Assessing sedimentation issues within aging flood-control reservoirs
USDA-ARS?s Scientific Manuscript database
Flood control reservoirs designed and built by federal agencies have been extremely effective in reducing the ravages of floods nationwide. Yet some structures are being removed for a variety of reasons, while other structures are aging rapidly and require either rehabilitation or decommissioning. ...
NASA Astrophysics Data System (ADS)
Guo, Aijun; Chang, Jianxia; Wang, Yimin; Huang, Qiang; Zhou, Shuai
2018-05-01
Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on regional flood control systems. This work advances traditional flood risk analysis by proposing a univariate and copula-based bivariate hydrological risk framework which incorporates both flood control and sediment transport. In developing the framework, the conditional probabilities of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula-based model. Moreover, a Monte Carlo-based algorithm is designed to quantify the sampling uncertainty associated with univariate and bivariate hydrological risk analyses. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The univariate and bivariate return periods, risk and reliability in the context of uncertainty for the purposes of flood control and sediment transport are assessed for the study regions. The results indicate that sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the event that AMF exceeds the design flood of downstream hydraulic structures in the UCX and UCH. Moreover, there is considerable sampling uncertainty affecting the univariate and bivariate hydrologic risk evaluation, which greatly challenges measures of future flood mitigation. In addition, results also confirm that the developed framework can estimate conditional probabilities associated with different flood events under various extreme precipitation scenarios aiming for flood control and sediment transport. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.
NASA Astrophysics Data System (ADS)
Wang, Y.; Chang, J.; Guo, A.
2017-12-01
Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on flood control systems. Given this focus, a univariate and copula-based bivariate hydrological risk framework focusing on flood control and sediment transport is proposed in the current work. Additionally, the conditional probabilities of occurrence of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula model. Moreover, a Monte Carlo-based algorithm is used to evaluate the uncertainties of univariate and bivariate hydrological risk. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The results indicate that (1) 2-day and 3-day consecutive rainfall are highly correlated with the annual maximum flood discharge (AMF) in UCX and UCH, respectively; and (2) univariate and bivariate return periods, risk and reliability for the purposes of flood control and sediment transport are successfully estimated. Sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the AMF, exceeding the design flood of downstream hydraulic structures in the UCX and UCH. Most importantly, there was considerable sampling uncertainty in the univariate and bivariate hydrologic risk analysis, which would greatly challenge measures of future flood mitigation. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.
Evaluation of the LA 1 bridge at the Morganza flood control structure.
DOT National Transportation Integrated Search
2010-11-01
This technical assistance report documents the investigation conducted by the Louisiana Transportation : Research Center (LTRC) of the LA 1 Bridge located at the flood control structure near Morganza, LA. : The in-place condition of the bridge deck s...
Evaluation of the LA 1 bridge at the Morganza flood control structure.
DOT National Transportation Integrated Search
2010-11-01
This technical assistance report documents the investigation conducted by the Louisiana Transportation Research Center (LTRC) of the LA 1 Bridge located at the flood control structure near Morganza, LA. The in-place condition of the bridge deck showe...
A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas
Li, Chaochao; Cheng, Xiaotao; Li, Na; Du, Xiaohe; Yu, Qian; Kan, Guangyuan
2016-01-01
Flood risk analysis is more complex in urban areas than that in rural areas because of their closely packed buildings, different kinds of land uses, and large number of flood control works and drainage systems. The purpose of this paper is to propose a practical framework for flood risk analysis and benefit assessment of flood control measures in urban areas. Based on the concept of disaster risk triangle (hazard, vulnerability and exposure), a comprehensive analysis method and a general procedure were proposed for urban flood risk analysis. Urban Flood Simulation Model (UFSM) and Urban Flood Damage Assessment Model (UFDAM) were integrated to estimate the flood risk in the Pudong flood protection area (Shanghai, China). S-shaped functions were adopted to represent flood return period and damage (R-D) curves. The study results show that flood control works could significantly reduce the flood risk within the 66-year flood return period and the flood risk was reduced by 15.59%. However, the flood risk was only reduced by 7.06% when the flood return period exceeded 66-years. Hence, it is difficult to meet the increasing demands for flood control solely relying on structural measures. The R-D function is suitable to describe the changes of flood control capacity. This frame work can assess the flood risk reduction due to flood control measures, and provide crucial information for strategy development and planning adaptation. PMID:27527202
Operational flood control of a low-lying delta system using large time step Model Predictive Control
NASA Astrophysics Data System (ADS)
Tian, Xin; van Overloop, Peter-Jules; Negenborn, Rudy R.; van de Giesen, Nick
2015-01-01
The safety of low-lying deltas is threatened not only by riverine flooding but by storm-induced coastal flooding as well. For the purpose of flood control, these deltas are mostly protected in a man-made environment, where dikes, dams and other adjustable infrastructures, such as gates, barriers and pumps are widely constructed. Instead of always reinforcing and heightening these structures, it is worth considering making the most of the existing infrastructure to reduce the damage and manage the delta in an operational and overall way. In this study, an advanced real-time control approach, Model Predictive Control, is proposed to operate these structures in the Dutch delta system (the Rhine-Meuse delta). The application covers non-linearity in the dynamic behavior of the water system and the structures. To deal with the non-linearity, a linearization scheme is applied which directly uses the gate height instead of the structure flow as the control variable. Given the fact that MPC needs to compute control actions in real-time, we address issues regarding computational time. A new large time step scheme is proposed in order to save computation time, in which different control variables can have different control time steps. Simulation experiments demonstrate that Model Predictive Control with the large time step setting is able to control a delta system better and much more efficiently than the conventional operational schemes.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-23
... lined open channels; grade control structures; bridges and drainage crossings; building pads; and water quality control facilities (sedimentation control, flood control, debris, and water quality basins). The... facilities (sedimentation control, flood debris, and water quality basins); regular and ongoing maintenance...
Applications of ASFCM(Assessment System of Flood Control Measurement) in Typhoon Committee Members
NASA Astrophysics Data System (ADS)
Kim, C.
2013-12-01
Due to extreme weather environment such as global warming and greenhouse effect, the risks of having flood damage has been increased with larger scale of flood damages. Therefore, it became necessary to consider modifying climate change, flood damage and its scale to the previous dimension measurement evaluation system. In this regard, it is needed to establish a comprehensive and integrated system to evaluate the most optimized measures for flood control through eliminating uncertainties of socio-economic impacts. Assessment System of Structural Flood Control Measures (ASFCM) was developed for determining investment priorities of the flood control measures and establishing the social infrastructure projects. ASFCM consists of three modules: 1) the initial setup and inputs module, 2) the flood and damage estimation module, and 3) the socio-economic analysis module. First, we have to construct the D/B for flood damage estimation, which is the initial and input data about the estimation unit, property, historical flood damages, and applied area's topographic & hydrological data. After that, it is important to classify local characteristic for constructing flood damage data. Five local characteristics (big city, medium size city, small city, farming area, and mountain area) are classified by criterion of application (population density). Next step is the floodplain simulation with HEC-RAS which is selected to simulate inundation. Through inputting the D/B and damage estimation, it is able to estimate the total damage (only direct damage) that is the amount of cost to recover the socio-economic activities back to the safe level before flood did occur. The last module suggests the economic analysis index (B/C ratio) with Multidimensional Flood Damage Analysis. Consequently, ASFCM suggests the reference index in constructing flood control measures and planning non-structural systems to reduce water-related damage. It is possible to encourage flood control planners and managers to consider and apply the socio-economic analysis results. ASFCM was applied in Republic of Korea, Thailand and Philippines to review efficiency and applicability. Figure 1. ASFCM Application(An-yang Stream, Republic of Korea)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-29
..., loss or injury due to the installation of flood control structures/barriers. Vessels and tows transiting this zone transiting the specified water are required to proceed at slowest safe speed to minimize... Coast Guard and the contractually imposed timeline for the installation of flood control structures...
McMinn, William R; Yang, Qinli; Scholz, Miklas
2010-09-01
Severe rainfall events have become increasingly common in Europe. Flood defence engineering works are highly capital intensive and can be limited by land availability, leaving land and communities exposed to repeated flooding. Any adaptive drainage structure must have engineered inlets and outlets that control the water level and the rate of release. In Scotland, there are a relatively high number of drinking water reservoirs (operated by Scottish Water), which fall within this defined category and could contribute to flood management control. Reducing the rate of runoff from the upper reaches of a catchment will reduce the volume and peak flows of flood events downstream, thus allowing flood defences to be reduced in size, decreasing the corresponding capital costs. A database of retention basins with flood control potential has been developed for Scotland. The research shows that the majority of small and former drinking water reservoirs are kept full and their spillways are continuously in operation. Utilising some of the available capacity to contribute to flood control could reduce the costs of complying with the EU Flood Directive. Furthermore, the application of a previously developed classification model for Baden in Germany for the Scottish data set showed a lower diversity for basins in Scotland due to less developed infrastructure. The principle value of this approach is a clear and unambiguous categorisation, based on standard variables, which can help to promote communication and understanding between stakeholders. 2010 Elsevier Ltd. All rights reserved.
Establishment of Rio Grande cottonwood seedlings using micro-irrigation of xeric flood plain sites
David R. Dreesen; Gregory A. Fenchel; Joseph G. Fraser
1999-01-01
Flood control, irrigation structures, and flow control practices on the Middle Rio Grande have prevented the deposition of sediments and hydrologic conditions conducive to the germination and establishment of Rio Grande cottonwood (Populus fremontii S. Wats.). The Los Lunas Plant Materials Center has been investigating the use of micro-irrigation systems on xeric flood...
Towards River Rehabilitation as AN Integrated Approach to Flood Management in Asian Cities
NASA Astrophysics Data System (ADS)
Higgitt, David L.
Flood management in Asian cities has conventionally been approached through structural intervention where floods are regarded as a threat requiring control through engineering infrastructure. Such a command and control paradigm represents a marked transition from the way that monsoon flood regimes have been traditionally perceived across Asia. Rapid urbanization and climate change has imposed increasingly difficult flood management challenges as an extension of impermeable surfaces generates rapid runoff and flash flooding, while cities expand into flood-prone areas. Property and communities are placed at enhanced risk. Urbanization reallocates risk as channel and floodplain modification influences flood regimes, while demands for flood protection at certain locations can redistribute risk to other areas. An increasing concern about flood hazard across Asian cities questions whether conventional solutions reliant on structural intervention are sustainable. Such questioning is mirrored by an alternative paradigm of rehabilitation in integrated river basin management — a recognition that restoring and sustaining functional river ecosystems with high biodiversity is one of the greatest challenges facing society. Rehabilitation initiatives demand a new approach to river basin management which encourage interdisciplinary activity, particularly between engineers, hydrologists, geomorphologists and ecologists. The paper sets out some preliminary ideas from a research project investigating the potential for river rehabilitation as a central tenet of flood management, with a particular focus on Asian cities.
Brian J. Palik; Stephen W. Golladay; P. Charles Goebel; Brad W. Taylor
1998-01-01
Large floods are an important process controlling the structure and function of stream ecosystems. One of the ways floods affect streams is through the recruitment of coarse woody debris from stream-side forests. Stream valley geomorphology may mediate this interaction by altering flood velocity, depth, and duration. Little research has examined how floods and...
NASA Images Mississippi River Flooding in Louisiana
2011-05-19
NASA Terra spacecraft shows the water flow after the U.S. Army Corps of Engineers opened the Morganza Spillway, a flood control structure along the western bank of the Mississippi River in Louisiana, to ease flooding along levee systems on May 14, 2011.
A. L. Riley
1989-01-01
In 1982 a coalition of neighborhood and environmental organizations used a community organizing strategy of the early 1960's, referred to as "advocacy planning" to substantially redesign a traditional structural type of joint federal and local flood control project on Wildcat and San Pablo Creeks in North Richmond, California. Using a combination of...
An empirical assessment of which inland floods can be managed
Mogollón, Beatriz; Frimpong, Emmanuel A.; Hoegh, Andrew B.; Angermeier, Paul
2016-01-01
Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m3/s) but quicker (0.41 days) floods than non-urban watersheds (50 m3/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m3/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m3/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help ensure that investments in flood management are made wisely after considering the limitations of landscape features to regulate floods.
Flood Control Structures Research Program. Annotated Bibliography on Grade Control Structures
1991-09-01
evaluating the effects of geology, geomorphology, soils, land use, and climate on runoff and sediment production from major source areas; (4...Otto, and ,t:iji, Ahmed. 1987. "Theoret- ical Flow Model for Drop Structures," -’. aulic ’ngineering, Proceed- ings of the 1987 National Confere’,ce on...Facilities for Unique Flood Problems," Journal of the-Waterways and Harbors Division, ASCE, Vol 97, No. WWI, pp 185-203. The unusual climatic
Nishijima, Wataru; Nakano, Yoichi; Nakai, Satoshi; Okuda, Tetsuji; Imai, Tsuyoshi; Okada, Mitsumasa
2013-09-15
We investigated the effects of river floods on the macrobenthic community of the intertidal flat in the Ohta River Estuary, Japan, from 2005 to 2010. Sediment erosion by flood events ranged from about 2-3 cm to 12 cm, and the salinity dropped to 0‰ even during low-intensity flood events. Cluster analysis of the macrobenthic population showed that the community structure was controlled by the physical disturbance, decreased salinity, or both. The opportunistic polychaete Capitella sp. was the most dominant species in all clusters, and populations of the long-lived polychaete Ceratonereis erythraeensis increased in years with stable flow and almost disappeared in years with intense flooding. The bivalve Musculista senhousia was also an important opportunistic species that formed mats in summer of the stable years and influenced the structure of the macrobenthic community. Our results demonstrate the substantial effects of flood events on the macrobenthic community structure. Copyright © 2013 Elsevier Ltd. All rights reserved.
Numerical Modeling of Trinity River Shoaling below Wallisville, Texas
2015-02-01
levees , the hydraulic deltaic process of finding the most efficient pathway to open water controls the flow direction and speed. Additionally, changes...events to allow flow to pass through the structures. During the dry season the structures are normally closed to control salt water intrusion. The... levees and natural ridges, which have low spots and channels that have incised from previous floods. Second, once the flood waters are outside the
Evaluation of levee setbacks for flood-loss reduction, Middle Mississippi River, USA
NASA Astrophysics Data System (ADS)
Dierauer, Jennifer; Pinter, Nicholas; Remo, Jonathan W. F.
2012-07-01
SummaryOne-dimensional hydraulic modeling and flood-loss modeling were used to test the effectiveness of levee setbacks for flood-loss reduction along the Middle Mississippi River (MMR). Four levee scenarios were assessed: (1) the present-day levee configuration, (2) a 1000 m levee setback, (3) a 1500 m levee setback, and (4) an optimized setback configuration. Flood losses were estimated using FEMA's Hazus-MH (Hazards US Multi-Hazard) loss-estimation software on a structure-by-structure basis for a range of floods from the 2- to the 500-year events. These flood-loss estimates were combined with a levee-reliability model to calculate probability-weighted damage estimates. In the simplest case, the levee setback scenarios tested here reduced flood losses compared to current conditions for large, infrequent flooding events but increased flood losses for smaller, more frequent flood events. These increases occurred because levee protection was removed for some of the existing structures. When combined with buyouts of unprotected structures, levee setbacks reduced flood losses for all recurrence intervals. The "optimized" levee setback scenario, involving a levee configuration manually planned to protect existing high-value infrastructure, reduced damages with or without buyouts. This research shows that levee setbacks in combination with buyouts are an economically viable approach for flood-risk reduction along the study reach and likely elsewhere where levees are widely employed for flood control. Designing a levee setback around existing high-value infrastructure can maximize the benefit of the setback while simultaneously minimizing the costs. The optimized levee setback scenario analyzed here produced payback periods (costs divided by benefits) of less than 12 years. With many aging levees failing current inspections across the US, and flood losses spiraling up over time, levee setbacks are a viable solution for reducing flood exposure and flood levels.
An empirical assessment of which inland floods can be managed.
Mogollón, Beatriz; Frimpong, Emmanuel A; Hoegh, Andrew B; Angermeier, Paul L
2016-02-01
Riverine flooding is a significant global issue. Although it is well documented that the influence of landscape structure on floods decreases as flood size increases, studies that define a threshold flood-return period, above which landscape features such as topography, land cover and impoundments can curtail floods, are lacking. Further, the relative influences of natural versus built features on floods is poorly understood. Assumptions about the types of floods that can be managed have considerable implications for the cost-effectiveness of decisions to invest in transforming land cover (e.g., reforestation) and in constructing structures (e.g., storm-water ponds) to control floods. This study defines parameters of floods for which changes in landscape structure can have an impact. We compare nine flood-return periods across 31 watersheds with widely varying topography and land cover in the southeastern United States, using long-term hydrologic records (≥20 years). We also assess the effects of built flow-regulating features (best management practices and artificial water bodies) on selected flood metrics across urban watersheds. We show that landscape features affect magnitude and duration of only those floods with return periods ≤10 years, which suggests that larger floods cannot be managed effectively by manipulating landscape structure. Overall, urban watersheds exhibited larger (270 m(3)/s) but quicker (0.41 days) floods than non-urban watersheds (50 m(3)/s and 1.5 days). However, urban watersheds with more flow-regulating features had lower flood magnitudes (154 m(3)/s), but similar flood durations (0.55 days), compared to urban watersheds with fewer flow-regulating features (360 m(3)/s and 0.23 days). Our analysis provides insight into the magnitude, duration and count of floods that can be curtailed by landscape structure and its management. Our findings are relevant to other areas with similar climate, topography, and land use, and can help ensure that investments in flood management are made wisely after considering the limitations of landscape features to regulate floods. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hydrologic data for Cow Bayou, Brazos River Basin, Texas, 1975
Mitchell, R.N.; Wehmeyer, E.E.
1977-01-01
The U.S. Soil Conservation Service is actively engaged in the implementation of flood- and soil-erosion reducing measures in Texas under the authority of. "The Flood Control Act of 1936 and 1944" and "Watershed Protection and Flood Prevention Act" (Public Law 566), as amended. The Soil Conservation Service has found a total of approximately 3,500 floodwater~retarding structures to be physically and economically feasible in Texas. As of September 30, 1975, 1,680 of these structures had been built.
2012-01-01
Background Flooding reduces supply of oxygen to the roots affecting plant water uptake. Some flooding-tolerant tree species including tamarack (Larix laricina (Du Roi) K. Koch) produce adventitious roots in response to flooding. These roots were reported to have higher hydraulic conductivity under flooding conditions compared with non-adventitious roots. In the present study, we examined structural and functional modifications in adventitious roots of tamarack seedlings to explain their flooding tolerance. Results Seedlings were subjected to the flooding treatment for six months, which resulted in an almost complete disintegration of the existing root system and its replacement with adventitious roots. We compared gas exchange parameters and water relations of flooded plants with the plants growing in well-drained soil and examined the root structures and root water transport properties. Although flooded seedlings had lower needle chlorophyll concentrations, their stomatal conductance, net photosynthesis rates and shoot water potentials were similar to non-flooded plants, indicative of flooding tolerance. Flooded adventitious roots had higher activation energy and a higher ratio of apoplastic to cell-to-cell water flow compared with non-flooded control roots as determined with the 1-hydroxypirene 3,6,8-trisulfonic acid apoplastic tracer dye. The adventitious roots in flooded plants also exhibited retarded xylem and endodermal development and accumulated numerous starch grains in the cortex. Microscopic examination of root sections treated with the PIP1 and PIP2 antibodies revealed high immunoreactivity in the cortex of non-flooded roots, as compared with flooded roots. Conclusions Structural modifications of adventitious roots suggest increased contribution of apoplastic bypass to water flow. The reduced dependence of roots on the hypoxia-sensitive aquaporin-mediated water transport is likely among the main mechanisms allowing tamarack seedlings to maintain water balance and gas exchange under flooding conditions. PMID:22738296
Calvo-Polanco, Mónica; Señorans, Jorge; Zwiazek, Janusz J
2012-06-27
Flooding reduces supply of oxygen to the roots affecting plant water uptake. Some flooding-tolerant tree species including tamarack (Larix laricina (Du Roi) K. Koch) produce adventitious roots in response to flooding. These roots were reported to have higher hydraulic conductivity under flooding conditions compared with non-adventitious roots. In the present study, we examined structural and functional modifications in adventitious roots of tamarack seedlings to explain their flooding tolerance. Seedlings were subjected to the flooding treatment for six months, which resulted in an almost complete disintegration of the existing root system and its replacement with adventitious roots. We compared gas exchange parameters and water relations of flooded plants with the plants growing in well-drained soil and examined the root structures and root water transport properties. Although flooded seedlings had lower needle chlorophyll concentrations, their stomatal conductance, net photosynthesis rates and shoot water potentials were similar to non-flooded plants, indicative of flooding tolerance. Flooded adventitious roots had higher activation energy and a higher ratio of apoplastic to cell-to-cell water flow compared with non-flooded control roots as determined with the 1-hydroxypirene 3,6,8-trisulfonic acid apoplastic tracer dye. The adventitious roots in flooded plants also exhibited retarded xylem and endodermal development and accumulated numerous starch grains in the cortex. Microscopic examination of root sections treated with the PIP1 and PIP2 antibodies revealed high immunoreactivity in the cortex of non-flooded roots, as compared with flooded roots. Structural modifications of adventitious roots suggest increased contribution of apoplastic bypass to water flow. The reduced dependence of roots on the hypoxia-sensitive aquaporin-mediated water transport is likely among the main mechanisms allowing tamarack seedlings to maintain water balance and gas exchange under flooding conditions.
NASA Astrophysics Data System (ADS)
van Heeringen, Klaas-Jan; Gooijer, Jan; Knot, Floris; Talsma, Jan
2015-04-01
In the Netherlands, flood protection has always been a key issue to protect settlements against storm surges and riverine floods. Whereas flood protection traditionally focused on structural measures, nowadays the availability of meteorological and hydrological forecasts enable the application of more advanced real-time control techniques for operating the existing hydraulic infrastructure in an anticipatory and more efficient way. Model Predictive Control (MPC) is a powerful technique to derive optimal control variables with the help of model based predictions evaluated against a control objective. In a project for the regional water authority Noorderzijlvest in the north of the Netherlands, it has been shown that MPC can increase the safety level of the system during flood events by an anticipatory pre-release of water. Furthermore, energy costs of pumps can be reduced by making tactical use of the water storage and shifting pump activities during normal operating conditions to off-peak hours. In this way cheap energy is used in combination of gravity flow through gates during low tide periods. MPC has now been implemented for daily operational use of the whole water system of the water authority Noorderzijlvest. The system developed to a real time decision support system which not only supports the daily operation but is able to directly implement the optimal control settings at the structures. We explain how we set-up and calibrated a prediction model (RTC-Tools) that is accurate and fast enough for optimization purposes, and how we integrated it in the operational flood early warning system (Delft-FEWS). Beside the prediction model, the weights and the factors of the objective function are an important element of MPC, since they shape the control objective. We developed special features in Delft-FEWS to allow the operators to adjust the objective function in order to meet changing requirements and to evaluate different control strategies.
Probabilistic modelling of flood events using the entropy copula
NASA Astrophysics Data System (ADS)
Li, Fan; Zheng, Qian
2016-11-01
The estimation of flood frequency is vital for the flood control strategies and hydraulic structure design. Generating synthetic flood events according to statistical properties of observations is one of plausible methods to analyze the flood frequency. Due to the statistical dependence among the flood event variables (i.e. the flood peak, volume and duration), a multidimensional joint probability estimation is required. Recently, the copula method is widely used for multivariable dependent structure construction, however, the copula family should be chosen before application and the choice process is sometimes rather subjective. The entropy copula, a new copula family, employed in this research proposed a way to avoid the relatively subjective process by combining the theories of copula and entropy. The analysis shows the effectiveness of the entropy copula for probabilistic modelling the flood events of two hydrological gauges, and a comparison of accuracy with the popular copulas was made. The Gibbs sampling technique was applied for trivariate flood events simulation in order to mitigate the calculation difficulties of extending to three dimension directly. The simulation results indicate that the entropy copula is a simple and effective copula family for trivariate flood simulation.
Managing ecological drought and flood within a nature-based approach. Reality or illusion?
NASA Astrophysics Data System (ADS)
Halbac-Cotoara-Zamfir, Rares; Finger, David; Stolte, Jannes
2017-04-01
Water hazards events, emphasized by an improperly implemented water management, may lead to ecological degradation of ecosystems. Traditional water management has generally sought to dampen the natural variability of water flows in different types of ecosystems to attain steady and dependable water supplies for domestic and industrial uses, irrigation, navigation, and hydropower, and to moderate extreme water conditions such as floods and droughts. Ecological drought can be defined as a prolonged and widespread deficit in available water supplies — including changes in natural and managed hydrology — that create multiple stresses across ecosystems, becomes a critical concern among researchers being a phenomenon much more complex than the other types of drought and requesting a specific approach. The impact of drought on ecosystem services lead to the necessity of identifying and implementing eco-reclamation measures which can generate better ecological answers to droughts. Ecological flood is the type of flood analyzed in full consideration with ecological issues, in the analyze process being approached 4 key aspects: connectivity of water system, landscapes of river and lakes, mobility of water bodies, and safety of flood control. As a consequence, both ecological drought and ecological flood represents high challenges for ecological sustainable water management in the process of identifying structural and non-structural measures for covering human demands without causing affected ecosystems to degrade or simplify. An ecological flood and drought control system will combine both the needs of the ecosystems as well as and flood and drought control measures. The components ecosystems' natural flow regime defined by magnitude, frequency, duration and peak timing (high or low flows) interact to maintain the ecosystem productivity. This productivity can be impaired by altered flow regimes generally due to structural measures designed to control flooding. However, from an ecological perspective, floods are not disasters in the sense that human society typically views them. Considering all previous aspects, it is clear that events like floods and droughts can't be avoided, but the hydrological extremes related to these events can be sustainable managed using a series of actions based on two inter-connected approaches: prevention approach and post-event management approach. The main objective remains the necessity of limiting the consequences of water hazards on socio-economic sectors but also the need of quickly and sustainable recovering after an event like this. However, the question still remains valid: Ecological flood and ecological drought can be managed through a nature-based approach? This paper will focus on a theoretical analysis of these "ecological" hydro-meteorological events and will debate a possible nature-based approach for their sustainable management.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., after the structure has been damaged by a flood, hurricane, or coastal storm, to the level of protection... Washington, D.C. Hurricane/Shore Protection Project (HSPP). A flood control project designed and constructed... of hurricanes, tsunamis, and coastal storms. These effects are primarily to protect against wave...
33 CFR 203.83 - Additional requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... deteriorated components such as outlet structures and pipes, removal of debris, and new construction items such... furnishing flood fight assistance during an emergency. (b) Areas of minor damage, flood control works..., placing sod, or seeding completed work. (d) Adequacy of requirements of local cooperation. In determining...
Rambonilaza, Tina; Joalland, Olivier; Brahic, Elodie
2016-09-15
Within Europe, flood and coastal risk management is undergoing a major paradigm shift as it moves from an approach dominated by investment in flood defence and control infrastructure to another one in which non-structural measures are favoured. One research challenge consists in developing a better understanding of local population risk perception and its effects on prevention and preparedness actions in order to improve social acceptability of adaptive flood risk management. Landowners' involvement in wetland management offer benefits beyond the line of their property. Accordingly, the purpose of this study is to achieve an empirical understanding of risk perception and self-protective behaviour among the landowners of the riparian marshes in the Gironde Estuary, in France. Application of the psychometric approach reveals that flood risk perception among landowners can be characterised by three synthetic variables that indicate on the degree of exposure, the sense of control and knowledge of the risk. Examining the relationships between these perceived risk dimensions and landowners' participation in water structures management provides three profiles of self-protective behaviour distinguishing "vulnerable", "autonomous", and "passive" individuals. Finally, implications of our findings for the management of flood risk in estuarine environment which is often drained areas are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Birth of a megaproject: Political economy of flood control in bangladesh
NASA Astrophysics Data System (ADS)
Boyce, James K.
1990-07-01
A major flood control initiative has been launched in Bangladesh under the coordination of the World Bank. The bank's five-year Action Plan is intended to initiate a long-term investment program, the specifics of which remain to be determined. Long-term proposals under consideration include the construction of massive embankments along the great rivers of the Bangladesh delta. The wisdom of such a “structural solution” to Bangladesh's flood problems can be questioned on economic, environmental, and technical grounds. Regrettably, the decision-making process has not encouraged wide debate on these questions.
Extent and frequency of floods on the Schuylkill River near Phoenixville and Pottstown, Pennsylvania
Busch, William F.; Shaw, Lewis C.
1973-01-01
Knowledge of the frequency and extent of flooding is an important requirement for the design of all works of man bordering or encroaching on flood plains. The proper design of bridges, culverts, dams, highways, levees, reservoirs, sewage-disposal systems, waterworks and all structures on the flood plains of streams requires careful consideration of flood hazards. -1- By use of relations presented in this report, the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Schuylkill River from Oaks to Pottstown. These flood data are presented so that regulatory agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U. S. Geological Survey regard this program of flood-plain-inundation studies as a positive step toward flood-damage prevention. Flood-plaininundation studies are a prerequisite to flood-plain management which may include a mixture of flood-control structures and/or land-use regulations. Both physical works and flood-plain regulations are included in the Comprehensive Plan for development of the Delaware River basin, of which the Schuylkill River is a part. Recommendations for land use, or suggestions for limitations of land use, are not made herein. Other reports on use and regulation of land in flood-prone areas are available (Dola, 1961; White, 1961; American Society of Civil Engineers Task Force on Flood Plain Regulations, 1962; and Goddard, 1963). The primary responsibility for planning for optimum land use in the flood plain and the implementation of flood-plain zoning or other regulations to achieve such optimum use rests with State, and local interests.
NASA Astrophysics Data System (ADS)
Ando, T.; Kawasaki, A.; Koike, T.
2017-12-01
IPCC AR5 (2014) reported that rainfall in the middle latitudes of the Northern Hemisphere has been increasing since 1901, and it is claimed that warmer climate will increase the risk of floods. In contrast, world water demand is forecasted to exceed a sustainable supply by 40 percent by 2030. In order to avoid this expectable water shortage, securing new water resources has become an utmost challenge. However, flood risk prevention and the secure of water resources are contradictory. To solve this problem, we can use existing hydroelectric dams not only as energy resources but also for flood control. However, in case of Japan, hydroelectric dams take no responsibility for it, and benefits have not been discussed accrued by controlling flood by hydroelectric dams, namely by using preliminary water release from them. Therefore, our paper proposes methodology for assessing those benefits. This methodology has three stages as shown in Fig. 1. First, RRI model is used to model flood events, taking account of the probability of rainfall. Second, flood damage is calculated using assets in inundation areas multiplied by the inundation depths generated by that RRI model. Third, the losses stemming from preliminary water release are calculated, and adding them to flood damage, overall losses are calculated. We can evaluate the benefits by changing the volume of preliminary release. As a result, shown in Fig. 2, the use of hydroelectric dams to control flooding creates 20 billion Yen benefits, in the probability of three-day-ahead rainfall prediction of the assumed maximum rainfall in Oi River, in the Shizuoka Pref. of Japan. As the third priority in the Sendai Framework for Disaster Risk Reduction 2015-2030, `investing in disaster risk reduction for resilience - public and private investment in disaster risk prevention and reduction through structural and non-structural measures' was adopted. The accuracy of rainfall prediction is the key factor in maximizing the benefits. Therefore, if the accrued 20 billion Yen benefits by adopting this evaluation methodology are invested in improving rainfall prediction, the accuracy of the forecasts will increase and so will the benefits. This positive feedback loop will benefit society. The results of this study may stimulate further discussion on the role of hydroelectric dams in flood control.
76 FR 2725 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
.... The draft regulatory guide, entitled, ``Inspection of Water-Control Structures Associated with Nuclear... and surveillance program for dams, slopes, canals, and other water-control structures associated with emergency cooling water systems or flood protection of nuclear power plants. II. Further Information The NRC...
Yin, Xiaojian; Komatsu, Setsuko
2016-07-01
To identify the upstream events controlling the regulation of flooding-responsive proteins in soybean, proteomic analysis of nuclear proteins in root tip was performed. By using nuclear fractions, which were highly enriched, a total of 365 nuclear proteins were changed in soybean root tip at initial stage of flooding stress. Four exon-junction complex-related proteins and NOP1/NOP56, which function in upstream of 60S preribosome biogenesis, were decreased in flooded soybean. Furthermore, proteomic analysis of crude protein extract revealed that the protein translation was suppressed by continuous flooding stress. Seventeen chromatin structure-related nuclear proteins were decreased in response to flooding stress. Out of them, histone H3 was clearly decreased with protein abundance and mRNA expression levels at the initial flooding stress. Additionally, a number of protein synthesis-, RNA-, and DNA-related nuclear proteins were decreased in a time-dependent manner. mRNA expressions of genes encoding the significantly changed flooding-responsive nuclear proteins were inhibited by the transcriptional inhibitor, actinomycin D. These results suggest that protein translation is suppressed through inhibition of preribosome biogenesis- and mRNA processing-related proteins in nuclei of soybean root tip at initial flooding stress. In addition, flooding stress may regulate histone variants with gene expression in root tip.
Flood trends and river engineering on the Mississippi River system
Pinter, N.; Jemberie, A.A.; Remo, J.W.F.; Heine, R.A.; Ickes, B.S.
2008-01-01
Along >4000 km of the Mississippi River system, we document that climate, land-use change, and river engineering have contributed to statistically significant increases in flooding over the past 100-150 years. Trends were tested using a database of >8 million hydrological measurements. A geospatial database of historical engineering construction was used to quantify the response of flood levels to each unit of engineering infrastructure. Significant climate- and/or land use-driven increases in flow were detected, but the largest and most pervasive contributors to increased flooding on the Mississippi River system were wing dikes and related navigational structures, followed by progressive levee construction. In the area of the 2008 Upper Mississippi flood, for example, about 2 m of the flood crest is linked to navigational and flood-control engineering. Systemwide, large increases in flood levels were documented at locations and at times of wing-dike and levee construction. Copyright 2008 by the American Geophysical Union.
Wright, S.A.; Kaplinski, M.
2011-01-01
In canyon rivers, debris fan constrictions create rapids and downstream pools characterized by secondary flow structures that are closely linked to channel morphology. In this paper we describe detailed measurements of the three-dimensional flow structure and sandbar dynamics of two pools along the Colorado River in the Grand Canyon during a controlled flood release from Glen Canyon Dam. Results indicate that the pools are characterized by large lateral recirculation zones (eddies) resulting from flow separation downstream from the channel constrictions, as well as helical flow structures in the main channel and eddy. The lateral recirculation zones are low-velocity areas conducive to fine sediment deposition, particularly in the vicinity of the separation and reattachment points and are thus the dominant flow structures controlling sandbar dynamics. The helical flow structures also affect morphology but appear secondary in importance to the lateral eddies. During the controlled flood, sandbars in the separation and reattachment zones at both sites tended to build gradually during the rising limb and peak flow. Deposition in shallow water on the sandbars was accompanied by erosion in deeper water along the sandbar slope at the interface with the main channel. Erosion occurred via rapid mass failures as well as by gradual boundary shear stress driven processes. The flow structures and morphologic links at our study sites are similar to those identified in other river environments, in particular sharply curved meanders and channel confluences where the coexistence of lateral recirculation and helical flows has been documented. Copyright 2011 by the American Geophysical Union.
Can we (actually) assess global risk?
NASA Astrophysics Data System (ADS)
Di Baldassarre, Giuliano
2013-04-01
The evaluation of the dynamic interactions of the different components of global risk (e.g. hazard, exposure, vulnerability or resilience) is one of the main challenges in risk assessment and management. In state-of-the-art approaches for the analysis of risk, natural and socio-economic systems are typically treated separately by using different methods. In flood risk studies, for instance, physical scientists typically focus on the study of the probability of flooding (i.e. hazard), while social scientists mainly examine the exposure, vulnerability or resilience to flooding. However, these different components are deeply interconnected. Changes in flood hazard might trigger changes in vulnerability, and vice versa. A typical example of these interactions is the so-called "levee effect", whereby heightening levees to reduce the probability of flooding often leads to increase the potential adverse consequences of flooding as people often perceive that flood risk was completely eliminated once the levee was raised. These interconnections between the different components of risk remain largely unexplored and poorly understood. This lack of knowledge is of serious concern as it limits our ability to plan appropriate risk prevention measures. To design flood control structures, for example, state-of-the-art models can indeed provide quantitative assessments of the corresponding risk reduction associated to the lower probability of flooding. Nevertheless, current methods cannot estimate how, and to what extent, such a reduction might trigger a future increase of the potential adverse consequences of flooding (the aforementioned "levee effect"). Neither can they evaluate how the latter might (in turn) lead to the requirement of additional flood control structures. Thus, while many progresses have been made in the static assessment of flood risk, more inter-disciplinary research is required for the development of methods for dynamic risk assessment, which is very much needed in a rapidly changing world. This presentation will discuss these challenges and describe a few initial attempts aiming to better understand the interactions between the different components of flood risk with reference to diverse case studies in Europe, Central America, and Africa.
NASA Astrophysics Data System (ADS)
Dong, L.
2017-12-01
Abstract: The original urban surface structure changed a lot because of the rapid development of urbanization. Impermeable area has increased a lot. It causes great pressure for city flood control and drainage. Songmushan reservoir basin with high degree of urbanization is taken for an example. Pixel from Landsat is decomposed by Linear spectral mixture model and the proportion of urban area in it is considered as impervious rate. Based on impervious rate data before and after urbanization, an physically based distributed hydrological model, Liuxihe Model, is used to simulate the process of hydrology. The research shows that the performance of the flood forecasting of high urbanization area carried out with Liuxihe Model is perfect and can meet the requirement of the accuracy of city flood control and drainage. The increase of impervious area causes conflux speed more quickly and peak flow to be increased. It also makes the time of peak flow advance and the runoff coefficient increase. Key words: Liuxihe Model; Impervious rate; City flood control and drainage; Urbanization; Songmushan reservoir basin
Multivariate flood risk assessment: reinsurance perspective
NASA Astrophysics Data System (ADS)
Ghizzoni, Tatiana; Ellenrieder, Tobias
2013-04-01
For insurance and re-insurance purposes the knowledge of the spatial characteristics of fluvial flooding is fundamental. The probability of simultaneous flooding at different locations during one event and the associated severity and losses have to be estimated in order to assess premiums and for accumulation control (Probable Maximum Losses calculation). Therefore, the identification of a statistical model able to describe the multivariate joint distribution of flood events in multiple location is necessary. In this context, copulas can be viewed as alternative tools for dealing with multivariate simulations as they allow to formalize dependence structures of random vectors. An application of copula function for flood scenario generation is presented for Australia (Queensland, New South Wales and Victoria) where 100.000 possible flood scenarios covering approximately 15.000 years were simulated.
Hydro-Geomorphic Connectivity in Arid Watershed: Anthropogenic Effects and Extreme Flash flood
NASA Astrophysics Data System (ADS)
Egozi, Roey
2017-04-01
Arid watersheds are excellent settings to study water and sediment connectivity because of spars vegetation and the possibility to make clearer links between climate parameters and topographical changes. However different flood event magnitudes may result in different degrees of connectivity. This even gets more complicated when man made modifications to the drainage system are done without considering the outcomes in terms of the potential of flood damage and risks, i.e. in the case of extreme flash floods. Herein we report on the results from two studies conducted in two different small catchments along the dead sea rift: Wadi A Dalia and Wadi Ras Moakif. The studies conducted as part of a larger project aimed at investigating the floods and damages triggered by a rare storm event occurred at the end of October 2015. This storm event covered all of Israel and characterized with rare rainfall depths and intensities as well as floods with rare pick discharges. Observations and field measurements of bed material, river cross sections and water elevation markers were done and statistical analysis has been performed to estimate the exceed probability of the different measured and estimated hydro-climatic values. In Wadi-A-Dalia the coupling of rare rainfall depths over the watershed area which itself was bare due to over grazing result in a major flood. The severe damage caused by this flood was intensified due to the increase of structural hydrologic connectivity, i.e. flood protection canal discharged higher volumes of water collected from small Wadi systems at the same time. In Wadi Ras Moakif the rainfall cells did not produced rare rainfall, but still a major flood occurred over a very short distance of the main channel transporting huge amount of bed material deposited and blocked the main road along the dead sea western coast. In this case the cause was similar - a modification to the drainage system result in increase structural hydrologic connectivity lead to runoff concentration and higher stream power value. The results suggest that in arid watersheds flood protection measures that involve modifications to the drainage system such that the structural hydrologic connectivity improves with the aim to conduit the volume of water away may fail to provide the protection planned and may cause higher damage to infrastructures. Therefore, hydrologic connectivity should become a parameter in flood control design. Moreover, studying hydrologic connectivity in natural landscapes may provide valid solutions for flood control design projects.
Reddy, D.R.
1971-01-01
The U.S. Soil Conservation Service is actively engaged in the installation of flood and soil erosion reducing measures in Texas under the authority of "The Flood Control Act of 1936 and 1944" and ''Watershed Protection and Flood Prevention Act" (Public Law 566), as amended. The Soil Conservation Service has found a total of approximately 3,500 floodwater-retarding structures to be physically and economically feasible in Texas. As of September 30, 1970, 1,439 of these structures had been built. This watershed-development program will have varying but important effects on the natural surface- and ground-water resources of river basins, especially where a large number of the floodwater-retarding structures are built. Basic hydrologic data under natural and developed conditions are needed to appraise the effects of the structures on the yield and mode of occurrence of runoff.
Annual compilation and analysis of hydrologic data for Honey Creek, Trinity River Basin, Texas, 1969
Sansom, J.N.
1971-01-01
The U.S. Soil Conservation Service is actively engaged in the installation of flood and soil erosion reducing measures in Texas under the authority of ''The Flood Control Act of 1936 and 1944" and ''Watershed Protection and Flood Prevention Act" (Public Law 566), as amended. The Soil Conservation Service has found a total of approximately 3,500 floodwater-retarding structures to be physically and economically feasible in Texas. As of September 30, 1969, 1,355 of these structures had been built. This watershed-development program will have varying but important effects on the natural surface- and ground-water resources of river basins, especially where a large number of the floodwater-retarding structures are built. Basic hydrologic data under natural and developed conditions are needed to appraise the effects of the structures on the yield and mode of occurrence of runoff .
Hydrological states and the resilience of deltaic forested wetlands
NASA Astrophysics Data System (ADS)
Keim, R.; Allen, S. T.
2017-12-01
The flooding regime constitutes a set of chronic disturbances that are largely responsible for ecosystem structure. However, disturbances do not always constitute stresses to plants that survive because of adaptations to flooded conditions. We examine baldcypress-water tupelo forested wetlands in the delta of the Mississippi River as a case study in mechanisms by which hydrologic change shapes wetland ecosystem change, supported by experimental evidence from remote sensing, tree-ring and other field studies, and meta-analysis across the literature. Decreased hydrologic variability caused by water control structures has reduced the frequency of flood events that increase growth of baldcypress and favor its establishment by reducing competition from other species. Hydrologic modifications that lead to semi-permanent, stagnant flooding constitute semi-permanent disturbance that prevents regeneration of any trees, reduces growth of established trees, and reduces stand density by causing mortality of some trees. However, baldcypress trees in low-density stands appear to be generally adapted for long-term survival in stagnant conditions. Thus, initial decreases in stand density after impoundment do not necessarily portend continued conversion away from forest because reduced inter-tree competition is a negative feedback on mortality. Overall, a natural hydrologic regime with high variability in riverine flooding favors denser stands with greater diversity of tree species, and the present, controlled hydrologic regime that has largely eliminated riverine flooding favors open stands. Sea-level rise will increase salinity that quickly leads to forest conversion to marsh, but will also increase stagnant, freshwater flooding further inland. These drivers of hydrologic change reduce carbon assimilation by forests, both by reduced stand-level productivity and decreased forested area.
The Impact of Corps Flood Control Reservoirs in the June 2008 Upper Mississippi Flood
NASA Astrophysics Data System (ADS)
Charley, W. J.; Stiman, J. A.
2008-12-01
The US Army Corps of Engineers is responsible for a multitude of flood control project on the Mississippi River and its tributaries, including levees that protect land from flooding, and dams to help regulate river flows. The first six months of 2008 were the wettest on record in the upper Mississippi Basin. During the first 2 weeks of June, rainfall over the Midwest ranged from 6 to as much as 16 inches, overwhelming the flood protection system, causing massive flooding and damage. Most severely impacted were the States of Iowa, Illinois, Indiana, Missouri, and Wisconsin. In Iowa, flooding occurred on almost every river in the state. On the Iowa River, record flooding occurred from Marshalltown, Iowa, downstream to its confluence with the Mississippi River. At several locations, flooding exceeded the 500-year event. The flooding affected agriculture, transportation, and infrastructure, including homes, businesses, levees, and other water-control structures. It has been estimated that there was at least 7 billion dollars in damages. While the flooding in Iowa was extraordinary, Corps of Engineers flood control reservoirs helped limit damage and prevent loss of life, even though some reservoirs were filled beyond their design capacity. Coralville Reservoir on the Iowa River, for example, filled to 135% of its design flood storage capacity, with stage a record five feet over the crest of the spillway. In spite of this, the maximum reservoir release was limited to 39,500 cfs, while a peak inflow of 57,000 cfs was observed. CWMS, the Corps Water Management System, is used to help regulate Corps reservoirs, as well as track and evaluate flooding and flooding potential. CWMS is a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. It encompasses data collection, validation and transformation, data storage, visualization, real time model simulation for decision-making support, and data dissemination. The system uses precipitation and flow data, collected in real-time, along with forecasted flow from the National Weather Service to model and optimize reservoir operations and forecast downstream flows and stages, providing communities accurate and timely information to aid their flood-fighting. This involves integrating several simulation modeling programs, including HEC-HMS to forecast flows, HEC-ResSim to model reservoir operations and HEC-RAS to compute forecasted stage hydrographs. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. By varying future precipitation and releases, engineers can evaluate different "What if?" scenarios. The effectiveness of this tool and Corps reservoirs are examined.
Hydraulic modeling of flow impact on bridge structures: a case study on Citarum bridge
NASA Astrophysics Data System (ADS)
Siregar, R. I.
2018-02-01
Flood waves because of the rapid catchment response to high intense rainfall, breaches of flood defenses may induce huge impact forces on structures, causing structural damage or even failures. Overflowing stream that passes over the bridge, it means to discharge flood water level is smaller than the capacity of the river flow. In this study, the researches present the methodological approach of flood modeling on bridge structures. The amount of force that obtained because of the hydrostatic pressure received by the bridge at the time of the flood caused the bridge structure disrupted. This paper presents simulation of flow impact on bridge structures with some event flood conditions. Estimating the hydrostatic pressure developed new model components, to quantify the flow impact on structures. Flow parameters applied the model for analyzing, such as discharge, velocity, and water level or head that effect of bridge structures. The simulation will illustrate the capability of bridge structures with some event flood river and observe the behavior of the flow that occurred during the flood. Hydraulic flood modeling use HEC-RAS for simulation. This modeling will describe the impact on bridge structures. Based on the above modelling resulted, in 2008 has flood effect more than other years on the Citarum Bridge, because its flow overflow on the bridge.
Assessing and optimising flood control options along the Arachthos river floodplain (Epirus, Greece)
NASA Astrophysics Data System (ADS)
Drosou, Athina; Dimitriadis, Panayiotis; Lykou, Archontia; Kossieris, Panagiotis; Tsoukalas, Ioannis; Efstratiadis, Andreas; Mamassis, Nikos
2015-04-01
We present a multi-criteria simulation-optimization framework for the optimal design and setting of flood protection structures along river banks. The methodology is tested in the lower course of the Arachthos River (Epirus, Greece), downstream of the hydroelectric dam of Pournari. The entire study area is very sensitive, particularly because the river crosses the urban area of Arta, which is located just after the dam. Moreover, extended agricultural areas that are crucial for the local economy are prone to floods. In the proposed methodology we investigate two conflicting criteria, i.e. the minimization of flood hazards (due to damages to urban infrastructures, crops, etc.) and the minimization of construction costs of the essential hydraulic structures (e.g. dikes). For the hydraulic simulation we examine two flood routing models, named 1D HEC-RAS and quasi-2D LISFLOOD, whereas the optimization is carried out through the Surrogate-Enhanced Evolutionary Annealing-Simplex (SE-EAS) algorithm that couples the strengths of surrogate modeling with the effectiveness and efficiency of the EAS method.
NASA Astrophysics Data System (ADS)
Lee, J. Y.; Chae, B. S.; Wi, S.; KIm, T. W.
2017-12-01
Various climate change scenarios expect the rainfall in South Korea to increase by 3-10% in the future. The future increased rainfall has significant effect on the frequency of flood in future as well. This study analyzed the probability of future flood to investigate the stability of existing and new installed hydraulic structures and the possibility of increasing flood damage in mid-sized watersheds in South Korea. To achieve this goal, we first clarified the relationship between flood quantiles acquired from the flood-frequency analysis (FFA) and design rainfall-runoff analysis (DRRA) in gauged watersheds. Then, after synthetically generating the regional natural flow data according to RCP climate change scenarios, we developed mathematical formulas to estimate future flood quantiles based on the regression between DRRA and FFA incorporated with regional natural flows in unguaged watersheds. Finally, we developed a flood risk map to investigate the change of flood risk in terms of the return period for the past, present, and future. The results identified that the future flood quantiles and risks would increase in accordance with the RCP climate change scenarios. Because the regional flood risk was identified to increase in future comparing with the present status, comprehensive flood control will be needed to cope with extreme floods in future.
Yang, Jianjun; Zhu, Shenhai; Zheng, Cuiqing; Sun, Lijuan; Liu, Jin; Shi, Jiyan
2015-04-09
Impact of S fertilization on Cu mobility and transformation in contaminated paddy soils has been little reported. In this study, we investigated the dynamics and transformation of dissolved and colloidal Cu in the pore water of a contaminated paddy soil after applying ammonium sulphate (AS) and sulfur coated urea (SCU) with various flooding periods (1, 7 and 60 days). Compared to the control soil, the AS-treated soil released more colloidal and dissolved Cu over the entire flooding period, while the SCU-treated soil had lower colloidal Cu after 7-day flooding but higher colloidal and dissolved Cu after 60-day flooding. Microscopic X-ray fluorescence (μ-XRF) analysis found a close relationship between Fe and Cu distribution on soil colloids after 60-day flooding, implying the formation of colloidal Fe/Cu sulphide coprecipitates. Cu K-edge X-ray absorption near-edge structure (XANES) spectroscopy directly revealed the transformation of outer-sphere complexed Cu(II) species to Cu(II) sulphide and reduced Cu2O in the colloids of S-treated soils after 60-day flooding. These results demonstrated the great influence of S fertilization on pore-water Cu mobility by forming Cu sulphide under flooding conditions, which facilitated our understanding and control of Cu loss in contaminated paddy soils under S fertilization. Copyright © 2015 Elsevier B.V. All rights reserved.
Hao, Qin Qin; Shi, Rong Jiu; Hao, Jin Sheng; Zhao, Jin Yi; Li, Guo Qiao; Zhao, Feng; Han, Si Qin; Zhang, Ying
2017-10-01
Injection of alkali, surfactant and polymer (ASP) into oil reservoir can substantially increase oil recovery compared with water-flooding strategy. However, the effects of these agents on the microbial diversity and community structure, which is important for water management and corrosion control in oil industry, are hitherto poorly understood. Here, we disclosed the microbial diversity and community structure in the produced water collected from four producing wells of an ASP-flooded oilfield at Daqing, China, using high-throughput sequencing technique. Results showed that the average pH in produced water was as high as 9.65. The microbial diversity varied from well to well, and the Shannon diversity index was between 2.00 to 3.56. The Proteobacteria (85.5%-98.3%), γ-proteobacteria (83.7%-97.8%), and alkaliphilic Nitrincola (51.8%-82.5%) were the most dominant phylogenetic taxa at the phylum, class, and genus levels, respectively. A total of 12 potentially sulfide-producing genera were detected, and the most abundant taxon was Sulfurospirillum (0.4%-7.4%). The microbial community of ASP-flooded petroleum reservoir was distinct, showing an alkaliphilic or alkalitolerant potential; a reduced diversity and more simple structure were observed compared with those of the water-flooded petroleum reservoirs that were previously reported.
Short-term Operation of Multi-purpose Reservoir using Model Predictive Control
NASA Astrophysics Data System (ADS)
Uysal, Gokcen; Schwanenberg, Dirk; Alvarado Montero, Rodolfo; Sensoy, Aynur; Arda Sorman, Ali
2017-04-01
Operation of water structures especially with conflicting water supply and flood mitigation objectives is under more stress attributed to growing water demand and changing hydro-climatic conditions. Model Predictive Control (MPC) based optimal control solutions has been successfully applied to different water resources applications. In this study, Feedback Control (FBC) and MPC get combined and an improved joint optimization-simulation operating scheme is proposed. Water supply and flood control objectives are fulfilled by incorporating the long term water supply objectives into a time-dependent variable guide curve policy whereas the extreme floods are attenuated by means of short-term optimization based on MPC. A final experiment is carried out to assess the lead time performance and reliability of forecasts in a hindcasting experiment with imperfect, perturbed forecasts. The framework is tested in Yuvacık Dam reservoir where the main water supply reservoir of Kocaeli City in the northwestern part of Turkey (the Marmara region) and it requires a challenging gate operation due to restricted downstream flow conditions.
User's guide for MAGIC-Meteorologic and hydrologic genscn (generate scenarios) input converter
Ortel, Terry W.; Martin, Angel
2010-01-01
Meteorologic and hydrologic data used in watershed modeling studies are collected by various agencies and organizations, and stored in various formats. Data may be in a raw, un-processed format with little or no quality control, or may be checked for validity before being made available. Flood-simulation systems require data in near real-time so that adequate flood warnings can be made. Additionally, forecasted data are needed to operate flood-control structures to potentially mitigate flood damages. Because real-time data are of a provisional nature, missing data may need to be estimated for use in floodsimulation systems. The Meteorologic and Hydrologic GenScn (Generate Scenarios) Input Converter (MAGIC) can be used to convert data from selected formats into the Hydrologic Simulation System-Fortran hourly-observations format for input to a Watershed Data Management database, for use in hydrologic modeling studies. MAGIC also can reformat the data to the Full Equations model time-series format, for use in hydraulic modeling studies. Examples of the application of MAGIC for use in the flood-simulation system for Salt Creek in northeastern Illinois are presented in this report.
Rosa, Sarah N.; Oki, Delwyn S.
2010-01-01
Reliable estimates of the magnitude and frequency of floods are necessary for the safe and efficient design of roads, bridges, water-conveyance structures, and flood-control projects and for the management of flood plains and flood-prone areas. StreamStats provides a simple, fast, and reproducible method to define drainage-basin characteristics and estimate the frequency and magnitude of peak discharges in Hawaii?s streams using recently developed regional regression equations. StreamStats allows the user to estimate the magnitude of floods for streams where data from stream-gaging stations do not exist. Existing estimates of the magnitude and frequency of peak discharges in Hawaii can be improved with continued operation of existing stream-gaging stations and installation of additional gaging stations for areas where limited stream-gaging data are available.
Managing River Resources: A Case Study Of The Damodar River, India
NASA Astrophysics Data System (ADS)
Bhattacharyya, K.
2008-12-01
The Damodar River, a subsystem of the Ganga has always been a flood-prone river. Recorded flood history of the endemic flood prone river can be traced from 1730 onwards. People as well as governments through out the centuries have dealt with the caprices of this vital water resource using different strategies. At one level, the river has been controlled using structures such as embankments, weir, dams and barrage. In the post-independent period, a high powered organization known as the Damodar Valley Corporation (DVC), modeled on the Tennessee Valley Authority (TVA) came into existence on 7th July 1948. Since the completion of the reservoirs the Lower Damodar has become a 'reservoir channel' and is now identified by control structures or cultural features or man made indicators. Man-induced hydrographs below control points during post-dam period (1959-2007) show decreased monsoon discharge, and reduced peak discharge. In pre-dam period (1933-1956) return period of floods of bankfull stage of 7080 m3/s had a recurrence interval of 2 years. In post-dam period the return period for the bankfull stage has been increased to 14 years. The Damodar River peak discharge during pre-dam period for various return periods are much greater than the post-dam flows for the same return periods. Despite flood moderation by the DVC dams, floods visited the river demonstrating that the lower valley is still vulnerable to sudden floods. Contemporary riverbed consists of series of alluvial bars or islands, locally known as mana or char lands which are used as a resource base mostly by Bengali refugees. At another level, people have shown great resourcefulness in living with and adjusting to the floods and dams while living on the alluvial bars. People previously used river resources in the form of silt only but now the semi-fluid or flexible resource has been exploited into a permanent resource in the form of productive sandbars. Valuable long-term data from multiple sources has been used in this study to track flow regime and sedimentation characteristics. Data from topographical maps, cadastral or mouza maps, and satellite images has been consolidated. Significant stress has been given on extensive and intensive field survey in order to assess human perception, adaptability and resource management in the sandbars or char lands. The Damodar River is located in West Bengal, India but the findings on the controlled Lower Damodar are not exclusive to this river. These findings may help in managing water resources in other regulated rivers in India or outside India. The primary objectives of this paper have been to trace the impact of control measures on discharge, sedimentation characteristics and consequent changes in the perception and adjustment of the riverbed occupiers to life with floods and dams. In this age of heightened environmental awareness, we all know that the survival of our civilization depends on rational and constructive maintenance and use of our river resources. The major challenge in the coming decade is to develop a holistic and sustainable river management system that will be environmentally accountable, socially acceptable and economically feasible. The primary issue to be addressed, therefore, is not whether dams are needed but how a river system is cared for in the presence of floods, dams and islanders. River resources should be treated as economic assets since ongoing economic development depends on a riverine regime that is ecologically sound. These worthwhile goals, however, will remain out of reach unless we have effective government policy and the legal structure to support it.
Grand Lake Saint Marys, Ohio, Survey Report for Flood Control and Allied Purposes. Volume 1.
1981-08-01
nuprotected shoreline have reduced the lake depth. A range of structural and, nanatructural flood damage reduction1 usasures wee exmined. Nonstructural masaes ...24 330 Apr 1972 872.67 32 310 Apr 1938 872.42 19 550 Feb 1950 872.42 24 520 Apr 1978 872.17 37 380 Jan 1949 872.08 19 260 Apr 1957 872.08 23 550 Jun...1958 871.92 11 380 May 1933 871.92 5 490 Nov 1972 871.92 9 510 16 . ..... Ie Flood Damages The areas under consideration include Beaver Creek
Bassett Creek Watershed, Hennepin County, Minnesota. Feasibility Report for Control. Appendixes.
1976-03-01
maintenance of the creek corridor . The local interests objected to any plan that would impair the aesthetics of the creek. The needs of the watershed with...OPEN CHANNEL CORRIDOR TO THE MISSISSIPPI RIVR (Alternate 5-E) ...... .............. D-26 COMBINATIONS OF NONSTRUCTURAL AND STRUCTURAL ALTERNATIVES...AND DRE TURNEL (Alternate 6-D) . . ... . . . . . . . . . . D-30 FLOOD STORAGE AND FLOOD PROOFIM. WIT7 AN O(IUI SPACE-- OPEN CHANNEL CORRIDOR TO THE
33 CFR 203.50 - Nonstructural alternatives to rehabilitation of flood control works.
Code of Federal Regulations, 2014 CFR
2014-07-01
... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... rehabilitation, repair, or restoration of flood control works damaged by floods or coastal storms. (b) Policy. (1...
NASA Astrophysics Data System (ADS)
Rasid, Harun; Mallsk, Azim U.
1996-01-01
Environmental impacts of the construction-phase drainage congestion along the Dhaka City Flood Control Embankment were assessed by a pilot questionnaire survey (in 1991) among the target population adjacent to the embankment. The results of the survey indicated that, despite significant alleviation of river flooding, the majority of the respondents experienced a new type of flood problem in the form of stagnant water inside the embankment, immediately following its construction. Not only had this stagnant water flooded and damaged their property, it had exposed them to a number of other environmental problems, such as accumulation of municipal sewage, foul odors, mosquitoes, and growth of water hyacinth. The study found that the respondents’ assessments of these environmental problems differed significantly according to the magnitude of the impact of stagnant water upon two subgroups within the target population. A postsurvey follow-up in 1994 indicated that this problem of drainage congestion had largely been alleviated by completing the construction of a number of drainage regulators. The study concludes by stressing the importance of synchronizing the construction of drainage structures with that of the embankment systems and by underlining policy implications for flood-vulnerable land use adjacent to embankments.
Effects of Flood Control Strategies on Flood Resilience Under Sociohydrological Disturbances
NASA Astrophysics Data System (ADS)
Sung, Kyungmin; Jeong, Hanseok; Sangwan, Nikhil; Yu, David J.
2018-04-01
A community capacity to cope with flood hazards, or community flood resilience, emerges from the interplay of hydrological and social processes. This interplay can be significantly influenced by the flood control strategy adopted by a society, i.e., how a society sets its desired flood protection level and strives to achieve this goal. And this interplay can be further complicated by rising land-sea level differences, seasonal water level fluctuations, and economic change. But not much research has been done on how various forms of flood control strategies affect human-flood interactions under these disturbances and therefore flood resilience in the long run. The current study is an effort to address these issues by developing a conceptual model of human-flood interaction mediated by flood control strategies. Our model extends the existing model of Yu et al. (2017), who investigated the flood resilience of a community-based flood protection system in coastal Bangladesh. The major extensions made in this study are inclusions of various forms of flood control strategies (both adaptive and nonadaptive ones), the challenge of rising land-sea level differences, and various high tide level scenarios generated from modifying the statistical variances and averages. Our results show that adaptive forms of flood control strategies tend to outperform nonadaptive ones for maintaining the model community's flood protection system. Adaptive strategies that dynamically adjust target flood protection levels through close monitoring of flood damages and social memories of flood risk can help the model community deal with various disturbances.
NASA Astrophysics Data System (ADS)
Ward, S. M.; Paulus, G.
2013-06-01
The Danube River basin has long been the location of significant flooding problems across central Europe. The last decade has seen a sharp increase in the frequency, duration and intensity of these flood events, unveiling a dire need for enhanced flood management policy and tools in the region. Located in the southern portion of Austria, the state of Carinthia has experienced a significant volume of intense flood impacts over the last decade. Although the Austrian government has acknowledged these issues, their remedial actions have been primarily structural to date. Continued focus on controlling the natural environment through infrastructure while disregarding the need to consider alternative forms of assessing flood exposure will only act as a provisional solution to this inescapable risk. In an attempt to remedy this flaw, this paper highlights the application of geospatial predictive analytics and spatial recovery index as a proxy for community resilience, as well as the cultural challenges associated with the application of foreign models within an Austrian environment.
FEQinput—An editor for the full equations (FEQ) hydraulic modeling system
Ancalle, David S.; Ancalle, Pablo J.; Domanski, Marian M.
2017-10-30
IntroductionThe Full Equations Model (FEQ) is a computer program that solves the full, dynamic equations of motion for one-dimensional unsteady hydraulic flow in open channels and through control structures. As a result, hydrologists have used FEQ to design and operate flood-control structures, delineate inundation maps, and analyze peak-flow impacts. To aid in fighting floods, hydrologists are using the software to develop a system that uses flood-plain models to simulate real-time streamflow.Input files for FEQ are composed of text files that contain large amounts of parameters, data, and instructions that are written in a format exclusive to FEQ. Although documentation exists that can aid in the creation and editing of these input files, new users face a steep learning curve in order to understand the specific format and language of the files.FEQinput provides a set of tools to help a new user overcome the steep learning curve associated with creating and modifying input files for the FEQ hydraulic model and the related utility tool, Full Equations Utilities (FEQUTL).
Role of beach morphology in wave overtopping hazard assessment
NASA Astrophysics Data System (ADS)
Phillips, Benjamin; Brown, Jennifer; Bidlot, Jean-Raymond; Plater, Andrew
2017-04-01
Understanding the role of beach morphology in controlling wave overtopping volume will further minimise uncertainties in flood risk assessments at coastal locations defended by engineered structures worldwide. XBeach is used to model wave overtopping volume for a 1:200 yr joint probability distribution of waves and water levels with measured, pre- and post-storm beach profiles. The simulation with measured bathymetry is repeated with and without morphological evolution enabled during the modelled storm event. This research assesses the role of morphology in controlling wave overtopping volumes for hazardous events that meet the typical design level of coastal defence structures. Results show disabling storm-driven morphology under-represents modelled wave overtopping volumes by up to 39% under high Hs conditions, and has a greater impact on the wave overtopping rate than the variability applied within the boundary conditions due to the range of wave-water level combinations that meet the 1:200 yr joint probability criterion. Accounting for morphology in flood modelling is therefore critical for accurately predicting wave overtopping volumes and the resulting flood hazard and to assess economic losses.
The Perfect Storm: Changing National Policies to Reduce Flooding Impacts and Costs
2011-12-01
nothing less than work reflecting the highest intellectual and creative efforts. They gave freely of their personal and weekend time to assist me in...this approach encouraged living in unsafe areas. Kahan, Wu, Hajiamiri, and Knopman (2006, p. 7) argue with regards to structural flood control...building levees, make residents feel safe when, in fact, they are still targets for catastrophes should the levee be breached or overtopped.” 22 In
1988-08-01
AVNWMATIOTN & WWe EUPIUSiu a" 4-Sit I I *. L. . ~ ~* *.1.. ~ 4 \\ so ,gumspduCAN*±* , ~ ., .0 AWAAL WAAW 9TW* NEWNHWO ML CW ?or, "DN too of AN P 14 Tga...to lands acquired for flood control purposes. Lands outside the flood control rights-of-way may be acquired for health , safety, and public access on...screening. General esthetic treatments would benefit both the trail users and abutting land users. Structures and signage should be consistent with the
Assessment of big floods in the Eastern Black Sea Basin of Turkey.
Yüksek, Ömer; Kankal, Murat; Üçüncü, Osman
2013-01-01
In this study, general knowledge and some details of the floods in Eastern Black Sea Basin of Turkey are presented. Brief hydro-meteorological analysis of selected nine floods and detailed analysis of the greatest flood are given. In the studied area, 51 big floods have taken place between 1955-2005 years, causing 258 deaths and nearly US $500,000,000 of damage. Most of the floods have occurred in June, July and August. It is concluded that especially for the rainstorms that have caused significantly damages, the return periods of the rainfall heights and resultant flood discharges have gone up to 250 and 500 years, respectively. A general agreement is observed between the return periods of rains and resultant floods. It is concluded that there has been no significant climate change to cause increases in flood harms. The most important human factors to increase the damage are determined as wrong and illegal land use, deforestation and wrong urbanization and settlement, psychological and technical factors. Some structural and non-structural measures to mitigate flood damages are also included in the paper. Structural measures include dykes and flood levees. Main non-structural measures include flood warning system, modification of land use, watershed management and improvement, flood insurance, organization of flood management studies, coordination between related institutions and education of the people and informing of the stakeholders.
Stream channel cross sections for a reach of the Boise River in Ada County, Idaho
Hortness, Jon E.; Werner, Douglas C.
1999-01-01
The Federal Emergency Management Agency produces maps of areas that are likely to be inundated during major floods, usually the 100-year, or 1-percent probability, flood. The maps, called Flood Insurance Rate Maps, are used to determine flood insurance rates for homes, businesses, or other structures located in flood-prone areas. State and local governments also use these maps for help with, among other things, development planning and disaster mitigation. During the period October 1997 through December 1998, the initial phase of a hydraulic analysis project of the Boise River from Barber Dam to the Ada/Canyon County boundary, the U.S. Geological Survey collected stream channel cross-section data at 238 locations along the river and documented 108 elevation reference marks established for horizontal and vertical control. In the final phase of the project, the Survey will use these data to determine water-surface elevations for the 10-, 50-, 100-, and 500-year floods and to define floodway limits. The Federal Emergency Management Agency will use the results of this hydraulic analysis to update the 100- and 500-year flood boundaries and the floodway limits on their Flood Insurance Rate Maps.
Carrel, Margaret; Voss, Paul; Streatfield, Peter K; Yunus, Mohammad; Emch, Michael
2010-03-22
Alteration of natural or historical aquatic flows can have unintended consequences for regions where waterborne diseases are endemic and where the epidemiologic implications of such change are poorly understood. The implementation of flood protection measures for a portion of an intensely monitored population in Matlab, Bangladesh, allows us to examine whether cholera outcomes respond positively or negatively to measures designed to control river flooding. Using a zero inflated negative binomial model, we examine how selected covariates can simultaneously account for household clusters reporting no cholera from those with positive counts as well as distinguishing residential areas with low counts from areas with high cholera counts. Our goal is to examine how residence within or outside a flood protected area interacts with the probability of cholera presence and the effect of flood protection on the magnitude of cholera prevalence. In Matlab, living in a household that is protected from annual monsoon flooding appears to have no significant effect on whether the household experiences cholera, net of other covariates. However, counter-intuitively, among households where cholera is reported, living within the flood protected region significantly increases the number of cholera cases. The construction of dams or other water impoundment strategies for economic or social motives can have profound and unanticipated consequences for waterborne disease. Our results indicate that the construction of a flood control structure in rural Bangladesh is correlated with an increase in cholera cases for residents protected from annual monsoon flooding. Such a finding requires attention from both the health community and from governments and non-governmental organizations involved in ongoing water management schemes.
Retransmission of hydrometric data in Canada
NASA Technical Reports Server (NTRS)
Halliday, R. A. (Principal Investigator); Reid, I. A.
1978-01-01
The author has identified the following significant results. The LANDSAT program has demonstrated that polar orbiting satellites can be used to relay hydrologic data from any part of Canada to a user without difficulty and at low cost. These data can be used for many operational purposes, the most important of which were identified as follows: hydroelectric power plant operation; water supply for municipalities, industries, and irrigation; navigation; flood forecasting; operation of flood control structures and systems; and recreation.
Cities and Sea Level Rise: A Roadmap for Flood Hazard Adaptation
NASA Astrophysics Data System (ADS)
Horn, D. P.; Cousins, A.
2015-12-01
Coastal cities will face a range of increasingly severe challenges as sea level rises, and adaptation to future flood risk will require more than structural defences. Many cities will not be able to rely solely on engineering structures for protection and will need to develop a suite of policy responses to increase their resilience to impacts of rising sea level. Local governments generally maintain day-to-day responsibility and control over the use of the vast majority of property at risk of flooding, and the tools to promote flood risk adaptation are already within the capacity of most cities. Policy tools available to address other land-use problems can be refashioned and used to adapt to sea level rise. This study reviews approaches for urban adaptation through case studies of cities which have developed flood adaptation strategies that combine structural defences with innovative approaches to living with flood risk. The aim of the overall project is to produce a 'roadmap' to guide practitioners through the process of analysing coastal flood risk in urban areas. Technical knowledge of flood risk reduction measures is complemented with a consideration of the essential impact that local policy has on the treatment of coastal flooding and the constraints and opportunities that result from the specific country or locality characteristics in relation to economic, political, social and environmental priorities, which are likely to dictate the approach to coastal flooding and the actions proposed. Detailed analyses of the adaptation strategies used by Rotterdam (Netherlands), Bristol (UK), and Norfolk (Virginia) are used to draw out a range of good practice elements that promote effective adaptation to sea level rise. These can be grouped into risk reduction, governance issues, and insurance, and can be used to provide examples of how other cities could adopt and implement flood adaptation strategies from a relatively limited starting position. Most cities will neither be able to defend all areas nor retreat entirely and will need to make a decision to retreat from certain locations or to relocate particular assets in areas at lower risk. We identify a series of specific questions which should be answered by city managers when selecting the most appropriate response for a particular location.
NASA Astrophysics Data System (ADS)
Xuejiao, M.; Chang, J.; Wang, Y.
2017-12-01
Flood risk reduction with non-engineering measures has become the main idea for flood management. It is more effective for flood risk management to take various non-engineering measures. In this paper, a flood control operation model for cascade reservoirs in the Upper Yellow River was proposed to lower the flood risk of the water system with multi-reservoir by combining the reservoir flood control operation (RFCO) and flood early warning together. Specifically, a discharge control chart was employed to build the joint RFCO simulation model for cascade reservoirs in the Upper Yellow River. And entropy-weighted fuzzy comprehensive evaluation method was adopted to establish a multi-factorial risk assessment model for flood warning grade. Furthermore, after determining the implementing mode of countermeasures with future inflow, an intelligent optimization algorithm was used to solve the optimization model for applicable water release scheme. In addition, another model without any countermeasure was set to be a comparative experiment. The results show that the model developed in this paper can further decrease the flood risk of water system with cascade reservoirs. It provides a new approach to flood risk management by coupling flood control operation and flood early warning of cascade reservoirs.
Review Article: Structural flood-protection measures referring to several European case studies
NASA Astrophysics Data System (ADS)
Kryžanowski, A.; Brilly, M.; Rusjan, S.; Schnabl, S.
2014-01-01
The paper presents a review of structural measures that were taken to cope with floods in some cities along the Danube River, such as Vienna, Bratislava, and Belgrade. These cities were also considered as case studies within the KULTURisk project. The structural measures are reviewed and compared to each other according to the type, duration of application, the return period of the design flood event, how the project measures are integrated into spatial planning and the problems that occur in the flood defences today. Based on this review, some suggestions are given on how to improve the flood risk management in flood-prone areas.
Flood information for flood-plain planning
Bue, Conrad D.
1967-01-01
Floods are natural and normal phenomena. They are catastrophic simply because man occupies the flood plain, the highwater channel of a river. Man occupies flood plains because it is convenient and profitable to do so, but he must purchase his occupancy at a price-either sustain flood damage, or provide flood-control facilities. Although large sums of money have been, and are being, spent for flood control, flood damage continues to mount. However, neither complete flood control nor abandonment of the flood plain is practicable. Flood plains are a valuable resource and will continue to be occupied, but the nature and degree of occupancy should be compatible with the risk involved and with the degree of protection that is practicable to provide. It is primarily to meet the needs for defining the risk that the flood-inundation maps of the U.S. Geological Survey are prepared.
Wentz, Dennis A.; Graczyk, David J.
1982-01-01
From 1960 to 1979, winter floods seem to have had the greatest adverse effect on the survival of brown trout eggs and sac fry. Although construction of the FRS has eliminated some spawning gravels in the flood pool owing to sedimentation, the wild trout have adapted by using spawning grounds above the flood pool more extensively and intensively. The FRS has not blocked the upstream migration of spawning trout, but it has eliminated similar migrations of fish that compete with and prey on the trout. Controlled streamflows downstream from the FRS have had a stabilizing influence on the limited trout reproduction in this region.
Compilation of hydrologic data, Little Elm Creek, Trinity River basin, Texas, 1968
,
1972-01-01
The U.S. Soil Conservation Service is actively engaged in the installation of flood and soil erosion reducing measures in Texas under the authority of "The Flood Control Act ot 1936 and 1944" and ''Watershed Protection and Flood Prevention Act" (Public Law 566), as amended. In June 1968, the Soil Conservation Service estimated approximately 3,500 structures to be physically and economically feasible for installation in Texas. As of September 30, 1968, 1,271 of these structures had been built. This watershed-development program will have varying but important effects on the surface- and ground-water resources of river basins, especially where a large number of the floodwater-retarding structures are built. Basic hydrologic data are needed to appraise the effects of the structures on water yield and the mode of occurrence of runoff. Hydrologic investigations of these small watersheds were begun by the Geological Survey in 1951 and are now being made in 11 areas (fig. 1). These studies are being made in cooperation with t he Texas Water Development Board, the Soil Conservation Service, the San Antonio River Authority, the city of Dallas, and the Tarrant County Water Control and Improvement District No. 1. The 11 study areas were choson to sample watersheds having different rainfall, topography, geology, and soils. In four of the study areas (Mukewater, North, Little Elm, and Pin Oak Creeks), streamflow and rainfall records were collected prior to construction of the floodwater-retarding structures, thus affording the opportunity for analyses to the conditions before and after" development. Structures have now been built in three of these study areas. A summary of the development of the floodwater-retarding structures on each study area as of September 30, 1968, is shown in table 1.
Detention basin alternative outlet design study.
DOT National Transportation Integrated Search
2016-10-01
This study examines the outlets structures CDOT has historically employed to drain water quality treatment detention basins and flood control basins, presents two new methods of metering the water quality capture volume (WQCV), namely 1) the Elliptic...
Investigation of flood routing by a dynamic wave model in trapezoidal channels
NASA Astrophysics Data System (ADS)
Sulistyono, B. A.; Wiryanto, L. H.
2017-08-01
The problems of flood wave propagation, in bodies of waters, cause by intense rains or breaking of control structures, represent a great challenge in the mathematical modeling processes. This research concerns about the development and application of a mathematical model based on the Saint Venant's equations, to study the behavior of the propagation of a flood wave in trapezoidal channels. In these equations, the momentum equation transforms to partial differential equation which has two parameters related to cross-sectional area and discharge of the channel. These new formulas have been solved by using an explicit finite difference scheme. In computation procedure, after computing the discharge from the momentum equation, the cross-sectional area will be obtained from the continuity equation for a given point of channel. To evaluate the behavior of the control variables, several scenarios for the main channel as well as for flood waves are considered and different simulations are performed. The simulations demonstrate that for the same bed width, the peak discharge in trapezoidal channel smaller than in rectangular one at a specific distance along the channel length and so, that roughness coefficient and bed slope of the channel play a strong game on the behavior of the flood wave propagation.
33 CFR 239.7 - Separation of flood control works from urban drainage.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Separation of flood control works... OF THE ARMY, DEPARTMENT OF DEFENSE WATER RESOURCES POLICIES AND AUTHORITIES: FEDERAL PARTICIPATION IN COVERED FLOOD CONTROL CHANNELS § 239.7 Separation of flood control works from urban drainage. Covered...
33 CFR 208.32 - Sanford Dam and Lake Meredith, Canadian River, Tex.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Lake Meredith in the interest of flood control as follows: (a) Flood control storage in the reservoir... control pool) initially amounts to 462,100 acre-feet. Whenever the reservoir level is within this... as much as practicable the flood damage below the reservoir. All flood control releases shall be made...
33 CFR 208.32 - Sanford Dam and Lake Meredith, Canadian River, Tex.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Lake Meredith in the interest of flood control as follows: (a) Flood control storage in the reservoir... control pool) initially amounts to 462,100 acre-feet. Whenever the reservoir level is within this... as much as practicable the flood damage below the reservoir. All flood control releases shall be made...
33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.
Code of Federal Regulations, 2010 CFR
2010-07-01
... potential for catastrophic failure to cause significant loss of life, the economic benefits of the area... identify critical sections where levee stability appears weakest and will document the location, reach, and... stability of the structure. (4) Other structural features. Other features that may be present, such as pump...
18 CFR 1304.406 - Removal of unauthorized, unsafe, and derelict structures or facilities.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Removal of unauthorized, unsafe, and derelict structures or facilities. 1304.406 Section 1304.406 Conservation of Power and Water... flood control) is anchored, installed, constructed, or moored in a manner inconsistent with this part...
Use long short-term memory to enhance Internet of Things for combined sewer overflow monitoring
NASA Astrophysics Data System (ADS)
Zhang, Duo; Lindholm, Geir; Ratnaweera, Harsha
2018-01-01
Combined sewer overflow causes severe water pollution, urban flooding and reduced treatment plant efficiency. Understanding the behavior of CSO structures is vital for urban flooding prevention and overflow control. Neural networks have been extensively applied in water resource related fields. In this study, we collect data from an Internet of Things monitoring CSO structure and build different neural network models for simulating and predicting the water level of the CSO structure. Through a comparison of four different neural networks, namely multilayer perceptron (MLP), wavelet neural network (WNN), long short-term memory (LSTM) and gated recurrent unit (GRU), the LSTM and GRU present superior capabilities for multi-step-ahead time series prediction. Furthermore, GRU achieves prediction performances similar to LSTM with a quicker learning curve.
Real-Time Optimal Flood Control Decision Making and Risk Propagation Under Multiple Uncertainties
NASA Astrophysics Data System (ADS)
Zhu, Feilin; Zhong, Ping-An; Sun, Yimeng; Yeh, William W.-G.
2017-12-01
Multiple uncertainties exist in the optimal flood control decision-making process, presenting risks involving flood control decisions. This paper defines the main steps in optimal flood control decision making that constitute the Forecast-Optimization-Decision Making (FODM) chain. We propose a framework for supporting optimal flood control decision making under multiple uncertainties and evaluate risk propagation along the FODM chain from a holistic perspective. To deal with uncertainties, we employ stochastic models at each link of the FODM chain. We generate synthetic ensemble flood forecasts via the martingale model of forecast evolution. We then establish a multiobjective stochastic programming with recourse model for optimal flood control operation. The Pareto front under uncertainty is derived via the constraint method coupled with a two-step process. We propose a novel SMAA-TOPSIS model for stochastic multicriteria decision making. Then we propose the risk assessment model, the risk of decision-making errors and rank uncertainty degree to quantify the risk propagation process along the FODM chain. We conduct numerical experiments to investigate the effects of flood forecast uncertainty on optimal flood control decision making and risk propagation. We apply the proposed methodology to a flood control system in the Daduhe River basin in China. The results indicate that the proposed method can provide valuable risk information in each link of the FODM chain and enable risk-informed decisions with higher reliability.
Vannote, R L; Minshall, G W
1982-07-01
In the Salmon River Canyon, Idaho, the fresh-water pearl mussel, Margaritifera falcata, attains maximum density and age in river reaches where large block-boulders structurally stabilize cobbles and interstitial gravels. We hypothesize that block-boulders prevent significant bed scour during major floods, and these boulder-sheltered mussel beds, although rare, may be critical for population recruitment elsewhere within the river, especially after periodic flood scour of less protected mussel habitat. Mussel shells in Indian middens adjacent to these boulder-stabilized areas suggest that prehistoric tribes selectively exploited the high-density old-aged mussel beds. Locally, canyon reaches are aggrading with sand and gravel, and M. falcata is being replaced by Gonidea angulata.
33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.
Code of Federal Regulations, 2012 CFR
2012-07-01
... flood control all as follows: (a) Storage space in Don Pedro Reservoir shall be kept available for flood-control purposes in accordance with the Flood-Control Storage Reservation Diagram currently in force for... section. The Flood-Control Storage Reservation Diagram in force as of the promulgation of this section is...
33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... flood control all as follows: (a) Storage space in Don Pedro Reservoir shall be kept available for flood-control purposes in accordance with the Flood-Control Storage Reservation Diagram currently in force for... section. The Flood-Control Storage Reservation Diagram in force as of the promulgation of this section is...
Historical Sediment Sources and Delivery on the Lower Mississippi River
NASA Astrophysics Data System (ADS)
Dahl, T. A.; Biedenharn, D. S.; Little, C. D.
2015-12-01
The development of the Lower Mississippi River (LMR) and its floodplain for navigation and flood control has been ongoing since the 18th century, with the most concerted efforts occurring as a result of the Flood Control Act (FCA) of 1928 following the Great Flood of 1927. The Mississippi River and Tributaries (MR&T) Project that was spawned from the FCA of 1928 has produced a massive, comprehensive system for flood control and channel stabilization that includes levees, channel improvements, and floodways, as well as tributary reservoirs and other basin improvements. Additionally, the development of the river for safe and dependable navigation has generated a substantial engineering effort involving river training structures, meander cutoffs, and dredging. The historical, and present-day morphology of the LMR reflects an integration of all these engineering interventions (and the process-responses they have triggered in the fluvial system), combined with natural drivers of channel change and evolution, including floods and droughts, hurricanes, neotectonic activity, geologic outcrops, climate change, and relative sea-level rise. In response to the complex requirements in navigation, flood risk reduction, and environmental restoration, all with multiple stakeholders, the U.S. Army Corps of Engineers created the Mississippi River Geomorphology & Potamology (MRG&P) Program. The goals of the MRG&P are to advance the knowledge of the geomorphology of the LMR and to transfer this technology to improve and sustain long-term management of the system. The results presented herein come from several MRG&P studies. The historical river morphology, and particularly the sources and delivery of sediments have changed dramatically over the past two centuries. In this presentation, the changes in sediment sources, and the manner in which this sediment is delivered through the channel system from the early 1800s to present-day is described.
Multiscale control of flooding and riparian-forest composition in Lower Michigan, USA.
Baker, Matthew E; Wiley, Michael J
2009-01-01
Despite general agreement that river-valley hydrology shapes riparian ecosystems, relevant processes are difficult to distinguish and often inadequately specified in riparian studies. We hypothesize that physical constraints imposed by broad-scale watershed characteristics and river valleys modify local site conditions in a predictable and probabilistic fashion. To test this hypothesis, we employ a series of structural equations that decompose occurrence of riparian ecotypes into regional temperature, catchment storm response, valley hydraulics, and local site wetness via a priori specification of factor structure and ask (1) Is there evidence for multiscale hydrologic control of riparian diversity across Lower Michigan? (2) Do representations of key constraints on flood dynamics distinguish regional patterns of riparian vegetation? (3) How important are these effects? Cross-correlation among geospatial predictors initially obscured much of the variation revealed through analysis of semipartial variance. Causal relationships implied by our model fit with observed variation in riparian conditions (chi-square P = 0.43) and accounted for between 84% and 99% of the occurrence probability of five riparian ecotypes at 94 locations. Results suggest strong variation in the effects of regional climate, and both the relative importance and spatial scale of hydrologic factors influencing riparian vegetation through explicit quantification of relative flood frequency, duration, intensity, and relative overall inundation. Although climate and hydrology are not the only determinants of riparian conditions, interactions of hydrologic sourcing and flood dynamics described by our spatial models drive a significant portion of the variation in riparian ecosystem character throughout Lower Michigan, USA.
33 CFR 209.300 - Flood control regulations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Flood control regulations. 209..., DEPARTMENT OF DEFENSE ADMINISTRATIVE PROCEDURE § 209.300 Flood control regulations. (a) Regulations for the operation and maintenance of local flood protection works approved by the Secretary of the Army under the...
A New Approach to Flood Protection Design and Riparian Management
Philip B. Williams; Mitchell L. Swanson
1989-01-01
Conventional engineering methods of flood control design focus narrowly on the efficient conveyance of water, with little regard for environmental resource planning and natural geomorphic processes. Consequently, flood control projects are often environmentally disastrous, expensive to maintain, and even inadequate to control floods. In addition, maintenance programs...
NASA Astrophysics Data System (ADS)
Akyurek, Z.; Bozoglu, B.; Girayhan, T.
2015-12-01
Flooding has the potential to cause significant impacts to economic activities as well as to disrupt or displace populations. Changing climate regimes such as extreme precipitation events increase flood vulnerability and put additional stresses on infrastructure. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is done. MIKE21 with flexible grid is used in 2- dimensional shallow water flow modelling. 1/1000 scaled maps with the buildings for the urbanized area and 1/5000 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of Q5 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The effects of the available structures like bridges across the river on the flooding are presented. The upstream structural measures are studied on scenario basis. Four sub-catchments of Terme River are considered as contributing the downstream flooding. The existing circumstance of the Terme River states that the meanders of the river have a major effect on the flood situation and lead to approximately 35% reduction in the peak discharge between upstream and downstream of the river. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in at least two of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed. Flood risk is obtained by using the flood hazard maps and water depth-damage functions plotted for a variety of building types and occupancies. The estimated mean annual hazard for the area is calculated as $340 000 and it is estimated that the upstream structural management measures can decrease the direct economic risk 11% for the 500 return period flood.
Safety in the Chemical Laboratory: Flood Control.
ERIC Educational Resources Information Center
Pollard, Bruce D.
1983-01-01
Describes events leading to a flood in the Wehr Chemistry Laboratory at Marquette University, discussing steps taken to minimize damage upon discovery. Analyzes the problem of flooding in the chemical laboratory and outlines seven steps of flood control: prevention; minimization; early detection; stopping the flood; evaluation; clean-up; and…
The physical vulnerability of elements at risk: a methodology based on fluid and classical mechanics
NASA Astrophysics Data System (ADS)
Mazzorana, B.; Fuchs, S.; Levaggi, L.
2012-04-01
The impacts of the flood events occurred in autumn 2011 in the Italian regions Liguria and Tuscany revived the engagement of the public decision makers to enhance in synergy flood control and land use planning. In this context, the design of efficient flood risk mitigation strategies and their subsequent implementation critically relies on a careful vulnerability analysis of both, the immobile and mobile elements at risk potentially exposed to flood hazards. Based on fluid and classical mechanics notions we developed computation schemes enabling for a dynamic vulnerability and risk analysis facing a broad typological variety of elements at risk. The methodological skeleton consists of (1) hydrodynamic computation of the time-varying flood intensities resulting for each element at risk in a succession of loading configurations; (2) modelling the mechanical response of the impacted elements through static, elasto-static and dynamic analyses; (3) characterising the mechanical response through proper structural damage variables and (4) economic valuation of the expected losses as a function of the quantified damage variables. From a computational perspective we coupled the description of the hydrodynamic flow behaviour and the induced structural modifications of the elements at risk exposed. Valuation methods, suitable to support a correct mapping from the value domains of the physical damage variables to the economic loss values are discussed. In such a way we target to complement from a methodological perspective the existing, mainly empirical, vulnerability and risk assessment approaches to refine the conceptual framework of the cost-benefit analysis. Moreover, we aim to support the design of effective flood risk mitigation strategies by diminishing the main criticalities within the systems prone to flood risk.
Potentialities of ensemble strategies for flood forecasting over the Milano urban area
NASA Astrophysics Data System (ADS)
Ravazzani, Giovanni; Amengual, Arnau; Ceppi, Alessandro; Homar, Víctor; Romero, Romu; Lombardi, Gabriele; Mancini, Marco
2016-08-01
Analysis of ensemble forecasting strategies, which can provide a tangible backing for flood early warning procedures and mitigation measures over the Mediterranean region, is one of the fundamental motivations of the international HyMeX programme. Here, we examine two severe hydrometeorological episodes that affected the Milano urban area and for which the complex flood protection system of the city did not completely succeed. Indeed, flood damage have exponentially increased during the last 60 years, due to industrial and urban developments. Thus, the improvement of the Milano flood control system needs a synergism between structural and non-structural approaches. First, we examine how land-use changes due to urban development have altered the hydrological response to intense rainfalls. Second, we test a flood forecasting system which comprises the Flash-flood Event-based Spatially distributed rainfall-runoff Transformation, including Water Balance (FEST-WB) and the Weather Research and Forecasting (WRF) models. Accurate forecasts of deep moist convection and extreme precipitation are difficult to be predicted due to uncertainties arising from the numeric weather prediction (NWP) physical parameterizations and high sensitivity to misrepresentation of the atmospheric state; however, two hydrological ensemble prediction systems (HEPS) have been designed to explicitly cope with uncertainties in the initial and lateral boundary conditions (IC/LBCs) and physical parameterizations of the NWP model. No substantial differences in skill have been found between both ensemble strategies when considering an enhanced diversity of IC/LBCs for the perturbed initial conditions ensemble. Furthermore, no additional benefits have been found by considering more frequent LBCs in a mixed physics ensemble, as ensemble spread seems to be reduced. These findings could help to design the most appropriate ensemble strategies before these hydrometeorological extremes, given the computational cost of running such advanced HEPSs for operational purposes.
33 CFR 203.42 - Inspection of non-Federal flood control works.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm: The Corps... standards and is capable of providing the intended degree of flood protection. An Acceptable or Minimally...
Flood-related work disruption and poor health outcomes among university students.
Peek-Asa, Corinne; Ramirez, Marizen; Young, Tracy; Cao, YanYan
2012-12-01
Globally, floods are the most common and among the most devastating of natural disasters. Natural disasters such as floods impact local businesses, increasing local unemployment by up to 8.2%. Previous research has linked individual losses from disasters with symptoms such as posttraumatic stress disorder. However, little is known about the impact of work disruption and job loss on post-disaster psychological symptoms. University students, who are often living far away from family support structures and have limited resources, may be particularly vulnerable. This study examines student psychological health following a large flood at a university. Students who experienced flood-related job loss or disruption had a higher proportion of psychological symptoms than those who did not experience job loss or disruption, controlling for individual loss such as injury, home loss or evacuation. On June 8, 2008, a major flood affected seven US Midwestern states. A total of two dozen people were killed and 148 injured, although no deaths or serious injuries were reported in the population used for this study. At the study university, operations were closed for one week, and 20 buildings were severely damaged. A cross-sectional survey of all students enrolled during the semester of the flood was conducted. Students were sent an online survey six weeks after the flood. In addition to questions about damage to their homes, the survey asked students if their work was disrupted because of the floods. Symptoms of PTSD were measured through the modified Child PTSD Symptom Scale. Of the 1,231 responding students with complete surveys, 667 (54.2%) reported that their work was disrupted due to the floods. Controlling for gender, ethnicity, grade, and damage to the student's home, students reporting work disruption were more than four times more likely to report PTSD symptoms (95% CI, 2.5-8.2). Work disruption was independently associated with decreases in general mental and physical health following the floods, as well as with increases in alcohol use. Disaster research has focused on damage to individuals and homes, but there has been little focus on work losses. Individuals who lose their jobs may be a vulnerable population post-disaster.
The 3D Elevation Program—Flood risk management
Carswell, William J.; Lukas, Vicki
2018-01-25
Flood-damage reduction in the United States has been a longstanding but elusive societal goal. The national strategy for reducing flood damage has shifted over recent decades from a focus on construction of flood-control dams and levee systems to a three-pronged strategy to (1) improve the design and operation of such structures, (2) provide more accurate and accessible flood forecasting, and (3) shift the Federal Emergency Management Agency (FEMA) National Flood Insurance Program to a more balanced, less costly flood-insurance paradigm. Expanding the availability and use of high-quality, three-dimensional (3D) elevation information derived from modern light detection and ranging (lidar) technologies to provide essential terrain data poses a singular opportunity to dramatically enhance the effectiveness of all three components of this strategy. Additionally, FEMA, the National Weather Service, and the U.S. Geological Survey (USGS) have developed tools and joint program activities to support the national strategy.The USGS 3D Elevation Program (3DEP) has the programmatic infrastructure to produce and provide essential terrain data. This infrastructure includes (1) data acquisition partnerships that leverage funding and reduce duplicative efforts, (2) contracts with experienced private mapping firms that ensure acquisition of consistent, low-cost 3D elevation data, and (3) the technical expertise, standards, and specifications required for consistent, edge-to-edge utility across multiple collection platforms and public access unfettered by individual database designs and limitations.High-quality elevation data, like that collected through 3DEP, are invaluable for assessing and documenting flood risk and communicating detailed information to both responders and planners alike. Multiple flood-mapping programs make use of USGS streamflow and 3DEP data. Flood insurance rate maps, flood documentation studies, and flood-inundation map libraries are products of these programs.
Floods of January-February 1963 in California and Nevada
Rantz, S.E.; Harris, E.E.
1963-01-01
Widespread flooding occurred in central California and northwestern Nevada during January 31 - February 1, 1963, as a result of intense precipitation of about 72 hours duration. The flood-producing storm was of the warm type, with precipitation falling as rain at altitudes as high as 8,000 feet. The heavy precipitation, totaling as much as 20 inches or more in the Sierra Nevada, fell on frozen ground or on the sparse snowpack that existed in the higher altitudes. The response of runoff to rainfall was dramatic, as streams throughout the area rose rapidly. Hardest hit were the basins of the American, Yuba, and Truckee Rivers, where flood peaks either reached record-breaking heights or rivalled the discharges attained in the memorable floods of November 1950 and December 1955. Because of the relatively short duration of the storm, the volume of flood flow in 1963 was not outstanding. Ten deaths were attributed to the storm or flood. Preliminary estimates indicate damage in excess of $16 million in foothill and valley areas, but no attempt has yet been made to assess the heavy damage to highways and drainage structures in the mountain areas. The U. S. Army, Corps of Engineirs estimates that its operation of flood-control facilities prevented additional damage of $236 million. Other reservoirs, operated primarily for water conservation or power production, were also instrumental in preventing damage.
NASA Astrophysics Data System (ADS)
Jeong, C.; Om, J.; Hwang, J.; Joo, K.; Heo, J.
2013-12-01
In recent, the frequency of extreme flood has been increasing due to climate change and global warming. Highly flood damages are mainly caused by the collapse of flood control structures such as dam and dike. In order to reduce these disasters, the disaster management system (DMS) through flood forecasting, inundation mapping, EAP (Emergency Action Plan) has been studied. The estimation of inundation damage and practical EAP are especially crucial to the DMS. However, it is difficult to predict inundation and take a proper action through DMS in real emergency situation because several techniques for inundation damage estimation are not integrated and EAP is supplied in the form of a document in Korea. In this study, the integrated simulation system including rainfall frequency analysis, rainfall-runoff modeling, inundation prediction, surface runoff analysis, and inland flood analysis was developed. Using this system coupled with standard GIS data, inundation damage can be estimated comprehensively and automatically. The standard EAP based on BIM (Building Information Modeling) was also established in this system. It is, therefore, expected that the inundation damages through this study over the entire area including buildings can be predicted and managed.
Study of flood defense structural measures priorities using Compromise Programming technique
NASA Astrophysics Data System (ADS)
Lim, D.; Jeong, S.
2017-12-01
Recent climate change of global warming has led to the frequent occurrence of heavy regional rainfalls. As such, inundation vulnerability increases in urban areas with high population density due to the low runoff carrying capacity. This study selects a sample area (Janghang-eup, the Republic of Korea), which is one of the most vulnerable areas to flooding, analyzing the urban flood runoff model (XP-SWMM) and using the MCDM (Multi-Criteria Decision Making) technique to establish flood protection structural measures. To this end, we compare the alternatives and choose the optimal flood defense measure: our model is utilized with three flood prevention structural measures; (i) drainage pipe construction; (ii) water detention; and (iii) flood pumping station. Dividing the target area into three small basins, we propose flood evaluations for an inundation decrease by studying the flooded area, the maximum inundation depth, the damaged residential area, and the construction cost. In addition, Compromise Programming determines the priority of the alternatives. As a consequent, this study suggests flood pumping station for Zone 1 and drainage pipe construction for Zone 2 and Zone 3, respectively, as the optimal flood defense alternative. Keywords : MCDM; Compromise Programming; Urban Flood Prevention; This research was supported by a grant [MPSS-DP-2013-62] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.
Singer, M.B.
2007-01-01
This paper reports basinwide patterns of hydrograph alteration via statistical and graphical analysis from a network of long-term streamflow gauges located various distances downstream of major dams and confluences in the Sacramento River basin in California, USA. Streamflow data from 10 gauging stations downstream of major dams were divided into hydrologic series corresponding to the periods before and after dam construction. Pre- and post-dam flows were compared with respect to hydrograph characteristics representing frequency, magnitude and shape: annual flood peak, annual flow trough, annual flood volume, time to flood peak, flood drawdown time and interarrival time. The use of such a suite of characteristics within a statistical and graphical framework allows for generalising distinct strategies of flood control operation that can be identified without any a priori knowledge of operations rules. Dam operation is highly dependent on the ratio of reservoir capacity to annual flood volume (impounded runoff index). Dams with high values of this index generally completely cut off flood peaks thus reducing time to peak, drawdown time and annual flood volume. Those with low values conduct early and late flow releases to extend the hydrograph, increasing time to peak, drawdown time and annual flood volume. The analyses reveal minimal flood control benefits from foothill dams in the lower Sacramento River (i.e. dissipation of the down-valley flood control signal). The lower part of the basin is instead reliant on a weir and bypass system to control lowland flooding. Data from a control gauge (i.e. with no upstream dams) suggest a background signature of global climate change expressed as shortened flood hydrograph falling limbs and lengthened flood interarrival times at low exceedence probabilities. This research has implications for flood control, water resource management, aquatic and riparian ecosystems and for rehabilitation strategies involving flow alteration and/or manipulation of sediment supplies. Copyright ?? 2006 John Wiley & Sons, Ltd.
Changes in Soil Microbial Community Structure with Flooding
USDA-ARS?s Scientific Manuscript database
Flooding disturbs both above- and below-ground ecosystem processes. Although often ignored, changes in below-ground environments are no less important than those that occur above-ground. Shifts in soil microbial community structure are expected when anaerobic conditions develop from flooding. The ...
Upper Washita River experimental watersheds: Sediment Database
USDA-ARS?s Scientific Manuscript database
Improving the scientific understanding of the effectiveness of watershed conservation practices and floodwater-retardation structures to control floods and soil erosion is one of the primary objectives for sediment studies in the upper Washita River Experimental Watersheds. This paper summarizes se...
A Methodology to Define Flood Resilience
NASA Astrophysics Data System (ADS)
Tourbier, J.
2012-04-01
Flood resilience has become an internationally used term with an ever-increasing number of entries on the Internet. The SMARTeST Project is looking at approaches to flood resilience through case studies at cities in various countries, including Washington D.C. in the United States. In light of U.S. experiences a methodology is being proposed by the author that is intended to meet ecologic, spatial, structural, social, disaster relief and flood risk aspects. It concludes that: "Flood resilience combines (1) spatial, (2) structural, (3) social, and (4) risk management levels of flood preparedness." Flood resilience should incorporate all four levels, but not necessarily with equal emphasis. Stakeholders can assign priorities within different flood resilience levels and the considerations they contain, dividing 100% emphasis into four levels. This evaluation would be applied to planned and completed projects, considering existing conditions, goals and concepts. We have long known that the "road to market" for the implementation of flood resilience is linked to capacity building of stakeholders. It is a multidisciplinary enterprise, involving the integration of all the above aspects into the decision-making process. Traditional flood management has largely been influenced by what in the UK has been called "Silo Thinking", involving constituent organizations that are responsible for different elements, and are interested only in their defined part of the system. This barrier to innovation also has been called the "entrapment effect". Flood resilience is being defined as (1) SPATIAL FLOOD RESILIENCE implying the management of land by floodplain zoning, urban greening and management to reduce storm runoff through depression storage and by practicing Sustainable Urban Drainage (SUD's), Best Management Practices (BMP's, or Low Impact Development (LID). Ecologic processes and cultural elements are included. (2) STRUCTURAL FLOOD RESILIENCE referring to permanent flood defense structures such as levies, demountable structures that are partially installed, temporary structures that are removable, as well as dry- and` wet floodproofing of structures to meet construction standards to deflect or resist pressure without breaking. (3)SOCIAL FLOOD RESILIENCE referring to the building of robust institutions (including NGO's) and governance systems that underpin our capacity to prepare for and cope with uncertainty, change, and disasters when they occur. (4) FLOOD RISK RESILIENCE implies the ability to withstand and recover from crises through financial insurance assistance and through assistance by governmental institutions, including the communication of information on floodproofing steps that individuals can take on their own. Within these four levels considerations are outlined to form categories within a matrix as a way to set planning priorities by considering existing conditions, to formulate goals and to develop concepts. The matrix can function as indicators of success for a pre-and post-project assessment. A clear formulation of goals is an essential first step in the planning process, and a pre-requisite for the monitoring of performance. Policy makers would be involved in an active policy process, which has been called "a learning and action alliance to build capacity for flood resilience.
Disastrous torrential floods in mountain areas in Serbia
NASA Astrophysics Data System (ADS)
Gavrilovic, Z.
2009-04-01
In Serbia, the relief is predominantly hilly and mountainous, intersected with numerous rivers. The greatest number of watercourses are small torrents; however the proportionally large rivers also have a distinctive torrential character. The highest parts of the catchments are at the altitudes above 1500 m, while their confluences are at the altitudes of 200 - 300 m. The catchment and channel slopes are extremely steep. So, as the initial natural preconditions are satisfied, torrential floods are the consequence. Although the Južna Morava catchments were regulated by erosion control works, during the last decades there were numerous torrential floods. Some of the floods had disastrous proportions, not recorded in Serbia or in Europe. The flood of river Vlasina in 1988 was presented to the professional public several times. This flood was not an isolated case. Many large-scale torrential floods occurred in Serbia from 1994 to 2007. As there were floods also in 2007, the causes of the recorded floods had to be analysed. The analysis pointed out a series of scenarios which were the causes of disastrous torrential floods, and also the disadvantages of the actual system of torrent and erosion control. Special attention was focused on the floods which resulted from sudden snow melting. This paper will present the results of the analyses of the extreme torrential floods of the rivers Nišava and Vlasina. Key words: Flood, torrents, torrent control, erosion control
Process-based model with flood control measures towards more realistic global flood modeling
NASA Astrophysics Data System (ADS)
Tang, Q.; Zhang, X.; Wang, Y.; Mu, M.; Lv, A.; Li, Z.
2017-12-01
In the profoundly human-influenced era, the Anthropocene, increased amount of land was developed in flood plains and many flood control measures were implemented to protect people and infrastructures placed in the flood-prone areas. These human influences (for example, dams and dykes) have altered peak streamflow and flood risk, and are already an integral part of flood. However, most of the process-based flood models have yet to taken into account the human influences. In this study, we used a hydrological model together with an advanced hydrodynamic model to assess flood risk at the Baiyangdian catchment. The Baiyangdian Lake is the largest shallow freshwater lake in North China, and it was used as a flood storage area in the past. A new development hub for the Beijing-Tianjin-Hebei economic triangle, namely the Xiongan new area, was recently established in the flood-prone area around the lake. The shuttle radar topography mission (SRTM) digital elevation model (DEMs) was used to parameterize the hydrodynamic model simulation, and the inundation estimates were compared with published flood maps and observed inundation area during the extreme historical flood events. A simple scheme was carried out to consider the impacts of flood control measures, including the reservoirs in the headwaters and the dykes to be built. By comparing model simulations with and without the influences of flood control measures, we demonstrated the importance of human influences in altering the inundated area and depth under design flood conditions. Based on the SRTM DEM and dam and reservoir data in the Global Reservoir and Dam (GRanD) database, we further discuss the potential to develop a global flood model with human influences.
NASA Astrophysics Data System (ADS)
Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Watson, Helen; Stutter, Marc
2014-05-01
Over the past decade economic losses from floods have greatly increased, with sediment related impacts as a key feature of such events. Impacts include changes in river channel course, scour of river banks, sedimentation of infrastructure (e.g. bridges), and deposition of sand and gravel on farmland. Sediment deposition can in turn reduce conveyance capacity and lead to further increased flood risk. The EU Water Framework Directive and Floods Directive highlights that sustainable approaches to flood risk reduction should be used alongside and, where possible, replace traditional structural flood defences and activities that address sediment problems. Natural Flood Management(NFM) is promoted as a method that can reduce flood risk and manage sediment by incorporating natural hydrological and morphological processes. As such, NFM measures are designed to use these fluvial processes to manage the sources and pathways of flood waters and sediments. Techniques include the restoration, enhancement and alteration of natural features and characteristics, but exclude traditional flood defence engineering that works against or disrupts these natural processes. Here we aim to assess the effectiveness of novel flood mitigation measures for reducing flood risk and capturing coarse sediment in rapidly responding headwater catchments. We present preliminary research findings from a densely instrumented research site (Bowmont catchment, Scotland (85km2)) which regularly experiences flood events with associated coarse sediment problems. NFM measures have been installed to capture course sediment and to store water more effectively on the flood plains during these flood events. For example, novel engineered wooden structures ('bar apex log jams') constructed in the river corridor are designed to trap sediment and log bank protection structures have been installed to stop bank erosion. Within a tributary catchment of the Bowmont (0.7km2), new flow restrictors have been installed on a headwater stream to slow the flow whilst collecting coarse sediment. These were designed to have a minimal impact on upland farming practices. In addition, tree planting is also occurring in the catchment for example, within gulley, on the riparian zone and hedgerow belts perpendicular to slopes. During a recent large event, the majority of 40 bar apex structures collected coarse sediment. However, only five were associated with high deposition and modification of the spatial pattern of deposition, which highlighted the importance both of structure design and location of these features to maximise their sediment trapping effectiveness and longevity.
Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Alexander, Jason S.; Kaplinski, Matt
2014-01-01
Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.
A Methodology to Support Decision Making in Flood Plan Mitigation
NASA Astrophysics Data System (ADS)
Biscarini, C.; di Francesco, S.; Manciola, P.
2009-04-01
The focus of the present document is on specific decision-making aspects of flood risk analysis. A flood is the result of runoff from rainfall in quantities too great to be confined in the low-water channels of streams. Little can be done to prevent a major flood, but we may be able to minimize damage within the flood plain of the river. This broad definition encompasses many possible mitigation measures. Floodplain management considers the integrated view of all engineering, nonstructural, and administrative measures for managing (minimizing) losses due to flooding on a comprehensive scale. The structural measures are the flood-control facilities designed according to flood characteristics and they include reservoirs, diversions, levees or dikes, and channel modifications. Flood-control measures that modify the damage susceptibility of floodplains are usually referred to as nonstructural measures and may require minor engineering works. On the other hand, those measures designed to modify the damage potential of permanent facilities are called non-structural and allow reducing potential damage during a flood event. Technical information is required to support the tasks of problem definition, plan formulation, and plan evaluation. The specific information needed and the related level of detail are dependent on the nature of the problem, the potential solutions, and the sensitivity of the findings to the basic information. Actions performed to set up and lay out the study are preliminary to the detailed analysis. They include: defining the study scope and detail, the field data collection, a review of previous studies and reports, and the assembly of needed maps and surveys. Risk analysis can be viewed as having many components: risk assessment, risk communication and risk management. Risk assessment comprises an analysis of the technical aspects of the problem, risk communication deals with conveying the information and risk management involves the decision process. In the present paper we propose a novel methodology for supporting the priority setting in the assessment of such issues, beyond the typical "expected value" approach. Scientific contribution and management aspects are merged to create a simplified method for plan basin implementation, based on risk and economic analyses. However, the economic evaluation is not the sole criterion for flood-damage reduction plan selection. Among the different criteria that are relevant to the decision process, safety and quality of human life, economic damage, expenses related with the chosen measures and environmental issues should play a fundamental role on the decisions made by the authorities. Some numerical indices, taking in account administrative, technical, economical and risk aspects, are defined and are combined together in a mathematical formula that defines a Priority Index (PI). In particular, the priority index defines a ranking of priority interventions, thus allowing the formulation of the investment plan. The research is mainly focused on the technical factors of risk assessment, providing quantitative and qualitative estimates of possible alternatives, containing measures of the risk associated with those alternatives. Moreover, the issues of risk management are analyzed, in particular with respect to the role of decision making in the presence of risk information. However, a great effort is devoted to make this index easy to be formulated and effective to allow a clear and transparent comparison between the alternatives. Summarizing this document describes a major- steps for incorporation of risk analysis into the decision making process: framing of the problem in terms of risk analysis, application of appropriate tools and techniques to obtain quantified results, use of the quantified results in the choice of structural and non-structural measures. In order to prove the reliability of the proposed methodology and to show how risk-based information can be incorporated into a flood analysis process, its application to some middle italy river basins is presented. The methodology assessment is performed by comparing different scenarios and showing that the optimal decision stems from a feasibility evaluation.
Climate, orography and scale controls on flood frequency in Triveneto (Italy)
NASA Astrophysics Data System (ADS)
Persiano, Simone; Castellarin, Attilio; Salinas, Jose Luis; Domeneghetti, Alessio; Brath, Armando
2016-05-01
The growing concern about the possible effects of climate change on flood frequency regime is leading Authorities to review previously proposed reference procedures for design-flood estimation, such as national flood frequency models. Our study focuses on Triveneto, a broad geographical region in North-eastern Italy. A reference procedure for design flood estimation in Triveneto is available from the Italian NCR research project "VA.PI.", which considered Triveneto as a single homogeneous region and developed a regional model using annual maximum series (AMS) of peak discharges that were collected up to the 1980s by the former Italian Hydrometeorological Service. We consider a very detailed AMS database that we recently compiled for 76 catchments located in Triveneto. All 76 study catchments are characterized in terms of several geomorphologic and climatic descriptors. The objective of our study is threefold: (1) to inspect climatic and scale controls on flood frequency regime; (2) to verify the possible presence of changes in flood frequency regime by looking at changes in time of regional L-moments of annual maximum floods; (3) to develop an updated reference procedure for design flood estimation in Triveneto by using a focused-pooling approach (i.e. Region of Influence, RoI). Our study leads to the following conclusions: (1) climatic and scale controls on flood frequency regime in Triveneto are similar to the controls that were recently found in Europe; (2) a single year characterized by extreme floods can have a remarkable influence on regional flood frequency models and analyses for detecting possible changes in flood frequency regime; (3) no significant change was detected in the flood frequency regime, yet an update of the existing reference procedure for design flood estimation is highly recommended and we propose the RoI approach for properly representing climate and scale controls on flood frequency in Triveneto, which cannot be regarded as a single homogeneous region.
Snyder, C.D.; Johnson, Z.B.
2006-01-01
In June 1995, heavy rains caused severe flooding and massive debris flows on the Staunton River, a 3rd-order stream in the Blue Ridge Mountains (Virginia, USA). Scouring caused the loss of the riparian zone and repositioned the stream channel of the lower 2.1 km of the stream. Between 1998 and 2001, we conducted seasonal macroinvertebrate surveys at sites on the Staunton River and on White Oak Canyon Run, a reference stream of similar size and geology that was relatively unaffected by the flood. Our study was designed to determine the extent to which flood-induced changes to the stream channel and riparian habitats caused long-term changes to macroinvertebrate community structure and composition. Sites within the impacted zone of the Staunton River supported diverse stable benthic macroinvertebrate assemblages 3 y after the flood despite dramatic and persistent changes in environmental factors known to be important controls on stream ecosystem function. However, significant differences in total macroinvertebrate density and trophic structure could be attributed to the flood. In autumn, densities of most feeding guilds, including shredders, were higher at impacted-zone sites than at all other sites, suggesting higher overall productivity in the impacted zone. Higher shredder density in the impacted zone was surprising in light of expected decreases in leaf-litter inputs because of removal of riparian forests. In contrast, in spring, we observed density differences in only one feeding guild, scrapers, which showed higher densities at impacted-zone sites than at all other sites. This result conformed to a priori expectations that reduced shading in the impacted zone would lead to increased light and higher instream primary production. We attribute the seasonal differences in trophic structure to the effects of increased temperatures on food quality and to the relationship between the timing of our sampling and the emergence patterns of important taxa. ?? 2006 by The North American Benthological Society.
Gilbuena, Romeo; Kawamura, Akira; Medina, Reynaldo; Nakagawa, Naoko; Amaguchi, Hideo
2013-12-15
In recent years, the practice of environmental impact assessment (EIA) has created significant awareness on the role of environmentally sound projects in sustainable development. In view of the recent studies on the effects of climate change, the Philippine government has given high priority to the construction of flood control structures to alleviate the destructive effects of unmitigated floods, especially in highly urbanized areas like Metro Manila. EIA thus, should be carefully and effectively carried out to maximize or optimize the potential benefits that can be derived from structural flood mitigation measures (SFMMs). A utility-based environmental assessment approach may significantly aid flood managers and decision-makers in planning for effective and environmentally sound SFMM projects. This study proposes a utility-based assessment approach using the rapid impact assessment matrix (RIAM) technique, coupled with the evidential reasoning approach, to rationally and systematically evaluate the ecological and socio-economic impacts of 4 planned SFMM projects (i.e. 2 river channel improvements and 2 new open channels) in Metro Manila. Results show that the overall environmental effects of each of the planned SFMM projects are positive, which indicate that the utility of the positive impacts would generally outweigh the negative impacts. The results also imply that the planned river channel improvements will yield higher environmental benefits over the planned open channels. This study was able to present a clear and rational approach in the examination of overall environmental effects of SFMMs, which provides valuable insights that can be used by decision-makers and policy makers to improve the EIA practice and evaluation of projects in the Philippines. Copyright © 2013 Elsevier Ltd. All rights reserved.
Physical parameters of Fluvisols on flooded and non-flooded terraces
NASA Astrophysics Data System (ADS)
Kercheva, Milena; Sokołowska, Zofia; Hajnos, Mieczysław; Skic, Kamil; Shishkov, Toma
2017-01-01
The heterogeneity of soil physical properties of Fluvisols, lack of large pristine areas, and different moisture regimes on non-flooded and flooded terraces impede the possibility to find a soil profile which can serve as a baseline for estimating the impact of natural or anthropogenic factors on soil evolution. The aim of this study is to compare the pore size distribution of pristine Fluvisols on flooded and non-flooded terraces using the method of the soil water retention curve, mercury intrusion porosimetry, nitrogen adsorption isotherms, and water vapour sorption. The pore size distribution of humic horizons of pristine Fluvisols on the non-flooded terrace differs from pore size distribution of Fluvisols on the flooded terrace. The peaks of textural and structural pores are higher in the humic horizons under more humid conditions. The structural characteristics of subsoil horizons depend on soil texture and evolution stage. The peaks of textural pores at about 1 mm diminish with lowering of the soil organic content. Structureless horizons are characterized by uni-modal pore size distribution. Although the content of structural pores of the subsoil horizons of Fluvisols on the non-flooded terrace is low, these pores are represented by biopores, as the coefficient of filtration is moderately high. The difference between non-flooded and flooded profiles is well expressed by the available water storage, volume and mean radius of pores, obtained by mercury intrusion porosimetry and water desorption, which are higher in the surface horizons of frequently flooded Fluvisols.
33 CFR 209.220 - Flood control regulations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the purpose of coordinating the operation of the flood control features of reservoirs constructed... responsible for the maintenance and operation of the reservoir involved after a detailed study of the flood.... Regulations prescribed by the Secretary of the Army for the maintenance and operation of local flood...
33 CFR 209.220 - Flood control regulations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the purpose of coordinating the operation of the flood control features of reservoirs constructed... responsible for the maintenance and operation of the reservoir involved after a detailed study of the flood.... Regulations prescribed by the Secretary of the Army for the maintenance and operation of local flood...
The Two Edged Sword; Illinois' Risk Reduction Success Through Managed Retreat And Strong Regulations
NASA Astrophysics Data System (ADS)
Osman, P.
2017-12-01
Illinois has the nation's largest inland system of rivers, lakes, and streams. Two thirds of the continental US and two Canadian provinces drain thru Illinois. Although a blessing, these waterways also result in frequent flooding. Historically, Illinois ranked among the top five states in the nation for flood losses. However, using a combination of strong floodplain regulations and proactive flood mitigation programs, Illinois now ranks near the bottom of flood loss states. Following the 1993 flood, the State of Illinois began an aggressive program to remove flood prone structures from the floodplain. Using a combination of state, federal, and local funds, towns like Valmeyer and Grafton have largely been relocated outside of the floodplain. Likewise, in dozens of communities across the state, thousands of structures have been have purchased to create open space in the floodplain. In addition, new structures in the floodplain must meet strict state and local floodplain construction standards. Major floods now routinely pass Illinois unnoticed. Many communities once ravaged by flooding now pass large floods unscathed. Due largely to climate change, flood losses in many areas are evolving. The majority of flood losses in Illinois now occur outside of the mapped floodplain. The State of Illinois has recently completed a detailed analysis of the state's urban flood exposure. Flood risk is changing and methods to address that risk must evolve accordingly. Accurate climate change data on major inland waterways and urban areas remain elusive. This presentation will highlight simple steps any state or community can take to reduce existing flood losses and be better prepared to address changing impacts due to climate change.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of Congress. Flood control project: A project designed and constructed to have appreciable and... Washington, D.C. Hurricane/Shore Protection Project (HSPP). A flood control project designed and constructed... project, only those components that are necessary for the flood control function are considered eligible...
Code of Federal Regulations, 2013 CFR
2013-07-01
... of Congress. Flood control project: A project designed and constructed to have appreciable and... Washington, D.C. Hurricane/Shore Protection Project (HSPP). A flood control project designed and constructed... project, only those components that are necessary for the flood control function are considered eligible...
Code of Federal Regulations, 2011 CFR
2011-07-01
... of Congress. Flood control project: A project designed and constructed to have appreciable and... Washington, D.C. Hurricane/Shore Protection Project (HSPP). A flood control project designed and constructed... project, only those components that are necessary for the flood control function are considered eligible...
Code of Federal Regulations, 2010 CFR
2010-07-01
... of Congress. Flood control project: A project designed and constructed to have appreciable and... Washington, D.C. Hurricane/Shore Protection Project (HSPP). A flood control project designed and constructed... project, only those components that are necessary for the flood control function are considered eligible...
Distillation Column Flooding Predictor
DOE Office of Scientific and Technical Information (OSTI.GOV)
George E. Dzyacky
2010-11-23
The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillationmore » columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid/vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency – which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor™ operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor™ utilizes the mathematical first derivative of certain column variables to identify the column’s pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoint’s proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor™ is implemented as closed-loop advanced control strategy on the plant’s distributed control system (DCS), thus automating control of the column at its hydraulic limit.« less
What are the hydro-meteorological controls on flood characteristics?
NASA Astrophysics Data System (ADS)
Nied, Manuela; Schröter, Kai; Lüdtke, Stefan; Nguyen, Viet Dung; Merz, Bruno
2017-02-01
Flood events can be expressed by a variety of characteristics such as flood magnitude and extent, event duration or incurred loss. Flood estimation and management may benefit from understanding how the different flood characteristics relate to the hydrological catchment conditions preceding the event and to the meteorological conditions throughout the event. In this study, we therefore propose a methodology to investigate the hydro-meteorological controls on different flood characteristics, based on the simulation of the complete flood risk chain from the flood triggering precipitation event, through runoff generation in the catchment, flood routing and possible inundation in the river system and floodplains to flood loss. Conditional cumulative distribution functions and regression tree analysis delineate the seasonal varying flood processes and indicate that the effect of the hydrological pre-conditions, i.e. soil moisture patterns, and of the meteorological conditions, i.e. weather patterns, depends on the considered flood characteristic. The methodology is exemplified for the Elbe catchment. In this catchment, the length of the build-up period, the event duration and the number of gauges undergoing at least a 10-year flood are governed by weather patterns. The affected length and the number of gauges undergoing at least a 2-year flood are however governed by soil moisture patterns. In case of flood severity and loss, the controlling factor is less pronounced. Severity is slightly governed by soil moisture patterns whereas loss is slightly governed by weather patterns. The study highlights that flood magnitude and extent arise from different flood generation processes and concludes that soil moisture patterns as well as weather patterns are not only beneficial to inform on possible flood occurrence but also on the involved flood processes and resulting flood characteristics.
NASA Astrophysics Data System (ADS)
Selvakumar, R.; Ramasamy, SM.
2014-12-01
Flooding is a naturally recurrent phenomenon that causes severe damage to lives and property. Predictions on flood-prone zones are made based on intensity-duration of rainfall, carrying capacity of drainage, and natural or man-made obstructions. Particularly, the lower part of the drainage system and its adjacent geomorphic landforms like floodplains and deltaic plains are considered for analysis, but stagnation in parts of basins that are far away from major riverine systems is less unveiled. Similarly, uncharacteristic flooding in the upper and middle parts of drainage, especially in zones of an anomalous drainage pattern, is also least understood. Even though topographic differences are attributed for such anomalous spatial occurrence of floods, its genetic cause has to be identified for effective management practice. Added to structural and lithological variations, tectonic movements too impart micro-scale terrain undulations. Because active tectonic movements are slow-occurring, long-term geological processes, its resultant topographical variations and drainage anomalies are least correlated with floods. The recent floods of Tamil Nadu also exhibit a unique distribution pattern emphasizing the role of tectonics over it. Hence a detailed geoinformatics-based analysis was carried out to envisage the relationship between spatial distribution of flood and active tectonic elements such as regional arches and deeps, block faults, and graben and drainage anomalies such as deflected drainage, compressed meander, and eyed drainages. The analysis reveals that micro-scale topographic highs and lows imparted by active tectonic movements and its further induced drainage anomalies have substantially controlled the distribution pattern of flood.
Damage-reducing measures to manage flood risks in a changing climate
NASA Astrophysics Data System (ADS)
Kreibich, Heidi; Bubeck, Philip; Van Vliet, Mathijs; De Moel, Hans
2014-05-01
Damage due to floods has increased during the last few decades, and further increases are expected in several regions due to climate change and a growing vulnerability. To address the projected increase in flood risk, a combination of structural and non-structural flood risk mitigation measures is considered as a promising adaptation strategy. Such a combination takes into account that flood defence systems may fail, and prepare for unexpected crisis situations via land-use planning, building construction, evacuation and disaster response. Non-structural flood risk mitigation measures like shielding with water shutters or sand bags, building fortification or safeguarding of hazardous substances are often voluntary: they demand self-dependent action by the population at risk (Bubeck et al. 2012; 2013). It is believed that these measures are especially effective in areas with frequent flood events and low flood water levels, but some types of measures showed a significant damage-reducing effect also during extreme flood events, such as the Elbe River flood in August 2002 in Germany (Kreibich et al. 2005; 2011). Despite the growing importance of damage-reducing measures, information is still scarce about factors that motivate people to undertake such measures, the state of implementation of various non-structural measures in different countries and their damage reducing effects. Thus, we collected information and undertook an international review about this topic in the framework of the Dutch KfC project "Climate proof flood risk management". The contribution will present an overview about the available information on damage-reducing measures and draw conclusions for practical flood risk management in a changing climate. References: Bubeck, P., Botzen, W. J. W., Suu, L. T. T., Aerts, J. C. J. H. (2012): Do flood risk perceptions provide useful insights for flood risk management? Findings from central Vietnam. Journal of Flood Risk Management, 5, 4, 295-302 Bubeck, P., Botzen, W. J. W., Kreibich, H., Aerts, J. C. J. H. (2013) Detailed insights into the influence of flood-coping appraisals on mitigation behaviour. Global Environmental Change. DOI:10.1016/j.gloenvcha.2013.05.009. Kreibich, H., Thieken, A. H., Petrow, T., Müller, M., Merz, B. (2005): Flood loss reduction of private households due to building precautionary measures - Lessons Learned from the Elbe flood in August 2002. NHESS, 5, 1, 117-126. Kreibich, H., Christenberger, S., Schwarze, R. (2011) Economic motivation of households to undertake private precautionary measures against floods. NHESS, 11, 2, 309-321.
The development of flood map in Malaysia
NASA Astrophysics Data System (ADS)
Zakaria, Siti Fairus; Zin, Rosli Mohamad; Mohamad, Ismail; Balubaid, Saeed; Mydin, Shaik Hussein; MDR, E. M. Roodienyanto
2017-11-01
In Malaysia, flash floods are common occurrences throughout the year in flood prone areas. In terms of flood extent, flash floods affect smaller areas but because of its tendency to occur in densely urbanized areas, the value of damaged property is high and disruption to traffic flow and businesses are substantial. However, in river floods especially the river floods of Kelantan and Pahang, the flood extent is widespread and can extend over 1,000 square kilometers. Although the value of property and density of affected population is lower, the damage inflicted by these floods can also be high because the area affected is large. In order to combat these floods, various flood mitigation measures have been carried out. Structural flood mitigation alone can only provide protection levels from 10 to 100 years Average Recurrence Intervals (ARI). One of the economically effective non-structural approaches in flood mitigation and flood management is using a geospatial technology which involves flood forecasting and warning services to the flood prone areas. This approach which involves the use of Geographical Information Flood Forecasting system also includes the generation of a series of flood maps. There are three types of flood maps namely Flood Hazard Map, Flood Risk Map and Flood Evacuation Map. Flood Hazard Map is used to determine areas susceptible to flooding when discharge from a stream exceeds the bank-full stage. Early warnings of incoming flood events will enable the flood victims to prepare themselves before flooding occurs. Properties and life's can be saved by keeping their movable properties above the flood levels and if necessary, an early evacuation from the area. With respect to flood fighting, an early warning with reference through a series of flood maps including flood hazard map, flood risk map and flood evacuation map of the approaching flood should be able to alert the organization in charge of the flood fighting actions and the authority to undertake the necessary decisions, and the general public to be aware of the impending danger. However this paper will only discuss on the generations of Flood Hazard Maps and the use of Flood Risk Map and Flood Evacuation Map by using geospatial data.
Estimation of flood-frequency characteristics of small urban streams in North Carolina
Robbins, J.C.; Pope, B.F.
1996-01-01
A statewide study was conducted to develop methods for estimating the magnitude and frequency of floods of small urban streams in North Carolina. This type of information is critical in the design of bridges, culverts and water-control structures, establishment of flood-insurance rates and flood-plain regulation, and for other uses by urban planners and engineers. Concurrent records of rainfall and runoff data collected in small urban basins were used to calibrate rainfall-runoff models. Historic rain- fall records were used with the calibrated models to synthesize a long- term record of annual peak discharges. The synthesized record of annual peak discharges were used in a statistical analysis to determine flood- frequency distributions. These frequency distributions were used with distributions from previous investigations to develop a database for 32 small urban basins in the Blue Ridge-Piedmont, Sand Hills, and Coastal Plain hydrologic areas. The study basins ranged in size from 0.04 to 41.0 square miles. Data describing the size and shape of the basin, level of urban development, and climate and rural flood charac- teristics also were included in the database. Estimation equations were developed by relating flood-frequency char- acteristics to basin characteristics in a generalized least-squares regression analysis. The most significant basin characteristics are drainage area, impervious area, and rural flood discharge. The model error and prediction errors for the estimating equations were less than those for the national flood-frequency equations previously reported. Resulting equations, which have prediction errors generally less than 40 percent, can be used to estimate flood-peak discharges for 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals for small urban basins across the State assuming negligible, sustainable, in- channel detention or basin storage.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and Reservoir in the interest of flood control as follows: (a) Water Control Plan—(1) General..., flood control, stream regulation, generation of power, irrigation, water supply, and recreation uses. (2) Overall plan for water control. Within the Colorado River Basin, four Federal projects provide flood...
Code of Federal Regulations, 2012 CFR
2012-07-01
... and Reservoir in the interest of flood control as follows: (a) Water Control Plan—(1) General..., flood control, stream regulation, generation of power, irrigation, water supply, and recreation uses. (2) Overall plan for water control. Within the Colorado River Basin, four Federal projects provide flood...
The association of adverse mental health effects with repeated exposure to disasters.
Stough, Laura M; North, Carol S
2018-02-01
It has been assumed that the mental health effects of repeated trauma should be incrementally greater than simple additive effects of separate trauma. However, repeated disasters afflicting the same population are uncommon. This study investigated psychiatric disorders following differential exposures to repeated disasters. Mental health effects of exposure to repeated disasters of 547 individuals exposed to either flooding, tornadoes, dioxin contamination, and/or radioactive well water were assessed. Structured diagnostic interviews assessed prevalence of psychiatric disorders before and after each of the disasters. A multiple logistic regression model was used to test the association of post-disaster disorders after each flood with the total number of flood exposures, controlling for lifetime pre-disaster disorders. Approximately one-fifth to one-third of the disaster-exposed groups had a psychiatric disorder following exposure to disaster, but disaster-related posttraumatic stress disorder and incident psychiatric disorders were nonexistent or rare in both post-disaster periods. Most identified post-disaster psychopathology consisted of alcohol use that predated the disasters. Findings suggest that alcohol use disorder may be more representative of a risk factor for, rather than an outcome of, flood exposure. This possibility is supported by the high lifetime pre-flood prevalence of alcohol use disorders in flood plain populations.
Urban Flood Risk Insurance Models as a Strategy for Proactive Water Management Policies
NASA Astrophysics Data System (ADS)
Graciosa, M. C.; Mendiondo, E. M.
2006-12-01
To improve the water management through hydrological sciences, novel integration strategies could be underpinned to bridge up both engineering and economics. This is especially significant in developing nations where hydrologic extremes are expressive while the financial resources to mitigate that variability are scarce. One example of this problem is related to floods and their global and regional consequences. Floods mainly cause disasters in terms of human and material losses. In 2002, more than 30% of extreme climatic events occurred worldwide were floods, representing 42% of fatalities and 66% of material losses, mostly related to reactive policies. Throughout the last century, hydrological variability and rapidly growing of urban areas have developed new environmental problems in Brazilian cities, such as inundation occurrences on non-planned river basins. One of the causes of flood impacts is that public funds (national, state or municipal) have barely introduced wise proactive polices to follow up rapidly growing urban areas. Inexistent flood-risk-transfer mechanisms have caused the so-called `flood poverty cycle' due to reactive polices that have been increasing flood losses and, sometimes, became flood disasters. Flood risk management (FRM) is part of pro-active policies to mitigate inundation losses, in order to sustain environmental, social and economic aspects. Concepts and principles of FRM are part of a process that encompasses three phases: (1) preparedness stage, that consists in structural and non-structural actions to prevent and protect potential risk areas, such as early warning systems and scenarios development; (2) control stage, that refers to help actions and protection facilities during the event, and (3) restoration stage, that is related to rebuild affected areas, restore the river dynamics and transfer the socio-economic risks through flood insurances. Flood risk insurances agree to the goals of losses mitigation programs. Their use is more common in basins affected by alluvial floods. However, most of losses occur in urban areas, as a consequence of flash floods. Quantification of losses is an important basis of flood mitigation programs. It is also a complex task, which involves setting values on not easily quantifiable goods and determining risk and damage curves. This work proposes a flood insurance risk model coupled with a hydrological model as an incentive-based mechanism for achieving economically efficient flood management to be applied in Brazilian urban basins. It consists of integrating an insurance model and hydrological modeling of peak discharge warnings. It sets up curves, such as: water level versus discharge, water level versus inundation areas, and inundation area versus damage. It considers the prediction of future scenarios in order to evaluate the behavior of the insurance fund under climate variability. By using different probability distribution is compared the solvency and efficiency of the flood insurance fund for each premium-covered situation. The methodology is outlined to provide resources for the FRM restoration phase. Results are depicted from an experimental river basin sited on a rapid growing urban area, with some lessons learned valid to approach in other urban basins. This example is envisaged to foster resilience in the integration of hydrological science with policy and economic approaches. KEY WORDS: Flood risks management; flood insurance; hydrological modeling.
44 CFR 71.3 - Denial of flood insurance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... OF COASTAL BARRIER LEGISLATION § 71.3 Denial of flood insurance. (a) No new flood insurance coverage... structure located in an area identified as being in the CBRS both as of October 18, 1982, and as of November... new construction or substantial improvement of a structure located in any area newly identified as...
Estimating flood hydrographs and volumes for Alabama streams
Olin, D.A.; Atkins, J.B.
1988-01-01
The hydraulic design of highway drainage structures involves an evaluation of the effect of the proposed highway structures on lives, property, and stream stability. Flood hydrographs and associated flood volumes are useful tools in evaluating these effects. For design purposes, the Alabama Highway Department needs information on flood hydrographs and volumes associated with flood peaks of specific recurrence intervals (design floods) at proposed or existing bridge crossings. This report will provide the engineer with a method to estimate flood hydrographs, volumes, and lagtimes for rural and urban streams in Alabama with drainage areas less than 500 sq mi. Existing computer programs and methods to estimate flood hydrographs and volumes for ungaged streams have been developed in Georgia. These computer programs and methods were applied to streams in Alabama. The report gives detailed instructions on how to estimate flood hydrographs for ungaged rural or urban streams in Alabama with drainage areas less than 500 sq mi, without significant in-channel storage or regulations. (USGS)
NASA Astrophysics Data System (ADS)
van der Zwan, Rene
2013-04-01
The Rijnland water system is situated in the western part of the Netherlands, and is a low-lying area of which 90% is below sea-level. The area covers 1,100 square kilometres, where 1.3 million people live, work, travel and enjoy leisure. The District Water Control Board of Rijnland is responsible for flood defence, water quantity and quality management. This includes design and maintenance of flood defence structures, control of regulating structures for an adequate water level management, and waste water treatment. For water quantity management Rijnland uses, besides an online monitoring network for collecting water level and precipitation data, a real time control decision support system. This decision support system consists of deterministic hydro-meteorological forecasts with a 24-hr forecast horizon, coupled with a control module that provides optimal operation schedules for the storage basin pumping stations. The uncertainty of the rainfall forecast is not forwarded in the hydrological prediction. At this moment 65% of the pumping capacity of the storage basin pumping stations can be automatically controlled by the decision control system. Within 5 years, after renovation of two other pumping stations, the total capacity of 200 m3/s will be automatically controlled. In critical conditions there is a need of both a longer forecast horizon and a probabilistic forecast. Therefore ensemble precipitation forecasts of the ECMWF are already consulted off-line during dry-spells, and Rijnland is running a pilot operational system providing 10-day water level ensemble forecasts. The use of EPS during dry-spells and the findings of the pilot will be presented. Challenges and next steps towards on-line implementation of ensemble forecasts for risk-based operational management of the Rijnland water system will be discussed. An important element in that discussion is the question: will policy and decision makers, operator and citizens adapt this Anticipatory Water management, including temporary lower storage basin levels and a reduction in extra investments for infrastructural measures.
BIOAVAILABILITY OF MERCURY IN SEDIMENTS FROM A FLOOD CONTROL RESERVOIR TO HYALELLA AZTECA
In the last three years, mercury contamination in North Mississippi flood control reservoirs has become a growing concern. Previous data indicate that three flood control reservoirs have similar total mercury sediment concentrations and that fish collected from one reservoir cont...
Impact of water control projects on fisheries resources in Bangladesh
NASA Astrophysics Data System (ADS)
Mirza, Monirul Qader; Ericksen, Neil J.
1996-07-01
Bangladesh is a very flat delta built up by the Ganges—Brahmaputra—Meghna/Barak river systems. Because of its geographical location, floods cause huge destruction of lives and properties almost every year. Water control programs have been undertaken to enhance development through mitigating the threat of disasters. This structural approach to flood hazard has severely affected floodplain fisheries that supply the major share of protein to rural Bangladesh, as exemplified by the Chandpur Irrigation Project. Although the regulated environment of the Chandpur project has become favorable for closed-water cultured fish farming, the natural open-water fishery loss has been substantial. Results from research show that fish yields were better under preproject conditions. Under project conditions per capita fish consumption has dropped significantly, and the price of fish has risen beyond the means of the poor people, so that fish protein in the diet of poor people is gradually declining. Bangladesh is planning to expand water control facilities to the remaining flood-prone areas in the next 15 20 years. This will cause further loss of floodplain fisheries. If prices for closed-water fish remain beyond the buying power of the poor, alternative sources of cheap protein will be required.
Tara L. E. Trammell; Margaret M. Carreiro
2011-01-01
Urban forests adjacent to interstate corridors are understudied ecosystems across cities. Despite their small area, these forests may be strategically located to provide large ecosystem services due to their ability to act as a barrier against air pollutants and noise as well as to provide flood control. The woody vegetation composition and structure of forests...
A Study on Regional Rainfall Frequency Analysis for Flood Simulation Scenarios
NASA Astrophysics Data System (ADS)
Jung, Younghun; Ahn, Hyunjun; Joo, Kyungwon; Heo, Jun-Haeng
2014-05-01
Recently, climate change has been observed in Korea as well as in the entire world. The rainstorm has been gradually increased and then the damage has been grown. It is very important to manage the flood control facilities because of increasing the frequency and magnitude of severe rain storm. For managing flood control facilities in risky regions, data sets such as elevation, gradient, channel, land use and soil data should be filed up. Using this information, the disaster situations can be simulated to secure evacuation routes for various rainfall scenarios. The aim of this study is to investigate and determine extreme rainfall quantile estimates in Uijeongbu City using index flood method with L-moments parameter estimation. Regional frequency analysis trades space for time by using annual maximum rainfall data from nearby or similar sites to derive estimates for any given site in a homogeneous region. Regional frequency analysis based on pooled data is recommended for estimation of rainfall quantiles at sites with record lengths less than 5T, where T is return period of interest. Many variables relevant to precipitation can be used for grouping a region in regional frequency analysis. For regionalization of Han River basin, the k-means method is applied for grouping regions by variables of meteorology and geomorphology. The results from the k-means method are compared for each region using various probability distributions. In the final step of the regionalization analysis, goodness-of-fit measure is used to evaluate the accuracy of a set of candidate distributions. And rainfall quantiles by index flood method are obtained based on the appropriate distribution. And then, rainfall quantiles based on various scenarios are used as input data for disaster simulations. Keywords: Regional Frequency Analysis; Scenarios of Rainfall Quantile Acknowledgements This research was supported by a grant 'Establishing Active Disaster Management System of Flood Control Structures by using 3D BIM Technique' [NEMA-12-NH-57] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.
A gridded hourly rainfall dataset for the UK applied to a national physically-based modelling system
NASA Astrophysics Data System (ADS)
Lewis, Elizabeth; Blenkinsop, Stephen; Quinn, Niall; Freer, Jim; Coxon, Gemma; Woods, Ross; Bates, Paul; Fowler, Hayley
2016-04-01
An hourly gridded rainfall product has great potential for use in many hydrological applications that require high temporal resolution meteorological data. One important example of this is flood risk management, with flooding in the UK highly dependent on sub-daily rainfall intensities amongst other factors. Knowledge of sub-daily rainfall intensities is therefore critical to designing hydraulic structures or flood defences to appropriate levels of service. Sub-daily rainfall rates are also essential inputs for flood forecasting, allowing for estimates of peak flows and stage for flood warning and response. In addition, an hourly gridded rainfall dataset has significant potential for practical applications such as better representation of extremes and pluvial flash flooding, validation of high resolution climate models and improving the representation of sub-daily rainfall in weather generators. A new 1km gridded hourly rainfall dataset for the UK has been created by disaggregating the daily Gridded Estimates of Areal Rainfall (CEH-GEAR) dataset using comprehensively quality-controlled hourly rain gauge data from over 1300 observation stations across the country. Quality control measures include identification of frequent tips, daily accumulations and dry spells, comparison of daily totals against the CEH-GEAR daily dataset, and nearest neighbour checks. The quality control procedure was validated against historic extreme rainfall events and the UKCP09 5km daily rainfall dataset. General use of the dataset has been demonstrated by testing the sensitivity of a physically-based hydrological modelling system for Great Britain to the distribution and rates of rainfall and potential evapotranspiration. Of the sensitivity tests undertaken, the largest improvements in model performance were seen when an hourly gridded rainfall dataset was combined with potential evapotranspiration disaggregated to hourly intervals, with 61% of catchments showing an increase in NSE between observed and simulated streamflows as a result of more realistic sub-daily meteorological forcing.
NASA Astrophysics Data System (ADS)
Hackney, C. R.; Aalto, R. E.; Darby, S. E.; Parsons, D. R.; Leyland, J.; Nicholas, A. P.; Best, J.
2016-12-01
Bifurcations represent key morphological nodes within the channel networks of anabranching and braided fluvial channels, playing an important role in controlling local bed morphology, the routing of sediment and water, and defining the stability of the downstream reaches. Herein, we detail field observations of the three-dimensional flow structure, bed morphological changes and partitioning of both flow discharge and suspended sediment through a large diffluence-confluence unit on the Mekong River, Cambodia, across a range of flow stages (from 13,500 m3 s-1 to 27,000 m3 s-1) over the monsoonal flood-pulse cycle. We show that the discharge asymmetry (a measure of the disparity between discharges distributed down the left and right branches of the bifurcation) varies with flow discharge and that the influence of upstream curvature-induced cross-stream water surface slope and bed morphological changes are first-order controls in modulating the asymmetry in bifurcation discharge. Flow discharge is shown to play a key role in defining the morphodynamics of the diffluence-confluence unit downstream of the bifurcation. Our data show that during peak flows (Q 27,000 m3 s-1), the downstream island complex acts as a net sink of suspended sediment (with 2600 kg s-1 being deposited between the diffluence and confluence), whereas during lower flows, on both the rising and falling limbs of the flood wave, the sediment balance is in quasi-equilibrium. We propose a new conceptual model of bifurcation stability that incorporates varying flood discharge and in which the long term stability of the bifurcation, as well as the larger channel planform and morphology of the diffluence-confluence unit, are controlled by the variations in flood discharge.
33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...
33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...
33 CFR 203.44 - Rehabilitation of non-Federal flood control works.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...
33 CFR 203.44 - Rehabilitation of non-Federal flood control works.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...
33 CFR 203.44 - Rehabilitation of non-Federal flood control works.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...
33 CFR 203.44 - Rehabilitation of non-Federal flood control works.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...
33 CFR 203.44 - Rehabilitation of non-Federal flood control works.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...
33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...
33 CFR 203.48 - Inspection guidelines for non-Federal flood control works.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm...
Argus, R E; Colmer, T D; Grierson, P F
2015-06-01
We investigated physiological and morphological responses to flooding and recovery in Eucalyptus camaldulensis subsp. refulgens, a riparian tree species from a dryland region prone to intense episodic floods. Seedlings in soil flooded for 88 d produced extensive adventitious roots, displayed stem hypertrophy (stem diameter increased by 93%) and increased root porosity owing to aerenchyma formation. Net photosynthesis (Pn) and stomatal conductance (gs) were maintained for at least 2 weeks of soil flooding, contrasting with previous studies of other subspecies of E. camaldulensis. Gradual declines followed in both gs (30% less than controls) and Pn (19% less). Total leaf soluble sugars did not differ between flooded and control plants. Root mass did not recover 32 d after flooding ceased, but gs was not lower than controls, suggesting the root system was able to functionally compensate. However, the limited root growth during recovery after flooding was surprising given the importance of extensive root systems in dryland environments. We conclude that early flood tolerance could be an adaptation to capitalize on scarce water resources in a water-limited environment. Overall, our findings highlight the need to assess flooding responses in relation to a species' fitness for particular flood regimes or ecological niches. © 2014 John Wiley & Sons Ltd.
Influence of model reduction on uncertainty of flood inundation predictions
NASA Astrophysics Data System (ADS)
Romanowicz, R. J.; Kiczko, A.; Osuch, M.
2012-04-01
Derivation of flood risk maps requires an estimation of the maximum inundation extent for a flood with an assumed probability of exceedence, e.g. a 100 or 500 year flood. The results of numerical simulations of flood wave propagation are used to overcome the lack of relevant observations. In practice, deterministic 1-D models are used for flow routing, giving a simplified image of a flood wave propagation process. The solution of a 1-D model depends on the simplifications to the model structure, the initial and boundary conditions and the estimates of model parameters which are usually identified using the inverse problem based on the available noisy observations. Therefore, there is a large uncertainty involved in the derivation of flood risk maps. In this study we examine the influence of model structure simplifications on estimates of flood extent for the urban river reach. As the study area we chose the Warsaw reach of the River Vistula, where nine bridges and several dikes are located. The aim of the study is to examine the influence of water structures on the derived model roughness parameters, with all the bridges and dikes taken into account, with a reduced number and without any water infrastructure. The results indicate that roughness parameter values of a 1-D HEC-RAS model can be adjusted for the reduction in model structure. However, the price we pay is the model robustness. Apart from a relatively simple question regarding reducing model structure, we also try to answer more fundamental questions regarding the relative importance of input, model structure simplification, parametric and rating curve uncertainty to the uncertainty of flood extent estimates. We apply pseudo-Bayesian methods of uncertainty estimation and Global Sensitivity Analysis as the main methodological tools. The results indicate that the uncertainties have a substantial influence on flood risk assessment. In the paper we present a simplified methodology allowing the influence of that uncertainty to be assessed. This work was supported by National Science Centre of Poland (grant 2011/01/B/ST10/06866).
On-Farm, Almond Orchard Flooding as a Viable Aquifer Recharge Alternative
NASA Astrophysics Data System (ADS)
Ulrich, C.; Nico, P. S.; Wu, Y.; Newman, G. A.; Conrad, M. E.; Dahlke, H. E.
2017-12-01
In 2014, California legislators passed the Sustainable Groundwater Management Act (SGMA), which requires groundwater sustainability agencies (areas) to identify/prioritize water basins, develop current and projected water use/needs, develop a groundwater management plan, develop fees, etc. One of the challenges for implementing SGMA is the lack of data that can support alternative groundwater recharge methods such as on-farm flooding. Prior to anthropogenic river control, river floodplains captured excess water during overbank flow in the rainy season in the CA central valley. Today levees and canals strategically route rainy season high flows to the delta/ocean when irrigation water is not needed. Utilizing farmland once again as infiltration basins for groundwater banking and aquifer recharge could be a viable answer to California's depleted central valley aquifers. Prior to 2017, U.C. Davis had partnered with the Almond Board of California (ABC) and local growers to study the efficacy of agricultural flooding and the effects on annual almond crops (. LBNL joined this team to help understand the conveyance of recharge water, using electrical resistivity tomography (ERT), into the subsurface (i.e. localized fast paths, depth of infiltration, etc.) during flooding events. The fate of the recharge water is what is significant to understanding the viability of on-farm flooding as an aquifer recharge option. In this study two orchards (in Delhi and Modesto, CA), each approximately 2 acres, were flooded during the almond tree dormant period (January), to recharge 2 acre/ft of water into the local aquifers. ERT was used to characterize (soil structure) and monitor water infiltration over a single flooding event to investigate the fate of applied water. Data were collected every hour prior to flooding (baseline), during, and after all flood water had infiltrated (about 5 days total). Our time-lapse ERT results show a heterogeneous soil structure that leads to non-uniform infiltration (fast paths) and water recharge well below the root zone to a depth below 15m (45ft) at both study sites. These results advocate the use of on-farm flooding as a viable option for groundwater recharge of local aquifers and its usefulness given existing infrastructure and potential to divert water as it heads to the delta/ocean.
The Cumberland River Flood of 2010 and Corps Reservoir Operations
NASA Astrophysics Data System (ADS)
Charley, W.; Hanbali, F.; Rohrbach, B.
2010-12-01
On Saturday, May 1, 2010, heavy rain began falling in the Cumberland River Valley and continued through the following day. 13.5 inches was measured at Nashville, an unprecedented amount that doubled the previous 2-day record, and exceeded the May monthly total record of 11 inches. Elsewhere in the valley, amounts of over 19 inches were measured. The frequency of this storm was estimated to exceed the one-thousand year event. This historic rainfall brought large scale flooding to the Cumberland-Ohio-Tennessee River Valleys, and caused over 2 billion dollars in damages, despite the numerous flood control projects in the area, including eight U.S. Army Corps of Engineers projects. The vast majority of rainfall occurred in drainage areas that are uncontrolled by Corps flood control projects, which lead to the wide area flooding. However, preliminary analysis indicates that operations of the Corps projects reduced the Cumberland River flood crest in Nashville by approximately five feet. With funding from the American Recovery and Reinvestment Act (ARRA) of 2009, hydrologic, hydraulic and reservoir simulation models have just been completed for the Cumberland-Ohio-Tennessee River Valleys. These models are being implemented in the Corps Water Management System (CWMS), a comprehensive data acquisition and hydrologic modeling system for short-term decision support of water control operations in real time. The CWMS modeling component uses observed rainfall and forecasted rainfall to compute forecasts of river flows into and downstream of reservoirs, using HEC-HMS. Simulation of reservoir operations, utilizing either the HEC-ResSim or CADSWES RiverWare program, uses these flow scenarios to provide operational decision information for the engineer. The river hydraulics program, HEC-RAS, computes river stages and water surface profiles for these scenarios. An inundation boundary and depth map of water in the flood plain can be calculated from the HEC-RAS results using ArcInfo. The economic impacts of the different inundation depths are computed by HEC-FIA. The user-configurable sequence of modeling software allows engineers to evaluate operational decisions for reservoirs and other control structures, and view and compare hydraulic and economic impacts for various “what if?” scenarios. This paper reviews the Cumberland River May 2010 event, the impact of Corps reservoirs and reservoir operations and the expected future benefits and effects of the ARRA funded models and CWMS on future events for this area.
Evaluation of Modern Navies’ Damage Control and Firefighting Training using Simulator Platforms
2011-09-01
Figure 18 below is a two-story concrete structure including holes in bulkheads, ruptured pipelines, and almost all situations that can cause flooding...the four simulators address Class A, B, and C fires. The first one—the “Basic Firefighting Trainer”—is a single-story concrete structure with four...Figure 19—is a three-story concrete structure that houses berthing facilities, engine rooms, storage compartments and electrical and engine room mock
Control-Structure Ratings on the Fox River at McHenry and Algonquin, Illinois
Straub, Timothy D.; Johnson, Gary P.; Hortness, Jon E.; Parker, Joseph R.
2009-01-01
The Illinois Department of Natural Resources-Office of Water Resources operates control structures on a reach of the Fox River in northeastern Illinois between McHenry and Algonquin. The structures maintain water levels in the river for flood-control and recreational purposes. This report documents flow ratings for hinged-crest gates, a broad-crested weir, sluice gates, and an ogee spillway on the control structures at McHenry and Algonquin. The ratings were determined by measuring headwater and tailwater stage along with streamflow at a wide range of flows at different gate openings. Standard control-structure rating techniques were used to rate each control structure. The control structures at McHenry consist of a 221-feet(ft)-long broad-crested weir, a 4-ft-wide fish ladder, a 50-ft-wide hinged-crest gate, five 13.75-ft-wide sluice gates, and a navigational lock. Sixty measurements were used to rate the McHenry structures. The control structures at Algonquin consist of a 242-ft-long ogee spillway and a 50-ft-wide hinged-crest gate. Forty-one measurements were used to rate the Algonquin control structures.
33 CFR 240.6 - General policy.
Code of Federal Regulations, 2012 CFR
2012-07-01
... they generally make reference to flood control “projects,” should be understood to have equivalent... subsequent maintenance of the creditable non-Federal flood control work will not be credited. In the event... GENERAL CREDIT FOR FLOOD CONTROL § 240.6 General policy. (a) Section 104 is applicable only to projects...
33 CFR 240.6 - General policy.
Code of Federal Regulations, 2010 CFR
2010-07-01
... they generally make reference to flood control “projects,” should be understood to have equivalent... subsequent maintenance of the creditable non-Federal flood control work will not be credited. In the event... GENERAL CREDIT FOR FLOOD CONTROL § 240.6 General policy. (a) Section 104 is applicable only to projects...
33 CFR 240.6 - General policy.
Code of Federal Regulations, 2013 CFR
2013-07-01
... they generally make reference to flood control “projects,” should be understood to have equivalent... subsequent maintenance of the creditable non-Federal flood control work will not be credited. In the event... GENERAL CREDIT FOR FLOOD CONTROL § 240.6 General policy. (a) Section 104 is applicable only to projects...
33 CFR 240.6 - General policy.
Code of Federal Regulations, 2011 CFR
2011-07-01
... they generally make reference to flood control “projects,” should be understood to have equivalent... subsequent maintenance of the creditable non-Federal flood control work will not be credited. In the event... GENERAL CREDIT FOR FLOOD CONTROL § 240.6 General policy. (a) Section 104 is applicable only to projects...
33 CFR 240.6 - General policy.
Code of Federal Regulations, 2014 CFR
2014-07-01
... they generally make reference to flood control “projects,” should be understood to have equivalent... subsequent maintenance of the creditable non-Federal flood control work will not be credited. In the event... GENERAL CREDIT FOR FLOOD CONTROL § 240.6 General policy. (a) Section 104 is applicable only to projects...
Development of Integrated Flood Analysis System for Improving Flood Mitigation Capabilities in Korea
NASA Astrophysics Data System (ADS)
Moon, Young-Il; Kim, Jong-suk
2016-04-01
Recently, the needs of people are growing for a more safety life and secure homeland from unexpected natural disasters. Flood damages have been recorded every year and those damages are greater than the annual average of 2 trillion won since 2000 in Korea. It has been increased in casualties and property damages due to flooding caused by hydrometeorlogical extremes according to climate change. Although the importance of flooding situation is emerging rapidly, studies related to development of integrated management system for reducing floods are insufficient in Korea. In addition, it is difficult to effectively reduce floods without developing integrated operation system taking into account of sewage pipe network configuration with the river level. Since the floods result in increasing damages to infrastructure, as well as life and property, structural and non-structural measures should be urgently established in order to effectively reduce the flood. Therefore, in this study, we developed an integrated flood analysis system that systematized technology to quantify flood risk and flood forecasting for supporting synthetic decision-making through real-time monitoring and prediction on flash rain or short-term rainfall by using radar and satellite information in Korea. Keywords: Flooding, Integrated flood analysis system, Rainfall forecasting, Korea Acknowledgments This work was carried out with the support of "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ011686022015)" Rural Development Administration, Republic of Korea
Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.
2018-01-01
Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar surfaces increases with successive floods. Because many sandbars are intermediate to the end members described above, high-elevation bar surfaces stabilized by vegetation often have a more dynamic unvegetated sandbar on the channel-ward margin that aggrades and erodes in response to controlled flood cycles. Ultimately, controlled floods have been effective at increasing averaged sandbar volumes, and, while bar deposition during floods decreases through time where vegetation has stabilized sandbars, future controlled floods are likely to continue to result in deposition in a majority of the river corridor.
NASA Astrophysics Data System (ADS)
Hird, J. P.; Twilley, R.; Shelden, J.; Carney, J.; Georgiou, I. Y.; Agre, C.
2016-02-01
In response to the Changing Course Design Competition a bold, innovative "systems approach" to link the specific needs of the region's ecosystem, economy and community is proposed. "The Giving Delta" plan empowers the Mississippi River's seasonal natural flood pulse to maximized sediment capture in order to build and maintain wetlands, mitigate the effects of climate change and subsidence, and to slow the inevitable marine transgression of the Delta. Sediment capture is optimized by a series of sediment retention strategies and passive sediment diversion structures, as well as establishing a new deep draft navigation channel connected to the Barataria Bay shoreline littoral zone 40 miles north of the current channel.This paradigm shift from "flood control" to "controlled floods", connects the River's natural flood pulse to the coastal landscape. Using hydraulic residence time in the basin as a design and operational criteria for these controlled and passive structures, balances estuarine recovery and system response tolerance in order to determine the magnitude of the peak flows possible without intolerable salinity suppression in the receiving basins. Seasonal salinity gradients can be established that enable the diversion program to operate in harmony with and promote regional fisheries. On an annual basis, fisheries, communities and ecosystems will adapt to seasonally changing conditions. This plan is not designed to completely rebuild the wetlands that have been lost over the last century. Instead, the design encourages wetland adaptation to accelerated sea level rise in the coastal basins. With this plan, the basin ecologies would "self-organize" in parallel to the human settlement's natural ability to adapt and change to this long-term vision, as a new, consolidated and sustainable Delta emerges. By establishing a framework of implementation over 100 years, incremental adaptation minimizes individual uncertainty and costs within each human generation.
Flood Control, Mississippi River, La Crosse, Wisconsin.
1975-10-01
end SuP.,tifle) S TYPE OF REPORT & PERIOD COVEkr FINAL ENVIRONMENTAL IMPACT STATEMENT FLOOD CONTROL MISSISSIPPI RIVER LA CROSSE, WISCONSIN Pinal FIq 6...PERFORMING ORG. REPORT NUMBER 7. AUTHOR(e) 0 CONTRACT OR GRANT NUMBER( s ) 9 PERFORMING ORGANIZATION NAME AND ADrRESS 10. PROGRAM ELEMENT. PROJECT, T...rev s eflA ff r,,.e.. ind IdeInify by block rnmber) "-The proposed action is a flood control project consisting of levees, road raises, flood wall
Code of Federal Regulations, 2011 CFR
2011-07-01
... recreational facilities in reservoir areas under the control of the Department of the Army and to permit the construction, maintenance, and operation of such facilities. The Secretary of the Army is authorized to grant leases of lands, including structures or facilities thereon, in reservoir areas for such periods and upon...
NASA Astrophysics Data System (ADS)
Zhao, Ling; Xia, Huifen
2018-01-01
The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.
NASA Astrophysics Data System (ADS)
Meierdiercks, K. L.; Smith, J. A.; Miller, A. J.
2006-12-01
The impact of urban development on watershed-scale hydrology is examined in a small urban watershed in the Metropolitan Baltimore area. Analyses focus on Dead Run, a 14.3 km2 tributary of the Gwynns Falls, which is the principal study watershed of the Baltimore Ecosystem Study. Field observations of rainfall and discharge have been collected for storms occurring in the 2003, 2004, and 2005 warm seasons including the flood of record for the USGS Dead Run at Franklintown gage (7 July 2004), in which 5 inches of rain fell in less than 4 hours. Dead Run has stream gages at 6 locations with drainage areas ranging from 1.2 to 14.3 km2. Hydrologic response to storm events varies greatly in each of the subwatersheds due to the diverse development types located there. These subwatersheds range in land use from medium-density residential, with and without stormwater management control, to commercial/light industrial with large impervious lots and an extensive network of stormwater management ponds. The unique response of each subwatershed is captured using field observations in conjunction with the EPA Stormwater Management Model (SWMM), which routes storm runoff over the land surface and through the drainage network of a watershed. Of particular importance to flood response is the structure of the drainage network (both surface channels and storm drain network) and its connectivity to preferential flow paths within the watershed. The Dead Run drainage network has been delineated using geospatial data derived from aerial photography and engineering planning drawings. Model analyses are used to examine the characteristics of flow paths that control flood response in urban watersheds. These analyses aim to identify patterns in urban flow pathways and use those patterns to predict response in other urban watersheds.
Gao, Yuqin; Yuan, Yu; Wang, Huaizhi; Schmidt, Arthur R; Wang, Kexuan; Ye, Liu
2017-05-01
The urban agglomeration polders type of flood control pattern is a general flood control pattern in the eastern plain area and some of the secondary river basins in China. A HEC-HMS model of Qinhuai River basin based on the flood control pattern was established for simulating basin runoff, examining the impact of urban agglomeration polders on flood events, and estimating the effects of urbanization on hydrological processes of the urban agglomeration polders in Qinhuai River basin. The results indicate that the urban agglomeration polders could increase the peak flow and flood volume. The smaller the scale of the flood, the more significant the influence of the polder was to the flood volume. The distribution of the city circle polder has no obvious impact on the flood volume, but has effect on the peak flow. The closer the polder is to basin output, the smaller the influence it has on peak flows. As the level of urbanization gradually improving of city circle polder, flood volumes and peak flows gradually increase compared to those with the current level of urbanization (the impervious rate was 20%). The potential change in flood volume and peak flow with increasing impervious rate shows a linear relationship.
Quantifying extreme precipitation events and their hydrologic response in Southeastern Arizona
USDA-ARS?s Scientific Manuscript database
Design criteria such as rainfall intensities and runoff rates for small watersheds (<200km2) are needed for modeling, sizing and design of drainage and flood control structures. In the Southwest US the need for accurate information about these rates is increasingly important as development of range...
Evaluation of Contractor Quality Control of Built-Up Roofing.
1983-10-01
flood coat Mnd surfacing applied. 1144 - -- , -. .. - -. .. . J - - - - .- o 7. APLICATION OF ROOFrNG. 7.1. GKNERA REUIZNTS. The entire roofing...ATTN: Chief, HNDED-M USA-WES 39180 Mobile 36628 ATTN: Chief, HNDED-SR ATTN: C/Structures ATTN: Chief, SA14EN-D Lower Mississippi 39180 ATTN: Soils
Freshwater mussel response to bedform movement: experimental stream studies
NASA Astrophysics Data System (ADS)
Kozarek, J. L.; MacGregor, K. R.; Hornbach, D.; Hove, M.
2017-12-01
Freshwater mussels are intrinsically linked to near-bed sediment dynamics, but it remains unclear how mussels respond to changing sediment loads across spatial and temporal scales. The interactions between mussels and sediment transport are complex and often involve feedback loops. Mussels are filter feeders removing suspended particles from the water column and the physical presence of mussels can have significant impacts on the structure of riverbed habitat. We investigated the feedbacks between mussels, flow, and migrating bedforms during flood experiments in the St. Anthony Falls Laboratory Outdoor StreamLab (OSL) at the University of Minnesota. The OSL is a field-scale sand-bed meandering stream channel with independent control over sediment feed (recirculated) and water flow (diverted from the Mississippi River). Mussel location, orientation to flow, and protrusion from sediment was surveyed immediately before, after, and one and two days after each flood event. Flow fields, bed shear stress, bedform migration, and bar topography were measured during each flooding event with and without mussels present (density = 4/m2 and 8/m2) to quantify the influence of mussels on channel morphology and bedform migration. Mobile bedforms (up to 14 cm high) were present for all flood events with quasi-equilibrium, aggrading, and degrading bed conditions. Mussels moved little horizontally during all flood events, but were shown to move quickly to deeper water after the flood receded. However, mussels moved vertically, burrowing or being buried under mobile bedforms, during each flood event. The research presented here will focus on feedbacks between three mussel species with different shell sculptures, flow conditions, and migrating bedforms during flooding events. These results reveal how freshwater mussels respond to and affect flow and sediment transport during flood events that are difficult to observe in the field.
Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy
2018-01-01
In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.
NASA Astrophysics Data System (ADS)
Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy E.
2018-06-01
In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.
How can we deal with ANN in flood forecasting? As a simulation model or updating kernel!
NASA Astrophysics Data System (ADS)
Hassan Saddagh, Mohammad; Javad Abedini, Mohammad
2010-05-01
Flood forecasting and early warning, as a non-structural measure for flood control, is often considered to be the most effective and suitable alternative to mitigate the damage and human loss caused by flood. Forecast results which are output of hydrologic, hydraulic and/or black box models should secure accuracy of flood values and timing, especially for long lead time. The application of the artificial neural network (ANN) in flood forecasting has received extensive attentions in recent years due to its capability to capture the dynamics inherent in complex processes including flood. However, results obtained from executing plain ANN as simulation model demonstrate dramatic reduction in performance indices as lead time increases. This paper is intended to monitor the performance indices as it relates to flood forecasting and early warning using two different methodologies. While the first method employs a multilayer neural network trained using back-propagation scheme to forecast output hydrograph of a hypothetical river for various forecast lead time up to 6.0 hr, the second method uses 1D hydrodynamic MIKE11 model as forecasting model and multilayer neural network as updating kernel to monitor and assess the performance indices compared to ANN alone in light of increase in lead time. Results presented in both graphical and tabular format indicate superiority of MIKE11 coupled with ANN as updating kernel compared to ANN as simulation model alone. While plain ANN produces more accurate results for short lead time, the errors increase expeditiously for longer lead time. The second methodology provides more accurate and reliable results for longer forecast lead time.
33 CFR 208.34 - Norman Dam and Lake Thunderbird, Little River, Okla.
Code of Federal Regulations, 2011 CFR
2011-07-01
... amounts to 76,600 acre-feet. Whenever the reservoir level is within this elevation range the flood control... flood damage below the reservoir. In order to accomplish this purpose, flood control releases shall be... of bankfull on the Little River downstream of the reservoir. Controlling bankfull stages and...
33 CFR 208.34 - Norman Dam and Lake Thunderbird, Little River, Okla.
Code of Federal Regulations, 2010 CFR
2010-07-01
... amounts to 76,600 acre-feet. Whenever the reservoir level is within this elevation range the flood control... flood damage below the reservoir. In order to accomplish this purpose, flood control releases shall be... of bankfull on the Little River downstream of the reservoir. Controlling bankfull stages and...
NASA Astrophysics Data System (ADS)
Ravazzani, Giovanni; Amengual, Arnau; Ceppi, Alessandro; Romero, Romualdo; Homar, Victor; Mancini, Marco
2015-04-01
Analysis of forecasting strategies that can provide a tangible basis for flood early warning procedures and mitigation measures over the Western Mediterranean region is one of the fundamental motivations of the European HyMeX programme. Here, we examine a set of hydro-meteorological episodes that affected the Milano urban area for which the complex flood protection system of the city did not completely succeed before the occurred flash-floods. Indeed, flood damages have exponentially increased in the area during the last 60 years, due to industrial and urban developments. Thus, the improvement of the Milano flood control system needs a synergism between structural and non-structural approaches. The flood forecasting system tested in this work comprises the Flash-flood Event-based Spatially distributed rainfall-runoff Transformation, including Water Balance (FEST-WB) and the Weather Research and Forecasting (WRF) models, in order to provide a hydrological ensemble prediction system (HEPS). Deterministic and probabilistic quantitative precipitation forecasts (QPFs) have been provided by WRF model in a set of 48-hours experiments. HEPS has been generated by combining different physical parameterizations (i.e. cloud microphysics, moist convection and boundary-layer schemes) of the WRF model in order to better encompass the atmospheric processes leading to high precipitation amounts. We have been able to test the value of a probabilistic versus a deterministic framework when driving Quantitative Discharge Forecasts (QDFs). Results highlight (i) the benefits of using a high-resolution HEPS in conveying uncertainties for this complex orographic area and (ii) a better simulation of the most of extreme precipitation events, potentially enabling valuable probabilistic QDFs. Hence, the HEPS copes with the significant deficiencies found in the deterministic QPFs. These shortcomings would prevent to correctly forecast the location and timing of high precipitation rates and total amounts at the catchment scale, thus impacting heavily the deterministic QDFs. In contrast, early warnings would have been possible within a HEPS context for the Milano area, proving the suitability of such system for civil protection purposes.
NASA Astrophysics Data System (ADS)
Wan, X. Y.
2017-12-01
The extensive constructions of reservoirs change the hydrologic characteristics of the associated watersheds, which obviously increases the complexity of watershed flood control decisions. By evaluating the impacts of the multi-reservoir system on the flood hydrograph, it becomes possible to improve the effectiveness of the flood control decisions. In this paper we compare the non-reservoir flood hydrograph with the actual observed flood hydrograph using the Lutaizi upstream of Huai river in East China as a representative case, where 20 large-scale/large-sized reservoirs have been built. Based on the total impact of the multi-reservoir system, a novel strategy, namely reservoir successively added (RSA) method, is presented to evaluate the contribution of each reservoir to the total impact. According each reservoir contribution, the "highly effective" reservoirs for watershed flood control are identified via hierarchical clustering. Moreover, we estimate further the degree of impact of the reservoir current operation rules on the flood hydrograph on the base of the impact of dams themselves. As a result, we find that the RSA method provides a useful method for analysis of multi-reservoir systems by partitioning the contribution of each reservoir to the total impacts on the flooding at the downstream section. For all the historical large floods examined, the multi-reservoir system in the Huai river watershed has a significant impact on flooding at the downstream Lutaizi section, on average reducing the flood volume and peak discharge by 13.92 × 108 m3 and 18.7% respectively. It is more informative to evaluate the maximum impact of each reservoir (on flooding at the downstream section) than to examine the average impact. Each reservoir has a different impact on the flood hydrograph at the Lutaizi section. In particular, the Meishan, Xianghongdian, Suyahu, Nanwan, Nianyushan and Foziling reservoirs exert a strong influence on the flood hydrograph, and are therefore important for flood control on the Huai river. Under the current operation rules, the volume and peak discharge of flooding at the Lutaizi section are reduced by 13.69 × 108m3 and 1429 m3/s respectively, accounting for 98% and 80.5% of the real reduction respectively.
Noah R. Lottig; H. Maurice Valett; Madeline E. Schreiber; Jackson R. Webster
2007-01-01
We investigated the influence of flooding and chronic arsenic contamination on ecosystem structure and function in a headwater stream adjacent to an abandoned arsenic (As) mine using an upstream (reference) and downstream (mine-influenced) comparative reach approach. In this study, floods were addressed as a pulse disturbance, and the abandoned As mine was...
Risk-based zoning for urbanizing floodplains.
Porse, Erik
2014-01-01
Urban floodplain development brings economic benefits and enhanced flood risks. Rapidly growing cities must often balance the economic benefits and increased risks of floodplain settlement. Planning can provide multiple flood mitigation and environmental benefits by combining traditional structural measures such as levees, increasingly popular landscape and design features (green infrastructure), and non-structural measures such as zoning. Flexibility in both structural and non-structural options, including zoning procedures, can reduce flood risks. This paper presents a linear programming formulation to assess cost-effective urban floodplain development decisions that consider benefits and costs of development along with expected flood damages. It uses a probabilistic approach to identify combinations of land-use allocations (residential and commercial development, flood channels, distributed runoff management) and zoning regulations (development zones in channel) to maximize benefits. The model is applied to a floodplain planning analysis for an urbanizing region in the Baja Sur peninsula of Mexico. The analysis demonstrates how (1) economic benefits drive floodplain development, (2) flexible zoning can improve economic returns, and (3) cities can use landscapes, enhanced by technology and design, to manage floods. The framework can incorporate additional green infrastructure benefits, and bridges typical disciplinary gaps for planning and engineering.
A new approach to flood vulnerability assessment for historic buildings in England
NASA Astrophysics Data System (ADS)
Stephenson, V.; D'Ayala, D.
2014-05-01
The recent increase in frequency and severity of flooding in the UK has led to a shift in the perception of risk associated with flood hazards. This has extended to the conservation community, and the risks posed to historic structures that suffer from flooding are particularly concerning for those charged with preserving and maintaining such buildings. In order to fully appraise the risks in a manner appropriate to the complex issue of preservation, a new methodology is presented here that studies the nature of the vulnerability of such structures, and places it in the context of risk assessment, accounting for the vulnerable object and the subsequent exposure of that object to flood hazards. The testing of the methodology is carried out using three urban case studies and the results of the survey analysis provide guidance on the development of fragility curves for historic structures exposed to flooding. This occurs through appraisal of vulnerability indicators related to building form, structural and fabric integrity, and preservation of architectural and archaeological values. Key findings of the work include determining the applicability of these indicators to fragility analysis, and the determination of the relative vulnerability of the three case study sites.
NASA Astrophysics Data System (ADS)
Stephenson, V.; D'Ayala, D.
2013-10-01
The recent increase in frequency and severity of flooding in the UK has led to a shift in the perception of risk associated with flood hazards. This has extended to the conservation community, and the risks posed to historic structures that suffer from flooding are particularly concerning for those charged with preserving and maintaining such buildings. In order to fully appraise the risks in a manner appropriate to the complex issue of preservation, a new methodology is proposed that studies the nature of vulnerability of such structures, and places it in the context of risk assessment, accounting for the vulnerable object and the subsequent exposure of that object to flood hazards. The testing of the methodology is carried out using three urban case studies and the results of the survey analysis provide key findings and guidance on the development of fragility curves for historic structures exposed to flooding. This occurs through appraisal of key vulnerability indicators related to building form, structural and fabric integrity, and preservation of architectural and archaeological values. This in turn facilitates the production of strategies for mitigating and managing the losses threatened by such extreme climate events.
[Effect of flooding time on community structure and abundance of Geobacteraceae in paddy soil].
You, Jiaohua; Xia, Shuhong; Wang, Baoli; Qu, Dong
2011-06-01
The dynamic characteristics of community structure and relative abundance of Geobacteraceae were investigated to understand their response to microbial iron (III) reducing in flooded paddy soil. The paddy soil was incubated anaerobically and the amount of Fe(II) was determined during the flooding incubation. We retrieved Geobacteraceae sequences from clone libraries constructed for different time points (1 h and day 1, 5, 10, 20 and 30) after flooding of the paddy soil. The diversity and community structure were analyzed by using RFLP method, and the relative abundance of Geobacteraceae was detected by real-time PCR. Microbial reduction of iron (III) changed greatly in early time and was stable after incubated for 20 d in paddy soil. The largest iron reduction potential was 10.16 mg/g with a Vmax of 1.064 mg/(g x d) at the time of 4.84 d whereas this process achieved plateau after 20 days flooding. Diversity of Geobacteraceae, given by alpha indices, fluctuated during the flooding incubation. Two peaks of diversity were observed in treatments of 5 d and 20 d respectively, while significant low diversity appeared in samples of 10 d and 30 d. Beta indices described the differences between community structures of Geobacteraceae and hence reflected the variation of the flooding situation over time. In all samples, 10 RFLP-based preponderant types were found, which fell into clade 1 and clade 2 of Geobacteraceae. The relative abundance of Geobacteraceae was the lowest in 1 d (1.20% ) and the highest in 20 d (4.54%). The dynamic variation of Geobacteraceae diversity, community structure and abundance are closely related to microbial iron (III) reducing in flooding paddy soil.
Estimating magnitude and frequency of floods using the PeakFQ 7.0 program
Veilleux, Andrea G.; Cohn, Timothy A.; Flynn, Kathleen M.; Mason, Jr., Robert R.; Hummel, Paul R.
2014-01-01
Flood-frequency analysis provides information about the magnitude and frequency of flood discharges based on records of annual maximum instantaneous peak discharges collected at streamgages. The information is essential for defining flood-hazard areas, for managing floodplains, and for designing bridges, culverts, dams, levees, and other flood-control structures. Bulletin 17B (B17B) of the Interagency Advisory Committee on Water Data (IACWD; 1982) codifies the standard methodology for conducting flood-frequency studies in the United States. B17B specifies that annual peak-flow data are to be fit to a log-Pearson Type III distribution. Specific methods are also prescribed for improving skew estimates using regional skew information, tests for high and low outliers, adjustments for low outliers and zero flows, and procedures for incorporating historical flood information. The authors of B17B identified various needs for methodological improvement and recommended additional study. In response to these needs, the Advisory Committee on Water Information (ACWI, successor to IACWD; http://acwi.gov/, Subcommittee on Hydrology (SOH), Hydrologic Frequency Analysis Work Group (HFAWG), has recommended modest changes to B17B. These changes include adoption of a generalized method-of-moments estimator denoted the Expected Moments Algorithm (EMA) (Cohn and others, 1997) and a generalized version of the Grubbs-Beck test for low outliers (Cohn and others, 2013). The SOH requested that the USGS implement these changes in a user-friendly, publicly accessible program.
Quantification of Interbasin Transfers into the Addicks Reservoir during Hurricane Harvey
NASA Astrophysics Data System (ADS)
Sebastian, A.; Juan, A.; Gori, A.; Maulsby, F.; Bedient, P. B.
2017-12-01
Between August 25 and 30, Hurricane Harvey dropped unprecedented rainfall over southeast Texas causing widespread flooding in the City of Houston. Water levels in the Addicks and Barker reservoirs, built in the 1940s to protect downtown Houston, exceeded previous records by approximately 2 meters. Concerns regarding structural integrity of the dams and damage to neighbourhoods in within the reservoir pool resulted in controlled releases into Buffalo Bayou, flooding an estimated 4,000 additional structures downstream of the dams. In 2016, during the Tax Day it became apparent that overflows from Cypress Creek in northern Harris County substantially contribute to water levels in Addicks. Prior to this event, little was known about the hydrodynamics of this overflow area or about the additional stress placed on Addicks and Barker reservoirs due to the volume of overflow. However, this information is critical for determining flood risk in Addicks Watershed, and ultimately Buffalo Bayou. In this study, we utilize the recently developed HEC-RAS 2D model the interbasin transfer that occurs between Cypress Creek Watershed and Addicks Reservoir to quantify the volume and rate at which water from Cypress enters the reservoir during extreme events. Ultimately, the results of this study will help inform the official hydrologic models used by HCFCD to determine reservoir operation during future storm events and better inform residents living in or above the reservoir pool about their potential flood risk.
NASA Astrophysics Data System (ADS)
Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.
2018-01-01
Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar surfaces increases with successive floods. Because many sandbars are intermediate to the end members described above, high-elevation bar surfaces stabilized by vegetation often have a more dynamic unvegetated sandbar on the channel-ward margin that aggrades and erodes in response to controlled flood cycles. Ultimately, controlled floods have been effective at increasing averaged sandbar volumes, and, while bar deposition during floods decreases through time where vegetation has stabilized sandbars, future controlled floods are likely to continue to result in deposition in a majority of the river corridor. Supplementary Fig. 2 Relation between the total site and high-elevation discharge-volume relation slope for all sites where both relations are available (n = 33). Supplementary Fig. 3 Change in sandbar volume since 1990 for Marble versus Grand Canyon sites. Solid vertical gray lines indicate controlled floods, and dashed vertical gray lines indicate other high test flows in 1997 and 2000 as discussed in the text. Photographs by U.S. Geological Survey, 2008-2015.
NASA Astrophysics Data System (ADS)
Simoni, S.; Vignoli, G.; Mazzorana, B.
2017-08-01
Sediment fluxes from mountain rivers contribute to shape the geomorphologic features of lowland rivers and to establish the physical basis for an optimal set of ecosystem functions and related services to people. Through significant public funding, the hydro-morphological regimes of mountain rivers in the European Alps have been progressively altered over the last century, with the aim to provide a safe dwelling space, to boost transport, mobility and to support economic growth. We claim that the underlying planning weaknesses contribute to determine these inefficient resource allocations, since flood risk is still high and the ecosystem services are far from being optimal. Hence, with the overall aim to enhance sediment flux control and hazard risk mitigation in such heavily modified alpine streams, we propose a structured design workflow which guides the planner through system analysis and synthesis. As a first step the proposed workflow sets the relevant planning goals and assesses the protection structure functionality. Then a methodology is proposed to achieve the goals. This methodology consists in characterising the hydrologic basin of interest and the sediment availability and determining the sediment connectivity to channels. The focus is set on the detailed analysis of existing river cross sections where the sediment continuity is interrupted (e.g. slit and check dams). By retaining relevant sediment volumes these structures prevent the reactivation of hydro-morphological and associated ecological functionalities. Since their actual performance can be unsatisfying with respect to flood risk mitigation (e.g. mainly old structures), we introduce specific efficiency indicators as a support for the conceptual design stage to quantify effects related to sediment flux control and risk management. The proposed planning approach is then applied to the Gadria system (stream, slit dam, retention basin and culvert), located in South Tyrol, Italy. This case study shows that design excellence is needed to re-establish the sediment continuity, while keeping flood risk below acceptable levels. Moreover, the detailed hydraulic analyses highlight that the slit dam is oversized and it could be redesigned to improve sediment continuity and to reduce maintenance costs.
NASA Astrophysics Data System (ADS)
Sanders, B. F.; Gallegos, H. A.; Schubert, J. E.
2011-12-01
The Baldwin Hills dam-break flood and associated structural damage is investigated in this study. The flood caused high velocity flows exceeding 5 m/s which destroyed 41 wood-framed residential structures, 16 of which were completed washed out. Damage is predicted by coupling a calibrated hydrodynamic flood model based on the shallow-water equations to structural damage models. The hydrodynamic and damage models are two-way coupled so building failure is predicted upon exceedance of a hydraulic intensity parameter, which in turn triggers a localized reduction in flow resistance which affects flood intensity predictions. Several established damage models and damage correlations reported in the literature are tested to evaluate the predictive skill for two damage states defined by destruction (Level 2) and washout (Level 3). Results show that high-velocity structural damage can be predicted with a remarkable level of skill using established damage models, but only with two-way coupling of the hydrodynamic and damage models. In contrast, when structural failure predictions have no influence on flow predictions, there is a significant reduction in predictive skill. Force-based damage models compare well with a subset of the damage models which were devised for similar types of structures. Implications for emergency planning and preparedness as well as monetary damage estimation are discussed.
Formation and evolution of valley-bottom and channel features, Lower Deschutes River, Oregon
Curran, Janet H.; O'Conner, Jim E.; O'Conner, Jim E.; Grant, Gordon E.
2003-01-01
Primary geologic and geomorphic processes that formed valley-bottom and channel features downstream from the Pelton-Round Butte dam complex are inferred from a canyon-long analysis of feature morphology, composition, location, and spatial distribution. Major controls on valley-bottom morphology are regional tectonics, large landslides, and outsized floods (floods with return periods greater than 1000 yrs), which include the late Holocene Outhouse Flood and several Quaternary landslide dam failures. Floods with a return period on the order of 100 yrs, including historical floods in 1996, 1964, and 1861, contribute to fan building and flood plain formation only within the resistant framework established by the major controls. Key processes in the formation of channel features, in particular the 153 islands and 23 large rapids, include long-term bedrock erosion, outsized floods, and century-scale floods. Historical analysis of channel conditions since 1911 indicates that the largest islands, which are cored by outsized-flood deposits, locally control channel location, although their margins are substantially modified during annual- to century-scale floods. Islands cored by bedrock have changed little. Islands formed by annual- to century-scale floods are more susceptible to dynamic interactions between tributary sediment inputs, mainstem flow hydraulics, and perhaps riparian vegetation. Temporal patterns of island change in response to the sequence of 20th century flooding indicate that many islands accreted sediment during annual- to decadal-scale floods, but eroded during larger century-scale floods. There is, however, no clear trend of long-term changes in patterns of island growth, movement, or erosion either spatially or temporally within the lower Deschutes River.
An inventory of published and unpublished fluvial-sediment data for California, 1956-70
Porterfield, George
1972-01-01
This inventory was prepared to provide a convenient reference to published and unpublished fluvial-sediment data for water years 1956-70, and updates substantially previous inventories. Sediment stations are listed in downstream order, and an alphabetical list of stations is also included. Figure 1 shows the approximate location of sediment stations in California. Most of the fluvial-sediment data in California were collected by the U.S. Geological Survey, under cooperative agreements with the following Federal, State, and local agencies: California Department of Water Resources, California Department of Navigation and Ocean Development, California Department of Fish and Game, Bolinas Harbor District, Monterey County Flood Control and Water Conservation District, Orange County Flood Control District, Riverside County Flood Control and Water Conservation District, San Diego County Department of Sanitation and Flood Control, San Luis Obispo County, San Mateo County, Santa Clara County Flood Control and Water District, Santa Cruz County Flood Control and Water Conservation District, Santa Cruz, city of, University of California, Ventura County Flood Control District, Forest Service, U.S. Department of Agriculture, Soil Conservation Service, U.S. Department of Agriculture, Corps of Engineers, U.S. Army, Bureau of Reclamation, U.S. Department of the Interior, National Park Service, U.S. Department of the Interior. This report was prepared by the Geological Survey under the general supervision of R. Stanley Lord, district chief in charge of water-resources investigations in California.
Welch, Heather L.; Coupe, Richard H.; Aulenbach, Brent T.
2014-01-01
High streamflow associated with the April–July 2011 Mississippi River flood forced the simultaneous opening of the three major flood-control structures in the lower Mississippi-Atchafalaya River subbasin for the first time in history in order to manage the amount of water moving through the system. The U.S. Geological Survey (USGS) collected samples for analysis of field properties, suspended-sediment concentration, particle-size, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and up to 136 pesticides at 11 water-quality stations and 2 flood-control structures in the lower Mississippi-Atchafalaya River subbasin from just above the confluence of the upper Mississippi and Ohio Rivers downstream from April through July 2011. Monthly fluxes of suspended sediment, suspended sand, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, simazine, metolachlor, and acetochlor were estimated at 9 stations and 2 flood-control structures during the flood period. Although concentrations during the 2011 flood were within the range of what has been observed historically, concentrations decreased during peak streamflow on the lower Mississippi River. Prior to the 2011 flood, high concentrations of suspended sediment and nitrate were observed in March 2011 at stations downstream of the confluence of the upper Mississippi and Ohio Rivers, which probably resulted in a loss of available material for movement during the flood. In addition, the major contributor of streamflow to the lower Mississippi-Atchafalaya River subbasin during April and May was the Ohio River, whose water contained lower concentrations of suspended sediment, pesticides, and nutrients than water from the upper Mississippi River. Estimated fluxes for the 4-month flood period were still quite high and contributed approximately 50 percent of the estimated annual suspended sediment, nitrate, and total phosphorus fluxes in 2011; the largest fluxes were estimated at the water-quality station located at Vicksburg, Mississippi. The majority of the suspended-sediment flux introduce into the lower Mississippi-Atchafalaya River subbasin during the 2011 flood was in the form of fine-grained particles from the upper Mississippi River—77 percent of the suspended-sediment flux compared to 23 percent from the Ohio River. As water moved downstream along the lower Mississippi River, there were losses in suspended-sediment flux because of deposition and backwater areas. Fluxes showed a greater response to increased streamflow in the Atchafalaya River than in the lower Mississippi River. The result was a gain in suspended-sediment flux with distance downstream in the Atchafalaya River because of resuspension of previously deposited materials—particularly sand particles. Overall, 13 percent less suspended sediment left the lower Mississippi-Atchafalaya River subbasin than entered it from the confluence of the upper Mississippi and Ohio Rivers during the flood. The loss in suspended-sediment flux during the flood accounted for 14 percent of the 2011 annual suspended-sediment flux loss within the lower Mississippi-Atchafalaya River subbasin. Nitrate composed approximately 70 percent of the total nitrogen flux at all of the sampled water-quality stations, excluding the Arkansas River. Almost 2.4 times more nitrate flux entered the lower Mississippi-Atchafalaya River subbasin from the upper Mississippi River than from the Ohio River. As nitrate moved down the lower Mississippi River and the Atchafalaya River, there were no substantial losses or gains in flux, indicating that nitrate moved conservatively within the subbasin during the 2011 flood. Although streamflow was the largest on record, nitrate flux during the flood period resulted in a zone of hypoxia in the Gulf of Mexico that was only the tenth largest on record. The flux of total phosphorus in the lower Mississippi-Atchafalaya River subbasin during the 2011 flood was strongly related to suspended-sediment flux at most of the stations. There were significant gains in total phosphorus flux in the Atchafalaya River during the flood period and losses between the stations along the lower Mississippi River. Overall, however, the amount of total phosphorus flux that left the lower Mississippi-Atchafalaya River subbasin was only 1.7 percent less than the flux that entered it from the upper Mississippi River and the Ohio River, indicating that total phosphorus flux within the subbasin during the flood was conservative. As streamflow was decreasing within the lower Mississippi-Atchafalaya River subbasin, orthophosphate composed an increasing percentage of the total phosphorus concentration, probably because of the return of waters low in oxygen concentration from areas such as inundated lands, backwater streams, and floodways. Poorly oxygenated waters promote the release of sediment-bound phosphorus into the more-readily available dissolved form (measured as orthophosphate in this study). Because of processing within the subbasin during the flood period, there was a 25-percent gain in orthophosphate flux between the confluence of the upper Mississippi and Ohio Rivers and the outlet of the subbasin. Of the 136 pesticide compounds and degradates that were analyzed, only 18 were detected above the method reporting level. The 18 compounds that were detected fell into three categories: (1) compounds that were frequently detected and showed a response in concentration to the flood; (2) compounds that were detected in almost every sample at every station but at low concentrations; and (3) compounds that were infrequently detected. Fluxes for the most frequently detected pesticides having the highest concentrations (atrazine, metolachlor, acetochlor, and simazine) were within the low-to-middle range of historic fluxes. An average of 66,450 cubic feet per second of streamflow was diverted from the lower Mississippi River through the Morganza Floodway into the Atchafalaya River from May 14 through July 7, 2011. Dissolved oxygen concentrations in the floodway decreased with the amount of time that the flood control structure was open, which affected nitrate and orthophosphate concentrations. As dissolved oxygen concentrations decreased in the floodway, nitrate concentrations decreased and orthophosphate concentrations increased. Oil and gas samples were also collected at 1 station upstream and 1 station downstream from the outlet of the Morganza Floodway into the Atchafalaya River. There were no detections of petroleum hydrocarbons in the upstream or downstream samples. All concentrations of oil and grease were relatively low, and the effect of water from the floodway on water quality in the Atchafalaya River could not be determined because oil and grease samples were not collected from the floodway.
Code of Federal Regulations, 2014 CFR
2014-07-01
... term is used in the National Flood Insurance Program (NFIP) to indicate the minimum level of flooding... flooding would be too great. (g) Facility—any man-made or man-placed item other than a structure. (h) Flood or flooding—a general and temporary condition of partial or complete inundation of normally dry land...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-08
... Environmental Impact Statement for the `[Imacr]ao Stream Flood Control Project, Wailuku, Maui, HI AGENCY... Project, Wailuku, Maui, HI. This effort is being proposed under Section 203 of the Flood Control Act of...), Building 230, Fort Shafter, HI 96858- 5440. Submit electronic comments to [email protected] . FOR...
33 CFR 263.24 - Authority for snagging and clearing for flood control (Section 208).
Code of Federal Regulations, 2010 CFR
2010-07-01
... clearing for flood control (Section 208). 263.24 Section 263.24 Navigation and Navigable Waters CORPS OF... Policy § 263.24 Authority for snagging and clearing for flood control (Section 208). (a) Legislative... 26 of the Water Resources Development Act approved March 7, 1974 states: The Secretary of the Army is...
33 CFR 208.33 - Cheney Dam and Reservoir, North Fork of Ninnescah River, Kans.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Cheney Dam and Reservoir, North..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.33 Cheney Dam and Reservoir... the Cheney Dam and Reservoir in the interest of flood control as follows: (a) Flood control storage in...
33 CFR 208.33 - Cheney Dam and Reservoir, North Fork of Ninnescah River, Kans.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Cheney Dam and Reservoir, North..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.33 Cheney Dam and Reservoir... the Cheney Dam and Reservoir in the interest of flood control as follows: (a) Flood control storage in...
Upstream structural management measures for an urban area flooding in Turkey
NASA Astrophysics Data System (ADS)
Akyurek, Z.; Bozoğlu, B.; Sürer, S.; Mumcu, H.
2015-06-01
In recent years, flooding has become an increasing concern across many parts of the world of both the general public and their governments. The climate change inducing more intense rainfall events occurring in short period of time lead flooding in rural and urban areas. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is performed. MIKE21 with flexible grid is used in 2-dimensional shallow water flow modelling. 1 × 1000-1 scaled maps with the buildings for the urbanized area and 1 × 5000-1 scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of 500 m3 s-1 according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The upstream structural base precautions against flooding are modelled. The effect of four main upstream catchments on the flooding in the downstream urban area are modelled as different scenarios. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in one of the upstream catchments, estimated Q100 flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q500 without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed.
Advances in urban-drainage management and flood protection.
Verworn, Hans-Reinhard
2002-07-15
Since the beginning of modern urban drainage in the 19th century, the sole objective has been to get rid of sewage and storm water in the best possible way and design the systems according to accepted standards. In recent decades, advanced methods have been developed not only to refine the design but also especially to enable the assessment of hydraulic performance and pollutant emissions. Consequently, urban drainage has become part of an integrated approach concerning flood protection as well as ecological aspects for whole watersheds. Another major change concerns the management of urban systems: simple structural maintenance has been replaced by interactive operational management and control of the systems in order to make better use of the facilities. Rehabilitation has become a multi-objective task. This paper looks at today's basic principles of urban drainage and tomorrow's potential advances, and deals with their relevance to flood protection.
Taylor, Jonathon; Biddulph, Phillip; Davies, Michael; Lai, Ka man
2013-01-01
London is expected to experience more frequent periods of intense rainfall and tidal surges, leading to an increase in the risk of flooding. Damp and flooded dwellings can support microbial growth, including mould, bacteria, and protozoa, as well as persistence of flood-borne microorganisms. The amount of time flooded dwellings remain damp will depend on the duration and height of the flood, the contents of the flood water, the drying conditions, and the building construction, leading to particular properties and property types being prone to lingering damp and human pathogen growth or persistence. The impact of flooding on buildings can be simulated using Heat Air and Moisture (HAM) models of varying complexity in order to understand how water can be absorbed and dry out of the building structure. This paper describes the simulation of the drying of building archetypes representative of the English building stock using the EnergyPlus based tool 'UCL-HAMT' in order to determine the drying rates of different abandoned structures flooded to different heights and during different seasons. The results are mapped out using GIS in order to estimate the spatial risk across London in terms of comparative flood vulnerability, as well as for specific flood events. Areas of South and East London were found to be particularly vulnerable to long-term microbial exposure following major flood events. Copyright © 2012 Elsevier Ltd. All rights reserved.
Urban sprawl and flooding in southern California
Rantz, S.E.
1970-01-01
The floods of January 1969 in south-coastal California provide a timely example of the effect of urban sprawl on flood damage. Despite recordbreaking, or near recordbreaking, stream discharges, damage was minimal in the older developed areas that are protected against inundation and debris damage by carefully planned flood-control facilities, including debris basins and flood-conveyance channels. By contrast, heavy damage occurred in areas of more recent urban sprawl, where the hazards of inundation and debris or landslide damage have not been taken into consideration, and where the improvement and development of drainage or flood-control facilities have not kept pace with expanding urbanization.
Urban Flood Prevention and Early Warning System in Jinan City
NASA Astrophysics Data System (ADS)
Feng, Shiyuan; Li, Qingguo
2018-06-01
The system construction of urban flood control and disaster reduction in China is facing pressure and challenge from new urban water disaster. Under the circumstances that it is difficult to build high standards of flood protection engineering measures in urban areas, it is particularly important to carry out urban flood early warning. In Jinan City, a representative inland area, based on the index system of early warning of flood in Jinan urban area, the method of fuzzy comprehensive evaluation was adopted to evaluate the level of early warning. Based on the cumulative rainfall of 3 hours, the CAflood simulation results based on cellular automaton model of urban flooding were used as evaluation indexes to realize the accuracy and integration of urban flood control early warning.
Do Natural Disasters Affect Voting Behavior? Evidence from Croatian Floods
Bovan, Kosta; Banai, Benjamin; Pavela Banai, Irena
2018-01-01
Introduction: Studies show that natural disasters influence voters’ perception of incumbent politicians. To investigate whether voters are prone to punish politicians for events that are out of their control, this study was conducted in the previously unstudied context of Croatia, and by considering some of the methodological issues of previous studies. Method: Matching method technique was used, which ensures that affected and non-affected areas are matched on several control variables. The cases of natural disaster in the present study were floods that affected Croatia in 2014 and 2015. Results: Main results showed that, prior to matching, floods had an impact on voting behaviour in the 2014 and 2015 elections. Voters from flooded areas decreased their support for the incumbent government and president in the elections following the floods. However, once we accounted for differences in control variables between flooded and non-flooded areas, the flood effect disappeared. Furthermore, results showed that neither the presence nor the amount of the government’s relief spending had an impact on voting behaviour. Discussion: Presented results imply that floods did not have an impact on the election outcome. Results are interpreted in light of the retrospective voter model. PMID:29770268
Hospital infection prevention and control issues relevant to extensive floods.
Apisarnthanarak, Anucha; Mundy, Linda M; Khawcharoenporn, Thana; Glen Mayhall, C
2013-02-01
The devastating clinical and economic implications of floods exemplify the need for effective global infection prevention and control (IPC) strategies for natural disasters. Reopening of hospitals after excessive flooding requires a balance between meeting the medical needs of the surrounding communities and restoration of a safe hospital environment. Postflood hospital preparedness plans are a key issue for infection control epidemiologists, healthcare providers, patients, and hospital administrators. We provide recent IPC experiences related to reopening of a hospital after extensive black-water floods necessitated hospital closures in Thailand and the United States. These experiences provide a foundation for the future design, execution, and analysis of black-water flood preparedness plans by IPC stakeholders.
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Song, Yuqin
2014-11-01
Wetland restoration in floodplains is an ecological solution that can address basin-wide flooding issues and minimize flooding and damages to riverine and downstream areas. High population densities, large economic outputs, and heavy reliance on water resources make flood retention and management pressing issues in China. To balance flood control and sustainable development economically, socially, and politically, flood retention areas have been established to increase watershed flood storage capacities and enhance the public welfare for the populace living in the areas. However, conflicts between flood storage functions and human habitation appear irreconcilable. We developed a site-specific methodology for identifying potential sites and functional zones for wetland restoration in a flood retention area in middle and eastern China, optimizing the spatial distribution and functional zones to maximize flood control and human and regional development. This methodology was applied to Mengwa, one of 21 flood retention areas in China's Huaihe River Basin, using nine scenarios that reflected different flood, climatic, and hydraulic conditions. The results demonstrated improved flood retention and ecological functions, as well as increased economic benefits.
Flood control surveys in the northeast
Arthur Bevan
1947-01-01
Floods are a grave danger to our Nation's resources. It is estimated that floods cost the United States at least $100 million every year. The recent Mississippi floods, which dramatically brought the seriousness of the situation to public attention, cost half a billion dollars in direct-damages. The Northeast carries a heavy burden of flood losses. In 1936, floods...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.41... constructed hurricane/shore protection projects. (b) Implementation of authority. The Rehabilitation and... projects damaged by floods and coastal storm events. The RIP consists of a process to inspect flood control...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.41... constructed hurricane/shore protection projects. (b) Implementation of authority. The Rehabilitation and... projects damaged by floods and coastal storm events. The RIP consists of a process to inspect flood control...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.41... constructed hurricane/shore protection projects. (b) Implementation of authority. The Rehabilitation and... projects damaged by floods and coastal storm events. The RIP consists of a process to inspect flood control...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.41... constructed hurricane/shore protection projects. (b) Implementation of authority. The Rehabilitation and... projects damaged by floods and coastal storm events. The RIP consists of a process to inspect flood control...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Control Works Damaged by Flood or Coastal Storm: The Corps Rehabilitation and Inspection Program § 203.41... constructed hurricane/shore protection projects. (b) Implementation of authority. The Rehabilitation and... projects damaged by floods and coastal storm events. The RIP consists of a process to inspect flood control...
24 CFR 200.926d - Construction requirements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... hazard exposure—(i) Residential structures with basements located in FEMA-designated areas of special flood hazard. The elevation of the lowest floor in structures with basements shall be at or above the... residential structures under regulations for the National Flood Insurance Program (NFIP) (see 44 CFR 60.3...
24 CFR 200.926d - Construction requirements.
Code of Federal Regulations, 2014 CFR
2014-04-01
... hazard exposure—(i) Residential structures with basements located in FEMA-designated areas of special flood hazard. The elevation of the lowest floor in structures with basements shall be at or above the... residential structures under regulations for the National Flood Insurance Program (NFIP) (see 44 CFR 60.3...
24 CFR 200.926d - Construction requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... hazard exposure—(i) Residential structures with basements located in FEMA-designated areas of special flood hazard. The elevation of the lowest floor in structures with basements shall be at or above the... residential structures under regulations for the National Flood Insurance Program (NFIP) (see 44 CFR 60.3...
24 CFR 200.926d - Construction requirements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... hazard exposure—(i) Residential structures with basements located in FEMA-designated areas of special flood hazard. The elevation of the lowest floor in structures with basements shall be at or above the... residential structures under regulations for the National Flood Insurance Program (NFIP) (see 44 CFR 60.3...
Code of Federal Regulations, 2011 CFR
2011-07-01
... flooding would be too great. (g) Facility—any man-made or man-placed item other than a structure. (h) Flood... reduce to the smallest possible amount or degree. (m) One percent chance flood—the flood having one...
24 CFR 203.16a - Mortgagor and mortgagee requirement for maintaining flood insurance coverage.
Code of Federal Regulations, 2010 CFR
2010-04-01
... for maintaining flood insurance coverage. 203.16a Section 203.16a Housing and Urban Development... requirement for maintaining flood insurance coverage. (a) If the mortgage is to cover property improvements (dwelling and related structures/equipment essential to the value of the property and subject to flood...
Stop Blaming Disasters on Forces Beyond Our Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matalucci, R.V.
1999-04-09
As we enter the new millennium, let us recognize that the losses resulting from natural or malevolent events that cause major property damage, severe injuries, and unnecessary death are not always due to forces beyond our control. We can prevent these losses by changing the way we think and act about design and construction projects. New tools, technologies, and techniques can improve structural safety, security, and reliability and protect owners, occupants, and users against loss and casualties. Hurricane Mitch, the African embassy bombings, the ice storms in Canada and the northeastern US last winter, the Oklahoma City bombing, flooding andmore » earthquakes in California, tornadoes and flooding in Florida, and wildfires in the Southwest are threats to the safety and security of the public and the reliability of our constructed environment. Today's engineering design community must recognize these threats and address them in our standards, building codes, and designs. We know that disasters will continue to strike and we must reduce their impact on the public. We must demand and create innovative solutions that assure a higher level of structural performance when disasters strike.« less
Floods in the English River basin, Iowa
Heinitz, A.J.; Riddle, D.E.
1981-01-01
Information describing floods is essential for proper planning, design, and operation of bridges and other structures on or over streams and their flood plains. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the English River and some of its tributaries. It covers the English River, the North English River to near Guernsey, the south Eaglish River to Barnes City and the lower reaches of the Biddle English and Deep Rivers
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
...; 086-0-27C, Coastal Analysis Form; 086-0-27D, Coastal Structures Form; 086-0-27E, Alluvial Fan Flooding... Analysis Form; 086-0-27D, Coastal Structures Form; 086-0-27E, Alluvial Fan Flooding Form. Abstract: The...-0-27E, Alluvial Fan 150 1 150 1 150 46.65 6,998 Flooding Form. Total 1,500 4,950 17,700 835,839...
Zhu, Longji; Zhou, Haixuan; Xie, Xinyu; Li, Xueke; Zhang, Duoying; Jia, Liming; Wei, Qingbin; Zhao, Yue; Wei, Zimin; Ma, Yingying
2018-08-01
Floodgates operation is one of the primary means of flood control in lake development. However, knowledge on the linkages between floodgates operation and nitrogen transformation during the flood season is limited. In this study, water samples from six sampling sites along Lake Xingkai watershed were collected before and after floodgates operation. The causal relationships between environmental factors, bacterioplankton community composition and nitrogen fractions were determined during flood season. We found that concentrations of nitrogen fractions decreased significantly when the floodgates were opened, while the concentrations of total nitrogen (TN) and NO 3 - increased when the floodgates had been shut for a period. Further, we proposed a possible mechanism that the influence of floodgates operation on nitrogen transformation was largely mediated through changes in dissolved organic matter, dissolved oxygen and bacterioplankton community composition as revealed by structural equation modeling (SEM). We conclude that floodgates operation has a high risk for future eutrophication of downstream watershed, although it can reduce nitrogen content temporarily. Therefore, the environmental impacts of floodgates operation should be carefully evaluated before the floodwaters were discharged into downstream watershed. Copyright © 2018. Published by Elsevier B.V.
46 CFR 62.35-10 - Flooding safety.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Flooding safety. 62.35-10 Section 62.35-10 Shipping... Requirements for Specific Types of Automated Vital Systems § 62.35-10 Flooding safety. (a) Automatic bilge.... (b) Remote controls for flooding safety equipment must remain functional under flooding conditions to...
46 CFR 62.35-10 - Flooding safety.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Flooding safety. 62.35-10 Section 62.35-10 Shipping... Requirements for Specific Types of Automated Vital Systems § 62.35-10 Flooding safety. (a) Automatic bilge.... (b) Remote controls for flooding safety equipment must remain functional under flooding conditions to...
46 CFR 62.35-10 - Flooding safety.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Flooding safety. 62.35-10 Section 62.35-10 Shipping... Requirements for Specific Types of Automated Vital Systems § 62.35-10 Flooding safety. (a) Automatic bilge.... (b) Remote controls for flooding safety equipment must remain functional under flooding conditions to...
46 CFR 62.35-10 - Flooding safety.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Flooding safety. 62.35-10 Section 62.35-10 Shipping... Requirements for Specific Types of Automated Vital Systems § 62.35-10 Flooding safety. (a) Automatic bilge.... (b) Remote controls for flooding safety equipment must remain functional under flooding conditions to...
Nutrient response of Bacopa monnieri (water hyssop) to varying degrees of soil saturation
USDA-ARS?s Scientific Manuscript database
Tissue concentrations of N and P were measured in Bacopa monnieri subjected to four progressive levels of flooding: well-drained Control, Intermittently Flooded, Partially Flooded, and Continuously Flooded. Soil redox potential (Eh) decreased in all flooded treatments at 30 cm depth, becoming anoxic...
46 CFR 62.35-10 - Flooding safety.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Flooding safety. 62.35-10 Section 62.35-10 Shipping... Requirements for Specific Types of Automated Vital Systems § 62.35-10 Flooding safety. (a) Automatic bilge.... (b) Remote controls for flooding safety equipment must remain functional under flooding conditions to...
Magnitude and frequency of floods in Nebraska
Beckman, Emil W.
1976-01-01
Observed maximum flood peaks at 303 gaging stations with 13 or more years of record and significant peaks at 57 short-term stations and 31 miscellaneous sites are useful in designing flood-control works for maximum safety from flood damage. Comparison is made with maximum observed floods in the United States.
Lamontagne, Jonathan R.; Stedinger, Jery R.; Berenbrock, Charles; Veilleux, Andrea G.; Ferris, Justin C.; Knifong, Donna L.
2012-01-01
Flood-frequency information is important in the Central Valley region of California because of the high risk of catastrophic flooding. Most traditional flood-frequency studies focus on peak flows, but for the assessment of the adequacy of reservoirs, levees, other flood control structures, sustained flood flow (flood duration) frequency data are needed. This study focuses on rainfall or rain-on-snow floods, rather than the annual maximum, because rain events produce the largest floods in the region. A key to estimating flood-duration frequency is determining the regional skew for such data. Of the 50 sites used in this study to determine regional skew, 28 sites were considered to have little to no significant regulated flows, and for the 22 sites considered significantly regulated, unregulated daily flow data were synthesized by using reservoir storage changes and diversion records. The unregulated, annual maximum rainfall flood flows for selected durations (1-day, 3-day, 7-day, 15-day, and 30-day) for all 50 sites were furnished by the U.S. Army Corps of Engineers. Station skew was determined by using the expected moments algorithm program for fitting the Pearson Type 3 flood-frequency distribution to the logarithms of annual flood-duration data. Bayesian generalized least squares regression procedures used in earlier studies were modified to address problems caused by large cross correlations among concurrent rainfall floods in California and to address the extensive censoring of low outliers at some sites, by using the new expected moments algorithm for fitting the LP3 distribution to rainfall flood-duration data. To properly account for these problems and to develop suitable regional-skew regression models and regression diagnostics, a combination of ordinary least squares, weighted least squares, and Bayesian generalized least squares regressions were adopted. This new methodology determined that a nonlinear model relating regional skew to mean basin elevation was the best model for each flood duration. The regional-skew values ranged from -0.74 for a flood duration of 1-day and a mean basin elevation less than 2,500 feet to values near 0 for a flood duration of 7-days and a mean basin elevation greater than 4,500 feet. This relation between skew and elevation reflects the interaction of snow and rain, which increases with increased elevation. The regional skews are more accurate, and the mean squared errors are less than in the Interagency Advisory Committee on Water Data's National skew map of Bulletin 17B.
Experimental floods cause ecosystem regime shift in a regulated river.
Robinson, Christopher T; Uehlinger, Urs
2008-03-01
Reservoirs have altered the flow regime of most rivers on the globe. To simulate the natural flow regime, experimental floods are being implemented on regulated rivers throughout the world to improve their ecological integrity. As a large-scale disturbance, the long-term sequential use of floods provides an excellent empirical approach to examine ecosystem regime shifts in rivers. This study evaluated the long-term effects of floods (15 floods over eight years) on a regulated river. We hypothesized that sequential floods over time would cause a regime shift in the ecosystem. The floods resulted in little change in the physicochemistry of the river, although particulate organic carbon and particulate phosphorus were lower after the floods. The floods eliminated moss cover on bed sediments within the first year of flooding and maintained low periphyton biomass and benthic organic matter after the third year of flooding. Organic matter in transport was reduced after the third year of flooding, although peaks were still observed during rain events due to tributary inputs and side slopes. The floods reduced macroinvertebrate richness and biomass after the first year of floods, but density was not reduced until the third year. The individual mass of invertebrates decreased by about one-half after the floods. Specific taxa displayed either a loss in abundance, or an increase in abundance, or an increase followed by a loss after the third year. The first three flood years were periods of nonequilibrium with coefficients of variation in all measured parameters increasing two to five times from those before the floods. Coefficients of variation decreased after the third year, although they were still higher than before the floods. Analysis of concordance using Kendall's W confirmed the temporal changes observed in macroinvertebrate assemblage structure. An assessment of individual flood effects showed that later floods had approximately 30% less effect on macroinvertebrates than early floods of similar magnitude, suggesting that the new assemblage structure is more resilient to flood disturbance. We conclude that the floods caused an ecosystem regime shift that took three years to unfold. Additional long-term changes or shifts are expected as new taxa colonize the river from other sources.
NASA Astrophysics Data System (ADS)
Escuder-Bueno, I.; Castillo-Rodríguez, J. T.; Zechner, S.; Jöbstl, C.; Perales-Momparler, S.; Petaccia, G.
2012-09-01
Risk analysis has become a top priority for authorities and stakeholders in many European countries, with the aim of reducing flooding risk, considering the population's needs and improving risk awareness. Within this context, two methodological pieces have been developed in the period 2009-2011 within the SUFRI project (Sustainable Strategies of Urban Flood Risk Management with non-structural measures to cope with the residual risk, 2nd ERA-Net CRUE Funding Initiative). First, the "SUFRI Methodology for pluvial and river flooding risk assessment in urban areas to inform decision-making" provides a comprehensive and quantitative tool for flood risk analysis. Second, the "Methodology for investigation of risk awareness of the population concerned" presents the basis to estimate current risk from a social perspective and identify tendencies in the way floods are understood by citizens. Outcomes of both methods are integrated in this paper with the aim of informing decision making on non-structural protection measures. The results of two case studies are shown to illustrate practical applications of this developed approach. The main advantage of applying the methodology herein presented consists in providing a quantitative estimation of flooding risk before and after investing in non-structural risk mitigation measures. It can be of great interest for decision makers as it provides rational and solid information.
Magnitude and frequency of summer floods in western New Mexico and eastern Arizona
Kennon, F.W.
1955-01-01
Numerous small reservoirs and occasional water-spreading structures are being built on the ephemeral streams draining the public and Indian lands of the Southwest as part of the Soil and Moisture Conservation Program of the Bureau of Land Management and Bureau of Indian Affairs. Economic design of these structures requires some knowledge of the flood rates and volumes. Information concerning flood frequencies on areas less than 100 square miles is deficient throughout the country, particularly on intermittent streams of the Southwest. Design engineers require a knowledge of the frequency and magnitude of flood volumes for the planning of adequate reservoir capacities and a knowledge of frequency and magnitude of flood peaks for spillway design. Hence, this study deals with both flood volumes and peaks, the same statistical methods being used to develop frequency curves for each.
33 CFR 203.47 - Modifications to non-Federal flood control works.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...
33 CFR 203.47 - Modifications to non-Federal flood control works.
Code of Federal Regulations, 2014 CFR
2014-07-01
... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...
33 CFR 203.47 - Modifications to non-Federal flood control works.
Code of Federal Regulations, 2011 CFR
2011-07-01
... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...
33 CFR 203.47 - Modifications to non-Federal flood control works.
Code of Federal Regulations, 2012 CFR
2012-07-01
... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...
33 CFR 203.47 - Modifications to non-Federal flood control works.
Code of Federal Regulations, 2013 CFR
2013-07-01
... DISASTER PROCEDURES Rehabilitation Assistance for Flood Control Works Damaged by Flood or Coastal Storm... Federal construction cost of rehabilitation to preflood level of protection, or $100,000, whichever is... only in cash. In-kind services are not permitted for modification work. (b) Protection of additional...
33 CFR 238.7 - Decision criteria for participation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... larger floods, such as the one-percent flood. Examples include the presence of extremely pervious soils... control improvement. Similarly, the need to terminate flood control improvements in a safe and economical manner may justify the extension of some portions of the improvements, such as levee tiebacks, into areas...
33 CFR 238.7 - Decision criteria for participation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... larger floods, such as the one-percent flood. Examples include the presence of extremely pervious soils... control improvement. Similarly, the need to terminate flood control improvements in a safe and economical manner may justify the extension of some portions of the improvements, such as levee tiebacks, into areas...
Flood type specific construction of synthetic design hydrographs
NASA Astrophysics Data System (ADS)
Brunner, Manuela I.; Viviroli, Daniel; Sikorska, Anna E.; Vannier, Olivier; Favre, Anne-Catherine; Seibert, Jan
2017-02-01
Accurate estimates of flood peaks, corresponding volumes, and hydrographs are required to design safe and cost-effective hydraulic structures. In this paper, we propose a statistical approach for the estimation of the design variables peak and volume by constructing synthetic design hydrographs for different flood types such as flash-floods, short-rain floods, long-rain floods, and rain-on-snow floods. Our approach relies on the fitting of probability density functions to observed flood hydrographs of a certain flood type and accounts for the dependence between peak discharge and flood volume. It makes use of the statistical information contained in the data and retains the process information of the flood type. The method was tested based on data from 39 mesoscale catchments in Switzerland and provides catchment specific and flood type specific synthetic design hydrographs for all of these catchments. We demonstrate that flood type specific synthetic design hydrographs are meaningful in flood-risk management when combined with knowledge on the seasonality and the frequency of different flood types.
Milojevic, Ai; Armstrong, Ben; Wilkinson, Paul
2017-01-01
Background There is emerging evidence that people affected by flooding suffer adverse impacts on their mental well-being, mostly based on self-reports. Methods We examined prescription records for drugs used in the management of common mental disorder among primary care practices located in the vicinity of recent large flood events in England, 2011–2014. A controlled interrupted time series analysis was conducted of the number of prescribing items for antidepressant drugs in the year before and after the flood onset. Pre–post changes were compared by distance of the practice from the inundated boundaries among 930 practices located within 10 km of a flood. Results After control for deprivation and population density, there was an increase of 0.59% (95% CI 0.24 to 0.94) prescriptions in the postflood year among practices located within 1 km of a flood over and above the change observed in the furthest distance band. The increase was greater in more deprived areas. Conclusions This study suggests an increase in prescribed antidepressant drugs in the year after flooding in primary care practices close to recent major floods in England. The degree to which the increase is actually concentrated in those flooded can only be determined by more detailed linkage studies. PMID:28860201
Saeki, Yuichi; Nakamura, Misato; Mason, Maria Luisa T; Yano, Tsubasa; Shiro, Sokichi; Sameshima-Saito, Reiko; Itakura, Manabu; Minamisawa, Kiwamu; Yamamoto, Akihiro
2017-06-24
We investigated the effects of the water status (flooded or non-flooded) and presence of the nosZ gene in bradyrhizobia on the bradyrhizobial community structure in a factorial experiment that examined three temperature levels (20°C, 25°C, and 30°C) and two soil types (andosol and gray lowland soil) using microcosm incubations. All microcosms were inoculated with Bradyrhizobium japonicum USDA6 T , B. japonicum USDA123, and B. elkanii USDA76 T , which do not possess the nosZ gene, and then half received B. diazoefficiens USDA110 T wt (wt for the wild-type) and the other half received B. diazoefficiens USDA110ΔnosZ. USDA110 T wt possesses the nosZ gene, which encodes N 2 O reductase; 110ΔnosZ, a mutant variant, does not. Changes in the community structure after 30- and 60-d incubations were investigated by denaturing-gradient gel electrophoresis and an image analysis. USDA6 T and 76 T strains slightly increased in non-flooded soil regardless of which USDA110 T strain was present. In flooded microcosms with the USDA110 T wt strain, USDA110 T wt became dominant, whereas in microcosms with the USDA110ΔnosZ, a similar change in the community structure occurred to that in non-flooded microcosms. These results suggest that possession of the nosZ gene confers a competitive advantage to B. diazoefficiens USDA110 T in flooded soil. We herein demonstrated that the dominance of B. diazoefficiens USDA110 T wt within the soil bradyrhizobial population may be enhanced by periods of flooding or waterlogging systems such as paddy-soybean rotations because it appears to have the ability to thrive in moderately anaerobic soil.
NASA Astrophysics Data System (ADS)
Kameyama, S.; Nohara, S.; Sato, T.; Fujii, Y.; Kudo, K.
2009-12-01
The Mekong River watershed is undergoing rapid economic progress and population growth, raising conflicts between watershed development and environmental conservation. A typical conflict is between the benefits of dam construction versus the benefits of watershed ecological services. In developed countries, this conflict is changing to a coordinated search for outcomes that are mutually acceptable to all stakeholders. In the Mekong River, however, government policy gives priority to watershed development for ensuring steady energy supplies. Since the 1990s, a series of dams called “the Mekong Cascade” have been under construction. Dam construction has multiple economic values as electric power supply, irrigation water, flood control, etc. On the other hand, the artificial flow discharge controls of dam moderate seasonal hydrologic patterns of the Asian monsoon region. Dam operations can change the sediment transport regime and river structure. Furthermore, their impacts on watershed ecosystems and traditional economic activities of fisheries and agriculture in downstream areas may be severe. We focus on dam impacts on spatio-temporal patterns of sediment transport and seasonal flood in riparian areas downstream from Mekong River dams. Our study river section is located on 100 km down stream from the Golden Triangle region of Myanmar, Laos, and Thailand. We selected a 10-km section in this main channel to simulate seasonal flooding. We modeled the river hydrology in the years 1991 and 2002, before and after the Manwan dam construction (1986-1993). For this simulation, we adapted three models (distributed runoff model, 1-D hydrological model, and 2-D flood simulation with sediment movement algorithm.) Input data on river structure, water velocity, and flow volume were acquired from field survey data in November 2007 and 2008. In the step of parameter decision, we adopted the shuffled complex evolution method. To validate hydrologic parameters, we used annual water level data observed in Chiang Sean and Luang Prabang. To calculate sediment flux volume, we employed a Load-Quantity equation using total suspended solids data from monthly water sampling and flow discharge volumes over 13 months. To evaluate the impact of dam construction and watershed development, we inputted the same year of precipitation data using two watershed conditions with different parameters. Our results from the 1-D model displayed a seasonal delay of water flooding time after summer rainy season and an increase in sediment transport volume from September to October. In the flood simulation by the 2-D model, most of the annual sediment transport was concentrated from July to October. The spatial pattern of sediment dynamics was dependent largely on river structure including river meander shape, river bottom elevation, and geometry of the riparian zone. Our study approaches and simulation results show promise for beginning a quantitative assessment approach to cross-boundary environmental issues in the Mekong River watershed.
Predicting landscape sensitivity to present and future floods in the Pacific Northwest, USA
Mohammad Safeeq; Gordon E. Grant; Sarah L. Lewis; Brian Staab
2015-01-01
Floods are the most frequent natural disaster, causing more loss of life and property than any other in the USA. Floods also strongly influence the structure and function of watersheds, stream channels, and aquatic ecosystems. The Pacific Northwest is particularly vulnerable to climatically driven changes in flood frequency and magnitude, because snowpacks that...
Spillway sizing of large dams in Austria
NASA Astrophysics Data System (ADS)
Reszler, Ch.; Gutknecht, D.; Blöschl, G.
2003-04-01
This paper discusses the basic philosophy of defining and calculating design floods for large dams in Austria, both for the construction of new dams and for a re-assessment of the safety of existing dams. Currently the consensus is to choose flood peak values corresponding to a probability of exceedance of 2*10-4 for a given year. A two step procedure is proposed to estimate the design flood discharges - a rapid assessment and a detailed assessment. In the rapid assessment the design discharge is chosen as a constant multiple of flood values read from a map of regionalised floods. The safety factor or multiplier takes care of the uncertainties of the local estimation and the regionalisation procedure. If the current design level of a spillway exceeds the value so estimated, no further calculations are needed. Otherwise (and for new dams) a detailed assessment is required. The idea of the detailed assessment is to draw upon all existing sources of information to constrain the uncertainties. The three main sources are local flood frequency analysis, where flood data are available; regional flood estimation from hydrologically similar catchments; and rainfall-runoff modelling using design storms as inputs. The three values obtained by these methods are then assessed and weighted in terms of their reliability to facilitate selection of the design flood. The uncertainty assessment of the various methods is based on confidence intervals, estimates of regional heterogeneity, data availability and sensitivity analyses of the rainfall-runoff model. As the definition of the design floods discussed above is based on probability concepts it is also important to examine the excess risk, i.e. the possibility of the occurrence of a flood exceeding the design levels. The excess risk is evaluated based on a so called Safety Check Flood (SCF), similar to the existing practice in other countries in Europe. The SCF is a vehicle to analyse the damage potential of an event of this magnitude. This is to provide guidance for protective measures to dealing with very extreme floods. The SCF is used to check the vulnerability of the system with regard to structural stability, morphological effects, etc., and to develop alarm plans and disaster mitigation procedures. The basis for estimating the SCF are the uncertainty assessments of the design flood values estimated by the three methods including unlikely combinations of the controlling factors and attending uncertainties. Finally we discuss the impact on the downstream valley of floods exceeding the design values and of smaller floods and illustrate the basic concepts by examples from the recent flood in August 2002.
Effects of floods on fish assemblages in an intermittent prairie stream
Franssen, N.R.; Gido, K.B.; Guy, C.S.; Tripe, J.A.; Shrank, S.J.; Strakosh, T.R.; Bertrand, K.N.; Franssen, C.M.; Pitts, K.L.; Paukert, C.P.
2006-01-01
1. Floods are major disturbances to stream ecosystems that can kill or displace organisms and modify habitats. Many studies have reported changes in fish assemblages after a single flood, but few studies have evaluated the importance of timing and intensity of floods on long-term fish assemblage dynamics. 2. We used a 10-year dataset to evaluate the effects of floods on fishes in Kings Creek, an intermittent prairie stream in north-eastern, Kansas, U.S.A. Samples were collected seasonally at two perennial headwater sites (1995-2005) and one perennial downstream flowing site (1997-2005) allowing us to evaluate the effects of floods at different locations within a watershed. In addition, four surveys during 2003 and 2004 sampled 3-5 km of stream between the long-term study sites to evaluate the use of intermittent reaches of this stream. 3. Because of higher discharge and bed scouring at the downstream site, we predicted that the fish assemblage would have lowered species richness and abundance following floods. In contrast, we expected increased species richness and abundance at headwater sites because floods increase stream connectivity and create the potential for colonisation from downstream reaches. 4. Akaike Information Criteria (AIC) was used to select among candidate regression models that predicted species richness and abundance based on Julian date, time since floods, season and physical habitat at each site. At the downstream site, AIC weightings suggested Julian date was the best predictor of fish assemblage structure, but no model explained >16% of the variation in species richness or community structure. Variation explained by Julian date was primarily attributed to a long-term pattern of declining abundance of common species. At the headwater sites, there was not a single candidate model selected to predict total species abundance and assemblage structure. AIC weightings suggested variation in assemblage structure was associated with either Julian date or local habitat characteristics. 5. Fishes rapidly colonised isolated or dry habitats following floods. This was evidenced by the occurrence of fishes in intermittent reaches and the positive association between maximum daily discharge and colonisation events at both headwater sites. 6. Our study suggests floods allow dispersal into intermittent habitats with little or no downstream displacement of fishes. Movement of fishes among habitats during flooding highlights the importance of maintaining connectivity of stream networks of low to medium order prairie streams. ?? 2006 The Authors.
Conway, Courtney J; Nadeau, Christopher P; Piest, Linden
2010-10-01
Large flood events were part of the historical disturbance regime within the lower basin of most large river systems around the world. Large flood events are now rare in the lower basins of most large river systems due to flood control structures. Endemic organisms that are adapted to this historical disturbance regime have become less abundant due to these dramatic changes in the hydrology and the resultant changes in vegetation structure. The Yuma Clapper Rail is a federally endangered bird that breeds in emergent marshes within the lower Colorado River basin in the southwestern United States and northwestern Mexico. We evaluated whether prescribed fire could be used as a surrogate disturbance event to help restore historical conditions for the benefit of Yuma Clapper Rails and four sympatric marsh-dependent birds. We conducted call-broadcast surveys for marsh birds within burned and unburned (control) plots both pre- and post-burn. Fire increased the numbers of Yuma Clapper Rails and Virginia Rails, and did not affect the numbers of Black Rails, Soras, and Least Bitterns. We found no evidence that detection probability of any of the five species differed between burn and control plots. Our results suggest that prescribed fire can be used to set back succession of emergent marshlands and help mimic the natural disturbance regime in the lower Colorado River basin. Hence, prescribed fire can be used to help increase Yuma Clapper Rail populations without adversely affecting sympatric species. Implementing a coordinated long-term fire management plan within marshes of the lower Colorado River may allow regulatory agencies to remove the Yuma Clapper Rail from the endangered species list.
Conway, C.J.; Nadeau, C.P.; Piest, L.
2010-01-01
Large flood events were part of the historical disturbance regime within the lower basin of most large river systems around the world. Large flood events are now rare in the lower basins of most large river systems due to flood control structures. Endemic organisms that are adapted to this historical disturbance regime have become less abundant due to these dramatic changes in the hydrology and the resultant changes in vegetation structure. The Yuma Clapper Rail is a federally endangered bird that breeds in emergent marshes within the lower Colorado River basin in the southwestern United States and northwestern Mexico. We evaluated whether prescribed fire could be used as a surrogate disturbance event to help restore historical conditions for the benefit of Yuma Clapper Rails and four sympatric marsh-dependent birds. We conducted call-broadcast surveys for marsh birds within burned and unburned (control) plots both pre-and post-burn. Fire increased the numbers of Yuma Clapper Rails and Virginia Rails, and did not affect the numbers of Black Rails, Soras, and Least Bitterns. We found no evidence that detection probability of any of the five species differed between burn and control plots. Our results suggest that prescribed fire can be used to set back succession of emergent marshlands and help mimic the natural disturbance regime in the lower Colorado River basin. Hence, prescribed fire can be used to help increase Yuma Clapper Rail populations without adversely affecting sympatric species. Implementing a coordinated long-term fire management plan within marshes of the lower Colorado River may allow regulatory agencies to remove the Yuma Clapper Rail from the endangered species list. ?? 2010 by the Ecological Society of America.
Quality control of the RMS US flood model
NASA Astrophysics Data System (ADS)
Jankowfsky, Sonja; Hilberts, Arno; Mortgat, Chris; Li, Shuangcai; Rafique, Farhat; Rajesh, Edida; Xu, Na; Mei, Yi; Tillmanns, Stephan; Yang, Yang; Tian, Ye; Mathur, Prince; Kulkarni, Anand; Kumaresh, Bharadwaj Anna; Chaudhuri, Chiranjib; Saini, Vishal
2016-04-01
The RMS US flood model predicts the flood risk in the US with a 30 m resolution for different return periods. The model is designed for the insurance industry to estimate the cost of flood risk for a given location. Different statistical, hydrological and hydraulic models are combined to develop the flood maps for different return periods. A rainfall-runoff and routing model, calibrated with observed discharge data, is run with 10 000 years of stochastic simulated precipitation to create time series of discharge and surface runoff. The 100, 250 and 500 year events are extracted from these time series as forcing for a two-dimensional pluvial and fluvial inundation model. The coupling of all the different models which are run on the large area of the US implies a certain amount of uncertainty. Therefore, special attention is paid to the final quality control of the flood maps. First of all, a thorough quality analysis of the Digital Terrain model and the river network was done, as the final quality of the flood maps depends heavily on the DTM quality. Secondly, the simulated 100 year discharge in the major river network (600 000 km) is compared to the 100 year discharge derived using extreme value distribution of all USGS gauges with more than 20 years of peak values (around 11 000 gauges). Thirdly, for each gauge the modelled flood depth is compared to the depth derived from the USGS rating curves. Fourthly, the modelled flood depth is compared to the base flood elevation given in the FEMA flood maps. Fifthly, the flood extent is compared to the FEMA flood extent. Then, for historic events we compare flood extents and flood depths at given locations. Finally, all the data and spatial layers are uploaded on geoserver to facilitate the manual investigation of outliers. The feedback from the quality control is used to improve the model and estimate its uncertainty.
NASA Astrophysics Data System (ADS)
Pingel, N.; Liang, Y.; Bindra, A.
2016-12-01
More than 1 million Californians live and work in the floodplains of the Sacramento-San Joaquin Valley where flood risks are among the highest in the nation. In response to this threat to people, property and the environment, the Department of Water Resources (DWR) has been called to action to improve flood risk management. This has transpired through significant advances in development of flood information and tools, analysis, and planning. Senate Bill 5 directed DWR to prepare the Central Valley Flood Protection Plan (CVFPP) and update it every 5 years. A key component of this aggressive planning approach is answering the question: What is the current flood risk, and how would proposed improvements change flood risk throughout the system? Answering this question is a substantial challenge due to the size and complexity of the watershed and flood control system. The watershed is roughly 42,000 sq mi, and flows are controlled by numerous reservoirs, bypasses, and levees. To overcome this challenge, the State invested in development of a comprehensive analysis "tool box" through various DWR programs. Development of the tool box included: collection of hydro-meteorological, topographic, geotechnical, and economic data; development of rainfall-runoff, reservoir operation, hydraulic routing, and flood risk analysis models; and development of specialized applications and computing schemes to accelerate the analysis. With this toolbox, DWR is analyzing flood hazard, flood control system performance, exposure and vulnerability of people and property to flooding, consequence of flooding for specific events, and finally flood risk for a range of CVFPP alternatives. Based on the results, DWR will put forward a State Recommended Plan in the 2017 CVFPP. Further, the value of the analysis tool box extends beyond the CVFPP. It will serve as a foundation for other flood studies for years to come and has already been successfully applied for inundation mapping to support emergency response, reservoir operation analysis, and others.
NASA Astrophysics Data System (ADS)
Eludoyin, A. O.; Akinbode, O. M.; Archibong, Ediang Okuku
2007-07-01
Flood is a natural environmental disaster which could be aggravated by man's unguided development. It may subsequently cause destruction of properties and loss of life. Therefore it needs to be controlled and human influences controlled. This study attempts to describe an application of GIS as decision support to flooding problems in an urban area in Nigeria. The objective of the study is to describe the efficacy of GIS in monitoring of development on floodplains in an urban area in Nigeria. Topographic features were digitised from an existing 1:5,000 topographic map of Akure, with some position data collected and map updated using a handheld GPS. A database was created using both cartographic and attributes data collected from these and other sources. Spatial analyses were carried out using a PC based Integrated Land and Water Information System (ILWIS), version 3.2. The results obtained implicated dumpsites within the river channel as well as structural development within the River Ala floodplain as the major causes of inundation in this section of the city, especially, in the wet season. The study concluded that GIS could provide adequate decision support information to policy makers.
Integrated water resources management using engineering measures
NASA Astrophysics Data System (ADS)
Huang, Y.
2015-04-01
The management process of Integrated Water Resources Management (IWRM) consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures) and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation), are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.
NASA Astrophysics Data System (ADS)
Longo, Elisa; Tito Aronica, Giuseppe; Di Baldassarre, Giuliano; Mukolwe, Micah
2015-04-01
Flooding is one of the most impactful natural hazards. In particular, by looking at the data of damages from natural hazards in Europe collected in the International Disaster Database (EM-DAT) one can see a significant increase over the past four decades of both frequency of floods and associated economic damages. Similarly, dramatic trends are also found by analyzing other types of flood losses, such as the number of people affected by floods, homeless, injured or killed. To deal with the aforementioned increase of flood risk, more and more efforts are being made to promote integrated flood risk management, for instance, at the end of 2007, the European Community (EC) issued the Flood Directive (F.D.) 2007/60/EC. One of the major innovations was that the F.D. 2007/60/C requires Member State to carry out risk maps and then take appropriate measures to reduce the evaluated risk. The main goal of this research was to estimate flood damaging using a computer code based on a recently developed method (KULTURisk, www.kulturisk.eu) and to compare the estimated damage with the observed one. The study area was the municipality of Eilenburg, which in 2002 was subjected to a destructive flood event. Were produced flood damage maps with new procedures (e.g. KULTURisk) and compared the estimates with observed data. This study showed the possibility to extend the lesson learned with the Eilenburg case study in other similar contexts. The outcomes of this test provided interesting insights about the flood risk mapping, which are expected to contribute to raise awareness to the flooding issues,to plan (structural and/or non-structural) measures of flood risk reduction and to support better land-use and urban planning.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-11
... Environmental Assessment and Finding of No Significant Impact for Flood Control Improvements to the Rio Grande... Supplemental Environmental Assessment (SEA) and Finding of No Significant Impact (FONSI). SUMMARY: Pursuant to... Significant Impact for Flood Control Improvements to the Rio Grande Canalization Project in Vado, New Mexico...
Resesrvoir sedimentation rates in the Little Washita River experimental watershed, Oklahoma
USDA-ARS?s Scientific Manuscript database
The Washita River Basin (WRB) was one of eleven pilot watershed projects selected for construction of flood control reservoirs around the country as a result of the Flood Control Act of 1936. These reservoirs were implemented to prevent and manage soil erosion and flooding. A total of 45 reservoirs ...
NASA Astrophysics Data System (ADS)
Ratnayake, A. S.
2011-12-01
The most of the primary civilizations of the world emerged in or near river valleys or floodplains. The river channels and floodplains are single hydrologic and geomorphic system. The failure to appreciate the integral connection between floodplains and channel underlies many socioeconomic and environmental problems in river management today. However it is a difficult task of collecting reliable field hydrological data. Under such situations either synthetic or statistically generated data were used for hydraulic engineering designing and flood modeling. The fundamentals of precipitation-runoff relationship through synthetic unit hydrograph for Gin River basin were prepared using the method of the Flood Studies Report of the National Environmental Research Council, United Kingdom (1975). The Triangular Irregular Network model was constructed using Geographic Information System (GIS) to determine hazard prone zones. The 1:10,000 and 1:50,000 topography maps and field excursions were also used for initial site selection of mini-hydro power units and determine flooding area. The turbines output power generations were calculated using the parameters of net head and efficiency of turbine. The peak discharge achieves within 4.74 hours from the onset of the rainstorm and 11.95 hours time takes to reach its normal discharge conditions of Gin River basin. Stream frequency of Gin River is 4.56 (Junctions/ km2) while the channel slope is 7.90 (m/km). The regional coefficient on the catchment is 0.00296. Higher stream frequency and gentle channel slope were recognized as the flood triggering factors of Gin River basin and other parameters such as basins catchment area, main stream length, standard average annual rainfall and soil do not show any significant variations with other catchments of Sri Lanka. The flood management process, including control of flood disaster, prepared for a flood, and minimize it impacts are complicated in human population encroached and modified floodplains. Thus modern GIS technology has been productively executed to prepare hazard maps based on the flood modeling and also it would be further utilized for disaster preparedness and mitigation activities. Five suitable hydraulic heads were recognized for mini-hydro power sites and it would be the most economical and applicable flood controlling hydraulic engineering structure considering all morphologic, climatic, environmental and socioeconomic proxies of the study area. Mini-hydro power sites also utilized as clean, eco friendly and reliable energy source (8630.0 kW). Finally Francis Turbine can be employed as the most efficiency turbine for the selected sites bearing in mind of both technical and economical parameters.
NASA Astrophysics Data System (ADS)
Halbe, Johannes; Knüppe, Kathrin; Knieper, Christian; Pahl-Wostl, Claudia
2018-04-01
The utilization of ecosystem services in flood management is challenged by the complexity of human-nature interactions and practical implementation barriers towards more ecosystem-based solutions, such as riverine urban areas or technical infrastructure. This paper analyses how flood management has dealt with trade-offs between ecosystem services and practical constrains towards more ecosystem-based solutions. To this end, we study the evolution of flood management in four case studies in the Dutch and German Rhine, the Hungarian Tisza, and the Chinese Yangtze basins during the last decades, focusing on the development and implementation of institutions and their link to ecosystem services. The complexity of human-nature interactions is addressed by exploring the impacts on ecosystem services through the lens of three management paradigms: (1) the control paradigm, (2) the ecosystem-based paradigm, and (3) the stakeholder involvement paradigm. Case study data from expert interviews and a literature search were structured using a database approach prior to qualitative interpretation. Results show the growing importance of the ecosystem-based and stakeholder involvement paradigms which has led to the consideration of a range of regulating and cultural ecosystem services that had previously been neglected. We detected a trend in flood management practice towards the combination of the different paradigms under the umbrella of integrated flood management, which aims at finding the most suitable solution depending on the respective regional conditions.
Dynamic analysis of an inflatable dam subjected to a flood
NASA Astrophysics Data System (ADS)
Lowery, K.; Liapis, S.
A dynamic simulation of the response of an inflatable dam subjected to a flood is carried out to determine the survivability envelope of the dam where it can operate without rupture, or overflow. The free-surface flow problem is solved in two dimensions using a fully nonlinear mixed Eulerian-Lagrangian formulation. The dam is modeled as an elastic shell inflated with air and simply supported from two points. The finite element method is employed to determine the dynamic response of the structure using ABAQUS with a shell element. The problem is solved in the time domain which allows the prediction of a number of transient phenomena such as the generation of upstream advancing waves, the dynamic structural response and structural failure. Failure takes place when the dam either ruptures or overflows. Stresses in the dam material were monitored to determine when rupture occurs. An iterative study was performed to find the serviceability envelope of the dam in terms of the internal pressure and the flood Froude number for two flood depths. It was found that existing inflatable dams are quite effective in suppressing floods for a relatively wide range of flood velocities.
Urban flooding and Resilience: concepts and needs
NASA Astrophysics Data System (ADS)
Gourbesville, Ph.
2012-04-01
During the recent years, a growing interest for resilience has been expressed in the natural disaster mitigation area and especially in the flood related events. The European Union, under the Seventh Framework Programme (FP7), has initiated several research initiatives in order to explore this concept especially for the urban environments. Under urban resilience is underlined the ability of system potentially exposed to hazard to resist, respond, recover and reflect up to stage which is enough to preserve level of functioning and structure. Urban system can be resilient to lot of different hazards. Urban resilience is defined as the degree to which cities are able to tolerate some disturbance before reorganizing around a new set of structures and processes (Holling 1973, De Bruijn 2005). The United Nation's International strategy for Disaster Reductions has defined resilience as "the capacity of a system, community or society potentially exposed to hazards to adapt, by resisting or changing in order to reach and maintain an acceptable level of functioning and structure. This is determined by the degree to which the social system is capable of organizing itself to increase this capacity for learning from past disasters for better future protection and to improve risk reduction measures."(UN/ISDR 2004). According to that, system should be able to accept the hazard and be able to recover up to condition that provides acceptable operational level of city structure and population during and after hazard event. Main elements of urban system are built environment and population. Physical characteristic of built environment and social characteristic of population have to be examined in order to evaluate resilience. Therefore presenting methodology for assessing flood resilience in urban areas has to be one of the focal points for the exposed cities. Strategies under flood management planning related to resilience of urban systems are usually regarding controlling runoff volume, increasing capacity of drainage systems, spatial planning, building regulations, etc. Resilience also considers resilience of population to floods and it's measured with time. Assessment of resilience that is focused on population is following bottom-up approach starting from individual and then assessing community level. Building resilience involves also contribution of social networks, increasing response capacity of communities, self-organization, learning and education and cheering adaptation culture. Measures for improving social side of resilience covers: raising public awareness, implementation of flood forecasting and warning, emergency response planning and training, sharing information, education and communication. Most of these aspects are analyzed with the CORFU FP7 project. Collaborative Research on Flood Resilience in Urban areas (CORFU) is a major project involving 17 European and Asian institutions, funded by a grant from the European Commission under the Seventh Framework Programme. The overall aim of CORFU is to enable European and Asian partners to learn from each other through joint investigation, development, implementation and dissemination of short to medium term strategies that will enable more scientifically sound management of the consequences of urban flooding in the future and to develop resilience strategies according to each situation. The CORFU project looks at advanced and novel strategies and provide adequate measures for improved flood management in cities. The differences in urban flooding problems in Asia and in Europe range from levels of economic development, infrastructure age, social systems and decision making processes, to prevailing drainage methods, seasonality of rainfall patterns and climate change trends. The study cases are, in Europe, the cities of Hamburg, Barcelona and Nice, and in Asia, Beijing, Dhaka, Mumbai, Taipei, Seoul and Incheon.
The operation and maintenance of a crest-stage gaging station
Friday, John
1965-01-01
Rigid datum controls must be maintained at the gage site throughout the period of record. Physical changes of the site resulting from flood flows or manmade alterations must be evaluated. If a drainage structure such as a culvert is part of the site features, free-flow conditions must be maintained or obstructions carefully documented.
Brian R. Lockhart; Bob Keeland; John McCoy; Thomas J. Dean
2005-01-01
Prior to European settlement, bottomland hardwood forests covered about 24 million acres in the Lower Mississippi Alluvial Valley (LMAV). Due to the rich nature of these alluvial soils and the development of flood control structures, much of this land has been converted to agricultural production.
Rep. King, Steve [R-IA-5
2011-12-16
House - 01/03/2012 Referred to the Subcommittee on Fisheries, Wildlife, Oceans, and Insular Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
DOT National Transportation Integrated Search
2014-03-01
Reliable estimates of the magnitude and frequency : of floods are essential for the design of transportation and : water-conveyance structures, flood-insurance studies, and : flood-plain management. Such estimates are particularly : important in dens...
Dam pre-release as an important operation strategy in reducing flood impact in Malaysia
NASA Astrophysics Data System (ADS)
Hidayah Ishak, Nurul; Mustafa Hashim, Ahmad
2018-03-01
The 2014 flood was reported to be one of the worst natural disaster has ever affected several states in the northern part of Peninsular Malaysia. Overwhelming rainfall was noted as one of the main factors causing such impact, which was claimed to be unprecedented to some extent. The state of Perak, which is blessed with four cascading dams had also experienced flood damage at a scale that was considered the worst in history. The rainfall received had caused the dam to reach danger level that necessitated additional discharge to be released. Safety of the dams was of great importance and such unavoidable additional discharge was allowed to avoid catastrophic failure of the dam structures. This paper discusses the dam pre-release as a significant dam management strategy in reducing flood impact. An important balance between required dam storage to be maintained and the risk element that can be afforded is the crucial factor in such enhanced operation strategy. While further possibility in developing a carefully engineered dam pre-release strategy can be explored for dam operation in Malaysia, this has already been introduced in some developed countries. Australia and South Africa are examples where pre-release has been practiced and proven to reduce flood risk. The concept involves controlling the dam lake level throughout the year, in reference to the rainfall data and the hydrological properties for the catchment area of the dams. Plentiful data analysis need to be done in contemplation of producing the optimal pre-release model. The amount of heavy rainfalls received is beyond human control but the distribution of the discharge from the dams can be further managed with the appropriate pre-release strategy.
Large-scale application of the flood damage model RAilway Infrastructure Loss (RAIL)
NASA Astrophysics Data System (ADS)
Kellermann, Patric; Schönberger, Christine; Thieken, Annegret H.
2016-11-01
Experience has shown that river floods can significantly hamper the reliability of railway networks and cause extensive structural damage and disruption. As a result, the national railway operator in Austria had to cope with financial losses of more than EUR 100 million due to flooding in recent years. Comprehensive information on potential flood risk hot spots as well as on expected flood damage in Austria is therefore needed for strategic flood risk management. In view of this, the flood damage model RAIL (RAilway Infrastructure Loss) was applied to estimate (1) the expected structural flood damage and (2) the resulting repair costs of railway infrastructure due to a 30-, 100- and 300-year flood in the Austrian Mur River catchment. The results were then used to calculate the expected annual damage of the railway subnetwork and subsequently analysed in terms of their sensitivity to key model assumptions. Additionally, the impact of risk aversion on the estimates was investigated, and the overall results were briefly discussed against the background of climate change and possibly resulting changes in flood risk. The findings indicate that the RAIL model is capable of supporting decision-making in risk management by providing comprehensive risk information on the catchment level. It is furthermore demonstrated that an increased risk aversion of the railway operator has a marked influence on flood damage estimates for the study area and, hence, should be considered with regard to the development of risk management strategies.
NASA Astrophysics Data System (ADS)
Chen, Y. W.; Chang, L. C.
2012-04-01
Typhoons which normally bring a great amount of precipitation are the primary natural hazard in Taiwan during flooding season. Because the plentiful rainfall quantities brought by typhoons are normally stored for the usage of the next draught period, the determination of release strategies for flood operation of reservoirs which is required to simultaneously consider not only the impact of reservoir safety and the flooding damage in plain area but also for the water resource stored in the reservoir after typhoon becomes important. This study proposes a two-steps study process. First, this study develop an optimal flood operation model (OFOM) for the planning of flood control and also applies the OFOM on Tseng-wun reservoir and the downstream plain related to the reservoir. Second, integrating a typhoon event database with the OFOM mentioned above makes the proposed planning model have ability to deal with a real-time flood control problem and names as real-time flood operation model (RTFOM). Three conditions are considered in the proposed models, OFOM and RTFOM, include the safety of the reservoir itself, the reservoir storage after typhoons and the impact of flooding in the plain area. Besides, the flood operation guideline announced by government is also considered in the proposed models. The these conditions and the guideline can be formed as an optimization problem which is solved by the genetic algorithm (GA) in this study. Furthermore, a distributed runoff model, kinematic-wave geomorphic instantaneous unit hydrograph (KW-GIUH), and a river flow simulation model, HEC-RAS, are used to simulate the river water level of Tseng-wun basin in the plain area and the simulated level is shown as an index of the impact of flooding. Because the simulated levels are required to re-calculate iteratively in the optimization model, applying a recursive artificial neural network (recursive ANN) instead of the HEC-RAS model can significantly reduce the computational burden of the entire optimization problem. This study applies the developed methodology to Tseng-wun Reservoir. Forty typhoon events are collected as the historical database and six typhoon events are used to verify the proposed model. These typhoons include Typhoon Sepat and Typhoon Korsa in 2007 and Typhoon Kalmaegi, Typhoon Fung-Wong, Typhoon Sinlaku and Typhoon Jangmi in 2008. The results show that the proposed model can reduce the flood duration at the downstream area. For example, the real-time flood control model can reduce the flood duration by four and three hours for Typhoon Korsa and Typhoon Sinlaku respectively. This results indicate that the developed model can be a very useful tool for real-time flood control operation of reservoirs.
[The dilemma of data flood - reducing costs and increasing quality control].
Gassmann, B
2012-09-05
Digitization is found everywhere in sonography. Printing of ultrasound images using the videoprinter with special paper will be done in single cases. The documentation of sonography procedures is more and more done by saving image sequences instead of still frames. Echocardiography is routinely recorded in between with so called R-R-loops. Doing contrast enhanced ultrasound recording of sequences is necessary to get a deep impression of the vascular structure of interest. Working with this data flood in daily practice a specialized software is required. Comparison in follow up of stored and recent images/sequences is very helpful. Nevertheless quality control of the ultrasound system and the transducers is simple and safe - using a phantom for detail resolution and general image quality the stored images/sequences are comparable over the life cycle of the system. The comparison in follow up is showing decreased image quality and transducer defects immediately.
Hydro-meteorological risk reduction and climate change adaptation in the Sava River Basin
NASA Astrophysics Data System (ADS)
Brilly, Mitja; Šraj, Mojca; Kryžanowski, Andrej
2017-04-01
The Sava River Basin covered the teritory of several countries. There were, in past thirty years, several flood hazard events with almost hundred years return period. Parts of the basin suffer by severe droughts also. In the presentation we covered questions of: • Flood hazard in complex hydrology structure • Landslide and flush flood in mountainous regions • Floods on karst polje • Flood risk management in the complex international and hydrological condition. • Impact of man made structures: hydropower storages, inundation ponds, river regulation, alternate streams, levees system, pumping stations, Natura 2000 areas etc. • How to manage droughts in the international river basin The basin is well covered by information and managed by international the SRB Commission (http://savacommission.org/) that could help. We develop study for climate change impact on floods on entire river basin financing by UNECE. There is also study provide climate change impact on the water management provide by World Bank and on which we take part. Recently is out call by world bank for study »Flood risk management plan for the SRB«.
Isla Hispaniola: A trans-boundary flood risk mitigation plan
NASA Astrophysics Data System (ADS)
Brandimarte, Luigia; Brath, Armando; Castellarin, Attilio; Baldassarre, Giuliano Di
It is sadly known that over the past decades Isla Hispaniola (Haiti and the Dominican Republic) has been exposed to the devastating passage of several hurricanes and tropical storms. Territories that are economically weak and extremely poor in terms of natural resources have been shaken by severe flood events that caused the loss of thousands of human lives, displacement of people and damage to the environment. On May 24th 2004, the flooding of the trans-boundary river Soliette killed over 1000 Haitian and Dominican people, wiping out villages and leaving behind desolation and poverty. After this catastrophic flood event, the General Direction for Development and Cooperation of the Italian Department of Foreign Affairs funded through the Istituto Italo-Latino Americano (IILA, www.iila.org) an international cooperation initiative (ICI), coordinated and directed by the University of Bologna. The ICI involved Haitian and Dominican institutions and was twofold: (a) institutional capacity building on flood risk management and mitigation measures and policies; (b) hydrological and hydraulic analysis of the May 2004 flood event aimed at formulating a suitable and affordable flood risk mitigation plan, consisting of structural and non-structural measures.
75 FR 28778 - Magma Flood Retarding Structure (FRS) Supplemental Watershed Plan, Pinal County, AZ
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-24
... INFORMATION: The environmental assessment of this federally assisted action indicates that the project will... DEPARTMENT OF AGRICULTURE Natural Resources Conservation Service Magma Flood Retarding Structure (FRS) Supplemental Watershed Plan, Pinal County, AZ AGENCY: Natural Resources Conservation Service...
Multiobjective hedging rules for flood water conservation
NASA Astrophysics Data System (ADS)
Ding, Wei; Zhang, Chi; Cai, Ximing; Li, Yu; Zhou, Huicheng
2017-03-01
Flood water conservation can be beneficial for water uses especially in areas with water stress but also can pose additional flood risk. The potential of flood water conservation is affected by many factors, especially decision makers' preference for water conservation and reservoir inflow forecast uncertainty. This paper discusses the individual and joint effects of these two factors on the trade-off between flood control and water conservation, using a multiobjective, two-stage reservoir optimal operation model. It is shown that hedging between current water conservation and future flood control exists only when forecast uncertainty or decision makers' preference is within a certain range, beyond which, hedging is trivial and the multiobjective optimization problem is reduced to a single objective problem with either flood control or water conservation. Different types of hedging rules are identified with different levels of flood water conservation preference, forecast uncertainties, acceptable flood risk, and reservoir storage capacity. Critical values of decision preference (represented by a weight) and inflow forecast uncertainty (represented by standard deviation) are identified. These inform reservoir managers with a feasible range of their preference to water conservation and thresholds of forecast uncertainty, specifying possible water conservation within the thresholds. The analysis also provides inputs for setting up an optimization model by providing the range of objective weights and the choice of hedging rule types. A case study is conducted to illustrate the concepts and analyses.
Flood risk assessment and mapping for the Lebanese watersheds
NASA Astrophysics Data System (ADS)
Abdallah, Chadi; Hdeib, Rouya
2016-04-01
Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. Nowadays, with the emerging global warming phenomenon, this number is expected to increase. The Eastern Mediterranean area, including Lebanon (10452 Km2, 4.5 M habitant), has witnessed in the past few decades an increase frequency of flooding events. This study profoundly assess the flood risk over Lebanon covering all the 17 major watersheds and a number of small sub-catchments. It evaluate the physical direct tangible damages caused by floods. The risk assessment and evaluation process was carried out over three stages; i) Evaluating Assets at Risk, where the areas and assets vulnerable to flooding are identified, ii) Vulnerability Assessment, where the causes of vulnerability are assessed and the value of the assets are provided, iii) Risk Assessment, where damage functions are established and the consequent damages of flooding are estimated. A detailed Land CoverUse map was prepared at a scale of 1/ 1 000 using 0.4 m resolution satellite images within the flood hazard zones. The detailed field verification enabled to allocate and characterize all elements at risk, identify hotspots, interview local witnesses, and to correlate and calibrate previous flood damages with the utilized models. All filed gathered information was collected through Mobile Application and transformed to be standardized and classified under GIS environment. Consequently; the general damage evaluation and risk maps at different flood recurrence periods (10, 50, 100 years) were established. Major results showed that floods in a winter season (December, January, and February) of 10 year recurrence and of water retention ranging from 1 to 3 days can cause total damages (losses) that reach 1.14 M for crop lands and 2.30 M for green houses. Whereas, it may cause 0.2 M to losses in fruit trees for a flood retention ranging from 3 to 5 days. These numbers differs according to the flooding season, cultivation type and the agro-climatic zone. The flood damage equivalence to constructions summed up to reach 32 M for residential structures, 29 M for non-residential structures, and 5 M for the Syrian refugees tents, while structures' content losses were estimated at 27M, 54M, 7 M respectively for the same flood frequency. The total length of affected road networks during flooding is 1589km with an estimated cost of 565M. The total number of affected population reached 82,000 while the number of effected vehicles is 62,000 for a 50year recurrence period
Huizinga, Richard J.
2007-01-01
The evaluation of scour at bridges throughout the State of Missouri has been ongoing since 1991, and most of these evaluations have used one-dimensional hydraulic analysis and application of conventional scour depth prediction equations. Occasionally, the complex conditions of a site dictate a more thorough assessment of the stream hydraulics beyond a one-dimensional model. This was the case for structure A-1700, the Interstate 155 bridge crossing the Mississippi River near Caruthersville, Missouri. To assess the complex hydraulics at this site, a two-dimensional hydrodynamic flow model was used to simulate flow conditions on the Mississippi River in the vicinity of the Interstate 155 structure A-1700. The model was used to simulate flow conditions for three discharges: a flood that occurred on April 4, 1975 (the calibration flood), which had a discharge of 1,658,000 cubic feet per second; the 100-year flood, which has a discharge of 1,960,000 cubic feet per second; and the project design flood, which has a discharge of 1,974,000 cubic feet per second. The project design flood was essentially equivalent to the flood that would cause impending overtopping of the mainline levees along the Mississippi River in the vicinity of structure A-1700. Discharge and river-stage readings from the flood of April 4, 1975, were used to calibrate the flow model. The model was then used to simulate the 100-year and project design floods. Hydraulic flow parameters obtained from the three flow simulations were applied to scour depth prediction equations to determine contraction, local pier, and abutment scour depths at structure A-1700. Contraction scour and local pier scour depths computed for the project design discharge generally were the greatest, whereas the depths computed for the calibration flood were the least. The maximum predicted total scour depth (contraction and local pier scour) for the calibration flood was 66.1 feet; for the 100-year flood, the maximum predicted total scour depth was 74.6 feet; for the project design flood, the maximum predicted total scour depth was 93.0 feet. If scour protection did not exist, bent 14 and piers 15 through 21 would be substantially exposed or undermined by the predicted total scour depths in all of the flood simulations. However, piers 18 through 21 have a riprap blanket around the base of each, and the riprap blanket observed on the right bank around bent 14 is thought to extend around the base of pier 15, which would limit the amount of scour that would occur at these piers. Furthermore, the footings and caissons that are not exposed by computed contraction scour may arrest local pier scour, which will limit local pier scour at several bents and piers. Nevertheless, main-channel piers 16 and 17 and all of the bents on the left (as viewed facing downstream) overbank are moderately to substantially exposed by the predicted scour depths from the three flood simulations, and there is no known scour protection at these piers or bents. Abutment scour depths were computed for structure A-1700, but abutment scour is expected to be mitigated by the presence of guidebanks upstream from the bridge abutments, as well as riprap revetment on the abutment and guidebank faces.
D. Max Smith; Deborah M. Finch
2011-01-01
Historically, flood was the primary disturbance structuring riparian plant and animal communities in the southwestern United States. In many areas, however, livestock grazing and wildfire occur more frequently than flooding. Research has shown that changes in flood and fire frequency affect the composition of riparian surface-active arthropod communities (Bess et al....
The dynamics of human-water systems: comparing observations and simulations
NASA Astrophysics Data System (ADS)
Di Baldassarre, G.; Ciullo, A.; Castellarin, A.; Viglione, A.
2016-12-01
Real-word data of human-flood interactions are compared to the results of stylized socio-hydrological models. These models build on numerous examples from different parts of the world and consider two main prototypes of floodplain systems. Green systems, whereby societies cope with flood risk via non-structural measures, e.g. resettling out of floodplain areas ("living with floods" approach); and Technological systems, whereby societies cope with flood risk by also via structural measures, e.g. building levees ("fighting floods" approach). The floodplain systems of the Tiber River in Rome and the Ganges-Brahmaputra-Meghna Rivers in Bangladesh systems are used as case studies. The comparison of simulations and observations shows the potential of socio-hydrological models in capturing the dynamics of risk emerging from the interactions and feedbacks between social and hydrological processes, such as learning and forgetting effects. It is then discussed how the proposed approach can contribute to a better understanding of flood risk changes and therefore support the process of disaster risk reduction.
Hydrology Analysis and Modelling for Klang River Basin Flood Hazard Map
NASA Astrophysics Data System (ADS)
Sidek, L. M.; Rostam, N. E.; Hidayah, B.; Roseli, ZA; Majid, W. H. A. W. A.; Zahari, N. Z.; Salleh, S. H. M.; Ahmad, R. D. R.; Ahmad, M. N.
2016-03-01
Flooding, a common environmental hazard worldwide has in recent times, increased as a result of climate change and urbanization with the effects felt more in developing countries. As a result, the explosive of flooding to Tenaga Nasional Berhad (TNB) substation is increased rapidly due to existing substations are located in flood prone area. By understanding the impact of flood to their substation, TNB has provided the non-structure mitigation with the integration of Flood Hazard Map with their substation. Hydrology analysis is the important part in providing runoff as the input for the hydraulic part.
Assessing Sedimentation Issues Within Aging Flood Control Reservoirs in Oklahoma
NASA Astrophysics Data System (ADS)
Bennet, Sean J.; Cooper, Charles M.; Ritchie, Jerry C.; Dunbar, John A.; Allen, Peter M.; Caldwell, Larry W.; McGee, Thomas M.
2002-10-01
Since 1948, the USDA-NRCS has constructed nearly 11,000 flood control dams across the United States, and many of the reservoirs are rapidly filling with sediment. To rehabilitate these structures, the impounded sediment must be assessed to determine the volume of accumulated sediment and the potential hazard this sediment may pose if reintroduced to the environment. An assessment of sedimentation issues within two reservoirs, Sugar Creek No. 12, Hinton, Oklahoma, and Sergeant Major No. 4, Cheyenne, Oklahoma, is presented. Sediment cores obtained using a vibracoring system were composed of alternating layers of gravel, sand, silt, and clay. Stratigraphic analysis coupled with 137Cs dating techniques enabled the discrimination of pre-construction sediment from post-construction deposition. An acoustic profiling system was unencumbered by the relatively shallow water depth at Sugar Creek No. 12 and the seismic horizons agreed well with the sediment core data. Total sediment volume determined from the acoustic survey and the sediment core data for comparable areas differed by only 1.4 percent. The seismic profiling system worked well in the relatively deeper lake of Sergeant Major No. 4 and showed good correspondence to the collected core data. Detailed chemical analyses showed that overall sediment quality was good at both locations and that chemical composition was spatially invariant. Implementation of these techniques will aid action agencies such as the USDA-NRCS in their assessment and effective management of aging flood control reservoirs.
Topping, David J.; Rubin, David M.; Grams, Paul E.; Griffiths, Ronald E.; Sabol, Thomas A.; Voichick, Nicholas; Tusso, Robert B.; Vanaman, Karen M.; McDonald, Richard R.
2010-01-01
Three large-scale field experiments were conducted on the Colorado River downstream from Glen Canyon Dam in 1996, 2004, and 2008 to evaluate whether artificial (that is, controlled) floods released from the dam could be used in conjunction with the sand supplied by downstream tributaries to rebuild and sustainably maintain eddy sandbars in the river in Grand Canyon National Park. Higher suspended-sand concentrations during a controlled flood will lead to greater eddy-sandbar deposition rates. During each controlled flood experiment, sediment-transport and bed-sediment data were collected to evaluate sediment-supply effects on sandbar deposition. Data collection substantially increased in spatial and temporal density with each subsequent experiment. The suspended- and bed-sediment data collected during all three controlled-flood experiments are presented and analyzed in this report. Analysis of these data indicate that in designing the hydrograph of a controlled flood that is optimized for sandbar deposition in a given reach of the Colorado River, both the magnitude and the grain size of the sand supply must be considered. Because of the opposing physical effects of bed-sand area and bed-sand grain size in regulating suspended-sand concentration, larger amounts of coarser sand on the bed can lead to lower suspended-sand concentrations, and thus lower rates of sandbar deposition, during a controlled flood than can lesser amounts of finer sand on the bed. Although suspended-sand concentrations were higher at all study sites during the 2008 controlled-flood experiment (CFE) than during either the 1996 or 2004 CFEs, these higher concentrations were likely associated with more sand on the bed of the Colorado River in only lower Glen Canyon. More sand was likely present on the bed of the river in Grand Canyon during the 1996 CFE than during either the 2004 or 2008 CFEs. The question still remains as to whether sandbars can be sustained in the Colorado River in Grand Canyon National Park through use of controlled floods in conjunction with typical amounts and grain sizes of sand supplied by the tributaries that enter the Colorado River downstream from Glen Canyon Dam.
NASA Astrophysics Data System (ADS)
Zhang, Hanghui; Liu, Shuguang; Ye, Jianchun; Yeh, Pat J.-F.
2017-10-01
The Lake Taihu basin (36 895 km2), one of the most developed regions in China located in the hinterland of the Yangtze River Delta, has experienced increasing flood risk. The largest flood in history occurred in 1999 with a return period estimate of 200 years, considerably larger than the current capacity of the flood defense with a design return period of 50 years. Due to its flat saucer-like terrain, the capacity of the flood control system in this basin depends on flood control infrastructures and peripheral tidal conditions. The Huangpu River, an important river of the basin connecting Lake Taihu upstream and Yangtze River estuaries downstream, drains two-fifths of the entire basin. Since the water level in the Huangpu River is significantly affected by the high tide conditions in estuaries, constructing an estuary gate is considered an effective solution for flood mitigation. The main objective of this paper is to assess the potential contributions of the proposed Huangpu Gate to the flood control capacity of the basin. To achieve this goal, five different scenarios of flooding conditions and the associated gate operations are considered by using numerical model simulations. Results of quantitative analyses show that the Huangpu Gate is effective for evacuating floodwaters. It can help to reduce both peak values and duration of high water levels in Lake Taihu to benefit surrounding areas along the Taipu Canal and the Huangpu River. The contribution of the gate to the flood control capacity is closely associated with its operation modes and duration. For the maximum potential contribution of the gate, the net outflow at the proposed site is increased by 52 %. The daily peak level is decreased by a maximum of 0.12 m in Lake Taihu, by maxima of 0.26-0.37 and 0.46-0.60 m in the Taipu Canal and the Huangpu River, respectively, and by 0.05-0.39 m in the surrounding areas depending on the local topography. It is concluded that the proposed Huangpu Gate can reduce flood risk in the Lake Taihu basin, especially in those low-lying surrounding areas along the Taipu Canal and the Huangpu River significantly, which is of great benefit to the flood management in the basin and the Yangtze River Delta.
Paleohydrologic techniques used to define the spatial occurrence of floods
Jarrett, R.D.
1990-01-01
Defining the cause and spatial characteristics of floods may be difficult because of limited streamflow and precipitation data. New paleohydrologic techniques that incorporate information from geomorphic, sedimentologic, and botanic studies provide important supplemental information to define homogeneous hydrologic regions. These techniques also help to define the spatial structure of rainstorms and floods and improve regional flood-frequency estimates. The occurrence and the non-occurrence of paleohydrologic evidence of floods, such as flood bars, alluvial fans, and tree scars, provide valuable hydrologic information. The paleohydrologic research to define the spatial characteristics of floods improves the understanding of flood hydrometeorology. This research was used to define the areal extent and contributing drainage area of flash floods in Colorado. Also, paleohydrologic evidence was used to define the spatial boundaries for the Colorado foothills region in terms of the meteorologic cause of flooding and elevation. In general, above 2300 m, peak flows are caused by snowmelt. Below 2300 m, peak flows primarily are caused by rainfall. The foothills region has an upper elevation limit of about 2300 m and a lower elevation limit of about 1500 m. Regional flood-frequency estimates that incorporate the paleohydrologic information indicate that the Big Thompson River flash flood of 1976 had a recurrence interval of approximately 10,000 years. This contrasts markedly with 100 to 300 years determined by using conventional hydrologic analyses. Flood-discharge estimates based on rainfall-runoff methods in the foothills of Colorado result in larger values than those estimated with regional flood-frequency relations, which are based on long-term streamflow data. Preliminary hydrologic and paleohydrologic research indicates that intense rainfall does not occur at higher elevations in other Rocky Mountain states and that the highest elevations for rainfall-producing floods vary by latitude. The study results have implications for floodplain management and design of hydraulic structures in the mountains of Colorado and other Rocky Mountain States. ?? 1990.
NASA Astrophysics Data System (ADS)
Allison, Mead A.; Vosburg, Brian M.; Ramirez, Michael T.; Meselhe, Ehab A.
2013-01-01
SummaryThe large Mississippi River flood in 2011 was notable in the lowermost Louisiana, USA reach for requiring operation of several flood control structures to reduce stress on artificial levees: the largest diversion went through the gated Bonnet Carré Spillway, which was opened for 42 days in May and June. The removal of approximately 20% of the total flood discharge from the river provided an opportunity to examine the impact of large water diversion on the sediment transport capacity of large rivers. Boat-based, acoustic and water and bed sampling surveys were conducted in the Mississippi River channel adjacent to the Spillway immediately prior to the opening of the structure, at full capacity, and immediately following (June 2011) and 1 year after (June 2012) closure. The surveys were designed to examine (1) elevation change of the channel bed due to scour or aggradation of sediment, and (2) suspended and bedload transport variability upriver and downriver of the Spillway. The results indicate that approximately 9.1 million tons of sand were deposited on the channel bed immediately downriver of the water exit pathway and extending at least 13 km downriver at a rapidly and progressively reducing magnitude per river kilometer. The surficial deposit was of finer grain size than the lateral sand bars in the channel upriver of the structure. We argue the deposit was largely delivered from suspension derived from the observed deflation of lateral bars upstream of the diversion point, rather than from sand arriving from the drainage basin. Approximately 69% of the 2011 flood deposit was removed from the 13 km downstream reach between June 2011 and June 2012. We conclude that the source of the channel deposit was the reduction in stream power, and, thus, in the sediment transport capacity of the Mississippi, associated with the water withdrawal. The re-entrainment of this material in the following flood year indicates the system rapidly re-establishes an equilibrium to pre-opening conditions. Future diversions in the river for coastal restoration will have to address this issue to maintain a deep draft navigation channel in the Mississippi River.
NASA Astrophysics Data System (ADS)
Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.; Khosa, R.
2017-12-01
Increased imperviousness due to rapid urbanization have changed the urban hydrological cycle. As watersheds are urbanized, infiltration and groundwater recharge have decreased, surface runoff hydrograph shows higher peak indicating large volumes of surface runoff in lesser time durations. The ultimate panacea is to reduce the peak of hydrograph or increase the retention time of surface flow. SWMM is widely used hydrologic and hydraulic software which helps to simulate the urban storm water management with the provision to apply different techniques to prevent flooding. A model was setup to simulate the surface runoff and channel flow in a small urban catchment. It provides the temporal and spatial information of flooding in a catchment. Incorporating the detention storages in the drainage network helps achieve reduced flooding. Detention storages provided with predefined algorithms were for controlling the pluvial flooding in urban watersheds. The algorithm based on control theory, automated the functioning of detention storages ensuring that the storages become active on occurrence of flood in the storm water drains and shuts down when flooding is over. Detention storages can be implemented either at source or at several downstream control points. The proposed piece of work helps to mitigate the wastage of rainfall water, achieve desirable groundwater and attain a controlled urban storm water management system.
NASA Astrophysics Data System (ADS)
Wilkinson, Mark; Addy, Steve; Ghimire, Sohan; Kenyon, Wendy; Nicholson, Alex; Quinn, Paul; Stutter, Marc; Watson, Helen
2013-04-01
Over the past decade many European catchments have experienced an unusually high number of flood events. A large number of these events are the result of intense rainfall in small headwater catchments which are dominated by surface runoff generation, resulting in flash flooding of local communities. Soil erosion and related water quality issues, among others, are typically associated with such rapid runoff generation. The hazard of flooding is increasing owing to impacts of changing climatic patterns (including more intense summer storms), intensification of agriculture within rural catchments and continued pressure to build on floodplains. Concurrently, the cost of constructing and maintaining traditional flood defences in small communities outweigh the potential benefits. Hence, there is a growing interest in more cost effective natural approaches that also have multipurpose benefits in terms of sediment, water quality, and habitat creation. Many catchments in Europe are intensively farmed and there is great potential for agriculture to be part of the solution to flood risk management. Natural flood management (NFM) is the alteration, restoration or use of landscape features with the aim of reducing flood risk by slowing down, storing (and filtering) rapid surface runoff. NFM includes measures such as temporarily storing water in ponds/wetlands, increasing soil infiltration, planting trees on floodplains and within catchments, re-meandering and wood placements in streams/ditches. In this presentation we highlight case studies from densely instrumented research sites across the UK (which could be typical of many European catchments) where NFM measures have been installed in small scale flashy catchments. The presentation will give an overview of the function of these measures in these catchments and how other multiple benefits are being accrued. Study catchments include the headwater catchments of the Bowmont (3 to 8 km2) and Belford Burn (6 km2) catchments. These catchments are known for their rapid runoff generation and have downstream local communities at risk of flash flooding. In Bowmont, NFM measures are currently being put in place to restore river bars and to store water more effectively on the flood plains during these flashy events. For example, Apex engineered wood structure in the river channel and riparian zones are designed to trap sediment and log bank protection structures are being installed to stop bank erosion. Tree planting in the catchment is also taking place. In the Belford catchment storage ponds and woody debris have been installed over the past five years to help to reduce the flood risk to the village of Belford. A dense instrumentation network has provided data for analysis and modelling which shows evidence of local scale flood peak reductions along with the collection of large amounts of sediment. A modelling study carried out (using a pond network model) during an intense summer storm showed that 30 small scale pond features used in sequence could reduce the flood peak by ~35% at the local scale. Findings show that managing surface runoff and local ditch flow at local scale headwater catchments is a cost effective way of managing flashy catchment for flood risk and sediment control. Working with catchment stakeholders is vital. Information given by the local community post flooding has been useful in placing NFM measures throughout the catchments. Involving the local communities in these projects and giving them access to the data and model outputs has helped to develop these projects further.
NASA Astrophysics Data System (ADS)
Domeneghetti, Alessio; Castellarin, Attilio; Brath, Armando
2013-04-01
The European Flood Directive (2007/60/EC) has fostered the development of innovative and sustainable approaches and methodologies for flood-risk mitigation and management. Furthermore, concerning flood-risk mitigation, the increasing awareness of how the anthropogenic pressures (e.g. demographic and land-use dynamics, uncontrolled urban and industrial expansion on flood-prone area) could strongly increase potential flood damages and losses has triggered a paradigm shift from "defending the territory against flooding" (e.g. by means of levee system strengthening and heightening) to "living with floods" (e.g. promoting compatible land-uses or adopting controlled flooding strategies of areas located outside the main embankments). The assessment of how socio-economic dynamics may influence flood-risk represents a fundamental skill that should be considered for planning a sustainable industrial and urban development of flood-prone areas, reducing their vulnerability and therefore minimizing socio-economic and ecological losses due to large flood events. These aspects, which are of fundamental importance for Institutions and public bodies in charge of Flood Directive requirements, need to be considered through a holistic approach at river basin scale. This study focuses on the evaluation of large-scale flood-risk mitigation strategies for the middle-lower reach of River Po (~350km), the longest Italian river and the largest in terms of streamflow. Due to the social and economical importance of the Po River floodplain (almost 40% of the total national gross product results from this area), our study aims at investigating the potential of combining simplified vulnerability indices with a quasi-2D model for the definition of sustainable and robust flood-risk mitigation strategies. Referring to past (1954) and recent (2006) land-use data sets (e.g. CORINE) we propose simplified vulnerability indices for assessing potential flood-risk of industrial and urbanized flood prone areas taking into account altimetry and population density, and we analyze the modification of flood-risk occurred during last decades due to the demographic dynamics of the River Po floodplains. Flood hazard associated to a high magnitude event (i.e. return period of about 500 year) was estimated by means of a quasi-2D hydraulic model set up for the middle-lower portion of the Po River and for its major tributaries. The results of the study highlight how coupling a large-scale numerical model with the proposed flood-vulnerability indices could be a useful tool for decision-makers when they are called to define sustainable spatial development plans for the study area, or when they need to identify priorities in the organization of civil protection actions during a major flood event that could include the necessity of controlled flooding of flood-prone areas located outside the main embankment system.
Flood risk perception and adaptation capacity: a contribution to the socio-hydrology debate
NASA Astrophysics Data System (ADS)
Fuchs, Sven; Karagiorgos, Konstantinos; Kitikidou, Kyriaki; Maris, Fotios; Paparrizos, Spyridon; Thaler, Thomas
2017-04-01
Dealing with flood hazard and risk requires approaches rooted both in natural and social sciences, which provided the nexus for the ongoing debate on socio-hydrology. Various combinations of non-structural and structural flood risk reduction options are available to communities. Focusing on flood risk and the information associated with it, developing risk management plans is required but often overlooking public perception of a threat. The perception of risk varies in many different ways, especially between the authorities and the affected public. It is because of this disconnection that many risk management plans concerning floods have failed in the past. This paper examines the private adaptation capacity and willingness with respect to flooding in two different catchments in Greece prone to multiple flood events during the last 20 years. Two studies (East Attica and Evros) were carried out, comprised of a survey questionnaire of 155 and 157 individuals, from a peri-urban (East Attica) and a rural (Evros) area, respectively, and they focused on those vulnerable to periodical (rural area) and flash floods (peri-urban area). Based on the comparisons drawn from these responses, and identifying key issues to be addressed when flood risk management plans are implemented, improvements are being recommended for the social dimension surrounding such implementation. As such, the paper contributes to the ongoing discussion on human-environment interaction in socio-hydrology.
Flood risk perception and adaptation capacity: a contribution to the socio-hydrology debate
NASA Astrophysics Data System (ADS)
Fuchs, Sven; Karagiorgos, Konstantinos; Kitikidou, Kyriaki; Maris, Fotios; Paparrizos, Spyridon; Thaler, Thomas
2017-06-01
Dealing with flood hazard and risk requires approaches rooted in both natural and social sciences, which provided the nexus for the ongoing debate on socio-hydrology. Various combinations of non-structural and structural flood risk reduction options are available to communities. Focusing on flood risk and the information associated with it, developing risk management plans is required but often overlooks public perception of a threat. The perception of risk varies in many different ways, especially between the authorities and the affected public. It is because of this disconnection that many risk management plans concerning floods have failed in the past. This paper examines the private adaptation capacity and willingness with respect to flooding in two different catchments in Greece prone to multiple flood events during the last 20 years. Two studies (East Attica and Evros) were carried out, comprised of a survey questionnaire of 155 and 157 individuals, from a peri-urban (East Attica) and a rural (Evros) area, respectively, and they focused on those vulnerable to periodic (rural area) and flash floods (peri-urban area). Based on the comparisons drawn from these responses, and identifying key issues to be addressed when flood risk management plans are implemented, improvements are being recommended for the social dimension surrounding such implementation. As such, the paper contributes to the ongoing discussion on human-environment interaction in socio-hydrology.
Mapping technological and biophysical capacities of watersheds to regulate floods
Mogollón, Beatriz; Villamagna, Amy M.; Frimpong, Emmanuel A.; Angermeier, Paul
2016-01-01
Flood regulation is a widely valued and studied service provided by watersheds. Flood regulation benefits people directly by decreasing the socio-economic costs of flooding and indirectly by its positive impacts on cultural (e.g., fishing) and provisioning (e.g., water supply) ecosystem services. Like other regulating ecosystem services (e.g., pollination, water purification), flood regulation is often enhanced or replaced by technology, but the relative efficacy of natural versus technological features in controlling floods has scarcely been examined. In an effort to assess flood regulation capacity for selected urban watersheds in the southeastern United States, we: (1) used long-term flood records to assess relative influence of technological and biophysical indicators on flood magnitude and duration, (2) compared the widely used runoff curve number (RCN) approach for assessing the biophysical capacity to regulate floods to an alternative approach that acknowledges land cover and soil properties separately, and (3) mapped technological and biophysical flood regulation capacities based on indicator importance-values derived for flood magnitude and duration. We found that watersheds with high biophysical (via the alternative approach) and technological capacities lengthened the duration and lowered the peak of floods. We found the RCN approach yielded results opposite that expected, possibly because it confounds soil and land cover processes, particularly in urban landscapes, while our alternative approach coherently separates these processes. Mapping biophysical (via the alternative approach) and technological capacities revealed great differences among watersheds. Our study improves on previous mapping of flood regulation by (1) incorporating technological capacity, (2) providing high spatial resolution (i.e., 10-m pixel) maps of watershed capacities, and (3) deriving importance-values for selected landscape indicators. By accounting for technology that enhances or replaces natural flood regulation, our approach enables watershed managers to make more informed choices in their flood-control investments.
Ejeta, Luche Tadesse
2018-02-21
Emergency preparedness at all levels (individuals and communities) is the corner stone of effective response to the increasing trends of global disasters due to man-made and natural hazards. It is determined by different factors, including (among others) past direct and indirect exposures to hazards. This study was carried out in Dire Dawa town, Ethiopia, which in the past experienced frequent flooding events, yet dearth of information exists about preparedness in the area. The aim of the study was to assess the levels of emergency preparedness for flood hazards at households and communities levels. The study was conducted in a qualitative approach and was conducted in Dire Dawa town, which has been divided into nine administrative-units called Kebeles. Two focus group discussions were held in two of these units (Kebele-05 and 06), each focus group comprising twelve people (all above 18 years of age), and in total 24 people (13 females and 11 males) took part in the study. Open ended questions were used that could guide the discussions, and the discussions were audio-taped and transcribed. The results were translated from local language to English and qualitatively presented. The findings of focus group discussions showed that the local government in collaboration with the federal government built the flood protection dams in areas where flood hazards have been thought to be repeatedly wreaking havoc, specifically after the flood disaster of the year 2006. In addition, in Kebele-05, where one Non-Governmental Organization (NGO) was operating on flood hazards prevention and mitigation program, some non-structural emergency preparedness measures were undertaken by the communities. These non-structural measures (the major ones) entailed: establishment of committees recruited from residents and training them to raise awareness among communities on emergency preparedness; some residents made changes to their own houses (retrofitted) and put sandbags around their houses to temporarily protect the flooding; establishment of communication channels between communities to alarm each other in the event of flood disaster; and reforestation of the already deforested mountainous areas surrounding the town. However, concerns were raised by study participants about strengths of the constructed flood protection dams. Furthermore, the non-structural emergency preparedness measures identified by this study were not comprehensive; for example, residents were not trained in first aid, first aid kits were not provided, there was no linkage being established between communities and health facilities so as to provide emergency medical care to victims in the event of flood disaster. The findings of this study concur with some of the previous quantitative studies' results in that the past direct and indirect disaster experiences invoke preparedness intention and actual preparedness for flood hazards at individuals, communities and organizations levels. The only one quantitative and behavioral based study conducted thus far in Dire Dawa town reported the strong association of past flood disaster experience with household emergency preparedness. Among the residents there was a tendency to rely on the dams to be constructed with "good quality" and "higher strength" than making preparedness efforts on their own at their households. Structural measures such as building of dams, dikes, levees, and channel improvements could be means of mitigation measures; however, solely relying on these measures could have far reaching consequences. To mitigate flood hazards, dams were built and in addition, in Kebele-05 where an NGO was operating, some non-structural emergency preparedness measures were undertaken. In the course of construction of flood protection dams, ensuring communities ' involvement is needed ; and at the same time undertaking comprehensive non-structural emergency preparedness measures in all Kebeles is highly recommended. Emergency, Preparedness, Flood, Dire Dawa, Ethiopia.
2007 National Small Business Conference: Critical Infrastructure Opportunities
2007-05-18
Flooding of Subway Tunnels From IED Bomber Maximize lives saved – provide time to evacuate Recent advances in inflatable structure technology: • Stronger...Polimetry/ Signal Processing technologies (Radar & Sonar) Low Cost Advanced Composite Structures Low Cost Composite Sandwich Structures and...Ubiquitous Chem/Bio Detect 34 High Impact Technology Solutions Resilient Tunnel Prevent Flooding of Subway Tunnels From IED Bomber Maximize lives saved
Impact of sea level rise on tide gate function.
Walsh, Sean; Miskewitz, Robert
2013-01-01
Sea level rise resulting from climate change and land subsidence is expected to severely impact the duration and associated damage resulting from flooding events in tidal communities. These communities must continuously invest resources for the maintenance of existing structures and installation of new flood prevention infrastructure. Tide gates are a common flood prevention structure for low-lying communities in the tidal zone. Tide gates close during incoming tides to prevent inundation from downstream water propagating inland and open during outgoing tides to drain upland areas. Higher downstream mean sea level elevations reduce the effectiveness of tide gates by impacting the hydraulics of the system. This project developed a HEC-RAS and HEC-HMS model of an existing tide gate structure and its upland drainage area in the New Jersey Meadowlands to simulate the impact of rising mean sea level elevations on the tide gate's ability to prevent upstream flooding. Model predictions indicate that sea level rise will reduce the tide gate effectiveness resulting in longer lasting and deeper flood events. The results indicate that there is a critical point in the sea level elevation for this local area, beyond which flooding scenarios become dramatically worse and would have a significantly negative impact on the standard of living and ability to do business in one of the most densely populated areas of America.
NASA Astrophysics Data System (ADS)
Su, Weizhong
2017-03-01
There is growing interest in using the urban landscape for stormwater management studies, where land patterns and processes can be important controls for the sustainability of urban development and planning. This paper proposes an original index of Major Hazard Oriented Level (MHOL) and investigates the structure distribution, driving factors, and controlling suggestions of urban-rural land growth in flood-prone areas in the Taihu Lake watershed, China. The MHOL of incremental urban-rural land increased from M 31.51 during the years 1985-1995 to M 38.37 during the years 1995-2010 (M for medium structure distribution, and the number for high-hazard value). The index shows that urban-rural land was distributed uniformly in flood hazard levels and tended to move rapidly to high-hazard areas, where 72.68% of incremental urban-rural land was aggregated maximally in new urban districts along the Huning traffic line and the Yangtze River. Thus, the current accelerating growth of new urban districts could account for the ampliative exposure to high-hazard areas. New districts are driven by the powerful link between land financial benefits and political achievements for local governments and the past unsustainable process of "single objective" oriented planning. The correlation categorical analysis of the current development intensity and carrying capacity of hydrological ecosystems for sub-basins was used to determine four types of development areas and provide decision makers with indications on the future watershed-scale subdivision of Major Function Oriented Zoning implemented by the Chinese government.
Coupling Radar Rainfall Estimation and Hydrological Modelling For Flash-flood Hazard Mitigation
NASA Astrophysics Data System (ADS)
Borga, M.; Creutin, J. D.
Flood risk mitigation is accomplished through managing either or both the hazard and vulnerability. Flood hazard may be reduced through structural measures which alter the frequency of flood levels in the area. The vulnerability of a community to flood loss can be mitigated through changing or regulating land use and through flood warning and effective emergency response. When dealing with flash-flood hazard, it is gener- ally accepted that the most effective way (and in many instances the only affordable in a sustainable perspective) to mitigate the risk is by reducing the vulnerability of the involved communities, in particular by implementing flood warning systems and community self-help programs. However, both the inherent characteristics of the at- mospheric and hydrologic processes involved in flash-flooding and the changing soci- etal needs provide a tremendous challenge to traditional flood forecasting and warning concepts. In fact, the targets of these systems are traditionally localised like urbanised sectors or hydraulic structures. Given the small spatial scale that characterises flash floods and the development of dispersed urbanisation, transportation, green tourism and water sports, human lives and property are exposed to flash flood risk in a scat- tered manner. This must be taken into consideration in flash flood warning strategies and the investigated region should be considered as a whole and every section of the drainage network as a potential target for hydrological warnings. Radar technology offers the potential to provide information describing rain intensities almost contin- uously in time and space. Recent research results indicate that coupling radar infor- mation to distributed hydrologic modelling can provide hydrologic forecasts at all potentially flooded points of a region. Nevertheless, very few flood warning services use radar data more than on a qualitative basis. After a short review of current under- standing in this area, two issues are examined: advantages and caveats of using radar rainfall estimates in operational flash flood forecasting, methodological problems as- sociated to the use of hydrological models for distributed flash flood forecasting with rainfall input estimated from radar.
Erosion of Perennially Frozen Streambanks,
1983-12-01
erosional processes. Factors that determine rates and locations of erosion in- dude physical, thermal and structural properties of bank sediments , stream...Program, Environmental Impact, and Civil Works Work Unit CWIS 31722, Sediment Transport and Deposition in Northern Rivers; Research Area, Flood Control...between bank and bluff zones of eroding, perennially frozen streambanks 4 3. Cantilevered blocks of frozen sediment above thermoerosional niche, northern
Mozambique Hit by a Flood Disaster, Again: What Role for the Scientific Community
NASA Astrophysics Data System (ADS)
Matonse, A. H.; Zucula, P.
2007-05-01
The Lower Zambezi basin in Mozambique covers an area of approximately 225,000 km2 from the Cahora Bassa Reservoir to the Zambezi Delta, and supports more than 3.8 million people (25% of the total population of Mozambique). The Zambezi Delta is a broad, flat alluvial plain along the coast of central Mozambique. Some 800 Mozambicans died in floods caused by two cyclones in 2000 and 2001 in the Zambezi River Valley in central Mozambique. Recently, seven years later, the same Zambezi River Valley was hit by heavy rain which was followed by Cyclone Favio. This event triggered flash floods along the Zambezi River and its tributaries, washing away homes, bridges, livestock and crops, and killing at least 45 people. The country's national relief agency INGC established an emergency operation centre to coordinate relief operations. By February 25, 2007, 53,000 people have been moved to accommodation centers and an estimated 36,000 people have lost virtually all their possessions. Due to the extent of the flooded area, rescue and supply operations are very difficult, and conditioned upon the availability of helicopters. Temporary accommodation centres have faced problems of food and fuel shortages, and delays in the distribution of food and fresh water are raising concerns with malnutrition and the outbreak of waterborne diseases. One of the major problems in the region is water management and regulation. The main structure to regulate water discharge in the Zambezi River is the Mozambique's largest Hydro-electric dam, Cahora Bassa. Water regulation from this structure during floods is particularly difficult due to transnational inflows passing through the neighbouring countries of Malawi, Zambia and Zimbabwe. Since the flood disaster of 2000/2001 occurred, the need to improve and strengthen disaster prevention has been a high priority of the Mozambique Government and its donors. Mozambique's Action Plan for the reduction of Absolute Poverty identified vulnerability to such natural disasters as a basic dimension of poverty. However, in spite of these advances the situation with the current flood disaster shows the need for a revision of this program to reduce future flood damage in the country. These revisions should include: 1) readjustments in the actual disaster relieve strategies; 2) disaster risk management to minimize the impact of flooding on individuals and communities; and 3) floodplain management in terms of (i) reviewing regulations intending to modify susceptibility to flood damage and disruption and (ii) the studying of alternative solutions for flood control in the affected areas. Interestingly, while the central provinces of Mozambique are facing floods, the southern part of the country is being hit by drought. To deal with this scenario it is important that the resulting floodplain management strategy accounts for regional and transboundary character of targeted water systems and thus be integrated with regional water resources, river development, and management programs. As part of this process collaborative research in the areas of hydroclimatology, impacts, and management of extraordinary floods is needed and should be encouraged within the region and internationally.
A Bayesian Network approach for flash flood risk assessment
NASA Astrophysics Data System (ADS)
Boutkhamouine, Brahim; Roux, Hélène; Pérès, François
2017-04-01
Climate change is contributing to the increase of natural disasters such as extreme weather events. Sometimes, these events lead to sudden flash floods causing devastating effects on life and property. Most recently, many regions of the French Mediterranean perimeter have endured such catastrophic flood events; Var (October 2015), Ardèche (November 2014), Nîmes (October 2014), Hérault, Gard and Languedoc (September 2014), and Pyrenees mountains (Jun 2013). Altogether, it resulted in dozens of victims and property damages amounting to millions of euros. With this heavy loss in mind, development of hydrological forecasting and warning systems is becoming an essential element in regional and national strategies. Flash flood forecasting but also monitoring is a difficult task because small ungauged catchments ( 10 km2) are often the most destructive ones as for the extreme flash flood event of September 2002 in the Cévennes region (France) (Ruin et al., 2008). The problem of measurement/prediction uncertainty is particularly crucial when attempting to develop operational flash-flood forecasting methods. Taking into account the uncertainty related to the model structure itself, to the model parametrization or to the model forcing (spatio-temporal rainfall, initial conditions) is crucial in hydrological modelling. Quantifying these uncertainties is of primary importance for risk assessment and decision making. Although significant improvements have been made in computational power and distributed hydrologic modelling, the issue dealing with integration of uncertainties into flood forecasting remains up-to-date and challenging. In order to develop a framework which could handle these uncertainties and explain their propagation through the model, we propose to explore the potential of graphical models (GMs) and, more precisely, Bayesian Networks (BNs). These networks are Directed Acyclic Graphs (DAGs) in which knowledge of a certain phenomenon is represented by influencing variables. Each node of the graph corresponds to a variable and arcs represent the probabilistic dependencies between these variables. Both the quantification of the strength of these probabilistic dependencies and the computation of inferences are based on Bayes' theorem. In order to use BNs for the assessment of the flooding risks, the modelling work is divided into two parts. First, identifying all the factors controlling the flood generation. The qualitative explanation of this issue is then reached by establishing the cause and effect relationships between these factors. These underlying relationships are represented in what we call Conditional Probabilities Tables (CPTs). The next step is to estimate these CPTs using information coming from network of sensors, databases and expertise. By using this basic cognitive structure, we will be able to estimate the magnitude of flood risk in a small geographical area with a homogeneous hydrological system. The second part of our work will be dedicated to the estimation of this risk on the scale of a basin. To do so, we will create a spatio-temporal model able to take in consideration both spatial and temporal variability of all factors involved in the flood generation. Key words: Flash flood forecasting - Uncertainty modelling - flood risk management -Bayesian Networks.
Proteomic analysis of soybean hypocotyl during recovery after flooding stress.
Khan, Mudassar Nawaz; Sakata, Katsumi; Komatsu, Setsuko
2015-05-21
Soybean is a nutritionally important crop, but exhibits reduced growth and yields under flooding stress. To investigate soybean responses during post-flooding recovery, a gel-free proteomic technique was used to examine the protein profile in the hypocotyl. Two-day-old soybeans were flooded for 2 days and hypocotyl was collected under flooding and during the post-flooding recovery period. A total of 498 and 70 proteins were significantly changed in control and post-flooding recovering soybeans, respectively. Based on proteomic and clustering analyses, three proteins were selected for mRNA expression and enzyme activity assays. Pyruvate kinase was increased under flooding, but gradually decreased during post-flooding recovery period at protein abundance, mRNA, and enzyme activity levels. Nucleotidylyl transferase was decreased under flooding and increased during post-flooding recovery at both mRNA expression and enzyme activity levels. Beta-ketoacyl reductase 1 was increased under flooding and decreased during recovery at protein abundance and mRNA expression levels, but its enzyme activity gradually increased during the post-flooding recovery period. These results suggest that pyruvate kinase, nucleotidylyl transferase, and beta-ketoacyl reductase play key roles in post-flooding recovery in soybean hypocotyl by promoting glycolysis for the generation of ATP and regulation of secondary metabolic pathways. This study analyzed post-flooding recovery response mechanisms in soybean hypocotyl, which is a model organ for studying secondary growth, using a gel-free proteomic technique. Mass spectrometry analysis of proteins extracted from soybean hypocotyls identified 20 common proteins between control and flooding-stressed soybeans that changed significantly in abundance over time. The hypocotyl proteins that changed during post-flooding recovery were assigned to protein, development, secondary metabolism, and glycolysis categories. The analysis revealed that three proteins, pyruvate kinase, nucleotidylyl transferase, and beta-ketoacyl reductase, were increased in hypocotyl under flooding conditions and during post-flooding recovery. The proteins are involved in glycolysis, nucleotide synthesis and amino acid activation, and complex fatty acid biosynthesis. Copyright © 2015 Elsevier B.V. All rights reserved.
National Levee Database: monitoring, vulnerability assessment and management in Italy
NASA Astrophysics Data System (ADS)
Barbetta, Silvia; Camici, Stefania; Maccioni, Pamela; Moramarco, Tommaso
2015-04-01
A properly designed and constructed levees system can often be an effective device for repelling floodwaters and provide barriers against inundation to protect urbanized and industrial areas. However, the delineation of flooding-prone areas and the related hydraulic hazard mapping taking account of uncertainty (Apel et al., 2008) are usually developed with a scarce consideration of the possible occurrence of levee failures along river channels (Mazzoleni et al., 2014). Indeed, it is well known that flooding is frequently the result of levee failures that can be triggered by several factors, as: (1) overtopping, (2) scouring of the foundation, (3) seepage/piping of levee body/foundation, and (4) sliding of the foundation. Among these failure mechanisms that are influenced by the levee's geometrical configuration, hydraulic conditions (e.g. river level and seepage), and material properties (e.g. permeability, cohesion, porosity, compaction), the piping caused by seepage (ICOLD, http://www.icold-cigb.org) is considered one of the most dominant levee failure mechanisms (Colleselli F., 1994; Wallingford H. R., 2003). The difficulty of estimating the hydraulic parameters to properly describe the seepage line within the body and foundation of the levee implies that the study of the critical flood wave routing is typically carried out by assuming that the levee system is undamaged during the flood event. In this context, implementing and making operational a National Levee Database (NLD), effectively structured and continuously updated, becomes fundamental to have a searchable inventory of information about levees available as a key resource supporting decisions and actions affecting levee safety. The ItaliaN LEvee Database (INLED) has been recently developed by the Research Institute for Geo-Hydrological Protection (IRPI) for the Civil Protection Department of the Presidency of Council of Ministers. INLED has the main focus of collecting comprehensive information about Italian levees and historical breach failures to be exploited in the framework of an operational procedure addressed to the seepage vulnerability assessment of river reaches where the levee system is an important structural measure against flooding. For its structure, INLED is a dynamic geospatial database with ongoing efforts to add levee data from authorities with the charge of hydraulic risk mitigation. In particular, the database is aimed to provide the available information about: i) location and condition of levees; ii) morphological and geometrical properties; iii) photographic documentation; iv) historical levee failures; v) assessment of vulnerability to overtopping and seepage carried out through a procedure based on simple vulnerability indexes (Camici et al. 2014); vi) management, control and maintenance; vii)flood hazard maps developed by assuming the levee system undamaged/damaged during the flood event. Currently, INLED contains data of levees that are mostly located in the Tiber basin, Central Italy. References Apel H., Merz B. & Thieken A.H. Quantification of uncertainties in flood risk assessments. Int J River Basin Manag 2008, 6, (2), 149-162. Camici S,, Barbetta S., Moramarco T., Levee body vulnerability to seepage: the case study of the levee failure along the Foenna stream on 1st January 2006 (central Italy)", Journal of Flood Risk Management, in press. Colleselli F. Geotechnical problems related to river and channel embankments. Rotterdam, the Netherlands: Springer, 1994. H. R.Wallingford Consultants (HRWC). Risk assessment for flood and coastal defence for strategic planning: high level methodology technical report, London, 2003. Mazzoleni M., Bacchi B., Barontini S., Di Baldassarre G., Pilotti M. & Ranzi R. Flooding hazard mapping in floodplain areas affected by piping breaches in the Po River, Italy. J Hydrol Eng 2014, 19, (4), 717-731.
23 CFR 650.117 - Content of design studies.
Code of Federal Regulations, 2013 CFR
2013-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...
23 CFR 650.117 - Content of design studies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...
23 CFR 650.117 - Content of design studies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...
23 CFR 650.117 - Content of design studies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...
23 CFR 650.117 - Content of design studies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... probability of exceedance and, at appropriate locations, the water surface elevations associated with the overtopping flood or the flood of § 650.115(a)(1)(ii), and (2) The magnitude and water surface elevation of...
18 CFR 801.8 - Flood plain management and protection.
Code of Federal Regulations, 2011 CFR
2011-04-01
... COMMISSION GENERAL POLICIES § 801.8 Flood plain management and protection. (a) Periodic inundation of lands... of flood prone lands with approval of the appropriate signatory party, to safeguard public health... tributaries by encroachment. (2) Plan and promote implementation of projects and programs of a structural and...
Milojevic, Ai; Armstrong, Ben; Wilkinson, Paul
2017-10-01
There is emerging evidence that people affected by flooding suffer adverse impacts on their mental well-being, mostly based on self-reports. We examined prescription records for drugs used in the management of common mental disorder among primary care practices located in the vicinity of recent large flood events in England, 2011-2014. A controlled interrupted time series analysis was conducted of the number of prescribing items for antidepressant drugs in the year before and after the flood onset. Pre-post changes were compared by distance of the practice from the inundated boundaries among 930 practices located within 10 km of a flood. After control for deprivation and population density, there was an increase of 0.59% (95% CI 0.24 to 0.94) prescriptions in the postflood year among practices located within 1 km of a flood over and above the change observed in the furthest distance band. The increase was greater in more deprived areas. This study suggests an increase in prescribed antidepressant drugs in the year after flooding in primary care practices close to recent major floods in England. The degree to which the increase is actually concentrated in those flooded can only be determined by more detailed linkage studies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Saltwater-barrier line in Florida : concepts, considerations, and site examples
Hughes, Jerry L.
1979-01-01
Construction of canals and enlargement of streams in Florida has been mostly to alleviate impact of floods and to drain wetlands for development. Land drainage and heavy pumpage from coastal water-table aquifers has degraded potable ground and surface water with saltwater. Control of saltwater intrusion is possible through implementation of certain hydrologic principles. State of Florida statute 373.033 provides for a saltwater-barrier line in areas of saltwater intrusion along canals. A saltwater-barrier line is defined as the allowable landward limit that a canal shall be constructed or enlarged or a stream deepened or enlarged without a salinity-control structure seaward of the saltwater-barrier line. The salinity control structure controls saltwater intrusion along a surface-water channel and assists in controlling saltwater intrusion into shallow aquifers. This report briefly reviews the fundamentals of saltwater intrusion in surface-water channels and associated coastal aquifers, describes the effects of established saltwater-barrier lines in Florida, and gives a history of the use and benefits of salinity-control structures. (Woodard-USGS).
1986-05-01
Mammals: Ten mammal taxa are represented in the Lc176 assemblage. Two of these, the short-tailed shrew (Blarina brevivicauda) and a vole (Microtus sp...ADDITIONAL CULTURAL RESOURCES INVESTIGATIONS AT SELECTED PORTIONS OF THE STATE-ROAD COULEE - PAMMEL CREEK FLOOD CONTROL PROJECT ATm LA CROSSE...INVESTIGATIONS AT SELECTED PORTIONS OF THE STATE-ROAD COULEE- PAMMEL CREEK FLOOD CONTROL PROJECT AT LA CROSSE. WISCONSIN 12. PERSONAL AUTHOR(S
Devitt, Catherine; O'Neill, Eoin
2017-10-01
Societal adaptation to flooding is a critical component of contemporary flood policy. Using content analysis, this article identifies how two major flooding episodes (2009 and 2014) are framed in the Irish broadsheet news media. The article considers the extent to which these frames reflect shifts in contemporary flood policy away from protection towards risk management, and the possible implications for adaptation to living with flood risk. Frames help us make sense of the social world, and within the media, framing is an essential tool for communication. Five frames were identified: flood resistance and structural defences, politicisation of flood risk, citizen as risk manager, citizen as victim and emerging trade-offs. These frames suggest that public debates on flood management do not fully reflect shifts in contemporary flood policy, with negative implications for the direction of societal adaptation. Greater discussion is required on the influence of the media on achieving policy objectives.
Flood resilience and uncertainty in flood risk assessment
NASA Astrophysics Data System (ADS)
Beven, K.; Leedal, D.; Neal, J.; Bates, P.; Hunter, N.; Lamb, R.; Keef, C.
2012-04-01
Flood risk assessments do not normally take account of the uncertainty in assessing flood risk. There is no requirement in the EU Floods Directive to do so. But given the generally short series (and potential non-stationarity) of flood discharges, the extrapolation to smaller exceedance potentials may be highly uncertain. This means that flood risk mapping may also be highly uncertainty, with additional uncertainties introduced by the representation of flood plain and channel geometry, conveyance and infrastructure. This suggests that decisions about flood plain management should be based on exceedance probability of risk rather than the deterministic hazard maps that are common in most EU countries. Some examples are given from 2 case studies in the UK where a framework for good practice in assessing uncertainty in flood risk mapping has been produced as part of the Flood Risk Management Research Consortium and Catchment Change Network Projects. This framework provides a structure for the communication and audit of assumptions about uncertainties.
Has dyke development in the Vietnamese Mekong Delta shifted flood hazard downstream?
NASA Astrophysics Data System (ADS)
Van Khanh Triet, Nguyen; Viet Dung, Nguyen; Fujii, Hideto; Kummu, Matti; Merz, Bruno; Apel, Heiko
2017-08-01
In the Vietnamese part of the Mekong Delta (VMD) the areas with three rice crops per year have been expanded rapidly during the last 15 years. Paddy-rice cultivation during the flood season has been made possible by implementing high-dyke flood defenses and flood control structures. However, there are widespread claims that the high-dyke system has increased water levels in downstream areas. Our study aims at resolving this issue by attributing observed changes in flood characteristics to high-dyke construction and other possible causes. Maximum water levels and duration above the flood alarm level are analysed for gradual trends and step changes at different discharge gauges. Strong and robust increasing trends of peak water levels and duration downstream of the high-dyke areas are found with a step change in 2000/2001, i.e. immediately after the disastrous flood which initiated the high-dyke development. These changes are in contrast to the negative trends detected at stations upstream of the high-dyke areas. This spatially different behaviour of changes in flood characteristics seems to support the public claims. To separate the impact of the high-dyke development from the impact of the other drivers - i.e. changes in the flood hydrograph entering the Mekong Delta, and changes in the tidal dynamics - hydraulic model simulations of the two recent large flood events in 2000 and 2011 are performed. The hydraulic model is run for a set of scenarios whereas the different drivers are interchanged. The simulations reveal that for the central VMD an increase of 9-13 cm in flood peak and 15 days in duration can be attributed to high-dyke development. However, for this area the tidal dynamics have an even larger effect in the range of 19-32 cm. However, the relative contributions of the three drivers of change vary in space across the delta. In summary, our study confirms the claims that the high-dyke development has raised the flood hazard downstream. However, it is not the only and not the most important driver of the observed changes. It has to be noted that changes in tidal levels caused by sea level rise in combination with the widely observed land subsidence and the temporal coincidence of high water levels and spring tides have even larger impacts. It is recommended to develop flood risk management strategies using the high-dyke areas as retention zones to mitigate the flood hazard downstream.
Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts
NASA Astrophysics Data System (ADS)
Richards, Mark; Ridley, Victoria
2010-05-01
We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marqueses, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better constraining the overall process of LIP emplacement.
Deep crustal structure beneath large igneous provinces and the petrologic evolution of flood basalts
NASA Astrophysics Data System (ADS)
Ridley, Victoria A.; Richards, Mark A.
2010-09-01
We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ˜ 6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ˜5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp ˜ 7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hot spots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ˜6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ˜15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better constraining the overall process of LIP emplacement.
Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts
NASA Astrophysics Data System (ADS)
Richards, M. A.; Ridley, V. A.
2010-12-01
We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as “underplating,” are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better constraining the overall process of LIP emplacement.
Rydlund, Jr., Paul H.; Otero-Benitez, William; Heimann, David C.
2008-01-01
A study was done by the U.S. Geological Survey, in cooperation with the city of Grain Valley, Jackson County, Missouri, to simulate the hydraulic characteristics of Sni-A-Bar Creek and selected tributaries within the corporate limits. The 10-, 50-, 100-, and 500-year recurrence interval streamflows were simulated to determine potential backwater effects on the Sni-A-Bar Creek main stem and to delineate flood-plain boundaries on the tributaries. The water-surface profiles through the bridge structures within the model area indicated that backwater effects from the constrictions were not substantial. The water-surface profile of Sni-A-Bar Creek generated from the one- and two-dimensional models indicated that the Gateway Western Railroad structure provided the greatest amount of contraction of flow within the modeled area. The results at the location of the upstream face of the railroad structure indicated a change in water-surface elevation from 0.2 to 0.8 foot (corresponding to simulated 10-year and 500-year flood occurrences). Results from all analyses indicated minimal backwater effects as a result of an overall minimal energy grade line slope and velocity head along Sni-A-Bar Creek. The flood plains for the 100-year recurrence interval floods on the Sni-A-Bar tributaries were mapped to show the extent of inundated areas. The updated flooding characteristics will allow city managers to contrast changes in flood risk and zoning as determined through the National Flood Insurance Program.
Cross, Wyatt F.; Baxter, Colden V.; Donner, Kevin C.; Rosi-Marshall, Emma J.; Kennedy, Theodore A.; Hall, Robert O.; Wellard Kelly, Holly A.; Rogers, R. Scott
2011-01-01
Large dams have been constructed on rivers to meet human demands for water, electricity, navigation, and recreation. As a consequence, flow and temperature regimes have been altered, strongly affecting river food webs and ecosystem processes. Experimental high-flow dam releases, i.e., controlled floods, have been implemented on the Colorado River, USA, in an effort to reestablish pulsed flood events, redistribute sediments, improve conditions for native fishes, and increase understanding of how dam operations affect physical and biological processes. We quantified secondary production and organic matter flows in the food web below Glen Canyon dam for two years prior and one year after an experimental controlled flood in March 2008. Invertebrate biomass and secondary production declined significantly following the flood (total biomass, 55% decline; total production, 56% decline), with most of the decline driven by reductions in two nonnative invertebrate taxa, Potamopyrgus antipodarum and Gammarus lacustris. Diatoms dominated the trophic basis of invertebrate production before and after the controlled flood, and the largest organic matter flows were from diatoms to the three most productive invertebrate taxa (P. antipodarum, G. lacustris, and Tubificida). In contrast to invertebrates, production of rainbow trout (Oncorhynchus mykiss) increased substantially (194%) following the flood, despite the large decline in total secondary production of the invertebrate assemblage. This counterintuitive result is reconciled by a post-flood increase in production and drift concentrations of select invertebrate prey (i.e., Chironomidae and Simuliidae) that supported a large proportion of trout production but had relatively low secondary production. In addition, interaction strengths, measured as species impact values, were strongest between rainbow trout and these two taxa before and after the flood, demonstrating that the dominant consumer—resource interactions were not necessarily congruent with the dominant organic matter flows. Our study illustrates the value of detailed food web analysis for elucidating pathways by which dam management may alter production and strengths of species interactions in river food webs. We suggest that controlled floods may increase production of nonnative rainbow trout, and this information can be used to help guide future dam management decisions.
Development of a model-based flood emergency management system in Yujiang River Basin, South China
NASA Astrophysics Data System (ADS)
Zeng, Yong; Cai, Yanpeng; Jia, Peng; Mao, Jiansu
2014-06-01
Flooding is the most frequent disaster in China. It affects people's lives and properties, causing considerable economic loss. Flood forecast and operation of reservoirs are important in flood emergency management. Although great progress has been achieved in flood forecast and reservoir operation through using computer, network technology, and geographic information system technology in China, the prediction accuracy of models are not satisfactory due to the unavailability of real-time monitoring data. Also, real-time flood control scenario analysis is not effective in many regions and can seldom provide online decision support function. In this research, a decision support system for real-time flood forecasting in Yujiang River Basin, South China (DSS-YRB) is introduced in this paper. This system is based on hydrological and hydraulic mathematical models. The conceptual framework and detailed components of the proposed DSS-YRB is illustrated, which employs real-time rainfall data conversion, model-driven hydrologic forecasting, model calibration, data assimilation methods, and reservoir operational scenario analysis. Multi-tiered architecture offers great flexibility, portability, reusability, and reliability. The applied case study results show the development and application of a decision support system for real-time flood forecasting and operation is beneficial for flood control.
A synthesis of recent research regarding the spring flood in Wisconsin: Knowns and unknowns
USDA-ARS?s Scientific Manuscript database
Approximately half of Wisconsin’s cranberry growers replace a spring insecticide application with a 1- to 2-day spring flood. Despite the potential for this flood to be a highly cost-effective alternative to chemical insect controls, growers need to know whether the flood can reduce pest pressure wi...
NASA Astrophysics Data System (ADS)
Shim, J. B.; Won, C. Y.; Park, J.; Lee, K.
2017-12-01
Korea experiences frequent flood disasters, which cause considerable economic losses and damages to towns and farms. Especially, a regional torrential storm is about 98.5mm/hr on September 21, 2010 in Seoul. The storm exceeds the capacity of urban drainage system of 75mm/hr, and 9,419 houses. How to monitor and control the urban flood disasters is an important issue in Korea. To mitigate the flood damage, a customizing system was developed to estimate urban floods and inundation using by integrating drainage system data and river information database which are managed by local governments and national agencies. In the case of Korean urban city, there are a lot of detention ponds and drainage pumping stations on end of drainage system and flow is going into river. The drainage pumping station, it is very important hydraulic facility for flood control between river and drainage system. So, it is possible to occur different patterns of flood inundation according to operation rule of drainage pumping station. A flood disaster is different damage as how to operate drainage pumping station and plan operation rule.
Responses of black willow ( Salix nigra) cuttings to simulated herbivory and flooding
NASA Astrophysics Data System (ADS)
Li, Shuwen; Martin, Lili T.; Pezeshki, S. Reza; Shields, F. Douglas
2005-09-01
Herbivory and flooding influence plant species composition and diversity in many wetland ecosystems. Black willow ( Salix nigra) naturally occurs in floodplains and riparian zones of the southeastern United States. Cuttings from this species are used as a bioengineering tool for streambank stabilization and habitat rehabilitation. The present study was conducted to evaluate the photosynthetic and growth responses of black willow to simulated herbivory and flooding. Potted cuttings were subjected to three levels of single-event herbivory: no herbivory (control), light herbivory, and heavy herbivory; and three levels of flooding conditions: no flooding (control), continuous flooding, and periodic flooding. Results indicated that elevated stomatal conductance partially contributed to the increased net photosynthesis noted under both levels of herbivory on day 30. However, chlorophyll content was not responsible for the observed compensatory photosynthesis. Cuttings subjected to heavy herbivory accumulated the lowest biomass even though they had the highest height growth by the conclusion of the experiment. In addition, a reduction in root/shoot ratio was noted for plants subjected to continuous flooding with no herbivory. However, continuously flooded, lightly clipped plants allocated more resources to roots than shoots. This study provides evidence that it is feasible to use black willow for habitat rehabilitation along highly eroded streambanks where both flooding and herbivory are present.
Huizinga, Richard J.
2008-01-01
In cooperation with the Missouri Department of Transportation, the U.S. Geological Survey determined hydrologic and hydraulic parameters for the Gasconade River at the site of a proposed bridge replacement and highway realignment of State Highway 17 near Waynesville, Missouri. Information from a discontinued streamflow-gaging station on the Gasconade River near Waynesville was used to determine streamflow statistics for analysis of the 25-, 50-, 100-, and 500-year floods at the site. Analysis of the streamflow-gaging stations on the Gasconade River upstream and downstream from Waynesville indicate that flood peaks attenuate between the upstream gaging station near Hazelgreen and the Waynesville gaging station, such that the peak discharge observed on the Gasconade River near Waynesville will be equal to or only slightly greater (7 percent or less) than that observed near Hazelgreen. A flood event occurred on the Gasconade River in March 2008, and a flood measurement was obtained near the peak at State Highway 17. The elevation of high-water marks from that event indicated it was the highest measured flood on record with a measured discharge of 95,400 cubic feet per second, and a water-surface elevation of 766.18 feet near the location of the Waynesville gaging station. The measurements obtained for the March flood resulted in a shift of the original stage-discharge relation for the Waynesville gaging station, and the streamflow statistics were modified based on the new data. A two-dimensional hydrodynamic flow model was used to simulate flow conditions on the Gasconade River in the vicinity of State Highway 17. A model was developed that represents existing (2008) conditions on State Highway 17 (the 'model of existing conditions'), and was calibrated to the floods of March 20, 2008, December 4, 1982, and April 14, 1945. Modifications were made to the model of existing conditions to create a model that represents conditions along the same reach of the Gasconade River with preliminary proposed replacement bridges and realignment of State Highway 17 (the 'model of proposed conditions'). The models of existing and proposed conditions were used to simulate the 25-, 50-, 100-, and 500-year recurrence floods, as well as the March 20, 2008 flood. Results from the model of proposed conditions show that the proposed replacement structures and realignment of State Highway 17 will result in additional backwater upstream from State Highway 17 ranging from approximately 0.18 foot for the 25-year flood to 0.32 foot for the 500-year flood. Velocity magnitudes in the proposed overflow structures were greater than in the existing structures [by as much as 4.9 feet per second in the left (west) overflow structure for the 500-year flood], and shallow, high-velocity flow occurs at the upstream edges of the abutments of the proposed overflow structures in the 100- and 500-year floods where flow overtops parts of the existing road embankment that will be left in place in the proposed scenario. Velocity magnitude in the main channel of the model of proposed conditions increased by a maximum of 1.2 feet per second over the model of existing conditions, with the maximum occurring approximately 1,500 feet downstream from existing main channel structure J-802.
A new survey tool to assess pluvial damage to residential buildings
NASA Astrophysics Data System (ADS)
Rözer, Viktor; Spekkers, Matthieu; ten Veldhuis, Marie-Claire; Kreibich, Heidi
2017-04-01
Pluvial floods have caused severe damage to urban dwellings in Europe and elsewhere in recent years. These type of flood events are caused by storm events with exceptionally high rainfall rates, which lead to inundation of streets and buildings and are commonly associated with a failure of the urban drainage system. Therefore, pluvial floods often happen with little warning and in areas that are not obviously prone to flooding. With a predicted increase in extreme weather events as well as an ongoing urbanization, pluvial flood damage is expected to increase in the future. So far little research was done on the adverse consequences of pluvial floods, as empirical damage data of pluvial flooding is scarce. Therefore, a newly developed survey tool to assess pluvial flood damage as well as the results of a comparison between two international pluvial flood case studies are presented. The questionnaire used in the two study areas was developed with the aim to create a harmonized transnational pluvial flood damage survey that can potentially be extended to other European countries. New indicator variables have been developed to account for different national and regional standards in building structure, early warning, socio-economic data and recovery. The surveys comprise interviews with 510 households in the Münster area (Germany) and 349 households in Amsterdam (the Netherlands), which were affected by the heavy rainfall events on July 28 2014. The respondents were asked more than 80 questions about the damage to their building structure and contents, as well as on topics such as early warning, emergency and precautionary measures, building properties and hazard characteristics. A comparison of the two surveys revealed strong similarities concerning damage reducing effects and the popularity of precautionary measures, besides significant differences between the mean water levels inside the house as well as the median of the building structure and content damage. A comparison between the relative damage contributions for different entry points of water into the house indicates an effect of regional distinctions in building topology on the total damage. The results of this comparison give important insights for the development and transferability of pluvial flood damage models.
Huizinga, Richard J.
2007-01-01
The Blue River Channel Modification project being implemented by the U.S. Army Corps of Engineers (USACE) is intended to provide flood protection within the Blue River valley in the Kansas City, Mo., metropolitan area. In the latest phase of the project, concerns have arisen about preserving the Civil War historic area of Byram's Ford and the associated Big Blue Battlefield while providing flood protection for the Byram's Ford Industrial Park. In 1996, the USACE used a physical model built at the Waterways Experiment Station (WES) in Vicksburg, Miss., to examine the feasibility of a proposed grade control structure (GCS) that would be placed downstream from the historic river crossing of Byram's Ford to provide a subtle transition of flow from the natural channel to the modified channel. The U.S. Geological Survey (USGS), in cooperation with the USACE, modified an existing two-dimensional finite element surface-water model of the river between 63d Street and Blue Parkway (the 'original model'), used the modified model to simulate the existing (as of 2006) unimproved channel and the proposed channel modifications and GCS, and analyzed the results from the simulations and those from the WES physical model. Modifications were made to the original model to create a model that represents existing (2006) conditions between the north end of Swope Park immediately upstream from 63d Street and the upstream limit of channel improvement on the Blue River (the 'model of existing conditions'). The model of existing conditions was calibrated to two measured floods. The model of existing conditions also was modified to create a model that represents conditions along the same reach of the Blue River with proposed channel modifications and the proposed GCS (the 'model of proposed conditions'). The models of existing conditions and proposed conditions were used to simulate the 30-, 50-, and 100-year recurrence floods. The discharge from the calibration flood of May 15, 1990, also was simulated in the models of existing and proposed conditions to provide results for that flood with the current downstream channel modifications and with the proposed channel modifications and GCS. Results from the model of existing conditions show that the downstream channel modifications as they exist (2006) may already be affecting flows in the unmodified upstream channel. The 30-year flood does not inundate most of the Byram's Ford Industrial Park near the upstream end of the study area. Analysis of the 1990 flood (with the historical 1990 channel conditions) and the 1990 flood simulated with the existing (2006) conditions indicates a substantial increase in velocity throughout the study area and a substantial decrease in inundated area from 1990 to 2006. Results from the model of proposed conditions show that the proposed channel modifications will contain the 30-year flood and that the spoil berm designed to provide additional flood protection for the Byram's Ford Industrial Park for the 30-year flood prevents inundation of the industrial park. In the vicinity of Byram's Ford for the 30-year flood, the maximum depth increased from 39.7 feet (ft) in the model of existing conditions to 43.5 ft in the model of proposed conditions, with a resulting decrease in velocity from 6.61 to 4.55 feet per second (ft/s). For the 50-year flood, the maximum depth increased from 42.3 to 45.8 ft, with a decrease in velocity from 6.12 to 4.16 ft/s from existing to proposed conditions. For the 100-year flood, the maximum depth increased from 44.0 to 46.6 ft, with a decrease in velocity from 5.64 to 4.12 ft/s from existing to proposed conditions. When the May 15, 1990, discharge is simulated in the model of existing conditions (with the existing (2006) modified channel downstream of the study area), the maximum depth increases from 38.4 to 42.0 ft, with a decrease in velocity from 6.54 to 4.84 ft/s from existing (2006) to proposed conditions. Analysis of the results fro
Flood Hazards: Communicating Hydrology and Complexity to the Public
NASA Astrophysics Data System (ADS)
Holmes, R. R.; Blanchard, S. F.; Mason, R. R.
2010-12-01
Floods have a major impact on society and the environment. Since 1952, approximately 1,233 of 1,931 (64%) Federal disaster declarations were due directly to flooding, with an additional 297 due to hurricanes which had associated flooding. Although the overall average annual number of deaths due to flooding has decreased in the United States, the average annual flood damage is rising. According to the Munich Reinsurance Company in their publication “Schadenspiegel 3/2005”, during 1990s the world experienced as much as $500 billion in economic losses due to floods, highlighting the serious need for continued emphasis on flood-loss prevention measures. Flood-loss prevention has two major elements: mitigation (including structural flood-control measures and land-use planning and regulation) and risk awareness. Of the two, increasing risk awareness likely offers the most potential for protecting lives over the near-term and long-term sustainability in the coming years. Flood-risk awareness and risk-aware behavior is dependent on communication, involving both prescriptive and educational measures. Prescriptive measures (for example, flood warnings and stormwater ordinances) are and have been effective, but there is room for improvement. New communications technologies, particularly social media utilizing mobile, smart phones and text devices, for example, could play a significant role in increasing public awareness of long-term risk and near-term flood conditions. The U.S. Geological Survey (USGS), for example, the Federal agency that monitors the Nation’s rivers, recently released a new service that can better connect the to the public to information about flood hazards. The new service, WaterAlert (URL: http://water.usgs.gov/wateralert/), allows users to set flood notification thresholds of their own choosing for any USGS real-time streamgage. The system then sends emails or text messages to subscribers whenever the threshold conditions are met, as often as the user specifies. In the future, with new GPS enabled cell-phones, notifications could be sent to users based on their proximity to flood hazards. Educational measures also should communicate the hydrologic underpinnings and uncertainties of the complex science of flood hydrology in an understandable manner to a non-technical public. Education can be especially beneficial and important for those in a policy-making role or those who find themselves in an area of potential flood hazards. Case studies, such as the fatal June 11, 2010 flash flood on the Little Missouri River in Arkansas, if presented in a way that the public will absorb, powerfully illustrate the importance of flood hazard awareness and the cost of living unaware. Additionally, such crucial points as the connection between the accuracy of flood-probability estimates and the density (and longevity) of the basic data sources (such as the USGS streamgage or the National Weather Service raingage networks) and the residual risks that both communities and individuals face have to continually be stressed to the general public and policy makers alike. In short, success in flood hazards communication (both prescriptive warnings and education) requires a fusion of the social sciences and hydrology.
NASA Astrophysics Data System (ADS)
Edwards, Brandon L.; Keim, Richard F.; Johnson, Erin L.; Hupp, Cliff R.; Marre, Saraline; King, Sammy L.
2016-09-01
Responses of large regulated rivers to contemporary changes in base level are not well understood. We used field measurements and historical analysis of air photos and topographic maps to identify geomorphic trends of the lower White River, Arkansas, USA, in the 70 years following base-level lowering at its confluence with the Mississippi River and concurrent with flood control by dams. Incision was identified below a knickpoint area upstream of St. Charles, AR, and increases over the lowermost 90 km of the study site to 2 m near the confluence with the Mississippi River. Mean bankfull width increased by 30 m (21%) from 1930 to 2010. Bank widening appears to be the result of flow regulation above the incision knickpoint and concomitant with incision below the knickpoint. Hydraulic modeling indicated that geomorphic adjustments likely reduced flooding by 58% during frequent floods in the incised, lowermost floodplain affected by backwater flooding from the Mississippi River and by 22% above the knickpoint area. Dominance of backwater flooding in the incised reach indicates that incision is more important than flood control on the lower White River in altering flooding and also suggests that the Mississippi River may be the dominant control in shaping the lower floodplain. Overall, results highlight the complex geomorphic adjustment in large river-floodplain systems in response to anthropogenic modifications and their implications, including reduced river-floodplain connectivity.
An operational real-time flood forecasting system in Southern Italy
NASA Astrophysics Data System (ADS)
Ortiz, Enrique; Coccia, Gabriele; Todini, Ezio
2015-04-01
A real-time flood forecasting system has been operating since year 2012 as a non-structural measure for mitigating the flood risk in Campania Region (Southern Italy), within the Sele river basin (3.240 km2). The Sele Flood Forecasting System (SFFS) has been built within the FEWS (Flood Early Warning System) platform developed by Deltares and it assimilates the numerical weather predictions of the COSMO LAM family: the deterministic COSMO-LAMI I2, the deterministic COSMO-LAMI I7 and the ensemble numerical weather predictions COSMO-LEPS (16 members). Sele FFS is composed by a cascade of three main models. The first model is a fully continuous physically based distributed hydrological model, named TOPKAPI-eXtended (Idrologia&Ambiente s.r.l., Naples, Italy), simulating the dominant processes controlling the soil water dynamics, runoff generation and discharge with a spatial resolution of 250 m. The second module is a set of Neural-Networks (ANN) built for forecasting the river stages at a set of monitored cross-sections. The third component is a Model Conditional Processor (MCP), which provides the predictive uncertainty (i.e., the probability of occurrence of a future flood event) within the framework of a multi-temporal forecast, according to the most recent advancements on this topic (Coccia and Todini, HESS, 2011). The MCP provides information about the probability of exceedance of a maximum river stage within the forecast lead time, by means of a discrete time function representing the variation of cumulative probability of exceeding a river stage during the forecast lead time and the distribution of the time occurrence of the flood peak, starting from one or more model forecasts. This work shows the Sele FFS performance after two years of operation, evidencing the added-values that can provide to a flood early warning and emergency management system.
The effect of a disastrous flood on the quality of life in Dongting lake area in China.
Tan, H Z; Luo, Y J; Wen, S W; Liu, A Z; Li, S Q; Yang, T B; Sun, Z Q
2004-01-01
We carried out an epidemiological study to assess the impact of flood on the quality of life (QOL) of residents in the affected areas in China. We used a natural experiment approach, randomly selected 494 adults from 18 villages, which suffered from flooding as a result of embankments collapsing, 473 adults from 16 villages, which suffered from, soaked flood, and 773 adults from 11 villages without flood (control group). We used the Generic QOL Inventory-74 (GQOLI-74), social support scale, and questionnaires to assess the QOL of all study participants. The QOL was significantly poorer in soaked group (58.4) and (especially) in collapsed group (55.1) than in control group (59.5, p<0.001). Adjustment for potential confounding factors did not change the results. The impact of flood on QOL was stronger among farmers, seniors, persons with introvert personality, and residents with adverse life-events, whereas social support and extrovert personalities offset the negative impact of flood on QOL.
The role of interactions along the flood process chain and implications for risk assessment
NASA Astrophysics Data System (ADS)
Vorogushyn, Sergiy; Apel, Heiko; Viet Nguyen, Dung; Guse, Björn; Kreibich, Heidi; Lüdtke, Stefan; Schröter, Kai; Merz, Bruno
2017-04-01
Floods with their manifold characteristics are shaped by various processes along the flood process chain - from triggering meteorological extremes through catchment and river network process down to impacts on societies. In flood risk systems numerous interactions and feedbacks along the process chain may occur which finally shape spatio-temporal flood patterns and determine the ultimate risk. In this talk, we review some important interactions in the atmosphere-catchment, river-dike-floodplain and vulnerability compartments of the flood risk system. We highlight the importance of spatial interactions for flood hazard and risk assessment. For instance, the role of spatial rainfall structure or wave superposition in river networks is elucidated with selected case studies. In conclusion, we show the limits of current methods in assessment of large-scale flooding and outline the approach to more comprehensive risk assessment based on our regional flood risk model (RFM) for Germany.
Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis
2009-01-01
For more than 50 years, the U.S. Geological Survey (USGS) has been developing regional regression equations that can be used to estimate flood magnitude and frequency at ungaged sites. Flood magnitude relates to the volume of flow that occurs over some period of time and usually is presented in cubic feet per second. Flood frequency relates to the probability of occurrence of a flood; that is, on average, what is the likelihood that a flood with a specified magnitude will occur in any given year (1 percent chance, 10 percent chance, 50 percent chance, and so on). Such flood estimates are needed for the efficient design of bridges, highway embankments, levees, and other structures near streams. In addition, these estimates are needed for the effective planning and management of land and water resources, to protect lives and property in flood-prone areas, and to determine flood-insurance rates.
Hydrology of Jumper Creek Canal basin, Sumter County, Florida
Anderson, Warren
1980-01-01
Jumper Creek Canal basin in Sumter County, Florida, was investigated to evaluate the overall hydrology and effects of proposed flood-control works on the hydrologic regiment of the canal. Average annual rainfall in the 83-square mile basin is about 53 inches of which about 10 inches runs off in the canal. Average annual evapotranspiration is estimated at about 37 inches. Pumping from limestone mines has lowered the potentiometeric surface in the upper part of the basin, but it has not significantly altered the basin yield. Channel excavation to reduce flooding is proposed with seven control structures located to prevent overdrainage. The investigation indicates that implementation of the proposed plan will result in a rise in the potentiometric surface n the upper basin, a reduction is surface outflow, an increase in subsurface outflow, an increase in the gradient of the potentiometeric surface of the Floridan aquifer, an increase in leakage from the canal to the aquifer in the upper basin, and an increase in the magnitude of flood flows from the basin. Ground water in Jumper Creek basin is a bicarbonate type. Very high concentrations of dissolved iron were found in shallow wells and in some deep wells. Sulfate and strontium were relatively high in wells in the lower basin. (Kosco-USGS)
Rantz, S.E.; Stafford, H.M.
1956-01-01
Two major floods occurred in California in 1952. The first was the flood of January 11-13 in the south San Francisco Bay region that resulted from heavy rains which began on the morning of January 11 and ended about noon January 13. This flood was notable for the magnitude of the peak discharges, although these discharges were reduced by the controlling effect of reservoirs for conservation and flood-control purposes. The flood damage was thereby reduced, and no lives were lost; damage, nevertheless, amounted to about $1.400.000. The second flood was due, not to the immediate runoff of heavy rain, but to the melting of one of the largest snow packs ever recorded in the Sierra Nevada range. In the spring and summer of 1952, flood runoff occurred on all the major streams draining the Sierra Nevada. In the northern half of the Central Valley basin?the Sacramento River basin?flood volumes and maximum daily discharges were not exceptional. and flood damage was not appreciable. However, in the southern half, which is formed by the Kern River, Tulare Lake, and San Joaquin River basins, new records for snowmelt runoff were established for some streams; but for below-normal temperatures and shorter, less warm hot spells, record flood discharges would have occurred on many others. In the three basins an area of 200,000 acres. largely cropland. was inundated, and damage was estimated at $11,800,000.
77 FR 31814 - National Flood Insurance Program (NFIP); Insurance Coverage and Rates
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
... structures (target repetitive loss buildings) insured under the NFIP. The Notice of Proposed Rulemaking (NPRM) defined target repetitive loss buildings as those with four or more losses, or with two or more flood... flood insurance coverage to a target repetitive loss building, if an owner declined an offer of...
ERIC Educational Resources Information Center
McEwen, Lindsey; Stokes, Alison; Crowley, Kate; Roberts, Carolyn
2014-01-01
This paper explores role-play pedagogies in learning and communicating about cutting-edge flood science by flood risk management professionals in local government. It outlines role-play process/structure and evaluates participant perceptions of their learning experiences. Issues were impacts of prior role-play experience on attitudes brought to…
Korman, Josh; Melis, Ted; Kennedy, Theodore A.
2012-01-01
Closure of Glen Canyon Dam reduced sand supply to the Colorado River in Grand Canyon National Park by about 94% while its operation has also eroded the park's sandbar habitats. Three controlled floods released from the dam since 1995 suggest that sandbars might be rebuilt and maintained, but only if repeated floods are timed to follow tributary sand deliveries below the dam. Monitoring data show that sandbars are dynamic and that their erosion after bar building is positively related with mean daily discharge and negatively related with tributary sand production after controlled floods. The March 2008 flood affected non-native rainbow trout abundance in the Lees Ferry tailwater, which supports a blue ribbon fishery. Downstream trout dispersal from the tailwater results in negative competitive interactions and predation on endangered humpback chub. Early survival rates of age-0 trout increased more than fourfold following the 2008 flood, and twofold in 2009, relative to prior years (2006-2007). Hatch-date analysis indicated that early survival rates were much higher for cohorts that emerged about 2 months after the 2008 flood relative to cohorts that emerged earlier that year. The 2009 survival data suggest that tailwater habitat improvements persisted for at least a year, but apparently decreased in 2010. Increased early survival rates for trout coincided with the increased availability of higher quality drifting food items after the 2008 flood owing to an increase in midges and black flies, preferred food items of rainbow trout. Repeated floods from the dam might sustainably rebuild and maintain sandbars if released when new tributary sand is available below the tailwater. Spring flooding might also sustain increased trout abundance and benefit the tailwater fishery, but also be a potential risk to humpback chub in Grand Canyon.
NASA Astrophysics Data System (ADS)
Kappas, Martin; Nguyen Hong, Quang; Thanh, Nga Pham Thi; Thu, Hang Le Thi; Nguyen Vu, Giang; Degener, Jan; Rafiei Emam, Ammar
2017-04-01
There has been an increasing attention to the large trans-boundary Mekong river basin due to various problems related to water management and flood control, for instance. Vietnam Mekong delta is located at the downstream of the river basin where is affected most by this human-induced reduction in flows from the upstream. On the other hand, the flood plain of nine anastomosing channels is increasingly effected by the seawater intrusion due to sea level rising of climate change. This results in negative impacts of salinization, drought, and floods, while formerly flooding had frequently brought positive natural gain of irrigation water and alluvial aggradation. In this research, our aim is to predict flooding for the better water management adaptation and control. We applied the model HEC-SSP 2.1 to analyze flood flow frequency, two-dimensional unsteady flow calculations in HEC-RAS 5.0 for simulating a floodplain inundation. Remote sensing-based water level (Jason-2) and inundation map were used for validation and comparison with the model simulations. The results revealed a reduction of water level at all the monitoring stations, particularly in the last decade. In addition, a trend of the inundation extension gradually declined, but in some periods it remained severe due to water release from upstream reservoirs during the rainy season (October-November). We found an acceptable agreement between the HEC-RAS and remote sensing flooding maps (around 70%). Based on the flood routine analysis, we could conclude that the water level will continue lower and lead to a trend of drought and salinization harsher in the near future. Keywords: Mekong delta, flood control, inundation, water management, hydrological modelling, remote sensing
Conserving carnivorous arthropods: an example from early-season cranberry (Ericaceae) flooding
USDA-ARS?s Scientific Manuscript database
Biological control plays an important role in many IPM programs, but can be disrupted by other control strategies, including chemical and cultural controls. In commercial cranberry production, a spring flood can replace an insecticide application, providing an opportunity to study the compatibility ...
Huber, Heidrun; Jacobs, Elke; Visser, Eric J. W.
2009-01-01
Background and Aims Soil flooding leads to low soil oxygen concentrations and thereby negatively affects plant growth. Differences in flooding tolerance have been explained by the variation among species in the extent to which traits related to acclimation were expressed. However, our knowledge of variation within natural species (i.e. among individual genotypes) in traits related to flooding tolerance is very limited. Such data could tell us on which traits selection might have taken place, and will take place in future. The aim of the present study was to show that variation in flooding-tolerance-related traits is present among genotypes of the same species, and that both the constitutive variation and the plastic variation in flooding-induced changes in trait expression affect the performance of genotypes during soil flooding. Methods Clones of Trifolium repens originating from a river foreland were subjected to either drained, control conditions or to soil flooding. Constitutive expression of morphological traits was recorded on control plants, and flooding-induced changes in expression were compared with these constitutive expression levels. Moreover, the effect of both constitutive and flooding-induced trait expression on plant performance was determined. Key Results Constitutive and plastic variation of several morphological traits significantly affected plant performance. Even relatively small increases in root porosity and petiole length contributed to better performance during soil flooding. High specific leaf area, by contrast, was negatively correlated with performance during flooding. Conclusions The data show that different genotypes responded differently to soil flooding, which could be linked to variation in morphological trait expression. As flooded and drained conditions exerted different selection pressures on trait expression, the optimal value for constitutive and plastic traits will depend on the frequency and duration of flooding. These data will help us understanding the mechanisms affecting short- and long-term dynamics in flooding-prone ecosystems. PMID:18713824
NASA Astrophysics Data System (ADS)
Viglione, A.; Di Baldassarre, G.; Brandimarte, L.; Kuil, L.; Carr, G.; Salinas, J.; Scolobig, A.
2013-12-01
The risk coping culture of a community plays a major role in decision making in urban flood plains. While flood awareness is not necessarily linked to being prepared to face flooding at an individual level, the connection at the community level seems to be stronger through creating policy and initiating protection works. In this work we analyse, in a conceptual way, the interplay of community risk coping culture, flooding damage and economic growth. We particularly focus on three aspects: (i) collective memory, i.e., the capacity of the community to keep the awareness of flooding high; (ii) risk-taking attitude, i.e., the amount of risk a community is collectively willing to expose themselves to; and (iii) trust of people in risk protection measures. We use a dynamic model that represents the feedbacks between the hydrological and social system components. The model results indicate that, on one hand, by under perceiving the risk of flooding (because of short collective memory and too much trust in flood protection structures) in combination with a high risk-attitude, community survival is severely limited because of destruction caused by flooding. On the other hand, high perceived risk (long memory and lack of trust in flood protection structures) relative to the actual risk leads to lost economic opportunities and recession. There are many optimal scenarios for survival and economic growth, but greater certainty of survival plus economic growth can be achieved by ensuring community has accurate risk perception (memory neither too long nor too short and trust in flood protection neither too great nor too low) combined with a low to moderate risk-taking attitude. Interestingly, the model gives rise to situations in which the development of the community in the floodplain is path dependent, i.e., the history of flooding may lead to its growth or recession. Schematic of human adjustments to flooding: (a) settling away from the river; (b) raising levees/dikes.
Modeling Compound Flood Hazards in Coastal Embayments
NASA Astrophysics Data System (ADS)
Moftakhari, H.; Schubert, J. E.; AghaKouchak, A.; Luke, A.; Matthew, R.; Sanders, B. F.
2017-12-01
Coastal cities around the world are built on lowland topography adjacent to coastal embayments and river estuaries, where multiple factors threaten increasing flood hazards (e.g. sea level rise and river flooding). Quantitative risk assessment is required for administration of flood insurance programs and the design of cost-effective flood risk reduction measures. This demands a characterization of extreme water levels such as 100 and 500 year return period events. Furthermore, hydrodynamic flood models are routinely used to characterize localized flood level intensities (i.e., local depth and velocity) based on boundary forcing sampled from extreme value distributions. For example, extreme flood discharges in the U.S. are estimated from measured flood peaks using the Log-Pearson Type III distribution. However, configuring hydrodynamic models for coastal embayments is challenging because of compound extreme flood events: events caused by a combination of extreme sea levels, extreme river discharges, and possibly other factors such as extreme waves and precipitation causing pluvial flooding in urban developments. Here, we present an approach for flood risk assessment that coordinates multivariate extreme analysis with hydrodynamic modeling of coastal embayments. First, we evaluate the significance of correlation structure between terrestrial freshwater inflow and oceanic variables; second, this correlation structure is described using copula functions in unit joint probability domain; and third, we choose a series of compound design scenarios for hydrodynamic modeling based on their occurrence likelihood. The design scenarios include the most likely compound event (with the highest joint probability density), preferred marginal scenario and reproduced time series of ensembles based on Monte Carlo sampling of bivariate hazard domain. The comparison between resulting extreme water dynamics under the compound hazard scenarios explained above provides an insight to the strengths/weaknesses of each approach and helps modelers choose the appropriate scenario that best fit to the needs of their project. The proposed risk assessment approach can help flood hazard modeling practitioners achieve a more reliable estimate of risk, by cautiously reducing the dimensionality of the hazard analysis.
Street floods in Metro Manila and possible solutions.
Lagmay, Alfredo Mahar; Mendoza, Jerico; Cipriano, Fatima; Delmendo, Patricia Anne; Lacsamana, Micah Nieves; Moises, Marc Anthony; Pellejera, Nicanor; Punay, Kenneth Niño; Sabio, Glenn; Santos, Laurize; Serrano, Jonathan; Taniza, Herbert James; Tingin, Neil Eneri
2017-09-01
Urban floods from thunderstorms cause severe problems in Metro Manila due to road traffic. Using Light Detection and Ranging (LiDAR)-derived topography, flood simulations and anecdotal reports, the root of surface flood problems in Metro Manila is identified. Majority of flood-prone areas are along the intersection of creeks and streets located in topographic lows. When creeks overflow or when rapidly accumulated street flood does not drain fast enough to the nearest stream channel, the intersecting road also gets flooded. Possible solutions include the elevation of roads or construction of well-designed drainage structures leading to the creeks. Proposed solutions to the flood problem of Metro Manila may avoid paralyzing traffic problems due to short-lived rain events, which according to Japan International Cooperation Agency (JICA) cost the Philippine economy 2.4billionpesos/day. Copyright © 2017. Published by Elsevier B.V.
The economic value of the flow regulation environmental service in a Brazilian urban watershed
NASA Astrophysics Data System (ADS)
Marques, Guilherme F.; de Souza, Verônica B. F. S.; Moraes, Natália V.
2017-11-01
Urban flood management have often focused either on the capacity expansion of drainage systems or on artificial detention storage. While flood control should take part early on urban planning, not enough is known to guide such plans and provide incentive to land use decisions that minimize the vulnerability to localized floods. In this paper, we offer a broader perspective on flood protection, by treating the original hydrologic flow regulation as an environmental service, and exploring how the value of this environmental service drives economic land use decisions that convert original (permeable) land into urbanized (impermeable). We investigate the relationship between land use decisions and their hydrologic consequences explicitly, and use this relationship to simulate resulting land use scenarios depending on the value attached to the environmental service of flow regulation. Rainfall-runoff simulation model results are combined to an optimization model based on two-stage stochastic programming approach to model economic land use decisions. The objective function maximizes the total expected land use benefit in an urban area, considering the opportunity cost of permeable areas in the first stage and the resulting loss of the environmental service of flow regulation on the second stage, under several probable hydrological events. A watershed in the city of Belo Horizonte, Brazil, is used to demonstrate the approach. Different values attached to the environmental service were tested, from zero to higher than the opportunity cost of land, and artificial detention infrastructure was included to calculate the resulting land use change and the loss in the environmental service value. Results indicate that by valuing the environmental service loss and discounting it from the economic benefits of land use, alternative solutions to land use are found, with decreased peak flows and lower flood frequency. Combined solutions including structural and non-structural techniques provide more cost effective results, avoiding both the depletion of the environmental service and the high opportunity cost associated to valuable commercial urban areas. Urban development under such premises will be more resilient and adapted to local flooding, instead of relying on increasingly expensive infrastructure.
33 CFR 208.82 - Hetch Hetchy, Cherry Valley, and Don Pedro Dams and Reservoirs.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-control purposes in accordance with the Flood-Control Storage Reservation Diagram currently in force for... section. The Flood-Control Storage Reservation Diagram in force as of the promulgation of this section is...-Control Storage Reservation Diagram may be developed from time to time as necessary by the Corps of...
Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain
Valett, H.M.; Baker, M.A.; Morrice, J.A.; Crawford, C.S.; Molles, M.C.; Dahm, Clifford N.; Moyer, D.L.; Thibault, J.R.; Ellis, L.M.
2005-01-01
Flood pulse inundation of riparian forests alters rates of nutrient retention and organic matter processing in the aquatic ecosystems formed in the forest interior. Along the Middle Rio Grande (New Mexico, USA), impoundment and levee construction have created riparian forests that differ in their inter-flood intervals (IFIs) because some floodplains are still regularly inundated by the flood pulse (i.e., connected), while other floodplains remain isolated from flooding (i.e., disconnected). This research investigates how ecosystem responses to the flood pulse relate to forest IFI by quantifying nutrient and organic matter dynamics in the Rio Grande floodplain during three years of experimental flooding of the disconnected floodplain and during a single year of natural flooding of the connected floodplain. Surface and subsurface conditions in paired sites (control, flood) established in the two floodplain types were monitored to address metabolic and biogeochemical responses. Compared to dry controls, rates of respiration in the flooded sites increased by up to three orders of magnitude during the flood pulse. In the disconnected forest, month-long experimental floods produced widespread anoxia of four-week duration during each of the three years of flooding. In contrast, water in the connected floodplain remained well oxygenated (3-8 ppm). Material budgets for experimental floods showed the disconnected floodplain to be a sink for inorganic nitrogen and suspended solids, but a potential source of dissolved organic carbon (DOC). Compared to the main stem of the Rio Grande, flood-water on the connected floodplain contained less nitrate, but comparable concentrations of DOC, phosphate-phosphorus, and ammonium-nitrogen. Results suggest that floodplain IFI drives metabolic and biogeochemical responses during the flood pulse. Impoundment and fragmentation have altered floodplains from a mosaic of patches with variable IFI to a bimodal distribution. Relatively predictable flooding occurs in the connected forest, while inundation of the disconnected forest occurs only as the result of managed application of water. In semiarid floodplains, water is scarce except during the flood pulse. Ecosystem responses to the flood pulse are related to the IFI and other measures of flooding history that help describe spatial variation in ecosystem function.
Wernly, John F.; Nystrom, Elizabeth A.; Coon, William F.
2017-09-08
From July 14 to July 20, 2016, the U.S. Geological Survey, in cooperation with the City of Ithaca, New York, and the New York State Department of State, surveyed the bathymetry of the Cayuga Inlet flood-control channel and the mouths of selected tributaries to Cayuga Inlet and Cayuga Lake in Ithaca, N.Y. The flood-control channel, built by the U.S. Army Corps of Engineers between 1965 and 1970, was designed to convey flood flows from the Cayuga Inlet watershed through the City of Ithaca and minimize possible flood damages. Since that time, the channel has infrequently been maintained by dredging, and sediment accumulation and resultant shoaling have greatly decreased the conveyance of the channel and its navigational capability.U.S. Geological Survey personnel collected bathymetric data by using an acoustic Doppler current profiler. The survey produced a dense dataset of water depths that were converted to bottom elevations. These elevations were then used to generate a geographic information system bathymetric surface. The bathymetric data and resultant bathymetric surface show the current condition of the channel and provide the information that governmental agencies charged with maintaining the Cayuga Inlet for flood-control and navigational purposes need to make informed decisions regarding future maintenance measures.
Factors affecting flood insurance purchase in residential properties in Johor, Malaysia
NASA Astrophysics Data System (ADS)
Aliagha, U. G.; Jin, T. E.; Choong, W. W.; Nadzri Jaafar, M.; Ali, H. M.
2014-12-01
High-impact floods have become a virtually annual experience in Malaysia, yet flood insurance has remained a grossly neglected part of comprehensive integrated flood risk management. Using discriminant analysis, this study seeks to identify the demand-side variables that best predict flood insurance purchase and risk aversion between two groups of residential homeowners in three districts of Johor State, Malaysia: those who purchased flood insurance and those who did not. Our results revealed an overall 34% purchase rate, with Kota Tinggi district having the highest (44%) and thus the highest degree of flood risk aversion. The Wilks' lambda F test for equality of group means, standardised discriminant function coefficients, structure correlation, and canonical correlation has clearly shown that there are strong significant attribute differences between the two groups of homeowners, based on the measures of objective flood risk exposure, subjective risk perception, and socio-economic cum demographic variables. However, the measures of subjective risk perception were found to be more predictive of flood insurance purchase and flood risk aversion.
Factors affecting flood insurance penetration in residential properties in Johor Malaysia
NASA Astrophysics Data System (ADS)
Godwin Aliagha, U.; Ewe Jin, T.; Weng Choong, W.; Nadzri Jaafar, M.
2014-04-01
High impact flood has virtually become an annual experience in Malaysia, yet flood insurance has remained a grossly neglected part of comprehensive integrated flood risk management. Using discriminant analysis, this study seeks to indentify the demand-side variables that best predict flood insurance penetration and risk aversion between two groups of residential homeowners in three districts of Johor State, Malaysia: those who purchased flood insurance and the group that did not. Our result revealed 34% penetration rate with Kota Tinggi district having the highest penetration (44%) and thus, the highest degree of flood risk aversion. The Wilks' Lambda F test for equality of group means, SCDFC, structure correlation and canonical correlation have clearly shown that there are strong significant attribute differences between the two groups of homeowners based on measures of objective flood risk exposure, subjective risk perception, and socio-economic cum demographic variables. However, measures of subjective risk perception were found more predictive of flood insurance penetration and flood risk aversion.
To what extent can green infrastructure mitigate downstream flooding in a peri-urban catchment?
NASA Astrophysics Data System (ADS)
Schubert, J. E.; Burns, M.; Sanders, B. F.; Flethcher, T.
2016-12-01
In this research, we couple an urban hydrologic model (MUSIC, eWater, AUS) with a fine resolution 2D hydrodynamic model (BreZo, UC Irvine, USA) to test to what extent retrofitting an urban watershed with stormwater control measures (SCMs) can propagate flood management benefits downstream. Our study site is the peri-urban Little Stringybark Creek (LSC) catchment in eastern Melbourne, AUS, with an area of 4.5 km2 and connected impervious area of 9%. Urban development is mainly limited to the upper 2 km2of the catchment. Since 2009 the LSC catchment has been the subject of a large-scale experiment aiming to restore morenatural flow by implementing over 300 SCMs, such as rain tanks and infiltration trenches, resulting in runoff from 50% of connected impervious areas now being intercepted by some form of SCM. For our study we calibrated the hydrologic and hydraulic models based on current catchment conditions, then we developed models representing alternative SCM scenarios including a complete lack of SCMs versus a full implementation of SCMs. Flow in the hydrologic/hydraulic models is forced using a range of synthetic rainfall events with annual exceedance probabilities (AEPs) between 63-1% and durations between 10 min to 24 hr. Metrics of SCM efficacy in changing flood regime include flood depths and extents, flow intensity (m2/s), flood duration, and critical storm duration leading to maximum flood conditions. Results indicate that across the range of AEPs tested and for storm durations equal or less than 3 hours, current SCM conditions reduce downstream flooded area on average by 29%, while a full implementation of SCMs would reduce downstream flooded area on average by 91%. A full implementation of SCMs could also lower maximum flow intensities by 83% on average, reducing damage potential to structures in the flow path and increasing the ability for vehicles to evacuate flooded streets. We also found that for storm durations longer than 3 hours, the SCMs capacity to retain rainfall runoff volumes is much decreased, with a full implementation of SCMs only reducing flooded area by 8% and flow intensity by 5.5%. Therefore additional measures are required for downstream flood hazard mitigation from long duration events.
NASA Astrophysics Data System (ADS)
Darma Tarigan, Suria
2016-01-01
Flooding is caused by excessive rainfall flowing downstream as cumulative surface runoff. Flooding event is a result of complex interaction of natural system components such as rainfall events, land use, soil, topography and channel characteristics. Modeling flooding event as a result of interaction of those components is a central theme in watershed management. The model is usually used to test performance of various management practices in flood mitigation. There are various types of management practices for flood mitigation including vegetative and structural management practices. Existing hydrological model such as SWAT and HEC-HMS models have limitation to accommodate discrete management practices such as infiltration well, small farm reservoir, silt pits in its analysis due to the lumped structure of these models. Aim of this research is to use raster spatial analysis functions of Geo-Information System (RGIS-HM) to model flooding event in Ciliwung watershed and to simulate impact of discrete management practices on surface runoff reduction. The model was validated using flooding data event of Ciliwung watershed on 29 January 2004. The hourly hydrograph data and rainfall data were available during period of model validation. The model validation provided good result with Nash-Suthcliff efficiency of 0.8. We also compared the RGIS-HM with Netlogo Hydrological Model (NL-HM). The RGIS-HM has similar capability with NL-HM in simulating discrete management practices in watershed scale.
Amber C. Churchill; Merritt R. Turetsky; A. David McGuire; Teresa N. Hollingsworth
2015-01-01
Northern peatlands represent a long-term net sink for atmospheric CO2, but these ecosystems can shift from net carbon (C) sinks to sources based on changing climate and environmental conditions. In particular, changes in water availability associated with climate control peatland vegetation and carbon uptake processes. We examined the influence of changing hydrology on...
1980-11-03
away seasonally (Delorme 1955). Plants cultivated included Indian corn, potatoes, tobacco, barley , and a bearded variety of wheat (Robinson 1966). The...informed the authors that V some indications of the plant structures and rusted machinery were still visible on the site when she last visited the area
NASA Astrophysics Data System (ADS)
Li, Jiqing; Huang, Jing; Li, Jianchang
2018-06-01
The time-varying design flood can make full use of the measured data, which can provide the reservoir with the basis of both flood control and operation scheduling. This paper adopts peak over threshold method for flood sampling in unit periods and Poisson process with time-dependent parameters model for simulation of reservoirs time-varying design flood. Considering the relationship between the model parameters and hypothesis, this paper presents the over-threshold intensity, the fitting degree of Poisson distribution and the design flood parameters are the time-varying design flood unit period and threshold discriminant basis, deduced Longyangxia reservoir time-varying design flood process at 9 kinds of design frequencies. The time-varying design flood of inflow is closer to the reservoir actual inflow conditions, which can be used to adjust the operating water level in flood season and make plans for resource utilization of flood in the basin.
Delayed effects of flood control on a flood-dependent riparian forest
Katz, Gabrielle L.; Friedman, Jonathan M.; Beatty, Susan W.
2005-01-01
The downstream effects of dams on riparian forests are strongly mediated by the character and magnitude of adjustment of the fluvial–geomorphic system. To examine the effects of flow regulation on sand-bed streams in eastern Colorado, we studied the riparian forest on three river segments, the dam-regulated South Fork Republican River downstream of Bonny Dam, the unregulated South Fork Republican River upstream of Bonny Dam, and the unregulated Arikaree River. Although Bonny Dam significantly reduced peak and mean discharge downstream since 1951, there was little difference in forest structure between the regulated and unregulated segments. On all river segments, the riparian forest was dominated by the native pioneer tree, Populus deltoides, which became established during a period of channel narrowing beginning after the 1935 flood of record and ending by 1965. The nonnative Elaeagnus angustifolia was present on all river segments, with recruitment ongoing. The lack of contrast in forest structure between regulated and unregulated reaches resulted primarily from the fact that no large floods occurred on any of the study segments since dam construction. Most of the riparian forest in the study area was located on the broad narrowing terrace, which was rarely inundated on the unregulated segments, resulting in little contrast with the regulated segment. A minor dam effect occurred on the small modern floodplain, which was actively disturbed on the unregulated segments, but not on the regulated segments. Although Bonny Dam had the potential to significantly influence downstream riparian ecosystems, this influence had not been expressed, and may never be if a large flood does not occur within the lifetime of the dam. Minor dam effects to riparian systems can be expected downstream of large dams in some settings, including the present example in which there was insufficient time for the dam effects to by fully expressed.
10. VIEW OF THE SOUTH ELEVATION AND THE FLOOD GATE ...
10. VIEW OF THE SOUTH ELEVATION AND THE FLOOD GATE ON THE PRESSURE CULVERT, LOOKING NORTH. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA
NASA Astrophysics Data System (ADS)
Brunck, Heiko; Sirocko, Frank; Albert, Johannes
2016-04-01
Lake sediments are excellent climate archives and can be used for reconstructions of past precipitation and flood events. However, until now, there is no continous flood record for the entire last 60 000 years for Central Europe. This study reconstructs the history of the main flood events in central Europe from event layers in sediment cores from Holocene Eifel maar lakes and Pleistocene dry maar structures. The cores were drilled in the Eifel region of western Germany. All maars have an inflow by a local stream and the largest flood events and associated suspension injections are nicely visible in the sediment. The specific sedimentation conditions explain the unique possibility to detect all 18 Greenland Interstadials in the total carbon concentration of the analysed maars. The allocation of the core material to all Greenland Interstadials and Stadials enables the exact climatic interpretation of the flood frequency. The stratigraphical concept leads to a classification of Landscape Evolution Zones in the Eifel region, which reconstruct the vegetation and the climate change (Sirocko et al., 2015). This classification is used to discuss the flood event succession concerning environmental changes. To study the past flood events in detail, 10 cm long thin sections were sedimentological and geochemical analysed to distinguish flood layers from turbidites and slumps. Turbidites have a continuous grain size gradation; the grains size profile of flood events is in contrast characterized by several grain size maxima over the entire layer thickness. A flood event over several days shows numerous peaks of intense discharge, which lead to a discontinuous grain size gradient. As a consequence, 233 flood layers over 7.5 mm thickness were detected. The main flood stages are from: 0 - 4000, 11 500 - 17 500, 23 000 - 24 000, 29 000 - 35 000 and 44 000 - 44 500 b2k (Brunck et al., 2015). Our time-series from the Eifel represents the first highly-resolved chronology for flood events from 60 000 years until present times and indicates variable periodicities of flood activity linked to predominant climatic and anthropogenic development. It turns out that low vegetation coverage related to Greenland Stadial phases or anthropogenic impact is the main cause for the development of flood layers in maar sediments, while precipitation plays only a secondary role. References Brunck, H., Albert, J., Sirocko, F., 2015 (in press). The ELSA - Flood - Stack: A reconstruction from the laminated sediments of Eifel Maar structures during the last 60 000 years. Global and Planetary Change, Elsevier. Sirocko, F., Knapp, H., Dreher, F., Förster, M., Albert, J., Brunck, H., Veres, D., Dietrich, S., Zech, M., Hambach, U., Röhner, M., Rudert, S., Schwibus, K., Adams, C., Sigl, P., 2015 (in press). The ELSA-Vegetation-Stack: Reconstruction of Landscape Evolution Zones (LEZ) from laminated Eifel maar sediments of the last 60 000 years. Global and Planetary Change, Elsevier.
Flood Impact Assessment in the Surrounding Area of Suvarnabhumi Airport, Thailand
NASA Astrophysics Data System (ADS)
Tingsanchali, Tawatchai; Eng, D.
2009-03-01
The existence of the Second Bangkok International Airport (SBIA) or the Suvarnabhumi International Airport induces more adverse effect to the flooding situation in its surrounding area. Due to limited drainage capacity, during a heavy storm, flooding in the surrounding area occurs over the area. The objective of the study is to find the most suitable flood control and drainage system that can drain floodwater from the surrounding area of 624 sq. km with minimum flood damages and impact to social and living conditions of the people in the study area. This study involves the application of MIKE FLOOD hydrodynamic model for determining the relative effects of flood control and drainage system in the surrounding area of the airport. The results of the study show that flood damages mostly occur in the central and downstream parts of the study area where drainage is insufficient. Flood depth and duration are main parameters used for the estimation of flood losses. Flood mitigation and management in the surrounding area of SBIA is planned by pumping water of 100 m3/s from Klong Samrong canal inside the study area through the proposed drainage channel to the Gulf of Thailand. The existing dikes along boundaries of the study area can protect water from the outer area to enter into the surrounding area of the airport. Flood simulation shows that a canal with capacity of 100 m3/s and a pumping station at the downstream end of the canal are required to cope with the drainage capacity for the flood of 100 years return period. A flood drainage channel of capacity of 100 m3/s is designed and will be constructed to drain flood from Klong Samrong to the sea. On the other hand, the embankment along the proposed drainage canal project improves traffic flow in the vicinity of the airport. On economic benefit, the project investment cost is Baht 8,410 million. The project benefit cost ratio is 2.12 with the economic internal rate of return of 15.61%. The construction period is 4 years. Environmental and social impacts are investigated and counter measures are proposed to reduce the impacts. The study considers compensating scheme for people who are directly affected by the flood drainage project and those who will lose their lands or their professions. Considerations are also extended to people who are indirectly affected by the project. Institutional framework is recommended to be established to manage flood control and drainage and water resources in the surrounding area of the airport.
NASA Astrophysics Data System (ADS)
Liew, Soo Chin; Gupta, Avijit; Chia, Aik Song; Ang, Wu Chye
2016-06-01
The paper illustrates application of satellite images for studying the anatomy of a long-duration, extensive, and slow flood on the Chao Phraya River in 2011 that inundated Bangkok in its lower reach. The spread of floods in the valley was mapped with MODIS, month by month, from July 2011 to February 2012. A subsampled WorldView-2 mosaic was used to observe part of the valley in detail. The flood in Bangkok was studied with four higher-resolution images from Spot 4, WorldView-2, and GeoEye-1 satellites. We suspect that the floodwaters jumped the banks of the Chao Phraya south of Chai Nat, and then travelled overland and along river channels. The overland passage made it difficult to protect settlements. We also studied sedimentation from the images of this shallow overland flow across the country, which was complicated by the presence of preexisting embankments, other anthropogenic structures, and smaller stream channels. This is a descriptive study but it highlights the nature of flooding that is likely to be repeated in this low flat valley from high rainfall. The pattern of flooding was similar to that of a previous large flood in 1996 recorded in a SPOT 2 image. These floods impact Bangkok periodically, a city of about 10 million people, which started on a levee in a low flat delta, then expanded into backswamps, and is marked with local depressions from groundwater extraction. These slow extensive floods can be mapped from satellite images and properly recorded as an early step in analysis of large floods. Mapping of such floods on ground is logistically impossible. Slow, extensive, and long-lasting floods affect lower valleys and deltas of a number of major rivers, impacting agricultural fields and large populations. These floods are especially disastrous for cities located on low deltas. We submit that basic exercises on satellite images provide valuable introductory information for understanding geomorphology of such floods, and also for structuring plans for flood amelioration. Satellite images at very high resolutions, also used in this study, provide complimentary data to mapping and ground observation. Basin environments that are inundated by large shallow extensive floods are not unusual. In future, climate change is expected to raise the frequency of floods in lower parts of a number of river valleys and deltas, so that for such an environment slow extensive floods may become common and need to be studied. In that sense this is a template for studying large slow floods, arguably more frequent in future.
NASA Astrophysics Data System (ADS)
Mazur, Robert; Kałuża, Tomasz; Chmist, Joanna; Walczak, Natalia; Laks, Ireneusz; Strzeliński, Paweł
2016-08-01
This paper presents problems caused by organic material transported by flowing water. This material is usually referred to as plant debris or organic debris. Its composition depends on the characteristic of the watercourse. For lowland rivers, the share of the so-called small organic matter in plant debris is considerable. This includes both various parts of water plants and floodplain vegetation (leaves, stems, blades of grass, twigs, etc.). During floods, larger woody debris poses a significant risk to bridges or other water engineering structures. It may cause river jams and may lead to damming of the flowing water. This, in turn, affects flood safety and increases flood risk in river valleys, both directly and indirectly. The importance of fine plant debris for the phenomenon being studied comes down to the hydrodynamic aspect (plant elements carried by water end up on trees and shrubs, increase hydraulic flow resistance and contribute to the nature of flow through vegetated areas changed from micro-to macro-structural). The key part of the research problem under analysis was to determine qualitative and quantitative debris parameters and to establish the relationship between the type of debris and the type of land use of river valleys (crop fields, meadows and forested river sections). Another problem was to identify parameters of plant debris for various flow conditions (e.g. for low, medium and flood flows). The research also included an analysis of the materials deposited on the structure of shrubs under flood flow conditions during the 2010 flood on the Warta River.
Schropp, M.H.I.; Soong, T.W.
2006-01-01
Highlights, trends, and consensus from the 63 papers submitted to the Scientific Developments theme of the Third International Symposium on Flood Defence (ISFD) are presented. Realizing that absolute protection against flooding can never be guaranteed, trends in flood management have shifted: (1) from flood protection to flood-risk management, (2) from reinforcing structural protection to lowering flood levels, and (3) to sustainable management through integrated problem solving. Improved understanding of watershed responses, climate changes, applications of GIS and remote-sensing technologies, and advanced analytical tools appeared to be the driving forces for renewing flood-risk management strategies. Technical competence in integrating analytical tools to form the basin wide management systems are demonstrated by several large, transnation models. However, analyses from social-economic-environmental points of view are found lag in general. ?? 2006 Taylor & Francis Group.
Flash flood disasters analysis and evaluation: a case study of Yiyang County in China
NASA Astrophysics Data System (ADS)
Li, Haichen; Zhang, Xiaolei; Li, Qing; Qin, Tao; Lei, Xiaohui
2018-03-01
Global climate change leads to the more extreme precipitation and more flash flood disasters, which is a serious threat to the mountain inhabitants. To prevent flash flood disasters, China started flash flood disaster control planning and other projects from 2006. Among those measures, non-engineering measures are effective and economical. This paper introduced the framework of flash flood disaster analysis and evaluation in China, followed by a case study of Yiyang County.
Dealing with uncertainty in the probability of overtopping of a flood mitigation dam
NASA Astrophysics Data System (ADS)
Michailidi, Eleni Maria; Bacchi, Baldassare
2017-05-01
In recent years, copula multivariate functions were used to model, probabilistically, the most important variables of flood events: discharge peak, flood volume and duration. However, in most of the cases, the sampling uncertainty, from which small-sized samples suffer, is neglected. In this paper, considering a real reservoir controlled by a dam as a case study, we apply a structure-based approach to estimate the probability of reaching specific reservoir levels, taking into account the key components of an event (flood peak, volume, hydrograph shape) and of the reservoir (rating curve, volume-water depth relation). Additionally, we improve information about the peaks from historical data and reports through a Bayesian framework, allowing the incorporation of supplementary knowledge from different sources and its associated error. As it is seen here, the extra information can result in a very different inferred parameter set and consequently this is reflected as a strong variability of the reservoir level, associated with a given return period. Most importantly, the sampling uncertainty is accounted for in both cases (single-site and multi-site with historical information scenarios), and Monte Carlo confidence intervals for the maximum water level are calculated. It is shown that water levels of specific return periods in a lot of cases overlap, thus making risk assessment, without providing confidence intervals, deceiving.
NASA Astrophysics Data System (ADS)
Tapales, Ben Joseph; Mendoza, Jerico; Uichanco, Christopher; Mahar Francisco Amante Lagmay, Alfredo; Moises, Mark Anthony; Delmendo, Patricia; Eneri Tingin, Neil
2015-04-01
Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of people in areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more efficient exchange of information, allowing for flood simulations to be utilized in local flood disaster management programs. The success of these systems relies heavily on the knowledge of the people involved. As environmental changes create more significant impacts, the need to adapt to these is vital for man's safety. [1] Pacific Disaster Center
NASA Astrophysics Data System (ADS)
Tapales, B. J. M.; Mendoza, J.; Uichanco, C.; Lagmay, A. M. F. A.; Moises, M. A.; Delmendo, P.; Tingin, N. E.
2014-12-01
Flooding has been a perennial problem in the city of Marikina. These incidences result in human and economic losses. In response to this, the city has been investing in their flood disaster mitigation program in the past years. As a result, flooding in Marikina was reduced by 31% from 1992 to 2004. [1] However, these measures need to be improved so as to mitigate the effects of floods with more than 100 year return period, such as the flooding brought by tropical storm Ketsana in 2009 which generated 455mm of rains over a 24-hour period. Heavy rainfall caused the streets to be completely submerged in water, leaving at least 70 people dead in the area. In 2012, the Southwest monsoon, enhanced by a typhoon, brought massive rains with an accumulated rainfall of 472mm for 22-hours, a number greater than that which was experienced during Ketsana. At this time, the local government units were much more prepared in mitigating the risk with the use of early warning and evacuation measures, resulting to zero casualty in the area. Their urban disaster management program, however, can be further improved through the integration of high-resolution 2D flood hazard maps in the city's flood disaster management. The use of these maps in flood disaster management is essential in reducing flood-related risks. This paper discusses the importance and advantages of integrating flood maps in structural and non-structural mitigation measures in the case of Marikina City. Flood hazard maps are essential tools in predicting the frequency and magnitude of floods in an area. An information that may be determined with the use of these maps is the locations of evacuation areas, which may be accurately positioned using high-resolution 2D flood hazard maps. Evacuation of areas that are not vulnerable of being inundated is one of the unnecessary measures that may be prevented and thus optimizing mitigation efforts by local government units. This paper also discusses proposals for a more efficient exchange of information, allowing for flood simulations to be utilized in local flood disaster management programs. The success of these systems relies heavily on the knowledge of the people involved. As environmental changes create more significant impacts, the need to adapt to these is vital for man's safety. [1] Pacific Disaster Center
NASA Astrophysics Data System (ADS)
Grames, Johanna; Grass, Dieter; Kort, Peter; Prskawetz, Alexia
2017-04-01
Flooding events can affect businesses close to rivers, lakes or coasts. This paper provides a partial equilibrium model which helps to understand the optimal location choice for a firm in flood risk areas and its investment strategies. How often, when and how much are firms willing to invest in flood risk protection measures? We apply Impulse Control Theory to solve the model analytically and develop a continuation algorithm to solve the model numerically. Firms always invest in flood defense. The investment increases the higher the flood risk and the more firms also value the future, i.e. the more sustainable they plan. Investments in production capital follow a similar path. Hence, planning in a sustainable way leads to economic growth. Sociohydrological feedbacks are crucial for the location choice of the firm, whereas different economic situations have an impact on investment strategies. If flood defense is already present, e.g. built up by the government, firms move closer to the water and invest less in flood defense, which allows firms to accrue higher expected profits. Firms with a large initial production capital surprisingly try not to keep their market advantage, but rather reduce flood risk by reducing exposed production capital.
Risk factors of diarrhoea among flood victims: a controlled epidemiological study.
Mondal, N C; Biswas, R; Manna, A
2001-01-01
The concept and practice of 'disaster preparedness and response', instead of traditional casualty relief, is relatively new. Vulnerability analysis and health risks assessment of disaster prone communities are important prerequisites of meaningful preparedness and effective response against any calamity. In this community based study, the risk of diarrhoeal disease and its related epidemiological factors were analysed by collecting data from two selected flood prone block of Midnapur district of West Bengal. The information was compared with that of another population living in two non-flood prone blocks of the same district. The study showed that diarrhoeal disease was the commonest morbidity in flood prone population. Some behaviours, like use of pond water for utensil wash and kitchen purpose, hand washing after defecation without soap, improper hand washing before eating, open field defecation, storage of drinking water in wide mouth vessels etc. were found to be associated with high attack rate of diarrhoea, in both study and control population during flood season compared to pre-flood season. Attack rates were also significantly higher in flood prone population than that of population in non-flood prone area during the same season. Necessity of both community education for proper water use behaviour and personal hygiene along with ensuring safe water and sanitation facilities of flood affected communities were emphasized.
NASA Astrophysics Data System (ADS)
Victoriano-Lamariano, Ane; Garcia-Silvestre, Marta; Furdada-Bellavista, Gloria
2015-04-01
Flood risk is one of the most dangerous natural disasters in mountainous areas. Risk management and mitigation have to be based on exhaustive risk evaluation. Moreover, hazard analysis requires a multidisciplinary approach to achieve a complete understanding of the dynamics of the phenomena. The Val d'Aran valley is located in the axial part of the Pyrenees and is drained by the Garona River. Flooding events are relatively frequent there. The last extraordinary episode occurred in June 2013. Considering both the main effects of this flooding and the geomorphology, the long-term dynamics of the Garona River was studied in two different areas (Arties-Vielha and Era Bordeta-Les), which are representative of the whole length along the Val d'Aran. In fact, present short-term processes can be partly explained as a result of the long-term fluvial tendency. During the analysis of the 2013 flood effects, several entrenchment and incision indicators were found. Under the hypothesis that the fluvial network tends to incise, an entrenchment indicator analysis was carried out. Firstly, we considered the geomorphologic features, such as two generations of alluvial fans, two generations of alluvial terraces and, incisions on geomorphologic features and in Paleozoic bedrock. Secondly, we found out that erosion dominated over overflow and deposition during the 2013 flooding. Finally, great erosion was identified in engineering structures, for instance, in bridges, channelization dikes, gauging stations and dams. The geomorphologic analysis and the entrenchment indicators are essential to perform a post-glacial evolution interpretation. During the last Pleistocene glacial retreat, a fluvio-torrential network was developed at the bottom of the ancient glacial valley. An early post-glacial phase with a high sediment transport lead to the formation of first generation alluvial fans and alluvial terraces (nowadays located ≈15m above the channel). As sediment transport decreased, fluvial incision became preponderant while second generation alluvial fans and floodplains were formed. Therefore, the specific analysis of entrenchment indicators shows evidence of a vertical incision tendency of the drainage network. The obtained data allowed us to estimate an approximate mean entrenchment rate of 1,07 mm/year since the end of the Pleistocene glacial period. Compared with the 0,08-0,19 mm/year regional uplift rate, the dynamics of the Garona River is probably a combination of climatic (interglacial period), tectonic (uplift and erosional tendency of the axial Pyrenees since the Miocene), topographic (high gradients) and anthropic (engineering structures) factors, and also an intense glacial deposits erosion. In conclusion, the incision tendency hypothesis was confirmed, which is directly related to the geomorphological response after the last glaciation and is probably related to the evolution of the Pyrenean axial zone. Moreover, the long-term entrenchment dynamics determines present short-term fluvial processes, produces changes in flood hazard and controls the flood effects (see Garcia-Silvestre et al., also presented in EGU 2015). Thereby, this entrenchment tendency has consequences that must be considered when designing structural mitigation measures against flooding events.
Empirical relations between large wood transport and catchment characteristics
NASA Astrophysics Data System (ADS)
Steeb, Nicolas; Rickenmann, Dieter; Rickli, Christian; Badoux, Alexandre
2017-04-01
The transport of vast amounts of large wood (LW) in water courses can considerably aggravate hazardous situations during flood events, and often strongly affects resulting flood damage. Large wood recruitment and transport are controlled by various factors which are difficult to assess and the prediction of transported LW volumes is difficult. Such information are, however, important for engineers and river managers to adequately dimension retention structures or to identify critical stream cross-sections. In this context, empirical formulas have been developed to estimate the volume of transported LW during a flood event (Rickenmann, 1997; Steeb et al., 2017). The data base of existing empirical wood load equations is, however, limited. The objective of the present study is to test and refine existing empirical equations, and to derive new relationships to reveal trends in wood loading. Data have been collected for flood events with LW occurrence in Swiss catchments of various sizes. This extended data set allows us to derive statistically more significant results. LW volumes were found to be related to catchment and transport characteristics, such as catchment size, forested area, forested stream length, water discharge, sediment load, or Melton ratio. Both the potential wood load and the fraction that is effectively mobilized during a flood event (effective wood load) are estimated. The difference of potential and effective wood load allows us to derive typical reduction coefficients that can be used to refine spatially explicit GIS models for potential LW recruitment.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-10
... more acceptable balance among flood control, water supply, aquatic plant management, and natural... achieve a more acceptable balance among flood control, water supply, aquatic plant management, and natural...
44 CFR 61.8 - Applicability of risk premium rates.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE... flood insurance made available for: (a) Any structure, the construction or substantial improvement of...
44 CFR 61.8 - Applicability of risk premium rates.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE... flood insurance made available for: (a) Any structure, the construction or substantial improvement of...
44 CFR 61.8 - Applicability of risk premium rates.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE... flood insurance made available for: (a) Any structure, the construction or substantial improvement of...
Risk reduction in a changing insurance climate: examples from the US and UK
NASA Astrophysics Data System (ADS)
Horn, Diane; McShane, Michael
2015-04-01
Coastal cities face a range of increasingly severe challenges as sea level rises, and adaptation to future flood risk will require more than structural defences. Many cities will not be able to rely solely on engineering structures for protection and will need to develop a suite of policy responses to increase their resilience to impacts of rising sea level. Insurance can be used as a risk-sharing mechanism to encourage adaptation to sea level rise, using pricing or restrictions on availability of cover to discourage new development in flood risk areas or to encourage the uptake of flood resilience measures. We draw on flood insurance policy lessons learned from the United States and the United Kingdom to propose risk-sharing among private insurers/reinsurers, government, and policyholders to alleviate major issues of the current programs, while still maintaining a holistic approach to managing flood risk. The UK and the US are almost polar opposites in the way flood insurance is implemented. Flood insurance in the US is fully public and in the UK fully private; however, in both countries the participants feel that the established system is unsustainable. In the US, flood coverage is excluded from property policies provided by private insurers, and is only available through the National Flood Insurance Program (NFIP), with the federal government acting as insurer of last resort. Flood risk reduction has been part of the NFIP remit since the introduction of the program in 1968. Following massive payments for flood claims related primarily to Hurricanes Katrina and Sandy, the NFIP is approximately 26 billion in debt, prompting calls to bring private insurance back into the flood insurance business. Two major Congressional modifications to the NFIP in 2012 and 2014 have pushed the contradictory goals of fully risk-based, yet affordable premiums. The private market has not been significantly involved in a risk-bearing role, but that is changing as private insurers enter as competitors, which is likely to increase NFIP flood risk portfolio volatility and undermine the NFIP goal of integrated flood risk management and risk reduction. In the UK, flood coverage is available only from private insurers, and is bundled with other perils in property policies. This approach is unusual in not passing all or part of the flood risk to government, with the financial costs of floods borne entirely by the private sector. Although the UK flood insurance market will change significantly in 2015 with the introduction of Flood Re, a subsidized flood insurance pool for high-risk households, flood cover will continue to be provided solely by the private sector. Flood Re does not reduce flood loss, but spreads the risk, protecting some policyholders from the costs of flooding at the expense of others. In contrast to the NFIP, Flood Re does not provide any incentives for policyholders or communities to improve the flood resilience of their properties.
Flood management on the lower Yellow River: hydrological and geomorphological perspectives
NASA Astrophysics Data System (ADS)
Shu, Li; Finlayson, Brian
1993-05-01
The Yellow River, known also as "China's Sorrow", has a long history of channel changes and disastrous floods in its lower reaches. Past channel positions can be identified from historical documentary records and geomorphological and sedimentological evidence. Since 1947, government policy has been aimed at containing the floods within artificial levees and preventing the river from changing its course. Flood control is based on flood-retarding dams and off-stream retention basins as well as artificial levees lining the channel. The design flood for the system has a recurrence interval of only around 60 years and floods of this and larger magnitudes can be generated downstream of the main flood control dams at Sanmenxia and Xiaolangdi. Rapid sedimentation along the river causes problems for storage and has raised the bed of the river some 10 m above the surrounding floodplain. The present management strategy is probably not viable in the long term and to avoid a major disaster a new management approach is required. The most viable option would appear to be to breach the levees at predetermined points coupled with advanced warning and evacuation of the population thus put at risk.
11. VIEW OF FLOOD GATE FOR THE PRESSURE CULVERT AND ...
11. VIEW OF FLOOD GATE FOR THE PRESSURE CULVERT AND THE SOUTH AND EAST ELEVATIONS, LOOKING NORTHWEST. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA
NASA Astrophysics Data System (ADS)
Wunderlich, S.; Borken, W.
2012-05-01
Peatlands store large amounts of organic carbon, but the carbon stock is sensitive to changes in precipitation or water table manipulations. Restoration of drained peatlands by drain blocking and flooding is a common measure to conserve and augment the carbon stock of peatland soils. Here, we report to what extent flooding affected the contribution of heterotrophic and rhizosphere respiration to soil CO2 efflux in a grass-dominated mountain fen, Germany. Soil CO2 efflux was measured in three un-manipulated control plots and three flooded plots in two consecutive years. Flooding was achieved by permanent irrigation during the growing seasons. Radiocarbon signatures of CO2 from different sources including soil CO2 efflux, incubated peat cores and live grass roots were repeatedly analyzed for partitioning of soil CO2 efflux. Additionally, heterotrophic respiration and its radiocarbon signature were determined by eliminating rhizosphere respiration in trenched subplots (only control). In the control plots, rhizosphere respiration determined by 14C signatures contributed between 47 and 61% during the growing season, but was small (4%) immediately before budding. Trenching revealed a smaller rhizosphere contribution of 33% (2009) and 22% (2010) during growing seasons. Flooding reduced annual soil CO2 efflux of the fen by 42% in 2009 and by 30% in 2010. The reduction was smaller in 2010 mainly through naturally elevated water level in the control plots. A 1-week interruption of irrigation caused a strong short-lived increase in soil CO2 efflux, demonstrating the sensitivity of the fen to water table drawdown near the peat surface. The reduction in soil CO2 efflux in the flooded plots diminished the relative proportion of rhizosphere respiration from 56 to 46%, suggesting that rhizosphere respiration was slightly more sensitive to flooding than heterotrophic respiration. We conclude that the moderate decrease in rhizosphere respiration following flooding arises from a gradual change in vegetation in this fen ecosystem.
Cao, Yini; Ma, Chuanxin; Chen, Guangcai; Zhang, Jianfeng; Xing, Baoshan
2017-06-01
To explore the joint effect of copper (Cu) and flooding on Salix integra Thunb. (S. integra), the physiological and biochemical parameters of the seedlings grown in Cu amended soil (50, 150, 450 mg kg -1 ) with or without the flooding for 60 days were evaluated. The results suggested that the flooding significantly inhibited the root growth in terms of root length and root tips. The Cu exposures of 50 and 150 mg kg -1 notably enhanced the root growth as compared to the control. Majority of Cu was accumulated in S. integra roots, while flooding significantly reduced the Cu content, except the 150 mg kg -1 Cu treatment, but the iron (Fe) and manganese (Mn) content on the root surface were both markedly increased relative to non-flooded control. The malonaldehyde (MDA) and glutathione (GSH) contents in leaves showed a dose-response upon Cu exposure. Soil flooding enhanced the GSH level, which displayed 4.50-49.59% increases compared to its respective non-flooded treatment, while no difference was evident on MDA contents between the flooding and the non-flooded treatments. Both superoxide dismutase (SOD) and peroxidase (POD) activities were boosted while the catalase (CAT) was suppressed with increasing Cu exposure dose, and soil flooding reduced the POD and CAT activities. The elevated Cu level caused the evident increases of root calcium (Ca), potassium (K), and sulfur (S) concentrations and decreases of root phosphorus (P), sodium (Na), and zinc (Zn) concentrations. Soil flooding increased the concentrations of Fe, S, Na, Ca, and magnesium (Mg) in S. integra root. Taken together, our results suggested S. integra has high tolerance to the joint stress from Cu and flooding. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Titi Purwantini, V.; Sutanto, Yusuf
2018-05-01
This research is to create a model of flood control in the city of Surakarta using Servqual method and Importance Performance Analysis. Service quality is generally defined as the overall assessment of a service by the customersor the extent to which a service meets customer’s needs or expectations. The purpose of this study is to find the first model of flood control that is appropriate to the condition of the community. Surakarta This means looking for a model that can provide satisfactory service for the people of Surakarta who are in the location of the flood. The second is to find the right model to improve service performance of Surakarta City Government in serving the people in flood location. The method used to determine the satisfaction of the public on the quality of service is to see the difference in the quality of service expected by the community with the reality. This method is Servqual Method While to assess the performance of city government officials is by comparing the actual performance with the quality of services provided, this method is This means looking for a model that can provide satisfactory service for the people of Surakarta who are in the location of the flood.The second is to find the right model to improve service performance of Surakarta City Government in serving the people in flood location. The method used to determine the satisfaction of the public on the quality of service is to see the difference in the quality of service expected by the community with the reality. This method is Servqual Method While to assess the performance of city government officials is by comparing the actual performance with the quality of services provided, this method is Importance Performance Analysis. Samples were people living in flooded areas in the city of Surakarta. Result this research is Satisfaction = Responsiveness+ Realibility + Assurance + Empathy+ Tangible (Servqual Model) and Importance Performance Analysis is From Cartesian diagram can be made Flood Control Formula as follow: Food Control = High performance
Urban permeable pavement system design based on “sponge city” concept
NASA Astrophysics Data System (ADS)
Yu, M. M.; Zhu, J. W.; Gao, W. F.; Xu, D. P.; Zhao, M.
2017-08-01
Based on the “sponge city” concept, to implement the goal of building a city within the city to solve the sponge waterlogging, rational utilization of water resources, reduce water pollution this paper, combined with the city planning level in China, establishes the design system of city road flooding from the macro, medium and micro level, explore the design method of city water permeable pavement system, and has a practical significance the lower flood risk water ecological problems. On the macro level, we established an urban pavement sponge system under the regional ecological pattern by “spot permeable open space - low impact developing rain water road system - catchment area and catchment wetland”. On a medium level, this paper proposed the permeable suitability of pavement and the planning control indicators when combined with urban functional districts to conduct permeable pavement roads plans and controls. On micro level, the paper studied sponge technology design of permeable pavement from road structure, surface material, and other aspects aimed at the pavement permeability requirements.
1980-10-01
a bakery , a gas station, and the Linden Street bridge were flooded during the March 1977 storm. Flooding also occurred on the Southwest Branch...and service station, one bakery , and five other commercial establishments. Most of these structures are not suited to being elevated above the design...of a shopping plaza and a fast-food franchise in the flood plain on West Housatonic Street (Route 20). The following three alternate plans of
Hazel, Joseph E.; Kaplinski, Matt; Parnell, Roderic A.; Fairley, Helen C.
2008-01-01
This study examines a large drainage network incised into alluvial terraces located along the Colorado River downstream of Palisades Creek in Grand Canyon National Park, Ariz. Gully erosion in the drainage affects archaeological sites found on the wide, relatively flat alluvial terraces. In 1996, 7-d release of 1,274 cubic meters per second of water from Glen Canyon Dam, known as a controlled flood, deposited fine-grained sediment - sand, silt, and clay - in the mouth of the network's largest gully, informally known as south gully. The deposit persisted for several years, but the drainage network steepened in the downstream reaches between 1999 and 2004. A high-flow experiment similar to the 1996 controlled flood was conducted in November 2004. The 2004 experiment was of a lower magnitude and shorter duration compared to the 1996 controlled flood. Topographic surveys were made in the field before, immediately after, and 6 months following the November 2004 experiment, and these measurements were compared to those made in 1996 and in other years. Similar to the response in 1996, fine-grained sediment was deposited in the mouth of the south gully and this mass was largely retained during the 6 months following the 2004 event. The magnitude of deposition in 2004 was nearly two times greater than that resulting from the 1996 controlled flood. We attribute this marked difference to increased accommodation space for deposition in the gully mouth, which was more deeply eroded in 2004 than it was in 1996. The second of the two primary gullies found within the Palisades gully network, the north gully, was largely unaffected by either high flow. Between 1996 and 2005, erosion was primarily confined to the lower reach of the south gully, while the upper reach remained relatively stable. The available data suggest that local base-level changes in the south gully mouth were not linked to the stability of the upstream gully reach. It could not be determined whether temporary base-level increases or maintenance of erosion-control structures were causal factors in limiting erosion in the upstream reaches of the drainage network.
Designing Flood Management Systems for Joint Economic and Ecological Robustness
NASA Astrophysics Data System (ADS)
Spence, C. M.; Grantham, T.; Brown, C. M.; Poff, N. L.
2015-12-01
Freshwater ecosystems across the United States are threatened by hydrologic change caused by water management operations and non-stationary climate trends. Nonstationary hydrology also threatens flood management systems' performance. Ecosystem managers and flood risk managers need tools to design systems that achieve flood risk reduction objectives while sustaining ecosystem functions and services in an uncertain hydrologic future. Robust optimization is used in water resources engineering to guide system design under climate change uncertainty. Using principles introduced by Eco-Engineering Decision Scaling (EEDS), we extend robust optimization techniques to design flood management systems that meet both economic and ecological goals simultaneously across a broad range of future climate conditions. We use three alternative robustness indices to identify flood risk management solutions that preserve critical ecosystem functions in a case study from the Iowa River, where recent severe flooding has tested the limits of the existing flood management system. We seek design modifications to the system that both reduce expected cost of flood damage while increasing ecologically beneficial inundation of riparian floodplains across a wide range of plausible climate futures. The first robustness index measures robustness as the fraction of potential climate scenarios in which both engineering and ecological performance goals are met, implicitly weighting each climate scenario equally. The second index builds on the first by using climate projections to weight each climate scenario, prioritizing acceptable performance in climate scenarios most consistent with climate projections. The last index measures robustness as mean performance across all climate scenarios, but penalizes scenarios with worse performance than average, rewarding consistency. Results stemming from alternate robustness indices reflect implicit assumptions about attitudes toward risk and reveal the tradeoffs between using structural and non-structural flood management strategies to ensure economic and ecological robustness.
Dynamic building risk assessment theoretic model for rainstorm-flood utilization ABM and ABS
NASA Astrophysics Data System (ADS)
Lai, Wenze; Li, Wenbo; Wang, Hailei; Huang, Yingliang; Wu, Xuelian; Sun, Bingyun
2015-12-01
Flood is one of natural disasters with the worst loss in the world. It needs to assess flood disaster risk so that we can reduce the loss of flood disaster. Disaster management practical work needs the dynamic risk results of building. Rainstorm flood disaster system is a typical complex system. From the view of complex system theory, flood disaster risk is the interaction result of hazard effect objects, rainstorm flood hazard factors, and hazard environments. Agent-based modeling (ABM) is an important tool for complex system modeling. Rainstorm-flood building risk dynamic assessment method (RFBRDAM) was proposed using ABM in this paper. The interior structures and procedures of different agents in proposed meth had been designed. On the Netlogo platform, the proposed method was implemented to assess the building risk changes of the rainstorm flood disaster in the Huaihe River Basin using Agent-based simulation (ABS). The results indicated that the proposed method can dynamically assess building risk of the whole process for the rainstorm flood disaster. The results of this paper can provide one new approach for flood disaster building risk dynamic assessment and flood disaster management.
Rebuilding Habitat and Shoreline Resilience through Improved Flood Control Project
Information about the SFBWQP Rebuilding Habitat and Shoreline Resilience through Improved Flood Control Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.
Nannofossil and sequence chronostratigraphy of a marine flooding surface in the Turonian of Trinidad
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, T.C.
1996-08-01
A multi-well regional study in the Southern basin, Trinidad, reveals a very pronounced marine flooding surface in Turonian- age sediments. This surface is correlatable with global Turonian marine transgressions and genetically ties with the best hydrocarbon source rocks known in Trinidad. The Turonian marine flooding surface yields abundant nannoplankton. Most notable is Lithastrinus moratus Stover, a short-ranging marker of the Lithastrinus evolutionary series. Two morphotypes of Lithastrinus moratus have been found. The more delicate eight-rayed form evolves from Lithastrinus floralls in early Turonian time. Based on observations in Ste. Croix-1, Rocky Palace-1, Rochard-1, Marac-1, Moniga East-15, Iguana River-1, Lizard Spring-Imore » and Antilles Brighton-102, it occurs more frequently in the lower Turonian, but is rare in Trinidad. It has a more robust seven-rayed descendant that appears to be restricted to a narrow interval associated with peak Turonian marine transgression and usually dominates the nannofossil assemblage in the condensed section. The highest stratigraphic occurrence of this form coincides with the lowest occurrence of Marthastentes furcatus based on core sample studies. The age of the marine flooding surface is therefore well constrained to be in zone CC12 and is considered to be correlative with the 89 million year marine flooding surface. The marine flooding surface appears intercontinentally correlatable as it has also been identified in the Arcadia Shale of the Eagle Ford Group in Texas. Because of its wide areal distribution and ease of paleontological recognition, this surface is ideal for regional hydrocarbon source rock mapping, stratal correlation and structural control.« less
Cooperative satellite-based flood detection, mapping, and river monitoring in near real time
NASA Technical Reports Server (NTRS)
Brakenridge, Robert G.; Nghiem, Son V.
2004-01-01
The North Atlantic Oscillation (NAO), the Pacific-North American (PNA) teleconnection pattern, and the El Nino-Southern Oscillation (ENSO) combine to influence the planetary wave structure over the northern hemisphere. Floods and droughts are associated around the world with ENSO through such teleconnections, and improved flood prediction relies on understanding them better. The scientific study of floods, and consistent measurements thereof, are needed in order to allow 'Greenhouse warming' predictions about flooding to be tested, and the hydrologic effects of other phenomena such as ENSO to be evaluated. The needed tasks are: 1) detection/warning of flooding, 2) flood magnitude assessment, 3) flood inundation mapping, and 4) preservation of the record of flooding. Accomplishing these same tasks provides direct local societal benefits as well: they can save lives and reduce economic loss. We emphasize that the basic science observations need not be divorced from the immediate practical applications: both can occur together, and just as is the case for meteorological remote sensing.
23 CFR 650.111 - Location hydraulic studies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...
23 CFR 650.111 - Location hydraulic studies.
Code of Federal Regulations, 2014 CFR
2014-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...
23 CFR 650.111 - Location hydraulic studies.
Code of Federal Regulations, 2012 CFR
2012-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...
23 CFR 650.111 - Location hydraulic studies.
Code of Federal Regulations, 2013 CFR
2013-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...
23 CFR 650.111 - Location hydraulic studies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... part 771. (f) Local, State, and Federal water resources and flood-plain management agencies should be...
NASA Astrophysics Data System (ADS)
Hess, Laura Lorraine
The ability of synthetic aperture radar to detect flooding and vegetation structure was evaluated for three seasonally inundated floodplain sites supporting a broad variety of wetland and upland vegetation types: two reaches of the Solimoes floodplain in the central Amazon, and the Magela Creek floodplain in Northern Territory, Australia. For each site, C- and L-band polarimetric Shuttle Imaging Radar-C (SIR-C) data was obtained at both high- and low-water stages. Inundation status and vegetation structure were documented simultaneous with the SIR-C acquisitions using low-altitude videography and ground measurements. SIR-C images were classified into cover states defined by vegetation physiognomy and presence of standing water, using a decision-tree model with backscattering coefficients at HH, VV, and HV polarizations as input variables. Classification accuracy was assessed using user's accuracy, producer's accuracy, and kappa coefficient for a test population of pixels. At all sites, both C- and L-band were necessary to accurately classify cover types with two dates. HH polarization was most. useful for distinguishing flooded from non-flooded vegetation (C-HH for macrophyte versus pasture, L-HH for flooded versus non-flooded forest), and cross-polarized L-band data provided the best separation between woody and non-woody vegetation. Increases in L-HH backscattering due to flooding were on the order of 3--4 dB for closed-canopy varzea and igapo forest, and 4--7 dB, for open Melaleuca woodland. The broad range of physiognomies and stand structures found in both herbaceous and woody wetland communities, combined with the variation in the amount of emergent canopy caused by water level fluctuations and phenologic changes, resulted in a large range in backscattering characteristics of wetland communities both within and between sites. High accuracies cannot be achieved for these communities using single-date, single-band, single-polarization data, particularly in the case of distinguishing flooded macrophyte from non-flooded forest vegetation. However, the large changes in backscattering caused by flooding make it possible to achieve good accuracies (>85%) using multi-temporal data. Where river stage records are available, SAR-based maps of inundation status on a series of dates can be linked to long-term stage data to define wetland habitat types based on flooding regime and low-water vegetation cover.
Miller, Kirk A.; Mason, John P.
2000-01-01
The water-surface profile and flood boundaries for the computed 100-year flood were determined for a part of the lower Salt River in Lincoln County, Wyoming. Channel cross-section data were provided by Lincoln County. Cross-section data for bridges and other structures were collected and compiled by the U.S. Geological Survey. Roughness coefficients ranged from 0.034 to 0.100. The 100-year flood was computed using standard methods, ranged from 5,170 to 4,120 cubic feet per second through the study reach, and was adjusted proportional to contributing drainage area. Water-surface elevations were determined by the standard step-backwater method. Flood boundaries were plotted on digital basemaps.
Dean, David; Topping, David; Schmidt, John C.; Griffiths, Ronald; Sabol, Thomas
2016-01-01
The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, undergoes rapid geomorphic changes as a result of its large sediment supply and variable hydrology; thus, it is a useful natural laboratory to investigate the relative importance of flow strength and sediment supply in controlling alluvial channel change. We analyzed a suite of sediment transport and geomorphic data to determine the cumulative influence of different flood types on changing channel form. In this study, physically based analyses suggest that channel change in the Rio Grande is controlled by both changes in flow strength and sediment supply over different spatial and temporal scales. Channel narrowing is primarily caused by substantial deposition of sediment supplied to the Rio Grande during tributary-sourced flash floods. Tributary floods have large suspended-sediment concentrations, occur for short durations, and attenuate rapidly downstream in the Rio Grande, depositing much of their sediment in downstream reaches. Long-duration floods on the mainstem have the capacity to enlarge the Rio Grande, and these floods, released from upstream dams, can either erode or deposit sediment in the Rio Grande depending upon the antecedent in-channel sediment supply and the magnitude and duration of the flood. Geomorphic and sediment transport analyses show that the locations and rates of sand erosion and deposition during long-duration floods are most strongly controlled by spatial changes in flow strength, largely through changes in channel slope. However, spatial differences in the in-channel sediment supply regulate sediment evacuation or accumulation over time in long reaches (greater than a kilometer).
Satellites, tweets, forecasts: the future of flood disaster management?
NASA Astrophysics Data System (ADS)
Dottori, Francesco; Kalas, Milan; Lorini, Valerio; Wania, Annett; Pappenberger, Florian; Salamon, Peter; Ramos, Maria Helena; Cloke, Hannah; Castillo, Carlos
2017-04-01
Floods have devastating effects on lives and livelihoods around the world. Structural flood defence measures such as dikes and dams can help protect people. However, it is the emerging science and technologies for flood disaster management and preparedness, such as increasingly accurate flood forecasting systems, high-resolution satellite monitoring, rapid risk mapping, and the unique strength of social media information and crowdsourcing, that are most promising for reducing the impacts of flooding. Here, we describe an innovative framework which integrates in real-time two components of the Copernicus Emergency mapping services, namely the European Flood Awareness System and the satellite-based Rapid Mapping, with new procedures for rapid risk assessment and social media and news monitoring. The integrated framework enables improved flood impact forecast, thanks to the real-time integration of forecasting and monitoring components, and increases the timeliness and efficiency of satellite mapping, with the aim of capturing flood peaks and following the evolution of flooding processes. Thanks to the proposed framework, emergency responders will have access to a broad range of timely and accurate information for more effective and robust planning, decision-making, and resource allocation.
USDA-ARS?s Scientific Manuscript database
Forty-five flood control reservoirs, authorized in the United States Flood Control Act of 1936, were installed between 1969 and 1982 in the Little Washita River Experimental Watershed (LWREW), located in central Oklahoma. Over time, these reservoirs have lost water storage capacity due to sedimentat...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-05
... Water Treatment Plant Hydropower Generation Unit Project No. 4804. The project was located on the county's water distribution system in San Luis Obispo County, California. \\1\\ San Luis Obispo Flood Control...
Morphological processes in permeable sediment traps with check dams
NASA Astrophysics Data System (ADS)
Schwindt, S.; Franca, M. J.; Schleiss, A. J.
2017-12-01
Sediment traps serve for the retention of sediment in the case of major floods, but the retention of sediment is not wanted up to smaller frequent floods which are important to the morphodynamics of rivers. A new concept for the sediment traps that enables sediment transfer for frequent floods and safely retains sediment in the case of important floods was recently developed and experimentally tested. The tests were performed using a standardized hydrograph and different barrier types for the mechanically or hydraulically controlled retention of sediments. The deposition pattern was measured at the end of every experimental run using a motion sensing camera. These measurements show that the shape of the deposits varies as a function of the retention control type (mechanical or hydraulic) and particularly as a function of the barrier height. Deposits were large when a high barrier was applied that was not overflown, and when both control types were combined. The deposition slope was shallow in the case of the high barrier, steeper for combined controls and steepest when mechanical control only was tested. The study enables a better understanding for the optimization of the shape of artificial deposition areas upstream of partially permeable check dams to enhance the tradeoff between eco-morphological and economical aspects of flood protection.
Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014.
Shortus, Matthew; Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia
2016-01-01
The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations' effectiveness.
Vector-control response in a post-flood disaster setting, Honiara, Solomon Islands, 2014
Musto, Jennie; Bugoro, Hugo; Butafa, Charles; Sio, Alison; Joshua, Cynthia
2016-01-01
Problem The close quartering and exposed living conditions in evacuation centres and the potential increase in vector density after flooding in Solomon Islands resulted in an increased risk of exposure for the occupants to vectorborne diseases. Context In April 2014, Solomon Islands experienced a flash flooding event that affected many areas and displaced a large number of people. In the capital, Honiara, nearly 10 000 people were housed in emergency evacuation centres at the peak of the post-flood emergency. At the time of the floods, the number of dengue cases was increasing, following a record outbreak in 2013. Action The National Vector Borne Disease Control Programme with the assistance of the World Health Organization implemented an emergency vector-control response plan to provide protection to the at-risk populations in the evacuation centres. The National Surveillance Unit also activated an early warning disease surveillance system to monitor communicable diseases, including dengue and malaria. Outcome Timely and strategic application of the emergency interventions probably prevented an increase in dengue and malaria cases in the affected areas. Discussion Rapid and appropriate precautionary vector-control measures applied in a post-natural disaster setting can prevent and mitigate vectorborne disease incidences. Collecting vector surveillance data allows better analysis of vector-control operations’ effectiveness. PMID:27757255
Vegetation, soil, and flooding relationships in a blackwater floodplain forest
Burke, M.K.; King, S.L.; Gartner, D.; Eisenbies, M.H.
2003-01-01
Hydroperiod is considered the primary determinant of plant species distribution in temperate floodplain forests, but most studies have focused on alluvial (sediment-laden) river systems. Few studies have evaluated plant community relationships in blackwater river systems of the South Atlantic Coastal Plain of North America. In this study, we characterized the soils, hydroperiod, and vegetation communities and evaluated relationships between the physical and chemical environment and plant community structure on the floodplain of the Coosawhatchie River, a blackwater river in South Carolina, USA. The soils were similar to previous descriptions of blackwater floodplain soils but had greater soil N and P availability, substantially greater clay content, and lower soil silt content than was previously reported for other blackwater river floodplains. Results of a cluster analysis showed there were five forest communities on the site, and both short-term (4 years) and long-term (50 years) flooding records documented a flooding gradient: water tupelo community > swamp tupelo > laurel oak = overcup oak > mixed oak. The long-term hydrologic record showed that the floodplain has flooded less frequently from 1994 to present than in previous decades. Detrended correspondence analysis of environmental and relative basal area values showed that 27% of the variation in overstory community structure could be explained by the first two axes; however, fitting the species distributions to the DCA axes using Gaussian regression explained 67% of the variation. Axes were correlated with elevation (flooding intensity) and soil characteristics related to rooting volume and cation nutrient availability. Our study suggests that flooding is the major factor affecting community structure, but soil characteristics also may be factors in community structure in blackwater systems. ?? 2003, The Society of Wetland Scientists.
Carnivorous arthropods after spring flood
USDA-ARS?s Scientific Manuscript database
Spring flooding is a common practice in Wisconsin cranberries, but flooding as insect control produces variable results among marshes. This project is aimed at figuring out why it works, and why it sometimes doesn’t. We have focused on tracking arthropod populations to explain the observed patterns ...
Shades of Green: Flood control study focused on Duluth, Minnesota
In the aftermath of the economically and environmentally painful flood of 2012, the city of Duluth and the CSC examined ecologically based options to reduce runoff velocities and flood volume in the watershed with assistance and input of Minnesota Duluth's Natural Resources Resea...
Not Out of Control: Analysis of the Federal Disaster Spending Trend
2016-03-01
included heavy rain, excessive rainfall, tropical storms, hurricanes, flooding, coastal flooding, wind, straight line winds, high winds, tornadoes ...straight line winds, tornadoes , high winds, coastal flooding, soil saturation, and mud flow.174 Despite the high number of severe storm declarations over
Historical floods in the Dutch Rhine Delta
NASA Astrophysics Data System (ADS)
Glaser, R.; Stangl, H.
Historical records provide direct information about the climatic impact on society. Especially great natural disasters such as river floods have been for long attracting the attention of humankind. Time series for flood development on the Rhine branches Waal, Nederrijn/Lek and IJssel in the Dutch Rhine Delta are presented in this paper. In the case of the Waal it is even possible to compare historical flood frequencies based on documentary data with the recent development reconstructed from standardized instrumental measurements. In brief, we will also discuss various parameters concerning the structure of the flood series and the "human dimension" of natural disaster, i.e. the vulnerability of society when facing natural disasters.
Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim
2011-01-01
Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.
Flood Impacts on People: from Hazard to Risk Maps
NASA Astrophysics Data System (ADS)
Arrighi, C.; Castelli, F.
2017-12-01
The mitigation of adverse consequences of floods on people is crucial for civil protection and public authorities. According to several studies, in the developed countries the majority of flood-related fatalities occurs due to inappropriate high risk behaviours such as driving and walking in floodwaters. In this work both the loss of stability of vehicles and pedestrians in floodwaters are analysed. Flood hazard is evaluated, based on (i) a 2D inundation model of an urban area, (ii) 3D hydrodynamic simulations of water flows around vehicles and human body and (iii) a dimensional analysis of experimental activity. Exposure and vulnerability of vehicles and population are assessed exploiting several sources of open GIS data in order to produce risk maps for a testing case study. The results show that a significant hazard to vehicles and pedestrians exists in the study area. Particularly high is the hazard to vehicles, which are likely to be swept away by flood flow, possibly aggravate damages to structures and infrastructures and locally alter the flood propagation. Exposure and vulnerability analysis identifies some structures such as schools and public facilities, which may attract several people. Moreover, some shopping facilities in the area, which attract both vehicular and pedestrians' circulation are located in the highest flood hazard zone.The application of the method demonstrates that, at municipal level, such risk maps can support civil defence strategies and education to active citizenship, thus contributing to flood impact reduction to population.
NASA Astrophysics Data System (ADS)
Lopez-Martinez, Francisco; Perez-Morales, Alfredo; Gil-Guirado, Salvador; Illan-Fernandez, Emilio Jose
2017-04-01
Since the 1960's, the Spanish Mediterranean coastal area is one of the main tourist destinations in the world and one of the highest rates of population, building and economic growth of Spain. Despite this growth have involved a lot of preventive flood management measures, especially structural measures (dams, water derivations, channelling, etc…), the area has registered an increase in the intensity, frequency and economic losses related to floods in recent decades. However, according to climatic records, this trend is more related to an exposure multiplication derived from economic growth than with the increase of extreme rainfall events produced by climate change. Within this framework it is interesting to evaluate how local governments (institution responsible for the process of spatial planning) have influence on exposure through allowing the construction in flood-prone areas. In this regard, this study quantifies the evolution of number of housing in flood-prone areas according to the cadastral information and the hydrological modelling data for the return periods of 10, 50, 100 and 500 years, respectively. Results highlight an increase in the number of building in flood-prone areas over the years. This increase in physical and economic exposure without any non-structural risk mitigation measure is one of the main factors for flood events. Therefore, results report that local governments did not consider the floodable areas into spatial planning and have made future scenarios characterized by an increase in the number of floods and their consequential damages.
Liu, Zhidong; Zhang, Feifei; Zhang, Ying; Li, Jing; Liu, Xuena; Ding, Guoyong; Zhang, Caixia; Liu, Qiyong; Jiang, Baofa
2018-06-01
Understanding the potential links between floods and infectious diarrhea is important under the context of climate change. However, little is known about the risk of infectious diarrhea after floods and what factors could modify these effects in China. This study aims to quantitatively examine the relationship between floods and infectious diarrhea and their effect modifiers. Weekly number of infectious diarrhea cases from 2004 to 2011 during flood season in Hunan province were supplied by the National Notifiable Disease Surveillance System. Flood and meteorological data over the same period were obtained. A two-stage model was used to estimate a provincial average association and their effect modifiers between floods and infectious diarrhea, accounting for other confounders. A total of 134,571 cases of infectious diarrhea were notified from 2004 to 2011. After controlling for seasonality, long-term trends, and meteorological factors, floods were significantly associated with infectious diarrhea in the provincial level with a cumulative RR of 1.22 (95% CI: 1.05, 1.43) with a lagged effect of 0-1 week. Geographic locations and economic levels were identified as effect modifiers, with a higher impact of floods on infectious diarrhea in the western and regions with a low economic level of Hunan. Our study provides strong evidence of a positive association between floods and infectious diarrhea in the study area. Local control strategies for public health should be taken in time to prevent and reduce the risk of infectious diarrhea after floods, especially for the vulnerable regions identified. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Thomas, Nicholas W.; Arenas Amado, Antonio; Schilling, Keith E.; Weber, Larry J.
2016-10-01
This research systematically analyzed the influence of antecedent soil wetness, rainfall depth, and the subsequent impact on peak flows in a 45 km2 watershed. Peak flows increased with increasing antecedent wetness and rainfall depth, with the highest peak flows occurring under intense precipitation on wet soils. Flood mitigation structures were included and investigated under full and empty initial storage conditions. Peak flows were reduced at the outlet of the watershed by 3-17%. The highest peak flow reductions occurred in scenarios with dry soil, empty project storage, and low rainfall depths. These analyses showed that with increased rainfall depth, antecedent moisture conditions became increasingly less impactful. Scaling invariance of peak discharges were shown to hold true within this basin and were fit through ordinary least squares regression for each design scenario. Scale-invariance relationships were extrapolated beyond the outlet of the analyzed basin to the point of intersection of with and without structure scenarios. In each scenario extrapolated peak discharge benefits depreciated at a drainage area of approximately 100 km2. The associated drainage area translated to roughly 2 km downstream of the Beaver Creek watershed outlet. This work provides an example of internal watershed benefits of structural flood mitigation efforts, and the impact the may exert outside of the basin. Additionally, the influence of 1.8 million in flood reduction tools was not sufficient to routinely address downstream flood concerns, shedding light on the additional investment required to alter peak flows in large basins.
Reddy, D.R.
1971-01-01
IntroductionHistory of Small Watershed Projects in TexasThe U.S. Soil Conservation Service is actively engaged in the installation of flood and soil erosion reducing measures in Texas under the authority of the "Flood Control Act of 1936 and 1944" and "Watershed Protection and Flood Prevention Act" (Public Law 566), as amended. The Soil Conservation Service has found a total of approximately 3,500 floodwater-retarding structures to be physically and economically feasible in Texas. As of September 30, 1970, 1,439 of these structures had been built.This watershed-development program will have varying but important effects on the surface and ground-water resources of river basins, especially where a large number of the floodwater-retarding structures are built. Basic hydrologic data under natural and developed conditions are needed to appraise the effects of the structures on the yield and mode of occurrence of runoff.Hydrologic investigations of these small watersheds were begun by the Geological Survey in 1951 and are now being made in 12 study areas (fig. 1). These investigations are being made in cooperation with the Texas Water Development Board, the Soil Conservation Service, the San Antonio River Authority, the city of Dallas, and the Tarrant County Water Control and Improvement District No. 1. The 12 study areas were chosen to sample watershed having different rainfall, topography, geology, and soils. In five of the study areas, (North, Little Elm, Mukewater, little Pond-North Elm, and Pin Oak Creeks), streamflow and rainfall records were collected prior to construction of the floodwater-retarding structures, thus affording the opportunity for analyses of the conditions "before and after" development. A summary of the development of the floodwater-retarding structures in each study areas of September 30, 1970, is shown in table 1.Objectives of the Texas Small Watersheds ProjectThe purpose of these investigations is to collect sufficient data to meeting the following objectives:To determine the net effect of floodwater-retarding structures on the regimen of streamflow at downstream points.To determine the effectiveness of the structures as ground-water recharge facilities.To determine the effect of the structures on the sediment yield at downstream points.To develop relationships between maximum rates and/or volumes of runoff with rainfall in small natural watersheds.To develop a stream-system model for basins with floodwater-retarding structures.To determine the minimum instrumentation necessary for estimating the flood hydrographs below a system of structures, as needed for downstream water-management operation.Purpose and Scope of this Basic-Data ReportThis report, which is the tenth in a series of basic-data reports published annually for the Escondido Creek study area, contains the rainfall, runoff, and storage data collected during the 1970 water year for the 72.4-square-mile area above the stream-gaging station Escondido Creek at Kenedy, Texas. The location of floodwater-retarding structures and hydrologic-instrument installations in the Escondido Creek study area are shown on figure 2.This investigation is scheduled to continue through a period of both above- and below-normal precipitation to define the various factors used in the analyses of rainfall-runoff relationship.To facilitate the publication and distribution of this report at the earliest feasible time, certain material contained herein does not conform to the formal publication standards of the U.S. Geological Survey.
NASA Astrophysics Data System (ADS)
Khosronejad, Ali; Sotiropoulos, Fotis; Stony Brook University Team
2016-11-01
We present a coupled flow and morphodynamic simulations of extreme flooding in 3 km long and 300 m wide reach of the Mississippi River in Minnesota, which includes three islands and hydraulic structures. We employ the large-eddy simulation (LES) and bed-morphodynamic modules of the VFS-Geophysics model to investigate the flow and bed evolution of the river during a 500 year flood. The coupling of the two modules is carried out via a fluid-structure interaction approach using a nested domain approach to enhance the resolution of bridge scour predictions. The geometrical data of the river, islands and structures are obtained from LiDAR, sub-aqueous sonar and in-situ surveying to construct a digital map of the river bathymetry. Our simulation results for the bed evolution of the river reveal complex sediment dynamics near the hydraulic structures. The numerically captured scour depth near some of the structures reach a maximum of about 10 m. The data-driven simulation strategy we present in this work exemplifies a practical simulation-based-engineering-approach to investigate the resilience of infrastructures to extreme flood events in intricate field-scale riverine systems. This work was funded by a Grant from Minnesota Dept. of Transportation.
Channel infiltration from floodflows along the Pawnee River and its tributaries, west-central Kansas
Gillespie, James B.; Perry, C.A.
1988-01-01
Most of the streams is west-central Kansas are ephemeral. Natural recharge to the alluvial aquifers underlying these streams occurs during periods of storm runoff in the ephemeral channels. Proposed flood-retarding structures within the basin will alter the downstream runoff characteristics in these channels by reducing the peak flow and increasing the flow duration. Information concerning channel-infiltration rate, unsaturated and saturated flow, and lithology of the unsaturated zone as related to stream stage and duration was collected along the Pawnee River and its tributaries to determine the effects of the flood-retarding structures. The infiltration rate on ephemeral streams was determined at five sites within the Pawnee River Basin. Tests were conducted in channel infiltrometers constructed by isolating a section of channel with two plastic-lined wooden cofferdams. At two of the sites, perched groundwater mounds intersected the bottom of the channel and reduced the infiltration rate. At two other sites where the perched groundwater mounds did not reach the bottom of the channel, the infiltration rate was directly proportional to the stage. Comparison of infiltration from simulated controlled and uncontrolled floodflows at the five sites indicated an average increase of about 2% with the controlled floodflow. Cumulative infiltration for these simulations ranged from 0.5 to 14.8 acre-ft/mi of channel. (USGS)
Study on ecological regulation of coastal plain sluice
NASA Astrophysics Data System (ADS)
Yu, Wengong; Geng, Bing; Yu, Huanfei; Yu, Hongbo
2018-02-01
Coastal plains are densely populated and economically developed, therefore their importance is self-evident. However, there are some problems related with water in coastal plains, such as low flood control capacity and severe water pollution. Due to complicated river network hydrodynamic force, changeable flow direction and uncertain flood concentration and propagation mechanism, it is rather difficult to use sluice scheduling to realize flood control and tackle water pollution. On the base of the measured hydrological data during once-in-a-century Fitow typhoon in 2013 in Yuyao city, by typical analysis, theoretical analysis and process simulation, some key technologies were researched systematically including plain river network sluice ecological scheduling, “one tide” flood control and drainage scheduling and ecological running water scheduling. In the end, single factor health diagnostic evaluation, unit hydrograph of plain water level and evening tide scheduling were put forward.
Sources of uncertanity as a basis to fill the information gap in a response to flood
NASA Astrophysics Data System (ADS)
Kekez, Toni; Knezic, Snjezana
2016-04-01
Taking into account uncertainties in flood risk management remains a challenge due to difficulties in choosing adequate structural and/or non-structural risk management options. Despite stated measures wrong decisions are often being made when flood occurs. Parameter and structural uncertainties which include model and observation errors as well as lack of knowledge about system characteristics are the main considerations. Real time flood risk assessment methods are predominantly based on measured water level values and vulnerability as well as other relevant characteristics of flood affected area. The goal of this research is to identify sources of uncertainties and to minimize information gap between the point where the water level is measured and the affected area, taking into consideration main uncertainties that can affect risk value at the observed point or section of the river. Sources of uncertainties are identified and determined using system analysis approach and relevant uncertainties are included in the risk assessment model. With such methodological approach it is possible to increase response time with more effective risk assessment which includes uncertainty propagation model. Response phase could be better planned with adequate early warning systems resulting in more time and less costs to help affected areas and save human lives. Reliable and precise information is necessary to raise emergency operability level in order to enhance safety of citizens and reducing possible damage. The results of the EPISECC (EU funded FP7) project are used to validate potential benefits of this research in order to improve flood risk management and response methods. EPISECC aims at developing a concept of a common European Information Space for disaster response which, among other disasters, considers the floods.
NASA Astrophysics Data System (ADS)
ShiouWei, L.
2014-12-01
Reservoirs are the most important water resources facilities in Taiwan.However,due to the steep slope and fragile geological conditions in the mountain area,storm events usually cause serious debris flow and flood,and the flood then will flush large amount of sediment into reservoirs.The sedimentation caused by flood has great impact on the reservoirs life.Hence,how to operate a reservoir during flood events to increase the efficiency of sediment desilting without risk the reservoir safety and impact the water supply afterward is a crucial issue in Taiwan. Therefore,this study developed a novel optimization planning model for reservoir flood operation considering flood control and sediment desilting,and proposed easy to use operating rules represented by decision trees.The decision trees rules have considered flood mitigation,water supply and sediment desilting.The optimal planning model computes the optimal reservoir release for each flood event that minimum water supply impact and maximum sediment desilting without risk the reservoir safety.Beside the optimal flood operation planning model,this study also proposed decision tree based flood operating rules that were trained by the multiple optimal reservoir releases to synthesis flood scenarios.The synthesis flood scenarios consists of various synthesis storm events,reservoir's initial storage and target storages at the end of flood operating. Comparing the results operated by the decision tree operation rules(DTOR) with that by historical operation for Krosa Typhoon in 2007,the DTOR removed sediment 15.4% more than that of historical operation with reservoir storage only8.38×106m3 less than that of historical operation.For Jangmi Typhoon in 2008,the DTOR removed sediment 24.4% more than that of historical operation with reservoir storage only 7.58×106m3 less than that of historical operation.The results show that the proposed DTOR model can increase the sediment desilting efficiency and extend the reservoir life.
Analysis of the high water wave volume for the Sava River near Zagreb
NASA Astrophysics Data System (ADS)
Trninic, Dusan
2010-05-01
The paper analyses volumes of the Sava River high water waves near Zagreb during the period: 1926-2008 (N = 83 years), which is needed for more efficient control of high and flood waters. The primary Sava flood control structures in the City of Zagreb are dikes built on both riverbanks, and the Odra Relief Canal with lateral spillway upstream from the City of Zagreb. Intensive morphological changes in the greater Sava area near Zagreb, and anthropological and climate variations and changes at the Sava catchment up to the Zagreb area require detailed analysis of the water wave characteristics. In one analysis, maximum annual volumes are calculated for high water waves with constant duration of: 10, 20, 30, 40, 50 and 60 days. Such calculations encompass total quantity of water (basic and surface runoff). The log Pearson III distribution is adapted for this series of maximum annual volumes. Based on the results obtained, the interrelations are established between the wave volume as function of duration and occurrence probability. In addition to the analysis of maximum volumes of constant duration, it is interesting to carry out the analyses of maximum volume in excess of the reference discharge since it is very important for the flood control. To determine the reference discharges, a discharge of specific duration is used from an average discharge duration curve. The adopted reference discharges have durations of 50, 40, 30, 20 and 10%. Like in the previous case, log Pearson III distribution is adapted to the maximum wave data series. For reference discharge Q = 604 m3/s (duration 10%), a linear trend is calculated of maximum annual volumes exceeding the reference discharge for the Sava near Zagreb during the analyzed period. The analysis results show a significant decrease trend. A similar analysis is carried out for the following three reference discharges: regular flood control measures at the Sava near Zagreb, which are proclaimed when the water level is 350 cm (Q = 2114 m3/s), extraordinary flood control measures taken when the water level is 450 cm (Q = 2648 m3/s), and the discharge at the deterministic inlet into the Odra Canal of approximately Q = 2300 m3/s. The results of these analyses have shown that water wave volumes higher than the reference discharges occurred in a comparatively small number of years, and that their duration was one to two days.
Jarrett, R.D.; Costa, J.E.
1988-01-01
A multidisciplinary study of precipitation and streamflow data and paleohydrologic studies of channel features was made to analyze the flood hydrology of foothill and mountain streams in the Front Range of Colorado, with emphasis on the Big Thompson River basin, because conventional hydrologic analyses do not adequately characterize the flood hydrology. In the foothills of Colorado, annual floodflows are derived from snowmelt at high elevations in the mountain regions, from rainfall at low elevation in the plains or plateau regions, or from a combination of rain falling on snow or mixed population hydrology. Above approximately 7,500 ft, snowmelt dominates; rain does not contribute to the flood potential. Regional flood-frequency relations were developed and compared with conventional flood-estimating technique results, including an evaluation of the magnitude and frequency of the probable maximum flood. Evaluation of streamflow data and paleoflood investigations provide an alternative for evaluating flood hydrology and the safety of dams. The study indicates the need for additional data collection and research to understand the complexities of the flood hydrology in mountainous regions, especially its effects on flood-plain management and the design of structures in the flood plain. (USGS)
Importance of record length with respect to estimating the 1-percent chance flood
Feaster, Toby D.
2010-01-01
U.S. Geological Survey (USGS) streamflow gages have been established in every State in the Nation, Puerto Rico, and the Trust Territory of the Pacific Islands. From these st reamflow records, estimates of the magnitude and frequency of floods are often developed and used to design transportation and water- conveyance structures to protect lives and property, and to determine flood-insurance rates. Probably the most recognizable flood statistic computed from USGS stream gaging records is the 1- percent (%) chance flood; better known has the 100-year flood. By definition, this is a flood that has a 1% chance of occurring in any given year. The 1% chance flood is a statistical estimate that can be significantly influenced by length of record and extreme flood events captured in that record. Consequently, it is typically recommended that flood statistics be updated on some regular interval such as every 10 years. This paper examines the influence of record length on the 1% chance flood for the Broad River in Georgia and the substantial difference that can occur in the estimate based on record length and the hydrologic conditions under which that record was collected.
Weiss, Lawrence A.; Sears, Michael P.; Cervione, Michael A.
1994-01-01
Effects of urbanization have increased the frequency and size of floods along certain reaches of Harbor Brook and Crow Hollow Brook in Meriden, Conn. A floodprofile-modeling study was conducted to model the effects of selected channel and structural modifications on flood elevations and inundated areas. The study covered the reach of Harbor Brook downstream from Interstate 691 and the reach of Crow Hollow Brook downstream from Johnson Avenue. Proposed modifications, which include changes to bank heights, channel geometry, structural geometry, and streambed armoring on Harbor Brook and changes to bank heights on Crow Hollow Brook, significantly lower flood elevations. Results of the modeling indicate a significant reduction of flood elevations for the 10-year, 25-year, 35-year, 50-year, and 100-year flood frequencies using proposed modifications to (1 ) bank heights between Harbor Brook Towers and Interstate 691 on Harbor Brook, and between Centennial Avenue and Johnson Avenue on Crow Hollow Brook; (2) channel geometry between Coe Avenue and Interstate 69 1 on Harbor Brook; (3) bridge and culvert opening geometry between Harbor Brook Towers and Interstate 691 on Harbor Brook; and (4) channel streambed armoring between Harbor Brook Towers and Interstate 691 on Harbor Brook. The proposed modifications were developed without consideration of cost-benefit ratios.
Regional flood frequency analysis in Triveneto (Italy): climate and scale controls
NASA Astrophysics Data System (ADS)
Persiano, Simone; Castellarin, Attilio; Domeneghetti, Alessio; Brath, Armando
2016-04-01
The growing concern about the possible effects of climate change on flood frequency regime is leading Authorities to review previously proposed procedures for design-flood estimation, such as national regionalization approaches. Our study focuses on the Triveneto region, a broad geographical area in North-eastern Italy consisting of the administrative regions of Trentino-Alto Adige, Veneto and Friuli-Venezia Giulia. A reference procedure for design flood estimation in Triveneto is available from the Italian NCR research project "VA.PI.", which developed a regional model using annual maximum series (AMS) of peak discharges that were collected up to the 80s by the former Italian Hydrometeorological Service. We consider a very detailed AMS database that we recently compiled for ~80 catchments located in Triveneto. Our dataset includes the historical data mentioned above, together with more recent data obtained from Regional Services and annual maximum peak streamflows extracted from inflow series to artificial reservoirs and provided by dam managers. All ~80 study catchments are characterized in terms of several geomorphologic and climatic descriptors. The main objectives of our study are: (1) to check whether climatic and scale controls on flood frequency regime in Triveneto are similar to the controls that were recently found in Europe; (2) to verify the possible presence of trends as well as abrupt changes in the intensity and frequency of flood extremes by looking at changes in time of regional L-moments of annual maximum floods; (3) to assess the reliability and representativeness of the reference procedure for design flood estimation relative to flood data that were not included in the VA.PI. dataset (i.e. more recent data collected after the 80s and historical data provided by dam managers); (4) to develop an updated reference procedure for design flood estimation in Triveneto by using a focused-pooling approach (i.e. Region of Influence, RoI).
Basaltic Ring Structures as an Analog for Ring Features in Athabasca Valles, Mars
NASA Technical Reports Server (NTRS)
Jaeger, W. L.; Keszthelyi, L. P.; Burr, D. M.; Emery, J. P.; Baker, V. R.; McEwen, A. S.; Miyamoto, H.
2005-01-01
Basaltic ring structures (BRSs) are enigmatic, quasi-circular landforms in eastern Washington State that were first recognized in 1965. They remained a subject of geologic scrutiny through the 1970 s and subsequently faded from the spotlight, but recent Mars Orbiter Camera (MOC) images showing morphologically similar structures in Athabasca Valles, Mars, have sparked renewed interest in BRSs. The only known BRSs occur in the Channeled Scabland, a region where catastrophic Pleistocene floods from glacial Lake Missoula eroded into the Miocene flood basalts of the Columbia Plateau. The geologic setting of the martian ring structures (MRSs) is similar; Athabasca Valles is a young channel system that formed when catastrophic aqueous floods carved into a volcanic substrate. This study investigates the formation of terrestrial BRSs and examines the extent to which they are appropriate analogs for the MRSs in Athabasca Valles.
44 CFR 65.6 - Revision of base flood elevation determinations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies...
44 CFR 65.6 - Revision of base flood elevation determinations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies...
44 CFR 65.6 - Revision of base flood elevation determinations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies...
44 CFR 65.6 - Revision of base flood elevation determinations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program... new discharge estimates. (6) Any computer program used to perform hydrologic or hydraulic analyses in... control and/or the regulation of flood plain lands. For computer programs adopted by non-Federal agencies...
RainyDay: An Online, Open-Source Tool for Physically-based Rainfall and Flood Frequency Analysis
NASA Astrophysics Data System (ADS)
Wright, D.; Yu, G.; Holman, K. D.
2017-12-01
Flood frequency analysis in ungaged or changing watersheds typically requires rainfall intensity-duration-frequency (IDF) curves combined with hydrologic models. IDF curves only depict point-scale rainfall depth, while true rainstorms exhibit complex spatial and temporal structures. Floods result from these rainfall structures interacting with watershed features such as land cover, soils, and variable antecedent conditions as well as river channel processes. Thus, IDF curves are traditionally combined with a variety of "design storm" assumptions such as area reduction factors and idealized rainfall space-time distributions to translate rainfall depths into inputs that are suitable for flood hydrologic modeling. The impacts of such assumptions are relatively poorly understood. Meanwhile, modern precipitation estimates from gridded weather radar, grid-interpolated rain gages, satellites, and numerical weather models provide more realistic depictions of rainfall space-time structure. Usage of such datasets for rainfall and flood frequency analysis, however, are hindered by relatively short record lengths. We present RainyDay, an open-source stochastic storm transposition (SST) framework for generating large numbers of realistic rainfall "scenarios." SST "lengthens" the rainfall record by temporal resampling and geospatial transposition of observed storms to extract space-time information from regional gridded rainfall data. Relatively short (10-15 year) records of bias-corrected radar rainfall data are sufficient to estimate rainfall and flood events with much longer recurrence intervals including 100-year and 500-year events. We describe the SST methodology as implemented in RainyDay and compare rainfall IDF results from RainyDay to conventional estimates from NOAA Atlas 14. Then, we demonstrate some of the flood frequency analysis properties that are possible when RainyDay is integrated with a distributed hydrologic model, including robust estimation of flood hazards in a changing watershed. The U.S. Bureau of Reclamation is supporting the development of a web-based variant of RainyDay, a "beta" version of which is available at http://her.cee.wisc.edu/projects/rainyday/.
Prevention, adaptation, and threat denial: flooding experiences in the Netherlands.
Zaalberg, Ruud; Midden, Cees; Meijnders, Anneloes; McCalley, Teddy
2009-12-01
Delta areas such as the Netherlands are more and more at risk of future flooding due to global climate change. Motivating residents living in flood-prone areas to effectively cope with local floods may lead to minimization of material losses and loss of life. The aim of this research was to investigate whether the extent to which residents had been exposed to flooding in the past was a key factor in motivating residents to effectively cope with future flooding. We also focused on the psychological variables that mediated this relationship. We conducted a survey (N = 516) among flood victims and nonvictims. We assessed subjective experiences due to past flooding, affective and cognitive appraisals, and coping responses. Results show that victims reported stronger emotions (negative and positive), and the receipt of more social support due to past flooding than did nonvictims. Moreover, victims worry more about future flooding, perceive themselves as more vulnerable to future flooding, perceive the consequences of future flooding as more severe, and have stronger intentions to take adaptive actions in the future than nonvictims. Structural equation modeling reveals that the latter effect was fully mediated by specific experiences and appraisals. Insights into factors and processes that have the potential to motivate residents to effectively cope with future floods may prove helpful in developing interventions to inform residents how to act effectively in case of an imminent flood.
A Resilience Pattern in Village level: The Case Babalan Village, Pati, Central Java Indonesia
NASA Astrophysics Data System (ADS)
Nurwahyudi, Ragil; Maryono
2018-02-01
Based on the Indonesia Disaster Prone Index 2013, Pati Regency is a high risk area of disaster and is ranked 11th level Central Java province while nationally ranked 156. Babalan Village located on the edge of Juwana River has disaster history from 2006-2014 shows flood disaster Giving the greatest probability and impact followed by rat pest, tornado, drought, fire. The public recognizes the signs of a continuous flooding of heavy rains accompanied by clouds all over the edge, the continuous rise of the Juwana River surface to overflow, ants, isoptera, and animals out of its nest, "Yuyu Bule", earthworms out, clear water for "Rowo floods ", Brownish water for the flash floods. Most residents have boats and can make rafts from makeshift materials (jerry cans, bamboo, banana stems). Make "Ranggon" at home for those who do not evacuate for a place to stay during the flood. Citizens elevate the kitchen (to evacuate people and goods / household furniture). Breeding Tyto Alba owl for rats pest control post-flood and controllers in the fields. Develop vegetable crops in the yard with viticulture pattern (upstairs) if flood can be moved and can eat vegetables during flood. Have food reserves for stock before outside help comes. Citizens initiate "Water Bath honesty" to meet the water needs during the dry season.
Devils Lake Flood Control Project. Section 205. Detailed Project Report.
1983-10-01
Sd.U.JS IWE 00 RlEP0OAT II PERIOD COVERED SE~CTION 205 DETAILED PROJECT REPORT FLOOD CONTROL Final. Oct 1979-July 1983 PROJECT AT DEVILS LAKE. NORTH...a few feet. The light loading proposed for the site and thick cover of impervious material make more detailed evaluation of the strength and water...can cause low-oapaoity channels to overflow, resulting in flood damages to crops . Because the subbasin has no outlet near the existing water surface
A dimension reduction method for flood compensation operation of multi-reservoir system
NASA Astrophysics Data System (ADS)
Jia, B.; Wu, S.; Fan, Z.
2017-12-01
Multiple reservoirs cooperation compensation operations coping with uncontrolled flood play vital role in real-time flood mitigation. This paper come up with a reservoir flood compensation operation index (ResFCOI), which formed by elements of flood control storage, flood inflow volume, flood transmission time and cooperation operations period, then establish a flood cooperation compensation operations model of multi-reservoir system, according to the ResFCOI to determine a computational order of each reservoir, and lastly the differential evolution algorithm is implemented for computing single reservoir flood compensation optimization in turn, so that a dimension reduction method is formed to reduce computational complexity. Shiguan River Basin with two large reservoirs and an extensive uncontrolled flood area, is used as a case study, results show that (a) reservoirs' flood discharges and the uncontrolled flood are superimposed at Jiangjiaji Station, while the formed flood peak flow is as small as possible; (b) cooperation compensation operations slightly increase in usage of flood storage capacity in reservoirs, when comparing to rule-based operations; (c) it takes 50 seconds in average when computing a cooperation compensation operations scheme. The dimension reduction method to guide flood compensation operations of multi-reservoir system, can make each reservoir adjust its flood discharge strategy dynamically according to the uncontrolled flood magnitude and pattern, so as to mitigate the downstream flood disaster.
Hydrological and sedimentary controls over fluvial thermal erosion, the Lena River, central Yakutia
NASA Astrophysics Data System (ADS)
Tananaev, Nikita I.
2016-01-01
Water regime and sedimentary features of the middle Lena River reach near Yakutsk, central Yakutia, were studied to assess their control over fluvial thermal erosion. The Lena River floodplain in the studied reach has complex structure and embodies multiple levels varying in height and origin. Two key sites, corresponding to high and medium floodplain levels, were surveyed in 2008 to describe major sedimentary units and properties of bank material. Three units are present in both profiles, corresponding to topsoil, overbank (cohesive), and channel fill (noncohesive) deposits. Thermoerosional activity is mostly confined to a basal layer of frozen channel fill deposits and in general occurs within a certain water level interval. Magnitude-frequency analysis of water level data from Tabaga gauging station shows that a single interval can be deemed responsible for the initiation of thermal action and development of thermoerosional notches. This interval corresponds to the discharges between 21,000 and 31,000 m3 s- 1, observed normally during spring meltwater peak and summer floods. Competence of fluvial thermal erosion depends on the height of floodplain level being eroded, as it acts preferentially in high floodplain banks. In medium floodplain banks, thermal erosion during spring flood is constrained by insufficient bank height, and erosion is essentially mechanical during summer flood season. Bank retreat rate is argued to be positively linked with bank height under periglacial conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigg, R.B.; Schechter, D.S.
The overall goal of this project was to improve the efficiency of miscible C0{sub 2} floods and enhance the prospects for flooding heterogeneous reservoirs. This objective was accomplished through experimental and modeling research in three task areas: (1) foams for selective mobility control in heterogeneous reservoirs,( 2) reduction of the amount of C0{sub 2} required in C0{sub 2} floods, and (3) low IFT processe and the possibility of C0{sub 2} flooding in fractured reservoirs. This report provides results from the three-year project for each of the three task areas.
NASA Technical Reports Server (NTRS)
Edwardo, H. A.; Moulis, F. R.; Merry, C. J.; Mckim, H. L.; Kerber, A. G.; Miller, M. A.
1985-01-01
The Pittsburgh District, Corps of Engineers, has conducted feasibility analyses of various procedures for performing flood damage assessments along the main stem of the Ohio River. Procedures using traditional, although highly automated, techniques and those based on geographic information systems have been evaluated at a test site, the City of New Martinsville, Wetzel County, WV. The flood damage assessments of the test site developed from an automated, conventional structure-by-structure appraisal served as the ground truth data set. A geographic information system was developed for the test site which includes data on hydraulic reach, ground and reference flood elevations, and land use/cover. Damage assessments were made using land use mapping developed from an exhaustive field inspection of each tax parcel. This ground truth condition was considered to provide the best comparison of flood damages to the conventional approach. Also, four land use/cover data sets were developed from Thematic Mapper Simulator (TMS) and Landsat-4 Thematic Mapper (TM) data. One of these was also used to develop a damage assessment of the test site. This paper presents the comparative absolute and relative accuracies of land use/cover mapping and flood damage assessments, and the recommended role of geographic information systems aided by remote sensing for conducting flood damage assessments and updates along the main stem of the Ohio River.
1980-02-01
exceeded by floods _ greater than 6 percent of the Probable Maximum Flood ( PKF ), the test flood for spillway adequacy. Our screening criteria specifies...capacity at the top of the * dam (elevation 637) is 195 cfs or six percent of the routed O . Test Flood peak outflow. The dam is in FAIR condition at the...environment of the structure. It is .important to note that the condition of a dam depends on numerous and constantly changing internal and external
High-resolution urban flood modelling - a joint probability approach
NASA Astrophysics Data System (ADS)
Hartnett, Michael; Olbert, Agnieszka; Nash, Stephen
2017-04-01
The hydrodynamic modelling of rapid flood events due to extreme climatic events in urban environment is both a complex and challenging task. The horizontal resolution necessary to resolve complexity of urban flood dynamics is a critical issue; the presence of obstacles of varying shapes and length scales, gaps between buildings and the complex geometry of the city such as slopes affect flow paths and flood levels magnitudes. These small scale processes require a high resolution grid to be modelled accurately (2m or less, Olbert et al., 2015; Hunter et al., 2008; Brown et al., 2007) and, therefore, altimetry data of at least the same resolution. Along with availability of high-resolution LiDAR data and computational capabilities, as well as state of the art nested modelling approaches, these problems can now be overcome. Flooding and drying, domain definition, frictional resistance and boundary descriptions are all important issues to be addressed when modelling urban flooding. In recent years, the number of urban flood models dramatically increased giving a good insight into various modelling problems and solutions (Mark et al., 2004; Mason et al., 2007; Fewtrell et al., 2008; Shubert et al., 2008). Despite extensive modelling work conducted for fluvial (e.g. Mignot et al., 2006; Hunter et al., 2008; Yu and Lane, 2006) and coastal mechanisms of flooding (e.g. Gallien et al., 2011; Yang et al., 2012), the amount of investigations into combined coastal-fluvial flooding is still very limited (e.g. Orton et al., 2012; Lian et al., 2013). This is surprising giving the extent of flood consequences when both mechanisms occur simultaneously, which usually happens when they are driven by one process such as a storm. The reason for that could be the fact that the likelihood of joint event is much smaller than those of any of the two contributors occurring individually, because for fast moving storms the rainfall-driven fluvial flood arrives usually later than the storm surge (Divoky et al., 2005). Nevertheless, such events occur and in Ireland alone there are several cases of serious damage due to flooding resulting from a combination of high sea water levels and river flows driven by the same meteorological conditions (e.g. Olbert et al. 2015). A November 2009 fluvial-coastal flooding of Cork City bringing €100m loss was one such incident. This event was used by Olbert et al. (2015) to determine processes controlling urban flooding and is further explored in this study to elaborate on coastal and fluvial flood mechanisms and their roles in controlling water levels. The objective of this research is to develop a methodology to assess combined effect of multiple source flooding on flood probability and severity in urban areas and to establish a set of conditions that dictate urban flooding due to extreme climatic events. These conditions broadly combine physical flood drivers (such as coastal and fluvial processes), their mechanisms and thresholds defining flood severity. The two main physical processes controlling urban flooding: high sea water levels (coastal flooding) and high river flows (fluvial flooding), and their threshold values for which flood is likely to occur, are considered in this study. Contribution of coastal and fluvial drivers to flooding and their impacts are assessed in a two-step process. The first step involves frequency analysis and extreme value statistical modelling of storm surges, tides and river flows and ultimately the application of joint probability method to estimate joint exceedence return periods for combination of surges, tide and river flows. In the second step, a numerical model of Cork Harbour MSN_Flood comprising a cascade of four nested high-resolution models is used to perform simulation of flood inundation under numerous hypothetical coastal and fluvial flood scenarios. The risk of flooding is quantified based on a range of physical aspects such as the extent and depth of inundation (Apel et al., 2008) The methodology includes estimates of flood probabilities due to coastal- and fluvial-driven processes occurring individually or jointly, mechanisms of flooding and their impacts on urban environment. Various flood scenarios are examined in order to demonstrate that this methodology is necessary to quantify the important physical processes in coastal flood predictions. Cork City, located on the south of Ireland subject to frequent coastal-fluvial flooding, is used as a study case.
Framework for probabilistic flood risk assessment in an Alpine region
NASA Astrophysics Data System (ADS)
Schneeberger, Klaus; Huttenlau, Matthias; Steinberger, Thomas; Achleitner, Stefan; Stötter, Johann
2014-05-01
Flooding is among the natural hazards that regularly cause significant losses to property and human lives. The assessment of flood risk delivers crucial information for all participants involved in flood risk management and especially for local authorities and insurance companies in order to estimate the possible flood losses. Therefore a framework for assessing flood risk has been developed and is introduced with the presented contribution. Flood risk is thereby defined as combination of the probability of flood events and of potential flood damages. The probability of occurrence is described through the spatial and temporal characterisation of flood. The potential flood damages are determined in the course of vulnerability assessment, whereas, the exposure and the vulnerability of the elements at risks are considered. Direct costs caused by flooding with the focus on residential building are analysed. The innovative part of this contribution lies on the development of a framework which takes the probability of flood events and their spatio-temporal characteristic into account. Usually the probability of flooding will be determined by means of recurrence intervals for an entire catchment without any spatial variation. This may lead to a misinterpretation of the flood risk. Within the presented framework the probabilistic flood risk assessment is based on analysis of a large number of spatial correlated flood events. Since the number of historic flood events is relatively small additional events have to be generated synthetically. This temporal extrapolation is realised by means of the method proposed by Heffernan and Tawn (2004). It is used to generate a large number of possible spatial correlated flood events within a larger catchment. The approach is based on the modelling of multivariate extremes considering the spatial dependence structure of flood events. The input for this approach are time series derived from river gauging stations. In a next step the historic and synthetic flood events have to be spatially interpolated from point scale (i.e. river gauges) to the river network. Therefore, topological kriging (Top-kriging) proposed by Skøien et al. (2006) is applied. Top-kriging considers the nested structure of river networks and is therefore suitable to regionalise flood characteristics. Thus, the characteristics of a large number of possible flood events can be transferred to arbitrary locations (e.g. community level) at the river network within a study region. This framework has been used to generate a set of spatial correlated river flood events in the Austrian Federal Province of Vorarlberg. In addition, loss-probability-curves for each community has been calculated based on official inundation maps of public authorities, elements at risks and their vulnerability. One location along the river network within each community refers as interface between the set of flood events and the individual loss-probability relationships for the individual communities. Consequently, every flood event from the historic and synthetic generated dataset can be monetary evaluated. Thus, a time series comprising a large number of flood events and their corresponding monetary losses serves as basis for a probabilistic flood risk assessment. This includes expected annual losses and estimates of extreme event losses, which occur over the course of a certain time period. The gained results are essential decision-support for primary insurers, reinsurance companies and public authorities in order to setup a scale adequate risk management.
Floods of August and September 2004 in Eastern Ohio: FEMA Disaster Declaration 1556
Ebner, Andrew D.; Straub, David E.; Lageman, Jonathan D.
2008-01-01
A band of severe thunderstorms at the end of August 2004 and the passage of the remnants of Hurricanes Frances and Ivan during September 2004 caused severe flooding in eastern Ohio during August and September 2004. Record peak streamflow occurred at 12 U.S. Geological Survey (USGS) streamgages. Damages caused by the flooding produced by these storms were severe enough for 21 counties in eastern Ohio to be declared Federal disaster areas. In all, there were 4 storm- or flood-related deaths, 2,563 private structures damaged or destroyed, and an estimated $81 million in damages. This report describes the meteorological factors that resulted in severe flooding in eastern Ohio during August 27-September 27, 2004, and examines the damages caused by the storms and flooding. Peak-stage, peak-streamflow, and recurrence-interval data are reported for selected USGS streamgages. Flood profiles determined by the USGS are presented for selected streams.
Putnam, A.L.
1984-01-01
Floods have been and continue to be one of the most destructive hazards facing the people of the United States. Of all the natural hazards, floods are the most widespread and the most ruinous to life and property. Today, floods are a greater menace to our welfare than ever before because we live in large numbers near water and have developed a complex reliance upon it. From large rivers to country creeks, from mountain rills to the trickles that occasionally dampen otherwise arid wastelands, every stream in the United States is subject to flooding at some time. Floods strike in myriad forms, including sea surges driven by wild winds or tsunamis churned into fury by seismic activity. By far the most frequent, however, standing in a class by themselves, are the inland, freshwater floods that are caused by rain, by melting snow and ice, or by the bursting of structures that man has erected to protect himself and his belongings from angry waters.
Effect of Flooding on Starch Accumulation in Chloroplasts of Sunflower (Helianthus annuus L.) 1
Wample, Robert L.; Davis, Ronald W.
1983-01-01
Chloroplasts in leaves of sunflower (Helianthus annuus L. cv hybrid 894) whose roots were flooded for 4 days showed an increase in the level of starch in chloroplasts when examined with the electron microscope. Starch determination showed significantly higher levels in leaves of flooded plants. Chloroplast and mitochondrial structure seemed otherwise normal. Images Fig. 1 Fig. 2 PMID:16663176
da Silva Ferreira, Cristiane; Piedade, Maria Teresa Fernandez; Tiné, Marco Aurélio Silva; Rossatto, Davi Rodrigo; Parolin, Pia; Buckeridge, Marcos Silveira
2009-01-01
Background and Aims In the Amazonian floodplains plants withstand annual periods of flooding which can last 7 months. Under these conditions seedlings remain submerged in the dark for long periods since light penetration in the water is limited. Himatanthus sucuuba is a tree species found in the ‘várzea’ (VZ) floodplains and adjacent non-flooded ‘terra-firme’ (TF) forests. Biochemical traits which enhance flood tolerance and colonization success of H. sucuuba in periodically flooded environments were investigated. Methods Storage carbohydrates of seeds of VZ and TF populations were extracted and analysed by HPAEC/PAD. Starch was analysed by enzyme (glucoamylase) degradation followed by quantification of glucose oxidase. Carbohydrate composition of roots of VZ and TF seedlings was studied after experimental exposure to a 15-d period of submersion in light versus darkness. Key Results The endosperm contains a large proportion of the seed reserves, raffinose being the main non-structural carbohydrate. Around 93 % of the cell wall storage polysaccharides (percentage dry weight basis) in the endosperm of VZ seeds was composed of mannose, while soluble sugars accounted for 2·5%. In contrast, 74 % of the endosperm in TF seeds was composed of galactomannans, while 22 % of the endosperm was soluble sugars. This suggested a larger carbohydrate allocation to germination in TF populations whereas VZ populations allocate comparatively more to carbohydrates mobilized during seedling development. The concentration of root non-structural carbohydrates in non-flooded seedlings strongly decreased after a 15-d period of darkness, whereas flooded seedlings were less affected. These effects were more pronounced in TF seedlings, which showed significantly lower root non-structural carbohydrate concentrations. Conclusions There seem to be metabolic adjustments in VZ but not TF seedlings that lead to adaptation to the combined stresses of darkness and flooding. This seems to be important for the survival of the species in these contrasting environments, leading these populations to different directions during evolution. PMID:19770164
The influence of pore structure parameters on the digital core recovery degree
NASA Astrophysics Data System (ADS)
Xia, Huifen; Zhao, Ling; Sun, Yanyu; Yuan, Shi
2017-05-01
Constructing digital core in the research of water flooding or polymer flooding oil displacement efficiency has its unique advantage. Using mercury injection experiment measured pore throat size distribution frequency, coordination number measured by CT scanning method and imbibition displacement method is used to measure the wettability of the data, on the basis of considering pore throat ratio, wettability, using the principle of adaptive porosity, on the basis of fitting the permeability to complete the construction of digital core. The results show that the model of throat distribution is concentrated water flooding recovery degree is higher, and distribution is more decentralized model polymer flooding recovery degree is higher. Around the same number of PV in poly, coordination number model of water flooding and polymer flooding recovery degree is higher.
When and how long to flood for insect control
USDA-ARS?s Scientific Manuscript database
Flooding in late spring (late May or early July) can remove tremendous numbers of arthropods from cranberry beds. For over 100 years, the Wisconsin cranberry industry has used flooding as a way to suppress arthropod populations. One critical element of this strategy is the trade-off between lethalit...
The Effect of Disaster on the Health and Well-Being of Older Women.
ERIC Educational Resources Information Center
International Journal of Aging and Human Development, 1986
1986-01-01
Compared post-disaster health status and well-being of 122 elderly female victims of major flood with status of 45 controls. Significant differences were found in self-perceptions, including state of mind after the flood and frequency of thinking about the flood matters. (Author/NRB)
Use of clay to remediate cadmium contaminated soil under different water management regimes.
Li, Jianrui; Xu, Yingming
2017-07-01
We examined in situ remediation of sepiolite on cadmium-polluted soils with diverse water regimes, and several variables including brown rice Cd, exchangeable Cd, pH, and available Fe/P. pH, available Fe/P in soils increased gradually during continuous flooding, which contributed to Cd absorption on colloids. In control group (untreated soils), compared to conventional irrigation, brown rice Cd in continuous flooding reduced by 37.9%, and that in wetting irrigation increased by 31.0% (p<0.05). In contrast to corresponding controls, brown rice Cd in sepiolite treated soils reduced by 44.4%, 34.5% and 36.8% under continuous flooding, conventional irrigation and wetting irrigation (p<0.05), and exchangeable Cd in amended soils reduced by 27.5-49.0%, 14.3-40.5%, and 24.9-32.8% under three water management regimes (p<0.05). Compared to corresponding controls, decreasing amplitudes of exchangeable Cd and brown rice Cd in sepiolite treated soils were higher in continuous flooding than in conventional irrigation and wetting irrigation. Continuous flooding management promoted soil Cd immobilization by sepiolite. Copyright © 2017. Published by Elsevier Inc.
Tortorelli, R.L.; Bergman, D.L.
1985-01-01
Statewide regression relations for Oklahoma were determined for estimating peak discharge of floods for selected recurrence intervals from 2 to 500 years. The independent variables required for estimating flood discharge for rural streams are contributing drainage area and mean annual precipitation. Main-channel slope, a variable used in previous reports, was found to contribute very little to the accuracy of the relations and was not used. The regression equations are applicable for watersheds with drainage areas less than 2,500 square miles that are not significantly affected by regulation from manmade works. These relations are presented in graphical form for easy application. Limitations on the use of the regression relations and the reliability of regression estimates for rural unregulated streams are discussed. Basin and climatic characteristics, log-Pearson Type III statistics and the flood-frequency relations for 226 gaging stations in Oklahoma and adjacent states are presented. Regression relations are investigated for estimating flood magnitude and frequency for watersheds affected by regulation from small FRS (floodwater retarding structures) built by the U.S. Soil Conservation Service in their watershed protection and flood prevention program. Gaging-station data from nine FRS regulated sites in Oklahoma and one FRS regulated site in Kansas are used. For sites regulated by FRS, an adjustment of the statewide rural regression relations can be used to estimate flood magnitude and frequency. The statewide regression equations are used by substituting the drainage area below the FRS, or drainage area that represents the percent of the basin unregulated, in the contributing drainage area parameter to obtain flood-frequency estimates. Flood-frequency curves and flow-duration curves are presented for five gaged sites to illustrate the effects of FRS regulation on peak discharge.
Reconstruction of the 1945 Wieringermeer Flood
NASA Astrophysics Data System (ADS)
Hoes, O. A. C.; Hut, R. W.; van de Giesen, N. C.; Boomgaard, M.
2013-03-01
The present state-of-the-art in flood risk assessment focuses on breach models, flood propagation models, and economic modelling of flood damage. However, models need to be validated with real data to avoid erroneous conclusions. Such reference data can either be historic data, or can be obtained from controlled experiments. The inundation of the Wieringermeer polder in the Netherlands in April 1945 is one of the few examples for which sufficient historical information is available. The objective of this article is to compare the flood simulation with flood data from 1945. The context, the breach growth process and the flood propagation are explained. Key findings for current flood risk management addresses the importance of the drainage canal network during the inundation of a polder, and the uncertainty that follows from not knowing the breach growth parameters. This case study shows that historical floods provide valuable data for the validation of models and reveal lessons that are applicable in current day flood risk management.
Combining Space-Based and In-Situ Measurements to Track Flooding in Thailand
NASA Technical Reports Server (NTRS)
Chien, Steve; Doubleday, Joshua; Mclaren, David; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royal; Boonya-aaroonnet, Surajate; Thanapakpawin, Porranee; Khunboa, Chatchai; Leelapatra, Watis;
2011-01-01
We describe efforts to integrate in-situ sensing, space-borne sensing, hydrological modeling, active control of sensing, and automatic data product generation to enhance monitoring and management of flooding. In our approach, broad coverage sensors and missions such as MODIS, TRMM, and weather satellite information and in-situ weather and river gauging information are all inputs to track flooding via river basin and sub-basin hydrological models. While these inputs can provide significant information as to the major flooding, targetable space measurements can provide better spatial resolution measurements of flooding extent. In order to leverage such assets we automatically task observations in response to automated analysis indications of major flooding. These new measurements are automatically processed and assimilated with the other flooding data. We describe our ongoing efforts to deploy this system to track major flooding events in Thailand.
De Vleeschauwer, K; Weustenraad, J; Nolf, C; Wolfs, V; De Meulder, B; Shannon, K; Willems, P
2014-01-01
Urbanization and climate change trends put strong pressures on urban water systems. Temporal variations in rainfall, runoff and water availability increase, and need to be compensated for by innovative adaptation strategies. One of these is stormwater retention and infiltration in open and/or green spaces in the city (blue-green water integration). This study evaluated the efficiency of three adaptation strategies for the city of Turnhout in Belgium, namely source control as a result of blue-green water integration, retention basins located downstream of the stormwater sewers, and end-of-pipe solutions based on river flood control reservoirs. The efficiency of these options is quantified by the reduction in sewer and river flood frequencies and volumes, and sewer overflow volumes. This is done by means of long-term simulations (100-year rainfall simulations) using an integrated conceptual sewer-river model calibrated to full hydrodynamic sewer and river models. Results show that combining open, green zones in the city with stormwater retention and infiltration for only 1% of the total city runoff area would lead to a 30 to 50% reduction in sewer flood volumes for return periods in the range 10-100 years. This is due to the additional surface storage and infiltration and consequent reduction in urban runoff. However, the impact of this source control option on downstream river floods is limited. Stormwater retention downstream of the sewer system gives a strong reduction in peak discharges to the receiving river. However due to the difference in response time between the sewer and river systems, this does not lead to a strong reduction in river flood frequency. The paper shows the importance of improving the interface between urban design and water management, and between sewer and river flood management.
NASA Astrophysics Data System (ADS)
Wunderlich, S.; Borken, W.
2012-08-01
Peatlands store large amounts of organic carbon, but the carbon stock is sensitive to changes in precipitation or water table manipulations. Restoration of drained peatlands by drain blocking and flooding is a common measure to conserve and augment the carbon stock of peatland soils. Here, we report to what extent flooding affected the contribution of heterotrophic and rhizosphere respiration to soil CO2 efflux in a grass-dominated mountain fen in Germany. Soil CO2 efflux was measured in three un-manipulated control plots and three flooded plots in two consecutive years. Flooding was achieved by permanent irrigation during the growing seasons. Radiocarbon signatures of CO2 from different sources including soil CO2 efflux, incubated peat cores and live grass roots were repeatedly analyzed for partitioning of soil CO2 efflux. Additionally, heterotrophic respiration and its radiocarbon signature were determined by eliminating rhizosphere respiration in trenched subplots (only control). In the control plots, rhizosphere respiration determined by 14C signatures contributed between 47 and 61% during the growing season, but was small (4 ± 8%) immediately before budding. Trenching revealed a smaller rhizosphere contribution of 33 ± 8% (2009) and 22 ± 9% (2010) during growing seasons. Flooding reduced annual soil CO2 efflux of the fen by 42% in 2009 and by 30% in 2010. The reduction was smaller in 2010 mainly through naturally elevated water level in the control plots. A one-week interruption of irrigation caused a strong short-lived increase in soil CO2 efflux, demonstrating the sensitivity of the fen to water table drawdown near the peat surface. The reduction in soil CO2 efflux in the flooded plots diminished the relative proportion of rhizosphere respiration from 56 to 46%, suggesting that rhizosphere respiration was slightly more sensitive to flooding than heterotrophic respiration.
A global framework for future costs and benefits of river-flood protection in urban areas
NASA Astrophysics Data System (ADS)
Ward, Philip J.; Jongman, Brenden; Aerts, Jeroen C. J. H.; Bates, Paul D.; Botzen, Wouter J. W.; Diaz Loaiza, Andres; Hallegatte, Stephane; Kind, Jarl M.; Kwadijk, Jaap; Scussolini, Paolo; Winsemius, Hessel C.
2017-09-01
Floods cause billions of dollars of damage each year, and flood risks are expected to increase due to socio-economic development, subsidence, and climate change. Implementing additional flood risk management measures can limit losses, protecting people and livelihoods. Whilst several models have been developed to assess global-scale river-flood risk, methods for evaluating flood risk management investments globally are lacking. Here, we present a framework for assessing costs and benefits of structural flood protection measures in urban areas around the world. We demonstrate its use under different assumptions of current and future climate change and socio-economic development. Under these assumptions, investments in dykes may be economically attractive for reducing risk in large parts of the world, but not everywhere. In some regions, economically efficient investments could reduce future flood risk below today’s levels, in spite of climate change and economic growth. We also demonstrate the sensitivity of the results to different assumptions and parameters. The framework can be used to identify regions where river-flood protection investments should be prioritized, or where other risk-reducing strategies should be emphasized.
Extent and frequency of floods on Delaware River in vicinity of Belvidere, New Jersey
Farlekas, George M.
1966-01-01
A stream overflowing its banks is a natural phenomenon. This natural phenomenon of flooding has occurred on the Delaware River in the past and will occur in the future. T' o resulting inundation of large areas can cause property damage, business losses and possible loss of life, and may result in emergency costs for protection, rescue, and salvage work. For optimum development of the river valley consistent with the flood risk, an evaluation of flood conditions is necessary. Basic data and the interpretation of the data on the regimen of the streams, particularly the magnitude of floods to be expected, the frequency of their occurrence, and the areas inundated, are essential for planning and development of flood-prone areas.This report presents information relative to the extent, depth, and frequency of floods on the Delaware River and its tributaries in the vicinity of Belvidere, N.J. Flooding on the tributaries detailed in the report pertains only to the effect of backwater from the Delaware River. Data are presented for several past floods with emphasis given to the floods of August 19, 1955 and May 24, 1942. In addition, information is given for a hypothetical flood based on the flood of August 19, 1955 modified by completed (since 1955) and planned flood-control works.By use of relations presented in this report the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Delaware River under study. Flood data and the evaluation of the data are presented so that local and regional agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U.S. Geological Survey regard this program of flood-plain inundation studies as a positive step toward flood-damage prevention. Flood-plain inundation studies, when followed by appropriate land-use regulations, are a valuable and economical supplement to physical works for flood control, such as dams and levees. Both physical works and flood-plain regulations are included in the comprehensive plans for development of the Delaware River basin.Recommendations for land use, or suggestions for limitations of land use, are not made herein. Other reports on recommended general use and regulation of land in flood-prone areas are available (Dola, 1961; White, 1961; American Society of Civil Engineers Task Force on Flood Plain Regulations, 1962; and Goddard, 1963). The primary responsibility for planning for the optimum land use in the flood plain and the implementation of flood-plain zoning or other regulations to achieve such optimum use rest with the state and local interests. The preparation of this report was undertaken after consultation with representatives of the Lehigh-Northampton Counties, Pennsylvania, Joint Planning Commission and the Warren County, New Jersey, Regional Planning Board and after both had demonstrated their need for flood-plain information and their willingness to consider flood-plain regulations.
NASA Astrophysics Data System (ADS)
Khanh Triet Nguyen, Van; Dung Nguyen, Viet; Fujii, Hideto; Kummu, Matti; Merz, Bruno; Apel, Heiko
2017-04-01
Flooding in the Mekong Delta is an annual phenomenon causing inundation of large parts of the delta. This flooding is vital for the geomorphological stability of the delta, but is also the backbone of the highly productive agro-economy. However, extraordinary high floods are on the other hand a major hazard for the millions of people living in the delta. Therefore large scale developments of hydraulic structures took place in the Vietnamese part of the delta in the last decades. Particularly in the areas prone to deep and long lasting inundations many flood protection structures, mainly dykes, were built. These structures enable a blocking of inundation in large parts of these areas and by this the cropping of a third crop per year during the flood season. However, these structures are frequently blamed for increasing water levels in the areas downstream. Thus this study aimed at the investigation and attribution of changes in flood hazard in the Vietnamese Mekong Delta (VMD) due to high-dyke construction in deep flood prone areas, mainly in An Giang and Dong Thap provinces. This analysis started with the estimation of monotonic trends at key gauging stations in the delta: Kratie at the apex of the Mekong delta; Tan Chau and Chau Doc in the VMD just upstream of the areas with high-dyke construction; and Can Tho and My Thuan, located downstream of the high-dyke areas. The tests were undertaken assuming different magnitudes of errors in the data using historical records from 1978 - 2015, using the Mann-Kendall test and Sen's slope estimation. The obtained trends were thus tested for robustness against data errors. In order to obtain a better understanding of trends in the flood dynamics, the tests are performed on both flood peak and flood duration. In addition, the Pettitt test was applied to identify step changes in the water level data at 4 gauge stations located in the VMD. After the trend analysis, the impacts of high-dyke development were quantified with the help of a quasi-2D hydrodynamic flood inundation model, using the latest comprehensive dyke survey and topographical data for the VMD. Changes in delta inundation dynamics with-/without- high-dyke systems were investigated in two different model setups, simulating the two recent most severe flood events in 2000 and 2011 with their original dike system as reference, and interchanged dyke system in order to quantify the induced hydraulic changes. In a similar manner the specific influence of the upper boundary, i.e. the flood characteristics of the two events, and the lower boundary, i.e. the tidal influence, on the water levels in the VMD was quantified and compared to the influence of the dyke system. Results of the trend test revealed negative but low significant trends at Chau Doc (p ≥ 0.1) and Tan Chau (p ≥ 0.05) at the upper part of the delta within the studied period. On the contrary, strong increasing and highly significant trends were detected at Can Tho and My Thuan downstream of fully flood protection areas, with a step change around the year 2000 (p < 0.001). Of which, an increase of ˜9.0÷13.0 cm in flood peak and ˜10 days in duration were attributed to high-dyke development upstream as results of the model simulation. We also found that the most dominant factor altering flood dynamics at these locations are changes of lower boundaries, causing differences of about +19.0 cm and +32.0 cm at My Thuan and Can Tho respectively for the two flood events. The third considered factor, influence of changing of inflow, was mostly dominant in the upper parts of the VMD. It was accounted for ˜7÷8 cm of total water level alteration in the middle parts of the delta, compared to about -27 cm at the border of Vietnam and Cambodia. Thus the claims that the dyke development has altered the water levels during floods in the areas downstream can be confirmed, but it has to be noted that the lower boundary, i.e. higher sea levels caused by sea level rise in combination with the widely observed land subsidence have an even larger impact. Based on these results, it is recommended to develop flood risk management strategies that use the high dyke areas as retention areas in order to mitigate the flood hazard downstream, if large flood events are forecasted.
Controls on Characteristics of Event-based Catchment Flood Response over Continental United States
NASA Astrophysics Data System (ADS)
Shen, X.; Mei, Y.; Nikolopoulos, E. I.; Anagnostou, E. N.
2017-12-01
Understanding the primary drivers of regional flood characteristics is of utmost importance for the development of flood early warning system. Many studies have dedicated their efforts on this topic, but the majority of these works is limited in terms of either the size of event population or the extent of their study domain. This prevents us from drawing a comprehensive understanding of the primary factors controlling the variability of catchment flood response across different hydroclimatic regimes and basin geomorphologies. In this study, we render an exhaustive analysis that includes the effect of climate, hydrometeorology, geomorphology, land cover and initial wetness conditions on the catchment's flood response for 318,000 flood events distributed across 5,900 catchments (basin scales ranging from 1 to 106 km2) of the Continental United States (CONUS) over a 10-year (2002 to 2013) period. Event runoff coefficients, response time lag and hydrograph shape are used as diagnostic variables to represent catchment flood response. Our results indicate different distributions of runoff coefficient over different climate regions and seasons. The magnitude of runoff coefficient increases as function of initial basin wetness condition and rainfall depth. Opposite patterns are found for the actual evapotranspiration rate and baseflow index. On the other hand, response time lag is controlled by the relief ratio of the basins and the mean flow length of the events; hydrograph shape reveals increasing trend with soil moisture condition and relief ratio.
NASA Astrophysics Data System (ADS)
Gallien, T.; Barnard, P. L.; Sanders, B. F.
2011-12-01
California coastal sea levels are projected to rise 1-1.4 meters in the next century and evidence suggests mean tidal range, and consequently, mean high water (MHW) is increasing along portions of Southern California Bight. Furthermore, emerging research indicates wind stress patterns associated with the Pacific Decadal Oscillation (PDO) have suppressed sea level rise rates along the West Coast since 1980, and a reversal in this pattern would result in the resumption of regional sea level rise rates equivalent to or exceeding global mean sea level rise rates, thereby enhancing coastal flooding. Newport Beach is a highly developed, densely populated lowland along the Southern California coast currently subject to episodic flooding from coincident high tides and waves, and the frequency and intensity of flooding is expected to increase with projected future sea levels. Adaptation to elevated sea levels will require flood mapping and forecasting tools that are sensitive to the dominant factors affecting flooding including extreme high tides, waves and flood control infrastructure. Considerable effort has been focused on the development of nowcast and forecast systems including Scripps Institute of Oceanography's Coastal Data Information Program (CDIP) and the USGS Multi-hazard model, the Southern California Coastal Storm Modeling System (CoSMoS). However, fine scale local embayment dynamics and overtopping flows are needed to map unsteady flooding effects in coastal lowlands protected by dunes, levees and seawalls. Here, a recently developed two dimensional Godunov non-linear shallow water solver is coupled to water level and wave forecasts from the CoSMoS model to investigate the roles of tides, waves, sea level changes and flood control infrastructure in accurate flood mapping and forecasting. The results of this study highlight the important roles of topographic data, embayment hydrodynamics, water level uncertainties and critical flood processes required for meaningful prediction of sea level rise impacts and coastal flood forecasting.
Miller, Robin L.; Hastings, Lauren; Fujii, Roger
2000-01-01
Subsidence of organic soils in the Sacramento-San Joaquin Delta, California, has increased the potential for levee failure and flooding in the region. Because oxidation of the peat soils is a primary cause of subsidence, reversion of affected lands to wetlands has been proposed as a mitigation tool. To test this hypothesis, three 10 x 10 meter enclosures were built on Twitchell Island in the Delta and managed as different wetland habitats. Emissions of carbon dioxide and methane were measured in situ from October 1995 through December 1997, from the systems that developed under the different water-management treatments. Treatments included a seasonal control (SC) under current island management conditions; reverse flooding (RF), where the land is intentionally flooded from early dry season until midsummer; permanent shallow flooding (F); and a more deeply flooded, open-water (OW) treatment. Hydrologic treatments affected microbial processes, plant community and temperature dynamics which, in turn, affected carbon cycling. Water-management treatments with a period of flooding significantly decreased gaseous carbon emissions compared to the seasonal control. Permanent flooding treatments showed significantly higher methane fluxes than treatments with some period of aerobic conditions. Shallow flooding treatments created conditions that support cattail [Typha species (spp.)] marshes, while deep flooding precluded emergent vegetation. Carbon inputs to the permanent shallow flooding treatment tended to be greater than the measured losses. This suggests that permanent shallow flooding has the greatest potential for managing subsidence of these soils by generating organic substrate more rapidly than is lost through decomposition. Carbon input estimates of plant biomass compared to measurements of gaseous carbon losses indicate the potential for mitigation of subsidence through hydrologic management of the organic soils in the area.
12. VIEW SHOWING CCC CREWS FREEING FLOOD GATES AT DAM ...
12. VIEW SHOWING CCC CREWS FREEING FLOOD GATES AT DAM 326 OF ICE TO PREVENT DAMAGE TO STRUCTURE - J. Clark Salyer National Wildlife Refuge, Dam 326, Along Lower Souris River, Kramer, Bottineau County, ND
Wellbeing in the aftermath of floods.
Walker-Springett, Kate; Butler, Catherine; Adger, W Neil
2017-01-01
The interactions between flood events, their aftermath, and recovery leading to health and wellbeing outcomes for individuals are complex, and the pathways and mechanisms through which wellbeing is affected are often hidden and remain under-researched. This study analyses the diverse processes that explain changes in wellbeing for those experiencing flooding. It identifies key pathways to wellbeing outcomes that concern perceptions of lack of agency, dislocation from home, and disrupted futures inducing negative impacts, with offsetting positive effects through community networks and interactions. The mixed method study is based on data from repeated qualitative semi-structured interviews (n=60) and a structured survey (n=1000) with individuals that experienced flooding directly during winter 2013/14 in two UK regions. The results show for the first time the diversity and intersection of pathways to wellbeing outcomes in the aftermath of floods. The findings suggest that enhanced public health planning and interventions could focus on the precise practices and mechanisms that intersect to produce anxiety, stress, and their amelioration at individual and community levels. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Kirshen, P. H.; Hecht, J. S.; Vogel, R. M.
2015-12-01
Prescribing long-term urban floodplain management plans under the deep uncertainty of climate change is a challenging endeavor. To address this, we have implemented and tested with stakeholders a parsimonious multi-stage mixed integer programming (MIP) model that identifies the optimal time period(s) for implementing publicly and privately financed adaptation measures. Publicly funded measures include reach-scale flood barriers, flood insurance, and buyout programs to encourage property owners in flood-prone areas to retreat from the floodplain. Measures privately funded by property owners consist of property-scale floodproofing options, such as raising building foundations, as well as investments in flood insurance or retreat from flood-prone areas. The objective function to minimize the sum of flood control and damage costs in all planning stages for different property types during floods of different severities. There are constraints over time for flow mass balances, construction of flood management alternatives and their cumulative implementation, budget allocations, and binary decisions. Damages are adjusted for flood control investments. In recognition of the deep uncertainty of GCM-derived climate change scenarios, we employ the minimax regret criterion to identify adaptation portfolios robust to different climate change trajectories. As an example, we identify publicly and privately funded adaptation measures for a stylized community based on the estuarine community of Exeter, New Hampshire, USA. We explore the sensitivity of recommended portfolios to different ranges of climate changes, and costs associated with economies of scale and flexible infrastructure design as well as different municipal budget constraints.
Krahulik, Justin R.; Densmore, Brenda K.; Anderson, Kayla J.; Kavan, Cory L.
2015-01-01
Discharge was measured at chute survey sites, in both the main channel of the Missouri River upstream from the chute and the chute. Many chute entrances and control structures were damaged by floodwater during the 2011 Missouri River flood, allowing a larger percentage of the total Missouri River discharge to flow through the chute than originally intended in the chute design. Measured discharge split between the main channel and the chute at most chutes was consistent with effects of the 2011 Missouri River flood damages and a larger percent of the total Missouri River discharge was flowing through the chute than originally intended. The U.S. Army Corps of Engineers repaired many of these chutes in 2012 and 2013, and the resulting hydraulic changes are reflected in the discharge splits.
U.S. Geological Survey Real-Time River Data Applications
Morlock, Scott E.
1998-01-01
Real-time river data provided by the USGS originate from streamflow-gaging stations. The USGS operates and maintains a network of more than 7,000 such stations across the nation (Mason and Wieger, 1995). These gaging stations, used to produce records of stage and streamflow data, are operated in cooperation with local, state, and other federal agencies. The USGS office in Indianapolis operates a statewide network of more than 170 gaging stations. The instrumentation at USGS gaging stations monitors and records river information, primarily river stage (fig. 1). As technological advances are made, many USGS gaging stations are being retrofitted with electronic instrumentation to monitor and record river data. Electronic instrumentation facilitates transmission of real-time or near real-time river data for use by government agencies in such flood-related tasks as operating flood-control structures and ordering evacuations.
NASA Astrophysics Data System (ADS)
Albano, R.; Sole, A.; Adamowski, J.
2015-02-01
As evidenced by the EU Floods Directive (2007/60/EC), flood management strategies in Europe have undergone a shift in focus in recent years. The goal of flood prevention using structural measures has been replaced by an emphasis on the management of flood risks using non-structural measures. One implication of this is that it is no longer public authorities alone who take responsibility for flood management. A broader range of stakeholders, who may experience the negative effects of flooding, also take on responsibility to protect themselves. Therefore, it is vital that information concerning flood risks are conveyed to those who may be affected in order to facilitate the self-protection of citizens. Experience shows that even where efforts have been made to communicate flood risks, problems persist. There is a need for the development of new tools, which are able to rapidly disseminate flood risk information to the general public. To be useful, these tools must be able to present information relevant to the location of the user. Moreover, the content and design of the tool need to be adjusted to laypeople's needs. Dissemination and communication influences both people's access to and understanding of natural risk information. Such a tool could be a useful aid to effective management of flood risks. To address this gap, a Web-based Geographical Information System, (WebGIS), has been developed through the collaborative efforts of a group of scientists, hazard and risk analysts and managers, GIS analysts, system developers and communication designers. This tool, called "READY: Risk, Extreme Events, Adaptation, Defend Yourself", aims to enhance the general public knowledge of flood risk, making them more capable of responding appropriately during a flood event. The READY WebGIS has allowed for the visualization and easy querying of a complex hazard and risk database thanks to a high degree of interactivity and its easily readable maps. In this way, READY has enabled fast exploration of alternative flood scenarios or past calamitous events. Combined also with a system of graphic symbols designed ad hoc for communication of self-protection behaviors, it is believed READY could lead to an increase in citizen participation, informed discussion and consensus building. The platform has been developed for a site-specific application, i.e. the Basilicata Region, Italy, has been selected as pilot application area. The goal of the prototype is to raise citizen awareness of flood risks, and to build social capacity and enhanced resilience to flood events.
NASA Astrophysics Data System (ADS)
Albano, R.; Sole, A.; Adamowski, J.
2015-07-01
As evidenced by the EU Floods Directive (2007/60/EC), flood management strategies in Europe have undergone a shift in focus in recent years. The goal of flood prevention using structural measures has been replaced by an emphasis on the management of flood risks using non-structural measures. One implication of this is that public authorities alone not only take responsibility for flood management. A broader range of stakeholders, who may personally experience the negative effects of flooding, also take on responsibility for protecting themselves. Therefore, it is vital that information concerning flood risks is conveyed to those who may be affected in order to facilitate the self-protection of citizens. Experience shows that problems persist even where efforts have been made to communicate flood risks. There is a need for the development of new tools that are able to rapidly disseminate flood-risk information to the general public. To be useful these tools must be able to present information relevant to the location of the user. Moreover, the content and design of the tool need to be adjusted to laypeople's needs. Dissemination and communication influence both people's access to and understanding of natural risk information. Such a tool could be a useful aid to effective management of flood risks. To address this gap, a web-based geographical information system (WebGIS) has been developed through the collaborative efforts of a group of scientists, hazard and risk analysts and managers, GIS analysts, system developers and communication designers. This tool, called "READY: Risk, Extreme Events, Adaptation, Defend Yourself", aims to enhance the general public knowledge of flood risk, making citizens more capable of responding appropriately during a flood event. The READY WebGIS has allowed for the visualization and easy querying of a complex hazard and risk database thanks to a high degree of interactivity and easily read maps. In this way, READY has enabled fast exploration of alternative flood scenarios or past calamitous events. Combined also with a system of graphic symbols designed ad hoc for communication of self-protection behaviours, it is believed READY could lead to an increase in citizen participation, informed discussion and consensus building. The platform has been developed for a site-specific application: the Basilicata region, Italy, has been selected as pilot application area. The goal of the prototype is to raise citizen awareness of flood risks and to build social capacity and enhanced resilience to flood events.
Battery Research & Development Need for Military Vehicle Application
2012-06-19
The charge control for lithium ion battery chemistries is different from those of flooded and sealed lead acid batteries. • The discharge control...for lithium ion battery chemistries is different from those of flooded and sealed lead acid batteries. • Battery charging voltage changes with the
Dean, David J.; Schmidt, John C.
2013-01-01
Since the 1940s, the Rio Grande in the Big Bend region has undergone long periods of channel narrowing, which have been occasionally interrupted by rare, large floods that widen the channel (termed a channel reset). The most recent channel reset occurred in 2008 following a 17-year period of extremely low stream flow and rapid channel narrowing. Flooding was caused by precipitation associated with the remnants of tropical depression Lowell in the Rio Conchos watershed, the largest tributary to the Rio Grande. Floodwaters approached 1500 m3/s (between a 13 and 15 year recurrence interval) and breached levees, inundated communities, and flooded the alluvial valley of the Rio Grande; the wetted width exceeding 2.5 km in some locations. The 2008 flood had the 7th largest magnitude of record, however, conveyed the largest volume of water than any other flood. Because of the narrow pre-flood channel conditions, record flood stages occurred. We used pre- and post-flood aerial photographs, channel and floodplain surveys, and 1-dimensional hydraulic models to quantify the magnitude of channel change, investigate the controls of flood-induced geomorphic changes, and measure the post-flood response of the widened channel. These analyses show that geomorphic changes included channel widening, meander migration, avulsions, extensive bar formation, and vertical floodplain accretion. Reach-averaged channel widening between 26 and 52% occurred, but in some localities exceeded 500%. The degree and style of channel response was related, but not limited to, three factors: 1) bed-load supply and transport, 2) pre-flood channel plan form, and 3) rapid declines in specific stream power downstream of constrictions and areas of high channel bed slope. The post-flood channel response has consisted of channel contraction through the aggradation of the channel bed and the formation of fine-grained benches inset within the widened channel margins. The most significant post-flood geomorphic changes have occurred at and downstream from ephemeral tributaries that contribute large volumes of sediment.
Characteristics of the April 2007 Flood at 10 Streamflow-Gaging Stations in Massachusetts
Zarriello, Phillip J.; Carlson, Carl S.
2009-01-01
A large 'nor'easter' storm on April 15-18, 2007, brought heavy rains to the southern New England region that, coupled with normal seasonal high flows and associated wet soil-moisture conditions, caused extensive flooding in many parts of Massachusetts and neighboring states. To characterize the magnitude of the April 2007 flood, a peak-flow frequency analysis was undertaken at 10 selected streamflow-gaging stations in Massachusetts to determine the magnitude of flood flows at 5-, 10-, 25-, 50-, 100-, 200-, and 500-year return intervals. The magnitude of flood flows at various return intervals were determined from the logarithms of the annual peaks fit to a Pearson Type III probability distribution. Analysis included augmenting the station record with longer-term records from one or more nearby stations to provide a common period of comparison that includes notable floods in 1936, 1938, and 1955. The April 2007 peak flow was among the highest recorded or estimated since 1936, often ranking between the 3d and 5th highest peak for that period. In general, the peak-flow frequency analysis indicates the April 2007 peak flow has an estimated return interval between 25 and 50 years; at stations in the northeastern and central areas of the state, the storm was less severe resulting in flows with return intervals of about 5 and 10 years, respectively. At Merrimack River at Lowell, the April 2007 peak flow approached a 100-year return interval that was computed from post-flood control records and the 1936 and 1938 peak flows adjusted for flood control. In general, the magnitude of flood flow for a given return interval computed from the streamflow-gaging station period-of-record was greater than those used to calculate flood profiles in various community flood-insurance studies. In addition, the magnitude of the updated flood flow and current (2008) stage-discharge relation at a given streamflow-gaging station often produced a flood stage that was considerably different than the flood stage indicated in the flood-insurance study flood profile at that station. Equations for estimating the flow magnitudes for 5-, 10-, 25-, 50-, 100-, 200-, and 500-year floods were developed from the relation of the magnitude of flood flows to drainage area calculated from the six streamflow-gaging stations with the longest unaltered record. These equations produced a more conservative estimate of flood flows (higher discharges) than the existing regional equations for estimating flood flows at ungaged rivers in Massachusetts. Large differences in the magnitude of flood flows for various return intervals determined in this study compared to results from existing regional equations and flood insurance studies indicate a need for updating regional analyses and equations for estimating the expected magnitude of flood flows in Massachusetts.
Establishment and Practical Application of Flood Warning Stage in Taiwan's River
NASA Astrophysics Data System (ADS)
Yang, Sheng-Hsueh; Chia Yeh, Keh-
2017-04-01
In the face of extreme flood events or the possible impact of climate change, non-engineering disaster prevention and early warning work is particularly important. Taiwan is an island topography with more than 3,900 meters of high mountains. The length of the river is less than 100 kilometers. Most of the watershed catchment time is less than 24 hours, which belongs to the river with steep slope and rapid flood. Every year in summer and autumn, several typhoon events invade Taiwan. Typhoons often result in rainfall events in excess of 100 mm/hr or 250 mm/3hr. In the face of Taiwan's terrain and extreme rainfall events, flooding is difficult to avoid. Therefore, most of the river has embankment protection, so that people do not have to face every year flooding caused by economic and life and property losses. However, the river embankment protection is limited. With the increase of the hydrological data, the design criteria for the embankment protection standards in the past was 100 year of flood return period and is now gradually reduced to 25 or 50 year of flood return period. The river authorities are not easy to rise the existing embankment height. The safety of the river embankment in Taiwan is determined by the establishment of the flood warning stage to cope with the possible increase in annual floods and the impact of extreme hydrological events. The flood warning stage is equal to the flood control elevation minus the flood rise rate multiply by the flood early warning time. The control elevation can be the top of the embankment, the design flood level of the river, the embankment gap of the river section, the height of the bridge beam bottom, etc. The flood rise rate is consider the factors such as hydrological stochastic and uncertain rainfall and the effect of flood discharge operation on the flood in the watershed catchment area. The maximum value of the water level difference between the two hours or five hours before the peak value of the analysis result is decided by this rate. The flood early warning time is divided into two levels, the first level is 2 hours, evacuation time for the public, the second level is 5 hours for the implementation of unit preparation time. Finally, The flood warning stages are practical application in 20 water level stations have been incorporated into the flood early warning system of the Danshuei river basin in Taiwan.
Dependency of high coastal water level and river discharge at the global scale
NASA Astrophysics Data System (ADS)
Ward, P.; Couasnon, A.; Haigh, I. D.; Muis, S.; Veldkamp, T.; Winsemius, H.; Wahl, T.
2017-12-01
It is widely recognized that floods cause huge socioeconomic impacts. From 1980-2013, global flood losses exceeded $1 trillion, with 220,000 fatalities. These impacts are particularly hard felt in low-lying densely populated deltas and estuaries, whose location at the coast-land interface makes them naturally prone to flooding. When river and coastal floods coincide, their impacts in these deltas and estuaries are often worse than when they occur in isolation. Such floods are examples of so-called `compound events'. In this contribution, we present the first global scale analysis of the statistical dependency of high coastal water levels (and the storm surge component alone) and river discharge. We show that there is statistical dependency between these components at more than half of the stations examined. We also show time-lags in the highest correlation between peak discharges and coastal water levels. Finally, we assess the probability of the simultaneous occurrence of design discharge and design coastal water levels, assuming both independence and statistical dependence. For those stations where we identified statistical dependency, the probability is between 1 and 5 times greater, when the dependence structure is accounted for. This information is essential for understanding the likelihood of compound flood events occurring at locations around the world as well as for accurate flood risk assessments and effective flood risk management. The research was carried out by analysing the statistical dependency between observed coastal water levels (and the storm surge component) from GESLA-2 and river discharge using gauged data from GRDC stations all around the world. The dependence structure was examined using copula functions.
Morita, M
2011-01-01
Global climate change is expected to affect future rainfall patterns. These changes should be taken into account when assessing future flooding risks. This study presents a method for quantifying the increase in flood risk caused by global climate change for use in urban flood risk management. Flood risk in this context is defined as the product of flood damage potential and the probability of its occurrence. The study uses a geographic information system-based flood damage prediction model to calculate the flood damage caused by design storms with different return periods. Estimation of the monetary damages these storms produce and their return periods are precursors to flood risk calculations. The design storms are developed from modified intensity-duration-frequency relationships generated by simulations of global climate change scenarios (e.g. CGCM2A2). The risk assessment method is applied to the Kanda River basin in Tokyo, Japan. The assessment provides insights not only into the flood risk cost increase due to global warming, and the impact that increase may have on flood control infrastructure planning.
Remote Sensing and Monitoring of Earthen Flood-Control Structures
2017-07-01
The source of energy in passive techniques is derived from incident solar radiation or sunlight that reacts with the atmosphere, hydrosphere, and...the energy reflected or emitted from the earth’s surface. The source of energy in passive techniques involves incident solar radiation or sunlight... solar radiation is reflected back into the atmosphere, or where heat energy is emitted from the earth’s surface. As shown by Figure 2-3, certain regions
Boussinesq Modeling for Inlets, Harbors & Structures (Bouss-2D)
2014-10-27
subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 27...work applications. It may be used from deep to shallow water to simulate the nonlinear wave processes of interest in the open coast, nearshore zone...design, and operation of coastal navigation and flooding projects. It provides key engineering estimates for coastal and hydraulic engineering practice
Nasiri, Hossein; Boloorani, Ali Darvishi; Sabokbar, Hassan Ali Faraji; Jafari, Hamid Reza; Hamzeh, Mohamad; Rafii, Yusef
2013-01-01
Flood spreading is a suitable strategy for controlling and benefiting from floods. Selecting suitable areas for flood spreading and directing the floodwater into permeable formations are amongst the most effective strategies in flood spreading projects. Having combined geographic information systems (GIS) and multi-criteria decision analysis approaches, the present study sought to locate the most suitable areas for flood spreading operation in the Garabaygan Basin of Iran. To this end, the data layers relating to the eight effective factors were prepared in GIS environment. This stage was followed by elimination of the exclusionary areas for flood spreading while determining the potentially suitable ones. Having closely examined the potentially suitable areas using the Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE) II and analytic hierarchy process (AHP) methods, the land suitability map for flood spreading was produced. The PROMETHEE II and AHP were used for ranking all the alternatives and weighting the criteria involved, respectively. The results of the study showed that most suitable areas for the artificial groundwater recharge are located in Quaternary Q(g) and Q(gsc) geologic units and in geomorphological units of pediment and Alluvial fans with slopes not exceeding 3%. Furthermore, significant correspondence between the produced map and the control areas, where the flood spreading projects were successfully performed, provided further evidence for the acceptable efficiency of the integrated PROMETHEE II-AHP method in locating suitable flood spreading areas.
High Resolution Sensing and Control of Urban Water Networks
NASA Astrophysics Data System (ADS)
Bartos, M. D.; Wong, B. P.; Kerkez, B.
2016-12-01
We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.
NASA Astrophysics Data System (ADS)
Delaney, C.; Hartman, R. K.; Mendoza, J.; Evans, K. M.; Evett, S.
2016-12-01
Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation or flow forecasts to inform the flood operations of reservoirs. Previous research and modeling for flood control reservoirs has shown that FIRO can reduce flood risk and increase water supply for many reservoirs. The risk-based method of FIRO presents a unique approach that incorporates flow forecasts made by NOAA's California-Nevada River Forecast Center (CNRFC) to model and assess risk of meeting or exceeding identified management targets or thresholds. Forecasted risk is evaluated against set risk tolerances to set reservoir flood releases. A water management model was developed for Lake Mendocino, a 116,500 acre-foot reservoir located near Ukiah, California. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United State Army Corps of Engineers and is operated by the Sonoma County Water Agency for water supply. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has been plagued with water supply reliability issues since 2007. FIRO is applied to Lake Mendocino by simulating daily hydrologic conditions from 1985 to 2010 in the Upper Russian River from Lake Mendocino to the City of Healdsburg approximately 50 miles downstream. The risk-based method is simulated using a 15-day, 61 member streamflow hindcast by the CNRFC. Model simulation results of risk-based flood operations demonstrate a 23% increase in average end of water year (September 30) storage levels over current operations. Model results show no increase in occurrence of flood damages for points downstream of Lake Mendocino. This investigation demonstrates that FIRO may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.
Holmes, Robert R.; Schwein, Noreen O.; Shadie, Charles E.
2012-01-01
Floods have long had a major impact on society and the environment, evidenced by the more than 1,500 federal disaster declarations since 1952 that were associated with flooding. Calendar year 2011 was an epic year for floods in the United States, from the flooding on the Red River of the North in late spring to the Ohio, Mississippi, and Missouri River basin floods in the spring and summer to the flooding caused by Hurricane Irene along the eastern seaboard in August. As a society, we continually seek to reduce flood impacts, with these efforts loosely grouped into two categories: mitigation and risk awareness. Mitigation involves such activities as flood assessment, flood control implementation, and regulatory activities such as storm water and floodplain ordinances. Risk awareness ranges from issuance of flood forecasts and warnings to education of lay audiences about the uncertainties inherent in assessing flood probability and risk. This paper concentrates on the issue of flood risk awareness, specifically the importance of hydrologic data and good interagency communication in providing accurate and timely flood forecasts to maximize risk awareness. The 2011 floods in the central United States provide a case study of the importance of hydrologic data and the value of proper, timely, and organized communication and collaboration around the collection and dissemination of that hydrologic data in enhancing the effectiveness of flood forecasting and flood risk awareness.
Rainstorms able to induce flash floods in a Mediterranean-climate region (Calabria, southern Italy)
NASA Astrophysics Data System (ADS)
Terranova, O. G.; Gariano, S. L.
2014-03-01
Heavy rainstorms often induce flash flooding, one of the natural disasters most responsible for damage to man-made infrastructure and loss of lives, adversely affecting also the opportunities for socio-economic development of Mediterranean Countries. The frequently dramatic damage of flash floods are often detected with sufficient accuracy by post-event surveys, but rainfall causing them are still only roughly characterized. With the aim of improving the understanding of the temporal structure and spatial distribution of heavy rainstorms in the Mediterranean context, a statistical analysis was carried out in Calabria (southern Italy) concerning rainstorms that mainly induced flash floods, but also shallow landslides and debris-flows. Thus a method is proposed - based on the overcoming of heuristically predetermined threshold values of cumulated rainfall, maximum intensity, and kinetic energy of the rainfall event - to select and characterize the rainstorms able to induce flash floods in the Mediterranean-climate Countries. Therefore the obtained (heavy) rainstorms were automatically classified and studied according to their structure in time, localization and extension. Rainfall-runoff watershed models can consequently benefit from the enhanced identification of design storms, with a realistic time structure integrated with the results of the spatial analysis. A survey of flash flood events recorded in the last decades provides a preliminary validation of the method proposed to identify the heavy rainstorms and synthetically describe their characteristics. The notable size of the employed sample, including data with a very detailed resolution in time, that relate to several rain gauges well-distributed throughout the region, give robustness to the obtained results.
Rainstorms able to induce flash floods in a Mediterranean-climate region (Calabria, southern Italy)
NASA Astrophysics Data System (ADS)
Terranova, O. G.; Gariano, S. L.
2014-09-01
Heavy rainstorms often induce flash flooding, one of the natural disasters most responsible for damage to man-made infrastructures and loss of lives, also adversely affecting the opportunities for socio-economic development of Mediterranean countries. The frequently dramatic damage of flash floods are often detected, with sufficient accuracy, by post-event surveys, but rainfall causing them are still only roughly characterized. With the aim of improving the understanding of the temporal structure and spatial distribution of heavy rainstorms in the Mediterranean context, a statistical analysis was carried out in Calabria (southern Italy) concerning rainstorms that mainly induced flash floods, but also shallow landslides and debris flows. Thus, a method is proposed - based on the overcoming of heuristically predetermined threshold values of cumulated rainfall, maximum intensity, and kinetic energy of the rainfall event - to select and characterize the rainstorms able to induce flash floods in the Mediterranean-climate countries. Therefore, the obtained (heavy) rainstorms were automatically classified and studied according to their structure in time, localization, and extension. Rainfall-runoff watershed models can consequently benefit from the enhanced identification of design storms, with a realistic time structure integrated with the results of the spatial analysis. A survey of flash flood events recorded in the last decades provides a preliminary validation of the method proposed to identify the heavy rainstorms and synthetically describe their characteristics. The notable size of the employed sample, including data with a very detailed resolution in time that relate to several rain gauges well-distributed throughout the region, gives robustness to the obtained results.
NASA Astrophysics Data System (ADS)
Albano, R.; Sole, A.; Adamowski, J.; Mancusi, L.
2014-11-01
Efficient decision-making regarding flood risk reduction has become a priority for authorities and stakeholders in many European countries. Risk analysis methods and techniques are a useful tool for evaluating costs and benefits of possible interventions. Within this context, a methodology to estimate flood consequences was developed in this paper that is based on GIS, and integrated with a model that estimates the degree of accessibility and operability of strategic emergency response structures in an urban area. The majority of the currently available approaches do not properly analyse road network connections and dependencies within systems, and as such a loss of roads could cause significant damages and problems to emergency services in cases of flooding. The proposed model is unique in that it provides a maximum-impact estimation of flood consequences on the basis of the operability of the strategic emergency structures in an urban area, their accessibility, and connection within the urban system of a city (i.e. connection between aid centres and buildings at risk), in the emergency phase. The results of a case study in the Puglia region in southern Italy are described to illustrate the practical applications of this newly proposed approach. The main advantage of the proposed approach is that it allows for defining a hierarchy between different infrastructure in the urban area through the identification of particular components whose operation and efficiency are critical for emergency management. This information can be used by decision-makers to prioritize risk reduction interventions in flood emergencies in urban areas, given limited financial resources.
NASA Astrophysics Data System (ADS)
van den Hoek, Ronald; Brugnach, Marcela; Hoekstra, Arjen
2013-04-01
In the 20th century, flood management was dominated by rigid structures - such as dikes and dams - which intend to strictly regulate and control water systems. Although the application of these rigid structures has been successful in the recent past, their negative implications for ecosystems and natural processes is often not properly taken into account. Therefore, flood management practices are currently moving towards more nature-inclusive approaches. Building with Nature (BwN) is such a new approach of nature-inclusive flood management in the Netherlands, which aims to utilize natural dynamics (e.g., wind and currents) and natural materials (e.g., sediment and vegetation) for the realization of effective flood infrastructure, while providing opportunities for nature development. However, the natural dynamics driving a project based on BwN design principles are inherently unpredictable. Furthermore, our factual knowledge base regarding the socio-ecological system in which the BwN initiative is implemented is incomplete. Moreover, in recent years, it is increasingly aimed for by decision-makers to involve local stakeholders in the development of promising flood management initiatives. These stakeholders and other actors involved can have diverging views regarding the project, can perceive unanticipated implications and could choose unforeseen action paths. In short, while a project based on BwN design principles - like any human intervention - definitely has implications for the socio-ecological system, both the extent to which these particular implications will occur and the response of stakeholders are highly uncertain. In this paper, we study the Safety Buffer Oyster Dam case - a BwN pilot project - and address the interplay between the project's implications, the uncertainties regarding these implications and the action paths chosen by the local stakeholders and project team. We determine how the implications of the Safety Buffer project are viewed by local stakeholders, identify the frames and uncertainties related to these implications, and classify these uncertainties according to their nature and level. We describe which action paths are chosen by the local stakeholders and project team regarding the implications identified. Our research shows that there is a correspondence between the level of uncertainty about the implications identified and the action paths chosen by the actors involved. This suggests that the inherent deep uncertainty in projects based on BwN principles calls for more adaptable and flexible strategies to cope with the implications of these initiatives.
NASA Astrophysics Data System (ADS)
Yucel, Ismail; Onen, Alper
2013-04-01
Evidence is showing that global warming or climate change has a direct influence on changes in precipitation and the hydrological cycle. Extreme weather events such as heavy rainfall and flooding are projected to become much more frequent as climate warms. Regional hydrometeorological system model which couples the atmosphere with physical and gridded based surface hydrology provide efficient predictions for extreme hydrological events. This modeling system can be used for flood forecasting and warning issues as they provide continuous monitoring of precipitation over large areas at high spatial resolution. This study examines the performance of the Weather Research and Forecasting (WRF-Hydro) model that performs the terrain, sub-terrain, and channel routing in producing streamflow from WRF-derived forcing of extreme precipitation events. The capability of the system with different options such as data assimilation is tested for number of flood events observed in basins of western Black Sea Region in Turkey. Rainfall event structures and associated flood responses are evaluated with gauge and satellite-derived precipitation and measured streamflow values. The modeling system shows skills in capturing the spatial and temporal structure of extreme rainfall events and resulted flood hydrographs. High-resolution routing modules activated in the model enhance the simulated discharges.
NASA Astrophysics Data System (ADS)
DeLong, S.; Henderson, W. M.
2012-12-01
The use of erosion control structures to mitigate or even reverse erosion and to restore ecological function along dryland channels (arroyos and gullies) has led to a long list of both successful and failed restoration efforts. We propose that successful implementation of "engineering" approaches to fluvial restoration that include in-channel control structures require either a quantitative approach to design (by scientists and engineers), or intimate on-the-ground knowledge, local observation, and a commitment to adapt and maintain restoration efforts in response to landscape change (by local land managers), or both. We further propose that the biophysical interactions among engineering, sedimentation, flood hydrology and vegetation reestablishment are what determine resilience to destructive extreme events that commonly cause erosion control structure failure. Our insights come from comprehensive monitoring of a remarkable experiment underway at Ranch San Bernardino, Sonora, MX. At this site, private landowners are working to restore ecosystem function to riparian corridors and former cieñega wetlands using cessation of grazing; vegetation planting; upland grass restoration; large scale rock gabions (up to 100 m wide) to encourage local sediment deposition and water storage; and large earthen berms (up to 900 m wide) with cement spillways that form reservoirs that fill rapidly with water and sediment. Well-planned and managed erosion control structures have been used elsewhere successfully in smaller gully networks, but we are unaware of a comparable attempt to use gabions and berms for the sole purpose of ecological restoration along >10 km of arroyo channels draining watersheds on the order of ~400 km2 and larger. We present an approach to monitoring the efficacy of arroyo channel restoration using terrestrial and airborne LiDAR, remote sensing, streamflow monitoring, shallow groundwater monitoring, hydrological modeling and field observation. Our methods allow us to directly quantify the magnitude of sedimentation (and hence reversal of arroyo cutting) upstream of in-channel structures as a function of hydrology, and to quantify the dampening of flood energy caused by erosion control structures and by the restoration of riparian vegetation. We are also able to create a surface water budget that constrains water storage and infiltration by monitoring streamflow at several places above, within, and downstream of restoration efforts. We also speculate on the resilience of such efforts. Quantifying the effects of the restoration efforts at Rancho San Bernardino may prove useful in guiding similar large-scale ecological restoration efforts elsewhere in degraded dryland landscapes.
Developing a bridge scour warning system : technical summary.
DOT National Transportation Integrated Search
2016-09-01
Flooding and scour can be major threats to the integrity of bridges. During flood events, : scour at bridge piers and abutments can undermine the foundations of the bridge, causing : significant damage or even total structure loss. Because scour occu...
Developing a bridge scour warning system : final report.
DOT National Transportation Integrated Search
2016-09-01
Flooding and scour can be major threats to the integrity of bridges. During flood events, scour at bridge piers : and abutments can undermine the foundations of the bridge, causing significant damage or even total structure loss. : Because scour occu...
33 CFR 203.42 - Inspection of non-Federal flood control works.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Inspection of non-Federal flood control works. 203.42 Section 203.42 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.42 - Inspection of non-Federal flood control works.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Inspection of non-Federal flood control works. 203.42 Section 203.42 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.43 - Inspection of Federal flood control works.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Inspection of Federal flood control works. 203.43 Section 203.43 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.43 - Inspection of Federal flood control works.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Inspection of Federal flood control works. 203.43 Section 203.43 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.43 - Inspection of Federal flood control works.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Inspection of Federal flood control works. 203.43 Section 203.43 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.85 - Rehabilitation of Federal flood control projects.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Rehabilitation of Federal flood control projects. 203.85 Section 203.85 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.45 - Rehabilitation of Federal flood control works.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Rehabilitation of Federal flood control works. 203.45 Section 203.45 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.42 - Inspection of non-Federal flood control works.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Inspection of non-Federal flood control works. 203.42 Section 203.42 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.85 - Rehabilitation of Federal flood control projects.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Rehabilitation of Federal flood control projects. 203.85 Section 203.85 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.42 - Inspection of non-Federal flood control works.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Inspection of non-Federal flood control works. 203.42 Section 203.42 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.45 - Rehabilitation of Federal flood control works.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Rehabilitation of Federal flood control works. 203.45 Section 203.45 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.85 - Rehabilitation of Federal flood control projects.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Rehabilitation of Federal flood control projects. 203.85 Section 203.85 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.45 - Rehabilitation of Federal flood control works.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Rehabilitation of Federal flood control works. 203.45 Section 203.45 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.43 - Inspection of Federal flood control works.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Inspection of Federal flood control works. 203.43 Section 203.43 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.45 - Rehabilitation of Federal flood control works.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Rehabilitation of Federal flood control works. 203.45 Section 203.45 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.45 - Rehabilitation of Federal flood control works.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Rehabilitation of Federal flood control works. 203.45 Section 203.45 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.85 - Rehabilitation of Federal flood control projects.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Rehabilitation of Federal flood control projects. 203.85 Section 203.85 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.43 - Inspection of Federal flood control works.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Inspection of Federal flood control works. 203.43 Section 203.43 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
33 CFR 203.85 - Rehabilitation of Federal flood control projects.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Rehabilitation of Federal flood control projects. 203.85 Section 203.85 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE EMERGENCY EMPLOYMENT OF ARMY AND OTHER RESOURCES, NATURAL DISASTER...
Floodplain restoration with flood control: fish habitat value of levee borrow pits
USDA-ARS?s Scientific Manuscript database
Earthen flood control levees are often built using soil excavated from borrow pits lying parallel to and riverward of the finished levee. After construction, these pits can provide valuable floodplain habitats, and their value is well established along corridors of larger rivers. However, levee bo...
Code of Federal Regulations, 2014 CFR
2014-07-01
... response to alternative plans. Thus, covered flood control channels may be proposed if they are desired by... RESOURCES POLICIES AND AUTHORITIES: FEDERAL PARTICIPATION IN COVERED FLOOD CONTROL CHANNELS § 239.4 Policy.... Selection of the plan which best serves the public interest is based upon the ability of the plan to meet...
33 CFR 241.5 - Procedures for estimating the alternative cost-share.
Code of Federal Regulations, 2014 CFR
2014-07-01
... THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL COST-SHARING REQUIREMENTS UNDER THE ABILITY TO PAY.... Determine the maximum possible reduction in the level of non-Federal cost-sharing for any project. (1) Calculate the ratio of flood control benefits (developed using the Water Resources Council's Principles and...