30 CFR 250.908 - What are the minimum structural fatigue design requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What are the minimum structural fatigue design... fatigue design requirements? (a) API RP 2A-WSD, Recommended Practice for Planning, Designing and... the design fatigue life of each joint and member be twice the intended service life of the structure...
Sonic Fatigue Design Techniques for Advanced Composite Aircraft Structures
1980-04-01
AFWAL-TR-80.3019 AD A 090553 SONIC FATIGUE DESIGN TECHNIQUES FOR ADVANCED COMPOSITE AIRCRAFT STRUCTURES FINAL REPORT Ian Holehouse Rohr Industries...5 2. General Sonic Fatigue Theory .... ....... 7 3. Composite Laminate Analysis .. ....... ... 10 4. Preliminary Sonic Fatigue...overall sonic fatigue design guides. These existing desiyn methcds have been developed for metal structures. However, recent advanced composite
Fatigue risks in the connections of sign support structures : [technical brief].
DOT National Transportation Integrated Search
2013-07-01
The latest edition of the AASHTO design specifications (AASHTO 2001) introduced provisions for fatigue design. However, many structures presently in service were designed before fatigue provisions were part of the design specifications. The fatigue d...
30 CFR 250.908 - What are the minimum structural fatigue design requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What are the minimum structural fatigue design... Platform Approval Program § 250.908 What are the minimum structural fatigue design requirements? (a) API RP... (incorporated by reference as specified in 30 CFR 250.198), requires that the design fatigue life of each joint...
Fatigue Resistant Design Criteria for MD SHA Cantilevered Mast Arm Signal Structure
DOT National Transportation Integrated Search
2017-12-01
The fatigue design of the mast arm structures and connections vary significantly based on the Category of Importance factor adopted and the load cases for fatigue design loads. Consideration should include the cost and size of the structures for both...
The Boeing 747 fatigue integrity program
NASA Technical Reports Server (NTRS)
Spencer, M. M.
1972-01-01
The fatigue integrity program which was established to insure economic operations and to provide foundation data for inspection and maintenance is discussed. Significant features of the 747 fatigue integrity program are: (1) fatigue analyses which are continually updated to reflect design changes, fatigue test results, and static and flight load survey measurements; (2) material selection and detail design by using initial fatigue analyses, service experience, and testing; and (3) fatigue testing to check detail design quality and to verify the analyses, culminated by the test of a structurally complete airframe. Fatigue stress analyses were performed with the aid of experimental as well as analytical procedures. Extensive application was made of the stress severity factor, developed at Boeing, for evaluating peak stresses in complex joints. A frame of reference was established by families of structural fatigue performance curves (S-N curves) encompassing the range of materials and fatigue qualities anticipated for the 747 airplane design.
Methods for structural design at elevated temperatures
NASA Technical Reports Server (NTRS)
Ellison, A. M.; Jones, W. E., Jr.; Leimbach, K. R.
1973-01-01
A procedure which can be used to design elevated temperature structures is discussed. The desired goal is to have the same confidence in the structural integrity at elevated temperature as the factor of safety gives on mechanical loads at room temperature. Methods of design and analysis for creep, creep rupture, and creep buckling are presented. Example problems are included to illustrate the analytical methods. Creep data for some common structural materials are presented. Appendix B is description, user's manual, and listing for the creep analysis program. The program predicts time to a given creep or to creep rupture for a material subjected to a specified stress-temperature-time spectrum. Fatigue at elevated temperature is discussed. Methods of analysis for high stress-low cycle fatigue, fatigue below the creep range, and fatigue in the creep range are included. The interaction of thermal fatigue and mechanical loads is considered, and a detailed approach to fatigue analysis is given for structures operating below the creep range.
Fatigue and fail-safe design features of the DC-10 airplane
NASA Technical Reports Server (NTRS)
Stone, M. E.
1972-01-01
The philosophy and methods used in the design of the DC-10 aircraft to assure structural reliability against cracks under repeated service loads are described in detail. The approach consists of three complementary parts: (1) the structure is designed to be fatigue resistant for a crack-free life of 60,000 flight hours; (2) inasmuch as small undetected cracks could develop from other sources, such as material flaws and manufacturing preloads, the structure also is designed to arrest and control cracks within a reasonable service-inspection interval; and (3) a meaningful service-inspection program has been defined on the basis of analysis and test experience from the design development program. This service-inspection program closes the loop to assure the structural integrity of the DC-10 airframe. Selected materials, fasteners, and structural arrangements are used to achieve these design features with minimum structural weight and with economy in manufacturing and maintenance. Extensive analyses and testing were performed to develop and verify the design. The basic design considerations for fatigue-resistant structure are illustrated in terms of material selection, design loads spectra, methods for accurate stress and fatigue damage analysis, and proven concepts for efficient detail design.
High Speed Research Program Sonic Fatigue
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A. (Technical Monitor); Beier, Theodor H.; Heaton, Paul
2005-01-01
The objective of this sonic fatigue summary is to provide major findings and technical results of studies, initiated in 1994, to assess sonic fatigue behavior of structure that is being considered for the High Speed Civil Transport (HSCT). High Speed Research (HSR) program objectives in the area of sonic fatigue were to predict inlet, exhaust and boundary layer acoustic loads; measure high cycle fatigue data for materials developed during the HSR program; develop advanced sonic fatigue calculation methods to reduce required conservatism in airframe designs; develop damping techniques for sonic fatigue reduction where weight effective; develop wing and fuselage sonic fatigue design requirements; and perform sonic fatigue analyses on HSCT structural concepts to provide guidance to design teams. All goals were partially achieved, but none were completed due to the premature conclusion of the HSR program. A summary of major program findings and recommendations for continued effort are included in the report.
NASA GRC Fatigue Crack Initiation Life Prediction Models
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
2002-01-01
Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.
A Primer In Advanced Fatigue Life Prediction Methods
NASA Technical Reports Server (NTRS)
Halford, Gary R.
2000-01-01
Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable more cost effective, and better performing products. In other words, as the envelop is expanded, components are then designed to operate just as close to the newly expanded envelop as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.
NASA GRC Fatigue Crack Initiation Life Prediction Models
NASA Astrophysics Data System (ADS)
Arya, Vinod K.; Halford, Gary R.
2002-10-01
Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.
Fatigue impact on Mod-1 wind turbine design
NASA Technical Reports Server (NTRS)
Stahle, C. V., Jr.
1978-01-01
Fatigue is a key consideration in the design of a long-life Wind Turbine Generator (WTG) system. This paper discusses the fatigue aspects of the large Mod-1 horizontal-axis WTG design starting with the characterization of the environment and proceeding through the design. Major sources of fatigue loading are discussed and methods of limiting fatigue loading are described. NASTRAN finite element models are used to determine dynamic loading and internal cyclic stresses. Recent developments in determining the allowable fatigue stress consistent with present construction codes are discussed relative to their application to WTG structural design.
14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... contribute to a catastrophic failure (such as wing, empennage, control surfaces and their systems, the... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25... of similar structural design and sonic excitation environment, that— (1) Sonic fatigue cracks are not...
14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... contribute to a catastrophic failure (such as wing, empennage, control surfaces and their systems, the... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25... of similar structural design and sonic excitation environment, that— (1) Sonic fatigue cracks are not...
14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... contribute to a catastrophic failure (such as wing, empennage, control surfaces and their systems, the... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25... of similar structural design and sonic excitation environment, that— (1) Sonic fatigue cracks are not...
Fatigue design procedure for the American SST prototype
NASA Technical Reports Server (NTRS)
Doty, R. J.
1972-01-01
For supersonic airline operations, significantly higher environmental temperature is the primary new factor affecting structural service life. Methods for incorporating the influence of temperature in detailed fatigue analyses are shown along with current test indications. Thermal effects investigated include real-time compared with short-time testing, long-time temperature exposure, and stress-temperature cycle phasing. A method is presented which allows designers and stress analyzers to check fatigue resistance of structural design details. A communicative rating system is presented which defines the relative fatigue quality of the detail so that the analyst can define cyclic-load capability of the design detail by entering constant-life charts for varying detail quality. If necessary then, this system allows the designer to determine ways to improve the fatigue quality for better life or to determine the operating stresses which will provide the required service life.
Double Linear Damage Rule for Fatigue Analysis
NASA Technical Reports Server (NTRS)
Halford, G.; Manson, S.
1985-01-01
Double Linear Damage Rule (DLDR) method for use by structural designers to determine fatigue-crack-initiation life when structure subjected to unsteady, variable-amplitude cyclic loadings. Method calculates in advance of service how many loading cycles imposed on structural component before macroscopic crack initiates. Approach eventually used in design of high performance systems and incorporated into design handbooks and codes.
A Micromechanics-Based Method for Multiscale Fatigue Prediction
NASA Astrophysics Data System (ADS)
Moore, John Allan
An estimated 80% of all structural failures are due to mechanical fatigue, often resulting in catastrophic, dangerous and costly failure events. However, an accurate model to predict fatigue remains an elusive goal. One of the major challenges is that fatigue is intrinsically a multiscale process, which is dependent on a structure's geometric design as well as its material's microscale morphology. The following work begins with a microscale study of fatigue nucleation around non- metallic inclusions. Based on this analysis, a novel multiscale method for fatigue predictions is developed. This method simulates macroscale geometries explicitly while concurrently calculating the simplified response of microscale inclusions. Thus, providing adequate detail on multiple scales for accurate fatigue life predictions. The methods herein provide insight into the multiscale nature of fatigue, while also developing a tool to aid in geometric design and material optimization for fatigue critical devices such as biomedical stents and artificial heart valves.
Phanphet, Suwattanarwong; Dechjarern, Surangsee; Jomjanyong, Sermkiat
2017-05-01
The main objective of this work is to improve the standard of the existing design of knee prosthesis developed by Thailand's Prostheses Foundation of Her Royal Highness The Princess Mother. The experimental structural tests, based on the ISO 10328, of the existing design showed that a few components failed due to fatigue under normal cyclic loading below the required number of cycles. The finite element (FE) simulations of structural tests on the knee prosthesis were carried out. Fatigue life predictions of knee component materials were modeled based on the Morrow's approach. The fatigue life prediction based on the FE model result was validated with the corresponding structural test and the results agreed well. The new designs of the failed components were studied using the design of experimental approach and finite element analysis of the ISO 10328 structural test of knee prostheses under two separated loading cases. Under ultimate loading, knee prosthesis peak von Mises stress must be less than the yield strength of knee component's material and the total knee deflection must be lower than 2.5mm. The fatigue life prediction of all knee components must be higher than 3,000,000 cycles under normal cyclic loading. The design parameters are the thickness of joint bars, the diameter of lower connector and the thickness of absorber-stopper. The optimized knee prosthesis design meeting all the requirements was recommended. Experimental ISO 10328 structural test of the fabricated knee prosthesis based on the optimized design confirmed the finite element prediction. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Fatigue behavior of porous biomaterials manufactured using selective laser melting.
Yavari, S Amin; Wauthle, R; van der Stok, J; Riemslag, A C; Janssen, M; Mulier, M; Kruth, J P; Schrooten, J; Weinans, H; Zadpoor, A A
2013-12-01
Porous titanium alloys are considered promising bone-mimicking biomaterials. Additive manufacturing techniques such as selective laser melting allow for manufacturing of porous titanium structures with a precise design of micro-architecture. The mechanical properties of selective laser melted porous titanium alloys with different designs of micro-architecture have been already studied and are shown to be in the range of mechanical properties of bone. However, the fatigue behavior of this biomaterial is not yet well understood. We studied the fatigue behavior of porous structures made of Ti6Al4V ELI powder using selective laser melting. Four different porous structures were manufactured with porosities between 68 and 84% and the fatigue S-N curves of these four porous structures were determined. The three-stage mechanism of fatigue failure of these porous structures is described and studied in detail. It was found that the absolute S-N curves of these four porous structures are very different. In general, given the same absolute stress level, the fatigue life is much shorter for more porous structures. However, the normalized fatigue S-N curves of these four structures were found to be very similar. A power law was fitted to all data points of the normalized S-N curves. It is shown that the measured data points conform to the fitted power law very well, R(2)=0.94. This power law may therefore help in estimating the fatigue life of porous structures for which no fatigue test data is available. It is also observed that the normalized endurance limit of all tested porous structures (<0.2) is lower than that of corresponding solid material (c.a. 0.4). © 2013.
NASA Technical Reports Server (NTRS)
Jaske, C. E.; Feddersen, C. E.; Davies, K. B.; Rice, R. C.
1973-01-01
Analytical methods have been developed for consolidation of fatigue, fatigue-crack propagation, and fracture data for use in design of metallic aerospace structural components. To evaluate these methods, a comprehensive file of data on 2024 and 7075 aluminums, Ti-6A1-4V, and 300M and D6Ac steels was established. Data were obtained from both published literature and unpublished reports furnished by aerospace companies. Fatigue and fatigue-crack-propagation analyses were restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Fracture toughness data were from tests of center-cracked tension panels, part-through crack specimens, and compact-tension specimens.
14 CFR 23.627 - Fatigue strength.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service. ...
14 CFR 23.627 - Fatigue strength.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service. ...
14 CFR 23.627 - Fatigue strength.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service. ...
14 CFR 23.627 - Fatigue strength.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service. ...
14 CFR 23.627 - Fatigue strength.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Fatigue strength. The structure must be designed, as far as practicable, to avoid points of stress concentration where variable stresses above the fatigue limit are likely to occur in normal service. ...
Remaining life assessment of in-service luminaire support structures : final report, January 2010.
DOT National Transportation Integrated Search
2010-01-01
Recent fatigue failures of in-service luminaire support structures in Washington and around the country have : prompted concern about their fatigue resistance. Most luminaire support structures in Washington were designed : without attention to fatig...
Fatigue criterion to system design, life and reliability
NASA Technical Reports Server (NTRS)
Zaretsky, E. V.
1985-01-01
A generalized methodology to structural life prediction, design, and reliability based upon a fatigue criterion is advanced. The life prediction methodology is based in part on work of W. Weibull and G. Lundberg and A. Palmgren. The approach incorporates the computed life of elemental stress volumes of a complex machine element to predict system life. The results of coupon fatigue testing can be incorporated into the analysis allowing for life prediction and component or structural renewal rates with reasonable statistical certainty.
Recent and Future Enhancements in NDI for Aircraft Structures
2015-09-10
1]. Four of the B-47 losses were attributed to fatigue , which led to a probabilistic approach for establishing the aircraft service life...sufficient to preclude in-service structural failures attributable to fatigue . The safe- life approach was the basis for all new designs during the 1960s...and was also used to establish the safe-life of earlier designs that were subjected to a fatigue test. Losses of an F-111 in December 1969 and an F-5
Recent and Future Enhancements in NDI for Aircraft Structures (Postprint)
2015-09-10
1]. Four of the B-47 losses were attributed to fatigue , which led to a probabilistic approach for establishing the aircraft service life...sufficient to preclude in-service structural failures attributable to fatigue . The safe- life approach was the basis for all new designs during the 1960s...and was also used to establish the safe-life of earlier designs that were subjected to a fatigue test. Losses of an F-111 in December 1969 and an F-5
RECENT AND FUTURE ENHANCEMENTS IN NDI FOR AIRCRAFT STRUCTURES POSTPRINT
2015-09-10
1]. Four of the B-47 losses were attributed to fatigue , which led to a probabilistic approach for establishing the aircraft service life...sufficient to preclude in-service structural failures attributable to fatigue . The safe- life approach was the basis for all new designs during the 1960s...and was also used to establish the safe-life of earlier designs that were subjected to a fatigue test. Losses of an F-111 in December 1969 and an F-5
Recent and Future Enhancements in NDI for Aircraft Structures (Postprint)
2015-11-01
1]. Four of the B-47 losses were attributed to fatigue , which led to a probabilistic approach for establishing the aircraft service life...sufficient to preclude in-service structural failures attributable to fatigue . The safe- life approach was the basis for all new designs during the 1960s...and was also used to establish the safe-life of earlier designs that were subjected to a fatigue test. Losses of an F-111 in December 1969 and an F-5
RECENT AND FUTURE ENHANCEMENTS IN NDI FOR AIRCRAFT STRUCTURES (POSTPRINT)
2015-09-10
1]. Four of the B-47 losses were attributed to fatigue , which led to a probabilistic approach for establishing the aircraft service life...sufficient to preclude in-service structural failures attributable to fatigue . The safe- life approach was the basis for all new designs during the 1960s...and was also used to establish the safe-life of earlier designs that were subjected to a fatigue test. Losses of an F-111 in December 1969 and an F-5
Enhancing fatigue life of cylinder-crown integrated structure by optimizing dimension
NASA Astrophysics Data System (ADS)
Zhang, Weiwei; Wang, Xiaosong; Wang, Zhongren; Yuan, Shijian
2015-03-01
Cylinder-crown integrated hydraulic press (CCIHP) is a new press structure. The hemispherical hydraulic cylinder also functions as a main portion of crown, which has lower weight and higher section modulus compared with the conventional hydraulic cylinder and press crown. As a result, the material strength capacity is better utilized. During the engineering design of cylinder-crown integrated structure, in order to increase the fatigue life, structural optimization on the basis of the adaptive macro genetic algorithms (AMGA) is first conducted to both reduce weight and decrease peak stress. It is shown that the magnitude of the maximum principal stress is decreased by 28.6%, and simultaneously the total weight is reduced by 4.4%. Subsequently, strain-controlled fatigue test is carried out, and the stress-strain hysteresis loops and cyclic hardening curve are obtained. Based on linear fit, the fatigue properties are calculated and used for the fatigue life prediction. It is shown that the predicted fatigue life is significantly increased from 157000 to 1070000 cycles after structural optimization. Finally, according to the optimization design, a 6300 kN CCIHP has been manufactured, and priority application has been also suggested.
Fatigue in aerostructures--where structural health monitoring can contribute to a complex subject.
Boller, Christian; Buderath, Matthias
2007-02-15
An overview of the aircraft design and maintenance process is given with specific emphasis on the fatigue design as well as the phenomenon of the ageing aircraft observed over the life cycle. The different measures taken to guarantee structural integrity along the maintenance process are addressed. The impact of structural health monitoring as a means of possibly revolutionizing the current aircraft structural monitoring and design process is emphasized and comparison is made to jet engines and helicopters, where health monitoring has already found the respective breakthrough.
Development of an in situ fatigue sensor.
DOT National Transportation Integrated Search
2011-01-01
A prototype in situ fatigue sensor has been designed, constructed and evaluated experimentally for its ability to monitor the accumulation of fatigue damage in a cyclically loaded steel structure, e.g., highway bridge. The sensor consists of multiple...
14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... catastrophic failure (such as wing, empennage, control surfaces and their systems, the fuselage, engine... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25..., or by the service history of airplanes of similar structural design and sonic excitation environment...
Fatigue evaluation for Tsing Ma Bridge using structural health monitoring data
NASA Astrophysics Data System (ADS)
Chan, Hung-tin Tommy; Ko, Jan Ming; Li, Zhao-Xia
2001-08-01
Fatigue assessment for the Tsing Ma Bridge (TMB) are presented based on the British standard BS5400 and the real-time structural health monitoring data under railway loading. TMB, as an essential portion of transport network for the Hong Kong airport, is the longest suspension bridge in the world carrying both highway and railway traffic. The bridge design has been mainly based on BS5400. A structural health monitoring system - Wind and Structural Health Monitoring System (WASHMS) for TMB has been operated since the bridge commissioning in May 1997. In order to assess the fatigue behavior of TMB under railway loading, strain gauges were installed on the bridge deck to measure the strain-time histories as soon as the bridge is loaded by a standard railway loading due to the service of an actual train. The strain-time history data at the critical members are then used to determine the stress spectrum, of which the rainflow method recommended for railway bridges by BS5400 is applied to count cycles of stress range. Miner's law is employed to evaluate fatigue damage and remaining service life of the bridge. The evaluated results of fatigue damage and remaining service life would help us to well understand about the fatigue design of the bridge and status in fatigue accumulation.
Review of sonic fatigue technology
NASA Technical Reports Server (NTRS)
Clarkson, B. L.
1994-01-01
From the early-1960s until the mid-1980s, there was very little theoretical development for sonic fatigue prediction. Design nomographs based on simple theoretical models and results of specially designed tests were developed for most common aircraft structures. The use of advanced composites in the 1980s, however, generated an increased interest in development of more sophisticated theoretical models because of the possibilities for a much wider range of structural designs. The purpose of this report is to review sonic fatigue technology and, in particular, to assess recent developments. It also suggests a plan for a coordinated program of theoretical and experimental work to meet the anticipated needs of future aerospace vehicles.
Effect of Light Water Reactor Water Environments on the Fatigue Life of Reactor Materials
Chopra, O. K.; Stevens, G. L.; Tregoning, R.; ...
2017-10-06
The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Code) provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for applicable structural materials. However, the Code design curves do not explicitly address the effects of light water reactor (LWR) water environments. Existing fatigue strain-vs.-life (ε-N) laboratory data illustrate potentially significant effects of LWR water environments on the fatigue resistance of pressure vessel and piping steels. Extensive studies have been conducted at Argonne National Laboratory and elsewheremore » since 1990 to investigate the effects of LWR environments on the fatigue life of piping and pressure vessel steels. This article summarizes the results of these studies. Existing fatigue ε-N data were evaluated to identify the various material, environmental, and loading conditions that influence fatigue crack initiation; a methodology for estimating fatigue lives as a function of these parameters was developed. The effects were incorporated into the ASME Code Section III fatigue evaluations in terms of an environmental correction factor, F en, which is defined as the ratio of fatigue life in air at room temperature to the fatigue life in the LWR water environment at reactor operating temperatures. Available fatigue data were used to develop fatigue design curves for carbon and low-alloy steels, austenitic stainless steels, and nickel-chromium-iron (NiCr-Fe) alloys and their weld metals in air at room temperature. A review of the Code Section III fatigue adjustment factors of 2 on strain and 20 on life is also presented and the possible conservatism inherent in the choice of these adjustment factors is evaluated. A brief description of potential effects of neutron irradiation on fatigue crack initiation for these structural materials is also presented.« less
Effect of Light Water Reactor Water Environments on the Fatigue Life of Reactor Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chopra, O. K.; Stevens, G. L.; Tregoning, R.
The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Code) provides rules for the design of Class 1 components of nuclear power plants. Figures I-9.1 through I-9.6 of Appendix I to Section III of the Code specify fatigue design curves for applicable structural materials. However, the Code design curves do not explicitly address the effects of light water reactor (LWR) water environments. Existing fatigue strain-vs.-life (ε-N) laboratory data illustrate potentially significant effects of LWR water environments on the fatigue resistance of pressure vessel and piping steels. Extensive studies have been conducted at Argonne National Laboratory and elsewheremore » since 1990 to investigate the effects of LWR environments on the fatigue life of piping and pressure vessel steels. This article summarizes the results of these studies. Existing fatigue ε-N data were evaluated to identify the various material, environmental, and loading conditions that influence fatigue crack initiation; a methodology for estimating fatigue lives as a function of these parameters was developed. The effects were incorporated into the ASME Code Section III fatigue evaluations in terms of an environmental correction factor, F en, which is defined as the ratio of fatigue life in air at room temperature to the fatigue life in the LWR water environment at reactor operating temperatures. Available fatigue data were used to develop fatigue design curves for carbon and low-alloy steels, austenitic stainless steels, and nickel-chromium-iron (NiCr-Fe) alloys and their weld metals in air at room temperature. A review of the Code Section III fatigue adjustment factors of 2 on strain and 20 on life is also presented and the possible conservatism inherent in the choice of these adjustment factors is evaluated. A brief description of potential effects of neutron irradiation on fatigue crack initiation for these structural materials is also presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-01-01
Papers on rotorcraft and fatigue methodology are presented, covering topics such as reliability design for rotorcraft, a comparison between theory and fatigue test data on stress concentration factors, the retirement lives of rolling element bearings, hydrogen embrittlement risk analysis for high hardness steel parts, and rotating system load monitoring with minimum fixed system instrumentation. Additional topics include usage data collection to improve structural integrity of operational helicopters, usage monitory of military helicopters, improvements to the fatigue substantiation of the H-60 composite tail rotor blade, helicopter surviellance programs, and potential application of automotive fatigue technology in rotorcraft design. Also, consideration ismore » given to fatigue evaluation of C/MH-53 E main rotor damper threaded joints, SH-2F airframe fatigue test program, a ply termination concept for improving fracture and fatigue strength of composite laminates, the analysis and testing of composite panels subject to muzzle blast effects, the certification plan for an all-composite main rotor flexbeam, and the effects of stacking sequence on the flexural strength of composite beams.« less
A Novel Approach to Rotorcraft Damage Tolerance
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Everett, Richard A.; Newman, John A.
2002-01-01
Damage-tolerance methodology is positioned to replace safe-life methodologies for designing rotorcraft structures. The argument for implementing a damage-tolerance method comes from the fundamental fact that rotorcraft structures typically fail by fatigue cracking. Therefore, if technology permits prediction of fatigue-crack growth in structures, a damage-tolerance method should deliver the most accurate prediction of component life. Implementing damage-tolerance (DT) into high-cycle-fatigue (HCF) components will require a shift from traditional DT methods that rely on detecting an initial flaw with nondestructive inspection (NDI) methods. The rapid accumulation of cycles in a HCF component will result in a design based on a traditional DT method that is either impractical because of frequent inspections, or because the design will be too heavy to operate efficiently. Furthermore, once a HCF component develops a detectable propagating crack, the remaining fatigue life is short, sometimes less than one flight hour, which does not leave sufficient time for inspection. Therefore, designing a HCF component will require basing the life analysis on an initial flaw that is undetectable with current NDI technology.
Structural fatigue in the 34-meter HA-dec antennas
NASA Technical Reports Server (NTRS)
Van Hek, Ronald A.; Saldua, Benjamin P.
1991-01-01
Three 26-m hour-angle/declination (HA-dec) antennas, designed for a life span of 20 years, were built in the early 1960s for the NASA Deep Space Network. After 16 years the antennas were upgraded. The design required a structural weight increase of about 50 percent in both the HA and dec structures to achieve the desired improvements. The fatigue caused by the resulting stress-reversal conditions is discussed. The structural failures and their analyses are described.
Improved stud configurations for attaching laminated wood wind turbine blades
NASA Technical Reports Server (NTRS)
Fadoul, J. R.
1985-01-01
A series of bonded stud design configurations was screened on the basis of tension-tension cyclic tests to determine the structural capability of each configuration for joining a laminated wood structure (wind turbine blade) to a steel flange (wind turbine hub). Design parameters which affected the joint strength (ultimate and fatigue) were systematically varied and evaluated through appropriate testing. Two designs showing the most promise were used to fabricate addiate testing. Two designs showing the most promise were used to fabricate additional test specimens to determine ultimate strength and fatigue curves. Test results for the bonded stud designs demonstrated that joint strengths approaching the 10,000 to 12,000 psi ultimate strength and 5000 psi high cycle fatigue strength of the wood epoxy composite could be achieved.
NASA Astrophysics Data System (ADS)
Qaiser, M. H.; Umar, S.; Nauman, S.
2014-06-01
The structural weight of an aircraft has always been a controlling parameter that governs its fuel efficiency and transport capacity. In pursuit of achieving light-weight aircraft structures, high design stress levels have to be adopted and materials with high specific strength such as Aluminum etc. are to be deployed. However, an extensive spectrum of fatigue load exists at the aircraft wings and other aerodynamic components that may cause initiation and propagation of fatigue cracks and concludes in a catastrophic rupture. Fatigue is therefore the limiting design parameter in such cases and materials with high fatigue resistance are then required. A major improvement in the fatigue behavior was observed by laminating Kevlar fibers with Aluminum using epoxy. ARALL (Aramid Reinforced ALuminum Laminates) is a fatigue resistant hybrid composite that consists of layers of thin high strength aluminum alloy sheets surface bonded with aramid fibers. The intact aramid fibers tie up the fatigue cracks, thus reducing the stress intensity factor at the crack tip as a result of which the fatigue properties of can be enhanced with orders of magnitude as compared to monolithic high strength Aluminum alloy sheets. Significant amount of weight savings can be achieved in fatigue critical components in comparison with the traditional materials used in aircraft.
NASA Technical Reports Server (NTRS)
Harris, Charles E. (Editor)
1994-01-01
International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.
Fatigue Behavior of a Box-Type Welded Structure of Hydraulic Support Used in Coal Mine
Zhao, Xiaohui; Li, Fuyong; Liu, Yu; Fan, Yanjun
2015-01-01
Hydraulic support is the main supporting equipment of the coal mining systems, and they are usually subjected to fatigue failure under the high dynamic load. The fracture positions are generally at welded joints where there is a serious stress concentration. In order to investigate and further improve the fatigue strength of hydraulic support, the present work first located the possible position where fatigue failure occurs through finite element analysis, and then fatigue tests were carried out on the different forms of welded joints for the dangerous parts. Finally, Fatigue strength-life (S-N) curves and fracture mechanism were studied. This research will provide a theoretical reference for the fatigue design of welded structures for hydraulic support. PMID:28793586
Response of plain concrete to a state of biaxial fatigue loading : equipment and technique.
DOT National Transportation Integrated Search
1974-01-01
The fatigue strength of concrete is an important factor in the design of certain structures, particularly those associated with transportation functions. A considerable body of research has been developed on fatigue using specimens subjected to uniax...
A unified technology plan for fatigue and fracture design
NASA Technical Reports Server (NTRS)
Hardrath, H. F.
1973-01-01
An integrated research program is proposed that seeks to improve the technology of designing against fatigue and fracture and to develop a computerized capability for assessing the adequacy of a given design. Both fatigue life prediction and damage tolerance considerations are incorporated. The research for each of these considerations is organized to account for material behavior, the effect of structural configurations, the cumulative effects of the operating loadings, and for the effects of environment - temperature and corrosion. The goal is to achieve a viable fatigue and fracture design procedure for any practical problem. The overall program is outlined, assessments are made of the state of the art, subgoals are proposed, and means for achieving them are suggested.
DOT National Transportation Integrated Search
2017-12-01
Over the past two decades, wind induced fatigue cracking of highway signs, luminaires, and traffic signal support structures have been increasingly reported all over the United States. While fatalities associated with these failures have been limited...
A reliability-based cost effective fail-safe design procedure
NASA Technical Reports Server (NTRS)
Hanagud, S.; Uppaluri, B.
1976-01-01
The authors have developed a methodology for cost-effective fatigue design of structures subject to random fatigue loading. A stochastic model for fatigue crack propagation under random loading has been discussed. Fracture mechanics is then used to estimate the parameters of the model and the residual strength of structures with cracks. The stochastic model and residual strength variations have been used to develop procedures for estimating the probability of failure and its changes with inspection frequency. This information on reliability is then used to construct an objective function in terms of either a total weight function or cost function. A procedure for selecting the design variables, subject to constraints, by optimizing the objective function has been illustrated by examples. In particular, optimum design of stiffened panel has been discussed.
Creep-Fatigue Interaction Testing
NASA Technical Reports Server (NTRS)
Halford, Gary R.
2001-01-01
Fatigue fives in metals are nominally time independent below 0.5 T(sub Melt). At higher temperatures, fatigue lives are altered due to time-dependent, thermally activated creep. Conversely, creep rates are altered by super. imposed fatigue loading. Creep and fatigue generally interact synergistically to reduce material lifetime. Their interaction, therefore, is of importance to structural durability of high-temperature structures such as nuclear reactors, reusable rocket engines, gas turbine engines, terrestrial steam turbines, pressure vessel and piping components, casting dies, molds for plastics, and pollution control devices. Safety and lifecycle costs force designers to quantify these interactions. Analytical and experimental approaches to creep-fatigue began in the era following World War II. In this article experimental and life prediction approaches are reviewed for assessing creep-fatigue interactions of metallic materials. Mechanistic models are also discussed briefly.
Structurally compliant rocket engine combustion chamber: Experimental and analytical validation
NASA Technical Reports Server (NTRS)
Jankovsky, Robert S.; Arya, Vinod K.; Kazaroff, John M.; Halford, Gary R.
1994-01-01
A new, structurally compliant rocket engine combustion chamber design has been validated through analysis and experiment. Subscale, tubular channel chambers have been cyclically tested and analytically evaluated. Cyclic lives were determined to have a potential for 1000 percent increase over those of rectangular channel designs, the current state of the art. Greater structural compliance in the circumferential direction gave rise to lower thermal strains during hot firing, resulting in lower thermal strain ratcheting and longer predicted fatigue lives. Thermal, structural, and durability analyses of the combustion chamber design, involving cyclic temperatures, strains, and low-cycle fatigue lives, have corroborated the experimental observations.
NASA Technical Reports Server (NTRS)
Tanner, C. J.; Kruse, G. S.; Oman, B. H.
1975-01-01
A preliminary design analysis tool for rapidly performing trade-off studies involving fatigue, fracture, static strength, weight, and cost is presented. Analysis subprograms were developed for fatigue life, crack growth life, and residual strength; and linked to a structural synthesis module which in turn was integrated into a computer program. The part definition module of a cost and weight analysis program was expanded to be compatible with the upgraded structural synthesis capability. The resultant vehicle design and evaluation program is named VDEP-2. It is an accurate and useful tool for estimating purposes at the preliminary design stage of airframe development. A sample case along with an explanation of program applications and input preparation is presented.
NASA Technical Reports Server (NTRS)
Hardrath, H. F.
1974-01-01
Fracture mechanics is a rapidly emerging discipline for assessing the residual strength of structures containing flaws due to fatigue, corrosion or accidental damage and for anticipating the rate of which such flaws will propagate if not repaired. The discipline is also applicable in the design of structures with improved resistance to such flaws. The present state of the design art is reviewed using this technology to choose materials, to configure safe and efficient structures, to specify inspection procedures, to predict lives of flawed structures and to develop reliability of current and future airframes.
Acoustic fatigue: Overview of activities at NASA Langley
NASA Technical Reports Server (NTRS)
Mixson, John S.; Roussos, Louis A.
1987-01-01
A number of aircraft and spacecraft configurations are being considered for future development. These include high-speed turboprop aircraft, advanced vertical take-off and landing fighter aircraft, and aerospace planes for hypersonic intercontinental cruise or flight to orbit and return. Review of the acoustic environment expected for these vehicles indicates levels high enough that acoustic fatigue must be considered. Unfortunately, the sonic fatique design technology used for current aircraft may not be adequate for these future vehicles. This has resulted in renewed emphasis on acoustic fatigue research at the NASA Langley Research Center. The overall objective of the Langley program is to develop methods and information for design of aerospace vehicles that will resist acoustic fatigue. The program includes definition of the acoustic loads acting on structures due to exhaust jets of boundary layers, and subsequent determination of the stresses within the structure due to these acoustic loads. Material fatigue associated with the high frequency structural stress reversal patterns resulting from acoustic loadings is considered to be an area requiring study, but no activity is currently underway.
Fatigue Design and Prevention in Movable Scaffolding Systems
NASA Astrophysics Data System (ADS)
Coelho, Hugo; Torres, Alberto; Pacheco, Pedro; Moreira, Cristiano; Silva, Rute; Soares, José M.; Pinto, Dânia
2017-06-01
The Movable Scaffolding System (MSS) is a heavy construction equipment used for casting situ of concrete bridge decks. In the past decades, MSSs have become increasingly complex and industrialized, enlarging its span ranges, incorporating auxiliary elevation machinery and increasing productivity. The tendency nowadays is for strong reutilization and the notion of MSS as a disposable or temporary structure is somehow reductive. The main structure of MSSs may be potentially exposed to fatigue, usually characterized by low number of cycles with significant stress amplitude. Fatigue may be prevented through adequate design; judicious selection of materials; demanding quality control and implementation of robust inspection and maintenance plans.
Helicopter Fatigue Life Assessment
1981-03-01
is made to bring together alternative statistical opinions. 1. INTRODUCTION In almost arn paper on helicopter fatigue (references 1-15) a diagram is...of fatigue life calculations. In the excercise of the A.H.S., mentioned in the introduction the ratios of fatljue life, based on a cycle counting...monitoring. I INTRODUCTION The requirements for the design of structures of United Kingdom Military aeroplanes against fatigue are contained in Aviation
NASA Technical Reports Server (NTRS)
Hanagud, S.; Uppaluri, B.
1975-01-01
This paper describes a methodology for making cost effective fatigue design decisions. The methodology is based on a probabilistic model for the stochastic process of fatigue crack growth with time. The development of a particular model for the stochastic process is also discussed in the paper. The model is based on the assumption of continuous time and discrete space of crack lengths. Statistical decision theory and the developed probabilistic model are used to develop the procedure for making fatigue design decisions on the basis of minimum expected cost or risk function and reliability bounds. Selections of initial flaw size distribution, NDT, repair threshold crack lengths, and inspection intervals are discussed.
Yu, Rui-Feng; Yang, Lin-Dong; Wu, Xin
2017-05-01
This study identified the risk factors influencing visual fatigue in baggage X-ray security screeners and estimated the strength of correlations between those factors and visual fatigue using structural equation modelling approach. Two hundred and five X-ray security screeners participated in a questionnaire survey. The result showed that satisfaction with the VDT's physical features and the work environment conditions were negatively correlated with the intensity of visual fatigue, whereas job stress and job burnout had direct positive influences. The path coefficient between the image quality of VDT and visual fatigue was not significant. The total effects of job burnout, job stress, the VDT's physical features and the work environment conditions on visual fatigue were 0.471, 0.469, -0.268 and -0.251 respectively. These findings indicated that both extrinsic factors relating to VDT and workplace environment and psychological factors including job burnout and job stress should be considered in the workplace design and work organisation of security screening tasks to reduce screeners' visual fatigue. Practitioner Summary: This study identified the risk factors influencing visual fatigue in baggage X-ray security screeners and estimated the strength of correlations between those factors and visual fatigue. The findings were of great importance to the workplace design and the work organisation of security screening tasks to reduce screeners' visual fatigue.
NASA Astrophysics Data System (ADS)
Li, Leihong
A modular structural design methodology for composite blades is developed. This design method can be used to design composite rotor blades with sophisticate geometric cross-sections. This design method hierarchically decomposed the highly-coupled interdisciplinary rotor analysis into global and local levels. In the global level, aeroelastic response analysis and rotor trim are conduced based on multi-body dynamic models. In the local level, variational asymptotic beam sectional analysis methods are used for the equivalent one-dimensional beam properties. Compared with traditional design methodology, the proposed method is more efficient and accurate. Then, the proposed method is used to study three different design problems that have not been investigated before. The first is to add manufacturing constraints into design optimization. The introduction of manufacturing constraints complicates the optimization process. However, the design with manufacturing constraints benefits the manufacturing process and reduces the risk of violating major performance constraints. Next, a new design procedure for structural design against fatigue failure is proposed. This procedure combines the fatigue analysis with the optimization process. The durability or fatigue analysis employs a strength-based model. The design is subject to stiffness, frequency, and durability constraints. Finally, the manufacturing uncertainty impacts on rotor blade aeroelastic behavior are investigated, and a probabilistic design method is proposed to control the impacts of uncertainty on blade structural performance. The uncertainty factors include dimensions, shapes, material properties, and service loads.
High Speed Research Program Structural Acoustics Multi-Year Summary Report
NASA Technical Reports Server (NTRS)
Beier, Theodor H.; Bhat, Waman V.; Rizzi, Stephen A.; Silcox, Richard J.; Simpson, Myles A.
2005-01-01
This report summarizes the work conducted by the Structural Acoustics Integrated Technology Development (ITD) Team under NASA's High Speed Research (HSR) Phase II program from 1993 to 1999. It is intended to serve as a reference for future researchers by documenting the results of the interior noise and sonic fatigue technology development activities conducted during this period. For interior noise, these activities included excitation modeling, structural acoustic response modeling, development of passive treatments and active controls, and prediction of interior noise. For sonic fatigue, these activities included loads prediction, materials characterization, sonic fatigue code development, development of response reduction techniques, and generation of sonic fatigue design requirements. Also included are lessons learned and recommendations for future work.
Foil system fatigue load environments for commercial hydrofoil operation
NASA Technical Reports Server (NTRS)
Graves, D. L.
1979-01-01
The hydrofoil fatigue loads environment in the open sea is examined. The random nature of wave orbital velocities, periods and heights plus boat heading, speed and control system design are considered in the assessment of structural fatigue requirements. Major nonlinear load events such as hull slamming and foil unwetting are included in the fatigue environment. Full scale rough water load tests, field experience plus analytical loads work on the model 929 Jetfoil commercial hydrofoil are discussed. The problem of developing an overall sea environment for design is defined. State of the art analytical approaches are examined.
Fatigue assessment of an existing steel bridge by finite element modelling and field measurements
NASA Astrophysics Data System (ADS)
Kwad, J.; Alencar, G.; Correia, J.; Jesus, A.; Calçada, R.; Kripakaran, P.
2017-05-01
The evaluation of fatigue life of structural details in metallic bridges is a major challenge for bridge engineers. A reliable and cost-effective approach is essential to ensure appropriate maintenance and management of these structures. Typically, local stresses predicted by a finite element model of the bridge are employed to assess the fatigue life of fatigue-prone details. This paper illustrates an approach for fatigue assessment based on measured data for a connection in an old bascule steel bridge located in Exeter (UK). A finite element model is first developed from the design information. The finite element model of the bridge is calibrated using measured responses from an ambient vibration test. The stress time histories are calculated through dynamic analysis of the updated finite element model. Stress cycles are computed through the rainflow counting algorithm, and the fatigue prone details are evaluated using the standard SN curves approach and the Miner’s rule. Results show that the proposed approach can estimate the fatigue damage of a fatigue prone detail in a structure using measured strain data.
Ion beam sputter etching of orthopedic implanted alloy MP35N and resulting effects on fatigue
NASA Technical Reports Server (NTRS)
Wintucky, E. G.; Christopher, M.; Bahnuik, E.; Wang, S.
1981-01-01
The effects of two types of argon ion sputter etched surface structures on the tensile stress fatigue properties of orthopedic implant alloy MP35N were investigated. One surface structure was a natural texture resulting from direct bombardment by 1 keV argon ions. The other structure was a pattern of square holes milled into the surface by a 1 keV argon ion beam through a Ni screen mask. The etched surfaces were subjected to tensile stress only in fatigue tests designed to simulate the cyclic load conditions experienced by the stems of artificial hip joint implants. Both types of sputter etched surface structures were found to reduce the fatigue strength below that of smooth surface MP35N.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MANDELL, JOHN F.; SAMBORSKY, DANIEL D.; CAIRNS, DOUGLAS
This report presents the major findings of the Montana State University Composite Materials Fatigue Program from 1997 to 2001, and is intended to be used in conjunction with the DOE/MSU Composite Materials Fatigue Database. Additions of greatest interest to the database in this time period include environmental and time under load effects for various resin systems; large tow carbon fiber laminates and glass/carbon hybrids; new reinforcement architectures varying from large strands to prepreg with well-dispersed fibers; spectrum loading and cumulative damage laws; giga-cycle testing of strands; tough resins for improved structural integrity; static and fatigue data for interply delamination; andmore » design knockdown factors due to flaws and structural details as well as time under load and environmental conditions. The origins of a transition to increased tensile fatigue sensitivity with increasing fiber content are explored in detail for typical stranded reinforcing fabrics. The second focus of the report is on structural details which are prone to delamination failure, including ply terminations, skin-stiffener intersections, and sandwich panel terminations. Finite element based methodologies for predicting delamination initiation and growth in structural details are developed and validated, and simplified design recommendations are presented.« less
Bone-like crack resistance in hierarchical metastable nanolaminate steels
NASA Astrophysics Data System (ADS)
Koyama, Motomichi; Zhang, Zhao; Wang, Meimei; Ponge, Dirk; Raabe, Dierk; Tsuzaki, Kaneaki; Noguchi, Hiroshi; Tasan, Cemal Cem
2017-03-01
Fatigue failures create enormous risks for all engineered structures, as well as for human lives, motivating large safety factors in design and, thus, inefficient use of resources. Inspired by the excellent fracture toughness of bone, we explored the fatigue resistance in metastability-assisted multiphase steels. We show here that when steel microstructures are hierarchical and laminated, similar to the substructure of bone, superior crack resistance can be realized. Our results reveal that tuning the interface structure, distribution, and phase stability to simultaneously activate multiple micromechanisms that resist crack propagation is key for the observed leap in mechanical response. The exceptional properties enabled by this strategy provide guidance for all fatigue-resistant alloy design efforts.
Probabilistic Fatigue Damage Program (FATIG)
NASA Technical Reports Server (NTRS)
Michalopoulos, Constantine
2012-01-01
FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.
Reliability Quantification of the Flexure: A Critical Stirling Convertor Component
NASA Technical Reports Server (NTRS)
Shah, Ashwin R.; Korovaichuk, Igor; Zampino, Edward J.
2004-01-01
Uncertainties in the manufacturing, fabrication process, material behavior, loads, and boundary conditions results in the variation of the stresses and strains induced in the flexures and its fatigue life. Past experience and the test data at material coupon levels revealed a significant amount of scatter of the fatigue life. Owing to these facts, the design of the flexure, using conventional approaches based on safety factor or traditional reliability based on similar equipment considerations does not provide a direct measure of reliability. Additionally, it may not be feasible to run actual long term fatigue tests due to cost and time constraints. Therefore it is difficult to ascertain material fatigue strength limit. The objective of the paper is to present a methodology and quantified results of numerical simulation for the reliability of flexures used in the Stirling convertor for their structural performance. The proposed approach is based on application of finite element analysis method in combination with the random fatigue limit model, which includes uncertainties in material fatigue life. Additionally, sensitivity of fatigue life reliability to the design variables is quantified and its use to develop guidelines to improve design, manufacturing, quality control and inspection design process is described.
Small, Self-Contained Aircraft Fatigue Data Recorder.
1986-08-01
need to monitor structural fatigue damage on military aircraft has become critical. It is particularly important to be able to study the dynamic...serve to heighten concerns over the accumulation of fatigue damage . Accordingly, there is a requirement for a fatigue data recorder readily installed...report is to apprise the sponsor of the progress to date and to solicit comments from the sponsor on the report content and the direction the design is
Fatigue Testing of Ring-Stiffened Traffic Signal Structures.
DOT National Transportation Integrated Search
2010-10-09
Based on in-service inspection of poles with traditional designs, the inventory of Wyoming Department of Transportation ?WYDOT? exhibited approximately a one-third cracking rate. A ring-stiffened connection is presently used. Sixteen fatigue tests we...
NASA Astrophysics Data System (ADS)
Hu, Weifei; Park, Dohyun; Choi, DongHoon
2013-12-01
A composite blade structure for a 2 MW horizontal axis wind turbine is optimally designed. Design requirements are simultaneously minimizing material cost and blade weight while satisfying the constraints on stress ratio, tip deflection, fatigue life and laminate layup requirements. The stress ratio and tip deflection under extreme gust loads and the fatigue life under a stochastic normal wind load are evaluated. A blade element wind load model is proposed to explain the wind pressure difference due to blade height change during rotor rotation. For fatigue life evaluation, the stress result of an implicit nonlinear dynamic analysis under a time-varying fluctuating wind is converted to the histograms of mean and amplitude of maximum stress ratio using the rainflow counting algorithm Miner's rule is employed to predict the fatigue life. After integrating and automating the whole analysis procedure an evolutionary algorithm is used to solve the discrete optimization problem.
Gamma Radiation Sterilization Reduces the High-cycle Fatigue Life of Allograft Bone.
Islam, Anowarul; Chapin, Katherine; Moore, Emily; Ford, Joel; Rimnac, Clare; Akkus, Ozan
2016-03-01
Sterilization by gamma radiation impairs the mechanical properties of bone allografts. Previous work related to radiation-induced embrittlement of bone tissue has been limited mostly to monotonic testing which does not necessarily predict the high-cycle fatigue life of allografts in vivo. We designed a custom rotating-bending fatigue device to answer the following questions: (1) Does gamma radiation sterilization affect the high-cycle fatigue behavior of cortical bone; and (2) how does the fatigue life change with cyclic stress level? The high-cycle fatigue behavior of human cortical bone specimens was examined at stress levels related to physiologic levels using a custom-designed rotating-bending fatigue device. Test specimens were distributed among two treatment groups (n = 6/group); control and irradiated. Samples were tested until failure at stress levels of 25, 35, and 45 MPa. At 25 MPa, 83% of control samples survived 30 million cycles (run-out) whereas 83% of irradiated samples survived only 0.5 million cycles. At 35 MPa, irradiated samples showed an approximately 19-fold reduction in fatigue life compared with control samples (12.2 × 10(6) ± 12.3 × 10(6) versus 6.38 × 10(5) ± 6.81 × 10(5); p = 0.046), and in the case of 45 MPa, this reduction was approximately 17.5-fold (7.31 × 10(5) ± 6.39 × 10(5) versus 4.17 × 10(4) ± 1.91 × 10(4); p = 0.025). Equations to estimate high-cycle fatigue life of irradiated and control cortical bone allograft at a certain stress level were derived. Gamma radiation sterilization severely impairs the high cycle fatigue life of structural allograft bone tissues, more so than the decline that has been reported for monotonic mechanical properties. Therefore, clinicians need to be conservative in the expectation of the fatigue life of structural allograft bone tissues. Methods to preserve the fatigue strength of nonirradiated allograft bone tissue are needed. As opposed to what monotonic tests might suggest, the cyclic fatigue life of radiation-sterilized structural allografts is likely severely compromised relative to the nonirradiated condition and therefore should be taken into consideration. Methods to reduce the effect of irradiation or to recover structural allograft bone tissue fatigue strength are important to pursue.
On cyclic yield strength in definition of limits for characterisation of fatigue and creep behaviour
NASA Astrophysics Data System (ADS)
Gorash, Yevgen; MacKenzie, Donald
2017-06-01
This study proposes cyclic yield strength as a potential characteristic of safe design for structures operating under fatigue and creep conditions. Cyclic yield strength is defined on a cyclic stress-strain curve, while monotonic yield strength is defined on a monotonic curve. Both values of strengths are identified using a two-step procedure of the experimental stress-strain curves fitting with application of Ramberg-Osgood and Chaboche material models. A typical S-N curve in stress-life approach for fatigue analysis has a distinctive minimum stress lower bound, the fatigue endurance limit. Comparison of cyclic strength and fatigue limit reveals that they are approximately equal. Thus, safe fatigue design is guaranteed in the purely elastic domain defined by the cyclic yielding. A typical long-term strength curve in time-to-failure approach for creep analysis has two inflections corresponding to the cyclic and monotonic strengths. These inflections separate three domains on the long-term strength curve, which are characterised by different creep fracture modes and creep deformation mechanisms. Therefore, safe creep design is guaranteed in the linear creep domain with brittle failure mode defined by the cyclic yielding. These assumptions are confirmed using three structural steels for normal and high-temperature applications. The advantage of using cyclic yield strength for characterisation of fatigue and creep strength is a relatively quick experimental identification. The total duration of cyclic tests for a cyclic stress-strain curve identification is much less than the typical durations of fatigue and creep rupture tests at the stress levels around the cyclic yield strength.
NASA Technical Reports Server (NTRS)
Ungar, E. E.; Chandiramani, K. L.; Barger, J. E.
1972-01-01
Means for predicting the fluctuating pressures acting on externally blown flap surfaces are developed on the basis of generalizations derived from non-dimensionalized empirical data. Approaches for estimation of the fatigue lives of skin-stringer and honeycomb-core sandwich flap structures are derived from vibration response analyses and panel fatigue data. Approximate expressions for fluctuating pressures, structural response, and fatigue life are combined to reveal the important parametric dependences. The two-dimensional equations of motion of multi-element flap systems are derived in general form, so that they can be specialized readily for any particular system. An introduction is presented of an approach to characterizing the excitation pressures and structural responses which makes use of space-time spectral concepts and promises to provide useful insights, as well as experimental and analytical savings.
Automated predesign of aircraft
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.; Kruse, G. S.; Tanner, C. J.; Wilson, P. J.
1978-01-01
Program uses multistation structural-synthesis to size and design box-beam structures for transport aircraft. Program optimizes static strength and scales up to satisfy fatigue and fracture criteria. It has multimaterial capability and library of materials properties, including advanced composites. Program can be used to evaluate impact on weight of variables such as materials, types of construction, structural configurations, minimum gage limits, applied loads, fatigue lives, crack-growth lives, initial crack sizes, and residual strengths.
The European Spacelab structural design evolution
NASA Technical Reports Server (NTRS)
Thirkettle, A. J.
1982-01-01
Spacelab is a manned, reusable laboratory which is being developed for the European Space Agency (ESA). In its working mode it will fly in low earth orbit in the cargo bay of the Shuttle Transportation System (STS) Orbiter. A description is presented of the structural development of the various features of Spacelab. System requirements are considered along with structural requirements, quasi-static loads, acoustic loads, pressure loads, crash loads, ground loads, and the fatigue profile. Aspects of thermal environment generation are discussed, and questions regarding the design evolution of the pallet structure are examined. Details of pallet structure testing are reported, taking into account static strength tests, acoustic tests, the modal survey test, crash tests, and fatigue/fracture mechanics testing.
A proposed USAF fatigue evaluation program based upon recent systems experience
NASA Technical Reports Server (NTRS)
Haviland, G. P.; Purkey, G. F.
1972-01-01
The United States Air Force has published a document entitled Aircraft Structural Integrity Program. One phase of the program is concerned with the fatigue life certification of all types of military aircraft. The document describes the criteria, analyses, and tests that are necessary in order to satisfy the USAF fatigue life requirement. Some recent and valid criticism has been directed toward the document, particularly the fatigue-life requirements contained in it. Some changes are proposed based on surveys conducted in the United States and abroad as well as some recent systems' experience. The surveys covered both military and civilian organizations. The fatigue certification case histories of selected military and commercial aircraft are presented. The design development element tests, preproduction design verification tests, and full-scale fatigue tests of each are described. A brief status report on the revisions to the MIL-A-008860 series specifications is included.
Improving the fatigue resistance of adhesive joints in laminated wood structures
NASA Technical Reports Server (NTRS)
Laufenberg, Theodore L.; River, Bryan H.; Murmanis, Lidija L.; Christiansen, Alfred W.
1988-01-01
The premature fatigue failure of a laminated wood/epoxy test beam containing a cross section finger joint was the subject of a multi-disciplinary investigation. The primary objectives were to identify the failure mechanisms which occurred during the finger joint test and to provide avenues for general improvements in the design and fabrication of adhesive joints in laminated wood structures.
Microwave detection of fatigue cracks in specially prepared steel specimens.
DOT National Transportation Integrated Search
1998-01-01
In the aging highway systems the problems of fatigue-induced damage and cracking in metal structures are very severe. Many such systems are operating even beyond their design lifetime, which requires more than the originally prescribed inspection cyc...
On the Use of 3dB Qualification Margin for Structural Parts on Expendable Launch Vehicles
NASA Technical Reports Server (NTRS)
Yunis, Isam
2007-01-01
The standard random vibration qualification test used for Expendable Launch Vehicle components is Maximum Predicted Environment (MPE) + 6dB for a duration of 4 times the service life of the part. This can be a severe qualification test for these fatigue-sensitive structures. This paper uses flight data from several launch vehicles to establish that reducing the qualification approach to MPE+3dB for the duration of the peak environment (1x life) is valid for fatigue-sensitive structural components. Items that can be classified as fatigue-sensitive are probes, ducts, tubing, bellows, hoses, and any non-functional structure. Non-functional structure may be flight critical or carry fluid, but it cannot include any moving parts or electronics. This reduced qualification approach does not include primary or secondary structure which would be exclusively designed by peak loads, either transient or quasi-static, that are so large and of so few cycles as to make fatigue a moot point.
Computational predictive methods for fracture and fatigue
NASA Technical Reports Server (NTRS)
Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.
1994-01-01
The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.
Computational predictive methods for fracture and fatigue
NASA Astrophysics Data System (ADS)
Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.
1994-09-01
The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.
Rotorcraft fatigue life-prediction: Past, present, and future
NASA Technical Reports Server (NTRS)
Everett, Richard A., Jr.; Elber, W.
1994-01-01
In this paper the methods used for calculating the fatigue life of metallic dynamic components in rotorcraft is reviewed. In the past, rotorcraft fatigue design has combined constant amplitude tests of full-scale parts with flight loads and usage data in a conservative manner to provide 'safe life' component replacement times. This is in contrast to other industries, such as the automobile industry, where spectrum loading in fatigue testing is a part of the design procedure. Traditionally, the linear cumulative damage rule has been used in a deterministic manner using a conservative value for fatigue strength based on a one in a thousand probability of failure. Conservatism on load and usage are also often employed. This procedure will be discussed along with the current U.S. Army fatigue life specification for new rotorcraft which is the so-called 'six nines' reliability requirement. In order to achieve the six nines reliability requirement the exploration and adoption of new approaches in design and fleet management may also be necessary if this requirement is to be met with a minimum impact on structural weight. To this end a fracture mechanics approach to fatigue life design may be required in order to provide a more accurate estimate of damage progression. Also reviewed in this paper is a fracture mechanics approach for calculating total fatigue life which is based on a crack-closure small crack considerations.
Consolidation of fatigue and fatigue-crack-propagation data for design use
NASA Technical Reports Server (NTRS)
Rice, R. C.; Davies, K. B.; Jaske, C. E.; Feddersen, C. E.
1975-01-01
Analytical methods developed for consolidation of fatigue and fatigue-crack-propagation data for use in design of metallic aerospace structural components are evaluated. A comprehensive file of data on 2024 and 7075 aluminums, Ti-6Al-4V alloy, and 300M steel was established by obtaining information from both published literature and reports furnished by aerospace companies. Analyses are restricted to information obtained from constant-amplitude load or strain cycling of specimens in air at room temperature. Both fatigue and fatigue-crack-propagation data are analyzed on a statistical basis using a least-squares regression approach. For fatigue, an equivalent strain parameter is used to account for mean stress or stress ratio effects and is treated as the independent variable; cyclic fatigue life is considered to be the dependent variable. An effective stress-intensity factor is used to account for the effect of load ratio on fatigue-crack-propagation and treated as the independent variable. In this latter case, crack-growth rate is considered to be the dependent variable. A two term power function is used to relate equivalent strain to fatigue life, and an arc-hyperbolic-tangent function is used to relate effective stress intensity to crack-growth rate.
Investigation of structural factors of safety for the space shuttle
NASA Technical Reports Server (NTRS)
1972-01-01
A study was made of the factors governing the structural design of the fully reusable space shuttle booster to establish a rational approach to select optimum structural factors of safety. The study included trade studies of structural factors of safety versus booster service life, weight, cost, and reliability. Similar trade studies can be made on other vehicles using the procedures developed. The major structural components of a selected baseline booster were studied in depth, each being examined to determine the fatigue life, safe-life, and fail-safe capabilities of the baseline design. Each component was further examined to determine its reliability and safety requirements, and the change of structural weight with factors of safety. The apparent factors of safety resulting from fatigue, safe-life, proof test, and fail-safe requirements were identified. The feasibility of reduced factors of safety for design loads such as engine thrust, which are well defined, was examined.
NASA Technical Reports Server (NTRS)
Westrup, R. W.
1972-01-01
Investigations of fatigue life, and safe-life and fail-safe design concepts as applied to space shuttle structure are summarized. The results are evaluated to select recommended structural design criteria to provide assurance that premature failure due to propagation of undetected crack-like defects will not occur during shuttle operational service. The space shuttle booster, GDC configuration B-9U, is selected as the reference vehicle. Structural elements used as basis of detail analyses include wing spar caps, vertical stabilizer skins, crew compartment skin, orbiter support frame, and propellant tank shell structure. Fatigue life analyses of structural elements are performed to define potential problem areas and establish upper limits of operating stresses. Flaw growth analyses are summarized in parametric form over a range of initial flaw types and sizes, operating stresses and service life requirements. Service life of 100 to 500 missions is considered.
NASA Technical Reports Server (NTRS)
Westrup, R. W.
1971-01-01
The application of general design approaches for preventing failures due to repeated load cycles is briefly discussed. Program objective, mission requirements, and structural design criteria are summarized. Discrete structural elements and associated sections were selected for detailed strength, fatigue, and fracture mechanics investigations.
NASA Astrophysics Data System (ADS)
Liu, Peipei; Yang, Suyoung; Lim, Hyung Jin; Park, Hyung Chul; Ko, In Chang; Sohn, Hoon
2014-03-01
Fatigue crack is one of the main culprits for the failure of metallic structures. Recently, it has been shown that nonlinear wave modulation spectroscopy (NWMS) is effective in detecting nonlinear mechanisms produced by fatigue crack. In this study, an active wireless sensor node for fatigue crack detection is developed based on NWMS. Using PZT transducers attached to a target structure, ultrasonic waves at two distinctive frequencies are generated, and their modulation due to fatigue crack formation is detected using another PZT transducer. Furthermore, a reference-free NWMS algorithm is developed so that fatigue crack can be detected without relying on history data of the structure with minimal parameter adjustment by the end users. The algorithm is embedded into FPGA, and the diagnosis is transmitted to a base station using a commercial wireless communication system. The whole design of the sensor node is fulfilled in a low power working strategy. Finally, an experimental verification has been performed using aluminum plate specimens to show the feasibility of the developed active wireless NWMS sensor node.
Hot fire fatigue testing results for the compliant combustion chamber
NASA Technical Reports Server (NTRS)
Pavli, Albert J.; Kazaroff, John M.; Jankovsky, Robert S.
1992-01-01
A hydrogen-oxygen subscale rocket combustion chamber was designed incorporating an advanced design concept to reduce strain and increase life. The design permits unrestrained thermal expansion of a circumferential direction and, thereby, provides structural compliance during the thermal cycling of hot-fire testing. The chamber was built and test fired at a chamber pressure of 4137 kN/sq m (600 psia) and a hydrogen-oxygen mixture ratio of 6.0. Compared with a conventional milled-channel configuration, the new structurally compliant chamber had a 134 or 287 percent increase in fatigue life, depending on the life predicted for the conventional configuration.
Lipinski, P; Barbas, A; Bonnet, A-S
2013-12-01
Because of its biocompatibility and high mechanical properties, the commercially pure grade 2 titanium (CPG2Ti) is largely used for fabrication of patient specific implants or hard tissue substitutes with complex shape. To avoid the stress-shielding and help their colonization by bone, prostheses with a controlled porosity are designed. The selective laser melting (SLM) is well adapted to manufacture such geometrically complicated structures constituted by struts with rough surfaces and relatively small diameters. Few studies were dedicated to characterize the fatigue properties of SLM processed samples and bulk parts. They followed conventional or standard protocols. The fatigue behavior of standard samples is very different from the one of porous raw structures. In this study, the SLM made "as built" (AB) and "heat treated" (HT) tubular samples were tested in fatigue. Wöhler curves were determined in both cases. The obtained endurance limits were equal to σD(AB)=74.5MPa and σD(HT)=65.7MPa, respectively. The heat treatment worsened the endurance limit by relaxation of negative residual stresses measured on the external surface of the samples. Modified Goodman diagram was established for raw specimens. Porous samples, based on the pattern developed by Barbas et al. (2012), were manufactured by SLM. Fatigue tests and finite element simulations performed on these samples enabled the determination of a simple rule of fatigue assessment. The method based on the stress gradient appeared as the best approach to take into account the notch influence on the fatigue life of CPG2Ti structures with a controlled porosity. The direction dependent apparent fatigue strength was found. A criterion based on the effective, or global, nominal stress was proposed taking into account the anisotropy of the porous structures. Thanks to this criterion, the usual calculation methods can be used to design bone substitutes, without a precise modelling of their internal fine porosity. © 2013 Elsevier Ltd. All rights reserved.
Remote monitoring of fatigue-sensitive details on bridges : [part I and II].
DOT National Transportation Integrated Search
2015-03-01
Fatigue is one of the most critical problems for steel bridges as well as for any steel structures that needs : to be considered during design and operation. The objectives of this study are to explore monitoring : technologies, and to develop effect...
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Hodge, A. J.; Jackson, J. R.
2010-01-01
The issue of fatigue loading of structures composed of composite materials is considered in a requirements document that is currently in place for manned launch vehicles. By taking into account the short life of these parts, coupled with design considerations, it is demonstrated that the necessary coupon level fatigue data collapse to a static case. Data from a literature review of past studies that examined compressive fatigue loading after impact and data generated from this experimental study are presented to support this finding. Damage growth, in the form of infrared thermography, was difficult to detect due to rapid degradation of compressive properties once damage growth initiated. Unrealistically high fatigue amplitudes were needed to fail 5 of 15 specimens before 10,000 cycles were reached. Since a typical vehicle structure, such as the Ares I interstage, only experiences a few cycles near limit load, it is concluded that static compression after impact (CAI) strength data will suffice for most launch vehicle structures.
NASA Technical Reports Server (NTRS)
Blichfeldt, B.; Mccarty, J. E.
1972-01-01
Specimens representative of metal aircraft structural components reinforced with boron filamentary composites were manufactured and tested under cyclic loading, cyclic temperature, or continuously applied loading to evaluate some of the factors that affect structural integrity under cyclic conditions. Bonded, stepped joints were used throughout to provide composite-to-metal transition regions at load introduction points. Honeycomb panels with titanium or aluminum faces reinforced with unidirectional boron composite were fatigue tested at constant amplitude under completely reversed loading. Results indicated that the matrix material was the most fatigue-sensitive part of the design, with debonding initiating in the stepped joints. However, comparisons with equal weight all-metal specimens show a 10 to 50 times improved fatigue life. Fatigue crack propagation and residual strength were studied for several different stiffened panel concepts, and were found to vary considerably depending on the configuration. Composite-reinforced metal specimens were also subjected to creep and thermal cycling tests. Thermal cycling of stepped joint tensile specimens resulted in a ten percent decrease in residual strength after 4000 cycles.
Amin Yavari, S; Ahmadi, S M; Wauthle, R; Pouran, B; Schrooten, J; Weinans, H; Zadpoor, A A
2015-03-01
Meta-materials are structures when their small-scale properties are considered, but behave as materials when their homogenized macroscopic properties are studied. There is an intimate relationship between the design of the small-scale structure and the homogenized properties of such materials. In this article, we studied that relationship for meta-biomaterials that are aimed for biomedical applications, otherwise known as meta-biomaterials. Selective laser melted porous titanium (Ti6Al4V ELI) structures were manufactured based on three different types of repeating unit cells, namely cube, diamond, and truncated cuboctahedron, and with different porosities. The morphological features, static mechanical properties, and fatigue behavior of the porous biomaterials were studied with a focus on their fatigue behavior. It was observed that, in addition to static mechanical properties, the fatigue properties of the porous biomaterials are highly dependent on the type of unit cell as well as on porosity. None of the porous structures based on the cube unit cell failed after 10(6) loading cycles even when the applied stress reached 80% of their yield strengths. For both other unit cells, higher porosities resulted in shorter fatigue lives for the same level of applied stress. When normalized with respect to their yield stresses, the S-N data points of structures with different porosities very well (R(2)>0.8) conformed to one single power law specific to the type of the unit cell. For the same level of normalized applied stress, the truncated cuboctahedron unit cell resulted in a longer fatigue life as compared to the diamond unit cell. In a similar comparison, the fatigue lives of the porous structures based on both truncated cuboctahedron and diamond unit cells were longer than that of the porous structures based on the rhombic dodecahedron unit cell (determined in a previous study). The data presented in this study could serve as a basis for design of porous biomaterials as well as for corroboration of relevant analytical and computational models. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nonlinear analyses of composite aerospace structures in sonic fatigue
NASA Technical Reports Server (NTRS)
Mei, Chuh
1993-01-01
This report summarizes the semiannual research progress, accomplishments, and future plans performed under the NASA Langley Research Center Grant No. NAG-1-1358. The primary research effort of this project is the development of analytical methods for the prediction of nonlinear random response of composite aerospace structures subjected to combined acoustic and thermal loads. The progress, accomplishments, and future plates on four sonic fatigue research topics are described. The sonic fatigue design and passive control of random response of shape memory alloy hybrid composites presented in section 4, which is suited especially for HSCT, is a new initiative.
Nonlinear analyses of composite aerospace structures in sonic fatigue
NASA Astrophysics Data System (ADS)
Mei, Chuh
1993-06-01
This report summarizes the semiannual research progress, accomplishments, and future plans performed under the NASA Langley Research Center Grant No. NAG-1-1358. The primary research effort of this project is the development of analytical methods for the prediction of nonlinear random response of composite aerospace structures subjected to combined acoustic and thermal loads. The progress, accomplishments, and future plates on four sonic fatigue research topics are described. The sonic fatigue design and passive control of random response of shape memory alloy hybrid composites presented in section 4, which is suited especially for HSCT, is a new initiative.
Fatigue strength degradation of metals in corrosive environments
NASA Astrophysics Data System (ADS)
Adasooriya, N. D.; Hemmingsen, T.; Pavlou, D.
2017-12-01
Structures exposed to aggressive environmental conditions are often subjected to time-dependent loss of coating and loss of material due to corrosion; this causes reduction in the cross-sectional properties of the members, increased surface roughness, surface irregularities and corrosion pits, and degradation of material strengths. These effects have been identified and simulated in different research studies. However, time and corrosive media dependent fatigue strength curves for materials have not been discussed in the design or assessment guidelines for structures. This paper attempts to review the corrosion degradation process and available approaches/models used to determine the fatigue strength of corroded materials and to interpolate corrosion deterioration data. High cycle fatigue and full range fatigue life formulae for fatigue strength of corroded materials are proposed. The above formulae depend on the endurance limit of corroded material, in addition to the stress-life fatigue curve parameters of the uncorroded material. The endurance limit of corroded material can either be determined by a limited number of tests in the very high-cycle fatigue region or predicted by an analytical approach. Comparison with experimentally measured corrosion fatigue behavior of several materials is provided and discussed.
Resilient modulus and the fatigue properties of Kansas hot mix asphalt mixes
DOT National Transportation Integrated Search
2006-08-01
A new design guide for pavement structures, based on a mechanistic design method, could be adopted by AASHTO in the near future and will replace the current version used by KDOT in the structural design of flexible and rigid pavements. The mechanisti...
Re-assessment of offshore structures using the revised HSE fatigue guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stacey, A.; Sharp, J.V.
1995-12-31
The re-assessment of existing North Sea structures is an increasingly important issue as the age of platforms increases. Over 50 from a total of approximately 180 fixed installations in the UK sector are now over 15 years old. Fatigue damage has been the main reason for repairs to North Sea structures and the risk of this continues. The fatigue guidance of the Offshore Safety Division of the Health and Safety Executive (HSE) has recently been revised and published. Fundamental changes have been made to this guidance with several new recommendations including joint classification, basic design S-N curves for welded joints,more » the thickness effect, the effects of environment and the treatment of low and high stress ranges. To quantify the effects of the new guidance on the fatigue life assessment of offshore strictures, the HSE commissioned a study which included a deep water and a shallow water fixed steel structure and a twin-pontoon semi-submersible. These structures are typical of those operating in the North Sea. These were re-assessed with respect to fatigue lives and the results compared with predictions based on the 1990 guidance. The results and general conclusions are presented in this paper.« less
NASA Technical Reports Server (NTRS)
Sullivan, T. L.
1983-01-01
Fatigue tests were performed on full- and half-scale root end sections, first to qualify the root retention design, and second to induce failure. Test methodology and results are presented. Two operational blades were proof tested to design limit load to ascertain buckling resistance. Measurements of natural frequency, damping ratio, and deflection under load made on the operational blades are documented. The tests showed that all structural design requirements were met or exceeded. Blade loads measured during 3000 hr of field operation were close to those expected. The measured loads validated the loads used in the fatigue tests and gave high confidence in the ability of the blades to achieve design life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xin; Stephens, Elizabeth V.; Herling, Darrell R.
2004-09-14
In May 2003, ORNL and PNNL began collaboration on a four year research effort focused on developing joining techniques to overcome the technical issues associated with joining lightweight materials in heavy vehicles. The initial focus of research is the development and validation of joint designs for a composite structural member attached to a metal member that satisfy the structural requirements both economically and reliably. Huck-bolting is a common joining method currently used in heavy truck chassis structures. The initial round of testing was conducted to establish a performance benchmark by evaluating the static and fatigue behavior of an existing steel/steelmore » chassis joint at the single huck-bolt level. Both tension and shear loading conditions were considered, and the resulting static and fatigue strengths will be used to guide the joint design for a replacement composite/steel joint. A commercially available, pultruded composite material was chosen to study the generic issues related to composite/steel joints. Extren is produced by STRONGWELL, and it is a combination of fiberglass reinforcement and thermosetting polyester or vinyl ester resin systems. Extren sheets of 3.2 mm thick were joined to 1.4 mm SAE1008 steel sheets with a standard grade 5 bolt with 6.35 mm diameter. Both tension and shear loading modes were considered for the single hybrid joint under static and fatigue loading conditions. Since fiberglass reinforced thermoset polymer composites are a non-homogenous material, their strengths and behavior are dependent upon the design of the composite and reinforcement. The Extren sheet stock was cut along the longitudinal direction to achieve maximum net-section strength. The effects of various manufacturing factors and operational conditions on the static and fatigue strength of the hybrid joint were modeled and experimentally verified. It was found that loading mode and washer size have significant influence on the static and fatigue strength of the hybrid joint. The effect of different fatigue test frequencies on the sample temperature and the resulting fatigue life was also examined.« less
NASA Technical Reports Server (NTRS)
Harris, Charles E. (Editor)
1994-01-01
The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance.
1978-04-01
3 1.7 Production Rate Change Time . . . . 3 1.8 Time of Fatigue Test Start . ..... 3 1.9 Fatigue Test Acceleration Factor . 3 1.10 Corrosion...simulation logic. SAIFE accounts for the following factors : (1) aircraft design analysis; (2) component and full-scale fatigue testing; (3) production ...reliability; production , servi ce,Information Service, Springfield, and corrosion defects; crack or corrosi on Virginia 22151 detection probability; crack
NASA Astrophysics Data System (ADS)
Śledziewski, Krzysztof
2018-01-01
Material fatigue it is one of the most frequent causes of steel bridge failures, particularly the bridges already existing. Thus, the procedure of fatigue life assessment is one of the most relevant procedures in a comprehensive assessment of load-carrying capacity and service life of the structure. A reliable assessment of the fatigue life is predominantly decisive for estimation of the remaining service life. Hitherto, calculation methods of welded joints took into account only stresses occurring in cross sections of whole elements and did not take into account stress concentration occurring in the vicinity of the weld, caused by geometrical aspects of the detail. At present, use of the Finite Element Analysis, makes possible looking for more accurate approach to the fatigue design of steel structures. The method of geometrical stresses is just such approach which is based on definition of stresses which take into account geometry of the detail. The study presents fatigue assessment of a representative type of welded joint in welded bridge structures. The testing covered longitudinal attachments. The main analyses were carried out on the basis of FEM and the method of local stresses, so-called "hot-spot" stresses. The obtained values of stresses were compared with the values obtained in accordance with the method of nominal stress.
Interim Report on Fatigue Characteristics of a Typical Metal Wing
NASA Technical Reports Server (NTRS)
Kepert, J L; Payne, A O
1956-01-01
Constant amplitude fatigue tests of seventy-two P-51D "Mustang" wings are reported. The tests were performed by a vibrational loading system and by an hydraulic loading device for conditions with and without varying amounts of pre-load. The results indicate that: (a) the frequency of occurrence of fatigue at any one location is related to the range of the loads applied, (b) the rate of propagation of visible cracks is more or less constant for a large portion of the life of the specimen, (c) the fatigue strength of the structure is similar to that of notched material having a theoretical stress concentration factor of more than 3.0, (d) the frequency distribution of fatigue life is approximately logarithmic normal, (e) the relative increase in fatigue life for a given pre-load depends on the maximum load of the loading cycle only, while the optimum pre-load value is approximately 85 percent of the ultimate failing load, and (f) that normal design procedure will not permit the determination of local stress levels with sufficient accuracy to determine the fatigue strength of an element of a redundant structure.
NASA Technical Reports Server (NTRS)
Halford, G. R.
1986-01-01
A state-of-the-art review is presented of the field of thermal fatigue. Following a brief historical review, the concept is developed that thermal fatigue can be viewed as processes of unbalanced deformation and cracking. The unbalances refer to dissimilar mechanisms occurring in opposing halves of thermal fatigue loading and unloading cycles. Extensive data summaries are presented and results are interpreted in terms of the unbalanced processes involved. Both crack initiation and crack propagation results are summarized. Testing techniques are reviewed, and considerable discussion is given to a technique for thermal fatigue simulation, known as the bithermal fatigue test. Attention is given to the use of isothermal life prediction methods for the prediction of thermal fatigue lives. Shortcomings of isothermally-based life prediction methods are pointed out. Several examples of analyses and thermal fatigue life predictions of high technology structural components are presented. Finally, numerous dos and don'ts relative to design against thermal fatigue are presented.
Wang, Yu-Tzu; Huang, Shao-Fu; Fang, Yu-Ting; Huang, Shou-Chieh; Cheng, Hwei-Fang; Chen, Chih-Hao; Wang, Po-Fang; Lin, Chun-Li
2018-01-01
This study performs a structural optimization of anatomical thin titanium mesh (ATTM) plate and optimal designed ATTM plate fabricated using additive manufacturing (AM) to verify its stabilization under fatigue testing. Finite element (FE) analysis was used to simulate the structural bending resistance of a regular ATTM plate. The Taguchi method was employed to identify the significance of each design factor in controlling the deflection and determine an optimal combination of designed factors. The optimal designed ATTM plate with patient-matched facial contour was fabricated using AM and applied to a ZMC comminuted fracture to evaluate the resting maxillary micromotion/strain under fatigue testing. The Taguchi analysis found that the ATTM plate required a designed internal hole distance to be 0.9 mm, internal hole diameter to be 1 mm, plate thickness to be 0.8 mm, and plate height to be 10 mm. The designed plate thickness factor primarily dominated the bending resistance up to 78% importance. The averaged micromotion (displacement) and strain of the maxillary bone showed that ZMC fracture fixation using the miniplate was significantly higher than those using the AM optimal designed ATTM plate. This study concluded that the optimal designed ATTM plate with enough strength to resist the bending effect can be obtained by combining FE and Taguchi analyses. The optimal designed ATTM plate with patient-matched facial contour fabricated using AM provides superior stabilization for ZMC comminuted fractured bone segments.
Sensing sheets based on large area electronics for fatigue crack detection
NASA Astrophysics Data System (ADS)
Yao, Yao; Glisic, Branko
2015-03-01
Reliable early-stage damage detection requires continuous structural health monitoring (SHM) over large areas of structure, and with high spatial resolution of sensors. This paper presents the development stage of prototype strain sensing sheets based on Large Area Electronics (LAE), in which thin-film strain gauges and control circuits are integrated on the flexible electronics and deposited on a polyimide sheet that can cover large areas. These sensing sheets were applied for fatigue crack detection on small-scale steel plates. Two types of sensing-sheet interconnects were designed and manufactured, and dense arrays of strain gauge sensors were assembled onto the interconnects. In total, four (two for each design type) strain sensing sheets were created and tested, which were sensitive to strain at virtually every point over the whole sensing sheet area. The sensing sheets were bonded to small-scale steel plates, which had a notch on the boundary so that fatigue cracks could be generated under cyclic loading. The fatigue tests were carried out at the Carleton Laboratory of Columbia University, and the steel plates were attached through a fixture to the loading machine that applied cyclic fatigue load. Fatigue cracks then occurred and propagated across the steel plates, leading to the failure of these test samples. The strain sensor that was close to the notch successfully detected the initialization of fatigue crack and localized the damage on the plate. The strain sensor that was away from the crack successfully detected the propagation of fatigue crack based on the time history of measured strain. Overall, the results of the fatigue tests validated general principles of the strain sensing sheets for crack detection.
Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds
Liu, Xuesong; Berto, Filippo
2018-01-01
The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2–1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them. PMID:29695140
Low-Cycle Fatigue Behavior of 10CrNi3MoV High Strength Steel and Its Undermatched Welds.
Song, Wei; Liu, Xuesong; Berto, Filippo; Razavi, S M J
2018-04-24
The use of high strength steel allows the design of lighter, more slender and simpler structures due to high strength and favorable ductility. Nevertheless, the increase of yield strength does not guarantee the corresponding improvement of fatigue resistance, which becomes a major concern for engineering structure design, especially for the welded joints. The paper presents a comparison of the low cycle fatigue behaviors between 10CrNi3MoV high strength steel and its undermatched weldments. Uniaxial tension tests, Push-pull, strain-controlled fatigue tests were conducted on base metal and weldments in the strain range of 0.2⁻1.2%. The monotonic and cyclic stress-strain curves, stress-life, strain-life and energy-life in terms of these materials were analyzed for fatigue assessment of materials discrepancy. The stress-life results of base metal and undermatched weld metal exhibit cyclic softening behaviors. Furthermore, the shapes of 10CrNi3MoV steel hysteresis loops show a satisfactory Masing-type behavior, while the weld metal shows a non-Masing type behavior. Strain, plastic and total strain energy density amplitudes against the number of reversals to failure results demonstrate that the undermatched weld metal presents a higher resistance to fatigue crack initiation than 10CrNi3MoV high strength steel. Finally, fatigue fracture surfaces of specimens were compared by scanning electron microscopy to identify the differences of crack initiation and the propagation between them.
Design procedures for fiber composite structural components - Rods, beams, and beam columns
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1984-01-01
Step by step procedures are described which are used to design structural components (rods, columns, and beam columns) subjected to steady state mechanical loads and hydrothermal environments. Illustrative examples are presented for structural components designed for static tensile and compressive loads, and fatigue as well as for moisture and temperature effects. Each example is set up as a sample design illustrating the detailed steps that are used to design similar components.
Design procedures for fiber composite structural components: Rods, columns and beam columns
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1983-01-01
Step by step procedures are described which are used to design structural components (rods, columns, and beam columns) subjected to steady state mechanical loads and hydrothermal environments. Illustrative examples are presented for structural components designed for static tensile and compressive loads, and fatigue as well as for moisture and temperature effects. Each example is set up as a sample design illustrating the detailed steps that are used to design similar components.
Designing for fiber composite structural durability in hygrothermomechanical environment
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1985-01-01
A methodology is described which can be used to design/analyze fiber composite structures subjected to complex hygrothermomechanical environments. This methodology includes composite mechanics and advanced structural analysis methods (finite element). Select examples are described to illustrate the application of the available methodology. The examples include: (1) composite progressive fracture; (2) composite design for high cycle fatigue combined with hot-wet conditions; and (3) general laminate design.
Fatigue behavior of ULTIMETRTM alloy: Experiment and theoretical modeling
NASA Astrophysics Data System (ADS)
Jiang, Liang
ULTIMETRTM alloy is a commercial Co-26Cr-9Ni (weight percent) superalloy, which possesses excellent resistance to both wear and corrosion. In order to extend the structural applications of this alloy and improve the fundamental understanding of the fatigue damage mechanisms, stress- and strain-controlled fatigue tests were performed at various temperatures and in different environments. The stress- and strain-life data were developed for the structural design and engineering applications of this material. Fractographic studies characterized the crack-initiation and propagation behavior of the alloy. Microstructure evolution during fatigue was revealed by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Specifically, it was found that the metastable face-centered-cubic structure of this alloy in the as-received condition could be transformed into a hexagonal-close-packed structure either under the action of plastic deformation at room temperature, or due to the aging and cyclic deformation at intermediate temperatures. This interesting observation constructed a sound basis for the alloy development. The dominant mechanisms, which control the fatigue behavior of ULTIMET alloy, were characterized. High-speed, high-resolution infrared (IR) thermography, as a non-contact, full-field, and nondestructive technique, was used to characterize the damage during fatigue. The temperature variations during each fatigue cycle, which were due to the thermal-elastic-plastic effect, were observed and related to stress-strain analyses. The temperature evolution during fatigue manifested the cumulative fatigue damage process. A constitutive model was developed to predict thermal and mechanical responses of ULTIMET alloy subjected to cyclic deformation. The predicted cyclic stress-strain responses and temperature variations were found to be in good agreement with the experimental results. In addition, a fatigue life prediction model was developed based on the strain-energy consideration, and the measured temperature could be utilized as an index for fatigue-life prediction.
Robust Damage-Mitigating Control of Aircraft for High Performance and Structural Durability
NASA Technical Reports Server (NTRS)
Caplin, Jeffrey; Ray, Asok; Joshi, Suresh M.
1999-01-01
This paper presents the concept and a design methodology for robust damage-mitigating control (DMC) of aircraft. The goal of DMC is to simultaneously achieve high performance and structural durability. The controller design procedure involves consideration of damage at critical points of the structure, as well as the performance requirements of the aircraft. An aeroelastic model of the wings has been formulated and is incorporated into a nonlinear rigid-body model of aircraft flight-dynamics. Robust damage-mitigating controllers are then designed using the H(infinity)-based structured singular value (mu) synthesis method based on a linearized model of the aircraft. In addition to penalizing the error between the ideal performance and the actual performance of the aircraft, frequency-dependent weights are placed on the strain amplitude at the root of each wing. Using each controller in turn, the control system is put through an identical sequence of maneuvers, and the resulting (varying amplitude cyclic) stress profiles are analyzed using a fatigue crack growth model that incorporates the effects of stress overload. Comparisons are made to determine the impact of different weights on the resulting fatigue crack damage in the wings. The results of simulation experiments show significant savings in fatigue life of the wings while retaining the dynamic performance of the aircraft.
Design for cyclic loading endurance of composites
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Murthy, Pappu L. N.; Chamis, Christos C.; Liaw, Leslie D. G.
1993-01-01
The application of the computer code IPACS (Integrated Probabilistic Assessment of Composite Structures) to aircraft wing type structures is described. The code performs a complete probabilistic analysis for composites taking into account the uncertainties in geometry, boundary conditions, material properties, laminate lay-ups, and loads. Results of the analysis are presented in terms of cumulative distribution functions (CDF) and probability density function (PDF) of the fatigue life of a wing type composite structure under different hygrothermal environments subjected to the random pressure. The sensitivity of the fatigue life to a number of critical structural/material variables is also computed from the analysis.
Development of composite carrythrough bulkhead
NASA Technical Reports Server (NTRS)
Ehlen, R. J.; Libeskind, M.
1992-01-01
A structural development program was recently completed in which the weight and fatigue advantages of an all composite major load carrying bulkhead was successfully demonstrated. Fabrication of a full scale article, including static and fatigue testing of the carry-through beam portion verified the producibility, strength and durability of this design, thereby presenting the opportunity for use on aircraft upgrades and new aircraft. A 15% weight saving is achievable and, more importantly, the fatigue problems that normally plague metal bulkheads are virtually eliminated.
Combined wind turbine fatigue and ultimate load reduction by individual blade control
NASA Astrophysics Data System (ADS)
Han, Y.; Leithead, W. E.
2014-06-01
If each blade of the wind turbine has individual pitch actuator, there is possibility of employing the pitch system to mitigate structural loads through advanced control methods. Previously, considerable reduction of blade lifetime equivalent fatigue loads has been achieved by Individual Blade Control (IBC) and in addition, it has also been shown the potential in blade ultimate loads reduction. However, both fatigue and ultimate loads impact on the design and life of wind turbine blades. In this paper, the design and application of IBC that concurrently reduce both blade fatigue and ultimate loads is investigated. The contributions of blade load spectral components, which are 1P, 2P and edgewise mode from blade in-plane and/or out-of-plane bending moments, are firstly explored. Four different control options for reducing various combinations of these load components are compared. In response to the different spectral peaks of both fatigue and ultimate loads, the controller has been designed so that it can act on different frequency components which vary with wind speed. The performance of the IBC controller on fatigue and ultimate load reduction is assessed by simulating a 5MW exemplar wind turbine. Simulation results show that with a proper selection of controlling inputs at different wind speed, the use of a single combined IBC can achieve satisfactory reduction on both fatigue and ultimate loads.
NASA Astrophysics Data System (ADS)
Tian, Hongbo
As the candidate target container material of the new Spallation Neutron Source (SNS) being designed and constructed at the Oak Ridge National Laboratory (ORNL), Type 316 low-carbon nitrogen-added (LN) stainless steel (SS) will operate in an aggressive environment, subjected to intense fluxes of high-energy protons and neutrons while exposed to liquid mercury. The current project is oriented toward materials studies regarding the effects of test environment and frequency on the fatigue behavior of 316 LN SS. In order to study the structural applications of this material and improve the fundamental understanding of the fatigue damage mechanisms, fatigue tests were performed in air and mercury environments at various frequencies and R ratios (R = sigma min/sigmamax, sigmamin and sigmamax are the applied minimum and maximum stresses, respectively). Fatigue data were developed for the structural design and engineering applications of this material. Specifically, high-cycle fatigue tests, fatigue crack-propagation tests, and ultrahigh cycle fatigue tests up to 10 9 cycles were conducted in air and mercury with test frequencies from 10 Hz to 700 Hz. Microstructure characterizations were performed using optical microscopy (OM), scanning-electron microscopy (SEM), and transmission-electron microscopy (TEM). It was found that mercury doesn't seem to have a large impact on the crack-initiation behavior of 316 LN SS. However, the crack-propagation mechanisms in air and mercury are different in some test conditions. Transgranular cracks seem to be the main mechanism in air, and intergranular in mercury. A significant specimen self-heating effect was found during high-cycle faituge. Theoretical calculation was performed to predict temperature responses of the material subjected to cyclic deformation. The predicted cyclic temperature evolution seems to be in good agreement with the experimental results.
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Bly, James B.
2015-01-01
Fatigue testing of advanced composite structures is critical to validate both structural designs and damage prediction models. In-situ inspection methods are necessary to track damage onset and growth as a function of load cycles. Passive thermography is a large area, noncontact inspection technique that is used to detect composite damage onset and growth in real time as a function of fatigue cycles. The thermal images are acquired in synchronicity to the applied compressive load using a dual infrared camera acquisition system for full (front and back) coverage. Image processing algorithms are investigated to increase defect contrast areas. The thermal results are compared to non-immersion ultrasound inspections and acoustic emission data.
Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure
NASA Astrophysics Data System (ADS)
Gao, Huai-Ling; Zhu, Yin-Bo; Mao, Li-Bo; Wang, Feng-Chao; Luo, Xi-Sheng; Liu, Yang-Yi; Lu, Yang; Pan, Zhao; Ge, Jin; Shen, Wei; Zheng, Ya-Rong; Xu, Liang; Wang, Lin-Jun; Xu, Wei-Hong; Wu, Heng-An; Yu, Shu-Hong
2016-09-01
Low-density compressible materials enable various applications but are often hindered by structure-derived fatigue failure, weak elasticity with slow recovery speed and large energy dissipation. Here we demonstrate a carbon material with microstructure-derived super-elasticity and high fatigue resistance achieved by designing a hierarchical lamellar architecture composed of thousands of microscale arches that serve as elastic units. The obtained monolithic carbon material can rebound a steel ball in spring-like fashion with fast recovery speed (~580 mm s-1), and demonstrates complete recovery and small energy dissipation (~0.2) in each compress-release cycle, even under 90% strain. Particularly, the material can maintain structural integrity after more than 106 cycles at 20% strain and 2.5 × 105 cycles at 50% strain. This structural material, although constructed using an intrinsically brittle carbon constituent, is simultaneously super-elastic, highly compressible and fatigue resistant to a degree even greater than that of previously reported compressible foams mainly made from more robust constituents.
14 CFR 25.343 - Design fuel and oil loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
... conditions of § 25.341(a) but assuming 85% of the design velocities prescribed in § 25.341(a)(4). (2) Fatigue evaluation of the structure must account for any increase in operating stresses resulting from the design...
Nondestructive Evaluation of Metal Fatigue Using Nonlinear Acoustics
NASA Technical Reports Server (NTRS)
Cantrell, John H., Jr.
2008-01-01
Safe-life and damage-tolerant design philosophies of high performance structures have driven the development of various methods to evaluate nondestructively the accumulation of damage in such structures resulting from cyclic loading. Although many techniques have proven useful, none has been able to provide an unambiguous, quantitative assessment of damage accumulation at each stage of fatigue from the virgin state to fracture. A method based on nonlinear acoustics is shown to provide such a means to assess the state of metal fatigue. The salient features of an analytical model are presented of the microelastic-plastic nonlinearities resulting from the interaction of an acoustic wave with fatigue-generated dislocation substructures and cracks that predictably evolve during the metal fatigue process. The interaction is quantified by the material (acoustic) nonlinearity parameter extracted from acoustic harmonic generation measurements. The parameters typically increase monotonically by several hundred percent over the fatigue life of the metal, thus providing a unique measure of the state of fatigue. Application of the model to aluminum alloy 2024-T4, 410Cb stainless steel, and IN100 nickel-base superalloy specimens fatigued using different loading conditions yields good agreement between theory and experiment. Application of the model and measurement technique to the on-site inspection of steam turbine blades is discussed.
The revised HSE fatigue guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stacey, A.; Sharp, J.V.
1995-12-31
Fatigue cracking has been a principal cause of damage to North Sea structures and consequently considerable attention has been given to the development of guidance for the prediction of fatigue performance. The fatigue guidance of the Offshore Safety Division of the Health and Safety Executive (HSE) was recently revised and published, following a significant offshore industry review in the period 1987 to 1990, and is based on the results of a considerable amount of research and development work on the fatigue behavior of welded tubular and plated joints. As a result of this review, the revised fatigue guidance incorporates severalmore » new clauses and recommendations. The revised recommendations apply to joint classification, basic design S-N curves for welded joints and cast or forged steel components, the thickness effect, the effects of environment and the treatment of low and high stress ranges. Additionally, a new appendix on the derivation of stress concentration factors is included. The new clauses cover high strength steels, bolts and threaded connectors, moorings, repaired joints and the use of fracture mechanics analysis. This paper presents an overview of the revisions to the fatigue guidance, the associated background technical information and aspects of the fatigue behavior of offshore structures which are considered to require further investigation. 67 refs., 7 figs., 8 tabs.« less
14 CFR 23.343 - Design fuel loads.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Gust velocities equal to 85 percent of the values prescribed in § 23.333(c). (2) The fatigue evaluation of the structure must account for any increase in operating stresses resulting from the design...
Evaluation of Pressurization Fatigue Life of 1441 Al-li Fuselage Panel
NASA Technical Reports Server (NTRS)
Bird, R. Keith; Dicus, Dennis I.; Fridlyander, Joseph; Davydov, Valentin
1999-01-01
A study was conducted to evaluate the pressurization fatigue life of fuselage panels with skins fabricated from 1441 Al-Li, an attractive new Russian alloy. The study indicated that 1441 Al-Li has several advantages over conventional aluminum fuselage skin alloy with respect to fatigue behavior. Smooth 1441 Al-Li sheet specimens exhibited a fatigue endurance limit similar to that for 1163 Al (Russian version of 2024 Al) sheet. Notched 1441 Al-Li sheet specimens exhibited greater fatigue strength and longer fatigue life than 1163 Al. In addition, Tu-204 fuselage panels fabricated by Tupolev Design Bureau using Al-Li skin and ring frames with riveted 7000-series aluminum stiffeners had longer pressurization fatigue lives than did panels constructed from conventional aluminum alloys. Taking into account the lower density of this alloy, the results suggest that 1441 Al-Li has the potential to improve fuselage performance while decreasing structural weight.
Varni, James W; Limbers, Christine A
2008-02-01
The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health-related quality of life (HRQOL) and disease-specific symptoms in children and adolescents ages 2-18. The PedsQL Multidimensional Fatigue Scale was designed as a generic symptom-specific instrument to measure fatigue in pediatric patients ages 2-18. Since a sizeable number of pediatric patients prefer to remain with their pediatric providers after age 18, the objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in young adults. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains), the PedsQL 4.0 Generic Core Scales Young Adult Version, and the SF-8 Health Survey were completed by 423 university students ages 18-25. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses, achieved excellent reliability for the Total Scale Score (alpha = 0.90), distinguished between healthy young adults and young adults with chronic health conditions, was significantly correlated with the relevant PedsQL 4.0 Generic Core Scales and the SF-8 standardized scores, and demonstrated a factor-derived structure largely consistent with the a priori conceptual model. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in a convenience sample of young adult university students. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the evaluation of fatigue for a broad age range.
Fracture mechanics methodology: Evaluation of structural components integrity
NASA Astrophysics Data System (ADS)
Sih, G. C.; de Oliveira Faria, L.
1984-09-01
The application of fracture mechanics to structural-design problems is discussed in lectures presented in the AGARD Fracture Mechanics Methodology course held in Lisbon, Portugal, in June 1981. The emphasis is on aeronautical design, and chapters are included on fatigue-life prediction for metals and composites, the fracture mechanics of engineering structural components, failure mechanics and damage evaluation of structural components, flaw-acceptance methods, and reliability in probabilistic design. Graphs, diagrams, drawings, and photographs are provided.
High-temperature acoustic test facilities and methods
NASA Astrophysics Data System (ADS)
Pearson, Jerome
1994-09-01
The Wright Laboratory is the Air Force center for air vehicles, responsible for developing advanced technology and incorporating it into new flight vehicles and for continuous technological improvement of operational air vehicles. Part of that responsibility is the problem of acoustic fatigue. With the advent of jet aircraft in the 1950's, acoustic fatigue of aircraft structure became a significant problem. In the 1960's the Wright Laboratory constructed the first large acoustic fatigue test facilities in the United States, and the laboratory has been a dominant factor in high-intensity acoustic testing since that time. This paper discusses some of the intense environments encountered by new and planned Air Force flight vehicles, and describes three new acoustic test facilities of the Wright Laboratory designed for testing structures in these dynamic environments. These new test facilities represent the state of the art in high-temperature, high-intensity acoustic testing and random fatigue testing. They will allow the laboratory scientists and engineers to test the new structures and materials required to withstand the severe environments of captive-carry missiles, augmented lift wings and flaps, exhaust structures of stealth aircraft, and hypersonic vehicle structures well into the twenty-first century.
Zhao, S; Li, S J; Hou, W T; Hao, Y L; Yang, R; Misra, R D K
2016-06-01
Additive manufacturing technique is a promising approach for fabricating cellular bone substitutes such as trabecular and cortical bones because of the ability to adjust process parameters to fabricate different shapes and inner structures. Considering the long term safe application in human body, the metallic cellular implants are expected to exhibit superior fatigue property. The objective of the study was to study the influence of cell shape on the compressive fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting. The results indicated that the underlying fatigue mechanism for the three kinds of meshes (cubic, G7 and rhombic dodecahedron) is the interaction of cyclic ratcheting and fatigue crack growth on the struts, which is closely related to cumulative effect of buckling and bending deformation of the strut. By increasing the buckling deformation on the struts through cell shape design, the cyclic ratcheting rate of the meshes during cyclic deformation was decreased and accordingly, the compressive fatigue strength was increased. With increasing bending deformation of struts, fatigue crack growth in struts contributed more to the fatigue damage of meshes. Rough surface and pores contained in the struts significantly deteriorated the compressive fatigue strength of the struts. By optimizing the buckling and bending deformation through cell shape design, Ti-6Al-4V alloy cellular solids with high fatigue strength and low modulus can be fabricated by the EBM technique. Copyright © 2016 Elsevier Ltd. All rights reserved.
Structural design significance of tension-tension fatigue data on composites
NASA Technical Reports Server (NTRS)
Grimes, G. C.
1977-01-01
Constant cycle tension-tension fatigue and related static tension data have been generated on six single composite material/orientation combinations and twenty-one hybrid composite material/orientation combinations. Anomalies are related to the temperature rise and stopped interval creep, whereas endurance limit stresses (runouts) are associated with static proportional limit values, when they occur, and internal damage. The significance of these room temperature-dry data on the design allowables and weight of aerodynamic structueres is discussed. Such structures are helicopter rotor blades and wing and horizontal stabilizer lower surfaces. Typical criteria for turning these data into preliminary allowables are shown, as are examples of such allowables developed from the data. These values are then compared to those that might be used if the structures were made of metal.
Reliability based fatigue design and maintenance procedures
NASA Technical Reports Server (NTRS)
Hanagud, S.
1977-01-01
A stochastic model has been developed to describe a probability for fatigue process by assuming a varying hazard rate. This stochastic model can be used to obtain the desired probability of a crack of certain length at a given location after a certain number of cycles or time. Quantitative estimation of the developed model was also discussed. Application of the model to develop a procedure for reliability-based cost-effective fail-safe structural design is presented. This design procedure includes the reliability improvement due to inspection and repair. Methods of obtaining optimum inspection and maintenance schemes are treated.
Fatigue crack monitoring with coupled piezoelectric film acoustic emission sensors
NASA Astrophysics Data System (ADS)
Zhou, Changjiang
Fatigue-induced cracking is a commonly seen problem in civil infrastructures reaching their original design life. A number of high-profile accidents have been reported in the past that involved fatigue damage in structures. Such incidences often happen without prior warnings due to lack of proper crack monitoring technique. In order to detect and monitor the fatigue crack, acoustic emission (AE) technique, has been receiving growing interests recently. AE can provide continuous and real-time monitoring data on damage progression in structures. Piezoelectric film AE sensor measures stress-wave induced strain in ultrasonic frequency range and its feasibility for AE signal monitoring has been demonstrated recently. However, extensive work in AE monitoring system development based on piezoelectric film AE sensor and sensor characterization on full-scale structures with fatigue cracks, have not been done. A lack of theoretical formulations for understanding the AE signals also hinders the use of piezoelectric film AE sensors. Additionally, crack detection and source localization with AE signals is a very important area yet to be explored for this new type of AE sensor. This dissertation presents the results of both analytical and experimental study on the signal characteristics of surface stress-wave induced AE strain signals measured by piezoelectric film AE sensors in near-field and an AE source localization method based on sensor couple theory. Based on moment tensor theory, generalized expression for AE strain signal is formulated. A special case involving the response of piezoelectric film AE sensor to surface load is also studied, which could potentially be used for sensor calibration of this type of sensor. A new concept of sensor couple theory based AE source localization technique is proposed and validated with both simulated and experimental data from fatigue test and field monitoring. Two series of fatigue tests were conducted to perform fatigue crack monitoring on large-scale steel test specimens using piezoelectric film AE sensors. Continuous monitoring of fatigue crack growth in steel structures is demonstrated in these fatigue test specimens. The use of piezoelectric film AE sensor for field monitoring of existing fatigue crack is also demonstrated in a real steel I-girder bridge located in Maryland. The sensor couple theory based AE source localization is validated using a limited number of piezoelectric film AE sensor data from both fatigue test specimens and field monitoring bridge. Through both laboratory fatigue test and field monitoring of steel structures with active fatigue cracks, the signal characteristics of piezoelectric film AE sensor have been studied in real-world environment.
Thermography Inspection for Early Detection of Composite Damage in Structures During Fatigue Loading
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Burke, Eric R.; Parker, F. Raymond; Seebo, Jeffrey P.; Wright, Christopher W.; Bly, James B.
2012-01-01
Advanced composite structures are commonly tested under controlled loading. Understanding the initiation and progression of composite damage under load is critical for validating design concepts and structural analysis tools. Thermal nondestructive evaluation (NDE) is used to detect and characterize damage in composite structures during fatigue loading. A difference image processing algorithm is demonstrated to enhance damage detection and characterization by removing thermal variations not associated with defects. In addition, a one-dimensional multilayered thermal model is used to characterize damage. Lastly, the thermography results are compared to other inspections such as non-immersion ultrasonic inspections and computed tomography X-ray.
NASA Technical Reports Server (NTRS)
1973-01-01
The results of a study to define criteria and techniques of design, analysis and test which permit the use of a single major structural test article for performing dynamic, fatigue, and static testing are presented. The criteria developed is applicable to both space vehicles and aircraft structures operating in the subsonic or supersonic regime. The feasibility of such an approach was demonstrated by defining test interactions, compatibilities and incompatibilities between the three different types of tests. The results of the study indicate that the single test article concept is feasible with a testing sequence of dynamic test followed by a fatigue and static test.
Design of overhead VMS structures for fatigue loads.
DOT National Transportation Integrated Search
2011-07-31
The 2001 edition of the American Association of State Highway and Transportation Officials (AASHTO) : Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals has been : revised in its entirety through a major...
Fatigue of Chinese railway employees and its influential factors: Structural equation modelling.
Tsao, Liuxing; Chang, Jing; Ma, Liang
2017-07-01
Fatigue is an identifiable and preventable cause of accidents in transport operations. Regarding the railway sector, incident logs and simulation studies show that employee fatigue leads to lack of alertness, impaired performance, and occurrence of incidents. China has one of the largest rail systems in the world, and Chinese railway employees work under high fatigue risks; therefore, it is important to assess their fatigue level and find the major factors leading to fatigue. We designed a questionnaire that uses Multidimensional Fatigue Instrument (MFI-20), NASA-TLX and subjective rating of work overtime feelings to assess employee fatigue. The contribution of each influential factor of fatigue was analysed using structural equation modelling. In total, 297 employees from the rail maintenance department and 227 employees from the locomotive department returned valid responses. The average scores and standard deviations for the five subscales of MFI-20, namely General Fatigue, Physical Fatigue, Reduced Activity, Reduced Motivation, and Mental Fatigue, were 2.9 (0.8), 2.8 (0.8), 2.5 (0.8), 2.5 (0.7), and 2.4 (0.8) among the rail maintenance employees and 3.5 (0.8), 3.5 (0.7), 3.3 (0.7), 3.0 (0.6), and 3.1 (0.7), respectively, among the locomotive employees. The fatigue of the locomotive employees was influenced by feelings related to working overtime (standardized r = 0.22) and workload (standardized r = 0.27). The work overtime control and physical working environment significantly influenced subjective feelings (standardized r = -0.25 and 0.47, respectively), while improper work/rest rhythms and an adverse physical working environment significantly increased the workload (standardized r = 0.48 and 0.33, respectively). Copyright © 2017 Elsevier Ltd. All rights reserved.
Notch sensitivity jeopardizes titanium locking plate fatigue strength.
Tseng, Wo-Jan; Chao, Ching-Kong; Wang, Chun-Chin; Lin, Jinn
2016-12-01
Notch sensitivity may compromise titanium-alloy plate fatigue strength. However, no studies providing head-to-head comparisons of stainless-steel or titanium-alloy locking plates exist. Custom-designed identically structured locking plates were made from stainless steel (F138 and F1314) or titanium alloy. Three screw-hole designs were compared: threaded screw-holes with angle edges (type I); threaded screw-holes with chamfered edges (type II); and non-threaded screw-holes with chamfered edges (type III). The plates' bending stiffness, bending strength, and fatigue life, were investigated. The stress concentration at the screw threads was assessed using finite element analyses (FEA). The titanium plates had higher bending strength than the F1314 and F138 plates (2.95:1.56:1) in static loading tests. For all metals, the type-III plate fatigue life was highest, followed by type-II and type-I. The type-III titanium plates had longer fatigue lives than their F138 counterparts, but the type-I and type-II titanium plates had significantly shorter fatigue lives. All F1314 plate types had longer fatigue lives than the type-III titanium plates. The FEA showed minimal stress difference (0.4%) between types II and III, but the stress for types II and III was lower (11.9% and 12.4%) than that for type I. The screw threads did not cause stress concentration in the locking plates in FEA, but may have jeopardized the fatigue strength, especially in the notch-sensitive titanium plates. Improvement to the locking plate design is necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.
Detection of Steel Fatigue Cracks with Strain Sensing Sheets Based on Large Area Electronics
Yao, Yao; Glisic, Branko
2015-01-01
Reliable early-stage damage detection requires continuous monitoring over large areas of structure, and with sensors of high spatial resolution. Technologies based on Large Area Electronics (LAE) can enable direct sensing and can be scaled to the level required for Structural Health Monitoring (SHM) of civil structures and infrastructure. Sensing sheets based on LAE contain dense arrangements of thin-film strain sensors, associated electronics and various control circuits deposited and integrated on a flexible polyimide substrate that can cover large areas of structures. This paper presents the development stage of a prototype strain sensing sheet based on LAE for crack detection and localization. Two types of sensing-sheet arrangements with size 6 × 6 inch (152 × 152 mm) were designed and manufactured, one with a very dense arrangement of sensors and the other with a less dense arrangement of sensors. The sensing sheets were bonded to steel plates, which had a notch on the boundary, so the fatigue cracks could be generated under cyclic loading. The sensors within the sensing sheet that were close to the notch tip successfully detected the initialization of fatigue crack and localized the damage on the plate. The sensors that were away from the crack successfully detected the propagation of fatigue cracks based on the time history of the measured strain. The results of the tests have validated the general principles of the proposed sensing sheets for crack detection and identified advantages and challenges of the two tested designs. PMID:25853407
Experimental Behavior of Fatigued Single Stiffener PRSEUS Specimens
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
2009-01-01
NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression in fatigue and to failure.
NASA Technical Reports Server (NTRS)
Seshadri, Banavara R.; Smith, Stephen W.; Newman, John A.
2013-01-01
Friction stir welding (FSW) fabrication technology is being adopted in aerospace applications. The use of this technology can reduce production cost, lead-times, reduce structural weight and need for fasteners and lap joints, which are typically the primary locations of crack initiation and multi-site fatigue damage in aerospace structures. FSW is a solid state welding process that is well-suited for joining aluminum alloy components; however, the process introduces residual stresses (both tensile and compressive) in joined components. The propagation of fatigue cracks in a residual stress field and the resulting redistribution of the residual stress field and its effect on crack closure have to be estimated. To insure the safe insertion of complex integral structures, an accurate understanding of the fatigue crack growth behavior and the complex crack path process must be understood. A life prediction methodology for fatigue crack growth through the weld under the influence of residual stresses in aluminum alloy structures fabricated using FSW will be detailed. The effects and significance of the magnitude of residual stress at a crack tip on the estimated crack tip driving force are highlighted. The location of the crack tip relative to the FSW and the effect of microstructure on fatigue crack growth are considered. A damage tolerant life prediction methodology accounting for microstructural variation in the weld zone and residual stress field will lead to the design of lighter and more reliable aerospace structures
Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures
NASA Astrophysics Data System (ADS)
Tahir, Fraaz
The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.
NASA Astrophysics Data System (ADS)
Gorash, Yevgen; Comlekci, Tugrul; MacKenzie, Donald
2017-05-01
This study investigates the effects of fatigue material data and finite element types on accuracy of residual life assessments under high cycle fatigue. The bending of cross-beam connections is simulated in ANSYS Workbench for different combinations of structural member shapes made of a typical structural steel. The stress analysis of weldments with specific dimensions and loading applied is implemented using solid and shell elements. The stress results are transferred to the fatigue code nCode DesignLife for the residual life prediction. Considering the effects of mean stress using FKM approach, bending and thickness according to BS 7608:2014, fatigue life is predicted using the Volvo method and stress integration rules from ASME Boiler & Pressure Vessel Code. Three different pairs of S-N curves are considered in this work including generic seam weld curves and curves for the equivalent Japanese steel JIS G3106-SM490B. The S-N curve parameters for the steel are identified using the experimental data available from NIMS fatigue data sheets employing least square method and considering thickness and mean stress corrections. The numerical predictions are compared to the available experimental results indicating the most preferable fatigue data input, range of applicability and FE-model formulation to achieve the best accuracy.
Speirs, M; Van Hooreweder, B; Van Humbeeck, J; Kruth, J-P
2017-06-01
Selective laser melting (SLM) is an additive manufacturing technique able to produce complex functional parts via successively melting layers of metal powder. This process grants the freedom to design highly complex scaffold components to allow bone ingrowth and aid mechanical anchorage. This paper investigates the compression fatigue behaviour of three different unit cells (octahedron, cellular gyroid and sheet gyroid) of SLM nitinol scaffolds. It was found that triply periodic minimal surfaces display superior static mechanical properties in comparison to conventional octahedron beam lattice structures at identical volume fractions. Fatigue resistance was also found to be highly geometry dependent due to the effects of AM processing techniques on the surface topography and notch sensitivity. Geometries minimising nodal points and the staircase effect displayed the greatest fatigue resistance when normalized to yield strength. Furthermore oxygen analysis showed a large oxygen uptake during SLM processing which must be altered to meet ASTM medical grade standards and may significantly reduce fatigue life. These achieved fatigue properties indicate that NiTi scaffolds produced via SLM can provide sufficient mechanical support over an implants lifetime within stress range values experienced in real life. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cui, Huawei; Cui, Xiufang; Wang, Haidou; Xing, Zhiguo; Jin, Guo
2015-01-01
The service condition determines the Rolling Contact Fatigue(RCF) failure mechanism and lifetime under ascertain material structure integrity parameter of thermal spray coating. The available literature on the RCF testing of thermal spray coatings under various condition services is considerable; it is generally difficult to synthesize all of the result to obtain a comprehensive understanding of the parameters which has a great effect on a thermal spray coating's resistance of RCF. The effects of service conditions(lubrication states, contact stresses, revolve speed, and slip ratio) on the changing of thermal spray coatings' contact fatigue lifetime is introduced systematically. The effects of different service condition on RCF failure mechanism of thermal spray coating from the change of material structure integrity are also summarized. Moreover, In order to enhance the RCF performance, the parameter optimal design formula of service condition and material structure integrity is proposed based on the effect of service condition on thermal spray coatings' contact fatigue lifetime and RCF failure mechanism. The shortage of available literature and the forecast focus in future researches are discussed based on available research. The explicit result of RCF lifetime law and parameter optimal design formula in term of lubrication states, contact stresses, revolve speed, and slip ratio, is significant to improve the RCF performance on the engineering application.
Damage Tolerance Characterisitics of Composite Sandwich Structures
2000-02-01
requirements impose strict test program is devised and carried out, with hundreds of tests at constraints on the design of composite aircraft... design A particular effort was dedicated to the study of delamination methodologies, as well as static and fatigue strength and growth under...partition according to the theoretical tools, the industries are more or less forced, for the fundamental modes. design of primary composite structures
NASA Technical Reports Server (NTRS)
Harvill, W. E.; Kays, A. O.; Young, E. C.; Mcgee, W. M.
1972-01-01
Areas where selective reinforcement of conventional metallic structure can improve static strength/fatigue endurance at lower weight than would be possible if metal reinforcement were used are discussed. These advantages are now being demonstrated by design, fabrication, and tests of three boron-epoxy reinforced C-130E center wing boxes. This structural component was previously redesigned using an aluminum build-up to meet increased severity of fatigue loadings. Direct comparisons of relative structural weights, manufacturing costs, and producibility can therefore be obtained, and the long-time flight service performance of the composite reinforced structure can be evaluated against the wide background of metal reinforced structure.
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng
2018-01-01
Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.
1979-03-01
Fatigue Crack Growth (Schr~matic) 5.12 Sustained Load Crack Growth Rate Data for 7075-f651,7079- T651, and 2024 - T351 Aluminum Plate (Ref...Block Programming and Block Size on Crack Growth Life (All histories Have Same Cycle Content) Alloy : 2024 -T3 Aluminum (Ref. 38) 5.21 Yield Zone Due to...4340 Steel in Humid Air," ASM Trans 58, 46-53 (1965). 20. Meyn, D.A., "Frequency and Amplitude Effects on Corrosion Fatigue Cracks in a Titanium Alloy
Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses
Launey, Maximilien E.; Hofmann, Douglas C.; Johnson, William L.; Ritchie, Robert O.
2009-01-01
The recent development of metallic glass-matrix composites represents a particular milestone in engineering materials for structural applications owing to their remarkable combination of strength and toughness. However, metallic glasses are highly susceptible to cyclic fatigue damage, and previous attempts to solve this problem have been largely disappointing. Here, we propose and demonstrate a microstructural design strategy to overcome this limitation by matching the microstructural length scales (of the second phase) to mechanical crack-length scales. Specifically, semisolid processing is used to optimize the volume fraction, morphology, and size of second-phase dendrites to confine any initial deformation (shear banding) to the glassy regions separating dendrite arms having length scales of ≈2 μm, i.e., to less than the critical crack size for failure. Confinement of the damage to such interdendritic regions results in enhancement of fatigue lifetimes and increases the fatigue limit by an order of magnitude, making these “designed” composites as resistant to fatigue damage as high-strength steels and aluminum alloys. These design strategies can be universally applied to any other metallic glass systems. PMID:19289820
Mechanisms of Recovering Low Cycle Fatigue Damage in Incoloy 901.
1979-01-01
crack growth rate, da/dN, of 0.27 vim/cycle or 1.07 x 10- 4 in./cycle. Macha has determined crack growth rates as a function of AK at 400°F and 6000F...Cleveland, Ohio (1963). 61. T. J. Dolan, "Designing Structures to Resist Low-Cycle Fatigue," Metals Eng. Qtrly 10, 18-25 (November 1970). 62. D. Macha
Analysis of Lightweight Materials for the AM2 System
2014-06-01
and fatigue behavior in magnesium alloys . Materials Science & Engineering A (Structural Materials: Properties , Microstructure and Processing ), v 434...Table 7. Tensile properties of the alloys AA2024 or the T3 and T81 temper designations (Kuo et al . 2005...using a powder metallurgy technique, such as a standard cold compacting press and sintering process . However, the fatigue life of the liquid-based
NASA Technical Reports Server (NTRS)
Berger, P. E.; Thornton, E. A.
1976-01-01
The APAS program a multistation structural synthesis procedure developed to evaluate material, geometry, and configuration with various design criteria usually considered for the primary structure of transport aircraft is described and evaluated. Recommendations to improve accuracy and extend the capabilities of the APAS program are given. Flow diagrams are included.
Design and fabrication of the Mini-Brayton Recuperator (MBR)
NASA Technical Reports Server (NTRS)
Killackey, J. J.; Graves, R.; Mosinskis, G.
1978-01-01
Development of a recuperator for a 2.0 kW closed Brayton space power system is described. The plate-fin heat exchanger is fabricated entirely from Hastelloy X and is designed for 10 years continuous operation at 1000 K (1300 F) with a Xenon-helium working fluid. Special design provisions assure uniform flow distribution, crucial for meeting 0.975 temperature effectiveness. Low-cycle fatigue, resulting from repeated startup and shutdown cycles, was identified as the most critical structural design problem. It is predicted that the unit has a minimum fatigue life of 220 cycles. This is in excess of the BIPS requirement of 100 cycles. Heat transfer performance and thermal cycle testing with air, using a prototype unit, verified that all design objectives can be met.
A Review of Fatigue Crack Growth for Pipeline Steels Exposed to Hydrogen
Nanninga, N.; Slifka, A.; Levy, Y.; White, C.
2010-01-01
Hydrogen pipeline systems offer an economical means of storing and transporting energy in the form of hydrogen gas. Pipelines can be used to transport hydrogen that has been generated at solar and wind farms to and from salt cavern storage locations. In addition, pipeline transportation systems will be essential before widespread hydrogen fuel cell vehicle technology becomes a reality. Since hydrogen pipeline use is expected to grow, the mechanical integrity of these pipelines will need to be validated under the presence of pressurized hydrogen. This paper focuses on a review of the fatigue crack growth response of pipeline steels when exposed to gaseous hydrogen environments. Because of defect-tolerant design principles in pipeline structures, it is essential that designers consider hydrogen-assisted fatigue crack growth behavior in these applications. PMID:27134796
Fatigue based design and analysis of wheel hub for Student formula car by Simulation Approach
NASA Astrophysics Data System (ADS)
Gowtham, V.; Ranganathan, A. S.; Satish, S.; Alexis, S. John; Siva kumar, S.
2016-09-01
In the existing design of Wheel hub used for Student formula cars, the brake discs cannot be removed easily since the disc is mounted in between the knuckle and hub. In case of bend or any other damage to the disc, the replacement of the disc becomes difficult. Further using OEM hub and knuckle that are used for commercial vehicles will result in increase of unsprung mass, which should be avoided in Student formula cars for improving the performance. In this design the above mentioned difficulties have been overcome by redesigning the hub in such a way that the brake disc could be removed easily by just removing the wheel and the caliper and also it will have reduced weight when compared to existing OEM hub. A CAD Model was developed based on the required fatigue life cycles. The forces acting on the hub were calculated and linear static structural analysis was performed on the wheel hub for three different materials using ANSYS Finite Element code V 16.2. The theoretical fatigue strength was compared with the stress obtained from the structural analysis for each material.
Large-scale wind turbine structures
NASA Technical Reports Server (NTRS)
Spera, David A.
1988-01-01
The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.
NASA Technical Reports Server (NTRS)
Winslow, J. W.; Silveira, C. de
1993-01-01
It has long been known that solder joints under mechanical stress are subject to failure. In early electronic systems, such failures were avoided primarily by avoiding the use of solder as a mechanical structural component. The rule was first to make sound wire connections that did not depend mechanically on solder, and only then to solder them. Careful design and miniaturization in modern electronic systems limits the mechanical stresses exerted on solder joints to values less than their yield points, and these joints have become integral parts of the mechanical structures. Unfortunately, while these joints are strong enough when new, they have proven vulnerable to fatigue failures as they age. Details of the fatigue process are poorly understood, making predictions of expected lifetimes difficult.
Piezoelectric Bolt Breakers and Bolt Fatigue Testers
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Badescu, Mircea; Bar-Cohen, Yoseph; Barengoltz, Jack; Heckman, Vanessa
2008-01-01
A proposed family of devices for inducing fatigue in bolts in order to break the bolts would incorporate piezoelectric actuators into resonant fixtures as in ultrasonic/ sonic drills/corers and similar devices described in numerous prior NASA Tech Briefs articles. These devices were originally intended primarily for use as safer, more-reliable, more-versatile alternatives to explosive bolts heretofore used to fasten spacecraft structures that must subsequently be separated from each other quickly on command during flight. On Earth, these devices could be used for accelerated fatigue testing of bolts. Fatigue theory suggests that a bolt subjected to both a constant-amplitude dynamic (that is, oscillatory) stress and a static tensile stress below the ultimate strength of the bolt material will fail faster than will a bolt subjected to only the dynamic stress. This suggestion would be applied in a device of the proposed type. The device would be designed so that the device and the bolt to be fatigue-tested or broken would be integral parts of an assembly (see figure). The static tension in the tightened bolt would apply not only the clamping force to hold the joined structures (if any) together but also the compression necessary for proper operation of the piezoelectric actuators as parts of a resonant structural assembly. The constant-amplitude dynamic stress would be applied to the bolt by driving the piezoelectric actuators with a sinusoidal voltage at the resonance frequency of longitudinal vibration of the assembly. The amplitude of the excitation would be made large enough so that the vibration would induce fatigue in the bolt within an acceptably short time. In the spacecraft applications or in similar terrestrial structural-separation applications, devices of the proposed type would offer several advantages over explosive bolts: Unlike explosive bolts, the proposed devices would be reusable, could be tested before final use, and would not be subject to catastrophic misfire. In fatigue-testing applications, devices of the proposed type would offer advantages of compactness and low cost, relative to conventional fatigue- testing apparatuses. In both structural- separation and fatigue-testing applications, bolts to be broken or tested could be instrumented with additional ultrasonic transducers for monitoring of pertinent physical properties and of fatigue failure processes.
Structural Performance of Inconel 625 Superalloy Brazed Joints
NASA Astrophysics Data System (ADS)
Chen, Jianqiang; Demers, Vincent; Cadotte, Eve-Line; Turner, Daniel; Bocher, Philippe
2017-02-01
The purpose of this work was to investigate tensile and fatigue behaviors of Inconel 625 superalloy brazed joints after transient liquid-phase bonding process. Brazing was performed in a vacuum furnace using a nickel-based filler metal in a form of paste to join wrought Inconel 625 plates. Mechanical tests were carried out on single-lap joints under various lap distance-to-thickness ratios. The fatigue crack initiation and crack growth modes were examined via metallographic analysis, and the effect of local stress on fatigue life was assessed by finite element simulations. The fatigue results show that fatigue strength and endurance limit increase with overlap distance, leading to a relatively large scatter of results. Fatigue cracks nucleated in the high-stressed region of the weld fillets from brittle eutectic phases or from internal brazing cavities. The present work proposes to rationalize the results by using the local stress at the brazing fillet. When using this local stress, all fatigue-obtained results find themselves on a single S- N curve, providing a design curve for any joint configuration in fatigue solicitation.
Real-time sensing of fatigue crack damage for information-based decision and control
NASA Astrophysics Data System (ADS)
Keller, Eric Evans
Information-based decision and control for structures that are subject to failure by fatigue cracking is based on the following notion: Maintenance, usage scheduling, and control parameter tuning can be optimized through real time knowledge of the current state of fatigue crack damage. Additionally, if the material properties of a mechanical structure can be identified within a smaller range, then the remaining life prediction of that structure will be substantially more accurate. Information-based decision systems can rely one physical models, estimation of material properties, exact knowledge of usage history, and sensor data to synthesize an accurate snapshot of the current state of damage and the likely remaining life of a structure under given assumed loading. The work outlined in this thesis is structured to enhance the development of information-based decision and control systems. This is achieved by constructing a test facility for laboratory experiments on real-time damage sensing. This test facility makes use of a methodology that has been formulated for fatigue crack model parameter estimation and significantly improves the quality of predictions of remaining life. Specifically, the thesis focuses on development of an on-line fatigue crack damage sensing and life prediction system that is built upon the disciplines of Systems Sciences and Mechanics of Materials. A major part of the research effort has been expended to design and fabricate a test apparatus which allows: (i) measurement and recording of statistical data for fatigue crack growth in metallic materials via different sensing techniques; and (ii) identification of stochastic model parameters for prediction of fatigue crack damage. To this end, this thesis describes the test apparatus and the associated instrumentation based on four different sensing techniques, namely, traveling optical microscopy, ultrasonic flaw detection, Alternating Current Potential Drop (ACPD), and fiber-optic extensometry-based compliance, for crack length measurements.
Fatigue crack growth and life prediction under mixed-mode loading
NASA Astrophysics Data System (ADS)
Sajith, S.; Murthy, K. S. R. K.; Robi, P. S.
2018-04-01
Fatigue crack growth life as a function of crack length is essential for the prevention of catastrophic failures from damage tolerance perspective. In damage tolerance design approach, principles of fracture mechanics are usually applied to predict the fatigue life of structural components. Numerical prediction of crack growth versus number of cycles is essential in damage tolerance design. For cracks under mixed mode I/II loading, modified Paris law (d/a d N =C (ΔKe q ) m ) along with different equivalent stress intensity factor (ΔKeq) model is used for fatigue crack growth rate prediction. There are a large number of ΔKeq models available for the mixed mode I/II loading, the selection of proper ΔKeq model has significant impact on fatigue life prediction. In the present investigation, the performance of ΔKeq models in fatigue life prediction is compared with respect to the experimental findings as there are no guidelines/suggestions available on the selection of these models for accurate and/or conservative predictions of fatigue life. Within the limitations of availability of experimental data and currently available numerical simulation techniques, the results of present study attempt to outline models that would provide accurate and conservative life predictions. Such a study aid the numerical analysts or engineers in the proper selection of the model for numerical simulation of the fatigue life. Moreover, the present investigation also suggests a procedure to enhance the accuracy of life prediction using Paris law.
NASA Astrophysics Data System (ADS)
Natesan, K.; Li, Meimei; Chopra, O. K.; Majumdar, S.
2009-07-01
Sodium environmental effects are key limiting factors in the high temperature structural design of advanced sodium-cooled reactors. A guideline is needed to incorporate environmental effects in the ASME design rules to improve the performance reliability over long operating times. This paper summarizes the influence of sodium exposure on mechanical performance of selected austenitic stainless and ferritic/martensitic steels. Focus is on Type 316SS and mod.9Cr-1Mo. The sodium effects were evaluated by comparing the mechanical properties data in air and sodium. Carburization and decarburization were found to be the key factors that determine the tensile and creep properties of the steels. A beneficial effect of sodium exposure on fatigue life was observed under fully reversed cyclic loading in both austenitic stainless steels and ferritic/martensitic steels. However, when hold time was applied during cyclic loading, the fatigue life was significantly reduced. Based on the mechanical performance of the steels in sodium, consideration of sodium effects in high temperature structural design of advanced fast reactors is discussed.
Asvat, Yasmin; Malcarne, Vanessa L.; Sadler, Georgia R.; Jacobsen, Paul B.
2014-01-01
Objectives This study examined the psychometric properties of the Multidimensional Fatigue Symptom Inventory-Short Form (MFSI-SF) in a community-based sample of African Americans. Design. A sample of 340 African Americans (116 men, 224 women) ranging in age from 18–81 years were recruited from the community (e.g., churches, health fairs, beauty salons). Participants completed a brief demographic survey, the MFSI-SF and the Positive and Negative Affect Schedule. Results The structural validity of the MFSI-SF for a community-based sample of African Americans was not supported. The five dimensions of fatigue (General, Emotional, Physical, Mental, Vigor) found for Whites in prior research were not found for African Americans in this study. Instead, fatigue, while multidimensional for African Americans, was best represented by a unique four-four profile in which general and emotional fatigue are collapsed into a single dimension and physical fatigue, mental fatigue, and vigor are relatively distinct. Hence, in the absence of modifications, the MFSI-SF cannot be considered to be structurally invariant across ethnic groups. A modified four-factor version of the MFSI-SF exhibited excellent internal consistency reliability and evidence supports its convergent validity. Using the modified four-factor version, gender and age were not meaningfully associated with MFSI-SF scores. Conclusion Future research should further examine whether modifications to the MFSI-SF would, as the findings suggest, improve its validity as a measure of multidimensional fatigue in African Americans. PMID:24527980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skochko, G.W.; Herrmann, T.P.
Axial load cycling fatigue tests of threaded fasteners are useful in determining fastener fatigue failure or design properties. By using appropriate design factors between the failure and design fatigue strengths, such tests are used to establish fatigue failure and design parameters of fasteners for axial and bending cyclic load conditions. This paper reviews the factors which influence the fatigue strength of low Alloy steel threaded fasteners, identifies those most significant to fatigue strength, and provides design guidelines based on the direct evaluation of fatigue tests of threaded fasteners. Influences on fatigue strength of thread manufacturing process (machining and rolling ofmore » threads), effect of fastener membrane and bending stresses, thread root radii, fastener sizes, fastener tensile strength, stress relaxation, mean stress, and test temperature are discussed.« less
Reliability analysis applied to structural tests
NASA Technical Reports Server (NTRS)
Diamond, P.; Payne, A. O.
1972-01-01
The application of reliability theory to predict, from structural fatigue test data, the risk of failure of a structure under service conditions because its load-carrying capability is progressively reduced by the extension of a fatigue crack, is considered. The procedure is applicable to both safe-life and fail-safe structures and, for a prescribed safety level, it will enable an inspection procedure to be planned or, if inspection is not feasible, it will evaluate the life to replacement. The theory has been further developed to cope with the case of structures with initial cracks, such as can occur in modern high-strength materials which are susceptible to the formation of small flaws during the production process. The method has been applied to a structure of high-strength steel and the results are compared with those obtained by the current life estimation procedures. This has shown that the conventional methods can be unconservative in certain cases, depending on the characteristics of the structure and the design operating conditions. The suitability of the probabilistic approach to the interpretation of the results from full-scale fatigue testing of aircraft structures is discussed and the assumptions involved are examined.
NASA Astrophysics Data System (ADS)
Ahmed, Shafique; Schumacher, Thomas; Thostenson, Erik T.; McConnell, Jennifer
2017-04-01
Steel structures including bridges are susceptible to cracking, particularly due to fatigue-sensitive details found in older designs. Therefore, one of the major challenges to keep those steel bridges in service is to rehabilitate existing and potential fatigue damage. There are several conventional approaches to extend the fatigue-life of damaged steel members, e.g., drilling a crack stop-hole to reduce the stress concentration at the crack tip as well as welding and bolting of steel plates or adhesive-bonding of fiber-reinforced polymers (FRP) to reduce the overall stresses. Improvement in material properties of FRP and adhesives make them a viable candidate to apply for extending the fatigue-life of steel members. However, drawbacks include the potential for debonding of the adhesive layer and/or interfaces between adhesive and adherents as well as difficulty in monitoring fatigue crack growth after rehabilitation. In this research, a holistic approach is proposed and evaluated for simultaneous extension of fatigue-life and monitoring by integrating a carbon nanotube (CNT)-based sensing layer with an adhesively-bonded FRP reinforcement. CNT-based sensing layers have a nerve-like electric resistance network, which enables distributed sensing capabilities to monitor stress levels, crack growth, and damage progression. Using laboratory-scale experiments, the simultaneous fatigue-life extension and crack monitoring capability of multifunctional CNT-based composites was evaluated. This paper introduces the fundamental concept of integrated fatigue-rehabilitation and monitoring of steel members, presents a laboratory-scale experiment to demonstrate the feasibility and effectiveness, and discusses challenges for implementation in real structures.
NASA Technical Reports Server (NTRS)
Yun, Gunjin; Abdullah, A. B. M.; Binienda, Wieslaw; Krause, David L.; Kalluri, Sreeramesh
2014-01-01
A vibration-based testing methodology has been developed that will assess fatigue behavior of the metallic material of construction for the Advanced Stirling Convertor displacer (planar) spring component. To minimize the testing duration, the test setup is designed for base-excitation of a multiplespecimen arrangement, driven in a high-frequency resonant mode; this allows completion of fatigue testing in an accelerated period. A high performance electro-dynamic exciter (shaker) is used to generate harmonic oscillation of cantilever beam specimens, which are clasped on the shaker armature with specially-designed clamp fixtures. The shaker operates in closed-loop control with dynamic specimen response feedback provided by a scanning laser vibrometer. A test coordinator function synchronizes the shaker controller and the laser vibrometer to complete the closed-loop scheme. The test coordinator also monitors structural health of the test specimens throughout the test period, recognizing any change in specimen dynamic behavior. As this may be due to fatigue crack initiation, the test coordinator terminates test progression and then acquires test data in an orderly manner. Design of the specimen and fixture geometry was completed by finite element analysis such that peak stress does not occur at the clamping fixture attachment points. Experimental stress evaluation was conducted to verify the specimen stress predictions. A successful application of the experimental methodology was demonstrated by validation tests with carbon steel specimens subjected to fully-reversed bending stress; high-cycle fatigue failures were induced in such specimens using higher-than-prototypical stresses
Passive Orbital Disconnect Strut (PODS 3) structural test program
NASA Technical Reports Server (NTRS)
Parmley, R. T.
1985-01-01
A passive orbital disconnect strut (PODS-3) was analyzed structurally and thermally. Development tests on a graphite/epoxy orbit tube and S glass epoxy launch tube provided the needed data to finalize the design. A detailed assembly procedure was prepared. One strut was fabricated. Shorting loads in both the axial and lateral direction (vs. load angle and location) were measured. The strut was taken to design limit loads at both ambient and 78 K (cold end only). One million fatigue cycles were performed at predicted STS loads (half in tension, half in compression) with the cold end at 78 K. The fatigue test was repeated at design limit loads. Six struts were then fabricated and tested as a system. Axial loads, side loads, and simulated asymmetric loads due to temperature gradients around the vacuum shell were applied. Shorting loads were measured for all tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.
Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energymore » Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.« less
NASA Technical Reports Server (NTRS)
1989-01-01
The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.
NASA Astrophysics Data System (ADS)
Majidzadeh, K.; Ilves, G. J.
1981-08-01
A ready reference to design procedures for asphaltic concrete overlay of flexible pavements based on elastic layer theory is provided. The design procedures and the analytical techniques presented were formulated to predict the structural fatigue response of asphaltic concrete overlays for various design conditions, including geometrical and material properties, loading conditions and environmental variables.
ARC Collaborative Research Seminar Series
been used to formulate design rules for hydration-based TES systems. Don Siegel is an Associate structural-acoustics, design of complex systems, and blast event simulations. Technology that he developed interests includes advanced fatigue and fracture assessment methodologies, computational methods for
NASA Astrophysics Data System (ADS)
Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang
2018-03-01
Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.
Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Chermahini, R. G.
1985-01-01
Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.
The frequency of the chronic fatigue syndrome in patients with symptoms of persistent fatigue.
Manu, P; Lane, T J; Matthews, D A
1988-10-01
To determine the frequency of the chronic fatigue syndrome among patients with symptoms of fatigue. Prospective, cohort study. Referral clinic, based in a primary care general internal medicine faculty practice of a university medical center. Consecutive sample of 135 patients (53 men, 82 women) with 6 months or more of debilitating fatigue. All patients had a complete history taken, had a physical examination and a comprehensive battery of blood tests, and were given the Diagnostic Interview Schedule of the National Institute of Mental Health, a highly-structured 260-item instrument designed to enable accurate psychiatric diagnoses. Other diagnostic studies (for example, sleep studies and electroencephalography) were ordered if necessary for individual patients. Six of the one hundred thirty-five patients met criteria for chronic fatigue syndrome (95% CI, 0 to 10). Ninety-one (67%) patients (CI, 56 to 78) had clinically active psychiatric disorders and 4 (3%) patients (CI, 0 to 8) had medical disorders that were considered a major cause of their fatigue. Thirty-four (25%) patients (CI, 14 to 36) had insufficient symptoms or objective findings of the chronic fatigue syndrome. The chronic fatigue syndrome is rare among patients with symptoms of persistent fatigue. Most of these patients have psychiatric disorders.
Application of carbon FRP for fatigue strengthening of old steel structures
NASA Astrophysics Data System (ADS)
Vůjtěch, J.; Ryjáček, P.; Vovesný, M.
2017-02-01
The traffic requirements on the existing infrastructure are rising still. This coupled with its age puts a strain on it. This is especially problematic for old steel bridges. Higher and more frequent loads will lead to development of fatigue damage to those structures. This causes an issue for the infrastructure owners as the existing methods of repair are difficult, time consuming and expensive. So there is a need to find some easier alternatives. One of such can be the use of carbon fibre reinforced polymers (CFRP). They are being successfully used for repairs and strengthening of concrete structures however their use with steel is still relatively new. The purpose of this work is to establish how does a deteriorated steel reinforced with CFRP behave under fatigue loading. To test this a series of experiments was designed. With the help of a preliminary numerical study the dimensions of the specimens and the applied loading was established. There are two sets of specimens. With both we are using mild steel and each set has different level of surface deterioration (corrosion pits or corrosion holes). The specimens are reinforced using hand laid wet layup composites. They are subjected to fatigue loading and the difference between the fatigue life reinforced and unreinforced specimens is observed. Based on the preliminary study, it is expected, that the reinforcement will prolong the life expectancy by half.
Optimal slot dimension for skirt support structure of coke drums
NASA Astrophysics Data System (ADS)
Wang, Edward; Xia, Zihui
2018-03-01
The skirt-to-shell junction weld on coke drums is susceptible to fatigue failure due to severe thermal cyclic stresses. One method to decrease junction stress is to add slots near the top of the skirt, thereby reducing the local stiffness close to the weld. The most common skirt slot design is thin relative to its circumferential spacing. A new slot design, which is significantly wider, is proposed. In this study, thermal-mechanical elastoplastic 3-D finite element models of coke drums are created to analyze the effect of different skirt designs on the stress/strain field near the shell-to-skirt junction weld, as well as any other critical stress locations in the overall skirt design. The results confirm that the inclusion of the conventional slot design effectively reduces stress in the junction weld. However, it has also been found that the critical stress location migrates from the shell-to-skirt junction weld to the slot ends. A method is used to estimate the fatigue life near the critical areas of each skirt slot design. It is found that wider skirt slots provide a significant improvement on fatigue life in the weld and slot area.
NASA Astrophysics Data System (ADS)
Frankel, Dana J.
The development of non-surgical transcatheter aortic valve implantation (TAVI) techniques, which utilize collapsible artificial heart valves with shape memory alloy (SMA)-based frames, pushes performance requirements for biomedical SMAs beyond those for well-established vascular stent applications. Fatigue life for these devices must extend into the ultra-high cycle fatigue (UHCF) regime (>600M cycles) with zero probability of failure predicted at applied strain levels. High rates of Ni-hypersensitivity raise biocompatibility concerns, driving the development of low-Ni and Ni-free SMAs. This work focuses on the development of biocompatible, precipitation-strengthened, fatigue-resistant PdTi-based SMAs for biomedical applications. Functional and structural fatigue are both manifestations of cyclic instability resulting in accumulation of slip and eventual structural damage. While functional fatigue is easily experimentally evaluated, structural fatigue is more difficult to measure without the proper equipment. Therefore, in this work a theoretical approach using a model well validated in steels is utilized to investigate structural fatigue behavior in NiTi in the UHCF regime, while low cycle functional fatigue is evaluated in order to monitor the core phenomena of the cyclic instability. Results from fatigue simulations modeling crack nucleation at non-metallic inclusions in commercial NiTi underscore the importance of increasing yield strength for UHCF performance. Controlled precipitation of nanoscale, low-misfit, L21 Heusler aluminides can provide effective strengthening. Phase relations, precipitation kinetics, transformation temperature, transformation strain, cyclic stability, and mechanical properties are characterized in both Ni-free (Pd,Fe)(Ti,Al) and low-Ni high-strength "hybrid" (Pd,Ni)(Ti,Zr,Al) systems. Atom probe tomography is employed to measure phase compositions and particle sizes used to calibrate LSW models for coarsening kinetics and Gibbs-Thompson models for composition trajectories for systems under evolving unstable equilibrium. Mechanical and thermal cyclic stability are investigated using compression testing and differential scanning calorimetry. Mechanical properties are characterized using room temperature and high temperature Vickers microhardness as well as nanoindentation. A superelastic Ni-free (Pd,Fe)(Ti,Al) alloy with near-ambient transformation temperatures, low hysteresis, a highly stable cyclic response, and reversible transformation strains of 3.2% was designed. Due to Pd softening, the addition of Zr is considered to improve strength in a low-Ni "hybrid" (Pd,Ni)(Ti,Zr,Al) alloy. Aging studies at 600°C result in unusually fast coarsening kinetics, while low-temperature aging studies at 500-530°C reveal the presence of a Zr-rich phase in association with the matrix and Heusler phase. A strengthening study on a nontransforming hybrid prototype shows lower than expected precipitation strengthening at 600°C but significant strengthening when aged at 500°C due to the Zr-rich phase. Transformation temperatures, transformation strain, and cyclic stability are characterized in a set of transforming hybrid prototypes.
DOT National Transportation Integrated Search
2011-08-01
Traffic signal and high-mast poles are used by transportation agencies to control and illuminate intersections; their structural design is governed by national specifications. High-mast poles are luminaire supports located near highway interchanges t...
Modified Adaptive Control for Region 3 Operation in the Presence of Wind Turbine Structural Modes
NASA Technical Reports Server (NTRS)
Frost, Susan Alane; Balas, Mark J.; Wright, Alan D.
2010-01-01
Many challenges exist for the operation of wind turbines in an efficient manner that is reliable and avoids component fatigue and failure. Turbines operate in highly turbulent environments resulting in aerodynamic loads that can easily excite turbine structural modes, possibly causing component fatigue and failure. Wind turbine manufacturers are highly motivated to reduce component fatigue and failure that can lead to loss of revenue due to turbine down time and maintenance costs. The trend in wind turbine design is toward larger, more flexible turbines that are ideally suited to adaptive control methods due to the complexity and expense required to create accurate models of their dynamic characteristics. In this paper, we design an adaptive collective pitch controller for a high-fidelity simulation of a utility-scale, variable-speed horizontal axis wind turbine operating in Region 3. The objective of the adaptive pitch controller is to regulate generator speed, accommodate wind gusts, and reduce the excitation of structural modes in the wind turbine. The control objective is accomplished by collectively pitching the turbine blades. The adaptive collective pitch controller for Region 3 was compared in simulations with a baseline classical Proportional Integrator (PI) collective pitch controller. The adaptive controller will demonstrate the ability to regulate generator speed in Region 3, while accommodating gusts, and reducing the excitation of certain structural modes in the wind turbine.
Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation.
Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes
2012-03-01
Cyclic stresses are often related to the premature mechanical failure of metallic biomaterials. The complex interaction between fatigue and corrosion in the physiological environment has been subject of many investigations. In this context, microstructure, heat treatments, plastic deformation, surface finishing and coatings have decisive influence on the mechanisms of fatigue crack nucleation and growth. Furthermore, wear is frequently present and contributes to the process. However, despite all the effort at elucidating the mechanisms that govern corrosion fatigue of biomedical alloys, failures continue to occur. This work reviews the literature on corrosion-fatigue-related phenomena of Ti alloys, surgical stainless steels, Co-Cr-Mo and Mg alloys. The aim was to discuss the correlation between structural and surface aspects of these materials and the onset of fatigue in the highly saline environment of the human body. By understanding such correlation, mitigation of corrosion fatigue failure may be achieved in a reliable scientific-based manner. Different mitigation methods are also reviewed and discussed throughout the text. It is intended that the information condensed in this article should be a valuable tool in the development of increasingly successful designs against the corrosion fatigue of metallic implants. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Structural Technology and Analysis Program (STAP) Delivery Order 0004: Durability Patch
NASA Astrophysics Data System (ADS)
Ikegami, Roy; Haugse, Eric; Trego, Angela; Rogers, Lynn; Maly, Joe
2001-06-01
Structural cracks in secondary structure, resulting from a high cycle fatigue (HCF) environment, are often referred to as nuisance cracks. This type of damage can result in costly inspections and repair. The repairs often do not last long because the repaired structure continues to respond in a resonant fashion to the environment. Although the use of materials for passive damping applications is well understood, there are few applications to high-cycle fatigue problems. This is because design information characterization temperature, resonant response frequency and strain levels are difficult to determine. The Durability Patch and Damage Dosimeter Program addressed these problems by: (1) Developing a damped repair design process which includes a methodology for designing the material and application characteristics required to optimally damp the repair. (2) Designing and developing a rugged, small, and lightweight data acquisition unit called the damage dosimeter. This is a battery operated, single board computer, capable of collecting three channels of strain and one channel of temperature, processing this data by user developed algorithms written in the C programming language, and storing the processed data in resident memory. The dosimeter is used to provide flight data needed to characterize the vibration environment. The vibration environment is then used to design the damping material characteristics and repair. The repair design methodology and dosimeter were demonstrated on B-52, C-130, and F-15 aircraft applications.
Ryckeghem, Hannah; Delesie, Liesbeth; Tobback, Els; Lievens, Stefaan; Vogelaers, Dirk; Mariman, An
2017-07-01
To explore the experiences and expectations of patients with chronic fatigue syndrome and general practitioners to develop the potential role of an advanced nurse practitioner at the diagnostic care path of abnormal fatigue developed for regional transmural implementation in the Belgian provinces of East and West Flanders. Patients with chronic fatigue syndrome experience an incapacitating chronic fatigue that is present for at least 6 months. Since many uncertainties exist about the causes and progression of the disease, patients have to cope with disbelief and scepticism. Access to health care may be hampered, which could lead to inappropriate treatments and guidance. Qualitative design. Individual semi-structured interviews were conducted with patients with chronic fatigue syndrome and general practitioners in Belgium. Data were collected over 9 months in 2014-2015. All interviews were audio recorded and transcribed for qualitative analysis using open explorative thematic coding. Fifteen patients and 15 general practitioners were interviewed. Three themes were identified: mixed feelings with the diagnosis, lack of one central intermediator and insufficient coordination. Participants stressed the need for education, knowledge and an intermediator to provide relevant information at the right time and to build up a trust relationship. This qualitative exploration underscores some clear deficiencies in the guidance of patients suffering from chronic fatigue syndrome and abnormal fatigue. An advanced nurse practitioner as a central intermediator in the transmural care of these patients could promote interdisciplinary/multidisciplinary collaboration and effective communication, provide education and ensure a structured and coordinated approach. © 2016 John Wiley & Sons Ltd.
2012-05-01
1 1.2. History of Fatigue Designs ................................................................................... 2 1.3...of design . 1.2. History of Fatigue Designs 1.2.1. Safe Life Design The United States Air Force (USAF) has primarily used two design paradigms...for fatigue thus far. These paradigms are the Safe Life, and the Damage Tolerance fatigue designs . The American Society for Metals (ASM) Handbook
TTK Chitra tilting disc heart valve model TC2: An assessment of fatigue life and durability.
Subhash, N N; Rajeev, Adathala; Sujesh, Sreedharan; Muraleedharan, C V
2017-08-01
Average age group of heart valve replacement in India and most of the Third World countries is below 30 years. Hence, the valve for such patients need to be designed to have a service life of 50 years or more which corresponds to 2000 million cycles of operation. The purpose of this study was to assess the structural performance of the TTK Chitra tilting disc heart valve model TC2 and thereby address its durability. The TC2 model tilting disc heart valves were assessed to evaluate the risks connected with potential structural failure modes. To be more specific, the studies covered the finite element analysis-based fatigue life prediction and accelerated durability testing of the tilting disc heart valves for nine different valve sizes. First, finite element analysis-based fatigue life prediction showed that all nine valve sizes were in the infinite life region. Second, accelerated durability test showed that all nine valve sizes remained functional for 400 million cycles under experimental conditions. The study ensures the continued function of TC2 model tilting disc heart valves over duration in excess of 50 years. The results imply that the TC2 model valve designs are structurally safe, reliable and durable.
Structural design/margin assessment
NASA Technical Reports Server (NTRS)
Ryan, R. S.
1993-01-01
Determining structural design inputs and the structural margins following design completion is one of the major activities in space exploration. The end result is a statement of these margins as stability, safety factors on ultimate and yield stresses, fracture limits (fracture control), fatigue lifetime, reuse criteria, operational criteria and procedures, stability factors, deflections, clearance, handling criteria, etc. The process is normally called a load cycle and is time consuming, very complex, and involves much more than structures. The key to successful structural design is the proper implementation of the process. It depends on many factors: leadership and management of the process, adequate analysis and testing tools, data basing, communications, people skills, and training. This process and the various factors involved are discussed.
Smets, E. M.; Garssen, B.; Cull, A.; de Haes, J. C.
1996-01-01
In this paper the psychometric properties of the multidimensional fatigue inventory (MFI-20) are established further in cancer patients. The MFI is a 20-item self-report instrument designed to measure fatigue. It covers the following dimensions: general fatigue, physical fatigue, reduced activity, reduced motivation and mental fatigue. The instrument was used in a Dutch and Scottish sample of cancer patients receiving radiotherapy. The dimensional structure was assessed using confirmatory factor analyses (Lisrel's unweighted least-squares method). The hypothesised five-factor model appeared to fit the data in both samples (adjusted goodness of fit; AGFI: 0.97 and 0.98). Internal consistency of the separate scales was good in both the Dutch and Scottish samples with Cronbach's alpha coefficients ranging from 0.79 to 0.93. Construct validity was assessed by correlating the MFI-20 to activities of daily living, anxiety and depression. Significant relations were assumed. Convergent validity was investigated by correlating the MFI scales with a visual analogue scale measuring fatigue and with a fatigue-scale derived from the Rotterdam Symptom Checklist. Results support the validity of the MFI-20. The highly similar results in the Dutch and Scottish sample suggest that the portrayal of fatigue using the MFI-20 is quite robust. PMID:8546913
NASA Technical Reports Server (NTRS)
Vinogradov, Aleksandra M.; Ihlefeld, Curtis M.; Henslee, Issac
2009-01-01
The paper concerns the time-dependent behavior of electroactive polymers (EAP) and their use in advanced intelligent structures for space exploration. Innovative actuator design for low weight and low power valves required in small plants planned for use on the moon for chemical analysis is discussed. It is shown that in-depth understanding of cyclic loading effects observed through accelerated creep rates due to creep-fatigue interaction in polymers is critical in terms of proper functioning of EAP based actuator devices. In the paper, an overview of experimental results concerning the creep properties and cyclic creep response of a thin film piezoelectric polymer polyvinylidene fluoride (PVDF) is presented. The development of a constitutive creep-fatigue interaction model to predict the durability and service life of electroactive polymers is discussed. A novel method is proposed to predict damage accumulation and fatigue life of polymers under oyclic loading conditions in the presence of creep. The study provides a basis for ongoing research initiatives at the NASA Kennedy Space Center in the pursuit of new technologies using EAP as active elements for lunar exploration systems.
Effect of Buckling Modes on the Fatigue Life and Damage Tolerance of Stiffened Structures
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Bisagni, Chiara; Rose, Cheryl A.
2015-01-01
The postbuckling response and the collapse of composite specimens with a co-cured hat stringer are investigated experimentally and numerically. These specimens are designed to evaluate the postbuckling response and the effect of an embedded defect on the collapse load and the mode of failure. Tests performed using controlled conditions and detailed instrumentation demonstrate that the damage tolerance, fatigue life, and collapse loads are closely tied with the mode of the postbuckling deformation, which can be different between two nominally identical specimens. Modes that tend to open skin/stringer defects are the most damaging to the structure. However, skin/stringer bond defects can also propagate under shearing modes. In the proposed paper, the effects of initial shape imperfections on the postbuckling modes and the interaction between different postbuckling deformations and the propagation of skin/stringer bond defects under quasi-static or fatigue loads will be examined.
Study of simple CFRP-metal joint failure
NASA Astrophysics Data System (ADS)
Cheng, Jingquan; Rodriguez, Antonio; Emerson, Nicolas; Symmes, Arthur
2008-07-01
In millimeter wavelength telescope design and construction, there have been a number of mysterious failures of simple CFRF-metal joints. Telescope designers have not had satisfactory interpretations of these failures. In this paper, factors which may influence the failure of joints are discussed. These include stress concentration, material creep, joint fatigue, reasons related to chemical process and manufacture process. Extrapolation formulas for material creep, joint fatigue, and differential thermal stresses are derived in this paper. Detailed chemical and manufacturing factors are also discussed. All these issues are the causes of a number of early failures under a loading which is significantly lower than the strength of adhesives used. For ensuring reliability of a precision instrument structure joint, the designer should have a thorough understanding of all these factors.
Lamb Wave Response of Fatigued Composite Samples
NASA Technical Reports Server (NTRS)
Seale, Michael; Smith, Barry T.; Prosser, William H.; Masters, John E.
1994-01-01
Composite materials are being more widely used today by aerospace, automotive, sports equipment, and a number of other commercial industries because of their advantages over conventional metals. Composites have a high strength-to-weight ratio and can be constructed to meet specific design needs. Composite structures are already in use in secondary parts of the Douglas MD-11 and are planned to be used in the new MD-12X. Plans also exist for their use in primary and secondary structures on the Boeing 777. Douglas proposed MD-XX may also incorporate composite materials into primary structures such as the wings and tail. Use of composites in these structures offers weight savings, corrosion resistance, and improved aerodynamics. Additionally, composites have been used to repair cracks in many B-1Bs where traditional repair techniques were not very effective. Plans have also been made to reinforce all of the remaining B-1s with composite materials. Verification of the structural integrity of composite components is needed to insure safe operation of these aerospace vehicles. One aspect of the use of these composites is their response to fatigue. To track this progression of fatigue in aerospace structures, a convenient method to nondestructively monitor this damage needs to be developed. Traditional NDE techniques used on metals are not easily adaptable to composites due to the inhomogeneous and anisotropic nature of these materials. Finding an effective means of nondestructively monitoring fatigue damage is extremely important to the safety and reliability of such structures. Lamb waves offer one method of evaluating these composite materials. As a material is fatigued, the modulus degrades. Since the Lamb wave velocity can be related to the modulus of the material, an effective tool can be developed to monitor fatigue damage in composites by measuring the velocity of these waves. In this work, preliminary studies have been conducted which monitor fatigue damage in composite samples using strain gage measurements as well as Lamb wave velocity measurements. A description of the test samples is followed by the results of two different measurements of Lamb wave velocity. The first technique is a contact measurement done at a single frequency, while the second involves an immersion study of Lamb waves in which dispersion curves are obtained. The results of the Lamb wave monitoring of fatigue damage is compared to the damage progression measured by strain gages. The final section discusses the results and conclusions.
Characterization and Modeling of Asphalt Binder Fatigue
NASA Astrophysics Data System (ADS)
Safaei, Farinaz
Fatigue cracking is a primary distress in asphalt pavements caused by the accumulation of damage under repeated traffic loading. Many factors influence fatigue damage in pavements, including pavement structure, environmental conditions, and asphalt mixture volumetric properties. Asphalt binder is the weakest asphalt concrete constituent and, thus, plays a critical role in determining the fatigue resistance of pavements. Therefore, the ability to characterize and model the inherent fatigue performance of an asphalt binder is a necessary first step to design. A comprehensive understanding and prediction of asphalt binder fatigue performance require a suitable experiment coupled with a model to predict how the binder will perform under various traffic, temperature, and structural conditions encountered in the field. The simplified viscoelastic continuum damage (S-VECD) model has been used successfully by researchers to predict the damage evolution in asphalt mixtures for various traffic and climatic conditions using limited uniaxial test data. Although the literature shows promise for applying VECD modeling to asphalt binder fatigue, the past efforts have several shortcomings. It has been demonstrated that flow and adhesion loss can impede DSR fatigue test results. Thus, definition of test conditions (e.g., temperature) where cyclic DSR tests are appropriate for fatigue characterization of binders is necessary. In addition, the applicability of the model to predict fatigue performance under varying loading and thermal history has not been rigorously evaluated. Furthermore, the effects of material nonlinearity have been largely neglected in past modeling efforts for simplicity. In addition, past efforts have employed the parallel plate DSR geometry for the fatigue characterization of asphalt binders. In the parallel plate geometry, the strain depends on the radial distance from the specimen center. Therefore, the material will fail at different rates as a function of radial location. Past efforts have neglected the radial strain gradient, using the apparent shear stress at the sample edge to infer fatigue damage and derive S-VECD model parameters. Apparent edge stress is calculated using linear mapping to the total torque, which is erroneous in the presence of material or geometric nonlinearities (such as cracking). This study seeks to overcome the aforementioned shortcomings of past efforts to improve the ability to characterize and predict asphalt binder fatigue.
Fatigue tests on big structure assemblies of concorde aircraft
NASA Technical Reports Server (NTRS)
Nguyen, V. P.; Perrais, J. P.
1972-01-01
Fatigue tests on structural assemblies of the Concorde supersonic transport aircraft are reported. Two main sections of the aircraft were subjected to pressure, mechanical load, and thermal static tests. The types of fatigue tests conducted and the results obtained are discussed. It was concluded that on a supersonic aircraft whose structural weight is a significant part of the weight analysis, many fatigue and static strength development tests should be made and fatigue and thermal tests of the structures are absolutely necessary.
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2000-01-01
Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.
NASA Technical Reports Server (NTRS)
Harvill, W. E.; Duhig, J. J.; Spencer, B. R.
1973-01-01
The design, fabrication, and evaluation of boron-epoxy reinforced C-130 center wing boxes are discussed. Design drawings, static strength, fatigue endurance, flutter, and weight analyses required for the wing box fabrication are presented. Additional component testing to verify the design for panel buckling and to evaluate specific local design areas are reported.
2015-07-01
circular hole in an aluminium plate fitted with a titanium fastener that were computed using two-dimensional finite element contact analysis. By...used to validate the contact stress distributions associated with a circular hole in an aluminium plate fitted with a titanium fastener that were...fatigue life and aircraft structural integrity management of RAAF airframes. An aluminium coupon has been previously designed in support of the
Review of fatigue and fracture research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Everett, Richard A., Jr.
1988-01-01
Most dynamic components in helicopters are designed with a safe-life constant-amplitude testing approach that has not changed in many years. In contrast, the fatigue methodology in other industries has advanced significantly in the last two decades. Recent research at the NASA Langley Research Center and the U.S. Army Aerostructures Directorate at Langley are reviewed relative to fatigue and fracture design methodology for metallic components. Most of the Langley research was directed towards the damage tolerance design approach, but some work was done that is applicable to the safe-life approach. In the areas of testing, damage tolerance concepts are concentrating on the small-crack effect in crack growth and measurement of crack opening stresses. Tests were conducted to determine the effects of a machining scratch on the fatigue life of a high strength steel. In the area of analysis, work was concentrated on developing a crack closure model that will predict fatigue life under spectrum loading for several different metal alloys including a high strength steel that is often used in the dynamic components of helicopters. Work is also continuing in developing a three-dimensional, finite-element stress analysis for cracked and uncracked isotropic and anisotropic structures. A numerical technique for solving simultaneous equations called the multigrid method is being pursued to enhance the solution schemes in both the finite-element analysis and the boundary element analysis. Finally, a fracture mechanics project involving an elastic-plastic finite element analysis of J-resistance curve is also being pursued.
NASA Technical Reports Server (NTRS)
Halford, Gary R.
1993-01-01
The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940's. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches were identified as being combinations of thirteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made. The need for high-temperature, fatigue-life prediction methods followed immediately on the heels of the development of large, costly, high-technology industrial and aerospace equipment immediately following the second world war. Major advances were made in the design and manufacture of high-temperature, high-pressure boilers and steam turbines, nuclear reactors, high-temperature forming dies, high-performance poppet valves, aeronautical gas turbine engines, reusable rocket engines, etc. These advances could no longer be accomplished simply by trial and error using the 'build-em and bust-em' approach. Development lead times were too great and costs too prohibitive to retain such an approach. Analytic assessments of anticipated performance, cost, and durability were introduced to cut costs and shorten lead times. The analytic tools were quite primitive at first and out of necessity evolved in parallel with hardware development. After forty years more descriptive, more accurate, and more efficient analytic tools are being developed. These include thermal-structural finite element and boundary element analyses, advanced constitutive stress-strain-temperature-time relations, and creep-fatigue-environmental models for crack initiation and propagation. The high-temperature durability methods that have evolved for calculating high-temperature fatigue crack initiation lives of structural engineering materials are addressed. Only a few of the methods were refined to the point of being directly useable in design. Recently, two of the methods were transcribed into computer software for use with personal computers.
NASA Astrophysics Data System (ADS)
Halford, Gary R.
1993-10-01
The evolution of high-temperature, creep-fatigue, life-prediction methods used for cyclic crack initiation is traced from inception in the late 1940's. The methods reviewed are material models as opposed to structural life prediction models. Material life models are used by both structural durability analysts and by material scientists. The latter use micromechanistic models as guidance to improve a material's crack initiation resistance. Nearly one hundred approaches and their variations have been proposed to date. This proliferation poses a problem in deciding which method is most appropriate for a given application. Approaches were identified as being combinations of thirteen different classifications. This review is intended to aid both developers and users of high-temperature fatigue life prediction methods by providing a background from which choices can be made. The need for high-temperature, fatigue-life prediction methods followed immediately on the heels of the development of large, costly, high-technology industrial and aerospace equipment immediately following the second world war. Major advances were made in the design and manufacture of high-temperature, high-pressure boilers and steam turbines, nuclear reactors, high-temperature forming dies, high-performance poppet valves, aeronautical gas turbine engines, reusable rocket engines, etc. These advances could no longer be accomplished simply by trial and error using the 'build-em and bust-em' approach. Development lead times were too great and costs too prohibitive to retain such an approach. Analytic assessments of anticipated performance, cost, and durability were introduced to cut costs and shorten lead times. The analytic tools were quite primitive at first and out of necessity evolved in parallel with hardware development. After forty years more descriptive, more accurate, and more efficient analytic tools are being developed. These include thermal-structural finite element and boundary element analyses, advanced constitutive stress-strain-temperature-time relations, and creep-fatigue-environmental models for crack initiation and propagation. The high-temperature durability methods that have evolved for calculating high-temperature fatigue crack initiation lives of structural engineering materials are addressed. Only a few of the methods were refined to the point of being directly useable in design.
Nonlinear Control of a Reusable Rocket Engine for Life Extension
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok
1998-01-01
This paper presents the conceptual development of a life-extending control system where the objective is to achieve high performance and structural durability of the plant. A life-extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel (H2) and oxidizer (O2) turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. The design procedure makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life-extending controller module to augment a conventional performance controller of the rocket engine. The nonlinear aspect of the design is achieved using non-linear parameter optimization of a prescribed control structure. Fatigue damage in fuel and oxidizer turbine blades is primarily caused by stress cycling during start-up, shutdown, and transient operations of a rocket engine. Fatigue damage in the turbine blades is one of the most serious causes for engine failure.
Report on FY15 Alloy 617 SMT Creep-Fatigue Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yanli; Jetter, Robert I.; Baird, Seth T.
For the temperature range of 990-950C, Alloy 617 is a candidate IHX structural material for high temperature gas reactors (HTGRs) because of its high temperature creep properties. Also, its superior strength over a broad temperature range also offers advantages for certain component applications. In order for the designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the ASME (American Society of Mechanical Engineers) Boiler and Pressure Vessel Code. A plan has been developed to propose a Code Case for use ofmore » Alloy 617 at elevated temperature in Section III of the ASME Code by September 2015. There has not been a new high temperature material approved for use in Section III for almost 20 years. The Alloy 617 Code Case effort would lead the way to establish a path for Code qualification of new high temperature materials of interest to other advanced SMRs. Creep-fatigue at elevated temperatures is the most damaging structural failure mode. In the past 40 years significant efforts have been devoted to the elevated temperature Code rule development in Section III, Subsection NH* of the ASME Boiler and Pressure Vessel Code, to ascertain conservative structural designs to prevent creep-fatigue failure. The current Subsection NH creep-fatigue procedure was established by the steps of (1) analytically obtaining a detailed stress-strain history, (2) comparing the stress and strain components to cyclic test results deconstructed into stress and strain quantities, and (3) recombining the results to obtain a damage function in the form of the so-called creep-fatigue damage-diagram. The deconstruction and recombination present difficulties in evaluation of test data and determination of cyclic damage in design. The uncertainties in these steps lead to the use of overly conservative design factors in the current creep-fatigue procedure. In addition, and of major significance to the viability of the Alloy 617 Code Case, the use of the current elastic analysis based rules in Subsection NH for the evaluation of strain limits (a precursor for the creep-fatigue rules) and the creep-fatigue rules themselves have been deemed inappropriate for Alloy 617 at temperatures above 650C (Corum and Brass, 1991). The rationale for this exclusion is that at higher temperatures it is not feasible to decouple plasticity and creep, which is the basis for the current simplified rules. This temperature, 650C, is well below the temperature range of interest for this material for the High Temperature Gas Cooled Reactor (HTGR) as well as the VHTR. The only current alternative is, thus, a full inelastic analysis which requires sophisticated material models which have not yet been formulated and verified. To address the prohibition on the use of current methods at very high temperatures, proposed Code rules have been developed which are based on the use of elastic-perfectly plastic (E-PP) analysis methods and which are expected to be applicable to very high temperatures. To provide data to implement the proposed rules and to verify their application, a series of tests have been initiated. One test concept, the Simplified Model Test (SMT), takes into account the stress and strain redistribution in real structures by including representative follow-up characteristics in the test specimen. The correlation parameter between test and design is the elastically calculated strain, and the dependent test variable is the observed cycles to failure. Although the initial priority for the SMT approach is to generate data to support validation of the E-PP Code Case for evaluation of creep-fatigue damage, the broader goal of the SMT approach is to develop a methodology for evaluation of creep fatigue damage which is simpler to implement than the current complex rules and applicable to the full temperature range from ambient conditions to the very high temperature creep regime of 900-950C. Also, guidance has been received from ASME Code committees that the proposed EPP methodology for evaluation of creep-fatigue damage should be extended to the other Subsection NH materials to the extent feasible. Thus, the scope of testing has been expanded to include SS304H and SS316H. This report describes the SMT approach and the development of testing capability to conduct SMT experiments on Alloy 617 and 304H and 316H and stainless steels. These SMT specimen data are also representative of component loading conditions and have been used as part of the verification of the proposed elastic-perfectly plastic Code Cases. Results from the SMT tests on both Alloy 617 and SS316H were compared to the predictions from the EPP Creep-Fatigue Code Case. Two different comparisons were made; one based on design life equal to the test duration and the other with an acceptable design life determined from the EPP Code Case procedure. The latter approach permits the determination of...« less
Martin, Caitlin
2014-01-01
One of the major failure modes of bioprosthetic heart valves (BHVs) is noncalcific structural deterioration due to fatigue of the tissue leaflets; yet, the mechanisms of fatigue are not well understood. BHV durability is primarily assessed based on visual inspection of the leaflets following accelerated wear testing. In this study, we developed a computational framework to simulate BHV leaflet fatigue, which is both efficient and quantitative, making it an attractive alternative to traditional accelerated wear testing. We utilize a phenomenological soft tissue fatigue damage model developed previously to describe the stress softening and permanent set of the glutaraldehyde-treated bovine pericardium leaflets in BHVs subjected to cyclic loading. A parametric study was conducted to determine the effects of altered leaflet and stent elastic properties on the fatigue of the leaflets. The simulation results show that heterogeneity of the leaflet elastic properties, poor leaflet coaptation, and little stent-tip deflection may accelerate leaflet fatigue, which agrees with clinical findings. Therefore, the developed framework may be an invaluable tool for evaluating leaflet durability in new tissue valve designs, including traditional BHVs as well as new transcatheter valves. PMID:24092257
NASA Astrophysics Data System (ADS)
Serrano, Leonell; Marco, Yann; Le Saux, Vincent; Robert, Gilles; Charrier, Pierre
2017-09-01
Short-fiber-reinforced thermoplastics components for structural applications are usually very complex parts as stiffeners, ribs and thickness variations are used to compensate the quite low material intrinsic stiffness. These complex geometries induce complex local mechanical fields but also complex microstructures due to the injection process. Accounting for these two aspects is crucial for the design in regard to fatigue of these parts, especially for automotive industry. The aim of this paper is to challenge an energetic approach, defined to evaluate quickly the fatigue lifetime, on three different heterogeneous cases: a classic dog-bone sample with a skin-core microstructure and two structural samples representative of the thickness variations observed for industrial components. First, a method to evaluate dissipated energy fields from thermal measurements is described and is applied to the three samples in order to relate the cyclic loading amplitude to the fields of cyclic dissipated energy. Then, a local analysis is detailed in order to link the energy dissipated at the failure location to the fatigue lifetime and to predict the fatigue curve from the thermomechanical response of one single sample. The predictions obtained for the three cases are compared successfully to the Wöhler curves obtained with classic fatigue tests. Finally, a discussion is proposed to compare results for the three samples in terms of dissipation fields and fatigue lifetime. This comparison illustrates that, if the approach is leading to a very relevant diagnosis on each case, the dissipated energy field is not giving a straightforward access to the lifetime cartography as the relation between fatigue failure and dissipated energy seems to be dependent on the local mechanical and microstructural state.
The Effect of Structural Quality on Fatigue Life in 319 Aluminum Alloy Castings
NASA Astrophysics Data System (ADS)
Özdeş, Hüseyin; Tiryakioğlu, Murat
2017-02-01
Tensile and fatigue life data for 319 aluminum alloy from seventeen datasets reported in four independent studies from the literature have been reanalyzed. Analysis of fatigue life data involved mean stress correction for different R ratios used in fatigue testing, inclusion of survival (runout) data along with failure data, as well as volumetric correction for Weibull distributions for different specimen sizes used in these studies. Tensile data have been transformed into the structural quality index, Q T, which is used as a measure of the structural quality of castings. A distinct relationship has been observed between the expected fatigue life and mean quality index. Moreover, fatigue strengths at 104 and 106 cycles have been found increase with quality index, providing further evidence about the relationship observed between structural quality and fatigue performance. Empirical equations between Basquin parameters and structural quality index have been developed. The use of the comprehensive methodology to estimate fatigue life is demonstrated with an example.
Recent Niobium Developments for High Strength Steel Energy Applications
NASA Astrophysics Data System (ADS)
Jansto, Steven G.
Niobium-containing high strength steel materials have been developed for oil and gas pipelines, offshore platforms, nuclear plants, boilers and alternative energy applications. Recent research and the commercialization of alternative energy applications such as windtower structural supports and power transmission gear components provide enhanced performance. Through the application of these Nb-bearing steels in demanding energy-related applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the structural design and performance. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are initiating new windtower designs operating at higher energy efficiency, lower cost, and improved overall material design performance.
Impact of Fatigue in Rheumatic Diseases in the Work Environment: A Qualitative Study.
Connolly, Deirdre; Fitzpatrick, Clodagh; O'Toole, Lynn; Doran, Michele; O'Shea, Finbar
2015-10-28
Fatigue is a symptom of arthritis that causes difficulty at work. An improved understanding of this symptom could assist its management in the work environment. The aim of this study was to explore people with rheumatic diseases' experiences of fatigue in work. A qualitative descriptive design was used with semi-structured interviews and a constant comparative method of data analysis. There were 18 participants, the majority of them female with Rheumatoid Arthritis (RA) and working full-time. Three themes were identified: "Impact of fatigue on work performance" with cognition, mood and physical abilities being the main difficulties reported. In the second theme "Disclosure at Work" participants discussed disclosing their disease to employers but reported a lack of understanding of fatigue from colleagues. The final theme "work-based fatigue management strategies" included cognitive strategies and energy management techniques, which were mainly self-taught. In this study, fatigue was reported to impact on many areas of work performance with limited understanding from colleagues and employers. Interventions from health professionals to assist with development of work-related self-management skills are required to assist with symptom management in the work place. Such interventions should include education to employers and colleagues on the nature of fatigue in Rheumatic diseases.
Impact of Fatigue in Rheumatic Diseases in the Work Environment: A Qualitative Study
Connolly, Deirdre; Fitzpatrick, Clodagh; O’Toole, Lynn; Doran, Michele; O’Shea, Finbar
2015-01-01
Fatigue is a symptom of arthritis that causes difficulty at work. An improved understanding of this symptom could assist its management in the work environment. The aim of this study was to explore people with rheumatic diseases’ experiences of fatigue in work. A qualitative descriptive design was used with semi-structured interviews and a constant comparative method of data analysis. There were 18 participants, the majority of them female with Rheumatoid Arthritis (RA) and working full-time. Three themes were identified: “Impact of fatigue on work performance” with cognition, mood and physical abilities being the main difficulties reported. In the second theme “Disclosure at Work” participants discussed disclosing their disease to employers but reported a lack of understanding of fatigue from colleagues. The final theme “work-based fatigue management strategies” included cognitive strategies and energy management techniques, which were mainly self-taught. In this study, fatigue was reported to impact on many areas of work performance with limited understanding from colleagues and employers. Interventions from health professionals to assist with development of work-related self-management skills are required to assist with symptom management in the work place. Such interventions should include education to employers and colleagues on the nature of fatigue in Rheumatic diseases. PMID:26516896
Structures and mechanisms - Streamlining for fuel economy
NASA Technical Reports Server (NTRS)
Card, M. F.
1983-01-01
The design of prospective NASA space station components which inherently possess the means for structural growth without compromising initial system characteristics is considered. In structural design terms, space station growth can be achieved by increasing design safety factors, introducing dynamic isolators to prevent loads from reaching the initial components, or preplanning the refurbishment of the original structure with stronger elements. Design tradeoffs will be based on the definition of on-orbit loads, including docking and maneuvering, whose derived load spectra will allow the estimation of fatigue life. Improvements must be made in structural materials selection in order to reduce contamination, slow degradation, and extend the life of coatings. To minimize on-orbit maintenance, long service life lubrication systems with advanced sealing devices must be developed.
Active controls technology to maximize structural efficiency
NASA Technical Reports Server (NTRS)
Hoy, J. M.; Arnold, J. M.
1978-01-01
The implication of the dependence on active controls technology during the design phase of transport structures is considered. Critical loading conditions are discussed along with probable ways of alleviating these loads. Why fatigue requirements may be critical and can only be partially alleviated is explained. The significance of certain flutter suppression system criteria is examined.
NASA Astrophysics Data System (ADS)
Bonachera Martin, Francisco Javier
The characterization of fatigue resistance is one of the main concerns in structural engineering, a concern that is particularly important in the evaluation of existing bridge members designed or erected before the development of fatigue design provisions. The ability of a structural member to develop alternate load paths after the failure of a component is known as member-level or internal redundancy. In fastened built-up members, these alternate load paths are affected by the combination of fastener pre-tension and friction between the structural member components in contact. In this study, a finite element methodology to model and analyze riveted and bolted built-up members was developed in ABAQUS and validated with experimental results. This methodology was used to created finite element models of three fastened plates subjected to tension, in which the middle plate had failed, in order to investigate the fundamental effects of combined fastener pre-tension and friction on their mechanical behavior. Detailed finite element models of riveted and bolted built-up flexural members were created and analyze to understand the effect of fastener pre-tension in member-level redundancy and resistance to fatigue and fracture. The obtained results showed that bolted members are able to re-distribute a larger portion of the load away from the failing component into the rest of the member than riveted members, and that this transfer of load also took place over a smaller length. Superior pre-tension of bolts, in comparison to rivets, results in larger frictional forces that develop at the contact interfaces between components and constitute additional alternate load paths that increase member-level redundancy which increase the fatigue and fracture resistance of the structural member during the failure of one of its components. Although fatigue and fracture potential may be mitigated by compressive stresses developing around the fastener hole due to fastener pre-tension, it was also observed, that at the surface of the fastener hole and at the contact interface with another plate, tensional stresses could develop; however, further computational and experimental work should be performed to verify this claim.
14 CFR 29.571 - Fatigue Tolerance Evaluation of Metallic Structure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Structure. 29.571 Section 29.571 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Evaluation § 29.571 Fatigue Tolerance Evaluation of Metallic Structure. (a) A fatigue tolerance evaluation of... Administrator. (d) Considering all rotorcraft structure, structural elements, and assemblies, each PSE must be...
14 CFR 29.571 - Fatigue Tolerance Evaluation of Metallic Structure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Structure. 29.571 Section 29.571 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Evaluation § 29.571 Fatigue Tolerance Evaluation of Metallic Structure. (a) A fatigue tolerance evaluation of... Administrator. (d) Considering all rotorcraft structure, structural elements, and assemblies, each PSE must be...
NASA Technical Reports Server (NTRS)
Rajagopal, Kadambi R.; DebChaudhury, Amitabha; Orient, George
2000-01-01
This report describes a probabilistic structural analysis performed to determine the probabilistic structural response under fluctuating random pressure loads for the Space Shuttle Main Engine (SSME) turnaround vane. It uses a newly developed frequency and distance dependent correlation model that has features to model the decay phenomena along the flow and across the flow with the capability to introduce a phase delay. The analytical results are compared using two computer codes SAFER (Spectral Analysis of Finite Element Responses) and NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) and with experimentally observed strain gage data. The computer code NESSUS with an interface to a sub set of Composite Load Spectra (CLS) code is used for the probabilistic analysis. A Fatigue code was used to calculate fatigue damage due to the random pressure excitation. The random variables modeled include engine system primitive variables that influence the operating conditions, convection velocity coefficient, stress concentration factor, structural damping, and thickness of the inner and outer vanes. The need for an appropriate correlation model in addition to magnitude of the PSD is emphasized. The study demonstrates that correlation characteristics even under random pressure loads are capable of causing resonance like effects for some modes. The study identifies the important variables that contribute to structural alternate stress response and drive the fatigue damage for the new design. Since the alternate stress for the new redesign is less than the endurance limit for the material, the damage due high cycle fatigue is negligible.
Advanced aircraft service life monitoring method via flight-by-flight load spectra
NASA Astrophysics Data System (ADS)
Lee, Hongchul
This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From the comparison of interpolated fatigue life using CSI value and fatigue test results, it is obvious that proposed advanced IAT method via flight-by-flight load spectra is more reliable and accurate than current IAT method. Therefore, the advanced aircraft service life monitoring method based on flight-by-flight load spectra not only monitors the individual aircraft consumed fatigue life for inspection but also ensures the structural reliability of aging aircrafts throughout their service periods.
Simulation-Driven Design Approach for Design and Optimization of Blankholder
NASA Astrophysics Data System (ADS)
Sravan, Tatipala; Suddapalli, Nikshep R.; Johan, Pilthammar; Mats, Sigvant; Christian, Johansson
2017-09-01
Reliable design of stamping dies is desired for efficient and safe production. The design of stamping dies are today mostly based on casting feasibility, although it can also be based on criteria for fatigue, stiffness, safety, economy. Current work presents an approach that is built on Simulation Driven Design, enabling Design Optimization to address this issue. A structural finite element model of a stamping die, used to produce doors for Volvo V70/S80 car models, is studied. This die had developed cracks during its usage. To understand the behaviour of stress distribution in the stamping die, structural analysis of the die is conducted and critical regions with high stresses are identified. The results from structural FE-models are compared with analytical calculations pertaining to fatigue properties of the material. To arrive at an optimum design with increased stiffness and lifetime, topology and free-shape optimization are performed. In the optimization routine, identified critical regions of the die are set as design variables. Other optimization variables are set to maintain manufacturability of the resultant stamping die. Thereafter a CAD model is built based on geometrical results from topology and free-shape optimizations. Then the CAD model is subjected to structural analysis to visualize the new stress distribution. This process is iterated until a satisfactory result is obtained. The final results show reduction in stress levels by 70% with a more homogeneous distribution. Even though mass of the die is increased by 17 %, overall, a stiffer die with better lifetime is obtained. Finally, by reflecting on the entire process, a coordinated approach to handle such situations efficiently is presented.
Understanding the meaning of fatigue at the end of life: an ethnoscience approach.
Kirshbaum, Marilynne N; Olson, Kärin; Pongthavornkamol, Kanaungnit; Graffigna, Guendalina
2013-04-01
Fatigue is a devastating state of body and mind associated with distress at the end of life. We report the results of the third in a series of papers outlining a novel approach we have developed for understanding the meaning of fatigue by exploring how this meaning is shaped by beliefs and values. The aims of the study were to examine the perception and experiences of fatigue held by patients attending a hospice in England; identify the behavioural patterns that distinguish fatigue from tiredness and exhaustion; provide conceptual definitions of tiredness, fatigue and exhaustion. An Ethnoscience design was selected. The sample comprised nine people who attended a hospice between May and December 2009. Inclusion criteria included: at least 18 years of age, experiencing fatigue, able to provide informed consent and resident in the selected city in northern England for 10 years. Data were collected from two consecutive semi-structured interviews for each participant. We found that tiredness, fatigue and exhaustion are markers of progressive functional decline. Fatigue had two dimensions: 1) Mental Challenge, which included: emotional effects, cognitive realisation of decline and mental tenacity and 2) Physical Challenge, which included: limitations in leisure activities, limitations in functional roles and re-patterning routines. This study provides evidence that symptom experience is socially constructed, which has potential implications for the development of effective interventions. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Model of Fatigue Following Traumatic Brain Injury.
Ponsford, Jennie; Schönberger, Michael; Rajaratnam, Shantha M W
2015-01-01
Fatigue is one of the most frequent sequelae of traumatic brain injury (TBI), although its causes are poorly understood. This study investigated the interrelationships between fatigue and sleepiness, vigilance performance, depression, and anxiety, using a structural equation modeling approach. Seventy-two participants with moderate to severe TBI (78% males) were recruited a median of 305 days postinjury. They completed the Fatigue Severity Scale, a vigilance task, the Epworth Sleepiness Scale, and Hospital Anxiety and Depression Scale. A model of the interrelationships between the study variables was developed, tested, and modified with path analysis. The modified model had a good overall fit (χ2 = 1.3, P = .54; comparative fit index = 1.0; root-mean square error of approximation = 0.0; standardized root-mean square residual = 0.02). Most paths in this model were significant (P < .05). Fatigue predicted anxiety, depression, and daytime sleepiness. Depression predicted daytime sleepiness and poor vigilance, whereas anxiety tended to predict reduced daytime sleepiness. This model confirms the complexity of fatigue experience. It supports the hypothesis that fatigue after TBI is a cause, not a consequence, of anxiety, depression, and daytime sleepiness, which, in turn (especially depression), may exacerbate fatigue by affecting cognitive functioning. These findings suggest that to alleviate fatigue, it is important to address each of these factors. However, the findings need to be confirmed with a longitudinal research design.
Fatigue failure of metal components as a factor in civil aircraft accidents
NASA Technical Reports Server (NTRS)
Holshouser, W. L.; Mayner, R. D.
1972-01-01
A review of records maintained by the National Transportation Safety Board showed that 16,054 civil aviation accidents occurred in the United States during the 3-year period ending December 31, 1969. Material failure was an important factor in the cause of 942 of these accidents. Fatigue was identified as the mode of the material failures associated with the cause of 155 accidents and in many other accidents the records indicated that fatigue failures might have been involved. There were 27 fatal accidents and 157 fatalities in accidents in which fatigue failures of metal components were definitely identified. Fatigue failures associated with accidents occurred most frequently in landing-gear components, followed in order by powerplant, propeller, and structural components in fixed-wing aircraft and tail-rotor and main-rotor components in rotorcraft. In a study of 230 laboratory reports on failed components associated with the cause of accidents, fatigue was identified as the mode of failure in more than 60 percent of the failed components. The most frequently identified cause of fatigue, as well as most other types of material failures, was improper maintenance (including inadequate inspection). Fabrication defects, design deficiencies, defective material, and abnormal service damage also caused many fatigue failures. Four case histories of major accidents are included in the paper as illustrations of some of the factors invovled in fatigue failures of aircraft components.
Fatigue Analysis of Overhead Sign and Signal Structures
DOT National Transportation Integrated Search
1994-05-01
This report documents methods of fatigue analysis for overhead sign and signal structures. The main purpose of this report is to combine pertinent wind loading and vibration theory, fatigue damage theory, and experimental data into a useable fatigue ...
Steel bridge retrofit evaluation
NASA Astrophysics Data System (ADS)
Prine, David W.
1998-03-01
The development of a retrofit design aimed at retarding or eliminating fatigue crack growth in a large bridge can be a very difficult and expensive procedure. Analytical techniques frequently do not provide sufficient accuracy when applied to complex structural details. The Infrastructure Technology Institute (ITI) of Northwestern University, under contract to the California Department of Transportation (Caltrans), recently applied experimental state-of-the-art NDE technology to the Interstate 80 bridge over the Sacramento River near Sacramento, California (Bryte Bend). Acoustic emission monitoring was applied in conjunction with strain gage monitoring to aid in characterizing the retrofits' effect on existing active fatigue cracks. The combined test results clearly showed that one retrofit design was superior to the other.
FY 2017-Progress Report on the Design and Construction of the Sodium Loop SMT-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natesan, K.; Momozaki, Y.
This report provides an update on the design of a forced-convection sodium loop to be used for the evaluation of sodium compatibility of advanced Alloy 709 with emphasis on long term exposures of tensile, creep, fatigue, creep fatigue, and fracture toughness ASTM-size specimens in support of ASME Code qualification and NRC licensing. The report is a deliverable (Level 4) in FY17 (M4AT-17AN1602094), under the Work Package AT-17AN160209, “Sodium Compatibility” performed by Argonne National Laboratory (ANL), as part of the Advanced Materials Program for the Advanced Reactor Technology. This work package enables the development of advanced structural materials by providing corrosion,more » microstructure, and mechanical property data from the standpoint of sodium compatibility of advanced structural alloys. The first sodium loop (SMT-1) with a single tank was constructed in 2011 at ANL and has been in operation for exposure of subsize sheet specimens of advanced alloys at a single temperature. The second sodium loop with dual tanks (SMT-2) was constructed in 2013 and has been in operation for the exposure of subsize sheet specimens of advanced alloys at two different temperatures. The current loop (SMT-3) has been designed to incorporate sufficient chamber capacity to expose a large number of ASTM-size specimens to evaluate the sodium effects on tensile, creep, fatigue, creep-fatigue, and fracture toughness properties, in support of ASME Code Qualification and USNRC Licensing. The design of individual components for the third sodium loop SMT-3 is almost complete. The design also has been sent to an outside vendor for piping analysis to be in compliance with ASME Code. A purchase order has been placed with an outside vendor for the fabrication of major components such as the specimen exposure tanks. However, we have contracted with another vendor to establish the piping design in compliance with ASME design codes. The piping design was completed in FY2017 and the information is being transmitted to the tank fabricator. The SMT-3 loop will be located in Building 206 adjacent to the currently operating SMT-2 loop. In addition, we have demolished the aged power supply system in Building 206 and installed a new transformer, wiring, and power panels for the new loop. Procurement of some of the long lead items such as valves, EM pumps, EM flowmeters, etc. is in progress and will continue in FY 2018. The construction of components such as cold trap, economizers, piping arrangement etc. will be performed in the central shops at ANL. About 150 liters of sodium for the loop will be procured in early FY2018. The loop system is designed to circulate sodium through the sample tanks and the associated loop without an operator for an extended period of time. With the three sodium loops (with single-tank, dual-tank and four–tanks), materials can be tested at different sodium temperatures, and large tensile, creep, fatigue, creep-fatigue, and fracture toughness specimens can be exposed to sodium for extended periods of time and generate data on mechanical properties in support of ASME Code Qualification and USNRC Licensing of advanced Alloy 709 for use as a structural material in SFRs.« less
NASA Technical Reports Server (NTRS)
Snider, H. L.; Reeder, F. L.; Dirkin, W. J.
1972-01-01
Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.
FEM Techniques for High Stress Detection in Accelerated Fatigue Simulation
NASA Astrophysics Data System (ADS)
Veltri, M.
2016-09-01
This work presents the theory and a numerical validation study in support to a novel method for a priori identification of fatigue critical regions, with the aim to accelerate durability design in large FEM problems. The investigation is placed in the context of modern full-body structural durability analysis, where a computationally intensive dynamic solution could be required to identify areas with potential for fatigue damage initiation. The early detection of fatigue critical areas can drive a simplification of the problem size, leading to sensible improvement in solution time and model handling while allowing processing of the critical areas in higher detail. The proposed technique is applied to a real life industrial case in a comparative assessment with established practices. Synthetic damage prediction quantification and visualization techniques allow for a quick and efficient comparison between methods, outlining potential application benefits and boundaries.
Simplified rotor load models and fatigue damage estimates for offshore wind turbines.
Muskulus, M
2015-02-28
The aim of rotor load models is to characterize and generate the thrust loads acting on an offshore wind turbine. Ideally, the rotor simulation can be replaced by time series from a model with a few parameters and state variables only. Such models are used extensively in control system design and, as a potentially new application area, structural optimization of support structures. Different rotor load models are here evaluated for a jacket support structure in terms of fatigue lifetimes of relevant structural variables. All models were found to be lacking in accuracy, with differences of more than 20% in fatigue load estimates. The most accurate models were the use of an effective thrust coefficient determined from a regression analysis of dynamic thrust loads, and a novel stochastic model in state-space form. The stochastic model explicitly models the quasi-periodic components obtained from rotational sampling of turbulent fluctuations. Its state variables follow a mean-reverting Ornstein-Uhlenbeck process. Although promising, more work is needed on how to determine the parameters of the stochastic model and before accurate lifetime predictions can be obtained without comprehensive rotor simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Analytical Methodology for Predicting the Onset of Widespread Fatigue Damage in Fuselage Structure
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Newman, James C., Jr.; Piascik, Robert S.; Starnes, James H., Jr.
1996-01-01
NASA has developed a comprehensive analytical methodology for predicting the onset of widespread fatigue damage in fuselage structure. The determination of the number of flights and operational hours of aircraft service life that are related to the onset of widespread fatigue damage includes analyses for crack initiation, fatigue crack growth, and residual strength. Therefore, the computational capability required to predict analytically the onset of widespread fatigue damage must be able to represent a wide range of crack sizes from the material (microscale) level to the global structural-scale level. NASA studies indicate that the fatigue crack behavior in aircraft structure can be represented conveniently by the following three analysis scales: small three-dimensional cracks at the microscale level, through-the-thickness two-dimensional cracks at the local structural level, and long cracks at the global structural level. The computational requirements for each of these three analysis scales are described in this paper.
Structural Integrity and Aging-Related Issues of Helicopters
2000-10-01
inherently damage lolerant , any damage- inspection in critical locations where tests have indicated tolerant features in airframe design only enhances...required, so European Rotorcraft Forum. Marseilles, France, 15- that helicopters are equipped with such features as fly- 17 September 1998 . by-wire and...fatigue Evaluation of structural integrity issues of aging helicopters. The Structure," 29 April, 1998 . extended safe-life approach encompasses the best
NASA Technical Reports Server (NTRS)
Joynes, D.; Balut, J. P.
1974-01-01
The results are presented of static, fatigue and thermal testing of titanium honeycomb acoustic panels representing the acoustic tailpipe for the Pratt and Whitney Aircraft JT8D Refan engine which is being studied for use on the Boeing 727-200 airplane. Test specimens represented the engine and tailpipe flange joints, the rail to which the thrust reverser is attached and shear specimens of the tailpipe honeycomb. Specimens were made in four different batches with variations in configuration, materials and processes in each. Static strength of all test specimens exceeded the design ultimate load requirements. Fatigue test results confirmed that aluminum brazed titanium, as used in the Refan tailpipe design, meets the fatigue durability objectives. Quality of welding was found to be critical to life, with substandard welding failing prematurely, whereas welding within the process specification exceeded the panel skin life. Initial fatigue testing used short grip length bolts which failed prematurely. These were replaced with longer bolts and subsequent testing demonstrated the required life. Thermal tests indicate that perforated skin acoustic honeycomb has approximately twice the heat transfer of solid skin honeycomb.
Wind turbine blade fatigue tests: lessons learned and application to SHM system development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Stuart G.; Farinholt, Kevin M.; Jeong, Hyomi
2012-06-28
This paper presents experimental results of several structural health monitoring (SHM) methods applied to a 9-meter CX-100 wind turbine blade that underwent fatigue loading. The blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. It underwent harmonic excitation at its first natural frequency using a hydraulically actuated resonant excitation system. The blade was initially excited at 25% of its design load, and then with steadily increasing loads until it failed. Various data were collected between and during fatigue loading sessions. The data were measured over multiple frequency ranges using a variety of acquisition equipment, includingmore » off-the-shelf systems and specially designed hardware developed by the authors. Modal response, diffuse wave-field transfer functions, and ultrasonic guided wave methods were applied to assess the condition of the wind turbine blade. The piezoelectric sensors themselves were also monitored using a sensor diagnostics procedure. This paper summarizes experimental procedures and results, focusing particularly on fatigue crack detection, and concludes with considerations for implementing such damage identification systems, which will be used as a guideline for future SHM system development for operating wind turbine blades.« less
Comparative study on the welded structure fatigue strength assessment method
NASA Astrophysics Data System (ADS)
Hu, Tao
2018-04-01
Due to the welding structure is widely applied in various industries, especially the pressure container, motorcycle, automobile, aviation, ship industry, such as large crane steel structure, so for welded structure fatigue strength evaluation is particularly important. For welded structure fatigue strength evaluation method mainly has four kinds of, the more from the use of two kinds of welded structure fatigue strength evaluation method, namely the nominal stress method and the hot spot stress evaluation method, comparing from its principle, calculation method for the process analysis and research, compare the similarities and the advantages and disadvantages, the analysis of practical engineering problems to provide the reference for every profession and trade, as well as the future welded structure fatigue strength and life evaluation method put forward outlook.
Welded tie plate feasibility study for ITER central solenoid structure
NASA Astrophysics Data System (ADS)
Walsh, R.; McRae, D.; Dalder, E.; Litherland, S.; Goddard, R.; Han, K.; Trosen, M.; Kuhlmann, D. D.
2014-01-01
The result of a Nitronic 50 (N50) weld-screening program conducted in support of CS-Tie Plate Structure Design and Development is reported here. The goal of this program is to evaluate four different weld practices and to select the best weld practice for thick section welding of the N50 tie plate structure. The structure design specifies both the weld and base metals have the same minimum mechanical properties requirements. The criteria for selecting the best weld practice are based on the combination of the 295 K tensile properties and the 4 K-tensile, fatigue, and fracture-toughness properties.
Interconnect fatigue design for terrestrial photovoltaic modules
NASA Technical Reports Server (NTRS)
Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.
1982-01-01
The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.
Interconnect fatigue design for terrestrial photovoltaic modules
NASA Astrophysics Data System (ADS)
Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.
1982-03-01
The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.
2011-09-01
isolated AO mode first arrival, recorded at PZT 2, is shown at 3 different fatigue levels. Figure 5. The area under the PSD curve, calculated twice...Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing B. L. GRISSO, G. PARK, L. W. SALVINO...with several challenges including limited performance knowledge of the materials, aluminum sensitization, structural fatigue performance, and
14 CFR 121.1109 - Supplemental inspections.
Code of Federal Regulations, 2010 CFR
2010-01-01
... damage-tolerance-based inspections and procedures for airplane structure susceptible to fatigue cracking... termed “fatigue critical structure.” (2) Adverse effects of repairs, alterations, and modifications. The..., and modifications may have on fatigue critical structure and on inspections required by paragraph (c...
Fatigue Reliability of Gas Turbine Engine Structures
NASA Technical Reports Server (NTRS)
Cruse, Thomas A.; Mahadevan, Sankaran; Tryon, Robert G.
1997-01-01
The results of an investigation are described for fatigue reliability in engine structures. The description consists of two parts. Part 1 is for method development. Part 2 is a specific case study. In Part 1, the essential concepts and practical approaches to damage tolerance design in the gas turbine industry are summarized. These have evolved over the years in response to flight safety certification requirements. The effect of Non-Destructive Evaluation (NDE) methods on these methods is also reviewed. Assessment methods based on probabilistic fracture mechanics, with regard to both crack initiation and crack growth, are outlined. Limit state modeling techniques from structural reliability theory are shown to be appropriate for application to this problem, for both individual failure mode and system-level assessment. In Part 2, the results of a case study for the high pressure turbine of a turboprop engine are described. The response surface approach is used to construct a fatigue performance function. This performance function is used with the First Order Reliability Method (FORM) to determine the probability of failure and the sensitivity of the fatigue life to the engine parameters for the first stage disk rim of the two stage turbine. A hybrid combination of regression and Monte Carlo simulation is to use incorporate time dependent random variables. System reliability is used to determine the system probability of failure, and the sensitivity of the system fatigue life to the engine parameters of the high pressure turbine. 'ne variation in the primary hot gas and secondary cooling air, the uncertainty of the complex mission loading, and the scatter in the material data are considered.
The Purpose of Generating Fatigue Crack Growth Threshold Data
NASA Technical Reports Server (NTRS)
Forth, Scott
2006-01-01
Test data shows that different width and thickness C(T), M(T) and ESE(T) specimens generate different thresholds Structures designed for "infinite life" are being re-evaluated: a) Threshold changes from 6 to 3 ksi in(sup 1/2); b) Computational life changes from infinite to 4 missions. Multi-million dollar test programs required to substantiate operation. Using ASTM E647 as standard guidance to generate threshold data is not practical. A threshold test approach needs to be standardized that will provide positive margin for high cycle fatigue applications.
[Counseling in the prevention of fatigue in psychiatric nurses].
Greeff, M; Poggenpoel, M
1991-12-01
Nursing is a stressful activity and therefore it is necessary for nurses to develop effective coping mechanisms, or to strengthen existing ones in a healthy manner, in order to be capable of dealing with stress, arising from their personal and professional lives. It is, however, not solely stress itself which predisposes nurses to fatigue (physical, psychological and emotional exhaustion) but rather the chronic nature and excessive amount of stressors which place excessive demands on the energy resources and coping, mechanisms of nurses resulting in the ineffective handling of stress which in turn leads to the eventual development of fatigue. The detrimental results of this experience are, however, not confined to the nurse herself, but extends further to the patient and the organization. Thus, if fatigue is not controlled or dealt with, all parties and organizations concerned could suffer. This research covers the accompaniment function of the psychiatric nurse specialist in the prevention of fatigue in psychiatric nurses by strengthening their mental preparedness. As a possible solution to the experience of fatigue, a structured, accompanied program of three days was offered to a group of psychiatric nurses. The Solomon four group design was followed in order to eliminate influences on the subjects resulting from the completion of the self-evaluation scale as pre-test. The data which was obtained from the test results was statistically compared. Results showed that there was a definite decrease in the levels of fatigue experienced by the experimental group that received the structured accompanied programme, but no real change occurred in the control group that had merely been provided with relevant literature.(ABSTRACT TRUNCATED AT 250 WORDS)
DOT National Transportation Integrated Search
2015-12-01
Externally bonded carbon fiber reinforced polymer composites (CFRPs) are increasingly used to : repair concrete bridges. CFRP design techniques are a proven approach for enhancing the strength : of existing structures. This project investigated the d...
DEVELOPMENT OF A SUPERSONIC TRANSPORT AIRCRAFT ENGINE - PHASE II-A.
JET TRANSPORT PLANES, *SUPERSONIC AIRCRAFT ) (U) TURBOJET ENGINES , PERFORMANCE( ENGINEERING ), TURBOFAN ENGINES , AFTERBURNING, SPECIFICATIONS...COMPRESSORS, GEOMETRY, TURBOJET INLETS, COMBUSTION, TEST EQUIPMENT, TURBINE BLADES , HEAT TRANSFER, AIRFOILS , CASCADE STRUCTURES, EVAPOTRANSPIRATION, PLUG NOZZLES, ANECHOIC CHAMBERS, BEARINGS, SEALS, DESIGN, FATIGUE(MECHANICS)
Implementation and thickness optimization of perpetual pavements in Ohio : [executive summary].
DOT National Transportation Integrated Search
2015-06-01
Perpetual asphalt pavements are designed to confine distresses to the upper layer of the structure, by eliminating : or reducing the potential for fatigue cracking by maintaining the horizontal strains at the bottom of the pavement : below a critical...
NASA Astrophysics Data System (ADS)
Kong, Xiangxiong; Li, Jian; Collins, William; Bennett, Caroline; Laflamme, Simon; Jo, Hongki
2017-04-01
A large-area electronics (LAE) strain sensor, termed soft elastomeric capacitor (SEC), has shown great promise in fatigue crack monitoring. The SEC is able to monitor strain changes over a mesoscale structural surface and endure large deformations without being damaged under cracking. Previous tests verified that the SEC is able to detect, localize, and monitor fatigue crack activities under low-cycle fatigue loading. In this paper, to examine the SEC's capability of monitoring high-cycle fatigue cracks, a compact specimen is tested under cyclic tension, designed to ensure realistic crack opening sizes representative of those in real steel bridges. To overcome the difficulty of low signal amplitude and relatively high noise level under high-cycle fatigue loading, a robust signal processing method is proposed to convert the measured capacitance time history from the SEC sensor to power spectral densities (PSD) in the frequency domain, such that signal's peak-to-peak amplitude can be extracted at the dominant loading frequency. A crack damage indicator is proposed as the ratio between the square root of the amplitude of PSD and load range. Results show that the crack damage indicator offers consistent indication of crack growth.
Prediction of Mean and Design Fatigue Lives of Self Compacting Concrete Beams in Flexure
NASA Astrophysics Data System (ADS)
Goel, S.; Singh, S. P.; Singh, P.; Kaushik, S. K.
2012-02-01
In this paper, result of an investigation conducted to study the flexural fatigue characteristics of self compacting concrete (SCC) beams in flexure are presented. An experimental programme was planned in which approximately 60 SCC beam specimens of size 100 × 100 × 500 mm were tested under flexural fatigue loading. Approximately 45 static flexural tests were also conducted to facilitate fatigue testing. The flexural fatigue and static flexural strength tests were conducted on a 100 kN servo-controlled actuator. The fatigue life data thus obtained have been used to establish the probability distributions of fatigue life of SCC using two-parameter Weibull distribution. The parameters of the Weibull distribution have been obtained by different methods of analysis. Using the distribution parameters, the mean and design fatigue lives of SCC have been estimated and compared with Normally vibrated concrete (NVC), the data for which have been taken from literature. It has been observed that SCC exhibits higher mean and design fatigue lives compared to NVC.
14 CFR 27.571 - Fatigue evaluation of flight structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... § 27.309, except that maneuvering load factors need not exceed the maximum values expected in operation... paragraph (a)(3) of this section. (b) Fatigue tolerance evaluation. It must be shown that the fatigue tolerance of the structure ensures that the probability of catastrophic fatigue failure is extremely remote...
Nonlinear Fatigue Damage Model Based on the Residual Strength Degradation Law
NASA Astrophysics Data System (ADS)
Yongyi, Gao; Zhixiao, Su
In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
...-AJ52, 2120-AJ51 Damage Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures, and Damage... Tolerance and Fatigue Evaluation for Composite Rotorcraft Structures'' (76 FR 74655), published December 1... December 2, 2011. In the ``Composite Rotorcraft Structures'' rule, the FAA amended its regulations to...
Effect of ball geometry on endurance limit in bending of drilled balls
NASA Technical Reports Server (NTRS)
Munson, H. E.
1975-01-01
Four designs of drilled (cylindrically hollow) balls were tested for resistance to bending fatigue. Bending fatigue has been demonstrated to be a limiting factor in previous evaluations of the drilled ball concept. A web reinforced drilled ball was most successful in resisting bending fatigue. Another design of through drilled design, involving a heavier wall than the standard reference ball, also showed significant improvement in resistance to bending fatigue.
The application of probabilistic design theory to high temperature low cycle fatigue
NASA Technical Reports Server (NTRS)
Wirsching, P. H.
1981-01-01
Metal fatigue under stress and thermal cycling is a principal mode of failure in gas turbine engine hot section components such as turbine blades and disks and combustor liners. Designing for fatigue is subject to considerable uncertainty, e.g., scatter in cycles to failure, available fatigue test data and operating environment data, uncertainties in the models used to predict stresses, etc. Methods of analyzing fatigue test data for probabilistic design purposes are summarized. The general strain life as well as homo- and hetero-scedastic models are considered. Modern probabilistic design theory is reviewed and examples are presented which illustrate application to reliability analysis of gas turbine engine components.
German experiences in local fatigue monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abib, E.; Bergholz, S.; Rudolph, J.
The ageing management of nuclear power plants (NPP) has gained an increasing importance in the last years. The reasons are mainly due to the international context of extending period of plants operation. Moreover, new scientific discoveries, such as the corrosive influence of the medium on the fatigue process (environmentally assisted fatigue - EAF) play an important role and influence the code development (ASME, EAF code cases). The fatigue damage process takes a central position in ageing mechanisms of components. It must be ensured through appropriate evidence that facilities are being operated under allowable boundary conditions. In the design phase ofmore » NPP, fatigue analyses are still based on theoretical considerations and empirical values, which are summarized in the design transient catalogue, necessary for licensing. These analyses aim at proving the admissibility of the loads in terms of stress and fatigue usage. These analyses will also provide the fatigue-relevant positions in the NPP and give a basis for future design improvements and optimization of operating modes. The design transients are in practice conservatively correlated with the real transients occurring during operation. Uncertainties reveal very conservative assumptions regarding forecast temperatures, temperature gradients and frequencies of events. During operation of the plant, it has to be recurrently proved, that the plant is being operated under designed boundary conditions. Moreover, operating signals are constantly acquired to enable a fatigue evaluation. For example, in Germany fatigue evaluation is based on decades of experience and regulatory requirements. The rule KTA 3201.4 [1] establishes the rules for qualified fatigue monitoring. The rule DIN 25475-3 [2] on fatigue monitoring systems is available in draft version. Experience shows that some significant differences occur between the design transients and the real occurred transients during plant operation. The reasons for it are the various manual control options and also different operating modes. It is clear that showing the covering of real loads by design loads, requires a relatively complex and well-qualified detection process. The difficulty of this task is increased due to the lack of data or incomplete information and the exclusive reliance on existing operation plant data. The strategy of employing local fatigue monitoring is a straightforward solution enabling the direct measurement of loads on the fatigue-sensitive zones. Nowadays a direct derivation of the complete stress tensor at the fatigue-relevant locations is enabled thanks to the recorded local loads and combination with finite element (FE) analyses. So, additionally to the recorded temperature curves, a representation of the time evolution of the six stress components for each monitored component is possible. This allows the application of the simplified elasto-plastic fatigue check according to design codes. The fatigue level can be realistically analyzed with a suitable cycle-counting method. Furthermore, the knowledge of the time evolution of the stresses and strains enables to take into account an environmental factor to include the corrosive fluid influence in the calculations. Without local recording, it is impossible to calculate realistic fatigue usage. AREVA offers the AREVA fatigue concept (AFC) and the new fatigue monitoring system integrated (FAMOSi), necessary tools to monitor local fatigue and to provide realistic assessment. (authors)« less
NASA Technical Reports Server (NTRS)
Thesken, J. C.; Melis, M.; Shin, E.; Sutter, J.; Burke, Chris
2004-01-01
Polyimide composites are being evaluated for use in lightweight support structures designed to preserve the ideal flow geometry within thin shell combustion chambers of future space launch propulsion systems. Principles of lightweight design and innovative manufacturing techniques have yielded a sandwich structure with an outer face sheet of carbon fiber polyimide matrix composite. While the continuous carbon fiber enables laminated skin of high specific stiffness; the polyimide matrix materials ensure that the rigidity and durability is maintained at operation temperatures of 316 C. Significant weight savings over all metal support structures are expected. The protypical structure is the result of ongoing collaboration, between Boeing and NASA-GRC seeking to introduce polyimide composites to the harsh environmental and loads familiar to space launch propulsion systems. Design trade analyses were carried out using relevant closed form solutions, approximations for sandwich beams/panels and finite element analysis. Analyses confirm the significant thermal stresses exist when combining materials whose coefficients of thermal expansion (CTEs) differ by a factor of about 10 for materials such as a polymer composite and metallic structures. The ramifications on design and manufacturing alternatives are reviewed and discussed. Due to stringent durability and safety requirements, serious consideration is being given to the synergistic effects of temperature and mechanical loads. The candidate structure operates at 316 C, about 80% of the glass transition temperature T(sub g). Earlier thermomechanical fatigue (TMF) investigations of chopped fiber polyimide composites made this near to T(sub g), showed that cyclic temperature and stress promoted excessive creep damage and strain accumulation. Here it is important to verify that such response is limited in continuous fiber laminates.
NASA Astrophysics Data System (ADS)
Pentz, Alan Carter
With today's uncertain funding climate (including sequestration and continuing budget resolutions), decision makers face severe budgetary challenges to maintain dominance through all aspects of the Department of Defense (DoD). To meet war-fighting capabilities, the DoD continues to extend aircraft programs beyond their design service lives by up to ten years, and occasionally much more. The budget requires a new approach to traditional extension strategies (i.e., reuse, reset, and reclamation) for structural hardware. While extending service life without careful controls can present a safety concern, future operations planning does not consider how much risk is present when operating within sound structural principles. Traditional structural hardware extension methods drive increased costs. Decision makers often overlook the inherent damage tolerance and fatigue capability of structural components and rely on simple time- and flight-based cycle accumulation when determining aircraft retirement lives. This study demonstrates that decision makers should consider risk in addition to the current extension strategies. Through an evaluation of eight military aircraft programs and the application and simulation of F-18 turbine engine usage data, this dissertation shows that insight into actual aircraft mission data, consideration of fatigue capability, and service extension length are key factors to consider. Aircraft structural components, as well as many critical safety components and system designs, have a predefined level of conservatism and inherent damage tolerance. The methods applied in this study would apply to extensions of other critical structures such as bridges. Understanding how much damage tolerance is built into the design compared to the original design usage requirements presents the opportunity to manage systems based on risk. The study presents the sensitivity of these factors and recommends avenues for further research.
Lai, Ya-Ling; Hung, Chich-Hsiu; Stocker, Joel; Chan, Te-Fu; Liu, Yi
2015-05-01
This study compares women's postpartum fatigue, baby-care activities, and maternal-infant attachment following vaginal and cesarean births in rooming-in settings. Postpartum women admitted to baby-friendly hospitals are asked to stay with their babies 24 hours a day and to breastfeed on demand regardless of the type of childbirth. The study used a descriptive cross-sectional study design. A total of 120 postpartum women were recruited from two accredited baby-friendly hospitals in southern Taiwan. Three structured questionnaires were used to collect data, on which an analysis of covariance was conducted. Women who experienced a cesarean birth had higher postpartum fatigue scores than women who had given birth vaginally. Higher postpartum fatigue scores were correlated with greater difficulty in baby-care activities, which in turn resulted in weaker maternal-infant attachment as measured in the first 2 to 3 days postpartum. Hospitals should implement rooming-in in a more flexible way by taking women's postpartum fatigue and physical functioning into consideration. Copyright © 2014 Elsevier Inc. All rights reserved.
A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints
NASA Astrophysics Data System (ADS)
Rakow, Alexi Schroder
Fatigue cracks initiating at fastener hole locations in metallic components are among the most common form of airframe damage. The fastener hole site has been surveyed as the second leading initiation site for fatigue related accidents of fixed wing aircraft. Current methods for inspecting airframes for these cracks are manual, whereby inspectors rely on non-destructive inspection equipment or hand-held probes to scan over areas of a structure. Use of this equipment often demands disassembly of the vehicle to search appropriate hole locations for cracks, which elevates the complexity and cost of these maintenance inspections. Improved reliability, safety, and reduced cost of such maintenance can be realized by the permanent integration of sensors with a structure to detect this damage. Such an integrated system of sensors would form a structural health monitoring (SHM) system. In this study, an Additive, Interleaved, Multi-layer Electromagnetic (AIME) sensor was developed and integrated with the shank of a fastener to form a SHM Fastener, a new SHM technology targeted at detection of fastener hole cracks. The major advantages of the SHM Fastener are its installation, which does not require joint layer disassembly, its capability to detect inner layer cracks, and its capability to operate in a continuous autonomous mode. Two methods for fabricating the proposed SHM Fastener were studied. The first option consisted of a thin flexible printed circuit film that was bonded around a thin metallic sleeve placed around the fastener shank. The second option consisted of coating sensor materials directly to the shank of a part in an effort to increase the durability of the sensor under severe loading conditions. Both analytical and numerical models were developed to characterize the capability of the sensors and provide a design tool for the sensor layout. A diagnostic technique for crack growth monitoring was developed to complete the SHM system, which consists of the sensor, data acquisition hardware, algorithm, and diagnostic display. The AIME sensor design, SHM Fastener, and complete SHM system are presented along with experimental results from a series of single-layer and bolted double lap joint aluminum laboratory specimens to validate the capability of these sensors to monitor metallic joints for fastener hole cracks. Fatigue cracks were successfully tracked to over 0.7 inches from the fastener hole in these tests. Sensor output obtained from single-layer fatigue specimens was compared with analytical predictions for fatigue crack growth versus cycle number showing a good correlation in trend between sensor output and predicted crack size.
Materials for a Stirling engine heater head
NASA Technical Reports Server (NTRS)
Noble, J. E.; Lehmann, G. A.; Emigh, S. G.
1990-01-01
Work done on the 25-kW advanced Stirling conversion system (ASCS) terrestrial solar program in establishing criteria and selecting materials for the engine heater head and heater tubes is described. Various mechanisms contributing to incompatibility between materials are identified and discussed. Large thermal gradients, coupled with requirements for long life (60,000 h at temperature) and a large number of heatup and cooldown cycles (20,000) drive the design from a structural standpoint. The pressurized cylinder is checked for creep rupture, localized yielding, reverse plasticity, creep and fatigue damage, and creep ratcheting, in addition to the basic requirements for bust and proof pressure. In general, creep rupture and creep and fatigue interaction are the dominant factors in the design. A wide range of materials for the heater head and tubes was evaluated. Factors involved in the assessment were strength and effect on engine efficiency, reliability, and cost. A preliminary selection of Inconel 713LC for the heater head is based on acceptable structural properties but driven mainly by low cost. The criteria for failure, the structural analysis, and the material characteristics with basis for selection are discussed.
NASA Astrophysics Data System (ADS)
Chang, Kyong-Ho; Shin, Wang Sub; Nguyen Van Vuong, Do; Lee, Chin Hyeong
2018-04-01
Steel tube structure is used for steel structure such as offshore platform, bridges and so on. Also, all circular members of tubular structures are mainly connected by welding. When the steel tubular structures are subjected to repeated loading, not only the load carrying capacity is reduced but also fatigue cracks may develop at the joint part of steel tubular members which are connected by welding. Carrying out welding, welding initial imperfection such as welding deformation and residual stress are inevitably generated at weld part. It was well known that the effect of welding residual and welding deformation on fatigue strength. However, It’s not clear which affects fatigue strength more. However, it’s difficult to clear the effect on fatigue strength by experiment. To clarify these effect, fatigue analysis was carried out by FEM which is based on continuum damage mechanics. On the other hand, coupled three-dimensional non-steady heat conduction analysis, and the thermal elastic-plastic analysis was carried out to reproduce the initial weld state of tubular member. From the result, not only the fatigue strength of welded tubular member but also the fatigue life could be found by FEM fatigue analysis.
Myers, J A; Powell, D M C; Aldington, S; Sim, D; Psirides, A; Hathaway, K; Haney, M F
2017-11-01
The relationship between fatigue-related risk and impaired clinical performance is not entirely clear. Non-technical factors represent an important component of clinical performance and may be sensitive to the effects of fatigue. The hypothesis was that the sum score of overall non-technical performance is degraded by fatigue. Nineteen physicians undertook two different simulated air ambulance missions, once when rested, and once when fatigued (randomised crossover design). Trained assessors blinded to participants' fatigue status performed detailed structured assessments based on expected behaviours in four non-technical skills domains: teamwork, situational awareness, task management, and decision making. Participants also provided self-ratings of their performance. The primary endpoint was the sum score of overall non-technical performance. The main finding, the overall non-technical skills performance rating of the clinicians, was better in rested than fatigued states (mean difference with 95% CI, 2.8 [2.2-3.4]). The findings remained consistent across individual non-technical skills domains; also when controlling for an order effect and examining the impact of a number of possible covariates. There was no difference in self-ratings of clinical performance between rested and fatigued states. Non-technical performance of critical care air transfer clinicians is degraded when they are fatigued. Fatigued clinicians may fail to recognise the degree to which their performance is compromised. These findings represent risk to clinical care quality and patient safety in the dynamic and isolated environment of air ambulance transfer. © 2017 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
76 FR 75435 - Fatigue Tolerance Evaluation of Metallic Structures
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-02
..., Regulations and Policy Group, Rotorcraft Directorate, ASW-111, Federal Aviation Administration, 2601 Meacham... designed and manufactured, performs properly, and meets the regulations and minimum standards prescribed... amended rule requires a specific result (that is, inspection, retirement times, or equivalent means to...
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1983-01-01
Transverse properties of fiber constituents in composites, fatigue in composite materials, matrix dominated properties of high performance composites, numerical investigation of moisture effects, numerical investigation of the micromechanics of composite fracture, advanced analysis methods, compact lug design, and the RP-1 and RP-2 sailplanes projects are discussed.
Probabilistic fatigue life prediction of metallic and composite materials
NASA Astrophysics Data System (ADS)
Xiang, Yibing
Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.
DOT National Transportation Integrated Search
1998-05-01
In Order to determine equivalent static pressures for fatigue loads on cantilevered highway support structures a : cantilevered Variable Message Sign(VMS) located along Interstate westbound at mile marker 48.5 in northern : New Jersey was continuousl...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-22
... Composite Rotorcraft Structures; OMB Approval of Information Collection AGENCY: Federal Aviation... requirement contained in the FAA's final rule, ``Damage Tolerance and Fatigue Evaluation of Composite... and Fatigue Evaluation of Composite Rotorcraft Structures,'' published in the Federal Register (76 FR...
DOT National Transportation Integrated Search
1998-04-01
In Order to determine equivalent static pressures for fatigue loads on cantilevered highway support structures a : cantilevered Variable Message Sign(VMS) located along Interstate westbound at mile marker 48.5 in northern : New Jersey was continuousl...
Investigation of safe-life fail-safe criteria for the space shuttle
NASA Technical Reports Server (NTRS)
1972-01-01
An investigation was made to determine the effects of a safe-life design approach and a fail-safe design approach on the space shuttle booster vehicle structure, and to recommend any changes to the structural design criteria. Two configurations of the booster vehicle were considered, one incorporating a delta wing (B-9U configuration) and the other a swept wing (B-16B configuration). Several major structural components of the booster were studied to determine the fatigue life, safe-life, and fail-safe capabilities of the baseline design. Each component was investigated to determine the practicability of applying a safe-life or fail-safe design philosophy, the changes such design approaches might require, and the impact of these changes on weight, cost, development plans, and performance.
Fatigue testing of galvanized and ungalvanized socket connections.
DOT National Transportation Integrated Search
2014-09-01
The fatigue resistance of welded traffic signal support structure details is an ongoing research topic being : addressed at multiple universities primarily through state funding mechanisms. Fatigue problems with these : structures have plagued multip...
Damage tolerance certification of a fighter horizontal stabilizer
NASA Astrophysics Data System (ADS)
Huang, Jia-Yen; Tsai, Ming-Yang; Chen, Jong-Sheng; Ong, Ching-Long
1995-05-01
A review of the program for the damage tolerance certification test of a composite horizontal stabilizer (HS) of a fighter is presented. The object of this program is to certify that the fatigue life and damage tolerance strength of a damaged composite horizontal stabilizer meets the design requirements. According to the specification for damage tolerance certification, a test article should be subjected to two design lifetimes of flight-by-flight load spectra simulating the in-service fatigue loading condition for the aircraft. However, considering the effect of environmental change on the composite structure, one additional lifetime test was performed. In addition, to evaluate the possibilities for extending the service life of the structure, one more lifetime test was carried out with the spectrum increased by a factor of 1.4. To assess the feasibility and reliability of repair technology on a composite structure, two damaged areas were repaired after two lifetimes of damage tolerance test. On completion of four lifetimes of the damage tolerance test, the static residual strength was measured to check whether structural strength after repair met the requirements. Stiffness and static strength of the composite HS with and without damage were evaluated and compared.
NASA Technical Reports Server (NTRS)
Eggert, W. S.
1982-01-01
A low cost wind turbine blade based on a stainless steel fiberglass foam Budd blade design concept, was evaluated for its principle characteristics, low cost features, and its advantages and disadvantages. A blade structure was designed and construction methods and materials were selected. A complete blade tooling concepts, various technical and economic analysis, and evaluations of the blade design were performed. A comprehensive fatigue test program is conducted to provide data to verify the design stress allowables.
NASA Astrophysics Data System (ADS)
Eggert, W. S.
1982-10-01
A low cost wind turbine blade based on a stainless steel fiberglass foam Budd blade design concept, was evaluated for its principle characteristics, low cost features, and its advantages and disadvantages. A blade structure was designed and construction methods and materials were selected. A complete blade tooling concepts, various technical and economic analysis, and evaluations of the blade design were performed. A comprehensive fatigue test program is conducted to provide data to verify the design stress allowables.
Zenouzi, Roman; von der Gablentz, Janina; Heldmann, Marcus; Göttlich, Martin; Weiler-Normann, Christina; Sebode, Marcial; Ehlken, Hanno; Hartl, Johannes; Fellbrich, Anja; Siemonsen, Susanne; Schramm, Christoph; Münte, Thomas F; Lohse, Ansgar W
2018-01-01
In primary biliary cholangitis (PBC) fatigue is a major clinical challenge of unknown etiology. By demonstrating that fatigue in PBC is associated with an impaired cognitive performance, previous studies have pointed out the possibility of brain abnormalities underlying fatigue in PBC. Whether structural brain changes are present in PBC patients with fatigue, however, is unclear. To evaluate the role of structural brain abnormalities in PBC patients severely affected from fatigue we, therefore, performed a case-control cerebral magnetic resonance imaging (cMRI) study and correlated changes of white and grey brain matter with the cognitive and attention performance. 20 female patients with PBC and 20 female age-matched controls were examined in this study. The assessment of fatigue, psychological symptoms, cognitive and attention performance included clinical questionnaires, established cognition tests and a computerized test battery of attention performance. T1-weighted cMRI and diffusion tensor imaging (DTI) scans were acquired with a 3 Tesla scanner. Structural brain alterations were investigated with voxel-based morphometry (VBM) and DTI analyses. Results were correlated to the cognitive and attention performance. Compared to healthy controls, PBC patients had significantly higher levels of fatigue and associated psychological symptoms. Except for an impairment of verbal fluency, no cognitive or attention deficits were found in the PBC cohort. The VBM and DTI analyses revealed neither major structural brain abnormalities in the PBC cohort nor correlations with the cognitive and attention performance. Despite the high burden of fatigue and selected cognitive deficits, the attention performance of PBC patients appears to be comparable to healthy people. As structural brain alterations do not seem to be present in PBC patients with fatigue, fatigue in PBC must be regarded as purely functional. Future studies should evaluate, whether functional brain changes underlie fatigue in PBC.
Statistical summaries of fatigue data for design purposes
NASA Technical Reports Server (NTRS)
Wirsching, P. H.
1983-01-01
Two methods are discussed for constructing a design curve on the safe side of fatigue data. Both the tolerance interval and equivalent prediction interval (EPI) concepts provide such a curve while accounting for both the distribution of the estimators in small samples and the data scatter. The EPI is also useful as a mechanism for providing necessary statistics on S-N data for a full reliability analysis which includes uncertainty in all fatigue design factors. Examples of statistical analyses of the general strain life relationship are presented. The tolerance limit and EPI techniques for defining a design curve are demonstrated. Examples usng WASPALOY B and RQC-100 data demonstrate that a reliability model could be constructed by considering the fatigue strength and fatigue ductility coefficients as two independent random variables. A technique given for establishing the fatigue strength for high cycle lives relies on an extrapolation technique and also accounts for "runners." A reliability model or design value can be specified.
14 CFR 129.109 - Supplemental inspections for U.S.-registered aircraft.
Code of Federal Regulations, 2010 CFR
2010-01-01
... for airplane structure susceptible to fatigue cracking that could contribute to a catastrophic failure. For the purpose of this section, this structure is termed “fatigue critical structure.” (2) Adverse... means for addressing the adverse effects repairs, alterations, and modifications may have on fatigue...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-19
... and Fatigue Evaluation of Composite Rotorcraft Structures AGENCY: Federal Aviation Administration (FAA... Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures. Form Numbers: There are no FAA forms... ``Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures'' final rule (76 FR 74655...
14 CFR 26.43 - Holders of and applicants for type certificates-Repairs.
Code of Federal Regulations, 2014 CFR
2014-01-01
... payload capacity of 7,500 pounds or more. (b) List of fatigue critical baseline structure. For airplanes...) Identify fatigue critical baseline structure for all airplane model variations and derivatives approved... affects fatigue critical baseline structure identified under paragraph (b)(1) of this section; (2) Perform...
14 CFR 26.43 - Holders of and applicants for type certificates-Repairs.
Code of Federal Regulations, 2011 CFR
2011-01-01
... payload capacity of 7,500 pounds or more. (b) List of fatigue critical baseline structure. For airplanes...) Identify fatigue critical baseline structure for all airplane model variations and derivatives approved... affects fatigue critical baseline structure identified under paragraph (b)(1) of this section; (2) Perform...
14 CFR 26.43 - Holders of and applicants for type certificates-Repairs.
Code of Federal Regulations, 2012 CFR
2012-01-01
... payload capacity of 7,500 pounds or more. (b) List of fatigue critical baseline structure. For airplanes...) Identify fatigue critical baseline structure for all airplane model variations and derivatives approved... affects fatigue critical baseline structure identified under paragraph (b)(1) of this section; (2) Perform...
14 CFR 26.43 - Holders of and applicants for type certificates-Repairs.
Code of Federal Regulations, 2013 CFR
2013-01-01
... payload capacity of 7,500 pounds or more. (b) List of fatigue critical baseline structure. For airplanes...) Identify fatigue critical baseline structure for all airplane model variations and derivatives approved... affects fatigue critical baseline structure identified under paragraph (b)(1) of this section; (2) Perform...
14 CFR 26.43 - Holders of and applicants for type certificates-Repairs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... payload capacity of 7,500 pounds or more. (b) List of fatigue critical baseline structure. For airplanes...) Identify fatigue critical baseline structure for all airplane model variations and derivatives approved... affects fatigue critical baseline structure identified under paragraph (b)(1) of this section; (2) Perform...
Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy
2010-01-27
The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules formore » possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection methods often need to be addressed as plants age. Shutdown inspection intervals can only be designed using creep and creep-fatigue crack growth techniques. (5) The use of crack growth procedures can aid in examining the seriousness of creep damage in structural components. How cracks grow can be used to assess margins on components and lead to further safe operation. After examining the pros and cons of all these methods, the R5 code was chosen as the most up-to-date and validated high temperature creep and creep fatigue code currently used in the world at present. R5 is considered the leader because the code: (1) has well established and validated rules, (2) has a team of experts continually improving and updating it, (3) has software that can be used by designers, (4) extensive validation in many parts with available data from BE resources as well as input from Imperial college's database, and (5) was specifically developed for use in nuclear plants. R5 was specifically developed for use in gas cooled nuclear reactors which operate in the UK and much of the experience is based on materials and temperatures which are experienced in these reactors. If the next generation advanced reactors to be built in the US used these same materials within the same temperature ranges as these reactors, then R5 may be appropriate for consideration of direct implementation within ASME code NH or Section XI. However, until more verification and validation of these creep/fatigue crack growth rules for the specific materials and temperatures to be used in the GEN IV reactors is complete, ASME should consider delaying this implementation. With this in mind, it is this authors opinion that R5 methods are the best available for code use today. The focus of this work was to examine the literature for creep and creep-fatigue crack growth procedures that are well established in codes in other countries and choose a procedure to consider implementation into ASME NH. It is very important to recognize that all creep and creep fatigue crack growth procedures that are part of high temperature design codes are related and very similar. This effort made no attempt to develop a new creep-fatigue crack growth predictive methodology. Rather examination of current procedures was the only goal. The uncertainties in the R5 crack growth methods and recommendations for more work are summarized here also.« less
NASA Astrophysics Data System (ADS)
Lu, Mingyu; Qu, Yongwei; Lu, Ye; Ye, Lin; Zhou, Limin; Su, Zhongqing
2012-04-01
An experimental study is reported in this paper demonstrating monitoring of surface-fatigue crack propagation in a welded steel angle structure using Lamb waves generated by an active piezoceramic transducer (PZT) network which was freely surface-mounted for each PZT transducer to serve as either actuator or sensor. The fatigue crack was initiated and propagated in welding zone of a steel angle structure by three-point bending fatigue tests. Instead of directly comparing changes between a series of specific signal segments such as S0 and A0 wave modes scattered from fatigue crack tips, a variety of signal statistical parameters representing five different structural status obtained from marginal spectrum in Hilbert-huang transform (HHT), indicating energy progressive distribution along time period in the frequency domain including all wave modes of one wave signal were employed to classify and distinguish different structural conditions due to fatigue crack initiation and propagation with the combination of using principal component analysis (PCA). Results show that PCA based on marginal spectrum is effective and sensitive for monitoring the growth of fatigue crack although the received signals are extremely complicated due to wave scattered from weld, multi-boundaries, notch and fatigue crack. More importantly, this method indicates good potential for identification of integrity status of complicated structures which cause uncertain wave patterns and ambiguous sensor network arrangement.
Selected topics from the structural acoustics program for the B-1 aircraft
NASA Technical Reports Server (NTRS)
Belcher, P. M.
1979-01-01
The major elements of the structural acoustics program for the B-1 aircraft are considered. Acoustic pressures measured at 280 sites on the surface of the vehicle were used to develop pressure models for a resizing of airframe components for aircraft No. 4 (A/C4). Acoustical fatigue design data for two dynamically complex structural configurations were acquired in laboratory programs, the conceptions for and executions of which detailed significant departures from the conventional. Design requirements for mechanical fasteners for configurations other than these two made use of analytical extensions of regrettably limited available information.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1979-01-01
A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.
NASA Technical Reports Server (NTRS)
Coats, Timothy W.; Harris, Charles E.
1995-01-01
The durability and damage tolerance of laminated composites are critical design considerations for airframe composite structures. Therefore, the ability to model damage initiation and growth and predict the life of laminated composites is necessary to achieve structurally efficient and economical designs. The purpose of this research is to experimentally verify the application of a continuum damage model to predict progressive damage development in a toughened material system. Damage due to monotonic and tension-tension fatigue was documented for IM7/5260 graphite/bismaleimide laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables to predict stiffness loss in unnotched laminates. A damage dependent finite element code predicted the stiffness loss for notched laminates with good agreement to experimental data. It was concluded that the continuum damage model can adequately predict matrix damage progression in notched and unnotched laminates as a function of loading history and laminate stacking sequence.
Computational simulation of acoustic fatigue for hot composite structures
NASA Technical Reports Server (NTRS)
Singhal, S. N.; Nagpal, V. K.; Murthy, P. L. N.; Chamis, C. C.
1991-01-01
This paper presents predictive methods/codes for computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of (1) acoustic noise generated from a vibrating component, (2) degradation in material properties of the composite laminate at use temperature, (3) dynamic response of acoustically excited hot multilayered composite structure, (4) degradation in the first-ply strength of the excited structure due to acoustic loading, and (5) acoustic fatigue resistance of the excited structure, including propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisure) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.
Computational simulation of acoustic fatigue for hot composite structures
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.; Nagpal, Vinod K.; Sutjahjo, Edhi
1991-01-01
Predictive methods/computer codes for the computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component are discussed. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of acoustic noise generated from a vibrating component, degradation in material properties of a composite laminate at use temperature, dynamic response of acoustically excited hot multilayered composite structure, degradation in the first ply strength of the excited structure due to acoustic loading, and acoustic fatigue resistance of the excited structure, including the propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisture) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.
Conference Proceedings of Operational Loads Data Held at Sienna, Italy on 2-6 April 1984
1984-08-01
new designs , e.g. highly agile, unconventional lay-outs, largely constructed of composite materials and heavily dependent upon active control ...significance of severe discrete gusts at low level, or the fatigue implications of flight control system design characteristics. For all these reasons, we... control technology is clearly going to have a major impact on military aircraft design . User pressure for greater structural efficiency is going to increase
F-4 Beryllium Rudders; A Precis of the Design, Fabrication, Ground and Flight Test Demonstrations
1975-05-01
Wright-Patterson Air Force Base , Ohio 45433. AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE , OHIO 45433...rudder. These sequential ground tests include: - A 50,000 cycle fatigue test of upper balance weight support structure. A static test to...Design Details 6. Design Analysis 7. Rudder Mass Balance 8, Rudder Moment of Inertia 9, Rudder Weight RUDDER FABRICATION AND ASSEMBLY 1. 2
Finite element fatigue analysis of rectangular clutch spring of automatic slack adjuster
NASA Astrophysics Data System (ADS)
Xu, Chen-jie; Luo, Zai; Hu, Xiao-feng; Jiang, Wen-song
2015-02-01
The failure of rectangular clutch spring of automatic slack adjuster directly affects the work of automatic slack adjuster. We establish the structural mechanics model of automatic slack adjuster rectangular clutch spring based on its working principle and mechanical structure. In addition, we upload such structural mechanics model to ANSYS Workbench FEA system to predict the fatigue life of rectangular clutch spring. FEA results show that the fatigue life of rectangular clutch spring is 2.0403×105 cycle under the effect of braking loads. In the meantime, fatigue tests of 20 automatic slack adjusters are carried out on the fatigue test bench to verify the conclusion of the structural mechanics model. The experimental results show that the mean fatigue life of rectangular clutch spring is 1.9101×105, which meets the results based on the finite element analysis using ANSYS Workbench FEA system.
Fatigue of Ti6Al4V Structural Health Monitoring Systems Produced by Selective Laser Melting.
Strantza, Maria; Vafadari, Reza; de Baere, Dieter; Vrancken, Bey; van Paepegem, Wim; Vandendael, Isabelle; Terryn, Herman; Guillaume, Patrick; van Hemelrijck, Danny
2016-02-11
Selective laser melting (SLM) is an additive manufacturing (AM) process which is used for producing metallic components. Currently, the integrity of components produced by SLM is in need of improvement due to residual stresses and unknown fracture behavior. Titanium alloys produced by AM are capable candidates for applications in aerospace and industrial fields due to their fracture resistance, fatigue behavior and corrosion resistance. On the other hand, structural health monitoring (SHM) system technologies are promising and requested from the industry. SHM systems can monitor the integrity of a structure and during the last decades the research has primarily been influenced by bionic engineering. In that aspect a new philosophy for SHM has been developed: the so-called effective structural health monitoring (eSHM) system. The current system uses the design freedom provided by AM. The working principle of the system is based on crack detection by means of a network of capillaries that are integrated in a structure. The main objective of this research is to evaluate the functionality of Ti6Al4V produced by the SLM process in the novel SHM system and to confirm that the eSHM system can successfully detect cracks in SLM components. In this study four-point bending fatigue tests on Ti6Al4V SLM specimens with an integrated SHM system were conducted. Fractographic analysis was performed after the final failure, while finite element simulations were used in order to determine the stress distribution in the capillary region and on the component. It was proven that the SHM system does not influence the crack initiation behavior during fatigue. The results highlight the effectiveness of the eSHM on SLM components, which can potentially be used by industrial and aerospace applications.
Structural analysis of a reflux pool-boiler solar receiver
NASA Astrophysics Data System (ADS)
Hoffman, E. L.; Stone, C. M.
1991-06-01
Coupled thermal-structural finite element calculations of a reflux pool-boiler solar receiver were performed to characterize the operating stresses and to address issues affecting the service life of the receiver. Analyses performed using shell elements provided information for receiver material selection and design optimization. Calculations based on linear elastic fracture mechanics principles were performed using continuum elements to assess the vulnerability of a seam-weld to fatigue crack growth. All calculations were performed using ABAQUS, a general purpose finite element code, and elements specifically formulated for coupled thermal-structural analysis. Two materials were evaluated: 316L SS and Haynes 230 alloys. The receiver response was simulated for a combination of structural and thermal loads that represent the startup and operating conditions of the receiver. For both materials, maximum stresses in the receiver developed shortly after startup due to uneven temperature distribution across the receiver surface. The largest effective stress was near yield in the 316L SS receiver and below 39 percent of yield in the Haynes 230 receiver. The calculations demonstrated that stress reductions of over 25 percent could be obtained by reducing the aft dome thickness to one closer to the absorber. The fatigue calculations demonstrated that the stress distribution near the seam-weld notch depends primarily on the structural load created by internal pressurization of the receiver rather than the thermal, indicating that the thermal loads can be neglected when assessing the stress intensity near the seam-weld notch. The stress intensity factor, computed using the J-integral method and crack opening-displacement field equations, was significantly below the fatigue threshold for most steels. The calculations indicated that the weld notch was always loaded in compression, a condition which is not conducive to fatigue crack growth.
NASA Astrophysics Data System (ADS)
Bernard, Jairus Daniel
Lightweight structural components are important to the automotive and aerospace industries so that better fuel economy can be realized. Magnesium alloys in particular are being examined to fulfill this need due to their attractive stiffness- and strength-to-weight ratios when compared to other materials. However, when introducing a material into new roles, one needs to properly characterize its mechanical properties. Fatigue behavior is especially important considering aerospace and automotive component applications. Therefore, quantifying the structure-property relationships and accurately predicting the fatigue behavior for these materials are vital. This study has two purposes. The first is to quantify the structure-property relationships for the fatigue behavior in an AM30 magnesium alloy. The second is to use the microstructural-based MultiStage Fatigue (MSF) model in order to accurately predict the fatigue behavior of three magnesium alloys: AM30, Elektron 21, and AZ61. While some studies have previously quantified the MSF material constants for several magnesium alloys, detailed research into the fatigue regimes, notably the microstructurally small crack (MSC) region, is lacking. Hence, the contribution of this work is the first of its kind to experimentally quantify the fatigue crack incubation and MSC regimes that are used for the MultiStage Fatigue model. Using a multi-faceted experimental approach, these regimes were explored with a replica method that used a dual-stage silicone based compound along with previously published in situ fatigue tests. These observations were used in calibrating the MultiStage Fatigue model.
NASA Technical Reports Server (NTRS)
Harvill, W. E.; Kizer, J. A.
1976-01-01
The advantageous structural uses of advanced filamentary composites are demonstrated by design, fabrication, and test of three boron-epoxy reinforced C-130 center wing boxes. The advanced development work necessary to support detailed design of a composite reinforced C-130 center wing box was conducted. Activities included the development of a basis for structural design, selection and verification of materials and processes, manufacturing and tooling development, and fabrication and test of full-scale portions of the center wing box. Detailed design drawings, and necessary analytical structural substantiation including static strength, fatigue endurance, flutter, and weight analyses are considered. Some additional component testing was conducted to verify the design for panel buckling, and to evaluate specific local design areas. Development of the cool tool restraint concept was completed, and bonding capabilities were evaluated using full-length skin panel and stringer specimens.
Multiscale Computational Design Optimization of Copper-Strengthened Steel for High Cycle Fatigue
2010-03-19
strain energy) and (3) modeling of a slip band (of PSB ladder underlying structure) and attendant crack initiation process. 15. SUBJECT TERMS 16...energy). (C) A modeling of a slip band (of PSB ladder underlying structure) and attendant crack initiation process. Major results obtained are...differentiate the morphology from others, e.g., vein and planar structures of dislocations. Results and Discussion for (C) (C-1) Modeling PSB For modeling
Fatigue analysis of the bow structure of FPSO
NASA Astrophysics Data System (ADS)
Hu, Zhi-Qiang; Gao, Zhen; Gu, Yong-Ning
2003-06-01
The bow structure of FPSO moored by the single mooring system is rather complicated. There are many potential hot spots in connection parts of structures between the mooring support frame and the forecastle. Mooring forces, which are induced by wave excitation and transferred by the YOKE and the mooring support frame, may cause fatigue damage to the bow structure. Different from direct wave-induced-forces, the mooring force consists of wave frequency force (WF) and 2nd draft low frequency force (LF)[3], which are represented by two sets of short-term distribution respectively. Based on two sets of short-term distribution of mooring forces obtained by the model test, the fatigue damage of the bow structure of FPSO is analyzed, with emphasis on two points. One is the procedure and position selection for fatigue check, and the other is the application of new formulae for the calculation of accumulative fatigue damage caused by two sets of short-term distribution of hot spot stress range. From the results distinguished features of fatigue damage to the FPSO’s bow structure can be observed.
Design and Evaluation of Glass/epoxy Composite Blade and Composite Tower Applied to Wind Turbine
NASA Astrophysics Data System (ADS)
Park, Hyunbum
2018-02-01
In the study, the analysis and manufacturing of small class wind turbine blade was performed. In the structural design, firstly the loading conditions are defined through the load case analysis. The proposed structural configuration of blade has a sandwich type composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. And also, this work proposes a design procedure and results of tower for the small scale wind turbine systems. Structural analysis of blade including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the finite element method, the load spectrum analysis and the Miner rule. Moreover, investigation on structural safety of tower was verified through structural analysis by FEM. The manufacturing of blade and tower was performed based on structural design. In order to investigate the designed structure, the structural tests were conducted and its results were compared with the calculated results. It is confirmed that the final proposed blade and tower meet the design requirements.
Fatigue as a cause, not a consequence of depression and daytime sleepiness: a cross-lagged analysis.
Schönberger, Michael; Herrberg, Marlene; Ponsford, Jennie
2014-01-01
To examine the temporal relation between fatigue, depression, and daytime sleepiness after traumatic brain injury. Fatigue is a frequent and disabling consequence of traumatic brain injury (TBI). However, it is unclear whether fatigue is a primary consequence of the structural brain injury or a secondary consequence of injury-related sequelae such as depression and daytime sleepiness. Eighty-eight adults with complicated mild-severe TBI (69% male). Fatigue Severity Scale; depression subscale of the Hospital Anxiety and Depression Scale; Epworth Sleepiness scale at baseline and 6-month follow-up. A cross-lagged path analysis computed within a structural equation modeling framework revealed that fatigue was predictive of depression (β = .20, P < .05) and sleepiness (β = .25, P < .05). However, depression and sleepiness did not predict fatigue (P > .05). The results support the view of fatigue after TBI as "primary fatigue"-that is, a consequence of the structural brain injury rather than a secondary consequence of depression or daytime sleepiness. A rehabilitation approach that assists individuals with brain injury in learning to cope with their neuropsychological and physical limitations in everyday life might attenuate their experience with fatigue.
Naweed, Anjum; Chapman, Janine; Allan, Matthew; Trigg, Joshua
2017-03-01
This study aimed to examine the impacts of key barriers to improving the occupational health status of Australian train drivers. From May to June, 2015, five semi-structured qualitative focus groups were conducted with 29 train drivers from South Australian, Victorian, and New South Wales-based rail organizations in Australia. Occupational health was impeded by multiple barriers regarding sleep (patterns/fatigue), diet (planning/context), mental health (occupational stress), rostering (low autonomy), sedentary time, low fitness motivation, and family/social life conflicts. Work organizational barriers included communication issues, low organizational support, and existing social norms. Job design barriers included rostering, fatigue, stimulant reliance, and family/social life imbalances. Self-regulatory barriers included dietary and exercise patterns habits and patterns. Occupational health interventions for Australian train drivers must address work organizational, job design, and self-regulatory barriers to healthier lifestyle behaviors.
Fatigue Characterization of Fire Resistant Syntactic Foam Core Material
NASA Astrophysics Data System (ADS)
Hossain, Mohammad Mynul
Eco-Core is a fire resistant material for sandwich structural application; it was developed at NC A&T State University. The Eco-Core is made of very small amount of phenolic resin and large volume of flyash by a syntactic process. The process development, static mechanical and fracture, fire and toxicity safety and water absorption properties and the design of sandwich structural panels with Eco-Core material was established and published in the literature. One of the important properties that is needed for application in transportation vehicles is the fatigue performance under different stress states. Fatigue data are not available even for general syntactic foams. The objective of this research is to investigate the fatigue performance of Eco-Core under three types of stress states, namely, cyclic compression, shear and flexure, then document failure modes, and develop empherical equations for predicting fatigue life of Eco-Core under three stress states. Compression-Compression fatigue was performed directly on Eco-Core cylindrical specimen, whereas shear and flexure fatigue tests were performed using sandwich beam made of E glass-Vinyl Ester face sheet and Eco-Core material. Compression-compression fatigue test study was conducted at two values of stress ratios (R=10 and 5), for the maximum compression stress (sigmamin) range of 60% to 90% of compression strength (sigmac = 19.6 +/- 0.25 MPa) for R=10 and 95% to 80% of compression strength for R=5. The failure modes were characterized by the material compliance change: On-set (2% compliance change), propagation (5%) and ultimate failure (7%). The number of load cycles correspond to each of these three damages were characterized as on-set, propagation and total lives. A similar approach was used in shear and flexure fatigue tests with stress ratio of R=0.1. The fatigue stress-number of load cycles data followed the standard power law equation for all three stress states. The constant of the equation were established for the three stress states and three types of the failure modes. This equation was used to estimate endurance limit (106 cycles) of the material. Like metallic materials, the compression fatigue life of Eco-Core was found to be dependent on the stress range instead of maximum or mean cyclic stress. Furthermore shear and flexural ultimate failure of the core material was found to be due to a combination of shear and tensile stress.
Freedman, Benjamin R.; Zuskov, Andrey; Sarver, Joseph J.; Buckley, Mark R.; Soslowsky, Louis J.
2015-01-01
The complex structure of tendons relates to their mechanical properties. Previous research has associated the waviness of collagen fibers (crimp) during quasi-static tensile loading to tensile mechanics, but less is known about the role of fatigue loading on crimp properties. In this study (IACUC approved), mouse patellar tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties. We demonstrate a novel structural mechanism whereby tendon crimp amplitude and frequency are altered with fatigue loading. In particular, fatigue loading increased the crimp amplitude across the tendon width and length, and these structural alterations were shown to be both region and load dependent. The change in crimp amplitude was strongly correlated to mechanical tissue laxity (defined as the ratio of displacement and gauge length relative to the first cycle of fatigue loading assessed at constant load throughout testing), at all loads and regions evaluated. Together, this study highlights the role of fatigue loading on tendon crimp properties as a function of load applied and region evaluated, and offers an additional structural mechanism for mechanical alterations that may lead to ultimate tendon failure. PMID:25773654
Finite element analysis of container ship's cargo hold using ANSYS and POSEIDON software
NASA Astrophysics Data System (ADS)
Tanny, Tania Tamiz; Akter, Naznin; Amin, Osman Md.
2017-12-01
Nowadays ship structural analysis has become an integral part of the preliminary ship design providing further support for the development and detail design of ship structures. Structural analyses of container ship's cargo holds are carried out for the balancing of their safety and capacity, as those ships are exposed to the high risk of structural damage during voyage. Two different design methodologies have been considered for the structural analysis of a container ship's cargo hold. One is rule-based methodology and the other is a more conventional software based analyses. The rule based analysis is done by DNV-GL's software POSEIDON and the conventional package based analysis is done by ANSYS structural module. Both methods have been applied to analyze some of the mechanical properties of the model such as total deformation, stress-strain distribution, Von Mises stress, Fatigue etc., following different design bases and approaches, to indicate some guidance's for further improvements in ship structural design.
Space Fabrication Demonstration System
NASA Technical Reports Server (NTRS)
1977-01-01
Progress on fabrication facility (beam builder) support structure control, clamp/weld block, and welding and truss cut off is discussed. The brace attachment design was changed and the design of the weld mechanism was modified which achieved the following system benefits: (1) simplified weld electrode life; (2) reduced weld power requirements; and (3) simplified brace attachment mechanisms. Static and fatigue characteristics of spot welded 2024T3 aluminum joints are evaluated.
Rella, Samantha; Winwood, Peter C; Lushington, Kurt
2009-11-01
Investigation of chronic maladaptive fatigue evolution among a large group of Australian Bachelor of Nursing (BN) degree students. The training of Australian nurses has changed from a salaried, 'apprenticeship' structure (usually including accommodation) to a University-based (fee paying) degree. Relatively little is known about how these changes have impacted on the strain and fatigue experience of nursing students. A large group of Australian nursing students across 3 years of a BN course (n = 431) participated in an internet-based cross-sectional design study. Levels of maladaptive fatigue, and poor recovery, increased across the course. By its completion, up to 20% of graduates were reporting signs of serious maladaptive fatigue/stress. Contemporary nurse training places many students under significant psycho-social stress. Need to work for personal support as well as study and absence of adequate training in managing these strains appears to underpin this experience. Nurse Managers need to be alert to the fact that new Graduate Nurse Probationer (GNP) year (or its local equivalent) nurses may already be suffering from significant stress/fatigue. To prevent this progressing to more severe states and potential premature quitting the profession, provision of adequate mentoring and guidance in effective stress management may be essential.
2007-06-23
6 %AI-2%Sn- 4 %Zr- 6 %Mo in the very high cycle regime. The microstructure is a two-phase structure with primary a grains (ap grains) in a transformed [3...aluminum [2], magnesium [3], nickel-based [ 4 ], and titanium [5,6] alloy systems. Fatigue crack initiation is known to consume the majority of fatigue...microstructural neighborhood affects this process. In fatigue studies of alpha + beta titanium alloys, [ 6 -9] cyclic deformation localization is first observed in
Turbine Engine Hot Section Technology, 1987
NASA Technical Reports Server (NTRS)
1987-01-01
Presentations were made concerning the development of design analysis tools for combustor liners, turbine vanes, and turbine blades. Presentations were divided into six sections: instrumentation, combustion, turbine heat transfer, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response and life prediction methods.
de Krijger, Joep; Rans, Calvin; Van Hooreweder, Brecht; Lietaert, Karel; Pouran, Behdad; Zadpoor, Amir A
2017-06-01
Additively manufactured (AM) porous metallic biomaterials are considered promising candidates for bone substitution. In particular, AM porous titanium can be designed to exhibit mechanical properties similar to bone. There is some experimental data available in the literature regarding the fatigue behavior of AM porous titanium, but the effect of stress ratio on the fatigue behavior of those materials has not been studied before. In this paper, we study the effect of applied stress ratio on the compression-compression fatigue behavior of selective laser melted porous titanium (Ti-6Al-4V) based on the diamond unit cell. The porous titanium biomaterial is treated as a meta-material in the context of this work, meaning that R-ratios are calculated based on the applied stresses acting on a homogenized volume. After morphological characterization using micro computed tomography and quasi-static mechanical testing, the porous structures were tested under cyclic loading using five different stress ratios, i.e. R = 0.1, 0.3, 0.5, 0.7 and 0.8, to determine their S-N curves. Feature tracking algorithms were used for full-field deformation measurements during the fatigue tests. It was observed that the S-N curves of the porous structures shift upwards as the stress ratio increases. The stress amplitude was the most important factor determining the fatigue life. Constant fatigue life diagrams were constructed and compared with similar diagrams for bulk Ti-6Al-4V. Contrary to the bulk material, there was limited dependency of the constant life diagrams to mean stress. The notches present in the AM biomaterials were the sites of crack initiation. This observation and other evidence suggest that the notches created by the AM process cause the insensitivity of the fatigue life diagrams to mean stress. Feature tracking algorithms visualized the deformation during fatigue tests and demonstrated the root cause of inclined (45°) planes of specimen failure. In conclusion, the R-ratio behavior of AM porous biomaterials is both quantitatively and qualitatively different from that of bulk materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Flindall, Ian; Leff, Daniel Richard; Goodship, Jonathan; Sugden, Colin; Darzi, Ara
2016-04-01
To evaluate the impact of modafinil on "free" and "cued" recall of clinical information in fatigued but nonsleep-deprived clinicians. Despite attempts to minimize sleep deprivation through redesign of the roster of residents and staff surgeons, evidence suggests that fatigue remains prevalent. The wake-promoting agent modafinil improves cognition in the sleep-deprived fatigued state and may improve information recall in fatigued nonsleep-deprived clinicians. Twenty-four medical undergraduates participated in a double-blind, parallel, randomized controlled trial (modafinil-200 mg:placebo). Medication was allocated 2 hours before a 90-minute fatigue-inducing, continuous performance task (dual 2-back task). A case history memorization task was then performed. Clinical information recall was assessed as "free"(no cognitive aids) and "cued"(using aid memoirs). Open and closed cues represent information of increasing specificity to aid the recall of clinical information. Fatigue was measured objectively using the psychomotor vigilance task at induction, before and after the dual 2-back task. Modafinil decreased false starts and lapses (modafinil = 0.50, placebo = 9.83, P < .05) and improved psychomotor vigilance task performance (Decreased Performance, modafinil = 0.006, placebo = 0.098, P < .05). Modafinil improved free information recall (modafinil = 137.8, placebo = 106.0, P < .01). There was no significant difference between groups in the amount of information recalled with open (modafinil = 62.3, placebo = 52.8, P = .1) and closed cues (modafinil = 80.1, placebo = 75.9, P = .3). Modafinil attenuated fatigue and improved free recall of clinical information without improving cue-based recall under the design of our experimental conditions. Memory cues to aid retrieval of clinical information are convenient interventions that could decrease fatigue-related error without adverse effects of the neuropharmacology. Copyright © 2016 Elsevier Inc. All rights reserved.
Supervised exercise reduces cancer-related fatigue: a systematic review.
Meneses-Echávez, José F; González-Jiménez, Emilio; Ramírez-Vélez, Robinson
2015-01-01
Does supervised physical activity reduce cancer-related fatigue? Systematic review with meta-analysis of randomised trials. People diagnosed with any type of cancer, without restriction to a particular stage of diagnosis or treatment. Supervised physical activity interventions (eg, aerobic, resistance and stretching exercise), defined as any planned or structured body movement causing an increase in energy expenditure, designed to maintain or enhance health-related outcomes, and performed with systematic frequency, intensity and duration. The primary outcome measure was fatigue. Secondary outcomes were physical and functional wellbeing assessed using the Functional Assessment of Cancer Therapy Fatigue Scale, European Organisation for Research and Treatment of Cancer Quality of Life QUESTIONnaire, Piper Fatigue Scale, Schwartz Cancer Fatigue Scale and the Multidimensional Fatigue Inventory. Methodological quality, including risk of bias of the studies, was evaluated using the PEDro Scale. Eleven studies involving 1530 participants were included in the review. The assessment of quality showed a mean score of 6.5 (SD 1.1), indicating a low overall risk of bias. The pooled effect on fatigue, calculated as a standardised mean difference (SMD) using a random-effects model, was -1.69 (95% CI -2.99 to -0.39). Beneficial reductions in fatigue were also found with combined aerobic and resistance training with supervision (SMD=-0.41, 95% CI -0.70 to -0.13) and with combined aerobic, resistance and stretching training with supervision (SMD=-0.67, 95% CI -1.17 to -0.17). Supervised physical activity interventions reduce cancer-related fatigue. These findings suggest that combined aerobic and resistance exercise regimens with or without stretching should be included as part of rehabilitation programs for people who have been diagnosed with cancer. PROSPERO CRD42013005803. Copyright © 2014 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Fang, Jin-Bo; Zhou, Chun-Fen; Huang, Jing; Qiu, Chang-Jian
2018-06-01
The Occupational Fatigue Exhaustion/Recovery Scale (OFER) was designed to assess occupational fatigue in nurses. Although the original English version of this instrument has shown high degrees of reliability and validity, a Chinese version of this scale has yet to be verified. The aim of this study was to evaluate the psychometric properties of the OFER in a population of Chinese nurses. The scale was translated using translation and back-translation. The validities and reliabilities were evaluated on 923 qualified participants using content validity index, concurrent validity, factorial validity, internal consistency reliability, and test-retest reliability. The content validity index for the OFER was .92. The correlation coefficients between the scores of the OFER subscales and the criteria in this study (varying from -.498 to .705) verified that the OFER has acceptable concurrent validity. Principal component analysis and confirmatory factor analysis revealed that three factors correspond to the structure of the original instrument and that recovery mediates the relationship between acute and chronic fatigue. The Cronbach's alpha for the chronic fatigue, acute fatigue, and intershift recovery subscales were .83, .85, and .86, respectively. Test-retest reliabilities with correlation coefficients from .61 to .78 were found in the three subscales. OFER is a reliable and valid instrument for assessing work-related fatigue in Chinese nurses. However, further improvement of the acute fatigue subscale is recommended. The OFER has the potential to elicit information that is useful for assessing fatigue in nurses in China. Furthermore, as it differentiates between acute and chronic fatigue, OFER may be an effective tool for guiding the development and implementation of various, related intervention measures.
Simulated Data for High Temperature Composite Design
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2006-01-01
The paper describes an effective formal method that can be used to simulate design properties for composites that is inclusive of all the effects that influence those properties. This effective simulation method is integrated computer codes that include composite micromechanics, composite macromechanics, laminate theory, structural analysis, and multi-factor interaction model. Demonstration of the method includes sample examples for static, thermal, and fracture reliability for a unidirectional metal matrix composite as well as rupture strength and fatigue strength for a high temperature super alloy. Typical results obtained for a unidirectional composite show that the thermal properties are more sensitive to internal local damage, the longitudinal properties degrade slowly with temperature, the transverse and shear properties degrade rapidly with temperature as do rupture strength and fatigue strength for super alloys.
Probabilistic Assessment of National Wind Tunnel
NASA Technical Reports Server (NTRS)
Shah, A. R.; Shiao, M.; Chamis, C. C.
1996-01-01
A preliminary probabilistic structural assessment of the critical section of National Wind Tunnel (NWT) is performed using NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) computer code. Thereby, the capabilities of NESSUS code have been demonstrated to address reliability issues of the NWT. Uncertainties in the geometry, material properties, loads and stiffener location on the NWT are considered to perform the reliability assessment. Probabilistic stress, frequency, buckling, fatigue and proof load analyses are performed. These analyses cover the major global and some local design requirements. Based on the assumed uncertainties, the results reveal the assurance of minimum 0.999 reliability for the NWT. Preliminary life prediction analysis results show that the life of the NWT is governed by the fatigue of welds. Also, reliability based proof test assessment is performed.
Fatigue-Induced Damage in Zr-Based Bulk Metallic Glasses
Chuang, Chih-Pin; Yuan, Tao; Dmowski, Wojciech; Wang, Gong-Yao; Freels, Matt; Liaw, Peter K.; Li, Ran; Zhang, Tao
2013-01-01
In the present work, we investigate the effect of “fatigue” on the fatigue behavior and atomic structure of Zr-based BMGs. Fatigue experiments on the failed-by-fatigue samples indicate that the remnants generally have similar or longer fatigue life than the as-cast samples. Meanwhile, the pair-distribution-function (PDF) analysis of the as-cast and post-fatigue samples showed very small changes of local atomic structures. These observations suggest that the fatigue life of the 6-mm in-diameter Zr-based BMG is dominated by the number of pre-existing crack-initiation sites in the sample. Once the crack initiates in the specimen, the fatigue-induced damage is accumulated locally on these initiated sites, while the rest of the region deforms elastically. The results suggest that the fatigue failure of BMGs under compression-compression fatigue experiments is a defect-controlled process. The present work indicates the significance of the improved fatigue resistance with decreasing the sample size. PMID:23999496
Fatigue of reinforcing bars during hydro-demolition
NASA Astrophysics Data System (ADS)
Hyland, C. W. K.; Ouwejan, A.
2017-05-01
Reinforcing steel fractured during hydro-demolition of a reinforced concrete pier head due to low cycle flexural fatigue from vibration caused by impact of the high pressure water jet on the exposed length of the bars. Research into the fatigue performance of steel reinforcing steel tends to focus on the high cycle axial performance in reinforced concrete members and re-bending behaviour. However with the increasing use of hydro-demolition of concrete structures as part of remediation works care is required to ensure the steel reinforcement exposed to the high pressure jet of water is not going to suffer relatively low cycle flexural damage that may compromise the designed performance of the completed reinforced concrete structure. This paper describes the failure assessment, fatigue analysis, and metallographic examination that was undertaken. It was found that the rib to flank transition radius on the reinforcement steel was small enough to cause a significant stress concentration effect and was the location of fatigue crack growth. A relatively simple analysis using the maximum unrestrained cantilevered bar length and force exerted by the water jet was used to calculate the maximum expected bending moment. This was compared to the bending capacity at initiation of yielding at the rib flank transition accounting for stress concentration effects. This showed that the observed cyclic reversing ductile crack growth and fracture of the H25 bars was consistent with the loading applied. A method is proposed based on these observations to assess suitable limits for unrestrained bar lengths or maximum working offset of the water jet from the point of bar restraint when undertaking hydro-demolition work. The fatigue critical performance requirements of AS/NZS4671 500E bars are also therefore compared with those of BS4449:2005 and PN EN/ISO 15630-1:2011 for comparable 500C bars
Study on Wind-induced Vibration and Fatigue Life of Cable-stayed Flexible Antenna
NASA Astrophysics Data System (ADS)
He, Kongde; He, Xuehui; Fang, Zifan; Zheng, Xiaowei; Yu, Hongchang
2018-03-01
The cable-stayed flexible antenna is a large-span space structure composed of flexible multibody, with low frequency of vibration, vortex-induced resonance can occur under the action of Stochastic wind, and a larger amplitude is generated when resonance occurs. To solve this problem, based on the theory of vortex-induced vibration, this paper analyzes the vortex-induced vibration of a cable-stayed flexible antenna under the action of Wind. Based on the sinusoidal force model and Autoregressive Model (AR) method, the vortex-induced force is simulated, then the fatigue analysis of the structure is based on the linear fatigue cumulative damage principle and the rain-flow method. The minimum fatigue life of the structure is calculated to verify the vibration fatigue performance of the structure.
Personalized hip implants manufacturing and testing
NASA Astrophysics Data System (ADS)
Croitoru, A. Sorin Mihai; Pacioga, B. Adrian; Comsa, C. Stanca
2017-09-01
Two models of Ti6Al4V personalized femoral stems for hip replacement have been designed and laser sintered with different sizes of fenestrated architecture that mimics the natural structure of bone, ensuring postoperative bone ingrowth and increasing the elasticity of the entire structure. They were tested statically and dynamically versus a commercial femoral stem. Mechanical tests were performed in order to determine the fatigue limit using the Locati method. The tests were conducted in a thermostatic bath (37°±1°) with the implants immersed in distilled water salted solution 0.91%. For probe embedment poly-methyl methacrylate (PMMA) was used. The characteristic curves of the two personalized fenestrated implants reveal an elastic behaviour by their nonlinear appearance. After dynamic tests an inverse relationship between displacements obtained in the static tests and the fatigue limit was observed. Large fenestrations conferred the desired elasticity to the implant, but contributed to a life service reduction. The fatigue limit for both implants was much above the minimum value specified by ISO 7602: 2010, so both models can be safely used in the medical practice, leading to increased life service of implants.
The PedsQL Multidimensional Fatigue Scale in pediatric rheumatology: reliability and validity.
Varni, James W; Burwinkle, Tasha M; Szer, Ilona S
2004-12-01
. The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health related quality of life (HRQOL) in children and adolescents ages 2-18 years. The recently developed 18-item PedsQL Multidimensional Fatigue Scale was designed to measure fatigue in pediatric patients and comprises the General Fatigue Scale (6 items), Sleep/Rest Fatigue Scale (6 items), and Cognitive Fatigue Scale (6 items). The PedsQL 4.0 Generic Core Scales were developed as the generic core measure to be integrated with the PedsQL Disease-Specific Modules. The PedsQL 3.0 Rheumatology Module was designed to measure pediatric rheumatology-specific HRQOL. Methods. The PedsQL Multidimensional Fatigue Scale, Generic Core Scales, and Rheumatology Module were administered to 163 children and 154 parents (183 families accrued overall) recruited from a pediatric rheumatology clinic. Results. Internal consistency reliability for the PedsQL Multidimensional Fatigue Scale Total Score (a = 0.95 child, 0.95 parent report), General Fatigue Scale (a = 0.93 child, 0.92 parent), Sleep/Rest Fatigue Scale (a = 0.88 child, 0.90 parent), and Cognitive Fatigue Scale (a = 0.93 child, 0.96 parent) were excellent for group and individual comparisons. The validity of the PedsQL Multidimensional Fatigue Scale was confirmed through hypothesized intercorrelations with dimensions of generic and rheumatology-specific HRQOL. The PedsQL Multidimensional Fatigue Scale distinguished between healthy children and children with rheumatic diseases as a group, and was associated with greater disease severity. Children with fibromyalgia manifested greater fatigue than children with other rheumatic diseases. The results confirm the initial reliability and validity of the PedsQL Multidimensional Fatigue Scale in pediatric rheumatology.
Actively cooled plate fin sandwich structural panels for hypersonic aircraft
NASA Technical Reports Server (NTRS)
Smith, L. M.; Beuyukian, C. S.
1979-01-01
An unshielded actively cooled structural panel was designed for application to a hypersonic aircraft. The design was an all aluminum stringer-stiffened platefin sandwich structure which used a 60/40 mixture of ethylene glycol/water as the coolant. Eight small test specimens of the basic platefin sandwich concept and three fatigue specimens from critical areas of the panel design was fabricated and tested (at room temperature). A test panel representative of all features of the panel design was fabricated and tested to determine the combined thermal/mechanical performance and structural integrity of the system. The overall findings are that; (1) the stringer-stiffened platefin sandwich actively cooling concept results in a low mass design that is an excellent contender for application to a hypersonic vehicle, and (2) the fabrication processes are state of the art but new or modified facilities are required to support full scale panel fabrication.
Advanced oxide dispersion strengthened sheet alloys for improved combustor durability
NASA Technical Reports Server (NTRS)
Henricks, R. J.
1981-01-01
Burner design modifications that will take advantage of the improved creep and cyclic oxidation resistance of oxide dispersion strengthened (ODS) alloys while accommodating the reduced fatigue properties of these materials were evaluated based on preliminary analysis and life predictions, on construction and repair feasibility, and on maintenance and direct operating costs. Two designs - the film cooled, segmented louver and the transpiration cooled, segmented twin Wall - were selected for low cycle fatigue (LCF) component testing. Detailed thermal and structural analysis of these designs established the strain range and temprature at critical locations resulting in predicted lives of 10,000 cycles for MA 956 alloy. The ODs alloys, MA 956 and HDA 8077, demonstrated a 167 C (300 F) temperature advantage over Hastelloy X alloy in creep strength and oxidation resistance. The MA 956 alloy was selected for mechanical property and component test evaluations. The MA 956 alloy was superior to Hastelloy X in LCF component testing of the film cooled, segmented louver design.
PZT Active Frequency Based Wind Blade Fatigue to Failure Testing Results for Various Blade Designs
2011-09-01
PZT Active Frequency Based Wind Blade Fatigue to Failure Testing Results for Various Blade Designs R. J. WERLINK...number. 1. REPORT DATE SEP 2011 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE PZT Active Frequency Based Wind Blade Fatigue ...18 Abstract: This paper summarizes NASA PZT Health Monitoring System results previously reported for 9 meter blade Fatigue loading to failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parsons, Taylor; Guo, Yi; Veers, Paul
Software models that use design-level input variables and physics-based engineering analysis for estimating the mass and geometrical properties of components in large-scale machinery can be very useful for analyzing design trade-offs in complex systems. This study uses DriveSE, an OpenMDAO-based drivetrain model that uses stress and deflection criteria to size drivetrain components within a geared, upwind wind turbine. Because a full lifetime fatigue load spectrum can only be defined using computationally-expensive simulations in programs such as FAST, a parameterized fatigue loads spectrum that depends on wind conditions, rotor diameter, and turbine design life has been implemented. The parameterized fatigue spectrummore » is only used in this paper to demonstrate the proposed fatigue analysis approach. This paper details a three-part investigation of the parameterized approach and a comparison of the DriveSE model with and without fatigue analysis on the main shaft system. It compares loads from three turbines of varying size and determines if and when fatigue governs drivetrain sizing compared to extreme load-driven design. It also investigates the model's sensitivity to shaft material parameters. The intent of this paper is to demonstrate how fatigue considerations in addition to extreme loads can be brought into a system engineering optimization.« less
NASA Astrophysics Data System (ADS)
Fan, Jinghong; Hao, Su
2004-01-01
Material heterogeneities and discontinuities such as porosity, second phase particles, and other defects at meso/micro/nano scales, determine fatigue life, strength, and fracture behavior of aluminum castings. In order to achieve better performance of these alloys, a design-centered computer-aided renovative approach is proposed. Here, the term “design-centered” is used to distinguish the new approach from the traditional trial-and-error design approach by formulating a clear objective, offering a scientific foundation, and developing a computer-aided effective tool for the alloy development. A criterion for tailoring “child” microstructure, obtained by “parent” microstructure through statistical correlation, is proposed for the fatigue design at the initial stage. A dislocations pileup model has been developed. This dislocation model, combined with an optimization analysis, provides an analytical-based solution on a small scale for silicon particles and dendrite cells to enhance both fatigue performance and strength for pore-controlled castings. It can also be used to further tailor microstructures. In addition, a conceptual damage sensitivity map for fatigue life design is proposed. In this map there are critical pore sizes, above which fatigue life is controlled by pores; otherwise it is controlled by other mechanisms such as silicon particles and dendrite cells. In the latter case, the proposed criteria and the dislocation model are the foundations of a guideline in the design-centered approach to maximize both the fatigue life and strength of Al-Si-based light-weight alloy.
Brain lesion correlates of fatigue in individuals with traumatic brain injury.
Schönberger, Michael; Reutens, David; Beare, Richard; O'Sullivan, Richard; Rajaratnam, Shantha M W; Ponsford, Jennie
2017-10-01
The purpose of this study was to investigate the neurological correlates of both subjective fatigue as well as objective fatigability in individuals with traumatic brain injury (TBI). The study has a cross-sectional design. Participants (N = 53) with TBI (77% male, mean age at injury 38 years, mean time since injury 1.8 years) underwent a structural magnetic resonance imaging (MRI) scan and completed the Fatigue Severity Scale (FSS), while a subsample (N = 36) was also tested with a vigilance task. While subjective fatigue (FSS) was not related to measures of brain lesions, multilevel analyses showed that a change in the participants' decision time was significantly predicted by grey matter (GM) lesions in the right frontal lobe. The time-dependent development of the participants' error rate was predicted by total brain white matter (WM) lesion volumes, as well as right temporal GM and WM lesion volumes. These findings could be explained by decreased functional connectivity of attentional networks, which results in accelerated exhaustion during cognitive task performance. The disparate nature of objectively measurable fatigability on the one hand and the subjective experience of fatigue on the other needs further investigation.
NASA Technical Reports Server (NTRS)
Ripley, E. L.
1972-01-01
The information presented is based on data obtained from the Concorde. Much of this data also applies to other supersonic transport aircraft. The design and development of the Concorde is a joint effort of the British and French, and the structural test program is shared, as are all the other activities. Vast numbers of small specimens have been tested to determine the behavior of the materials used in the aircraft. Major components of the aircraft structure, totalling almost a complete aircraft, have been made and are being tested to help the constructors in each country in the design and development of the structure. Tests on two complete airframes will give information for the certification of the aircraft. A static test was conducted in France and a fatigue test in the United Kingdom. Fail-safe tests are being made to demonstrate the crack-propagation characteristics of the structure and its residual strength. Aspects of the structural test program are described in some detail, dealing particularly with the problems associated with the thermal cycle. The biggest of these problems is the setting up of the fatigue test on the complete airframe; therefore, this is covered more extensively with a discussion about how the test time can be shortened and with a description of the practical aspects of the test.
Fatigue Damage of Collagenous Tissues: Experiment, Modeling and Simulation Studies
Martin, Caitlin; Sun, Wei
2017-01-01
Mechanical fatigue damage is a critical issue for soft tissues and tissue-derived materials, particularly for musculoskeletal and cardiovascular applications; yet, our understanding of the fatigue damage process is incomplete. Soft tissue fatigue experiments are often difficult and time-consuming to perform, which has hindered progress in this area. However, the recent development of soft-tissue fatigue-damage constitutive models has enabled simulation-based fatigue analyses of tissues under various conditions. Computational simulations facilitate highly controlled and quantitative analyses to study the distinct effects of various loading conditions and design features on tissue durability; thus, they are advantageous over complex fatigue experiments. Although significant work to calibrate the constitutive models from fatigue experiments and to validate predictability remains, further development in these areas will add to our knowledge of soft-tissue fatigue damage and will facilitate the design of durable treatments and devices. In this review, the experimental, modeling, and simulation efforts to study collagenous tissue fatigue damage are summarized and critically assessed. PMID:25955007
Evaluation of structural design concepts for an arrow-wing supersonic cruise aircraft
NASA Technical Reports Server (NTRS)
Sakata, I. F.; Davis, G. W.
1977-01-01
An analytical study was performed to determine the best structural approach for design of primary wing and fuselage structure of a Mach 2.7 arrow wing supersonic cruise aircraft. Concepts were evaluated considering near term start of design. Emphasis was placed on the complex interactions between thermal stress, static aeroelasticity, flutter, fatigue and fail safe design, static and dynamic loads, and the effects of variations in structural arrangements, concepts and materials on these interactions. Results indicate that a hybrid wing structure incorporating low profile convex beaded and honeycomb sandwich surface panels of titanium alloy 6Al-4V were the most efficient. The substructure includes titanium alloy spar caps reinforced with boron polyimide composites. The fuselage shell consists of hat stiffened skin and frame construction of titanium alloy 6Al-4V. A summary of the study effort is presented, and a discussion of the overall logic, design philosophy and interaction between the analytical methods for supersonic cruise aircraft design are included.
Structural integrity of engineering composite materials: a cracking good yarn.
Beaumont, Peter W R; Soutis, Costas
2016-07-13
Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a 'fracture safe design' is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).
DOT National Transportation Integrated Search
2016-04-01
This study presents the fi rst approach to develop a new concrete pavement structure reinforced only with fi bers. This : research will identify probable combinations of fi bers (dosage and length combinations) that will adequately perform : in repea...
Acoustic fatigue life prediction for nonlinear structures with multiple resonant modes
NASA Technical Reports Server (NTRS)
Miles, R. N.
1992-01-01
This report documents an effort to develop practical and accurate methods for estimating the fatigue lives of complex aerospace structures subjected to intense random excitations. The emphasis of the current program is to construct analytical schemes for performing fatigue life estimates for structures that exhibit nonlinear vibration behavior and that have numerous resonant modes contributing to the response.
Design solutions for the solar cell interconnect fatigue fracture problem
NASA Technical Reports Server (NTRS)
Mon, G. R.; Ross, R. G., Jr.
1982-01-01
Mechanical fatigue of solar cell interconnects is a major failure mechanism in photovoltaic arrays. A comprehensive approach to the reliability design of interconnects, together with extensive design data for the fatigue properties of copper interconnects, has been published. This paper extends the previous work, developing failure prediction (fatigue) data for additional interconnect material choices, including aluminum and a variety of copper-Invar and copper-steel claddings. An improved global fatigue function is used to model the probability-of-failure statistics of each material as a function of level and number of cycles of applied strain. Life-cycle economic analyses are used to evaluate the relative merits of each material choce. The copper-Invar clad composites demonstrate superior performance over pure copper. Aluminum results are disappointing.
Initial dynamic load estimates during configuration design
NASA Technical Reports Server (NTRS)
Schiff, Daniel
1987-01-01
This analysis includes the structural response to shock and vibration and evaluates the maximum deflections and material stresses and the potential for the occurrence of elastic instability, fatigue and fracture. The required computations are often performed by means of finite element analysis (FEA) computer programs in which the structure is simulated by a finite element model which may contain thousands of elements. The formulation of a finite element model can be time consuming, and substantial additional modeling effort may be necessary if the structure requires significant changes after initial analysis. Rapid methods for obtaining rough estimates of the structural response to shock and vibration are presented for the purpose of providing guidance during the initial mechanical design configuration stage.
Concrete Growth and Fatigue Analysis of Chickamauga Lock Miter Gate Anchorages
2017-09-19
owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized...confinement. However, since the steel A-frame structures are functioning under circumstances well beyond their original design and intent and because the...known to affect airfields, pavements , bridges, and other infrastructure. While ongoing research to better understand the underlying mechanisms
14 CFR 25.571 - Damage-tolerance and fatigue evaluation of structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... contribute to a catastrophic failure (such as wing, empennage, control surfaces and their systems, the... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Structure Fatigue Evaluation § 25... and sonic excitation environment, that— (1) Sonic fatigue cracks are not probable in any part of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-17
... environmental and fatigue inspections would not have detected the corrosion or fatigue damage. Corrosion or fatigue damage in this area, if not detected and corrected, could lead to degradation of the structural... fatigue inspections would not have detected the corrosion or fatigue damage. Corrosion or fatigue damage...
NASA Technical Reports Server (NTRS)
Margasahayam, Ravi N.; Meyer, Karl A.; Nerolich, Shaun M.; Burton, Roy C.; Gosselin, Armand M.
2004-01-01
The Crawler Transporter (CT), designed and built for the Apollo Program in the 1960's and surpassing its initial operational life, has become an integral part of the Space Shuttle Program (SSP). The CT transports the Space Shuttle Vehicle (SSV) stack, atop the Mobile Launch Platform (MLP), from the Vehicle Assembly Building (VAB) to the launch pad. This support structure provides hydraulic jacking, leveling and load equalization for the 12 million pound stack on its 3.5-5.0 mile rollout to the launch pad. Major elements of the SSV, consisting of the orbiter, solid rocket boosters (SRB) and external tank (ET) have required fatigue analyses as part of the mission life certification. Compared to rollout vibration, the SSV sees relatively high vibration loads during launch, ascent, descent and landing phases of the mission. Although preliminary measured SRB vibration levels during rollout were of low amplitude and frequency, the duration of the rollout phase is typically high, from 5-6 hours. As part of an expanded mission life assessment, additional certification effort was initiated to define fatigue load spectra for rollout. This study addresses the CT vibration analyses in support of the rollout fatigue study. Structural models developed for modal and vibration analyses were used to identify unique CT, CT/MLP and CT/MLP/SRB vibration characteristics for comparison to instrumented rollout tests. Whereas the main structural and vibration characteristics of the SSV are well defined, minimum analytical and vibration test data on the Crawler Transporter were available. Unique vibration characteristics of the CT are attributable to the drive mechanism, hydraulic jacking system, structural framing and the CT-to-MLP support pad restraints. Initial tests performed on the CT/MLP/SRB configuration showed reasonable correlation with predicted mode shapes and frequencies.
An intriguing design concept to enhance the pulsatile fatigue life of self-expanding stents.
Hsiao, Hao-Ming; Yin, Ming-Ting
2014-02-01
Intravascular stenting has emerged as the primary treatment for vascular diseases and has received great attention from the medical community since its introduction two decades ago. The endovascular self-expanding stent is used to treat peripheral artery diseases; however, once implanted, these stents suffer from various cyclic motions caused by pulsatile blood pressure and daily activities. Due to this challenging environment, fatigue performance has become a critical issue for stent design. In this paper, a simple yet intriguing concept of stent design aimed at enhancing pulsatile fatigue life is investigated. The concept of this design is to shift the highly concentrated stresses/strains away from the crown and re-distribute them along the stress-free bar arm by tapering its strut width. Finite element models were developed to evaluate the mechanical integrity and pulsatile fatigue resistance of the stent to various loading conditions. Results show that the fatigue safety factor jumped to 2.5-3.0 times that of the standard stent with constant strut width. This is astonishing considering that the stent profile and scaffolding were not compromised. The findings of this paper provide an excellent approach to the optimization of future stent design to greatly improve stent fatigue performance.
Probability of failure prediction for step-stress fatigue under sine or random stress
NASA Technical Reports Server (NTRS)
Lambert, R. G.
1979-01-01
A previously proposed cumulative fatigue damage law is extended to predict the probability of failure or fatigue life for structural materials with S-N fatigue curves represented as a scatterband of failure points. The proposed law applies to structures subjected to sinusoidal or random stresses and includes the effect of initial crack (i.e., flaw) sizes. The corrected cycle ratio damage function is shown to have physical significance.
NASA Astrophysics Data System (ADS)
Trško, Libor; Guagliano, Mario; Bokůvka, Otakar; Nový, František; Jambor, Michal; Florková, Zuzana
2017-04-01
The ever more pressing and concurrent requirements of light design, increased performances and reliability, energy savings together with acceptable costs, is always pushing researchers and engineers toward the definition and application of new materials and treatments, able to guarantee superior properties and adequate repeatability and reliability. This means that one step beyond the definition of a potentially successful solution, a complete characterization of the new materials is needed, in order to get the right data and use them in the design process. A promising severe plastic deformation surface treatment to improve the fatigue properties of materials and metal parts is considered in this paper. The used treatment is called the severe shot peening, and it is derived from the conventional shot peening but with use of unusually high peening parameters. It was proven that it is able to generate a nanostructured surface layer of material, which results in superior fatigue properties when applied to many structural materials. The severe shot peening is applied to an AW 7075 Al alloy, widely used in mechanical and aeronautic constructions and the effects of such a treatment on this material are investigated in this paper, with particular emphasis on the ultra-high-cycle fatigue behavior. The results address the choice of the correct treatment parameters for getting an evaluable advantage of this treatment and are critically discussed for a complete understanding of the mechanisms leading to the modified fatigue behavior, in view of the future developments and research in the field.
Thermal fatigue tests of a radiative heat shield panel for a hypersonic transport
NASA Technical Reports Server (NTRS)
Webb, Granville L.; Clark, Ronald K.; Sharpe, Ellsworth L.
1985-01-01
A pair of corrugation stiffened, beaded skin Rene 41 heat shield panels were exposed to 20,000 thermal cycles between room temperature and 1450 F to evaluate the thermal fatigue response of Rene 41 metallic heat shields for hypersonic cruise aircraft applications. At the conclusion of the tests, the panels retained substantial structural integrity; however, there were cracks and excessive wear in the vicinity of fastener holes and there was an 80-percent loss in ductility of the skin. Shrinkage of the panel which caused the cracks and wear must be considered in design of panels for Thermal Protection Systems (TPS) applications.
NASA Technical Reports Server (NTRS)
Nachtigall, A. J.
1974-01-01
Strain-cycling fatigue behavior of 10 different structural alloys and metals was investigated in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K). At high cyclic lives, fatigue resistance increased with decreasing temperature for all the materials investigated. At low cyclic lives, fatigue resistance generally decreased with decreasing temperature for the materials investigated. Only for Inconel 718 did fatigue resistance increase with decreasing temperature over the entire life range investigated. Comparison of the experimental fatigue behavior with that predicted by the Manson method of universal slopes showed that the fatigue behavior of these materials can be predicted for cryogenic temperatures by using material tensile properties obtained at those same temperatures.
Improving the Dynamic Characteristics of Body-in-White Structure Using Structural Optimization
Yahaya Rashid, Aizzat S.; Mohamed Haris, Sallehuddin; Alias, Anuar
2014-01-01
The dynamic behavior of a body-in-white (BIW) structure has significant influence on the noise, vibration, and harshness (NVH) and crashworthiness of a car. Therefore, by improving the dynamic characteristics of BIW, problems and failures associated with resonance and fatigue can be prevented. The design objectives attempt to improve the existing torsion and bending modes by using structural optimization subjected to dynamic load without compromising other factors such as mass and stiffness of the structure. The natural frequency of the design was modified by identifying and reinforcing the structure at critical locations. These crucial points are first identified by topology optimization using mass and natural frequencies as the design variables. The individual components obtained from the analysis go through a size optimization step to find their target thickness of the structure. The thickness of affected regions of the components will be modified according to the analysis. The results of both optimization steps suggest several design modifications to achieve the target vibration specifications without compromising the stiffness of the structure. A method of combining both optimization approaches is proposed to improve the design modification process. PMID:25101312
Room Temperature and Elevated Temperature Composite Sandwich Joint Testing
NASA Technical Reports Server (NTRS)
Walker, Sandra P.
1998-01-01
Testing of composite sandwich joint elements has been completed to verify the strength capacity of joints designed to carry specified running loads representative of a high speed civil transport wing. Static tension testing at both room and an elevated temperature of 350 F and fatigue testing at room temperature were conducted to determine strength capacity, fatigue life, and failure modes. Static tension test results yielded failure loads above the design loads for the room temperature tests, confirming the ability of the joint concepts tested to carry their design loads. However, strength reductions as large as 30% were observed at the elevated test temperature, where all failure loads were below the room temperature design loads for the specific joint designs tested. Fatigue testing resulted in lower than predicted fatigue lives.
Acoustic fatigue and sound transmission characteristics of a ram composite panel design
NASA Technical Reports Server (NTRS)
Cockburn, J. A.; Chang, K. Y.; Kao, G. C.
1972-01-01
An experimental study to determine the acoustic fatigue characteristics of a flat multi-layered structural panel is described. The test panel represented a proposed design for the outer skin of a research application module to be housed within the space shuttle orbiter vehicle. The test specimen was mounted in one wall of the Wyle 100,000 cu ft reverberation room and exposed to a broadband acoustic environment having an overall level of 145 db. The test panel was exposed to nine separate applications of the acoustic environment, each application consisting of 250 seconds duration. Upon completion of the ninth test run, the specimen was exposed to a simulated micrometeoroid impact near the panel center. One additional test run of 250 seconds duration was then performed to complete the overall simulation of 50 flight missions. The experimental results show that no significant fatigue damage occurred until the test specimen was exposed to a simulated micrometeoroid impact. The intermediate foam layer forming the core of the test specimen suffered considerable damage due to this impact, causing a marked variation in the dynamic characteristics of the overall test panel. During the final application of the acoustic environment, the strain and acceleration response spectra showed considerable variation from those spectra obtained prior to impact of the panel. Fatigue damage from acoustic loading however, was limited to partial de-bonding around the edges of the composite panel.
Evaluation of the durability of composite tidal turbine blades.
Davies, Peter; Germain, Grégory; Gaurier, Benoît; Boisseau, Amélie; Perreux, Dominique
2013-02-28
The long-term reliability of tidal turbines is critical if these structures are to be cost effective. Optimized design requires a combination of material durability models and structural analyses. Composites are a natural choice for turbine blades, but there are few data available to predict material behaviour under coupled environmental and cycling loading. The present study addresses this problem, by introducing a multi-level framework for turbine blade qualification. At the material scale, static and cyclic tests have been performed, both in air and in sea water. The influence of ageing in sea water on fatigue performance is then quantified, and much lower fatigue lives are measured after ageing. At a higher level, flume tank tests have been performed on three-blade tidal turbines. Strain gauging of blades has provided data to compare with numerical models.
Vianco, Paul T.
2017-03-01
Whether structural or electronic, all solder joints must provide the necessary level of reliability for the application. The Part 1 report examined the effects of filler metal properties and the soldering process on joint reliability. Filler metal solderability and mechanical properties, as well as the extents of base material dissolution and interface reaction that occur during the soldering process, were shown to affect reliability performance. The continuation of this discussion is presented in this Part 2 report, which highlights those factors that directly affect solder joint reliability. There is the growth of an intermetallic compound (IMC) reaction layer at themore » solder/base material interface by means of solid-state diffusion processes. In terms of mechanical response by the solder joint, fatigue remains as the foremost concern for long-term performance. Thermal mechanical fatigue (TMF), a form of low-cycle fatigue (LCF), occurs when temperature cycling is combined with mismatched values of the coefficient of thermal expansion (CTE) between materials comprising the solder joint “system.” Vibration environments give rise to high-cycle fatigue (HCF) degradation. Although accelerated aging studies provide valuable empirical data, too many variants of filler metals, base materials, joint geometries, and service environments are forcing design engineers to embrace computational modeling to predict the long-term reliability of solder joints.« less
Fatigue Lifetime of Ceramic Matrix Composites at Intermediate Temperature by Acoustic Emission
Racle, Elie; Godin, Nathalie; Reynaud, Pascal; Fantozzi, Gilbert
2017-01-01
The fatigue behavior of a Ceramic Matrix Composite (CMC) at intermediate temperature under air is investigated. Because of the low density and the high tensile strength of CMC, they offer a good technical solution to design aeronautical structural components. The aim of the present study is to compare the behavior of this composite under static and cyclic loading. Comparison between incremental static and cyclic tests shows that cyclic loading with an amplitude higher than 30% of the ultimate tensile strength has significant effects on damage and material lifetimes. In order to evaluate the remaining lifetime, several damage indicators, mainly based on the investigation of the liberated energy, are introduced. These indicators highlight critical times or characteristic times, allowing an evaluation of the remaining lifetime. A link is established with the characteristic time around 25% of the total test duration and the beginning of the matrix cracking during cyclic fatigue. PMID:28773019
Oxidation-Assisted Crack Growth in Single-Crystal Superalloys during Fatigue with Compressive Holds
NASA Astrophysics Data System (ADS)
Lafata, M. A.; Rettberg, L. H.; He, M. Y.; Pollock, T. M.
2018-01-01
The mechanism of oxidation-assisted growth of surface cracks during fatigue with compressive holds has been studied experimentally and via a model that describes the role of oxide and substrate properties. The creep-based finite element model has been employed to examine the role of material parameters in the damage evolution in a Ni-base single-crystal superalloy René N5. Low-cycle fatigue experiments with compressive holds were conducted at 1255 K and 1366 K (982 °C and 1093 °C). Interrupted and failed specimens were characterized for crack depth and spacing, oxide thickness, and microstructural evolution. Comparison of experimental to modeled hysteresis loops indicates that transient creep drives the macroscopic stress-strain response. Crack penetration rates are strongly influenced by growth stresses in the oxide, structural evolution in the substrate, and the development of γ ^' } denuded zones. Implications for design of alloys resistant to this mode of degradation are discussed.
Advances in Fatigue and Fracture Mechanics Analyses for Aircraft Structures
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1999-01-01
This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.
Advances in Fatigue and Fracture Mechanics Analyses for Metallic Aircraft Structures
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
2000-01-01
This paper reviews some of the advances that have been made in stress analyses of cracked aircraft components, in the understanding of the fatigue and fatigue-crack growth process, and in the prediction of residual strength of complex aircraft structures with widespread fatigue damage. Finite-element analyses of cracked metallic structures are now used to determine accurate stress-intensity factors for cracks at structural details. Observations of small-crack behavior at open and rivet-loaded holes and the development of small-crack theory has lead to the prediction of stress-life behavior for components with stress concentrations under aircraft spectrum loading. Fatigue-crack growth under simulated aircraft spectra can now be predicted with the crack-closure concept. Residual strength of cracked panels with severe out-of-plane deformations (buckling) in the presence of stiffeners and multiple-site damage can be predicted with advanced elastic-plastic finite-element analyses and the critical crack-tip-opening angle (CTOA) fracture criterion. These advances are helping to assure continued safety of aircraft structures.
The impact of job and family demands on partner's fatigue: A study of Japanese dual-earner parents.
Watanabe, Mayumi; Shimazu, Akihito; Bakker, Arnold B; Demerouti, Evangelia; Shimada, Kyoko; Kawakami, Norito
2017-01-01
This study of Japanese dual-earner couples examined the impact of family and job demands on one's own and one's partner's fatigue as well as gender differences in these effects. A total of 2,502 parents (1,251 couples) were surveyed using a self-administered questionnaire. A crossover model was tested using structural equation modeling. The results of structural equation modeling analyses showed that both job and family demands independently exacerbated fatigue. There was an indirect effect of job and family demands on partner fatigue through one's own fatigue only from husbands to wives. An indirect effect of job demands on partner fatigue through partner's family demands was identified only from wives to husbands. Furthermore, there were gender differences in the crossover of fatigue. This study shows that job and family demands influence family circumstances. When considering means to reduce employees' fatigue, gender differences in the mechanism of fatigue need to be taken into account.
NASA Astrophysics Data System (ADS)
Yajie, Cheng; Qingliang, Liao; Yue, Zhang
Due to composition segregation and cooling speed, streamline or banded structure were often obtained in the thermal forming parts along the direction of parts forming. Generally speaking, banded structure doesn't decrease the longitudinal mechanical properties, so the secondary banded structure can't get enough attention. The effect of secondary banded structure on the fatigue properties of micro alloyed DG20Mn and 35CrMo steel was investigated using the axial tensile fatigue test of stress ratio of 0.1. The result shows that secondary banded structure was obtained in the center of the steel parts, because of the composition segregation and the lower cooling rate in center part of steel. Secondary banded structure has no significant effect on axial tensile properties of both DG20Mn and 35CrMo, but decreases the axial tensile fatigue performance of DG20Mn steel. This study suggests that under the high cyclic tensile stress, multi-source damage cracks in steel initiated by large strain of pearlite of secondary banded structure, which is larger than damage strain, is the major factor of the decrease of fatigue life of steel.
Composite structural materials. [aircraft structures
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1980-01-01
The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.
State-of-the-Art Review on Composite Material Fatigue/Damage Tolerance.
1985-12-01
Automobile Structures," Plastic Rubber Material Application, Vol. 3, No. 2, May 1978. 148. Nguyen, D.T., Arora, J.S., and Belegundu, A.D., "Design...Vanthier, D., " Kunststoff -Verstaerkung MIT Kevlar 49," [Reinforcing Plastics With "Kevlar" 49], Plastverarbeiter, Vol. 31, No. 9, September 1980. 232
Fatigue design curve of a TiNi/Al shape memory alloy composite for aircraft stringer design
NASA Astrophysics Data System (ADS)
Park, Young-Chul; Jo, Young-Jik; Baek, Seok-Heum; Furuya, Yasubumi
2009-05-01
In this study, a TiNi/Al6061 shape memory alloy (SMA) composite was fabricated by the hot press method, and pressed by a roller for its strength improvement using the shape memory fiber shrinkage phenomenon. These two kinds of specimens were fabricated with 0% and 5% volume ratio and 0%, 10 % and 20% reduction ratio of TiNi alloy fiber, respectively. A fatigue test has been performed to evaluate the fatigue life for the fabricated TiNi/Al SMA composite as an S-N curve. The results from the Goodman diagram is able to illustrate the failure criterion and fatigue limit between tensile and bending fatigue strength in the fatigue characterization of TiNi/Al SMA composites.
Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review
NASA Astrophysics Data System (ADS)
Wang, B. J.; Xu, D. K.; Wang, S. D.; Han, E. H.
2017-12-01
The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.
Prediction of Fatigue Crack Growth of Repaired Al-alloy Structures with Double Sides
NASA Astrophysics Data System (ADS)
Benachour, M.; Benachour, N.; Benguediab, M.; Seriari, F. Z.
During navigation, aircrafts are subject to fatigue damage. In order to rehabilitate damaged structures some techniques are often used to resolve this problem. Efficient repair technique, called composite patch repair, was used to reinforce the damaged structures and stop cracks. In this paper, effect of composite patch repair (Boron/Epoxy) on fatigue crack growth (FCG) was investigated on 2219 T62 Al-alloy. Effects of double patch repair in single notch tensile specimen (SENT) on FCG were studied and compared to single patch repair. Results show beneficial effect of patch repair on fatigue life and FCGR in comparison with the un-patched specimen. In addition, effect of mean stress characterized by stress ratio was highlighted. Fatigue behavior of investigated Al-alloy was compared.
Multiobjective optimization in structural design with uncertain parameters and stochastic processes
NASA Technical Reports Server (NTRS)
Rao, S. S.
1984-01-01
The application of multiobjective optimization techniques to structural design problems involving uncertain parameters and random processes is studied. The design of a cantilever beam with a tip mass subjected to a stochastic base excitation is considered for illustration. Several of the problem parameters are assumed to be random variables and the structural mass, fatigue damage, and negative of natural frequency of vibration are considered for minimization. The solution of this three-criteria design problem is found by using global criterion, utility function, game theory, goal programming, goal attainment, bounded objective function, and lexicographic methods. It is observed that the game theory approach is superior in finding a better optimum solution, assuming the proper balance of the various objective functions. The procedures used in the present investigation are expected to be useful in the design of general dynamic systems involving uncertain parameters, stochastic process, and multiple objectives.
Women's experience of SLE-related fatigue: a focus group interview study.
Pettersson, Susanne; Möller, Sonia; Svenungsson, Elisabet; Gunnarsson, Iva; Welin Henriksson, Elisabet
2010-10-01
The aim of this study was to describe women's experience of SLE-related fatigue, how they express the feeling of fatigue, impact on life and strategies developed to manage fatigue in daily living. Seven, semi-structured focus group discussions with 33 women were audio-taped, transcribed verbatim and analysed according to qualitative content analysis. Perceptions of SLE-related fatigue were sorted into four themes. Nature of Fatigue, involved the sensation, occurrence and character. Aspects Affected by Fatigue described emotions that arose together with fatigue as well as aspects of work, family life, social contacts and leisure activities that were affected by fatigue. Striving Towards Power and Control concluded the array of ways used to manage daily life and were categorized into the mental struggle, structure, restrict and provide. Factors Influencing the Perception of Fatigue described understanding from their surroundings and pain as strongly influencing the experience and perception of fatigue. SLE-related fatigue was portrayed as an overwhelming phenomenon with an unpredictable character, resulting in the feeling that fatigue dominates and controls most situations in life. The choice of strategies was described as a balance with implications for how fatigue limited a person's life. Health care professionals are advised to take a more active role to empower people with SLE to find their own balance as a way to achieve a feeling of being in control.
Structure-phase states evolution in Al-Si alloy under electron-beam treatment and high-cycle fatigue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konovalov, Sergey, E-mail: konovserg@gmail.com; Alsaraeva, Krestina, E-mail: gromov@physics.sibsiu.ru; Gromov, Victor, E-mail: gromov@physics.sibsiu.ru
By methods of scanning and transmission electron diffraction microscopy the analysis of structure-phase states and defect substructure of silumin subjected to high-intensity electron beam irradiation in various regimes and subsequent fatigue loading up to failure was carried out. It is revealed that the sources of fatigue microcracks are silicon plates of micron and submicron size are not soluble in electron beam processing. The possible reasons of the silumin fatigue life increase under electron-beam treatment are discussed.
NASA Astrophysics Data System (ADS)
Ma, Guang-ying; Yao, Yun-long
2018-03-01
In this paper, the fatigue lives of a new type of assembled marine floating platform for special purposes were studied. Firstly, by using ANSYS AQWA software, the hydrodynamic model of the platform was established. Secondly, the structural stresses under alternating change loads were calculated under complex water environments, such as wind, wave, current and ice. The minimum fatigue lives were obtained under different working conditions. The analysis results showed that the fatigue life of the platform structure can meet the requirements
NASA Astrophysics Data System (ADS)
El-Wardany, Tahany; Lynch, Mathew; Gu, Wenjiong; Hsu, Arthur; Klecka, Michael; Nardi, Aaron; Viens, Daniel
This paper proposes an optimization framework enabling the integration of multi-scale / multi-physics simulation codes to perform structural optimization design for additively manufactured components. Cold spray was selected as the additive manufacturing (AM) process and its constraints were identified and included in the optimization scheme. The developed framework first utilizes topology optimization to maximize stiffness for conceptual design. The subsequent step applies shape optimization to refine the design for stress-life fatigue. The component weight was reduced by 20% while stresses were reduced by 75% and the rigidity was improved by 37%. The framework and analysis codes were implemented using Altair software as well as an in-house loading code. The optimized design was subsequently produced by the cold spray process.
NASA Technical Reports Server (NTRS)
Przekop, Adam; Rizzi, Stephen A.; Sweitzer, Karl A.
2007-01-01
A study is undertaken to develop a methodology for determining the suitability of various high-cycle fatigue models for metallic structures subjected to combined thermal-acoustic loadings. Two features of this problem differentiate it from the fatigue of structures subject to acoustic loading alone. Potentially large mean stresses associated with the thermally pre- and post-buckled states require models capable of handling those conditions. Snap-through motion between multiple post-buckled equilibrium positions introduces very high alternating stress. The thermal-acoustic time history response of a clamped aluminum beam structure with geometric and material nonlinearities is determined via numerical simulation. A cumulative damage model is employed using a rainflow cycle counting scheme and fatigue estimates are made for 2024-T3 aluminum using various non-zero mean fatigue models, including Walker, Morrow, Morrow with true fracture strength, and MMPDS. A baseline zero-mean model is additionally considered. It is shown that for this material, the Walker model produces the most conservative fatigue estimates when the stress response has a tensile mean introduced by geometric nonlinearity, but remains in the linear elastic range. However, when the loading level is sufficiently high to produce plasticity, the response becomes more fully reversed and the baseline, Morrow, and Morrow with true fracture strength models produce the most conservative fatigue estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianfeng; Xuan, Fu-Zhen, E-mail: fzxuan@ecust.edu.cn
The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A “mountain shape” correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The “mountain shape” correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.
Varni, James W; Limbers, Christine A; Bryant, William P; Wilson, Don P
2010-01-01
The PedsQL (Pediatric Quality of Life Inventory) is a modular instrument designed to measure health-related quality of life (HRQOL) and disease-specific symptoms in children and adolescents. The PedsQL Multidimensional Fatigue Scale was designed as a child self-report and parent proxy-report generic symptom-specific instrument to measure fatigue in pediatric patients. The objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in pediatric obesity. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains) and the PedsQL 4.0 Generic Core Scales were completed by 41 pediatric patients with a physician-diagnosis of obesity and 43 parents from a hospital-based Pediatric Endocrinology Clinic. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses (1.6%, child report; 0.5%, parent report), achieved excellent reliability for the Total Fatigue Scale Score (alpha = 0.90 child report, 0.90 parent report), distinguished between pediatric patients with obesity and healthy children, and was significantly correlated with the PedsQL 4.0 Generic Core Scales supporting construct validity. Pediatric patients with obesity experienced fatigue comparable with pediatric patients receiving cancer treatment, demonstrating the relative severity of their fatigue symptoms. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in pediatric obesity. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the standardized evaluation of fatigue in pediatric patients with obesity.
Factors that affect the fatigue strength of power transmission shafting and their impact on design
NASA Technical Reports Server (NTRS)
Leowenthal, S. H.
1986-01-01
A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.
Proposed design procedure for transmission shafting under fatigue loading
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.
1978-01-01
The B106 American National Standards Committee is currently preparing a new standard for the design of transmission shafting. A design procedure, proposed for use in the new standard, for computing the diameter of rotating solid steel shafts under combined cyclic bending and steady torsion is presented. The formula is based on an elliptical variation of endurance strength with torque exhibited by combined stress fatigue data. Fatigue factors are cited to correct specimen bending endurance strength data for use in the shaft formula. A design example illustrates how the method is to be applied.
Fatigue Properties of Modified 316LN Stainless Steel at 4 K for High Field Cable-In Applications
NASA Astrophysics Data System (ADS)
Toplosky, V. J.; Walsh, R. P.; Han, K.
2010-04-01
Cable-In-Conduit-Conductor (CICC) alloys, exposed to Nb3Sn reaction heat-treatments, such as modified 316LN require a design specific database. A lack of fatigue life data (S-n curves) that could be applied in the design of the ITER CS and the NHMFL Series Connected Hybrid magnets is the impetus for the research presented here. The modified 316LN is distinguished by a lower carbon content and higher nitrogen content when compared to conventional 316LN. Because the interstitial alloying elements affect the mechanical properties significantly, it is necessary to characterize this alloy in a systematic way. In conjunction, to ensure magnet reliability and performance, several criteria and expectations must be met, including: high fatigue life at the operating stresses, optimal stress management at cryogenic temperatures and thin walled conduit to reduce coil mass. Tension-tension load control axial fatigue tests have good applicability to CICC solenoid magnet design, thus a series of 4 K strength versus fatigue life curves have been generated. In-situ samples of 316LN base metal, seam welded, butt welded and seam plus butt welded are removed directly from the conduit in order to address base and weld material fatigue life variability. The more than 30 fatigue tests show good grouping on the fatigue life curve and allow discretionary 4 K fatigue life predictions for conduit made with modified 316LN.
Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter; Devesse, Wim; De Graeve, Iris; Terryn, Herman; Guillaume, Patrick
2017-01-01
Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the reference specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored. PMID:28841186
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter
Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the referencemore » specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.« less
Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter; ...
2017-08-25
Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the referencemore » specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.« less
Hinderdael, Michaël; Strantza, Maria; De Baere, Dieter; Devesse, Wim; De Graeve, Iris; Terryn, Herman; Guillaume, Patrick
2017-08-25
Additive manufacturing (AM) of metals offers new possibilities for the production of complex structures. Up to now, investigations on the mechanical response of AM metallic parts show a significant spread and unexpected failures cannot be excluded. In this work, we focus on the detection of fatigue cracks through the integration of a Structural Health Monitoring (SHM) system in Ti-6Al-4V specimens. The working principle of the presented system is based on the integration of small capillaries that are capable of detecting fatigue cracks. Four-point bending fatigue tests have been performed on Ti-6Al-4V specimens with integrated capillaries and compared to the reference specimenswithout capillaries. Specimens were produced by conventional subtractive manufacturing of wrought material and AM, using the laser based Directed Energy Deposition (DED) process. In this study, we investigated the effect of the presence of the capillary on the fatigue strength and fatigue initiation location. Finite element (FEM) simulations were performed to validate the experimental test results. The presence of a drilled capillary in the specimens did not alter the fatigue initiation location. However, the laser based DED production process introduced roughness on the capillary surface that altered the fatigue initiation location to the capillary surface. The fatigue performance was greatly reduced when considering a printed capillary. It is concluded that the surface quality of the integrated capillary is of primary importance in order not to influence the structural integrity of the component to be monitored.
NERVA nozzle design status report
NASA Technical Reports Server (NTRS)
Williams, J. J.; Pickering, J. L.; Ackerman, R. G.
1972-01-01
The results of the design analyses are presented along with the status of the attained design maturity of the structural elements of the nozzle jacket and various aspects of the coolant passages. The design analyses relating to the nozzle shell were based on design allowables as supported by cursory values obtained from ARMCO 22-13-5 nozzle forgings. The major aspects of the coolant passages considered include: low cycle thermal fatigue, ability to operate at 4500 R gas temperature, tube buckling, and susceptibility to erosion. The scope of the analysis is limited to processes leading to reliability assessments of failure mechanisms.
Design of a Low Speed Fan Stage for Noise Suppression
NASA Technical Reports Server (NTRS)
Dalton, W. N.; Elliot, D. B.; Nickols, K. L.
1999-01-01
This report describes the design of a low tip speed, moderate pressure rise fan stage for demonstration of noise reduction concepts. The fan rotor is a fixed-pitch configuration delivering a design pressure ratio of 1.378 at a specific flow of 43.1 lbm/sec/sq ft. Four exit stator configurations were provided to demonstrate the effectiveness of circumferential and axial sweep in reducing rotor-stator interaction tone noise. The fan stage design was combined with an axisymmetric inlet, conical convergent nozzle, and nacelle to form a powered fan-nacelle subscale model. This model has a 22-inch cylindrical flow path and employs a rotor with a 0.30 hub-to-tip radius ratio. The design is fully compatible with an existing NASA force balance and rig drive system. The stage aerodynamic and structural design is described in detail. Three-dimensional (3-D) computational fluid dynamics (CFD) tools were used to define optimum airfoil sections for both the rotor and stators. A fan noise predictive system developed by Pratt & Whitney under contract to NASA was used to determine the acoustic characteristics of the various stator configurations. Parameters varied included rotor-to-stator spacing and vane leading edge sweep. The structural analysis of the rotor and stator are described herein. An integral blade and disk configuration was selected for the rotor. Analysis confirmed adequate low cycle fatigue life, vibratory endurance strength, and aeroelastic suitability. A unique load carrying stator arrangement was selected to minimize generation of tonal noise due to sources other than rotor-stator interaction. Analysis of all static structural components demonstrated adequate strength, fatigue life, and vibratory characteristics.
Proposed design procedure for transmission shafting under fatigue loading
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.
1978-01-01
A new standard for the design of transmission shafting is reported. Computed was the diameter of rotating solid steel shafts under combined cyclic bending and steady torsion is presented. The formula is based on an elliptical variation of endurance strength with torque exhibited by combined stress fatigue data. Fatigue factors are cited to correct specimen bending endurance strength data for use in the shaft formula. A design example illustrates how the method is to be applied.
Deng, Hailong; Li, Wei; Sakai, Tatsuo; Sun, Zhenduo
2015-12-02
The unexpected failures of structural materials in very high cycle fatigue (VHCF) regime have been a critical issue in modern engineering design. In this study, the VHCF property of a Cr-Ni-W gear steel was experimentally investigated under axial loading with the stress ratio of R = -1, and a life prediction model associated with crack initiation and growth behaviors was proposed. Results show that the Cr-Ni-W gear steel exhibits the constantly decreasing S-N property without traditional fatigue limit, and the fatigue strength corresponding to 10⁸ cycles is around 485 MPa. The inclusion-fine granular area (FGA)-fisheye induced failure becomes the main failure mechanism in the VHCF regime, and the local stress around the inclusion play a key role. By using the finite element analysis of representative volume element, the local stress tends to increase with the increase of elastic modulus difference between inclusion and matrix. The predicted crack initiation life occupies the majority of total fatigue life, while the predicted crack growth life is only accounts for a tiny fraction. In view of the good agreement between the predicted and experimental results, the proposed VHCF life prediction model involving crack initiation and growth can be acceptable for inclusion-FGA-fisheye induced failure.
Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin
2000-01-01
A methodology is presented for determining the fatigue life of bonded composite skin/stringer structures based on delamination fatigue characterization data and geometric nonlinear finite element analyses. Results were compared to fatigue tests on stringer flange/skin specimens to verify the approach.
Inflow characteristics associated with high-blade-loading events in a wind farm
NASA Astrophysics Data System (ADS)
Kelley, N. D.
1993-07-01
The stochastic characteristics of the turbulent inflow have been shown to be of major significance in the accumulation of fatigue in wind turbines. Because most of the wind turbine installations in the U.S. have taken place in multi-turbine or windfarm configurations, the fatigue damage associated with the higher turbulence levels within such arrangements must be taken into account when making estimates of component service lifetimes. The simultaneous monitoring of two adjacent wind turbines over a wide range of turbulent inflow conditions has given the authors more confidence in describing the structural load distributions that can be expected in such an environment. The adjacent testing of the two turbines allowed the authors to postulate that observed similarities in the response dynamics and load distributions could be considered quasi-universal, while the dissimilarities could be considered to result from the differing design of the rotors. The format has also allowed them to begin to define appropriate statistical load distribution models for many of the critical components in which fatigue is a major driver of the design. In addition to the adjacent turbine measurements, they also briefly discuss load distributions measured on a teetered-hub turbine.
The effect of fatigue cracks on fastener flexibility, load distribution, and fatigue crack growth
NASA Astrophysics Data System (ADS)
Whitman, Zachary Layne
Fatigue cracks typically occur at stress risers such as geometry changes and holes. This type of failure has serious safety and economic repercussions affecting structures such as aircraft. The need to prevent catastrophic failure due to fatigue cracks and other discontinuities has led to durability and damage tolerant methodologies influencing the design of aircraft structures. Holes in a plate or sheet filled with a fastener are common fatigue critical locations in aircraft structure requiring damage tolerance analysis (DTA). Often, the fastener is transferring load which leads to a loading condition involving both far-field stresses such as tension and bending, and localized bearing at the hole. The difference between the bearing stress and the tensile field at the hole is known as load transfer. The ratio of load transfer as well as the magnitude of the stresses plays a significant part in how quickly a crack will progress to failure. Unfortunately, the determination of load transfer in a complex joint is far from trivial. Many methods exist in the open literature regarding the analysis of splices, doublers and attachment joints to determine individual fastener loads. These methods work well for static analyses but greater refinement is needed for crack growth analysis. The first fastener in a splice or joint is typically the most critical but different fastener flexibility equations will all give different results. The constraint of the fastener head and shop end, along with the type of fastener, affects the stiffness or flexibility of the fastener. This in turn will determine the load that the fastener will transfer within a given fastener pattern. However, current methods do not account for the change in flexibility at a fastener as the crack develops. It is put forth that a crack does indeed reduce the stiffness of a fastener by changing its constraint, thus lessening the load transfer. A crack growth analysis utilizing reduced load transfer will result in a slower growing crack versus an analysis that ignores the effect.
Preliminary metallographic studies of ball fatigue under rolling-contact conditions
NASA Technical Reports Server (NTRS)
Bear, H Robert; Butler, Robert H
1957-01-01
The metallurgical results produced on balls tested in the rolling-contact fatigue spin rig were studied by metallographic examination. Origin and progression of fatigue failures were observed. These evaluations were made on SAE 52100 and AISI M-1 balls fatigue tested at room temperature (80 F) and 200 to 250 F. Most failures originated subsurface in shear; inclusions, structure changes, and directionalism adversely affected ball fatigue life. Structures in the maximum-shear-stress region of the balls of both materials were stable at room temperature and unstable at 200 to 250 F. Failures were of the same type as those found in full-scale bearings.
NASA Astrophysics Data System (ADS)
Martinez, Rudy D.
A multiaxial fatigue model is proposed, as it would apply to cylindrical geometry in the form of industrial sized pressure vessels. The main focus of the multiaxial fatigue model will be based on using energy methods with the loading states confined to fluctuating tractions under proportional loading. The proposed fatigue model is an effort to support and enhance existing fatigue life predicting methods for pressure vessel design, beyond the ASME Boiler and Pressure Vessel codes, ASME Section VIII Division 2 and 3, which is currently used in industrial engineering practice for pressure vessel design. Both uniaxial and biaxial low alloy pearlittic-ferritic steel cylindrical cyclic test data are utilized to substantiate the proposed fatigue model. Approximate material hardening and softening aspects from applied load cycling states and the Bauschinger effect are accounted for by adjusting strain control generated hysteresis loops and the cyclic stress strain curve. The proposed fatigue energy model and the current ASME fatigue model are then compared with regards to the accuracy of predicting fatigue life cycle consistencies.
Fatigue damage assessment of high-usage in-service aircraft fuselage structure
NASA Astrophysics Data System (ADS)
Mosinyi, Bao Rasebolai
As the commercial and military aircraft fleets continue to age, there is a growing concern that multiple-site damage (MSD) can compromise structural integrity. Multiple site damage is the simultaneous occurrence of many small cracks at independent structural locations, and is the natural result of fatigue, corrosion, fretting and other possible damage mechanisms. These MSD cracks may linkup and form a fatigue lead crack of critical length. The presence of MSD also reduces the structure's ability to withstand longer cracks. The objective of the current study is to assess, both experimentally and analytically, MSD formation and growth in the lap joint of curved panels removed from a retired aircraft. A Boeing 727-232 airplane owned and operated by Delta Air Lines, and retired at its design service goal, was selected for the study. Two panels removed from the left-hand side of the fuselage crown, near stringer 4L, were subjected to extended fatigue testing using the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration (FAA) William J. Hughes Technical Center. The state of MSD was continuously assessed using several nondestructive inspection (NDI) methods. Damage to the load attachment points of the first panel resulted in termination of the fatigue test at 43,500 fatigue cycles, before cracks had developed in the lap joint. The fatigue test for the second panel was initially conducted under simulated in-service loading conditions for 120,000 cycles, and no cracks were detected in the skin of the panel test section. Artificial damage was then introduced into the panel at selected rivets in the critical (lower) rivet row, and the fatigue loads were increased. Visually detectable crack growth from the artificial notches was first seen after 133,000 cycles. The resulting lead crack grew along the lower rivet row, eventually forming an 11.8" long unstable crack after 141,771 cycles, at which point the test was terminated. Posttest fractograpic examinations of the crack surfaces were conducted, revealing the presence of subsurface MSD at the critical rivet row of the lap joint. Special attention was also given to the stringer clips that attach the fuselage frames to the stringers, since they also experienced cracking during the fatigue tests. The performance of the different conventional and emerging NDI methods was also assessed, and some of the emerging NDI methods were quite effective in detecting and measuring the length of subsurface cracks. Delta Air Lines conducted a separate destructive investigation on the state of damage along the right-hand side of the fuselage, near stringer 4R. A comparison of these two studies showed that the lap joint on the left hand-side of the aircraft, along stringer 4L, had better fatigue life than the one on the opposite side, along stringer 4R. The cause of the difference in fatigue life was investigated by close examination of the rivet installation qualities, and was found to be a result of better rivet installation along the lap joint at stringer 4L. Finite element models for both the skin and substructures of the panels were developed and geometrically nonlinear finite element analyses were conducted to verify the loading conditions and to determine near-field parameters governing MSD initiation and growth. Fatigue crack growth predictions based on the NASGRO equation were in good agreement with the experimental crack growth data for through-the-thickness cracks. For subsurface cracks, simulation of crack growth was found to correlate better with fractography data when an empirical crack growth model was used. The results of the study contribute to the understanding of the initiation and growth of MSD in the inner skin layer of a lap joint, and provide valuable data for the evaluation and validation of analytical methodologies to predict MSD initiation and growth and a better understanding on the effect of manufacturing quality on damage accumulation along the lap joint.
Niobium Application, Metallurgy and Global Trends in Pressure Vessel Steels
NASA Astrophysics Data System (ADS)
Jansto, Steven G.
Niobium-containing high strength steel materials have been developed for a variety of pressure vessel applications. Through the application of these Nb-bearing steels in demanding applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the pressure vessel design and performance. The Nb-microalloy alloy designs also result in reduced operational production cost at the steel operation, thereby embracing the value-added attribute Nb provides to both the producer and the end user throughout the supply chain. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are considering improved designs which offer improved manufacturability, lower overall cost and better life cycle performance.
Techno-economic requirements for composite aircraft components
NASA Technical Reports Server (NTRS)
Palmer, Ray
1993-01-01
The primary reason for use of composites is to save structural weight. A well designed composite aircraft structure will usually save 25-30 percent of a well designed metal structure. The weight savings then translates into improved performance of the aircraft in measures of greater payload, increased flying range or improved efficiency - less use of fuel. Composite materials offer technical advantages. Key technical advantages that composites offer are high stiffness, tailored strength capability, fatigue resistance, and corrosion resistance. Low thermal expansion properties produce dimensionally stable structures over a wide range of temperature. Specialty resin 'char' forming characteristics in a fire environment offer potential fire barrier application and safer aircraft. The materials and processes of composite fabrication offer the potential for lower cost structures in the near future. The application of composite materials to aircraft are discussed.
NASA Astrophysics Data System (ADS)
Yuri, Tetsumi; Ogata, Toshio; Saito, Masahiro; Hirayama, Yoshiaki
2000-04-01
High-cycle and low-cycle fatigue properties of base and weld metals for SUS304L and SUS316L and the effects of welding structure and δ-ferrite on fatigue properties were investigated at cryogenic temperatures in order to evaluate the long-life reliability of the structural materials to be used in liquid hydrogen supertankers and storage tanks and to develop a welding process for these applications. The S-N curves of the base and weld metals shifted towards higher levels, i.e., the longer life side, with decreasing test temperatures. High-cycle fatigue tests demonstrated the ratios of fatigue strength at 10 6 cycles to tensile strength of the weld metals to be 0.35-0.7, falling below those of base metals with decreasing test temperatures. Fatigue crack initiation sites in SUS304L weld metals were mostly at blowholes with diameters of 200-700 μm, and those of SUS316L weld metals were at weld pass interface boundaries. Low-cycle fatigue tests revealed the fatigue lives of the weld metals to be somewhat lower than those of the base metals. Although δ-ferrite reduces the toughness of austenitic stainless steels at cryogenic temperatures, the effects of δ-ferrite on high-cycle and low-cycle fatigue properties are not clear or significant.
Advanced design for lightweight structures: Review and prospects
NASA Astrophysics Data System (ADS)
Braga, Daniel F. O.; Tavares, S. M. O.; da Silva, Lucas F. M.; Moreira, P. M. G. P.; de Castro, Paulo M. S. T.
2014-08-01
Current demand for fuel efficient aircraft has been pushing the aeronautical sector to develop ever more lightweight designs while keeping safe operation and required structural strength. Along with light-weighting, new structural design concepts have also been established in order to maintain the aircraft in service for longer periods of time, with high reliability levels. All these innovations and requirements have led to deeply optimized aeronautical structures contributing to more sustainable air transport. This article reviews the major design philosophies which have been employed in aircraft structures, including safe-life, fail-safe and damage tolerance taking into account their impact on the structural design. A brief historical review is performed in order to analyse what led to the development of each philosophy. Material properties are related to each of the design philosophies. Damage tolerant design has emerged as the main structural design philosophy in aeronautics, requiring deep knowledge on materials fatigue and corrosion strength, as well as potential failure modes and non-destructive inspection techniques, particularly minimum detectable defect and scan times. A discussion on the implementation of structural health monitoring and self-healing structures within the current panorama of structures designed according to the damage tolerant philosophy is presented. This discussion is aided by a review of research on these two subjects. These two concepts show potential for further improving safety and durability of aircraft structures.
NASA Technical Reports Server (NTRS)
Razzaq, Zia
1989-01-01
Straight or curved hat-section members are often used as structural stiffeners in aircraft. For instance, they are employed as stiffeners for the dorsal skin as well as in the aerial refueling adjacent area structure in F-106 aircraft. The flanges of the hat-section are connected to the aircraft skin. Thus, the portion of the skin closing the hat-section interacts with the section itself when resisting the stresses due to service loads. The flexural fatigue life of such a closed section is estimated using materially nonlinear axial fatigue characteristics. It should be recognized that when a structural shape is subjected to bending, the fatigue life at the neutral axis is infinity since the normal stresses are zero at that location. Conversely, the fatigue life at the extreme fibers where the normal bending stresses are maximum can be expected to be finite. Thus, different fatigue life estimates can be visualized at various distances from the neural axis. The problem becomes compounded further when significant portions away from the neutral axis are stressed into plastic range. A theoretical analysis of the closed hat-section subjected to flexural cyclic loading is first conducted. The axial fatigue characteristics together with the related axial fatigue life formula and its inverted form given by Manson and Muralidharan are adopted for an aluminum alloy used in aircraft construction. A closed-form expression for predicting the flexural fatigue life is then derived for the closed hat-section including materially nonlinear action. A computer program is written to conduct a study of the variables such as the thicknesses of the hat-section and the skin, and the type of alloy used. The study has provided a fundamental understanding of the flexural fatigue life characteristics of a practical structural component used in aircraft when materially nonlinear action is present.
Mechanical performance of pyrolytic carbon in prosthetic heart valve applications.
Cao, H
1996-06-01
An experimental procedure has been developed for rigorous characterization of the fracture resistance and fatigue crack extension in pyrolytic carbon for prosthetic heart valve application. Experiments were conducted under sustained and cyclic loading in a simulated biological environment using Carbomedics Pyrolite carbon. While the material was shown to have modest fracture toughness, it exhibited excellent resistance to subcritical crack growth. The crack growth kinetics in pyrolytic carbon were formulated using a phenomenological description. A fatigue threshold was observed below which the crack growth rate diminishes. A damage tolerance concept based on fracture mechanics was used to develop an engineering design approach for mechanical heart valve prostheses. In particular, a new quantity, referred to as the safe-life index, was introduced to assess the design adequacy against subcritical crack growth in brittle materials. In addition, a weakest-link statistical description of the fracture strength is provided and used in the design of component proof-tests. It is shown that the structural reliability of mechanical heart valves can be assured by combining effective flaw detection and manufacturing quality control with adequate damage tolerance design.
Investigation of Fuselage Structure Subject to Widespread Fatigue Damage
DOT National Transportation Integrated Search
1996-01-01
This report documents the results of the "Investigation of Fuselage Structure Subject to Widespread Fatigue Damage" contract. The primary program objective was to obtain data on airplane fuselage structures subject to multiple site damage (MSD) in an...
Structural tests and development of a laminar flow control wing surface composite chordwise joint
NASA Technical Reports Server (NTRS)
Lineberger, L. B.
1984-01-01
The dramatic increases in fuel costs and the potential for periods of limited fuel availability provided the impetus to explore technologies to reduce transport aircraft fuel consumption. NASA sponsored the Aircraft Energy Efficiency (ACEE) program beginning in 1976 to develop technologies to improve fuel efficiency. The Lockheed-Georgia Company accomplished under NAS1-16235 Laminar-Flow-Control (LFC) Wing Panel Structural Design and Development (WSSD); design, manufacturing, and testing activities. An in-depth preliminary design of the baseline 1993 LFC wing was accomplished. A surface panel using the Lockheed graphite/epoxy integrated LFC wing box structural concept was designed. The concept was shown by analysis to be structurally efficient and cost effective. Critical details of the surface and surface joint was demonstrated by fabricating and testing complex, concept selection specimens. The Lockheed-Georgia Company accomplishments, Development of LFC Wind Surface Composite Structures (WSCS), are documented. Tests were conducted on two CV2 panels to verify the static tension and fatigue strength of LFC wing surface chordwise joints.
Estimation of fatigue life using electromechanical impedance technique
NASA Astrophysics Data System (ADS)
Lim, Yee Yan; Soh, Chee Kiong
2010-04-01
Fatigue induced damage is often progressive and gradual in nature. Structures subjected to large number of fatigue load cycles will encounter the process of progressive crack initiation, propagation and finally fracture. Monitoring of structural health, especially for the critical components, is therefore essential for early detection of potential harmful crack. Recent advent of smart materials such as piezo-impedance transducer adopting the electromechanical impedance (EMI) technique and wave propagation technique are well proven to be effective in incipient damage detection and characterization. Exceptional advantages such as autonomous, real-time and online, remote monitoring may provide a cost-effective alternative to the conventional structural health monitoring (SHM) techniques. In this study, the main focus is to investigate the feasibility of characterizing a propagating fatigue crack in a structure using the EMI technique as well as estimating its remaining fatigue life using the linear elastic fracture mechanics (LEFM) approach. Uniaxial cyclic tensile load is applied on a lab-sized aluminum beam up to failure. Progressive shift in admittance signatures measured by the piezo-impedance transducer (PZT patch) corresponding to increase of loading cycles reflects effectiveness of the EMI technique in tracing the process of fatigue damage progression. With the use of LEFM, prediction of the remaining life of the structure at different cycles of loading is possible.
Floating Offshore WTG Integrated Load Analysis & Optimization Employing a Tuned Mass Damper
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez Tsouroukdissian, Arturo; Lackner, Matt; Cross-Whiter, John
2015-09-25
Floating offshore wind turbines (FOWTs) present complex design challenges due to the coupled dynamics of the platform motion, mooring system, and turbine control systems, in response to wind and wave loading. This can lead to higher extreme and fatigue loads than a comparable fixed bottom or onshore system. Previous research[1] has shown the potential to reduced extreme and fatigue loads on FOWT using tuned mass dampers (TMD) for structural control. This project aims to reduce maximum loads using passive TMDs located at the tower top during extreme storm events, when grid supplied power for other controls systems may not bemore » available. The Alstom Haliade 6MW wind turbine is modelled on the Glosten Pelastar tension-leg platform (TLP). The primary objectives of this project are to provide a preliminary assessment of the load reduction potential of passive TMDs on real wind turbine and TLP designs.« less
The impact of job and family demands on partner’s fatigue: A study of Japanese dual-earner parents
Shimazu, Akihito; Bakker, Arnold B.; Demerouti, Evangelia; Shimada, Kyoko; Kawakami, Norito
2017-01-01
Objectives This study of Japanese dual-earner couples examined the impact of family and job demands on one’s own and one’s partner’s fatigue as well as gender differences in these effects. Methods A total of 2,502 parents (1,251 couples) were surveyed using a self-administered questionnaire. A crossover model was tested using structural equation modeling. Results The results of structural equation modeling analyses showed that both job and family demands independently exacerbated fatigue. There was an indirect effect of job and family demands on partner fatigue through one’s own fatigue only from husbands to wives. An indirect effect of job demands on partner fatigue through partner’s family demands was identified only from wives to husbands. Furthermore, there were gender differences in the crossover of fatigue. Conclusions This study shows that job and family demands influence family circumstances. When considering means to reduce employees’ fatigue, gender differences in the mechanism of fatigue need to be taken into account. PMID:28235008
Study on Standard Fatigue Vehicle Load Model
NASA Astrophysics Data System (ADS)
Huang, H. Y.; Zhang, J. P.; Li, Y. H.
2018-02-01
Based on the measured data of truck from three artery expressways in Guangdong Province, the statistical analysis of truck weight was conducted according to axle number. The standard fatigue vehicle model applied to industrial areas in the middle and late was obtained, which adopted equivalence damage principle, Miner linear accumulation law, water discharge method and damage ratio theory. Compared with the fatigue vehicle model Specified by the current bridge design code, the proposed model has better applicability. It is of certain reference value for the fatigue design of bridge in China.
14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 27.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Composite Rotorcraft Structures. 27.573 Section 27.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
14 CFR 29.573 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Composite Rotorcraft Structures. 29.573 Section 29.573 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Structures. (a) Each applicant must evaluate the composite rotorcraft structure under the damage tolerance..., types, and sizes of damage, considering fatigue, environmental effects, intrinsic and discrete flaws...
Factors that affect the fatigue strength of power transmission shafting
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.
1984-01-01
A long standing objective in the design of power transmission shafting is to eliminate excess shaft material without compromising operational reliability. A shaft design method is presented which accounts for variable amplitude loading histories and their influence on limited life designs. The effects of combined bending and torsional loading are considered along with a number of application factors known to influence the fatigue strength of shafting materials. Among the factors examined are surface condition, size, stress concentration, residual stress and corrosion fatigue.
Fatigue criterion for the design of rotating shafts under combined stress
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.
1977-01-01
A revised approach to the design of transmission shafting which considers the flexure fatigue characteristics of the shaft material under combined cyclic bending and static torsion stress is presented. A fatigue failure relation, corroborated by published combined stress test data, is presented which shows an elliptical variation of reversed bending endurance strength with static torsional stress. From this elliptical failure relations, a design formula for computing the diameter of rotating solid shafts under the most common condition of loading is developed.
Transitional behaviour of thickness effects in shipbuilding materials (MS plate)
NASA Astrophysics Data System (ADS)
Mahmud, S. M. Ikhtiar; Razib, Amirul Hasan; Rahman, Md. Rabab Raiyatur
2017-12-01
Majority of the crack propagation in ships and offshore structures are caused due to fatigue. Previously, it was known that fatigue strength of notched specimen is dependent on size, but recently it came to light that fatigue strength of some welded joints depends on the thickness. Much investigation is done on the fatigue growth of welded joints. Fatigue often results in fracture accidents, which starts from the sites of structural discontinuities because of the reason that they may induce local stress concentrations. Structural discontinuities include notches, holes, sharp corners, and weld defects. Weld defects include undercut, porosity, lack of fusion, slag inclusion, incomplete weld root penetration, and misalignments. In order to investigate the effects of plate thickness on fatigue strength, semi-elliptical side notches (U and V shaped) in plates are studied in the present research. First consider a simple problem of crack emanating from notches in plates where the solution of stress intensity factor is given by an empirical formula so that the thickness effect on fatigue strength can easily be investigated for a variety of geometrical parameters. The present study aims to investigate the transitional behaviour of thickness effect in plates on fatigue strength. In order to calculate the stress, finite element analysis is carried by using ANSYS.
Multiaxial and thermomechanical fatigue considerations in damage tolerant design
NASA Technical Reports Server (NTRS)
Leese, G. E.; Bill, R. C.
1985-01-01
In considering damage tolerant design concepts for gas turbine hot section components, several challenging concerns arise: Complex multiaxial loading situations are encountered; Thermomechanical fatigue loading involving very wide temperature ranges is imposed on components; Some hot section materials are extremely anisotropic; and coatings and environmental interactions play an important role in crack propagation. The effects of multiaxiality and thermomechanical fatigue are considered from the standpoint of their impact on damage tolerant design concepts. Recently obtained research results as well as results from the open literature are examined and their implications for damage tolerant design are discussed. Three important needs required to advance analytical capabilities in support of damage tolerant design become readily apparent: (1) a theoretical basis to account for the effect of nonproportional loading (mechanical and mechanical/thermal); (2) the development of practical crack growth parameters that are applicable to thermomechanical fatigue situations; and (3) the development of crack growth models that address multiple crack failures.
Fatigue and fracture of three austenitic stainless steels at cryogenic temperatures
NASA Astrophysics Data System (ADS)
McRae, D. M.; Balachandran, S.; Walsh, R. P.
2017-12-01
For the past couple decades, 316LN stainless steel has remained the “go-to” alloy for structural components intended for cryogenic temperature service, partially because of its favorable mechanical properties, but also because of the data available in the literature for T = 4 K. In recent years, some interest has arisen to investigate and develop stronger and tougher alloys for cryogenic structural components, particularly for magnet systems like ITER. This study presents new 4 K fatigue crack growth rate (FCGR) and fracture toughness data for Nitronic® 50 and JK2LB stainless steels, compiles existing data for these alloys, and compares them with 316LN data found in literature. This study intends to further expand the existing cryogenic data set for these alloys, clarify key differences between them to better facilitate mechanical design, and potentially bolster further alloy development.
Static and fatigue testing of full-scale fuselage panels fabricated using a Therm-X(R) process
NASA Technical Reports Server (NTRS)
Dinicola, Albert J.; Kassapoglou, Christos; Chou, Jack C.
1992-01-01
Large, curved, integrally stiffened composite panels representative of an aircraft fuselage structure were fabricated using a Therm-X process, an alternative concept to conventional two-sided hard tooling and contour vacuum bagging. Panels subsequently were tested under pure shear loading in both static and fatigue regimes to assess the adequacy of the manufacturing process, the effectiveness of damage tolerant design features co-cured with the structure, and the accuracy of finite element and closed-form predictions of postbuckling capability and failure load. Test results indicated the process yielded panels of high quality and increased damage tolerance through suppression of common failure modes such as skin-stiffener separation and frame-stiffener corner failure. Finite element analyses generally produced good predictions of postbuckled shape, and a global-local modelling technique yielded failure load predictions that were within 7% of the experimental mean.
Quek, H C; Tan, Keson B; Nicholls, Jack I
2008-01-01
Biomechanical load-fatigue performance data on single-tooth implant systems with different implant-abutment interface designs is lacking in the literature. This study evaluated the load fatigue performance of 4 implant-abutment interface designs (Brånemark-CeraOne; 3i Osseotite-STA abutment; Replace Select-Easy abutment; and Lifecore Stage-1-COC abutment system). The number of load cycles to fatigue failure of 4 implant-abutment designs was tested with a custom rotational load fatigue machine. The effect of increasing and decreasing the tightening torque by 20% respectively on the load fatigue performance was also investigated. Three different tightening torque levels (recommended torque, -20% recommended torque, +20% recommended torque) were applied to the 4 implant systems. There were 12 test groups with 5 samples in each group. The rotational load fatigue machine subjected specimens to a sinusoidally applied 35 Ncm bending moment at a test frequency of 14 Hz. The number of cycles to failure was recorded. A cutoff of 5 x 10(6) cycles was applied as an upper limit. There were 2 implant failures and 1 abutment screw failure in the Brånemark group. Five abutment screw failures and 4 implant failures was recorded for the 3i system. The Replace Select system had 1 implant failure. Five cone screw failures were noted for the Lifecore system. Analysis of variance revealed no statistically significant difference in load cycles to failure for the 4 different implant-abutment systems torqued at recommended torque level. A statistically significant difference was found between the -20% torque group and the +20% torque group (P < .05) for the 3i system. Load fatigue performance and failure location is system specific and related to the design characteristics of the implant-abutment combination. It appeared that if the implant-abutment interface was maintained, load fatigue failure would occur at the weakest point of the implant. It is important to use the torque level recommended by the manufacturer.
NASA Technical Reports Server (NTRS)
Wright, M. Clara; Manuel, Michele; Wallace, Terryl; Newman, Andy; Brinson, Kate
2015-01-01
This DAA is for the Phase II webinar presentation of the ARMD-funded SMASH technology. A self-repairing aluminum-based composite system has been developed using liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal matrix composite was thermodynamically designed to have a matrix with a relatively even dispersion of low-melting phase, allowing for repair of cracks at a pre-determined temperature. Shape memory alloy wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to optimize and computer model the SMASH technology for aeronautical applications.
14 CFR 35.37 - Fatigue limits and evaluation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fatigue limits and evaluation. 35.37... AIRWORTHINESS STANDARDS: PROPELLERS Tests and Inspections § 35.37 Fatigue limits and evaluation. This section does not apply to fixed-pitch wood propellers of conventional design. (a) Fatigue limits must be...
Aircraft Structural Design Handbook for Lower Cost Maintenance and Repair
1977-03-01
Structure Repair and Maintenance program under Air Force contract F33615-74-C-3101, Project No. 1368, Task No. 136802. The work was performed by...Interchangeability 6.4.5.3 Work Area Consideration 6.5 Life Cycle Cost Impact Considerati ons 6.5.1 Introduction 6.5.2 Objective 6.5.3 Life Cycle Cost...engine sonic vibration, ^auses working of the vane assemblies and their inboard and outboard attach members resulting in fatigue cracks. The constant
Varni, James W; Limbers, Christine A; Bryant, William P; Wilson, Don P
2009-08-01
The Pediatric Quality of Life Inventory (PedsQL, Mapi Research Trust, Lyon, France; www.pedsql.org) is a modular instrument designed to measure health-related quality of life and disease-specific symptoms in children and adolescents. The PedsQL Multidimensional Fatigue Scale was designed as a child self-report and parent proxy-report generic symptom-specific instrument to measure fatigue in pediatric patients. The objective of the present study was to determine the feasibility, reliability, and validity of the PedsQL Multidimensional Fatigue Scale in type 1 diabetes. The 18-item PedsQL Multidimensional Fatigue Scale (General Fatigue, Sleep/Rest Fatigue, and Cognitive Fatigue domains) and the PedsQL 4.0 Generic Core Scales were administered to 83 pediatric patients with type 1 diabetes and 84 parents. The PedsQL Multidimensional Fatigue Scale evidenced minimal missing responses (0.3% child report and 0.3% parent report), achieved excellent reliability for the Total Fatigue Scale score (alpha= 0.92 child report, 0.94 parent report), distinguished between pediatric patients with diabetes and healthy children, and was significantly correlated with the PedsQL 4.0 Generic Core Scales supporting construct validity. Pediatric patients with diabetes experienced fatigue that was comparable to pediatric patients with cancer on treatment, demonstrating the relative severity of their fatigue symptoms. The results demonstrate the measurement properties of the PedsQL Multidimensional Fatigue Scale in type 1 diabetes. The findings suggest that the PedsQL Multidimensional Fatigue Scale may be utilized in the standardized evaluation of fatigue in pediatric patients with type 1 diabetes.
The Dopamine Imbalance Hypothesis of Fatigue in Multiple Sclerosis and Other Neurological Disorders
Dobryakova, Ekaterina; Genova, Helen M.; DeLuca, John; Wylie, Glenn R.
2015-01-01
Fatigue is one of the most pervasive symptoms of multiple sclerosis (MS), and has engendered hundreds of investigations on the topic. While there is a growing literature using various methods to study fatigue, a unified theory of fatigue in MS is yet to emerge. In the current review, we synthesize findings from neuroimaging, pharmacological, neuropsychological, and immunological studies of fatigue in MS, which point to a specific hypothesis of fatigue in MS: the dopamine imbalance hypothesis. The communication between the striatum and prefrontal cortex is reliant on dopamine, a modulatory neurotransmitter. Neuroimaging findings suggest that fatigue results from the disruption of communication between these regions. Supporting the dopamine imbalance hypothesis, structural and functional neuroimaging studies show abnormalities in the frontal and striatal regions that are heavily innervated by dopamine neurons. Further, dopaminergic psychostimulant medication has been shown to alleviate fatigue in individuals with traumatic brain injury, chronic fatigue syndrome, and in cancer patients, also indicating that dopamine might play an important role in fatigue perception. This paper reviews the structural and functional neuroimaging evidence as well as pharmacological studies that suggest that dopamine plays a critical role in the phenomenon of fatigue. We conclude with how specific aspects of the dopamine imbalance hypothesis can be tested in future research. PMID:25814977
Fatigue reliability of deck structures subjected to correlated crack growth
NASA Astrophysics Data System (ADS)
Feng, G. Q.; Garbatov, Y.; Guedes Soares, C.
2013-12-01
The objective of this work is to analyse fatigue reliability of deck structures subjected to correlated crack growth. The stress intensity factors of the correlated cracks are obtained by finite element analysis and based on which the geometry correction functions are derived. The Monte Carlo simulations are applied to predict the statistical descriptors of correlated cracks based on the Paris-Erdogan equation. A probabilistic model of crack growth as a function of time is used to analyse the fatigue reliability of deck structures accounting for the crack propagation correlation. A deck structure is modelled as a series system of stiffened panels, where a stiffened panel is regarded as a parallel system composed of plates and are longitudinal. It has been proven that the method developed here can be conveniently applied to perform the fatigue reliability assessment of structures subjected to correlated crack growth.
The Shock and Vibration Bulletin. Part 3: Structure Medium Interaction, Case Studies in Dynamics
NASA Technical Reports Server (NTRS)
1979-01-01
Structure and medium interactions topics are addressed. Topics include: a failure analysis of underground concrete structures subjected to blast loadings, an optimization design procedure for concrete slabs, and a discussion of the transient response of a cylindrical shell submerged in a fluid. Case studies in dynamics are presented which include an examination of a shock isolation platform for a seasparrow launcher, a discussion of hydrofoil fatigue load environments, and an investigation of the dynamic characteristics of turbine generators and low tuned foundations.
Transformation fatigue and stress relaxation of shape memory alloy wires
NASA Astrophysics Data System (ADS)
Pappas, P.; Bollas, D.; Parthenios, J.; Dracopoulos, V.; Galiotis, C.
2007-12-01
The present work deals with the stress generation capability of nickel-titanium shape memory alloys (SMAs) under constrained conditions for two well-defined loading modes: recurrent crystalline transformation (transformation fatigue) and a one-step continuous activation (generated stress relaxation). The data acquired will be very useful during the design process of an SMA Ni-Ti element as a functional part of an assembly. Differential scanning calorimetry (DSC) was employed in order to investigate the transformation characteristics of the alloy before and after the tests. Transformation fatigue tests revealed that the parameter that affects more the rate of the functional degradation is the number of crystalline transitions the wire undergoes. Thus, the service life limit of this material as a stress generator can be reduced to a few thousand working cycles. For stress relaxation, the main factor that affects the ability for stress generation is the working temperature: the higher the temperature above the austenite finish (TAf) limit the higher the relaxation effect. Thermomechanical treatment of the alloy during the tests reveals the 'hidden' transformation from the cubic structure (B2) of austenite to the rhombohedral structure of the R-phase. It is believed that the gradual loss of the stress generation capability of the material under constrained conditions must be associated to a gradual slipping relaxation mechanism. Scanning electron microscopy (SEM) observations on as-received, re-trained, fatigued and stress-relaxed specimens in the martensitic state provide further support for this hypothesis.
Vergence-accommodation conflicts hinder visual performance and cause visual fatigue.
Hoffman, David M; Girshick, Ahna R; Akeley, Kurt; Banks, Martin S
2008-03-28
Three-dimensional (3D) displays have become important for many applications including vision research, operation of remote devices, medical imaging, surgical training, scientific visualization, virtual prototyping, and more. In many of these applications, it is important for the graphic image to create a faithful impression of the 3D structure of the portrayed object or scene. Unfortunately, 3D displays often yield distortions in perceived 3D structure compared with the percepts of the real scenes the displays depict. A likely cause of such distortions is the fact that computer displays present images on one surface. Thus, focus cues-accommodation and blur in the retinal image-specify the depth of the display rather than the depths in the depicted scene. Additionally, the uncoupling of vergence and accommodation required by 3D displays frequently reduces one's ability to fuse the binocular stimulus and causes discomfort and fatigue for the viewer. We have developed a novel 3D display that presents focus cues that are correct or nearly correct for the depicted scene. We used this display to evaluate the influence of focus cues on perceptual distortions, fusion failures, and fatigue. We show that when focus cues are correct or nearly correct, (1) the time required to identify a stereoscopic stimulus is reduced, (2) stereoacuity in a time-limited task is increased, (3) distortions in perceived depth are reduced, and (4) viewer fatigue and discomfort are reduced. We discuss the implications of this work for vision research and the design and use of displays.
Fatigue in the Presence of Corrosion (Fatigue sous corrosion)
1999-03-01
Fatigue Crack Growth Propagation of Aluminum Lithium cycle managers to safely delay repairs to a more appropriate Alloys " described the effect of... effects of service corrosion on fatigue lab tests with 2024 -T3, because 7178 life , if any, can be established in this was not available. However, we did not... life and the fatigue crack growth behavior of the cases where a structural member is the 2024 alloy was studied as well. stressed or fatigued
A Chronic Fatigue Syndrome (CFS) severity score based on case designation criteria.
Baraniuk, James N; Adewuyi, Oluwatoyin; Merck, Samantha Jean; Ali, Mushtaq; Ravindran, Murugan K; Timbol, Christian R; Rayhan, Rakib; Zheng, Yin; Le, Uyenphuong; Esteitie, Rania; Petrie, Kristina N
2013-01-01
Chronic Fatigue Syndrome case designation criteria are scored as physicians' subjective, nominal interpretations of patient fatigue, pain (headaches, myalgia, arthralgia, sore throat and lymph nodes), cognitive dysfunction, sleep and exertional exhaustion. Subjects self-reported symptoms using an anchored ordinal scale of 0 (no symptom), 1 (trivial complaints), 2 (mild), 3 (moderate), and 4 (severe). Fatigue of 3 or 4 distinguished "Fatigued" from "Not Fatigued" subjects. The sum of the 8(Sum8) ancillary criteria was tested as a proxy for fatigue. All subjects had history and physical examinations to exclude medical fatigue, and ensure categorization as healthy or CFS subjects. Fatigued subjects were divided into CFS with ≥4 symptoms or Chronic Idiopathic Fatigue (CIF) with ≤3 symptoms. ROC of Sum8 for CFS and Not Fatigued subjects generated a threshold of 14 (specificity=0.934; sensitivity=0.928). CFS (n=256) and CIF (n=55) criteria were refined to include Sum8≥14 and ≤13, respectively. Not Fatigued subjects had highly skewed Sum8 responses. Healthy Controls (HC; n=269) were defined by fatigue≤2 and Sum8≤13. Those with Sum8≥14 were defined as CFS-Like With Insufficient Fatigue Syndrome (CFSLWIFS; n=20). Sum8 and Fatigue were highly correlated (R(2)=0.977; Cronbach's alpha=0.924) indicating an intimate relationship between symptom constructs. Cluster analysis suggested 4 clades each in CFS and HC. Translational utility was inferred from the clustering of proteomics from cerebrospinal fluid. Plotting Fatigue severity versus Sum8 produced an internally consistent classifying system. This is a necessary step for translating symptom profiles into fatigue phenotypes and their pathophysiological mechanisms.
Engineering Evaluation of International Low Impact Docking System Latch Hooks
NASA Technical Reports Server (NTRS)
Martinez, J.; Patin, R.; Figert, J.
2013-01-01
The international Low Impact Docking System (iLIDS) provides a structural arrangement that allows for visiting vehicles to dock with the International Space Station (ISS) (Fig 1). The iLIDS docking units are mechanically joined together by a series of active and passive latch hooks. In order to preserve docking capability at the existing Russian docking interfaces, the iLIDS latch hooks are required to conform to the existing Russian design. The latch hooks are classified as being fail-safe. Since the latch hooks are fail-safe, the hooks are not fracture critical and a fatigue based service life assessment will satisfy the structural integrity requirements. Constant amplitude fatigue testing to failure on four sets of active/passive iLIDS latch hooks was performed at load magnitudes of 10, 11, and 12 kips. Failure analysis of the hook fatigue failures identified multi-site fatigue initiation that was effectively centered about the hook mid-plane (consistent with the 3D model results). The fatigue crack initiation distribution implies that the fatigue damage accumulation effectively results in a very low aspect ratio surface crack (which can be simulated as thru-thickness crack). Fatigue damage progression resulted in numerous close proximity fatigue crack initiation sites. It was not possible to determine if fatigue crack coalescence occurs during cyclic loading or as result of the fast fracture response. The presence of multiple fatigue crack initiation sites on different planes will result in the formation of ratchet marks as the cracks coalesce. Once the stable fatigue crack becomes unstable and the fast fracture advances across the remaining ligament and the plane stress condition at a free-surface will result in failure along a 45 deg. shear plane (slant fracture) and the resulting inclined edge is called a shear lip. The hook thickness on the plane of fatigue crack initiation is 0.787". The distance between the shear lips on this plane was on the order of 0.48" and it was effectively centered about the mid-plane of the section. The numerous ratchet marks between the shear lips on the fracture initiation plane are indicative of multiple fatigue initiation sites within this region. The distribution of the fatigue damage about the centerline of the hook is consistent with the analytical results that demonstrate peak stress/strain response at the mid-plane that decreases in the direction of the hook outer surfaces. Scanning electron microscope images of the failed sections detected fatigue crack striations in close proximity to the free surface of the hook radius. These findings were documented at three locations on the fracture surface : 1) adjacent to the left shear lip, 2) adjacent to the right shear lip, and 3) near the centerline of the section. The features of the titanium fracture surface did not allow for a determination of a critical crack size via identification of the region where the fatigue crack propagation became unstable. The fracture based service life projections where benchmarked with strain-life analyses. The strainrange response in the hook radius was defined via the correlated finite element models and the modified method of universal slopes was incorporated to define the strain-life equation for the titanium alloy. The strain-life assessment confirmed that the fracture based projections were reasonable for the loading range of interest. Based upon the analysis and component level fatigue test data a preliminary service life capability for the iLIDS active and passive hooks of 2 lifetimes is projected (includes a scatter factor of 4).
Development of GENOA Progressive Failure Parallel Processing Software Systems
NASA Technical Reports Server (NTRS)
Abdi, Frank; Minnetyan, Levon
1999-01-01
A capability consisting of software development and experimental techniques has been developed and is described. The capability is integrated into GENOA-PFA to model polymer matrix composite (PMC) structures. The capability considers the physics and mechanics of composite materials and structure by integration of a hierarchical multilevel macro-scale (lamina, laminate, and structure) and micro scale (fiber, matrix, and interface) simulation analyses. The modeling involves (1) ply layering methodology utilizing FEM elements with through-the-thickness representation, (2) simulation of effects of material defects and conditions (e.g., voids, fiber waviness, and residual stress) on global static and cyclic fatigue strengths, (3) including material nonlinearities (by updating properties periodically) and geometrical nonlinearities (by Lagrangian updating), (4) simulating crack initiation. and growth to failure under static, cyclic, creep, and impact loads. (5) progressive fracture analysis to determine durability and damage tolerance. (6) identifying the percent contribution of various possible composite failure modes involved in critical damage events. and (7) determining sensitivities of failure modes to design parameters (e.g., fiber volume fraction, ply thickness, fiber orientation. and adhesive-bond thickness). GENOA-PFA progressive failure analysis is now ready for use to investigate the effects on structural responses to PMC material degradation from damage induced by static, cyclic (fatigue). creep, and impact loading in 2D/3D PMC structures subjected to hygrothermal environments. Its use will significantly facilitate targeting design parameter changes that will be most effective in reducing the probability of a given failure mode occurring.
Numerical analysis of modified Central Solenoid insert design
Khodak, Andrei; Martovetsky, Nicolai; Smirnov, Aleksandre; ...
2015-06-21
The United States ITER Project Office (USIPO) is responsible for fabrication of the Central Solenoid (CS) for ITER project. The ITER machine is currently under construction by seven parties in Cadarache, France. The CS Insert (CSI) project should provide a verification of the conductor performance in relevant conditions of temperature, field, currents and mechanical strain. The US IPO designed the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at JAEA, Naka. To validate the modified design we performed three-dimensional numerical simulations using coupled solver for simultaneous structural, thermal and electromagnetic analysis. Thermal and electromagneticmore » simulations supported structural calculations providing necessary loads and strains. According to current analysis design of the modified coil satisfies ITER magnet structural design criteria for the following conditions: (1) room temperature, no current, (2) temperature 4K, no current, (3) temperature 4K, current 60 kA direct charge, and (4) temperature 4K, current 60 kA reverse charge. Fatigue life assessment analysis is performed for the alternating conditions of: temperature 4K, no current, and temperature 4K, current 45 kA direct charge. Results of fatigue analysis show that parts of the coil assembly can be qualified for up to 1 million cycles. Distributions of the Current Sharing Temperature (TCS) in the superconductor were obtained from numerical results using parameterization of the critical surface in the form similar to that proposed for ITER. Lastly, special ADPL scripts were developed for ANSYS allowing one-dimensional representation of TCS along the cable, as well as three-dimensional fields of TCS in superconductor material. Published by Elsevier B.V.« less
Designing Fatigue Warning Systems: The perspective of professional drivers.
Meng, Fanxing; Li, Shuling; Cao, Lingzhi; Peng, Qijia; Li, Musen; Wang, Chunhui; Zhang, Wei
2016-03-01
Professional drivers have been characterized as experiencing heavy fatigue resulting from long driving time in their daily work. This study aimed to explore the potential demand of Fatigue Warning Systems (FWSs) among professional drivers as a means of reducing the danger of fatigue driving and to examine their opinions regarding the design of FWSs. Six focus groups with 35 participants and a questionnaire survey with 600 respondents were conducted among Chinese truck and taxi drivers to collect qualitative and quantitative data concerning the current situation of fatigue driving and opinions regarding the design of FWSs. The results revealed that both truck and taxi drivers had a positive attitude toward FWSs, and they hoped this system could not only monitor and warn them regarding their fatigue but also somewhat relieve their fatigue before they could stop and rest. As for warning signals, participants preferred auditory warnings, as opposed to visual, vibrotactile or electric stimuli. Interestingly, it was proposed that verbal warnings involving the information regarding consequences of fatigue driving or the wishes of drivers' family members would be more effective. Additionally, different warning patterns, including graded, single and continuous warnings, were discussed in the focus group. Finally, the participants proposed many other suggestions, as well as their concerns regarding FWSs, which will provide valuable information for companies who wish to develop FWSs for professional drivers. Copyright © 2015. Published by Elsevier Ltd.
Reliability aspects of a composite bolted scarf joint. [in wing skin splice
NASA Technical Reports Server (NTRS)
Reed, D. L.; Eisenmann, J. R.
1975-01-01
The design, fabrication, static test, and fatigue test of both tension and compression graphite-epoxy candidates for a wing splice representative of a next-generation transport aircraft was the objective of the reported research program. A single-scarf bolted joint was selected as the design concept. Test specimens were designed and fabricated to represent an upper-surface and a lower-surface panel containing the splice. The load spectrum was a flight-by-flight random-load history including ground-air-ground loads. The results of the fatigue testing indicate that, for this type of joint, the inherent fatigue resistance of the laminate is reflected in the joint behavior and, consequently, the rate of damage accumulation is very slow under realistic fatigue loadings.
Thermomechanical fatigue life prediction for several solders
NASA Astrophysics Data System (ADS)
Wen, Shengmin
Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for anisotropic small-scale (micron or nano scale) solder joints. More importantly, the theory is materials science based so that the parameters of the fatigue formula can be worked out by testing of bulk specimens while the formula can be applicable to small-scale structures. The theory suggests metallurgical control in the manufacturing process to optimize the fatigue life of solder structures.
2012-01-01
Background Postcancer fatigue is a frequently occurring, severe, and invalidating problem, impairing quality of life. Although it is possible to effectively treat postcancer fatigue with cognitive behaviour therapy, the nature of the underlying (neuro)physiology of postcancer fatigue remains unclear. Physiological aspects of fatigue include peripheral fatigue, originating in muscle or the neuromuscular junction; central fatigue, originating in nerves, spinal cord, and brain; and physical deconditioning, resulting from a decreased cardiopulmonary function. Studies on physiological aspects of postcancer fatigue mainly concentrate on deconditioning. Peripheral and central fatigue and brain morphology and function have been studied for patients with fatigue in the context of chronic fatigue syndrome and neuromuscular diseases and show several characteristic differences with healthy controls. Methods/design Fifty seven severely fatigued and 21 non-fatigued cancer survivors will be recruited from the Radboud University Nijmegen Medical Centre. Participants should have completed treatment of a malignant, solid tumour minimal one year earlier and should have no evidence of disease recurrence. Severely fatigued patients are randomly assigned to either the intervention condition (cognitive behaviour therapy) or the waiting list condition (start cognitive behaviour therapy after 6 months). All participants are assessed at baseline and the severely fatigued patients also after 6 months follow-up (at the end of cognitive behaviour therapy or waiting list). Primary outcome measures are fatigue severity, central and peripheral fatigue, brain morphology and function, and physical condition and activity. Discussion This study will be the first randomized controlled trial that characterizes (neuro)physiological factors of fatigue in disease-free cancer survivors and evaluates to which extent these factors can be influenced by cognitive behaviour therapy. The results of this study are not only essential for a theoretical understanding of this invalidating condition, but also for providing an objective biological marker for fatigue that could support the diagnosis and follow-up of treatment. Trial registration The study is registered at http://ClinicalTrials.gov (NCT01096641). PMID:22708881
Fatigue of concrete subjected to biaxial loading in the tension region
NASA Astrophysics Data System (ADS)
Subramaniam, Kolluru V. L.
Rigid airport pavement structures are subjected to repeated high-amplitude loads resulting from passing aircraft. The resulting stress-state in the concrete is a biaxial combination of compression and tension. It is of interest to model the response of plain concrete to such loading conditions and develop accurate fatigue-based material models for implementation in mechanistic pavement design procedures. The objective of this work is to characterize the quasi-static and low-cycle fatigue response of concrete subjected to biaxial stresses in the tensile-compression-tension (t-C-T) region, where the principal tensile stress is larger in magnitude than the principal compressive stress. An experimental investigation of material behavior in the biaxial t-C-T region is conducted. The experimental setup consists of the following test configurations: (a) notched concrete beams tested in three-point bend configuration, and (b) hollow concrete cylinders subjected to torsion with or without superimposed axial tensile force. The damage imparted to the material is examined using mechanical measurements and an independent nondestructive evaluation (NDE) technique based on vibration measurements. The failure of concrete in t-C-T region is shown to be a local phenomenon under quasi-static and fatigue loading, wherein the specimen fails owing to a single crack. The crack propagation is studied using the principles of fracture mechanics. It is shown that the crack propagation resulting from the t-C-T loading can be predicted using mode I fracture parameters. It is observed that crack growth in constant amplitude fatigue loading is a two-phase process: a deceleration phase followed by an acceleration stage. The quasi-static load envelope is shown to predict the crack length at fatigue failure. A fracture-based fatigue failure criterion is proposed, wherein the fatigue failure can be predicted using the critical mode I stress intensity factor. A material model for the damage evolution during fatigue loading of concrete in terms of crack propagation is proposed. The crack growth acceleration stage is shown to follow Paris law. The model parameters obtained from uniaxial fatigue tests are shown to be sufficient for predicting the considered biaxial fatigue response.
Vibration fatigue using modal decomposition
NASA Astrophysics Data System (ADS)
Mršnik, Matjaž; Slavič, Janko; Boltežar, Miha
2018-01-01
Vibration-fatigue analysis deals with the material fatigue of flexible structures operating close to natural frequencies. Based on the uniaxial stress response, calculated in the frequency domain, the high-cycle fatigue model using the S-N curve material data and the Palmgren-Miner hypothesis of damage accumulation is applied. The multiaxial criterion is used to obtain the equivalent uniaxial stress response followed by the spectral moment approach to the cycle-amplitude probability density estimation. The vibration-fatigue analysis relates the fatigue analysis in the frequency domain to the structural dynamics. However, once the stress response within a node is obtained, the physical model of the structure dictating that response is discarded and does not propagate through the fatigue-analysis procedure. The structural model can be used to evaluate how specific dynamic properties (e.g., damping, modal shapes) affect the damage intensity. A new approach based on modal decomposition is presented in this research that directly links the fatigue-damage intensity with the dynamic properties of the system. It thus offers a valuable insight into how different modes of vibration contribute to the total damage to the material. A numerical study was performed showing good agreement between results obtained using the newly presented approach with those obtained using the classical method, especially with regards to the distribution of damage intensity and critical point location. The presented approach also offers orders of magnitude faster calculation in comparison with the conventional procedure. Furthermore, it can be applied in a straightforward way to strain experimental modal analysis results, taking advantage of experimentally measured strains.
NASA Astrophysics Data System (ADS)
Yonekawa, M.; Ishii, T.; Ohmi, M.; Takada, F.; Hoshiya, T.; Niimi, M.; Ioka, I.; Miwa, Y.; Tsuji, H.
2002-12-01
In order to investigate effects of neutron irradiation on fatigue properties of nuclear materials, a remote-controlled high temperature fatigue test machine was developed at the hot laboratory of the Japan Materials Testing Reactor (JMTR) in the Japan Atomic Energy Research Institute (JAERI). A small-sized fatigue specimen having double blades to measure strain with a laser extensometer was designed for this machine. A strain amplitude in fatigue tests of a completely reversed push-pull type using a triangular wave was controlled with an accuracy of ±3% of the total strain range during test. Low cycle fatigue tests of type 304 stainless steel irradiated in JMTR at 823 K up to a fast neutron fluence of 1×10 25 n/m 2 ( E>1 MeV) were performed in total strain ranges of 0.7-1.4% at 823 K using the designed small-sized specimens.
Son, Mi Ju; Im, Hwi-Jin; Kim, Young-Eun; Ku, Boncho; Lee, Jun-Hwan; Son, Chang-Gue
2016-08-22
Many herbal medicines are traditionally used as anti-fatigue agents in east Asian countries; however, there is a dearth of clinical evidence supporting the anti-fatigue effects of such medicines and their mechanisms. This study is a feasibility trial to assess the clinical efficacy of Gongjin-dan (GJD) and verify its mechanisms by exploring fatigue outcomes, including endocrine and immunological biomarkers in humans. To investigate the anti-fatigue effects of GJD and the mechanism underlying these effects, a randomised, double-blind, placebo-controlled crossover clinical trial was designed. Participants (24 healthy male volunteers) will be hospitalised for 4 days (3 nights), during which acute fatigue and stress conditions will be induced by sleep deprivation, and GJD or a placebo will be administered (twice daily). The primary outcome will be changes in serum cortisol levels, measured in the morning, as an objective biomarker of sleep deprivation-induced fatigue and stress. The secondary outcomes will include: the Fatigue Severity Scale; the Brief Fatigue Inventory, and the Leeds Sleep Evaluation Questionnaire scores; levels of salivary cortisol, epinephrine, norepinephrine, oxidative stress-related biomarkers, homocysteine, and immunological factors; and heart rate variability. After a washout period of more than 4 weeks, a second treatment phase will commence in which participants who were previously administered the placebo will receive the drug and vice versa, following the same treatment regime as in the first phase. This study protocol provides a unique opportunity to enhance our understanding of fatigue and the effects of GJD on fatigue in terms of endocrine and immunological mechanisms by validating the study design and determining feasibility. Findings from this trial will help researchers to design a pilot or definitive clinical trial of traditional herbal medicine for chronic fatigue. Korean National Clinical Trial Registry CRIS; KCT0001681 , registered on 29 October 2015.
Fatigue Crack Growth Database for Damage Tolerance Analysis
NASA Technical Reports Server (NTRS)
Forman, R. G.; Shivakumar, V.; Cardinal, J. W.; Williams, L. C.; McKeighan, P. C.
2005-01-01
The objective of this project was to begin the process of developing a fatigue crack growth database (FCGD) of metallic materials for use in damage tolerance analysis of aircraft structure. For this initial effort, crack growth rate data in the NASGRO (Registered trademark) database, the United States Air Force Damage Tolerant Design Handbook, and other publicly available sources were examined and used to develop a database that characterizes crack growth behavior for specific applications (materials). The focus of this effort was on materials for general commercial aircraft applications, including large transport airplanes, small transport commuter airplanes, general aviation airplanes, and rotorcraft. The end products of this project are the FCGD software and this report. The specific goal of this effort was to present fatigue crack growth data in three usable formats: (1) NASGRO equation parameters, (2) Walker equation parameters, and (3) tabular data points. The development of this FCGD will begin the process of developing a consistent set of standard fatigue crack growth material properties. It is envisioned that the end product of the process will be a general repository for credible and well-documented fracture properties that may be used as a default standard in damage tolerance analyses.
Cano-Climent, Antoni; de Vries, Jolanda
2017-01-01
Background Fatigue is the most widely reported symptom by women during pregnancy, labour, the postpartum period, and early parenting. The objective was to translate the Fatigue Assessment Scale (FAS) into Spanish and assess its psychometric properties. Methods Instrumental Design. The FAS was translated into Spanish (FAS-e) using forward and back translation. A convenience sample was constituted with 870 postpartum women recruited at discharge from 17 public hospitals in Eastern Spain. Data was obtained from clinical records and self-administered questionnaires at discharge. Internal consistency, factor structure, comparisons between known groups and correlations with other variables were assessed. Results Cronbach’s alpha coefficient was .80. Findings on the dimensionality of the FAS-e scale indicated that it was sufficiently unidimensional. FAS-e scores were higher among women who had undergone caesarean births (p < .05), had a higher level of postpartum pain (p < .01), experienced difficulties during breastfeeding (p < .01) and had lower levels of self-efficacy for breastfeeding (p < .01). Conclusions An equivalent Spanish version of the FAS was obtained with good reliability and validity properties. FAS-e is an appropriate tool to measure postpartum fatigue. PMID:28970968
Fatigue Lifespan of Engine Box Influenced by Fan Blade Out
NASA Astrophysics Data System (ADS)
Qiu, Ju; Shi, Jingwei; Su, Huaizhong; Zhang, Jinling; Feng, Juan; Shi, Qian; Tian, Xiaoyu
2017-11-01
This provides precious experience and reliable reference data for future design. This paper introduces the analysis process of Fan-blade-out, and considers the effect of windmill load on the fatigue lifespan of the case. According to Extended Operations (ETOPS) in the airworthiness regulations, the fatigue crack of it is analyzed by the unbalanced rotor load, during FBO. Compared with the lifespan in normal work of the engine, this research provides valuable design experience and reliable reference data for the case design in the near future.
NASA Astrophysics Data System (ADS)
Zhou, Bing; Cui, Hao; Liu, Haibo; Li, Yang; Liu, Gaofeng; Li, Shujun; Zhang, Shangzhou
2018-03-01
The fatigue behavior of single-lap four-riveted aluminum alloy 7050 joints was investigated by using high-frequency fatigue test and scanning electron microscope (SEM). Stress distributions obtained by finite element (FE) analysis help explain the fatigue performance. The fatigue test results showed that the fatigue lives of the joints depend on cold expansion and applied cyclic loads. FE analysis and fractography indicated that the improved fatigue lives can be attributed to the reduction in maximum stress and evolution of fatigue damage at the critical location. The beneficial effects of strengthening techniques result in tearing ridges or lamellar structure on fracture surface, decrease in fatigue striations spacing, delay of fatigue crack initiation, crack deflection in fatigue crack propagation and plasticity-induced crack closure.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-01
... condition as: During ERJ 170 airplane full scale fatigue test, cracks were found in some structural... intervals, could prevent a timely detection of fatigue cracks. Undetected fatigue cracks in these areas... unsafe condition for the specified products. The MCAI states: During ERJ 170 airplane full scale fatigue...
A wireless fatigue monitoring system utilizing a bio-inspired tree ring data tracking technique.
Bai, Shi; Li, Xuan; Xie, Zhaohui; Zhou, Zhi; Ou, Jinping
2014-03-05
Fatigue, a hot scientific research topic for centuries, can trigger sudden failure of critical structures such as aircraft and railway systems, resulting in enormous casualties as well as economic losses. The fatigue life of certain structures is intrinsically random and few monitoring techniques are capable of tracking the full life-cycle fatigue damage. In this paper, a novel in-situ wireless real-time fatigue monitoring system using a bio-inspired tree ring data tracking technique is proposed. The general framework, methodology, and verification of this intelligent system are discussed in details. The rain-flow counting (RFC) method is adopted as the core algorithm which quantifies fatigue damages, and Digital Signal Processing (DSP) is introduced as the core module for data collection and analysis. Laboratory test results based on strain gauges and polyvinylidene fluoride (PVDF) sensors have shown that the developed intelligent system can provide a reliable quick feedback and early warning of fatigue failure. With the merits of low cost, high accuracy and great reliability, the developed wireless fatigue sensing system can be further applied to mechanical engineering, civil infrastructures, transportation systems, aerospace engineering, etc.
a Study on the Fretting Fatigue Life of Zircaloy Alloys
NASA Astrophysics Data System (ADS)
Kwon, Jae-Do; Park, Dae-Kyu; Woo, Seung-Wan; Chai, Young-Suck
Studies on the strength and fatigue life of machines and structures have been conducted in accordance with the development of modern industries. In particular, fine and repetitive cyclic damage occurring in contact regions has been known to have an impact on fretting fatigue fractures. The main component of zircaloy alloy is Zr, and it possesses good mechanical characteristics at high temperatures. This alloy is used in the fuel rod material of nuclear power plants because of its excellent resistance. In this paper, the effect of the fretting damage on the fatigue behavior of the zircaloy alloy is studied. Further, various types of mechanical tests such as tension and plain fatigue tests are performed. Fretting fatigue tests are performed with a flat-flat contact configuration using a bridge-type contact pad and plate-type specimen. Through these experiments, it is found that the fretting fatigue strength decreases by about 80% as compared to the plain fatigue strength. Oblique cracks are observed in the initial stage of the fretting fatigue, in which damaged areas are found. These results can be used as the basic data for the structural integrity evaluation of corrosion-resisting alloys considering the fretting damages.
Test results of a resonant integrated microbeam sensor (RIMS) for acoustic emission monitoring
NASA Astrophysics Data System (ADS)
Schoess, Jeffrey N.; Zook, J. David
1998-07-01
An acoustic emission (AE) sensor has been developed by Honeywell Technology Center for avionics, industrial control, and military applications. The AE sensor design is based on an integrated silicon microstructure, a resonant microbeam with micron-level feature size, and frequency sensitivity up to 500 kHz. The AE sensor has been demonstrated successfully in the laboratory test environment to sense and characterize a simulated AE even for structural fatigue crack monitoring applications. The technical design approach and laboratory test results are presented.
Probabilistic Composite Design
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1997-01-01
Probabilistic composite design is described in terms of a computational simulation. This simulation tracks probabilistically the composite design evolution from constituent materials, fabrication process, through composite mechanics and structural components. Comparisons with experimental data are provided to illustrate selection of probabilistic design allowables, test methods/specimen guidelines, and identification of in situ versus pristine strength, For example, results show that: in situ fiber tensile strength is 90% of its pristine strength; flat-wise long-tapered specimens are most suitable for setting ply tensile strength allowables: a composite radome can be designed with a reliability of 0.999999; and laminate fatigue exhibits wide-spread scatter at 90% cyclic-stress to static-strength ratios.
Design and evaluation of low cost blades for large wind driven generating systems
NASA Technical Reports Server (NTRS)
Eggert, W. S.
1982-01-01
The development and evaluation of a low cost blade concept based on the NASA-Lewis specifications is discussed. A blade structure was designed and construction methods and materials were selected. Complete blade tooling concepts, various technical and economic analysis, and evaluations of the blade design were performed. A comprehensive fatigue test program was conducted to provide data and to verify the design. A test specimen of the spar assembly, including the root end attachment, was fabricated. This is a full-scale specimen of the root end configuration, 20 ft long. A blade design for the Mod '0' system was completed.
A systems approach to solder joint fatigue in spacecraft electronic packaging
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1991-01-01
Differential expansion induced fatigue resulting from temperature cycling is a leading cause of solder joint failures in spacecraft. Achieving high reliability flight hardware requires that each element of the fatigue issue be addressed carefully. This includes defining the complete thermal-cycle environment to be experienced by the hardware, developing electronic packaging concepts that are consistent with the defined environments, and validating the completed designs with a thorough qualification and acceptance test program. This paper describes a useful systems approach to solder fatigue based principally on the fundamental log-strain versus log-cycles-to-failure behavior of fatigue. This fundamental behavior has been useful to integrate diverse ground test and flight operational thermal-cycle environments into a unified electronics design approach. Each element of the approach reflects both the mechanism physics that control solder fatigue, as well as the practical realities of the hardware build, test, delivery, and application cycle.
NASA Technical Reports Server (NTRS)
Mcquilkin, F. T.
1979-01-01
Eighteen design concepts for a LFC wing cover, using various SPF/DB approaches, were developed. After evaluation of producibility, compatibility with LFC requirements, structural efficiency and fatigue requirements, three candidates were selected for fabrication of demonstration panels. Included were both sandwich and stiffened semi-sandwich panels with slotted and perforated surfaces. Subsequent to the evaluation of the three demonstration panels, one concept was selected for fabrication of a 0.3 x 1.0 meter (12 x 42 inch) feasibility panel. It was a stiffened, semi-sandwich panel with a slotted surface, designed to meet the requirements of the upper wing cover at the maximum wing bending moment of the baseline configuration.
Titanium fasteners. [for aircraft industry
NASA Technical Reports Server (NTRS)
Phillips, J. L.
1972-01-01
Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.
Physical activity is Associated with Reduced Fatigue in Adults Living with HIV/AIDS
Perazzo, Joe; Decker, Michael; Horvat-Davey, Christine; Sattar, Abdus; Voss, Joachim
2016-01-01
Aims To describe the relationships among home-based physical activity, fatigue, sleep, gender and quality of life in people living with HIV/AIDS Background Fatigue is a common and distressing symptom among people living with HIV/AIDS. Few interventions exist that effectively reduce fatigue in this population. Physical activity has shown promise to reduce fatigue in other populations, but its impact on fatigue in HIV/AIDS has not yet been explored. Design This study was conducted using a prospective, descriptive cohort design. Methods Overall, 90 adults living with HIV/AIDS completed cross-sectional measures. Home-based physical activity was measured using a seven-day self-report diary. Fatigue was measured using the self-reported HIV-Related Fatigue Scale. Sleep was assessed using wrist actigraphy and quality of life was assessed using the HIV-Associated Quality of Life Scale. Data were collected from December 2012 – April 2013 and analyzed using correlations and multiple linear regression. Results The number of minutes of home-based physical activity was significantly associated with reduced fatigue among people living with HIV/AIDS. Additionally, increased fatigue was associated with decreased quality of life. No associations were found among fatigue, sleep or gender. Conclusions Our study demonstrates that physical activity in the home setting is an effective strategy to reduce fatigue among people living with HIV/AIDS. Future work developing and testing interventions to improve home-based physical activity in this population is needed. PMID:27485463
Rodríguez Testal, Juan F; Fuentes Márquez, Sandra; Senín Calderón, Cristina; Carrasco, Miguel A
2016-05-01
Clinical research stresses the importance of cognitive variables for predisposition, onset, and especially, perpetuation of perceived fatigue. The aim was to analyze the mediating effects of emotional symptomatology (somatic, depressive and anxiety) between anticipatory fatigue and perception of physical and cognitive fatigue. The sample was composed of 317 participants (29% from a clinical population) aged 18 to 76. Anticipatory fatigue and perception of fatigue were measured by fatigue scales. Emotional symptoms were assessed by the General Health Questionnaire, GHQ-28. Results : Depressive symptomatology mediated the relationship between anticipatory fatigue and cognitive fatigue in both groups, and also somatic symptoms/somatization in patients. The indirect effect of physical fatigue was observed only in the clinical group, with depressive symptoms partially mediating the anticipatory fatigue and cognitive fatigue relationship. Anticipatory fatigue has a partial indirect effect on total physical fatigue, and full indirect effect on cognitive fatigue, mediated by depressive and somatic symptoms. Anticipatory fatigue is a relevant cognitive factor in the design of psychological intervention for improvement of cognitive and physical fatigue.
Life extension of Structural Repairs – A statistical approach towards efficiency improvement
NASA Astrophysics Data System (ADS)
Deepashri, N. V.; Kalaiyappan, Mohan
2018-05-01
The life extension program of aircraft is taken up whenever aircraft’s intended life reaches close to its DSG (Design Service Goal). The Extended Service Goal (ESG) of an aircraft, in general, and structural repairs, in particular, is arrived at on the basis of F&DT (Fatigue & Damage Tolerance) analysis. Life extension program of aircraft consists of assessment of remaining life of all parts of the aircrafts including structural, mechanical, and electrical and avionics equipment and structural repairs. For life extension of stringer repair, as an example, it is required to re-assess the fatigue life of stringer in the presence of coupling under modified load spectrum. This is achieved by assessing the fatigue life of Web and Outer Flange (OF) part of stringers separately as per F&DT justification philosophy. Assessment of the fatigue life requires determination of stress concentration factor (Kt) for different combination of width, pitch, stringer thickness, coupling thickness and pad-up thickness of all stringer profiles available in different sections of fuselage. Determination of stress concentration factor for Web and Outer Flange of stringer profile covering entire ranges involves substantial number of Finite Element (FE) analysis. In order to optimise the number of FE runs, stress concentration factor is determined under worst repair factors combination (max. plate width; max. thickness; max. pitch; min. rivet dia.; and min. No. of rivets) resulting in conservative value. A parametric study of Web and Outer Flange data across stringer profiles were carried out and proven statistical techniques were used to find the optimal equation to predict stress concentration factor. This in turn reduced number of FE runs substantially for a given range of width, pitch, stringer thickness and so on. The use of optimal equation obtained through regression analysis is able to predict Kt within reasonable accuracy for a given range of inputs.
Cold work study on a 316LN modified alloy for the ITER TF coil conduit
Walsh, Robert; Toplosky, V. J.; McRae, D. M.; ...
2012-06-01
The primary structural component of the cable-in-conduit conductor (CICC) magnets, such as the ITER TF coils is the conduit. This function creates requirements for 4 K strength, toughness, fatigue crack resistance, and ductility after exposure to the superconductor's reaction heat treatment. The tensile ductility of a steel is a quality factor related to fatigue and fracture resistance that can be evaluated more economically with tensile tests rather than fatigue and fracture tests. We subject 316LN modified base metal and welds to a range of cold work from 0% to 20% and a subsequent Nb 3Sn reaction heat treatment to evaluatemore » the effects on the tensile properties. With the addition of cold work, the 4 K yield strength increases while tensile elongation decreases in both the base metal and weld. Our results are compared to previously published data on the same alloy to evaluate the use of tensile ductility parameters as a materials qualification specification in magnet design.« less
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh
2013-01-01
Structural materials used in engineering applications routinely subjected to repetitive mechanical loads in multiple directions under non-isothermal conditions. Over past few decades, several multiaxial fatigue life estimation models (stress- and strain-based) developed for isothermal conditions. Historically, numerous fatigue life prediction models also developed for thermomechanical fatigue (TMF) life prediction, predominantly for uniaxial mechanical loading conditions. Realistic structural components encounter multiaxial loads and non-isothermal loading conditions, which increase potential for interaction of damage modes. A need exists for mechanical testing and development verification of life prediction models under such conditions.
High strain FBG sensors for structural fatigue testing of military aircraft
NASA Astrophysics Data System (ADS)
Tejedor, S.; Kopczyk, J.; Nuyens, T.; Davis, C.
2012-02-01
This paper reports on a series of tests investigating the performance of Draw Tower Gratings (DTGs) combined with custom-designed broad area packaging and bonding techniques for high-strain sensing applications on Defence platforms. The sensors and packaging were subjected to a series of high-strain static and cyclic loading tests and a summary of these results is presented.
Fretting in aircraft turbine engines
NASA Technical Reports Server (NTRS)
Johnson, R. L.; Bill, R. C.
1974-01-01
The problem of fretting in aircraft turbine engines is discussed. Critical fretting can occur on fan, compressor, and turbine blade mountings, as well as on splines, rolling element bearing races, and secondary sealing elements of face type seals. Structural fatigue failures have been shown to occur at fretted areas on component parts. Methods used by designers to reduce the effects of fretting are given.
BWR Steam Dryer Alternating Stress Assessment Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morante, R. J.; Hambric, S. A.; Ziada, S.
2016-12-01
This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).
2015-05-01
fatigue an induced ultrasonic elastic vibration (via piezoelectric transducers [ PZTs ]) propagates through the dogbone specimen. A receiver PZT picks up...inspection of fatigue crack growth in aluminum 7075-T6 dogbone specimens. Acellent Technologies, Inc., is supporting this project through providing...January 2015. 15. SUBJECT TERMS structural health monitoring, probabilistics, fatigue damage, guided waves, Lamb waves 16. SECURITY CLASSIFICATION OF
In Situ Estimation of Applied Biaxial Loads with Lamb Waves (Preprint)
2012-07-01
be correct. IV. EXPERIMENTS AND RESULTS Fatigue tests were conducted for an array of six surface-bonded PZT transducers permanently attached to...because of their cumulative effects on the fatigue life of the structures. Waves propagating between array elements are directly affected by applied loads...their cumulative effects on the fatigue life of the structures. Waves propagating between array elements are directly affected by applied loads
The assessment of fatigue: Psychometric qualities and norms for the Checklist individual strength.
Worm-Smeitink, M; Gielissen, M; Bloot, L; van Laarhoven, H W M; van Engelen, B G M; van Riel, P; Bleijenberg, G; Nikolaus, S; Knoop, H
2017-07-01
The Checklist Individual Strength (CIS) measures four dimensions of fatigue: Fatigue severity, concentration problems, reduced motivation and activity. On the fatigue severity subscale, a cut-off score of 35 is used. This study 1) investigated the psychometric qualities of the CIS; 2) validated the cut-off score for severe fatigue and 3) provided norms. Representatives of the Dutch general population (n=2288) completed the CIS. The factor structure was investigated using an exploratory factor analysis. Internal consistency and test-retest reliability were determined. Concurrent validity was assessed in two additional samples by correlating the CIS with other fatigue scales (Chalder Fatigue Questionnaire, MOS Short form-36 Vitality subscale, EORTC QLQ-C30 fatigue subscale). To validate the fatigue severity cut-off score, a Receiver Operating Characteristics analysis was performed with patients referred to a chronic fatigue treatment centre (n=5243) and a healthy group (n=1906). Norm scores for CIS subscales were calculated for the general population, patients with chronic fatigue syndrome (CFS; n=1407) and eight groups with other medical conditions (n=1411). The original four-factor structure of the CIS was replicated. Internal consistency (α=0.84-0.95) and test-retest reliability (r=0.74-0.86) of the subscales were high. Correlations with other fatigue scales were moderate to high. The 35 points cut-off score for severe fatigue is appropriate, but, given the 17% false positive rate, should be adjusted to 40 for research in CFS. The CIS is a valid and reliable tool for the assessment of fatigue, with a validated cut-off score for severe fatigue that can be used in clinical practice. Copyright © 2017. Published by Elsevier Inc.
On the role of the amygdala for experiencing fatigue in patients with multiple sclerosis.
Hanken, Katrin; Francis, Yoselin; Kastrup, Andreas; Eling, Paul; Klein, Jan; Hildebrandt, Helmut
2018-02-01
Recently, we proposed a model explaining the origin of fatigue in multiple sclerosis (MS) patients. This model assumes that the feeling of fatigue results from inflammation-induced information processing within interoceptive brain areas. To investigate the association between self-reported cognitive fatigue and structural integrity of interoceptive brain areas in MS patients. 95 MS patients and 28 healthy controls participated in this study. All participants underwent diffusion tensor MRI and fractional anisotropy data were calculated for the amygdala, the stria terminalis and the corpus callosum, a non-interoceptive brain area. Based on the cognitive fatigue score of the Fatigue Scale for Motor and Cognition, patients were divided into moderately cognitively fatigued (cognitive fatigue score ≥ 28) and cognitively non-fatigued (cognitive fatigue score < 28) MS patients. Healthy controls were recruited as a third group. Repeated measures analyses of covariance, controlling for age, depression and brain atrophy, were performed to investigate whether the factor Group had a significant effect on the fractional anisotropy data. A significant effect of Group was observed for the amygdala (F = 3.389, p = 0.037). MS patients without cognitive fatigue presented lower values of the amygdala than MS patients with cognitive fatigue and healthy controls. For the stria terminalis and the corpus callosum, no main effect of Group was observed. The structural integrity of the amygdala in non-fatigued MS patients appears to be reduced. According to our model this might indicate that the absence of fatigue in non-fatigued MS patients might result from disturbed inflammation-induced information processing in the amygdala. Copyright © 2017 Elsevier B.V. All rights reserved.
Abdul Rahman, Hanif; Abdul-Mumin, Khadizah; Naing, Lin
2017-09-01
Psychosocial factors, musculoskeletal disorders and work-related fatigue have adverse effects on individual nurses and place a substantial financial burden on health care. Evidence of an association has been reported in the literature, but no theoretical explanation has been published to date. To explore and develop a structural model to provide a theoretical explanation for this relationship. A cross-sectional study using data from 201 valid samples of emergency and critical care nurses across public hospitals in Brunei was performed via self-administered questionnaire. The structural equation model was assessed using partial least squares analysis. A valid and robust structural model was constructed. This revealed that 61.5% of the variance in chronic fatigue could be explained by psychosocial factors and musculoskeletal disorders pathways. Among the psychosocial factors, work-family conflict was identified as a key mediator for progression of musculoskeletal problems and subsequent fatigue through stress and burnout. This report provides a novel theoretical contribution to understanding the relationship between psychosocial factors, musculoskeletal disorders and work-related fatigue. These preliminary results may be useful for future studies on the development of work-related fatigue and musculoskeletal disorders, particularly the central role of work-family conflict. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fatigue and post-fatigue performance of Fabry-Perot FOS installed on CFRP-strengthened RC-beams
NASA Astrophysics Data System (ADS)
Gheorghiu, Catalin; Labossiere, Pierre; Proulx, Jean
2004-07-01
There is a growing need for built-in monitoring systems for civil engineering infrastructures, due to problems such as increasing traffic loads and rising costs of maintenance and repair. Fibre optic sensors (FOS), capable of reading various parameters are promising candidates for life-long health monitoring of these structures. However, since FOS have only been introduced recently into the field of structural monitoring, their acceptance and widespread implementation will be conditioned by their durability under severe climatic and loading conditions. This paper reports on the performance of strain extrinsic FOS attached to carbon fibre reinforced polymer (CFRP) plates used to strengthen concrete structures. The specimens tested in this project are reinforced concrete (RC) beams with an additional external CFRP reinforcement. The FOS-instrumented beams were first subjected to fatigue loading for various numbers of cycles and load amplitudes. Then, they were tested monotonically to failure under four-point-bending. The test results provide an insight on the fatigue and post-fatigue behaviour of FOS used for monitoring reinforced concrete structures.
Active sensing of fatigue damage using embedded ultrasonics
NASA Astrophysics Data System (ADS)
Zagrai, Andrei; Kruse, Walter A.; Gigineishvili, Vlasi
2009-03-01
Embedded ultrasonics has demonstrated considerable utility in structural health monitoring of aeronautical vehicle. This active sensing approach has been widely used to detect and monitor cracks, delaminations, and disbonds in a broad spectrum of metallic and composite structures. However, application of the embedded ultrasonics for active sensing of incipient damage before fracture has received limited attention. The aim of this study was to investigate the suitability of embedded ultrasonics and nonlinear acoustic signatures for monitoring pre-crack fatigue damage in aerospace structural material. A harmonic load was applied to structural specimens in order to induce fatigue damage accumulation and growth. Specimens of simple geometry were considered and piezoelectric active sensors were employed for generation and reception of elastic waves. The elastic wave signatures were analyzed in the frequency domain using nonlinear impedance and nonlinear resonance methods. A relationship between fatigue severity and linear as well as nonlinear acoustic signatures was investigated and considered in the damage classification procedure. Practical aspects of the active sensing of the fatigue damage before fracture were discussed and prospective avenues for future research were suggested.
Surface Irregularity Factor as a Parameter to Evaluate the Fatigue Damage State of CFRP
Zuluaga-Ramírez, Pablo; Frövel, Malte; Belenguer, Tomás; Salazar, Félix
2015-01-01
This work presents an optical non-contact technique to evaluate the fatigue damage state of CFRP structures measuring the irregularity factor of the surface. This factor includes information about surface topology and can be measured easily on field, by techniques such as optical perfilometers. The surface irregularity factor has been correlated with stiffness degradation, which is a well-accepted parameter for the evaluation of the fatigue damage state of composite materials. Constant amplitude fatigue loads (CAL) and realistic variable amplitude loads (VAL), representative of real in- flight conditions, have been applied to “dog bone” shaped tensile specimens. It has been shown that the measurement of the surface irregularity parameters can be applied to evaluate the damage state of a structure, and that it is independent of the type of fatigue load that has caused the damage. As a result, this measurement technique is applicable for a wide range of inspections of composite material structures, from pressurized tanks with constant amplitude loads, to variable amplitude loaded aeronautical structures such as wings and empennages, up to automotive and other industrial applications. PMID:28793655
Wang, Zhi-Yu; Wang, Qing-Yuan; Liu, Yong-Jie
2015-01-01
Corrugated steel web with inherent high out-of-plane stiffness has a promising application in configuring large span highway bridge girders. Due to the irregularity of the configuration details, the local stress concentration poses a major fatigue problem for the welded flange plates of high strength low alloy structural steels. In this work, the methods of applying CFRP laminate and shot peening onto the surfaces of the tension flanges were employed with the purpose of improving the fatigue strength of such configuration details. The effectiveness of this method in the improvement of fatigue strength has been examined experimentally. Test results show that the shot peening significantly increases hardness and roughness in contrast to these without treatment. Also, it has beneficial effects on the fatigue strength enhancement when compared against the test data of the joints with CFRP strengthening. The stiffness degradation during the loading progress is compared with each treatment. Incorporating the stress acting on the constituent parts of the CFRP laminates, a discussion is made regarding the mechanism of the retrofit and related influencing factors such as corrosion and economic cost. This work could enhance the understanding of the CFRP and shot peening in repairing such welded details and shed light on the reinforcement design of welded joints between corrugated steel webs and flange plates. PMID:28793509
Lin, Xiao-Hong; Teng, Sha; Wang, Lu; Zhang, Jing; Shang, Ya-Bin; Liu, Hong-Xia; Zang, Yun-Jin
2017-01-01
Objectives Fatigue is a highly prevalent symptom experienced by patients who underwent the liver transplantation. However, the influencing factors of fatigue are poorly understood by healthcare professionals. The aim of this study was to examine the intensity, interference, duration and prevalence of fatigue in liver transplantation recipients and to explore the influencing factors of post-transplantation fatigue. Design A cross-sectional design was used in this study. Methods A convenience sample of liver transplant recipients was recruited at an outpatient transplant clinic of a general hospital in Beijing, China. Self-report survey data were provided by liver transplant recipients using the Fatigue Symptom Inventory (FSI), the Hospital Anxiety and Depression Scale (HADS), the Perceived Social Support Scale (PSSS) and the Athens Insomnia Scale (AIS). Demographic, clinical and psychosocial parameters were evaluated as fatigue influencing factors. Results Participants (n=285) included 69 women and 216 men. Fatigue was found in 87.0% of liver transplant recipients. Mean scores of fatigue intensity items were 4.47±2.85, 1.93±1.97, 3.15±2.13 and 2.73±2.42 (most fatigue, least fatigue, average fatigue in the week prior to assessment and fatigue at the point of assessment). The mean score of fatigue interference was 2.27±2.09.The number of days fatigued in the week prior to assessment was 2.26±2.02 and the amount of time fatigued each day was 2.75±2.44. Spearman's correlation analysis showed that fatigue intensity was positively associated with anxiety, depression and insomnia (p<0.001 for all), while fatigue interference was positively associated with gender, anxiety, depression and insomnia (p<0.05 for all). In the multiple linear regression analysis, anxiety and insomnia were positively associated with fatigue intensity (p<0.001), and insomnia, depression and anxiety were positively associated with fatigue interference (p<0.001). Conclusions Fatigue is common in liver transplant recipients, and it is strongly associated with insomnia, anxiety and depression. PMID:28235963
Fatigue in older adults with stable heart failure.
Stephen, Sharon A
2008-01-01
The purpose of this study was to describe fatigue and the relationships among fatigue intensity, self-reported functional status, and quality of life in older adults with stable heart failure. A descriptive, correlational design was used to collect quantitative data with reliable and valid instruments. Fifty-three eligible volunteers completed a questionnaire during an interview. Those with recent changes in their medical regimen, other fatigue-inducing illnesses, and isolated diastolic dysfunction were excluded. Fatigue intensity (Profile of Mood States fatigue subscale) was associated with lower quality of life, perceived health, and satisfaction with life. Fatigue was common, and no relationship was found between fatigue intensity and self-reported functional status. Marital status was the only independent predictor of fatigue. In stable heart failure, fatigue is a persistent symptom. Clinicians need to ask patients about fatigue and assess the impact on quality of life. Self-reported functional status cannot serve as a proxy measure for fatigue.
NASA Astrophysics Data System (ADS)
Sun, Xiao; Dai, Qingli; Bilgen, Onur
2018-05-01
A Macro-Fiber Composite (MFC) based active serrated microflap is designed in this research for wind turbine blades. Its fatigue load reduction potential is evaluated in normal operating conditions. The force and displacement output of the MFC-based actuator are simulated using a bimorph beam model. The work done by the aerodynamic, centripetal and gravitational forces acting on the microflap were calculated to determine the required capacity of the MFC-based actuator. MFC-based actuators with a lever mechanical linkage are designed to achieve the required force and displacement to activate the microflap. A feedback control scheme is designed to control the microflap during operation. Through an aerodynamic-aeroelastic time marching simulation with the designed control scheme, the time responses of the wind turbine blades are obtained. The fatigue analysis shows that the serrated microflap can reduce the standard deviation of the blade root flapwise bending moment and the fatigue damage equivalent loads.
Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin; Minguet, Pierre J.
2001-01-01
A methodology is presented for determining the fatigue life of composite structures based on fatigue characterization data and geometric nonlinear finite element (FE) analyses. To demonstrate the approach, predicted results were compared to fatigue tests performed on specimens which represented a tapered composite flange bonded onto a composite skin. In a first step, tension tests were performed to evaluate the debonding mechanisms between the flange and the skin. In a second step, a 2D FE model was developed to analyze the tests. To predict matrix cracking onset, the relationship between the tension load and the maximum principal stresses transverse to the fiber direction was determined through FE analysis. Transverse tension fatigue life data were used to -enerate an onset fatigue life P-N curve for matrix cracking. The resulting prediction was in good agreement with data from the fatigue tests. In a third step, a fracture mechanics approach based on FE analysis was used to determine the relationship between the tension load and the critical energy release rate. Mixed mode energy release rate fatigue life data were used to create a fatigue life onset G-N curve for delamination. The resulting prediction was in good agreement with data from the fatigue tests. Further, the prediction curve for cumulative life to failure was generated from the previous onset fatigue life curves. The results showed that the methodology offers a significant potential to Predict cumulative fatigue life of composite structures.
Nonlinear ultrasonic fatigue crack detection using a single piezoelectric transducer
NASA Astrophysics Data System (ADS)
An, Yun-Kyu; Lee, Dong Jun
2016-04-01
This paper proposes a new nonlinear ultrasonic technique for fatigue crack detection using a single piezoelectric transducer (PZT). The proposed technique identifies a fatigue crack using linear (α) and nonlinear (β) parameters obtained from only a single PZT mounted on a target structure. Based on the different physical characteristics of α and β, a fatigue crack-induced feature is able to be effectively isolated from the inherent nonlinearity of a target structure and data acquisition system. The proposed technique requires much simpler test setup and less processing costs than the existing nonlinear ultrasonic techniques, but fast and powerful. To validate the proposed technique, a real fatigue crack is created in an aluminum plate, and then false positive and negative tests are carried out under varying temperature conditions. The experimental results reveal that the fatigue crack is successfully detected, and no positive false alarm is indicated.
NASA Astrophysics Data System (ADS)
Lim, Yee Yan; Kiong Soh, Chee
2011-12-01
Structures in service are often subjected to fatigue loads. Cracks would develop and lead to failure if left unnoticed after a large number of cyclic loadings. Monitoring the process of fatigue crack propagation as well as estimating the remaining useful life of a structure is thus essential to prevent catastrophe while minimizing earlier-than-required replacement. The advent of smart materials such as piezo-impedance transducers (lead zirconate titanate, PZT) has ushered in a new era of structural health monitoring (SHM) based on non-destructive evaluation (NDE). This paper presents a series of investigative studies to evaluate the feasibility of fatigue crack monitoring and estimation of remaining useful life using the electromechanical impedance (EMI) technique employing a PZT transducer. Experimental tests were conducted to study the ability of the EMI technique in monitoring fatigue crack in 1D lab-sized aluminum beams. The experimental results prove that the EMI technique is very sensitive to fatigue crack propagation. A proof-of-concept semi-analytical damage model for fatigue life estimation has been developed by incorporating the linear elastic fracture mechanics (LEFM) theory into the finite element (FE) model. The prediction of the model matches closely with the experiment, suggesting the possibility of replacing costly experiments in future.
Structural fatigue in the 34-meter HA-Dec antennas
NASA Technical Reports Server (NTRS)
Vanhek, R. A.; Saldua, B. P.
1990-01-01
Structural modifications to the 34-m hour-angle-declination antennas, coupled with the use of the antennas beyond their intended lifespans, have led to structural fatigue, as evidenced by damage to the declination drive gear and cracks on the structural members and gussets. An analysis and simulation were made of the main antenna structural members. The analysis showed that the total stress to the antenna structure substantially exceeds the maximum levels recommended by the American Institute of Steel Construction (AISC). Although each of the separate static conditions of stress is only 50 percent of the total stress and does not reach the AISC reduced yield limit, fatigue can and did occur, causing the material to crack in the weakest places.
A Chronic Fatigue Syndrome (CFS) severity score based on case designation criteria
Baraniuk, James N; Adewuyi, Oluwatoyin; Merck, Samantha Jean; Ali, Mushtaq; Ravindran, Murugan K; Timbol, Christian R; Rayhan, Rakib; Zheng, Yin; Le, Uyenphuong; Esteitie, Rania; Petrie, Kristina N
2013-01-01
Background: Chronic Fatigue Syndrome case designation criteria are scored as physicians’ subjective, nominal interpretations of patient fatigue, pain (headaches, myalgia, arthralgia, sore throat and lymph nodes), cognitive dysfunction, sleep and exertional exhaustion. Methods: Subjects self-reported symptoms using an anchored ordinal scale of 0 (no symptom), 1 (trivial complaints), 2 (mild), 3 (moderate), and 4 (severe). Fatigue of 3 or 4 distinguished “Fatigued” from “Not Fatigued” subjects. The sum of the 8(Sum8) ancillary criteria was tested as a proxy for fatigue. All subjects had history and physical examinations to exclude medical fatigue, and ensure categorization as healthy or CFS subjects. Results: Fatigued subjects were divided into CFS with ≥4 symptoms or Chronic Idiopathic Fatigue (CIF) with ≤3 symptoms. ROC of Sum8 for CFS and Not Fatigued subjects generated a threshold of 14 (specificity=0.934; sensitivity=0.928). CFS (n=256) and CIF (n=55) criteria were refined to include Sum8≥14 and ≤13, respectively. Not Fatigued subjects had highly skewed Sum8 responses. Healthy Controls (HC; n=269) were defined by fatigue≤2 and Sum8≤13. Those with Sum8≥14 were defined as CFS–Like With Insufficient Fatigue Syndrome (CFSLWIFS; n=20). Sum8 and Fatigue were highly correlated (R2=0.977; Cronbach’s alpha=0.924) indicating an intimate relationship between symptom constructs. Cluster analysis suggested 4 clades each in CFS and HC. Translational utility was inferred from the clustering of proteomics from cerebrospinal fluid. Conclusions: Plotting Fatigue severity versus Sum8 produced an internally consistent classifying system. This is a necessary step for translating symptom profiles into fatigue phenotypes and their pathophysiological mechanisms. PMID:23390566
Fatigue risks in the connections of sign support structures.
DOT National Transportation Integrated Search
2013-05-01
This research effort develops a reliability-based approach for prescribing inspection intervals for mast-arm sign support : structures corresponding to user-specified levels of fatigue-induced fracture risk. The resulting level of risk for a : partic...
Akbar, Nadine; Turpin, Karen; Petrin, Julie; Smyth, Penny; Finlayson, Marcia
2018-06-01
Fatigue management interventions for individuals with multiple sclerosis (MS) often feature structured programmes requiring repeated, in-person attendance that is not possible for all individuals. We sought to determine whether MS INFoRm, a self-directed fatigue management resource for individuals with MS, was worth further, more rigorous evaluation. Our indicators of worthiness were actual use of the resource by participants over 3 months, reductions in fatigue impact and increases in self-efficacy, and participant reports of changes in fatigue management knowledge and behaviours. This was a single-group, mixed-methods, before-after pilot study in individuals with MS reporting mild to moderate fatigue. Thirty-five participants were provided with MS INFoRm by a USB flash drive to use at home for 3 months, on their own volition. Twenty-three participants completed all standardized questionnaires, semi-structured interviews and study process measures. Participants reported actively using MS INFoRm over the 3-month study period (median total time spent using MS INFoRm=315 min) as well as significantly lower overall fatigue impact (Modified Fatigue Impact Scale: t=2.6, P=0.01), increased knowledge of MS fatigue (z=-2.8, P=0.01) and greater confidence in managing MS fatigue (z=-3.3, P=0.001). Individuals with significant reductions in fatigue impact also reported behavioural changes including tracking fatigue, better communication with others, greater awareness, improved quality of life and being more proactive. This study provides evidence that further rigorous evaluation of MS INFoRm, a self-directed resource for managing fatigue, is worth pursuing.
Development of a Composite Delamination Fatigue Life Prediction Methodology
NASA Technical Reports Server (NTRS)
OBrien, Thomas K.
2009-01-01
Delamination is one of the most significant and unique failure modes in composite structures. Because of a lack of understanding of the consequences of delamination and the inability to predict delamination onset and growth, many composite parts are unnecessarily rejected upon inspection, both immediately after manufacture and while in service. NASA Langley is leading the efforts in the U.S. to develop a fatigue life prediction methodology for composite delamination using fracture mechanics. Research being performed to this end will be reviewed. Emphasis will be placed on the development of test standards for delamination characterization, incorporation of approaches for modeling delamination in commercial finite element codes, and efforts to mature the technology for use in design handbooks and certification documents.
Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism.
Gludovatz, Bernd; Demetriou, Marios D; Floyd, Michael; Hohenwarter, Anton; Johnson, William L; Ritchie, Robert O
2013-11-12
Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack of microstructure in monolithic glasses, often coupled with other factors, such as the ease of crack formation in shear bands or a high susceptibility to corrosion, can lead to low fatigue limits (some ~1/20 of their tensile strengths) and highly variable fatigue lives. BMG-matrix composites can provide a solution here as their duplex microstructures can arrest shear bands at a second phase to prevent cracks from exceeding critical size; under these conditions, fatigue limits become comparable with those of crystalline alloys. Here, we report on a Pd-based glass that similarly has high fatigue resistance but without a second phase. This monolithic glass displays high intrinsic toughness from extensive shear-band proliferation with cavitation and cracking effectively obstructed. We find that this property can further promote fatigue resistance through extrinsic crack-tip shielding, a mechanism well known in crystalline metals but not previously reported in BMGs, whereby cyclically loaded cracks propagate in a highly "zig-zag" manner, creating a rough "staircase-like" profile. The resulting crack-surface contact (roughness-induced crack closure) elevates fatigue properties to those comparable to crystalline alloys, and the accompanying plasticity helps to reduce flaw sensitivity in the glass, thereby promoting structural reliability.
Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism
Gludovatz, Bernd; Demetriou, Marios D.; Floyd, Michael; Hohenwarter, Anton; Johnson, William L.; Ritchie, Robert O.
2013-01-01
Bulk-metallic glasses (BMGs) are now candidate materials for structural applications due to their exceptional strength and toughness. However, their fatigue resistance can be poor and inconsistent, severely limiting their potential as reliable structural materials. As fatigue limits are invariably governed by the local arrest of microscopically small cracks at microstructural features, the lack of microstructure in monolithic glasses, often coupled with other factors, such as the ease of crack formation in shear bands or a high susceptibility to corrosion, can lead to low fatigue limits (some ∼1/20 of their tensile strengths) and highly variable fatigue lives. BMG-matrix composites can provide a solution here as their duplex microstructures can arrest shear bands at a second phase to prevent cracks from exceeding critical size; under these conditions, fatigue limits become comparable with those of crystalline alloys. Here, we report on a Pd-based glass that similarly has high fatigue resistance but without a second phase. This monolithic glass displays high intrinsic toughness from extensive shear-band proliferation with cavitation and cracking effectively obstructed. We find that this property can further promote fatigue resistance through extrinsic crack-tip shielding, a mechanism well known in crystalline metals but not previously reported in BMGs, whereby cyclically loaded cracks propagate in a highly “zig-zag” manner, creating a rough “staircase-like” profile. The resulting crack-surface contact (roughness-induced crack closure) elevates fatigue properties to those comparable to crystalline alloys, and the accompanying plasticity helps to reduce flaw sensitivity in the glass, thereby promoting structural reliability. PMID:24167284
NASA Astrophysics Data System (ADS)
Pollak, Randall D.
Today, aerospace engineers still grapple with the qualitative and quantitative understanding of fatigue behavior in the design and testing of turbine-driven jet engines. The Department of Defense has taken a very active role in addressing this problem with the formation of the National High Cycle Fatigue Science & Technology Program in 1994. The primary goal of this program is to further the understanding of high cycle fatigue (HCF) behavior and develop methods in order to mitigate the negative impact of HCF on aerospace operations. This research supports this program by addressing the fatigue strength testing guidance currently provided by the DoD to engine manufacturers, with the primary goal to investigate current methods and recommend a test strategy to characterize the fatigue strength of a material at a specified number of cycles, such as the 109 design goal specified by MIL-HDBK-1783B, or range of cycles. The research utilized the benefits of numerical simulation to initially investigate the staircase method for use in fatigue strength testing. The staircase method is a commonly used fatigue strength test, but its ability to characterize fatigue strength variability is extremely suspect. A modified staircase approach was developed and shown to significantly reduce bias and scatter in estimates for fatigue strength variance. Experimental validation of this proposed test strategy was accomplished using a dual-phase Ti-6Al-4V alloy. The HCF behavior of a second material with a very different microstructure (beta annealed Ti-6Al-4V) was also investigated. The random fatigue limit (RFL) model, a recently developed analysis tool, was investigated to characterize stress-life behavior but found to have difficulty representing fatigue life curves with sharp transitions. Two alternative models (bilinear and hyperbolic) were developed based on maximum likelihood methods to better characterize the Ti-6Al-4V fatigue life behavior. These models provided a good fit to the experimental data for the dual-phase Ti-6Al-4V and were applied to the beta annealed variant in order to estimate stress-life behavior using a small-sample approach. Based on this research, designers should be better able to make reliable estimates of fatigue strength parameters using small-sample testing.
Crack Growth Behavior in the Threshold Region for High Cycle Fatigue Loading
NASA Technical Reports Server (NTRS)
Forman, Royce G.; Figert, J.; Beek, J.; Ventura, J.; Martinez, J.; Samonski, F.
2011-01-01
This presentation describes results obtained from a research project conducted at the NASA Johnson Space Center (JSC) that was jointly supported by the FAA Technical Center and JSC. The JSC effort was part of a multi-task FAA program involving several U.S. laboratories and initiated for the purpose of developing enhanced analysis tools to assess damage tolerance of rotorcraft and aircraft propeller systems. The research results to be covered in this presentation include a new understanding of the behavior of fatigue crack growth in the threshold region. This behavior is important for structural life analysis of aircraft propeller systems and certain rotorcraft structural components (e.g., the mast). These components are often designed to not allow fatigue crack propagation to exceed an experimentally determined fatigue crack growth threshold value. During the FAA review meetings for the program, disagreements occurred between the researchers regarding the observed fanning (spread between the da/dN curves of constant R) in the threshold region at low stress ratios, R. Some participants believed that the fanning was a result of the ASTM load shedding test method for threshold testing, and thus did not represent the true characteristics of the material. If the fanning portion of the threshold value is deleted or not included in a life analysis, a significant penalty in the calculated life and design of the component would occur. The crack growth threshold behavior was previously studied and reported by several research investigators in the time period: 1970-1980. Those investigators used electron microscopes to view the crack morphology of the fatigue fracture surfaces. Their results showed that just before reaching threshold, the crack morphology often changed from a striated to a faceted or cleavage-like morphology. This change was reported to have been caused by particular dislocation properties of the material. Based on the results of these early investigations, a program was initiated at JSC to repeat these examinations on a number of aircraft structural alloys that were currently being tested for obtaining fatigue crack growth properties. These new scanning electron microscope (SEM) examinations of the fatigue fracture faces confirmed the change in crack morphology in the threshold crack tip region. In addition, SEM examinations were further performed in the threshold crack-tip region before breaking the specimens open (not done in the earlier published studies). In these examinations, extensive crack forking and even 90-degree crack bifurcations were found to have occurred in the final threshold crack-tip region. The forking and bifurcations caused numerous closure points to occur that prevented full crack closure in the threshold region, and thus were the cause of the fanning at low-R values. Therefore, we have shown that the fanning behavior was caused by intrinsic dislocation properties of the different alloy materials and were not the result of a plastic wake that remains from the load-shedding test phase. Also, to accommodate the use of da/dN data which includes fanning at low R-values, an updated fanning factor term has been developed and will be implemented into the NASGRO fatigue crack growth software. The term can be set to zero if it is desired that the fanning behavior is not be modeled for particular cases, such as when fanning is not a result of the intrinsic properties of a material.
Crack detection and fatigue related delamination in FRP composites applied to concrete
NASA Astrophysics Data System (ADS)
Brown, Jeff; Baker, Rebecca; Kallemeyn, Lisa; Zendler, Andrew
2008-03-01
Reinforced concrete beams are designed to allow minor concrete cracking in the tension zone. The severity of cracking in a beam element is a good indicator of how well a structure is performing and whether or not repairs are needed to prevent structural failure. FRP composites are commonly used to increase the flexural and shear capacity of RC beam elements, but one potential disadvantage of this method is that strengthened surfaces are no longer visible and cracks or delaminations that result from excessive loading or fatigue may go undetected. This research investigated thermal imaging techniques for detecting load induced cracking in the concrete substrate and delamination of FRP strengthening systems applied to reinforced concrete (RC). One small-scale RC beam (5 in. x 6 in. x 60 in.) was strengthened with FRP and loaded to failure monotonically. An infrared thermography inspection was performed after failure. A second strengthened beam was loaded cyclically for 1,750,000 cycles to investigate how fatigue might affect substrate cracking and delamination growth throughout the service-life of a repaired element. No changes were observed in the FRP bond during/after the cyclic loading. The thermal imaging component of this research included pixel normalization to enhance detectability and characterization of this specific type of damage.
Structured Cable for High-Current Coils of Tokamaks
NASA Astrophysics Data System (ADS)
Benson, Christopher; McIntyre, Peter; Sattarov, Akhdiyor; Mann, Thomas
2011-10-01
The 45 kA superconducting cable for the ITER central solenoid coil has yielded questionable results in two recent tests. In both cases the cable Tc increased after cycling only a fraction of the design life, indicating degradation due to fatigue and fracture among the superconducting strands. The Accelerator Research Lab at Texas A&M University is developing a design for a Nb3Sn structured cable suitable for such tokamak coils. The superconductor is configured in 6 sub-cables, and each subcable is supported within a channel of a central support structure within a high-strength armor sheath. The structured cable addresses two issues that are thought to compromise opposition at high current. The strands are supported without cross-overs (which produce stress concentration); and armor sheath and core structure bypass stress through the coil and among subcables so that the stress within each subcable is only what is produced directly upon it. Details of the design and plans for development will be presented.
DOT National Transportation Integrated Search
2014-10-01
Distortion-induced fatigue is a serious problem across the national bridge inventory, : affecting many steel bridges designed before the mid-1980s. Because distortion-induced : fatigue tends to develop in bridge connection details, near transverse el...
A Statistical Simulation Approach to Safe Life Fatigue Analysis of Redundant Metallic Components
NASA Technical Reports Server (NTRS)
Matthews, William T.; Neal, Donald M.
1997-01-01
This paper introduces a dual active load path fail-safe fatigue design concept analyzed by Monte Carlo simulation. The concept utilizes the inherent fatigue life differences between selected pairs of components for an active dual path system, enhanced by a stress level bias in one component. The design is applied to a baseline design; a safe life fatigue problem studied in an American Helicopter Society (AHS) round robin. The dual active path design is compared with a two-element standby fail-safe system and the baseline design for life at specified reliability levels and weight. The sensitivity of life estimates for both the baseline and fail-safe designs was examined by considering normal and Weibull distribution laws and coefficient of variation levels. Results showed that the biased dual path system lifetimes, for both the first element failure and residual life, were much greater than for standby systems. The sensitivity of the residual life-weight relationship was not excessive at reliability levels up to R = 0.9999 and the weight penalty was small. The sensitivity of life estimates increases dramatically at higher reliability levels.
NASA Astrophysics Data System (ADS)
Beaumont, Peter W. R.
2014-02-01
Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a "fracture safe design" is immense. For example, when human life depends upon structural integrity as an essential design requirement, it takes ten thousand material test coupons per composite laminate configuration to evaluate an airframe plus loading to ultimate failure tails, wing boxes, and fuselages to achieve a commercial aircraft airworthiness certification. Fitness considerations for long-life implementation of aerospace composites include understanding phenomena such as impact, fatigue, creep, and stress corrosion cracking that affect reliability, life expectancy, and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined. Furthermore, SI takes into account service duty. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk.
NASA Astrophysics Data System (ADS)
Montesano, John
The use of polymer matrix composites (PMC) for manufacturing primary load-bearing structural components has significantly increased in many industrial applications. Specifically in the aerospace industry, PMCs are also being considered for elevated temperature applications. Current aerospace-grade composite components subjected to fatigue loading are over-designed due to insufficient understanding of the material failure processes, and due to the lack of available generic fatigue prediction models. A comprehensive literature survey reveals that there are few fatigue studies conducted on woven and braided fabric reinforced PMC materials, and even fewer at elevated temperatures. It is therefore the objective of this study to characterize and subsequently model the elevated temperature fatigue behaviour of a triaxial braided PMC, and to investigate the elevated temperature fatigue properties of two additional woven PMCs. An extensive experimental program is conducted using a unique test protocol on the braided and woven composites, which consists of static and fatigue testing at various test temperatures. The development of mechanically-induced damage is monitored using a combination of non-destructive techniques which included infrared thermography, fiber optic sensors and edge replication. The observed microscopic damage development is quantified and correlated to the exhibited macroscopic material behaviour at all test temperatures. The fiber-dominated PMC materials considered in this study did not exhibit notable time- or temperature-dependent static properties. However, fatigue tests reveal that the local damage development is in fact notably influenced by temperature. The elevated temperature environment increases the toughness of the thermosetting polymers, which results in consistently slower fatigue crack propagation rates for the respective composite materials. This has a direct impact on the stiffness degradation rate and the fatigue lives for the braided and woven composites under investigation. The developed analytical fatigue damage prediction model, which is based on actual observed damage mechanisms, accurately predicted the development of damage and the corresponding stiffness degradation for the braided PMC, for all test temperatures. An excellent correlation was found between the experimental and the predicted results to within a 2% accuracy. The prediction model adequately captured the local temperature-induced phenomenon exhibited by the braided PMC material. The results presented in this study are novel for a braided composite material subjected to elevated temperature fatigue.
A Review on Strengthening Steel Beams Using FRP under Fatigue
Jumaat, Mohd Zamin; Ramli Sulong, N. H.
2014-01-01
In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems. PMID:25243221
Application of ultrasonic signature analysis for fatigue detection in complex structures
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.
1974-01-01
Ultrasonic signature analysis shows promise of being a singularly well-suited method for detecting fatigue in structures as complex as aircraft. The method employs instrumentation centered about a Fourier analyzer system, which features analog-to-digital conversion, digital data processing, and digital display of cross-correlation functions and cross-spectra. These features are essential to the analysis of ultrasonic signatures according to the procedure described here. In order to establish the feasibility of the method, the initial experiments were confined to simple plates with simulated and fatigue-induced defects respectively. In the first test the signature proved sensitive to the size of a small hole drilled into the plate. In the second test, performed on a series of fatigue-loaded plates, the signature proved capable of indicating both the initial appearance and subsequent growth of a fatigue crack. In view of these encouraging results it is concluded that the method has reached a sufficiently advanced stage of development to warrant application to small-scale structures or even actual aircraft.
A review on strengthening steel beams using FRP under fatigue.
Kamruzzaman, Mohamed; Jumaat, Mohd Zamin; Sulong, N H Ramli; Islam, A B M Saiful
2014-01-01
In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems.
Automated wind load characterization of wind turbine structures by embedded model updating
NASA Astrophysics Data System (ADS)
Swartz, R. Andrew; Zimmerman, Andrew T.; Lynch, Jerome P.
2010-04-01
The continued development of renewable energy resources is for the nation to limit its carbon footprint and to enjoy independence in energy production. Key to that effort are reliable generators of renewable energy sources that are economically competitive with legacy sources. In the area of wind energy, a major contributor to the cost of implementation is large uncertainty regarding the condition of wind turbines in the field due to lack of information about loading, dynamic response, and fatigue life of the structure expended. Under favorable circumstances, this uncertainty leads to overly conservative designs and maintenance schedules. Under unfavorable circumstances, it leads to inadequate maintenance schedules, damage to electrical systems, or even structural failure. Low-cost wireless sensors can provide more certainty for stakeholders by measuring the dynamic response of the structure to loading, estimating the fatigue state of the structure, and extracting loading information from the structural response without the need of an upwind instrumentation tower. This study presents a method for using wireless sensor networks to estimate the spectral properties of a wind turbine tower loading based on its measured response and some rudimentary knowledge of its structure. Structural parameters are estimated via model-updating in the frequency domain to produce an identification of the system. The updated structural model and the measured output spectra are then used to estimate the input spectra. Laboratory results are presented indicating accurate load characterization.
Tired, weak, or in need of rest: fatigue among general practice attenders.
David, A; Pelosi, A; McDonald, E; Stephens, D; Ledger, D; Rathbone, R; Mann, A
1990-01-01
OBJECTIVES--To determine the prevalence and associations of symptoms of fatigue. DESIGN--Questionnaire survey. SETTING--London general practice. PARTICIPANTS--611 General practice attenders. MAIN OUTCOME MEASURES--Scores on a fatigue questionnaire and reasons given for fatigue. RESULTS--10.2% Of men (17/167) and 10.6% of women (47/444) had substantial fatigue for one month or more. Age, occupation, and marital status exerted minor effects. Subjects attributed fatigue equally to physical and non-physical causes. Physical ill health, including viral infection, was associated with more severe fatigue. Women rather than men blamed family responsibilities for their fatigue. The profile of persistent fatigue did not differ from that of short duration. Only one person met criteria for the chronic fatigue syndrome. CONCLUSIONS--Fatigue is a common complaint among general practice attenders and can be severe. Patients may attribute this to physical, psychological, and social stress. PMID:2261560
Failure and fatigue characteristics of adhesive athletic tape.
Bragg, Richard W; Macmahon, John M; Overom, Erin K; Yerby, Scott A; Matheson, Gordon O; Carter, Dennis R; Andriacchi, Thomas P
2002-03-01
Athletic tape has been commonly reported to lose much of its structural support after 20 min of exercise. Although many studies have addressed the functional performance characteristics of athletic tape, its mechanical properties are poorly understood. This study examines the failure and fatigue properties of several commonly used athletic tapes. A Web-based survey of professional sports trainers was used to select the following three tapes for the study: Zonas (Johnson & Johnson), Leukotape (Beiersdorf), and Jaylastic (Jaybird & Mais). Using a hydraulic material testing system (MTS), eight samples of each tape were compared in three different mechanical tests: load-to-failure, fatigue testing under load control, and fatigue testing under displacement control. Differences in tape microstructure were used to interpret the results of the mechanical tests. Significant differences (P < 0.001) in failure load, elongation at failure, and stiffness were found from failure tests. Significant differences were also found (P < 0.001) in fatigue behavior under both modes of control. As a representative example, in one normalized displacement control fatigue test after 20 min of cycling, 21% (Zonas), 29% (Leukotape), and 57% (Jaylastic) of the mechanical support was lost. After cycling, all tapes loaded to failure showed increased stiffness (P < 0.001), indicating significant energy absorption during cycling. Observed differences in the tapes' microstructure were qualitatively consistent with the measured differences in their mechanical properties. In understanding the shortcomings of currently available tapes, the results of these tests can now be used as benchmarks with which to compare and develop future tape designs. Ultimately, these improved tapes should reduce ankle injuries among athletes.
Fatigue models for applied research in warfighting.
Hursh, Steven R; Redmond, Daniel P; Johnson, Michael L; Thorne, David R; Belenky, Gregory; Balkin, Thomas J; Storm, William F; Miller, James C; Eddy, Douglas R
2004-03-01
The U.S. Department of Defense (DOD) has long pursued applied research concerning fatigue in sustained and continuous military operations. In 1996, Hursh developed a simple homeostatic fatigue model and programmed the model into an actigraph to give a continuous indication of performance. Based on this initial work, the Army conducted a study of 1 wk of restricted sleep in 66 subjects with multiple measures of performance, termed the Sleep Dose-Response Study (SDR). This study provided numerical estimation of parameters for the Walter Reed Army Institute of Research Sleep Performance Model (SPM) and elucidated the relationships among several sleep-related performance measures. Concurrently, Hursh extended the original actigraph modeling structure and software expressions for use in other practical applications. The model became known as the Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE) Model, and Hursh has applied it in the construction of a Fatigue Avoidance Scheduling Tool. This software is designed to help optimize the operational management of aviation ground and flight crews, but is not limited to that application. This paper describes the working fatigue model as it is being developed by the DOD laboratories, using the conceptual framework, vernacular, and notation of the SAFTE Model. At specific points where the SPM may differ from SAFTE, this is discussed. Extensions of the SAFTE Model to incorporate dynamic phase adjustment for both transmeridian relocation and shift work are described. The unexpected persistence of performance effects following chronic sleep restriction found in the SDR study necessitated some revisions of the SAFTE Model that are also described. The paper concludes with a discussion of several important modeling issues that remain to be addressed.
Kim, Yeon Hee; Kim, Sung Reul; Kim, Yeo Ok; Kim, Ji Young; Kim, Hyun Kyung; Kim, Hye Young
2017-04-01
To test a hypothetical path model evaluating the influence of type D personality on job stress and job satisfaction and to identify the mediating effects of compassion fatigue, burnout, and compassion satisfaction among clinical nurses in South Korea. Personalities susceptible to stress, compassion fatigue, and burnout in clinical nurses have negative effects on the job stress and job satisfaction. A correlational, cross-sectional design was used. A convenience sample of 875 clinical nurses was recruited between December 2014 - February 2015. The structured questionnaires included the Type D personality scale-14, Professional Quality of Life, job stress, job satisfaction, and general characteristics. To test the hypothetical path model, we performed a path analysis by using the AMOS 18·0 program. Based on the path model, type D personality was significantly associated with compassion fatigue, burnout, and compassion satisfaction in our study subjects. Type D personality was significantly associated with job stress and job satisfaction via the effect of burnout, compassion satisfaction, and job stress. Since type D personality is associated with job stress and job satisfaction, identifying personalities vulnerable to stress would help to address job stress and to enhance job satisfaction when nurses have a high level of compassion fatigue and burnout and a low level of compassion satisfaction. The development of interventions that can reduce negative affect and social inhibition of nurses with type D personality and investigation of methods to decrease their compassion fatigue and burnout and to increase compassion satisfaction should be encouraged. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lee, Young-Joo; Shin, Hae-A.-Seul; Nam, Dae-Hyun; Yeon, Han-Wool; Nam, Boae; Woo, Kyoohee; Joo, Young-Chang
2015-01-01
The mechanical fatigue of Cu films and lines on flexible substrates was investigated, and an improvement in the structures through the use of a MoTi alloy under-layer was proposed. Fatigue reliability was decreased by 3-fold in lines compared with films in the tensile condition and by 6-fold in the compressive condition. Crack formation was observed to be more detrimental for lines than for films. With a MoTi under-layer, the fatigue limit was increased by 2 times that of a structure without MoTi in the tensile condition and by 15 times in the compressive bending condition. The suppression of delamination through the use of a MoTi under-layer improved the fatigue reliability under compressive bending.
Statistical complex fatigue data for SAE 4340 steel and its use in design by reliability
NASA Technical Reports Server (NTRS)
Kececioglu, D.; Smith, J. L.
1970-01-01
A brief description of the complex fatigue machines used in the test program is presented. The data generated from these machines are given and discussed. Two methods of obtaining strength distributions from the data are also discussed. Then follows a discussion of the construction of statistical fatigue diagrams and their use in designing by reliability. Finally, some of the problems encountered in the test equipment and a corrective modification are presented.
Holtzer, Roee; Foley, Frederick; D'Orio, Vanessa; Spat, Jessica; Shuman, Melissa; Wang, Cuiling
2013-10-01
Compromised learning and cognitive fatigue are critical clinical features in multiple sclerosis. This study was designed to determine the effect of repeated exposures within and across study visits on performance measures of learning and cognitive fatigue in relapsing-remitting multiple sclerosis (RRMS). Thirty patients with RRMS and 30 controls were recruited. Using a burst measurement design (i.e. repeated assessments within and across study visits) the oral version of the Symbol Digit Modalities Test (SDMT) was administered three times during the baseline and two consecutive monthly follow-up visits for a total of nine test administrations. Learning was assessed within and across study visits whereas cognitive fatigue was assessed during the course of each test administration that was divided into three 30-second intervals. Linear mixed-effect models revealed compromised learning within (95% CI: 2.6355 to 3.9867) and across (95% CI: 1.3250 to 3.1861) visits and worse cognitive fatigue (95% CI: -2.1761 to -0.1720) in patients with RRMS compared with controls. Among patients with RRMS, worse self-rated cognitive dysfunction predicted poor learning within (95% CI: -0.1112 to -0.0020) and across (95% CI: -0.0724 to -0.0106) visits. Burst design is optimal to study learning and cognitive fatigue. This methodology, using the SDMT or other time-efficient tests as outcome measures, can be successfully implemented in longitudinal studies and clinical trials.
Finite element analysis on the bending condition of truck frame before and after opening
NASA Astrophysics Data System (ADS)
Cai, Kaiwu; Cheng, Wei; Lu, Jifu
2018-05-01
Based on the design parameters of a truck frame, the structure design and model of the truck frame are built. Based on the finite element theory, the load, the type of fatigue and the material parameters of the frame are combined with the semi-trailer. Using finite element analysis software, after a truck frame hole in bending condition for the finite element analysis of comparison, through the analysis found that the truck frame hole under bending condition can meet the strength requirements are very helpful for improving the design of the truck frame.
Cold Pressor Pain Sensitivity in Twins Discordant for Chronic Fatigue Syndrome
Ullrich, Phil; Afari, Niloofar; Jacobsen, Clemma; Goldberg, Jack; Buchwald, Dedra
2010-01-01
Objective Individuals with chronic fatigue syndrome (CFS) experience many pain symptoms. The present study examined whether pain and fatigue ratings and pain threshold and tolerance levels for cold pain differed between twins with CFS and their cotwins without CFS. Design Cotwin control design to assess cold pain sensitivity, pain, and fatigue in monozygotic twins discordant for CFS. Patients and Setting Fifteen twin pairs discordant for CFS recruited from the volunteer Chronic Fatigue Twin Registry at the University of Washington. Results Although cold pain threshold and tolerance levels were slightly lower in twins with CFS than their cotwins without CFS, these differences failed to reach statistical significance. Subjective ratings of pain and fatigue at multiple time points during the experimental protocol among twins with CFS were significantly higher than ratings of pain (p = 0.003) and fatigue (p < 0.001) by their cotwins without CFS. Conclusions These results, while preliminary, highlight the perceptual and cognitive components to the pain experience in CFS. Future studies should focus on examining the heritability of pain sensitivity and the underlying mechanisms involved in the perception of pain sensitivity in CFS. PMID:17371408
Zargarian, A; Esfahanian, M; Kadkhodapour, J; Ziaei-Rad, S
2016-03-01
In this paper, the effects of cell geometry and relative density on the high-cycle fatigue behavior of Titanium scaffolds produced by selective laser melting and electron beam melting techniques were numerically investigated by finite element analysis. The regular titanium lattice samples with three different unit cell geometries, namely, diamond, rhombic dodecahedron and truncated cuboctahedron, and the relative density range of 0.1-0.3 were analyzed under uniaxial cyclic compressive loading. A failure event based algorithm was employed to simulate fatigue failure in the cellular material. Stress-life approach was used to model fatigue failure of both bulk (struts) and cellular material. The predicted fatigue life and the damage pattern of all three structures were found to be in good agreement with the experimental fatigue investigations published in the literature. The results also showed that the relationship between fatigue strength and cycles to failure obeyed the power law. The coefficient of power function was shown to depend on relative density, geometry and fatigue properties of the bulk material while the exponent was only dependent on the fatigue behavior of the bulk material. The results also indicated the failure surface at an angle of 45° to the loading direction. Copyright © 2015 Elsevier B.V. All rights reserved.
Analysis of Widespread Fatigue Damage in Aerospace Structures
1999-02-01
Fatigue in 2024 - T351 Aluminum Alloy ," Wear, 221(1), pp 24-36 (1998). 20. T.N. Farris, M.P. Szolwinski and G...Fretting Fatigue in 2024 - T351 Aluminum Alloy ," Wear, 221(1), pp 24-36 (1998). Hsing-Ling Wang1, and Alten F. Grandt, Jr.2 FATIGUE ANALYSIS OF MULTIPLE...34 Effect of Prior Corrosion on the S/N Fatigue Performance of Aluminum Sheet Alloys 2024 -T3 and 2524-T3, Effects of the
14 CFR 29.571 - Fatigue evaluation of structure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation... fatigue, considering the effects of environment, intrinsic/discrete flaws, or accidental damage will be avoided. Parts to be evaluated include, but are not limited to, rotors, rotor drive systems between the...
14 CFR 29.571 - Fatigue evaluation of structure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Fatigue Evaluation... fatigue, considering the effects of environment, intrinsic/discrete flaws, or accidental damage will be avoided. Parts to be evaluated include, but are not limited to, rotors, rotor drive systems between the...
Multidimensional Predictors of Fatigue among Octogenarians and Centenarians
Cho, Jinmyoung; Martin, Peter; Margrett, Jennifer; MacDonald, Maurice; Johnson, Mary Ann; Poon, Leonard W.
2012-01-01
Background Fatigue is a common and frequently observed complaint among older adults. However, knowledge about the nature and correlates of fatigue in old age is very limited. Objective: This study examined the relationship of functional indicators, psychological and situational factors and fatigue for 210 octogenarians and centenarians from the Georgia Centenarian Study. Methods Three indicators of functional capacity (self-rated health, instrumental activities of daily living, physical activities of daily living), two indicators of psychological well-being (positive and negative affect), two indicators of situational factors (social network and social support), and a multidimensional fatigue scale were used. Blocked multiple regression analyses were computed to examine significant factors related to fatigue. In addition, multi-group analysis in structural equation modeling was used to investigate residential differences (i.e., long-term care facilities vs. private homes) in the relationship between significant factors and fatigue. Results Blocked multiple regression analyses indicated that two indicators of functional capacity, self-rated health and instrumental activities of daily living, both positive and negative affect, and social support were significant predictors of fatigue among oldest-old adults. The multiple group analysis in structural equation modeling revealed a significant difference among oldest-old adults based on residential status. Conclusion The results suggest that we should not consider fatigue as merely an unpleasant physical symptom, but rather adopt a perspective that different factors such as psychosocial aspects can influence fatigue in advanced later life. PMID:22094445
Multidimensional predictors of fatigue among octogenarians and centenarians.
Cho, Jinmyoung; Martin, Peter; Margrett, Jennifer; MacDonald, Maurice; Johnson, Mary Ann; Poon, Leonard W; Jazwinski, S M; Green, R C; Gearing, M; Woodard, J L; Tenover, J S; Siegler, I C; Rott, C; Rodgers, W L; Hausman, D; Arnold, J; Davey, A
2012-01-01
Fatigue is a common and frequently observed complaint among older adults. However, knowledge about the nature and correlates of fatigue in old age is very limited. This study examined the relationship of functional indicators, psychological and situational factors and fatigue for 210 octogenarians and centenarians from the Georgia Centenarian Study. Three indicators of functional capacity (self-rated health, instrumental activities of daily living, physical activities of daily living), two indicators of psychological well-being (positive and negative affect), two indicators of situational factors (social network and social support), and a multidimensional fatigue scale were used. Blocked multiple regression analyses were computed to examine significant factors related to fatigue. In addition, multi-group analysis in structural equation modeling was used to investigate residential differences (i.e., long-term care facilities vs. private homes) in the relationship between significant factors and fatigue. Blocked multiple regression analyses indicated that two indicators of functional capacity, self-rated health and instrumental activities of daily living, both positive and negative affect, and social support were significant predictors of fatigue among oldest-old adults. The multiple group analysis in structural equation modeling revealed a significant difference among oldest-old adults based on residential status. The results suggest that we should not consider fatigue as merely an unpleasant physical symptom, but rather adopt a perspective that different factors such as psychosocial aspects can influence fatigue in advanced later life. Copyright © 2011 S. Karger AG, Basel.
Valero, Sergi; Sáez-Francàs, Naia; Calvo, Natalia; Alegre, José; Casas, Miquel
2013-10-01
Previous studies have reported consistent associations between Neuroticism, maladaptive perfectionism and depression with severity of fatigue in Chronic Fatigue Syndrome (CFS). Depression has been considered a mediator factor between maladaptive perfectionism and fatigue severity, but no studies have explored the role of neuroticism in a comparable theoretical framework. This study aims to examine for the first time, the role of neuroticism, maladaptive perfectionism and depression on the severity of CFS, analyzing several explanation models. A sample of 229 CFS patients were studied comparing four structural equation models, testing the role of mediation effect of depression severity in the association of Neuroticism and/or Maladaptive perfectionism on fatigue severity. The model considering depression severity as mediator factor between Neuroticism and fatigue severity is the only one of the explored models where all the structural modeling indexes have fitted satisfactorily (Chi square=27.01, p=0.079; RMSE=0.047, CFI=0.994; SRMR=0.033). Neuroticism is associated with CFS by the mediation effect of depression severity. This personality variable constitutes a more consistent factor than maladaptive perfectionism in the conceptualization of CFS severity. Copyright © 2013 Elsevier Inc. All rights reserved.
Modeling Delamination in Postbuckled Composite Structures Under Static and Fatigue Loads
NASA Technical Reports Server (NTRS)
Bisagni, Chiara; Brambilla, Pietro; Bavila, Carlos G.
2013-01-01
The ability of the Abaqus progressive Virtual Crack Closure Technique (VCCT) to model delamination in composite structures was investigated for static, postbuckling, and fatigue loads. Preliminary evaluations were performed using simple Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens. The nodal release sequences that describe the propagation of the delamination front were investigated. The effect of using a sudden or a gradual nodal release was evaluated by considering meshes aligned with the crack front as well as misaligned meshes. Fatigue simulations were then performed using the Direct Cyclic Fatigue (DCF) algorithm. It was found that in specimens such as the DCB, which are characterized by a nearly linear response and a pure fracture mode, the algorithm correctly predicts the Paris Law rate of propagation. However, the Abaqus DCF algorithm does not consider different fatigue propagation laws in different fracture modes. Finally, skin/stiffener debonding was studied in an aircraft fuselage subcomponent in which debonding occurs deep into post-buckling deformation. VCCT was shown to be a robust tool for estimating the onset propagation. However, difficulties were found with the ability of the current implementation of the Abaqus progressive VCCT to predict delamination propagation within structures subjected to postbuckling deformations or fatigue loads.
Full-scale fatigue tests of CX-100 wind turbine blades. Part I: testing
NASA Astrophysics Data System (ADS)
Farinholt, Kevin M.; Taylor, Stuart G.; Park, Gyuhae; Ammerman, Curtt M.
2012-04-01
This paper overviews the test setup and experimental methods for structural health monitoring (SHM) of two 9-meter CX-100 wind turbine blades that underwent fatigue loading at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC). The first blade was a pristine blade, which was manufactured to standard specifications for the CX-100 design. The second blade was manufactured for the University of Massachusetts, Lowell with intentional simulated defects within the fabric layup. Each blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. The blades underwent harmonic excitation at their first natural frequency using the Universal Resonant Excitation (UREX) system at NREL. Blades were initially excited at 25% of their design load, and then with steadily increasing loads until each blade reached failure. Data from the sensors were collected between and during fatigue loading sessions. The data were measured over multi-scale frequency ranges using a variety of acquisition equipment, including off-the-shelf systems and specially designed hardware developed at Los Alamos National Laboratory (LANL). The hardware systems were evaluated for their aptness in data collection for effective application of SHM methods to the blades. The results of this assessment will inform the selection of acquisition hardware and sensor types to be deployed on a CX-100 flight test to be conducted in collaboration with Sandia National Laboratory at the U.S. Department of Agriculture's (USDA) Conservation and Production Research Laboratory (CPRL) in Bushland, Texas.