitor)
2002-01-01
Because of the inherent complexity of fiber-reinforced laminated composites, it can be challenging to manufacture composite structures according to their exact design specifications, resulting in unwanted material and geometric uncertainties. In this research, we focus on the deterministic and probabilistic stability analysis of laminated structures subject to subtangential loading, a combination of conservative and nonconservative tangential loads, using the dynamic criterion. Thus a shear-deformable laminated beam element, including warping effects, is derived to study the deterministic and probabilistic response of laminated beams. This twenty-one degrees of freedom element can be used for solving both static and dynamic problems. In the first-order shear deformable model used here we have employed a more accurate method to obtain the transverse shear correction factor. The dynamic version of the principle of virtual work for laminated composites is expressed in its nondimensional form and the element tangent stiffness and mass matrices are obtained using analytical integration The stability is studied by giving the structure a small disturbance about an equilibrium configuration, and observing if the resulting response remains small. In order to study the dynamic behavior by including uncertainties into the problem, three models were developed: Exact Monte Carlo Simulation, Sensitivity Based Monte Carlo Simulation, and Probabilistic FEA. These methods were integrated into the developed finite element analysis. Also, perturbation and sensitivity analysis have been used to study nonconservative problems, as well as to study the stability analysis, using the dynamic criterion.
ERIC Educational Resources Information Center
Lareau, Annette; Munoz, Vanessa Lopes
2012-01-01
Researchers and policy makers overwhelmingly stress the harmonious nature of parent involvement. Researchers have focused on individual forms of parent involvement, yet collective efforts of parents in parent-teacher organizations (PTOs) are a key dynamic in schools. Drawing on a case study of an elementary school in an upper-middle-class…
Solution Techniques for Large Eigenvalue Problems in Structural Dynamics.
1979-06-01
Pasadena, California 91109 Washington, D.C. 20553 Professor Paul M. Naghdi National Academy of Sciences University of California National Research...Engineering Washington, D.C. 20064 : S oProfessor Burt Paul University of Pennsylvania Dr. Samuel B. Batdorf Towns School of Civil and University of...Universities (Con’t) Dr. V. K. Varadan Professor V. H. Neubert Ohio State University Research Foundation Pennsylvania State University Department of
Ab initio molecular dynamics study on the local structures in Ce70Al30 and La70Al30 metallic glasses
NASA Astrophysics Data System (ADS)
Li, FX; Kong, JB; Li, MZ
2018-05-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51631003 and 51271197), the National Basic Program of China (Grant No. 2015CB856800), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 16XNLQ01).
2 1/2-Year-Old Children Use Animacy and Syntax to Learn a New Noun
ERIC Educational Resources Information Center
Childers, Jane B.; Echols, Catharine H.
2004-01-01
We examine how attention to animacy information may contribute to children's developing knowledge of language. This research extends beyond prior research in that children were shown dynamic events with novel entities, and were asked not only to comprehend sentences but to use sentence structure to infer the meaning of a new word. In a 4 x 3…
Creating the Future: Research and Technology
NASA Technical Reports Server (NTRS)
1998-01-01
With the many different technical talents, Marshall Space Flight Center (MSFC) continues to be an important force behind many scientific breakthroughs. The MSFC's annual report reviews the technology developments, research in space and microgravity sciences, studies in space system concepts, and technology transfer. The technology development programs include development in: (1) space propulsion and fluid management, (2) structures and dynamics, (3) materials and processes and (4) avionics and optics.
Updating the Finite Element Model of the Aerostructures Test Wing Using Ground Vibration Test Data
NASA Technical Reports Server (NTRS)
Lung, Shun-Fat; Pak, Chan-Gi
2009-01-01
Improved and/or accelerated decision making is a crucial step during flutter certification processes. Unfortunately, most finite element structural dynamics models have uncertainties associated with model validity. Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. The model tuning process requires not only satisfactory correlations between analytical and experimental results, but also the retention of the mass and stiffness properties of the structures. Minimizing the difference between analytical and experimental results is a type of optimization problem. By utilizing the multidisciplinary design, analysis, and optimization (MDAO) tool in order to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes can be matched to the target data to retain the mass matrix orthogonality. This approach has been applied to minimize the model uncertainties for the structural dynamics model of the aerostructures test wing (ATW), which was designed and tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California). This study has shown that natural frequencies and corresponding mode shapes from the updated finite element model have excellent agreement with corresponding measured data.
Updating the Finite Element Model of the Aerostructures Test Wing using Ground Vibration Test Data
NASA Technical Reports Server (NTRS)
Lung, Shun-fat; Pak, Chan-gi
2009-01-01
Improved and/or accelerated decision making is a crucial step during flutter certification processes. Unfortunately, most finite element structural dynamics models have uncertainties associated with model validity. Tuning the finite element model using measured data to minimize the model uncertainties is a challenging task in the area of structural dynamics. The model tuning process requires not only satisfactory correlations between analytical and experimental results, but also the retention of the mass and stiffness properties of the structures. Minimizing the difference between analytical and experimental results is a type of optimization problem. By utilizing the multidisciplinary design, analysis, and optimization (MDAO) tool in order to optimize the objective function and constraints; the mass properties, the natural frequencies, and the mode shapes can be matched to the target data to retain the mass matrix orthogonality. This approach has been applied to minimize the model uncertainties for the structural dynamics model of the Aerostructures Test Wing (ATW), which was designed and tested at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC) (Edwards, California). This study has shown that natural frequencies and corresponding mode shapes from the updated finite element model have excellent agreement with corresponding measured data.
Aircraft Safety and Operating Problems. [conference
NASA Technical Reports Server (NTRS)
1976-01-01
Results of NASA research in the field of aircraft safety and operating problems are discussed. Topics include: (1) terminal area operations, (2) flight dynamics and control; (3) ground operations; (4) atmospheric environment; (5) structures and materials; (6) powerplants; (7) noise; and (8) human factors engineering.
Advanced Computational Dynamics Simulation of Protective Structures Research
2008-04-01
unreinforced masonry.” Ancient Reconstruction of the Pompeii Forum. School of Architecture, University of Virginia, Charlottesville, Virginia...Martini, K. (1996b). “Finite element studies in the two-way out-of-plane behavior of unreinforced masonry,” Ancient Reconstruction of the Pompeii Forum
EQUILIBRIUM STRUCTURE AND DYNAMICS OF THE CALIFORNIA CURRENT SYSTEM. (R825381)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Multifunctional Materials and Structures Gordon Research Conference
2016-03-08
accelerating transport or dynamic chemical changes in strong, stiff materials, optimizing interfaces between hard and soft materials, multi-physics...Forms; Discuss Future Site and Scheduling Preferences; Election of the Next Vice Chair 7:30 pm - 9:30 pm Actuation and Morphing Discussion Leader
The hydrogen-bond network of water supports propagating optical phonon-like modes.
Elton, Daniel C; Fernández-Serra, Marivi
2016-01-04
The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water's hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal-transverse splitting, indicating the presence of coherent long-range dipole-dipole interactions, as in ice. Our results indicate the dynamics of liquid water have more similarities to ice than previously thought.
Actin Engine in Immunological Synapse
Piragyte, Indre
2012-01-01
T cell activation and function require physical contact with antigen presenting cells at a specialized junctional structure known as the immunological synapse. Once formed, the immunological synapse leads to sustained T cell receptor-mediated signalling and stabilized adhesion. High resolution microscopy indeed had a great impact in understanding the function and dynamic structure of immunological synapse. Trends of recent research are now moving towards understanding the mechanical part of immune system, expanding our knowledge in mechanosensitivity, force generation, and biophysics of cell-cell interaction. Actin cytoskeleton plays inevitable role in adaptive immune system, allowing it to bear dynamic and precise characteristics at the same time. The regulation of mechanical engine seems very complicated and overlapping, but it enables cells to be very sensitive to external signals such as surface rigidity. In this review, we focus on actin regulators and how immune cells regulate dynamic actin rearrangement process to drive the formation of immunological synapse. PMID:22916042
The dynamic micro computed tomography at SSRF
NASA Astrophysics Data System (ADS)
Chen, R.; Xu, L.; Du, G.; Deng, B.; Xie, H.; Xiao, T.
2018-05-01
Synchrotron radiation micro-computed tomography (SR-μCT) is a critical technique for quantitative characterizing the 3D internal structure of samples, recently the dynamic SR-μCT has been attracting vast attention since it can evaluate the three-dimensional structure evolution of a sample. A dynamic μCT method, which is based on monochromatic beam, was developed at the X-ray Imaging and Biomedical Application Beamline at Shanghai Synchrotron Radiation Facility, by combining the compressed sensing based CT reconstruction algorithm and hardware upgrade. The monochromatic beam based method can achieve quantitative information, and lower dose than the white beam base method in which the lower energy beam is absorbed by the sample rather than contribute to the final imaging signal. The developed method is successfully used to investigate the compression of the air sac during respiration in a bell cricket, providing new knowledge for further research on the insect respiratory system.
NASA Astrophysics Data System (ADS)
Dragos, Kosmas; Smarsly, Kay
2016-04-01
System identification has been employed in numerous structural health monitoring (SHM) applications. Traditional system identification methods usually rely on centralized processing of structural response data to extract information on structural parameters. However, in wireless SHM systems the centralized processing of structural response data introduces a significant communication bottleneck. Exploiting the merits of decentralization and on-board processing power of wireless SHM systems, many system identification methods have been successfully implemented in wireless sensor networks. While several system identification approaches for wireless SHM systems have been proposed, little attention has been paid to obtaining information on the physical parameters (e.g. stiffness, damping) of the monitored structure. This paper presents a hybrid system identification methodology suitable for wireless sensor networks based on the principles of component mode synthesis (dynamic substructuring). A numerical model of the monitored structure is embedded into the wireless sensor nodes in a distributed manner, i.e. the entire model is segmented into sub-models, each embedded into one sensor node corresponding to the substructure the sensor node is assigned to. The parameters of each sub-model are estimated by extracting local mode shapes and by applying the equations of the Craig-Bampton method on dynamic substructuring. The proposed methodology is validated in a laboratory test conducted on a four-story frame structure to demonstrate the ability of the methodology to yield accurate estimates of stiffness parameters. Finally, the test results are discussed and an outlook on future research directions is provided.
Design and Experimental Verification of Deployable/Inflatable Ultra-Lightweight Structures
NASA Technical Reports Server (NTRS)
Pai, P. Frank
2004-01-01
Because launch cost of a space structural system is often proportional to the launch volume and mass and there is no significant gravity in space, NASA's space exploration programs and various science missions have stimulated extensive use of ultra-lightweight deployable/inflatable structures. These structures are named here as Highly Flexible Structures (HFSs) because they are designed to undergo large displacements, rotations, and/or buckling without plastic deformation under normal operation conditions. Except recent applications to space structural systems, HFSs have been used in many mechanical systems, civil structures, aerospace vehicles, home appliances, and medical devices to satisfy space limitations, provide special mechanisms, and/or reduce structural weight. The extensive use of HFSs in today's structural engineering reveals the need of a design and analysis software and a database system with design guidelines for practicing engineers to perform computer-aided design and rapid prototyping of HFSs. Also to prepare engineering students for future structural engineering requires a new and easy-to- understand method of presenting the complex mathematics of the modeling and analysis of HFSs. However, because of the high flexibility of HFSs, many unique challenging problems in the modeling, design and analysis of HFSs need to be studied. The current state of research on HFSs needs advances in the following areas: (1) modeling of large rotations using appropriate strain measures, (2) modeling of cross-section warpings of structures, (3) how to account for both large rotations and cross- section warpings in 2D (two-dimensional) and 1D structural theories, (4) modeling of thickness thinning of membranes due to inflation pressure, pretension, and temperature change, (5) prediction of inflated shapes and wrinkles of inflatable structures, (6) development of efficient numerical methods for nonlinear static and dynamic analyses, and (7) filling the gap between geometrically exact elastic analysis and elastoplastic analysis. The objectives of this research project were: (1) to study the modeling, design, and analysis of deployable/inflatable ultra-lightweight structures, (2) to perform numerical and experimental studies on the static and dynamic characteristics and deployability of HFSs, (3) to derive guidelines for designing HFSs, (4) to develop a MATLAB toolbox for the design, analysis, and dynamic animation of HFSs, and (5) to perform experiments and establish an adequate database of post-buckling characteristics of HFSs.
The dynamics and evolution of clusters of galaxies
NASA Technical Reports Server (NTRS)
Geller, Margaret; Huchra, John P.
1987-01-01
Research was undertaken to produce a coherent picture of the formation and evolution of large-scale structures in the universe. The program is divided into projects which examine four areas: the relationship between individual galaxies and their environment; the structure and evolution of individual rich clusters of galaxies; the nature of superclusters; and the large-scale distribution of individual galaxies. A brief review of results in each area is provided.
Microgravity Foam Structure and Rheology
NASA Technical Reports Server (NTRS)
Durian, Douglas J.
1996-01-01
The objective of this research was to exploit rheological and multiple-light scattering techniques, and ultimately microgravity conditions, in order to quantify and elucidate the unusual elastic character of foams in terms of their underlying microscopic structure and dynamics. Special interest was in determining how this elastic character vanishes, i.e. how the foam melts into a simple viscous liquid, as a function of both increasing liquid content and shear strain rate.
United States Air Force Graduate Student Research Program. Program Management Report
1988-12-01
PRELIMINARY STRUCTURAL DESIGN/OPTIMIZATION by Richard A. Swift ABSTRACT Finite element analysis for use in structural design has advanced to the point where...Plates Subjected Gregory Schoeppner to Low Velocity Impact *** Same Report as Prof. William Wolfe * 57 Finite Element Analysis for Preliminary Richard...and dynamic load conditions using both radial and bias- ply tires. A detailed three-dimensional finite - element model of the wheel was generated for
NASA Technical Reports Server (NTRS)
Martin, Richard E.; Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Baaklini, George Y.
2005-01-01
Impedance-based structural-health-monitoring uses piezoelectric (PZT) patches that are bonded onto or embedded in a structure. Each individual patch behaves as both an actuator of the surrounding structural area as well as a sensor of the structural response. The size of the excited area varies with the geometry and material composition of the structure, and an active patch is driven by a sinusoidal voltage sweep. When a PZT patch is subjected to an electric field, it produces a mechanical strain; and when it is stressed, it produces an electric charge. Since the patch is bonded to the structure, driving a patch deforms and vibrates the structure. The structure then produces a localized dynamic response. This structural system response is transferred back to the PZT patch, which in turn produces an electrical response. The electromechanical impedance method is based on the principle of electromechanical coupling between the active sensor and the structure, which allows researchers to assess local structural dynamics directly by interrogating a distributed sensor array. Because of mechanical coupling between the sensor and the host structure, this mechanical effect is picked up by the sensor and, through electromechanical coupling inside the active element, is reflected in electrical impedance measured at the sensor s terminals.
The Social Origins of Networks and Diffusion.
Centola, Damon
2015-03-01
Recent research on social contagion has demonstrated significant effects of network topology on the dynamics of diffusion. However, network topologies are not given a priori. Rather, they are patterns of relations that emerge from individual and structural features of society, such as population composition, group heterogeneity, homophily, and social consolidation. Following Blau and Schwartz, the author develops a model of social network formation that explores how social and structural constraints on tie formation generate emergent social topologies and then explores the effectiveness of these social networks for the dynamics of social diffusion. Results show that, at one extreme, high levels of consolidation can create highly balkanized communities with poor integration of shared norms and practices. As suggested by Blau and Schwartz, reducing consolidation creates more crosscutting circles and significantly improves the dynamics of social diffusion across the population. However, the author finds that further reducing consolidation creates highly intersecting social networks that fail to support the widespread diffusion of norms and practices, indicating that successful social diffusion can depend on moderate to high levels of structural consolidation.
Pelcastre-Villafuerte, Blanca; Riquer-Fernández, Florinda; de León-Reyes, Verónica; Reyes-Morales, Hortensia; Gutiérrez-Trujillo, Gonzalo; Bronfman, Mario
2006-01-01
To describe and compare household dynamics in terms of structure, beliefs and nutrition-related behavior in the homes of malnourished and well-nourished children less than five years of age. The authors carried out a qualitative ethnographic study using participant observation, and in depth interviews. Interviews were conducted with the child's caretaker or key informants, prior oral informed consent. Child care and childhood feeding practices at home and in the community were the focus of observations. The study included two periods of field work conducted in 2001, in three rural municipalities from the Río Balsas region, in Guerrero state, Mexico. The study's ethical and methodological aspects were approved by the National Research Commission of the Mexican Institute of Social Security. Households were differentially characterized by number of members, composition, type of relationship, source of income, and interactions among household members and with the community. Monoparental structures, in an early stage of the household cycle, give rise to conditions that render the child prone to malnutrition. Extended family structure represented more favorable household dynamics.
Molecular dynamics-based refinement and validation for sub-5 Å cryo-electron microscopy maps
Singharoy, Abhishek; Teo, Ivan; McGreevy, Ryan; Stone, John E; Zhao, Jianhua; Schulten, Klaus
2016-01-01
Two structure determination methods, based on the molecular dynamics flexible fitting (MDFF) paradigm, are presented that resolve sub-5 Å cryo-electron microscopy (EM) maps with either single structures or ensembles of such structures. The methods, denoted cascade MDFF and resolution exchange MDFF, sequentially re-refine a search model against a series of maps of progressively higher resolutions, which ends with the original experimental resolution. Application of sequential re-refinement enables MDFF to achieve a radius of convergence of ~25 Å demonstrated with the accurate modeling of β-galactosidase and TRPV1 proteins at 3.2 Å and 3.4 Å resolution, respectively. The MDFF refinements uniquely offer map-model validation and B-factor determination criteria based on the inherent dynamics of the macromolecules studied, captured by means of local root mean square fluctuations. The MDFF tools described are available to researchers through an easy-to-use and cost-effective cloud computing resource on Amazon Web Services. DOI: http://dx.doi.org/10.7554/eLife.16105.001 PMID:27383269
Living in the branches: population dynamics and ecological processes in dendritic networks
Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.
2007-01-01
Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.
Modal Analysis of a Steel Radial Gate Exposed to Different Water Levels
NASA Astrophysics Data System (ADS)
Brusewicz, Krzysztof; Sterpejkowicz-Wersocki, Witold; Jankowski, Robert
2017-06-01
With the increase in water retention needs and planned river regulation, it might be important to investigate the dynamic resistance of vulnerable elements of hydroelectric power plants, including steelwater locks. The most frequent dynamic loads affecting hydroengineering structures in Poland include vibrations caused by heavy road and railway traffic, piling works and mining tremors. More destructive dynamic loads, including earthquakes, may also occur in our country, although their incidence is relatively low. However, given the unpredictable nature of such events, as well as serious consequences they might cause, the study of the seismic resistance of the steel water gate, as one of the most vulnerable elements of a hydroelectric power plant, seems to be important. In this study, a steel radial gate has been analyzed. As far as water gates are concerned, it is among the most popular solutions because of its relatively small weight, compared to plain gates. A modal analysis of the steel radial gate was conducted with the use of the FEM in the ABAQUS software. All structural members were modelled using shell elements with detailed geometry representing a real structure.Water was modelled as an added mass affecting the structure. Different water levels were used to determine the most vulnerable state of the working steel water gate. The results of the modal analysis allowed us to compare the frequencies and their eigenmodes in response to different loads, which is one of the first steps in researching the dynamic properties of steel water gates and their behaviour during extreme dynamic loads, including earthquakes.
Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays
NASA Technical Reports Server (NTRS)
Johnston, John D.; Thornton, Earl A.
1997-01-01
The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.
1990-01-01
Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.
1990-01-01
Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.
Unique failure behavior of metal/composite aircraft structural components under crash type loads
NASA Technical Reports Server (NTRS)
Carden, Huey D.
1990-01-01
Failure behavior results are presented on some of the crash dynamics research conducted with concepts of aircraft elements and substructure which have not necessarily been designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash type loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the thread of similarity in behavior is telling the designer and dynamists a great deal about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.
Protons and Hydroxide Ions in Aqueous Systems.
Agmon, Noam; Bakker, Huib J; Campen, R Kramer; Henchman, Richard H; Pohl, Peter; Roke, Sylvie; Thämer, Martin; Hassanali, Ali
2016-07-13
Understanding the structure and dynamics of water's constituent ions, proton and hydroxide, has been a subject of numerous experimental and theoretical studies over the last century. Besides their obvious importance in acid-base chemistry, these ions play an important role in numerous applications ranging from enzyme catalysis to environmental chemistry. Despite a long history of research, many fundamental issues regarding their properties continue to be an active area of research. Here, we provide a review of the experimental and theoretical advances made in the last several decades in understanding the structure, dynamics, and transport of the proton and hydroxide ions in different aqueous environments, ranging from water clusters to the bulk liquid and its interfaces with hydrophobic surfaces. The propensity of these ions to accumulate at hydrophobic surfaces has been a subject of intense debate, and we highlight the open issues and challenges in this area. Biological applications reviewed include proton transport along the hydration layer of various membranes and through channel proteins, problems that are at the core of cellular bioenergetics.
NASA Technical Reports Server (NTRS)
Marsik, S. J.; Morea, S. F.
1985-01-01
A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.