Sample records for structural geomorphic evolution

  1. A geomorphic process law for detachment-limited hillslopes

    NASA Astrophysics Data System (ADS)

    Turowski, Jens

    2015-04-01

    Geomorphic process laws are used to assess the shape evolution of structures at the Earth's surface over geological time scales, and are routinely used in landscape evolution models. There are two currently available concepts on which process laws for hillslope evolution rely. In the transport-limited concept, the evolution of a hillslope is described by a linear or a non-linear diffusion equation. In contrast, in the threshold slope concept, the hillslope is assumed to collapse to a slope equal to the internal friction angle of the material when the load due to the relief exists the material strength. Many mountains feature bedrock slopes, especially in the high mountains, and material transport along the slope is limited by the erosion of the material from the bedrock. Here, I suggest a process law for detachment-limited or threshold-dominated hillslopes, in which the erosion rate is a function of the applied stress minus the surface stress due to structural loading. The process law leads to the prediction of an equilibrium form that compares well to the shape of many mountain domes.

  2. Calibration of an estuarine sediment transport model to sediment fluxes as an intermediate step for simulation of geomorphic evolution

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.

    2009-01-01

    Modeling geomorphic evolution in estuaries is necessary to model the fate of legacy contaminants in the bed sediment and the effect of climate change, watershed alterations, sea level rise, construction projects, and restoration efforts. Coupled hydrodynamic and sediment transport models used for this purpose typically are calibrated to water level, currents, and/or suspended-sediment concentrations. However, small errors in these tidal-timescale models can accumulate to cause major errors in geomorphic evolution, which may not be obvious. Here we present an intermediate step towards simulating decadal-timescale geomorphic change: calibration to estimated sediment fluxes (mass/time) at two cross-sections within an estuary. Accurate representation of sediment fluxes gives confidence in representation of sediment supply to and from the estuary during those periods. Several years of sediment flux data are available for the landward and seaward boundaries of Suisun Bay, California, the landward-most embayment of San Francisco Bay. Sediment flux observations suggest that episodic freshwater flows export sediment from Suisun Bay, while gravitational circulation during the dry season imports sediment from seaward sources. The Regional Oceanic Modeling System (ROMS), a three-dimensional coupled hydrodynamic/sediment transport model, was adapted for Suisun Bay, for the purposes of hindcasting 19th and 20th century bathymetric change, and simulating geomorphic response to sea level rise and climatic variability in the 21st century. The sediment transport parameters were calibrated using the sediment flux data from 1997 (a relatively wet year) and 2004 (a relatively dry year). The remaining years of data (1998, 2002, 2003) were used for validation. The model represents the inter-annual and annual sediment flux variability, while net sediment import/export is accurately modeled for three of the five years. The use of sediment flux data for calibrating an estuarine geomorphic model guarantees that modeled geomorphic evolution will not exceed the actual supply of sediment from the watershed and seaward sources during the calibration period. Decadal trends in sediment supply (and therefore fluxes) can accumulate to alter decadal geomorphic change. Therefore, simulations of future geomorphic evolution are bolstered by this intermediate calibration step.

  3. Using HEC-RAS to Enhance Interpretive Capabilities of Geomorphic Assessments

    NASA Astrophysics Data System (ADS)

    Keefer, L. L.

    2005-12-01

    The purpose of a geomorphic assessment is to characterize and evaluate a fluvial system for determining the past watershed and channel conditions, current geomorphic character and potential future channel adjustments. The geomorphic assessment approach utilized by the Illinois State Water Survey assesses channel response to disturbance at multiple temporal and spatial scales to help identify the underlying factors and events which led to the existing channel morphology. This is accomplished through two phases of investigation that involve a historical and physical analysis of the watershed, disturbance history, and field work at increasing levels of detail. To infer future channel adjustments, the geomorphic assessment protocol combines two methods of analyses that are dependent on the quantity and detail of the available data. The first method is the compilation of multiple lines of evidence using qualitative information related to the dominant fluvial environment, channel gradient, stream power thresholds, and channel evolution models. The second method is the use of hydraulic models which provide additional interpretative skills to evaluate potential channel adjustments. The structured data collection framework of the geomorphic assessment approach is used for the development of a HEC-RAS model. The model results are then used as another tool to determine the influence of bridges and control structures on channel stability, stream power profiles to identify potential channel bed degradation zones, and provide data for physically-based bank stability models. This poster will demonstrate the advantages of using a hydraulic model, such as HEC-RAS, to expand the interpretive capabilities of geomorphic assessments. The results from applying this approach will be demonstrated for the Big Creek watershed of the Cache River Basin in southern Illinois.

  4. Gully evolution and geomorphic adjustments of badlands to reforestation

    PubMed Central

    Ballesteros Cánovas, J. A.; Stoffel, M.; Martín-Duque, J. F.; Corona, C.; Lucía, A.; Bodoque, J. M.; Montgomery, D. R.

    2017-01-01

    Badlands and gullied areas are among those geomorphic environments with the highest erosion rates worldwide. Nevertheless, records of their evolution and their relations with anthropogenic land transformation are scarcer. Here we combine historical data with aerial photographs and tree-ring records to reconstruct the evolution of a badland in a Mediterranean environment of Central Spain. Historical sources suggest an anthropogenic origin of this badland landscape, caused by intense quarrying activities during the 18th century. Aerial photographs allowed detection of dramatic geomorphic changes and the evolution of an emerging vegetation cover since the 1960s, due to widespread reforestation. Finally, tree-ring analyses of exposed roots allowed quantification of recent channel incision of the main gully, and sheet erosion processes. Our results suggest that reforestation practices have influenced the initiation of an episode of incision in the main channel in the 1980s, through the hypothesized creation of disequilibrium in water-sediment balance following decoupling of hillslopes from channel processes. These findings imply an asymmetry in the geomorphic response of badlands to erosion such that in the early evolution stages, vegetation removal results in gullying, but that reforestation alone does not necessarily stabilize the landforms and may even promote renewed incision. PMID:28327591

  5. Integrating Geomorphic and Social Dynamics in the Analysis of Anthropogenic Landforms: Examining Landscape Evolution of Terrain Modified by Agricultural Terracing

    NASA Astrophysics Data System (ADS)

    Glaubius, J.; Maerker, M.

    2016-12-01

    Anthropogenic landforms, such as mines and agricultural terraces, are impacted by both geomorphic and social processes at varying intensities through time. In the case of agricultural terraces, decisions regarding terrace maintenance are intertwined with land use, such as when terraced fields are abandoned. Furthermore, terrace maintenance and land use decisions, either jointly or separately, may be in response to geomorphic processes, as well as geomorphic feedbacks. Previous studies of these complex geomorphic systems considered agricultural terraces as static features or analyzed only the geomorphic response to landowner decisions. Such research is appropriate for short-term or binary landscape scenarios (e.g. the impact of maintained vs. abandoned terraces), but the complexities inherent in these socio-natural systems requires an approach that includes both social and geomorphic processes. This project analyzes feedbacks and emergent properties in terraced systems by implementing a coupled landscape evolution model (LEM) and agent-based model (ABM) using the Landlab and Mesa modeling libraries. In the ABM portion of the model, agricultural terraces are conceptualized using a life-cycle stages schema and implemented using Markov Decision Processes to simulate the changing geomorphic impact of terracing based on human decisions. This paper examines the applicability of this approach by comparing results from a LEM-only model against the coupled LEM-ABM model for a terraced region. Model results are compared by quantify and spatial patterning of sediment transport. This approach fully captures long-term landscape evolution of terraced terrain that is otherwise lost when the life-cycle of terraces is not considered. The coupled LEM-ABM approach balances both environmental and social processes so that the socio-natural feedbacks in such anthropogenic systems can be disentangled.

  6. Quantifying and Validating Rapid Floodplain Geomorphic Evolution, a Monitoring and Modelling Case Study

    NASA Astrophysics Data System (ADS)

    Scott, R.; Entwistle, N. S.

    2017-12-01

    Gravel bed rivers and their associated wider systems present an ideal subject for development and improvement of rapid monitoring tools, with features dynamic enough to evolve within relatively short-term timescales. For detecting and quantifying topographical evolution, UAV based remote sensing has manifested as a reliable, low cost, and accurate means of topographic data collection. Here we present some validated methodologies for detection of geomorphic change at resolutions down to 0.05 m, building on the work of Wheaton et al. (2009) and Milan et al. (2007), to generate mesh based and pointcloud comparison data to produce a reliable picture of topographic evolution. Results are presented for the River Glen, Northumberland, UK. Recent channel avulsion and floodplain interaction, resulting in damage to flood defence structures make this site a particularly suitable case for application of geomorphic change detection methods, with the UAV platform at its centre. We compare multi-temporal, high-resolution point clouds derived from SfM processing, cross referenced with aerial LiDAR data, over a 1.5 km reach of the watercourse. Changes detected included bank erosion, bar and splay deposition, vegetation stripping and incipient channel avulsion. Utilisation of the topographic data for numerical modelling, carried out using CAESAR-Lisflood predicted the avulsion of the main channel, resulting in erosion of and potentially complete circumvention of original channel and flood levees. A subsequent UAV survey highlighted topographic change and reconfiguration of the local sedimentary conveyor as we predicted with preliminary modelling. The combined monitoring and modelling approach has allowed probable future geomorphic configurations to be predicted permitting more informed implementation of channel and floodplain management strategies.

  7. Is there a geomorphic expression of interbasin groundwater flow in watersheds? Interactions between interbasin groundwater flow, springs, streams, and geomorphology.

    DOE PAGES

    Frisbee, Marty D.; Tysor, Elizabeth H.; Stewart-Maddox, Noah; ...

    2016-02-13

    Interbasin groundwater flow (IGF) can play a significant role in the generation and geochemical evolution of streamflow. However, it is exceedingly difficult to identify IGF, and to determine the location and quantity of water that is exchanged between watersheds. How does IGF affect landscape/watershed geomorphic evolution? Can geomorphic metrics be used to identify the presence of IGF? We examine these questions in two adjacent sedimentary watersheds in northern New Mexico using a combination of geomorphic/landscape metrics, springflow residence times, and spatial geochemical patterns. IGF is expressed geomorphically in the landscape placement of springs, and flow direction and shape of streammore » channels. Springs emerge preferentially on one side of stream valleys where landscape incision has intercepted IGF flowpaths. Stream channels grow toward the IGF source and show little bifurcation. In addition, radiocarbon residence times of springs decrease and the geochemical composition of springs changes as the connection to IGF is lost.« less

  8. Is there a geomorphic expression of interbasin groundwater flow in watersheds? Interactions between interbasin groundwater flow, springs, streams, and geomorphology

    NASA Astrophysics Data System (ADS)

    Frisbee, Marty D.; Tysor, Elizabeth H.; Stewart-Maddox, Noah S.; Tsinnajinnie, Lani M.; Wilson, John L.; Granger, Darryl E.; Newman, Brent D.

    2016-02-01

    Interbasin groundwater flow (IGF) can play a significant role in the generation and geochemical evolution of streamflow. However, it is exceedingly difficult to identify IGF and to determine the location and quantity of water that is exchanged between watersheds. How does IGF affect landscape/watershed geomorphic evolution? Can geomorphic metrics be used to identify the presence of IGF? We examine these questions in two adjacent sedimentary watersheds in northern New Mexico using a combination of geomorphic/landscape metrics, springflow residence times, and spatial geochemical patterns. IGF is expressed geomorphically in the landscape placement of springs and flow direction and shape of stream channels. Springs emerge preferentially on one side of stream valleys where landscape incision has intercepted IGF flow paths. Stream channels grow toward the IGF source and show little bifurcation. In addition, radiocarbon residence times of springs decrease and the geochemical composition of springs changes as the connection to IGF is lost.

  9. Ecohydro-geomorphic implications of orographic precipitation on landform evolution using a landscape evolution model

    NASA Astrophysics Data System (ADS)

    Yetemen, O.; Saco, P. M.

    2016-12-01

    Orography induced precipitation and its implications on vegetation dynamics and landscape morphology have long been documented in the literature. However a numerical framework that integrates a range of ecohydrologic and geomorphic processes to explore the coupled ecohydro-geomorphic landscape response of catchments where pronounced orographic precipitation prevails has been missing. In this study, our aim is to realistically represent orographic-precipitation-driven ecohydrologic dynamics in a landscape evolution model (LEM). The model is used to investigate how ecohydro-geomorphic differences caused by differential precipitation patterns on the leeward and windward sides of low-relief landscapes lead to differences in the organization of modelled topography, soil moisture and plant biomass. We use the CHILD LEM equipped with a vegetation dynamics component that explicitly tracks above- and below-ground biomass, and a precipitation forcing component that simulates rainfall as a function of elevation and orientation. The preliminary results of the model show how the competition between an increased shear stress through runoff production and an enhanced resistance force due to denser canopy cover shape the landscape. Moreover, orographic precipitation leads to not only the migration of the divide between leeward and windward slopes but also a change in the concavity of streams. These results clearly demonstrate the strong coupling between landform evolution and climate processes.

  10. Human impact on the geomorphic evolution of the HOAL catchment, Lower Austria

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald; Kraushaar, Sabine; Strauss, Peter; Fuchs, Markus

    2016-04-01

    Since the beginning of human settlement extensive land cover and land use changes have induced significant geomorphic landscape changes as water and sediment dynamics have been transformed. The presented project focuses on the reconstruction of Holocene geomorphic landscape evolution and the assessment of recent geomorphic processes in the Northern foothills of the Eastern Alps in Austria - an area intensively agriculturally used since the middle ages and often overlooked in its geomorphic evolution. The study area is a small catchment (ca. 66 ha) which is located in the western part of Lower Austria comprising a land use history as well as environmental settings typical for wide regions across the Northern foothills of the Eastern Alps in Austria. The catchment elevation ranges from 268 to 323 m a.s.l. and has a mean slope angle of 8%. The climate in this region can be characterized as humid. The lithology mainly consists of Tertiary marly to sandy deposits which are superimposed by Quaternary sediments (e.g. loesses). Dominant soil types are Cambisols, Luvisols, and Planosols. Furthermore, the catchment is used as a Hydrological Open Air Laboratory (HOAL) implemented for the long-term research of water-related flow and transport processes in the landscape (http://hoal.hydrology.at). The main objective of this research project is to reconstruct Holocene landscape evolution by analyzing physical parameters of sediment cores taken from colluvial and alluvial sediment archives with additional 14C and OSL dating as well as by the measurement of truncated and covered standardized Luvisol profiles. First results will be presented at the EGU General Assembly 2016.

  11. Transpressional tectonics in the Marrakech High Atlas: Insight by the geomorphic evolution of drainage basins

    NASA Astrophysics Data System (ADS)

    Delcaillau, Bernard; Amrhar, Mostafa; Namous, Mustapha; Laville, Edgard; Pedoja, Kevin; Dugué, Olivier

    2011-11-01

    The Ouzzelarh Massif extends across the Marrakech High Atlas (MHA) and forms the highest elevated mountain belt. To better understand the evolution of collision-related topography, we present the results of a geomorphological study in which elevation changes generated by reactivated pre-Alpine (Variscan and Triassic-Jurassic) faults drive a landscape evolution model. We aim to evaluate the relationship between the geometry of the drainage network and the main fault systems in this region. New insight into geomorphological changes in drainage patterns and related landforms is based on geological fieldwork combined with DEM analysis. To quantitatively measure landscape features we used several classical geomorphic indices (spacing ratio, hypsometric curves and integral, stream frequency drainage, stream length-gradient). The Ouzzelarh Massif is bounded to the north by the Tizi N'Test Fault Zone (TTFZ) and to the south by the Sour Fault Zone (SFZ). These faults delimit a pop-up structure. By using the above geomorphic parameters, we ascertained that the Ouzzelarh Massif is affected by a high spatial variability of uplift. The actual landscape of the Ouzzelarh Massif reveals remnants of an uplifted ancient erosional surface and the heterogeneity of exposed rocks in the range explaining the possibility that the topographic asymmetry between north and south flanks is due to differences in lithology-controlled resistance to erosion. Drainage, topography and fault pattern all concur to show uplifted rhomboidal-shaped blocks. It exhibits high stream frequency drainage and uplift in separate tectonically-uplifted blocks such as Jebel Toubkal which is characterized by asymmetric drainage basins.

  12. Late Quaternary landscape evolution, climate, and neotectonism along the eastern margin of the Puna Plateau: Pucará Valley, NW Argentina

    NASA Astrophysics Data System (ADS)

    McCarthy, J. A.; Schoenbohm, L. M.; Bierman, P. R.; Rood, D. H.

    2013-12-01

    The eastern margin of the Puna Plateau has been the focus of many studies seeking to link climatically-moderated surface processes and tectonism through dynamic feedbacks. However, evaluating any theories regarding climatic-tectonic feedbacks requires the determination of tectonic, climatic, and geomorphic chronologies across a wide region, from plateau to wedge-top to foreland. In this study, we contribute to that effort by examining Quaternary landscape evolution of a single intermontane basin of spatially uniform climate, adjacent to the plateau margin. The semi-arid Pucará Valley contains eight abandoned and incised geomorphic surfaces, most of which are deformed by active structures. These geomorphic surfaces - thin alluvial fans and strath terraces - dominate the landscape and record multiple pulses of incision in the late Quaternary. We find no evidence for significant depositional intervals and valley incision continues currently. Substantial accumulations of pedogenic carbonate and pedogenic gypsum within abandoned surfaces indicate that arid or semi-arid conditions are long lived in this valley. Conversely, relict periglacial morphology in adjacent ranges supports cooler temperatures in the past. River incision is enhanced across active structures, but preliminary observations suggest that the magnitude of deformation cannot fully explain the magnitude of incision. As a result, we argue that extrabasinal base-level lowering is the primary driver of incision in the Pucará Valley, but Quaternary deformation is significant enough to spatially influence erosion. Cooler climatic intervals may influence the sedimentology of alluvial and fluvial deposits, but we find no evidence for significant climatic changes that could change rates or styles of landscape evolution over this time frame. Pending cosmogenic nuclide analysis of fan deposits and river sediments will permit the derivation of fault slip rates, surface ages, modern and paleo-erosion rates, and sediment transport histories. These results will further refine our understanding of tectonic and climatic forcing of surface processes in the Quaternary.

  13. Late Miocene-Pleistocene evolution of a Rio Grande rift subbasin, Sunshine Valley-Costilla Plain, San Luis Basin, New Mexico and Colorado

    USGS Publications Warehouse

    Ruleman, C.A.; Thompson, R.A.; Shroba, R.R.; Anderson, M.; Drenth, B.J.; Rotzien, J.; Lyon, J.

    2013-01-01

    The Sunshine Valley-Costilla Plain, a structural subbasin of the greater San Luis Basin of the northern Rio Grande rift, is bounded to the north and south by the San Luis Hills and the Red River fault zone, respectively. Surficial mapping, neotectonic investigations, geochronology, and geophysics demonstrate that the structural, volcanic, and geomorphic evolution of the basin involves the intermingling of climatic cycles and spatially and temporally varying tectonic activity of the Rio Grande rift system. Tectonic activity has transferred between range-bounding and intrabasin faults creating relict landforms of higher tectonic-activity rates along the mountain-piedmont junction. Pliocene–Pleistocene average long-term slip rates along the southern Sangre de Cristo fault zone range between 0.1 and 0.2 mm/year with late Pleistocene slip rates approximately half (0.06 mm/year) of the longer Quaternary slip rate. During the late Pleistocene, climatic influences have been dominant over tectonic influences on mountain-front geomorphic processes. Geomorphic evidence suggests that this once-closed subbasin was integrated into the Rio Grande prior to the integration of the once-closed northern San Luis Basin, north of the San Luis Hills, Colorado; however, deep canyon incision, north of the Red River and south of the San Luis Hills, initiated relatively coeval to the integration of the northern San Luis Basin.Long-term projections of slip rates applied to a 1.6 km basin depth defined from geophysical modeling suggests that rifting initiated within this subbasin between 20 and 10 Ma. Geologic mapping and geophysical interpretations reveal a complex network of northwest-, northeast-, and north-south–trending faults. Northwest- and northeast-trending faults show dual polarity and are crosscut by north-south– trending faults. This structural model possibly provides an analog for how some intracontinental rift structures evolve through time.

  14. Archeology and Ethnology on the Edges of the Atchafalaya Basin, South Central Louisiana. A Cultural Resources Survey of the Atchafalaya Basin Protection Levees.

    DTIC Science & Technology

    1982-01-01

    et al. 1954) are much less oriented toward geomorphic history and are less useful . Interpretations of the geomorphic evolution of the Lower...Saucier (1963) reported on a subsurface investigation of the Lake Pontchartrain basin and interpreted thL- geomorphic evolu- tion. Frazier (1967) using ...Dasmann(1978:22) acknowledges, very important to those who wish to use what an ecosystem produces. Productivity Is defined in terms of biomass, or the

  15. Gully evolution and geomorphic adjustments of badlands to recent afforestation

    NASA Astrophysics Data System (ADS)

    Ballesteros-Cánovas, Juan Antonio; Stoffel, Markus; Francisco Martín-Duque, Jose; Corona, Christophe; Lucia, Ana; María Bodoque, Jose

    2016-04-01

    Badlands and gullied areas are among the geomorphic environments with the highest erosion rates worldwide, however records on their evolution are very scarce and often limited to presumed initial conditions and the known present state. In this communication, we present a unique and very dense and annual record and outstanding example of erosion processes in a Mediterranean environment in Central Spain, where badland and gullying processes on sandy slopes of a set of mesas have been presumably triggered by quarrying activities since Medieval times. The gully channel evolution here analyzed provides an exceptional example of a larger setting of geomorphic. Besides the analysis of geomorphic adjustments to historical land-use changes induced by historical quarrying and gullying dynamics, we also quantified the impact of current geomorphic adjustments to 20th century afforestation by combining multiproxy such as aerial photography, historical archives, and large dataset of exposed roots to date, quantify, and reconstruct the morphology of a rapidly evolving channel in a gullied catchment. In this analysis, more than 150 exposed roots were analyzed to quantify and report channel incision; widening and gully retreatment rates during the last decades, as well as to quantify sheet erosion on different soil units. Our results suggest that, rather than stabilizing gully evolution, the afforestation carried out during 1960s has played an important role in water-sediment balance and connectivity and would have triggered the initiation of channel incision processes in the 1980s. Therefore, we observe that the channel incision match with a significant increase of the vegetation cover, which leads a significant decrease in sheet erosion rates. Based on our long-term annual gully reconstruction, we observed that sediment delivery does not correlate with the estimated intensity of precipitation (Fourier index). Instead, we observe abrupt morphological changes in the gully are presumably related with changes in connectivity after a specific intense event. Consequently, we hypothesize that the gullying process-vegetation interactions are subsidiary of the geomorphic adjustments and connectivity states of the system; and speculate that this understanding is essential for suitable restoration and management plans.

  16. Comprehensive Representation of Hydrologic and Geomorphic Process Coupling in Numerical Models: Internal Dynamics and Basin Evolution

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, E.; Vivoni, E. R.; Ivanov, V. Y.; Bras, R. L.

    2005-12-01

    Landscape morphology has an important control on the spatial and temporal organization of basin hydrologic response to climate forcing, affecting soil moisture redistribution as well as vegetation function. On the other hand, erosion, driven by hydrology and modulated by vegetation, produces landforms over geologic time scales that reflect characteristic signatures of the dominant land forming process. Responding to extreme climate events or anthropogenic disturbances of the land surface, infrequent but rapid forms of erosion (e.g., arroyo development, landsliding) can modify topography such that basin hydrology is significantly influenced. Despite significant advances in both hydrologic and geomorphic modeling over the past two decades, the dynamic interactions between basin hydrology, geomorphology and terrestrial ecology are not adequately captured in current model frameworks. In order to investigate hydrologic-geomorphic-ecologic interactions at the basin scale we present initial efforts in integrating the CHILD landscape evolution model (Tucker et al. 2001) with the tRIBS hydrology model (Ivanov et al. 2004), both developed in a common software environment. In this talk, we present preliminary results of the numerical modeling of the coupled evolution of basin hydro-geomorphic response and resulting landscape morphology in two sets of examples. First, we discuss the long-term evolution of both the hydrologic response and the resulting basin morphology from an initially uplifted plateau. In the second set of modeling experiments, we implement changes in climate and land-use to an existing topography and compare basin hydrologic response to the model results when landscape form is fixed (e.g. no coupling between hydrology and geomorphology). Model results stress the importance of internal basin dynamics, including runoff generation mechanisms and hydrologic states, in shaping hydrologic response as well as the importance of employing comprehensive conceptualizations of hydrology in modeling landscape evolution.

  17. Effects of simultaneous climate change and geomorphic evolution on thermal characteristics of a shallow Alaskan lake

    USGS Publications Warehouse

    Griffiths, Jennifer R.; Schindler, Daniel E.; Balistrieri, Laurie S.; Ruggerone, Gregory T.

    2011-01-01

    We used a hydrodynamics model to assess the consequences of climate warming and contemporary geomorphic evolution for thermal conditions in a large, shallow Alaskan lake. We evaluated the effects of both known climate and landscape change, including rapid outlet erosion and migration of the principal inlet stream, over the past 50 yr as well as future scenarios of geomorphic restoration. Compared to effects of air temperature during the past 50 yr, lake thermal properties showed little sensitivity to substantial (~60%) loss of lake volume, as the lake maximum depth declined from 6 m to 4 m driven by outlet erosion. The direction and magnitude of future lake thermal responses will be driven largely by the extent of inlet stream migration when it occurs simultaneously with outlet erosion. Maintaining connectivity with inlet streams had substantial effects on buffering lake thermal responses to warming climate. Failing to account for changing rates and types of geomorphic processes under continuing climate change may misidentify the primary drivers of lake thermal responses and reduce our ability to understand the consequences for aquatic organisms.

  18. An object-oriented framework for distributed hydrologic and geomorphic modeling using triangulated irregular networks

    NASA Astrophysics Data System (ADS)

    Tucker, Gregory E.; Lancaster, Stephen T.; Gasparini, Nicole M.; Bras, Rafael L.; Rybarczyk, Scott M.

    2001-10-01

    We describe a new set of data structures and algorithms for dynamic terrain modeling using a triangulated irregular network (TINs). The framework provides an efficient method for storing, accessing, and updating a Delaunay triangulation and its associated Voronoi diagram. The basic data structure consists of three interconnected data objects: triangles, nodes, and directed edges. Encapsulating each of these geometric elements within a data object makes it possible to essentially decouple the TIN representation from the modeling applications that make use of it. Both the triangulation and its corresponding Voronoi diagram can be rapidly retrieved or updated, making these methods well suited to adaptive remeshing schemes. We develop a set of algorithms for defining drainage networks and identifying closed depressions (e.g., lakes) for hydrologic and geomorphic modeling applications. We also outline simple numerical algorithms for solving network routing and 2D transport equations within the TIN framework. The methods are illustrated with two example applications, a landscape evolution model and a distributed rainfall-runoff model.

  19. Riparian vegetation patterns in relation to fluvial landforms and channel evolution along selected rivers of Tuscany (Central Italy)

    USGS Publications Warehouse

    Hupp, C.R.; Rinaldi, M.

    2007-01-01

    Riparian vegetation distribution patterns and diversity relative to various fluvial geomorphic channel patterns, landforms, and processes are described and interpreted for selected rivers of Tuscany, Central Italy; with emphasis on channel evolution following human impacts. Field surveys were conducted along thirteen gauged reaches for species presence, fluvial landforms, and the type and amount of channel/riparian zone change. Inundation frequency of different geomorphic surfaces was determined, and vegetation data were analyzed using BDA (binary discriminate analysis) and DCA (detrended correspondence analysis) and related to hydrogeomorphology. Multivariate analyses revealed distinct quantitative vegetation patterns relative to six major fluvial geomorphic surfaces. DCA of the vegetation data also showed distinct associations of plants to processes of adjustment that are related to stage of channel evolution, and clearly separated plants along disturbance/landform/soil moisture gradients. Species richness increases from the channel bed to the terrace and on heterogeneous riparian areas, whereas species richness decreases from moderate to intense incision and from low to intense narrowing. ?? 2007 by Association of American Geographers.

  20. Neotectonics and geomorphic evolution of the northwestern arm of the Yellowstone Tectonic Parabola: Controls on intra-cratonic extensional regimes, southwest Montana

    USGS Publications Warehouse

    Ruleman, Chester A.; Larsen, Mort; Stickney, Michael C.

    2014-01-01

    The catastrophic Hebgen Lake earthquake of 18 August 1959 (MW 7.3) led many geoscientists to develop new methods to better understand active tectonics in extensional tectonic regimes that address seismic hazards. The Madison Range fault system and adjacent Hebgen Lake–Red Canyon fault system provide an intermountain active tectonic analog for regional analyses of extensional crustal deformation. The Madison Range fault system comprises fault zones (~100 km in length) that have multiple salients and embayments marked by preexisting structures exposed in the footwall. Quaternary tectonic activity rates differ along the length of the fault system, with less displacement to the north. Within the Hebgen Lake basin, the 1959 earthquake is the latest slip event in the Hebgen Lake–Red Canyon fault system and southern Madison Range fault system. Geomorphic and paleoseismic investigations indicate previous faulting events on both fault systems. Surficial geologic mapping and historic seismicity support a coseismic structural linkage between the Madison Range and Hebgen Lake–Red Canyon fault systems. On this trip, we will look at Quaternary surface ruptures that characterize prehistoric earthquake magnitudes. The one-day field trip begins and ends in Bozeman, and includes an overview of the active tectonics within the Madison Valley and Hebgen Lake basin, southwestern Montana. We will also review geologic evidence, which includes new geologic maps and geomorphic analyses that demonstrate preexisting structural controls on surface rupture patterns along the Madison Range and Hebgen Lake–Red Canyon fault systems.

  1. Age discrimination among basalt flows using digitally enhanced LANDSAT imagery. [Saudi Arabia

    NASA Technical Reports Server (NTRS)

    Blodget, H. W.; Brown, G. F.

    1984-01-01

    Digitally enhanced LANDSAT MSS data were used to discriminate among basalt flows of historical to Tertiary age, at a test site in Northwestern Saudi Arabia. Spectral signatures compared favorably with a field-defined classification that permits discrimination among five groups of basalt flows on the basis of geomorphic criteria. Characteristics that contributed to age definition include: surface texture, weathering, color, drainage evolution, and khabrah development. The inherent gradation in the evolution of geomorphic parameters, however, makes visual extrapolation between areas subjective. Therefore, incorporation of spectrally-derived volcanic units into the mapping process should produce more quantitatively consistent age groupings.

  2. Euripus Mons - Landform Evolution and Climate Constraints in Promethei Terra

    NASA Astrophysics Data System (ADS)

    van Gasselt, Stephan; Kim, Jungrack; Baik, Hyun-Seob

    2016-04-01

    The Promethei Terra region of Mars exhibits a variety of geomorphic landforms indicative of ice-assisted creep of debris and ice, similar to features and processes found at the Martian dichotomy boundary in Deuteronilus, Protonilus and Nilosyrtis Mensae. Despite only little doubt about the fact that ice played an integral role in the formation of these features, it is still disputed if these features were formed by glacial processes, requiring precipitation of ice and snow and exhibiting glacial deformation and basal sliding, or if these landforms are a product of periglacial denudation and subject to different deformation regimes. As information about past climate conditions on Mars is sparse, the proper assessment of landform types today allows to put constraints on their environmental conditions in the past. Due to limited knowledge about the internal physical and thermal structure of these landforms, it remains impossible to unambiguously determine their origin [1]. A variety of geomorphic and model-based indicators need to be taken into account when putting constraints on their history and when trying to reconstruct their evolution. For selected features on Mars it has been shown by SHARAD radar observations that the ice content might be relatively high [2], and that some of them might be composed of pure ice, protected from sublimation by a thin debris cover. One of such examples, Euripus Mons, is a 80 km remnant feature with an associated circumferential talus deposit that shows indicators for deformation by downslope movement, i.e. debris apron morphology. Recent modelling assuming glacial deformation helped to reconstruct some internal structural properties [3]. Despite these attempts, Euripus Mons shows clear geomorphic signatures of classical periglacial denudation which do not fit into the concept of glacial-only evolution. Denudation rates as well as ages are similar to those reported from other locations on Mars for which hyperarid climate conditions were proposed [4] and where no positive radar measurements could be acquired. We here report on our observations supporting a periglacial mass wasting evolution and discuss results from numerical modelling applied to the settings of Euripus Mons. References: [1] Souness & Hubbard (2012) Progr. Phys. Gegr., 36(2), 238-261; [2] Holt et al. (2008) Science, 322, 1235-1238; [3] Parsons & Holt (2015) 44th Lun. Planet. Sci. Conf., #1840 [4] van Gasselt et al. (2011) Martian Geomorphology, Geol. Soc. London, 356, 43-67.

  3. Geomorphic and geologic evidence for slip along the San Bernardino strand of the San Andreas Fault System through the San Gorgonio Pass structural knot, southern California

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.

    2017-12-01

    The San Gorgonio Pass (SGP) region of southern California represents an extraordinarily complex section of the San Andreas Fault (SAF) zone, often referred to as a structural knot. Complexity is expressed both structurally and geomorphically, and arises because multiple strands of the SAF have evolved here in Quaternary time. Our integration of geologic and geomorphic analyses led to recognition of multiple fault-bounded blocks characterized by crystalline rocks that have similar physical properties. Hence, any morphometric differences in hypsometric analysis, slope, slope distribution, texture, and stream-power measurements and discontinuities reflect landscape response to tectonic processes rather than differences in lithology. We propose that the differing morphometry of the two blocks on either side of the San Bernardino strand (SBS) of the SAF, the high-standing Kitching Peak block to the east and the lower, more subdued Pisgah Peak block to the west, strongly suggests that the blocks experienced different uplift histories. This difference in uplift histories, in turn suggests that dextral slip occurred over a long time interval on the SBS—despite long-lived controversy raised by the fact that, at the surface, a throughgoing trace of the SBS is not present at this location. A different tectonic history between the two blocks is consistent with the gravity data which indicate that low-density rocks underthrusting the Kitching Peak block are absent below the Pisgah Peak block (Langenheim et al., 2015). Throughgoing slip on the SBS implied by geomorphic differences between the two blocks is also consistent with displaced geologic and geomorphic features. We find compelling evidence for discrete offsets of between 0.6 and 6 km of dextral slip on the SBS, including offset of fluvial and landslide deposits, and beheaded drainages. Although we lack numerical age control for the offset features, the degree of soil development associated with displaced landforms suggests that the SBS has had a longer geologic history than previously proposed, and that this fault strand may have experienced episodic activity. Landscape evolution and geologic evidence together require that dextral slip on the SAF must have continued through the SGP structural knot during an extended interval in the past.

  4. Transient Fluvial Response to Alpine Deglaciation, Mount Rainier, WA: Geomorphic Process Domains and Proglacial Flux Controls on Channel Evolution.

    NASA Astrophysics Data System (ADS)

    Beyeler, J. D.; Montgomery, D.; Kennard, P. M.

    2016-12-01

    Downwasting of all glaciers on the flanks of Mount Rainier, WA, in recent decades has debuttressed Little Ice Age glaciogenic sediments driving proglacial responses to regionally warming climate. Rivers draining the deglaciating edifice are responding to paraglacial sedimentation processes through transient storage of retreat-liberated sediments in aggrading (e.g., >5m) fluvial networks with widening channel corridors (i.e., 50-150%) post-LIA (ca., 1880-1910 locally). We hypothesize that the downstream transmission of proglacial fluxes (i.e., sediment and water) through deglaciating alpine terrain is a two-step geomorphic process. The ice-proximal portion of the proglacial system is dominated by the delivery of high sediment-to-water ratio flows (i.e., hyperconcentrated and debris slurries) and sediment retention by in-channel accumulation (e.g., confined debris fans within channel margins of valley segments) exacerbated by recruitment and accumulation of large wood (e.g., late seral stage conifers), whereas ice-distal fluvial reworking of transient sediment accumulations generates downstream aggradation. Historical Carbon River observations show restricted ice-proximal proglacial aggradation until a mainstem avulsion in 2009 initiated incision into sediment accumulations formed in recent decades, which is translating into aggradation farther down the network. Surficial morphology mapped with GPS, exposed subsurface sedimentology, and preliminary dating of buried trees suggest a transitional geomorphic process zone has persisted along the proglacial Carbon River through recent centuries and prior to the ultimate LIA glaciation. Structure-from-motion DEM differencing through the 2016 water year shows discrete zones of proglacial evolution through channel-spanning bed aggradation forced by interactions between large wood and sediment-rich flows that transition to fluvial process dominance as sediment is transported downstream. Long-term DEM differencing suggests these are persistent geomorphic processes as rivers respond to alpine deglaciation. This process-based study implies downstream river flooding in deglaciating alpine terrain globally is driven by glaciogenic sediment release and downstream channel aggradation irrespective of changes in discharge.

  5. Associations of stream geomorphic conditions and prevalence of alternative reproductive tactics among sockeye salmon populations

    USGS Publications Warehouse

    DeFilippo, L. B.; Schindler, D.E.; Carter, J.L.; Walsworth, Timothy E.; Cline, T. J.; Larson, Wesley; Buehrens, T.

    2018-01-01

    In many species, males may exhibit alternative life histories to circumvent the costs of intrasexual competition and female courtship. While the evolution and underlying genetic and physiological mechanisms behind alternative reproductive tactics are well studied, there has been less consideration of the ecological factors that regulate their prevalence. Here, we examine six decades of age composition records from thirty‐six populations of sockeye salmon (Oncorhynchus nerka) to quantify associations between spawning habitat characteristics and the prevalence of precocious sneakers known as ‘jacks’. Jack prevalence was independent of neutral genetic structure among stream populations, but varied among habitat types and as a function of continuous geomorphic characteristics. Jacks were more common in streams relative to beaches and rivers, and their prevalence was negatively associated with stream width, depth, elevation, slope and area, but positively related to bank cover. Behavioural observations showed that jacks made greater use of banks, wood and shallows than guard males, indicating that their reproductive success depends on the availability of such refuges. Our results emphasize the role of the physical habitat in shaping reproductive tactic frequencies among populations, likely through local adaptation in response to variable fitness expectations under different geomorphic conditions.

  6. The landscape of Titan as witness to its climate evolution

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey M.; Howard, Alan D.; Morgan, Alexander M.

    2014-09-01

    We investigated the range of Titan climate evolution hypotheses regulated by the role, sources, and availability of methane. We analyzed all available image data (principally synthetic aperture radar (SAR)) of Titan's landscape through the T-86 encounter, starting with focused examinations of terrains that carry the markers of climate evolution. Traditional geologic and geomorphic landscape analysis was used to perform morphometric characterization, establish time-stratigraphic relationships, and interpret local and regional geologic process-oriented evolutionary histories. We then assayed the distribution of terrains we identified with respect to both their latitudinal and altimetric occurrence. Our analysis of the terrain types and distributions was used to evaluate and rank the various climate evolution scenarios. We favor progressive hypotheses, which include a relatively brief period in which precipitation was able to affect geomorphic change in low latitudes at scales perceivable in SAR data, with subsequent gradual decline of precipitation intensity coupled with an increasing poleward restriction.

  7. Morphometric and landsliding analyses in chain domain: the Roccella basin, NE Sicily, Italy

    NASA Astrophysics Data System (ADS)

    Rapisarda, Francesco

    2009-10-01

    The dynamic interaction of endogenic and exogenic processes in active geodynamic context leads to the deterioration of the physico-mechanical characteristics of the rocks, inducing slopes instability. In such context, the morphometric parameters and the analysis of landslide distribution contribute to appraise the evolutive state of hydrographic basins. The aim of the study is the morphometric characterization of the Roccella Torrent basin (Rtb) located in South Italy. Landsliding and tectonic structure dynamically interact with the drainage pattern that records these effects and permits the definition of the evolutive geomorphic stage of the basin. The Air Photograph Investigation and field surveys permitted to draw the main geomorphic features, the drainage pattern of the Rtb, to calculate the morphometric parameters and to delimit the landslides’ bodies. Detailed analysis about the landslide distribution within a test site 17 km2 wide were carried out to elaborate indicative indexes of the landslides type and to single out the lithotypes that are more involved in slope instability phenomena. The morphometric parameters indicate the rejuvenation state within the Rtb where the stream reaches show the effects of increased energy relief in agreement with the geological settings of this sector of the Apennine-Maghrebian Chain.

  8. Autogenic geomorphic processes determine the resolution and fidelity of terrestrial paleoclimate records.

    PubMed

    Foreman, Brady Z; Straub, Kyle M

    2017-09-01

    Terrestrial paleoclimate records rely on proxies hosted in alluvial strata whose beds are deposited by unsteady and nonlinear geomorphic processes. It is broadly assumed that this renders the resultant time series of terrestrial paleoclimatic variability noisy and incomplete. We evaluate this assumption using a model of oscillating climate and the precise topographic evolution of an experimental alluvial system. We find that geomorphic stochasticity can create aliasing in the time series and spurious climate signals, but these issues are eliminated when the period of climate oscillation is longer than a key time scale of internal dynamics in the geomorphic system. This emergent autogenic geomorphic behavior imparts regularity to deposition and represents a natural discretization interval of the continuous climate signal. We propose that this time scale in nature could be in excess of 10 4 years but would still allow assessments of the rates of climate change at resolutions finer than the existing age model techniques in isolation.

  9. Autogenic geomorphic processes determine the resolution and fidelity of terrestrial paleoclimate records

    PubMed Central

    Foreman, Brady Z.; Straub, Kyle M.

    2017-01-01

    Terrestrial paleoclimate records rely on proxies hosted in alluvial strata whose beds are deposited by unsteady and nonlinear geomorphic processes. It is broadly assumed that this renders the resultant time series of terrestrial paleoclimatic variability noisy and incomplete. We evaluate this assumption using a model of oscillating climate and the precise topographic evolution of an experimental alluvial system. We find that geomorphic stochasticity can create aliasing in the time series and spurious climate signals, but these issues are eliminated when the period of climate oscillation is longer than a key time scale of internal dynamics in the geomorphic system. This emergent autogenic geomorphic behavior imparts regularity to deposition and represents a natural discretization interval of the continuous climate signal. We propose that this time scale in nature could be in excess of 104 years but would still allow assessments of the rates of climate change at resolutions finer than the existing age model techniques in isolation. PMID:28924607

  10. Coastal Inlets Research Program

    DTIC Science & Technology

    2014-04-01

    PCs to evaluate inlets, channels, structures, adjacent beaches dredging and placement within, regional systems .  Transfer technology and...Coastal  Modeling  or o o  Management System   (CMS) Alex Sanchez Ned MitchellCIRP Honghai Li Waves at  Research & Development Geomorphic  Evolution T B k...channel infilling Aug 2005 Baltimore, MD Inlet Modeling  System  technology transfer workshop #7 – FSBPA, Jan/Feb 2006 Sarasota, FL Modeling of waves

  11. Vegetation modulated landscape evolution: Effects of vegetation on landscape processes, drainage density and topography

    NASA Astrophysics Data System (ADS)

    Bras, R. L.; Istanbulluoglu, E.

    2004-12-01

    Topography acts as a template for numerous landscape processes that includes hydrologic, ecologic and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on known geomorphic relations, thresholds for channel initiation and landform evolution, using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants, and is killed by geomorphic disturbances (runoff erosion and landsliding), and wildfires. Analytical results suggest that, in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion dominated landscape, under none or loose vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the CHILD model. Numerical experiments reveal the importance of vegetation disturbances on the landscape structure. Simulated landscapes resemble real-world catchments in the OCR when vegetation disturbances are considered.

  12. Don't fight the site: three geomorphic considerations in catchment-scale river rehabilitation planning.

    PubMed

    Brierley, Gary; Fryirs, Kirstie

    2009-06-01

    Three geomorphic considerations that underpin the design and implementation of realistic and strategic river conservation and rehabilitation programs that work with the nature are outlined. First, the importance of appreciating the inherent diversity of river forms and processes is discussed. Second, river dynamics are appraised, framing the contemporary behavioral regime of a reach in relation to system evolution to explain changes to river character and behavior over time. Third, the trajectory of a reach is framed in relation to downstream patterns of river types, analyzing landscape connectivity at the catchment scale to interpret geomorphic river recovery potential. The application of these principles is demonstrated using extensive catchment-scale analyses of geomorphic river responses to human disturbance in the Bega and Upper Hunter catchments in southeastern Australia. Differing implications for reach- and catchment-scale rehabilitation planning prompt the imperative that management practices work with nature rather than strive to 'fight the site.'

  13. Associations of stream geomorphic conditions and prevalence of alternative reproductive tactics among sockeye salmon populations.

    PubMed

    DeFilippo, L B; Schindler, D E; Carter, J L; Walsworth, T E; Cline, T J; Larson, W A; Buehrens, T

    2018-02-01

    In many species, males may exhibit alternative life histories to circumvent the costs of intrasexual competition and female courtship. While the evolution and underlying genetic and physiological mechanisms behind alternative reproductive tactics are well studied, there has been less consideration of the ecological factors that regulate their prevalence. Here, we examine six decades of age composition records from thirty-six populations of sockeye salmon (Oncorhynchus nerka) to quantify associations between spawning habitat characteristics and the prevalence of precocious sneakers known as 'jacks'. Jack prevalence was independent of neutral genetic structure among stream populations, but varied among habitat types and as a function of continuous geomorphic characteristics. Jacks were more common in streams relative to beaches and rivers, and their prevalence was negatively associated with stream width, depth, elevation, slope and area, but positively related to bank cover. Behavioural observations showed that jacks made greater use of banks, wood and shallows than guard males, indicating that their reproductive success depends on the availability of such refuges. Our results emphasize the role of the physical habitat in shaping reproductive tactic frequencies among populations, likely through local adaptation in response to variable fitness expectations under different geomorphic conditions. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  14. Relating geomorphic change and grazing to avian communities in riparian forests

    USGS Publications Warehouse

    Scott, M.L.; Skagen, S.K.; Merligliano, M.F.

    2003-01-01

    Avian conservation in riparian or bottomland forests requires an understanding of the physical and biotic factors that sustain the structural complexity of riparian vegetation. Riparian forests of western North America are dependent upon flow-related geomorphic processes necessary for establishment of new cottonwood and willow patches. In June 1995, we examined how fluvial geomorphic processes and long-term grazing influence the structural complexity of riparian vegetation and the abundance and diversity of breeding birds along the upper Missouri River in central Montana, a large, flow-regulated, and geomorphically constrained reach. Use by breeding birds was linked to fluvial geomorphic processes that influence the structure of these patches. Species richness and bird diversity increased with increasing structural complexity of vegetation (F1,32 = 75.49, p < 0.0001; F1,32 = 79.76, p < 0.0001, respectively). Bird species composition was significantly correlated with vegetation strata diversity (rs,33 = 0.98, p < 0.0001). Bird abundance in canopy and tall-shrub foraging guilds increased significantly with increasing tree cover and tall-shrub cover (F1,22 = 34.68, p < 0.0001; F1,20 = 22.22, p < 0.0001, respectively). Seventeen bird species, including five species of concern (e.g., Red-eyed Vireo [Vireo olivaceus]), were significantly associated (p < 0.10) with structurally complex forest patches, whereas only six bird species were significantly associated with structurally simple forest patches. We related the structural complexity of 34 riparian vegetation patches to geomorphic change, woody vegetation establishment, and grazing history over a 35-year post-dam period (1953–1988). The structural complexity of habitat patches was positively related to recent sediment accretion (t33 = 3.31, p = 0.002) and vegetation establishment (t20.7 = −3.63, p = 0.002) and negatively related to grazing activity (t19.6 = 3.75, p = 0.001). Avian conservation along rivers like the upper Missouri requires maintenance of the geomorphic processes responsible for tree establishment and management of land-use activities in riparian forests.

  15. Titan Polar Landscape Evolution

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.

    2016-01-01

    With the ongoing Cassini-era observations and studies of Titan it is clear that the intensity and distribution of surface processes (particularly fluvial erosion by methane and Aeolian transport) has changed through time. Currently however, alternate hypotheses substantially differ among specific scenarios with respect to the effects of atmospheric evolution, seasonal changes, and endogenic processes. We have studied the evolution of Titan's polar region through a combination of analysis of imaging, elevation data, and geomorphic mapping, spatially explicit simulations of landform evolution, and quantitative comparison of the simulated landscapes with corresponding Titan morphology. We have quantitatively evaluated alternate scenarios for the landform evolution of Titan's polar terrain. The investigations have been guided by recent geomorphic mapping and topographic characterization of the polar regions that are used to frame hypotheses of process interactions, which have been evaluated using simulation modeling. Topographic information about Titan's polar region is be based on SAR-Topography and altimetry archived on PDS, SAR-based stereo radar-grammetry, radar-sounding lake depth measurements, and superposition relationships between geomorphologic map units, which we will use to create a generalized topographic map.

  16. Predicting geomorphic evolution through integration of numerical-model scenarios and topographic/bathymetric-survey updates

    NASA Astrophysics Data System (ADS)

    Plant, N. G.; Long, J.; Dalyander, S.; Thompson, D.; Miselis, J. L.

    2013-12-01

    Natural resource and hazard management of barrier islands requires an understanding of geomorphic changes associated with long-term processes and storms. Uncertainty exists in understanding how long-term processes interact with the geomorphic changes caused by storms and the resulting perturbations of the long-term evolution trajectories. We use high-resolution data sets to initialize and correct high-fidelity numerical simulations of oceanographic forcing and resulting barrier island evolution. We simulate two years of observed storms to determine the individual and cumulative impacts of these events. Results are separated into cross-shore and alongshore components of sediment transport and compared with observed topographic and bathymetric changes during these time periods. The discrete island change induced by these storms is integrated with previous knowledge of long-term net alongshore sediment transport to project island evolution. The approach has been developed and tested using data collected at the Chandeleur Island chain off the coast of Louisiana (USA). The simulation time period included impacts from tropical and winter storms, as well as a human-induced perturbation associated with construction of a sand berm along the island shoreline. The predictions and observations indicated that storm and long-term processes both contribute to the migration, lowering, and disintegration of the artificial berm and natural island. Further analysis will determine the relative importance of cross-shore and alongshore sediment transport processes and the dominant time scales that drive each of these processes and subsequent island morphologic response.

  17. Age and prematurity of the Alps

    NASA Astrophysics Data System (ADS)

    Hergarten, Stefan; Stüwe, Kurt; Wagner, Thomas

    2010-05-01

    Although the Alps are among the best studied mountain ranges on Earth, the age of their topography is almost unknown. Even their relative stage of evolution is unclear: Are the Alps still growing, in a steady state or even decaying? Using the mean slope at given catchment size as a new geomorphic parameter we analyse the topography of the Alps. Our analysis provides one of the first quantitative constraints that shows that the range is still in its infancy: In contrast to several other mountain ranges, the Alps have still more than half of their evolution to a geomorphic steady state to go. Combining our results with sediment data from the surrounding accumulation spaces we infer that the formation of substantial topography began only 5-6 million years ago. Our results challenge a general consensus that the topographic evolution is distributed over much of the Miocene.

  18. Geomorphic change in Dingzi Bay, East China since the 1950s: impacts of human activity and fluvial input

    NASA Astrophysics Data System (ADS)

    Tian, Qing; Wang, Qing; Liu, Yalong

    2017-06-01

    This study examines the geomorphic evolution of Dingzi Bay, East China in response to human activity and variations in fluvial input since the 1950s. The analysis is based on data from multiple mathematical methods, along with information obtained from Remote Sensing, Geographic Information System and Global Position System technology. The results show that the annual runoff and sediment load discharged into Dingzi Bay display significant decreasing trends overall, and marked downward steps were observed in 1966 and 1980. Around 60%-80% of the decline is attributed to decreasing precipitation in the Wulong River Basin. The landform types in Dingzi Bay have changed significantly since the 1950s, especially over the period between 1981 and 1995. Large areas of tidal flats, swamp, salt fields, and paddy fields have been reclaimed, and aquaculture ponds have been constructed. Consequently, the patterns of erosion and deposition in the bay have changed substantially. Despite a reduction in sediment input of 65.68% after 1966, low rates of sediment deposition continued in the bay. However, deposition rates changed significantly after 1981 owing to large-scale development in the bay, with a net depositional area approximately 10 times larger than that during 1961-1981. This geomorphic evolution stabilized following the termination of large-scale human activity in the bay after 1995. Overall, Dingzi Bay has shown a tendency towards silting-up during 1952-2010, with the bay head migrating seaward, the number of channels in the tidal creek system decreasing, and the tidal inlet becoming narrower and shorter. In conclusion, largescale development and human activity in Dingzi Bay have controlled the geomorphic evolution of the bay since the 1950s.

  19. Experiments in dam removal, sediment pulses and channel evolution on the Clark Fork River, MT and White Salmon River, WA

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.

    2012-12-01

    Two recent dam removals on tributaries to the Columbia River in the northwestern United States present contrasting examples of how dam removal methods, reservoir contents, and geomorphic settings influence system responses. The 2008 removal of Milltown Dam, from the Clark Fork River (CFR), Montana, and the 2011 removal of Condit Dam from the White Salmon River (WSR), Washington (Table 1), represent two of the largest dam removals to date. The Milltown Dam removal was notable because the dam stored millions of cubic meters of contaminated mine tailings, a portion of which were excavated as part of Superfund remediation but a portion of which flowed downstream after the removal. On the CFR, post-breach high flows in 2008 produced reservoir erosion and downstream deposition in bed interstices, along bars, and on the floodplain, but above-average (3-15 year recurrence interval) floods since then have remobilized this material and have, to a large extent, erased signs of downstream sedimentation. The Condit Dam removal entailed dynamiting of a 4m by 5.5m hole at the base of the dam, which produced rapid and dramatic draining of fine reservoir sediments within hours of the blast. Downstream of Condit Dam, the initial hyperconcentrated flows and sediment pulse draped the WSR with fine sediment, filled pools, and, in an unconfined reach influenced by the Columbia River's backwater, caused meters of aggradation and new bar formation. In the confined, bedrock-dominated reach downstream of the Condit site, pool-riffle structure has started to reemerge as of summer 2012 and the finest bed materials have been evacuated from the main channel, although sediment storage in pools and eddies persists. Whereas post-breach geomorphic responses on the CFR have been largely driven by hydrology, the post-breach evolution of the WSR has been predominantly influenced by antecedent geomorphic conditions (slope, confinement, and Columbia River backwater). On both the CFR and WSR, the pace of post-breach reservoir erosion and of geomorphic recovery from the disturbances produced by dam removal has been rapid, far exceeding pre-breach predictions.Table 1: Comparison of Milltown and Condit Dam removals

  20. Active tectonics in the Mygdonia basin (northern Greece): a combined seismological and remote-sensed geomorphology approach

    NASA Astrophysics Data System (ADS)

    Gkarlaouni, Charikleia; Andreani, Louis; Pennos, Chris; Gloaguen, Richard; Papadimitriou, Eleftheria; Kilias, Adamantios; Michail, Maria

    2014-05-01

    In Greek mainland, active extensional deformation resulted in the development of numerous seismogenic E- to SE-trending basins. The Mygdonia graben located in central Macedonia produced major historical earthquakes and poses a serious threat to the neighbouring city of Thessaloniki. Our aim is to determine which active seismic sources have the potential to generate strong events. Active tectonics shape the landscape, control the evolution of the fluvial network and cause the occurrence of strong and frequent earthquakes generated by fault populations. Thus, our approach combined both seismology and remote-sensed geomorphology. Seismological investigation and more especially relocation analysis was performed for recent seismicity in the area (2000-2012). Low magnitude earthquakes not exceeding 4.8 constitute the seismicity pattern for this period. Accurately determined focal parameters indicate that seismicity is not only localized along major fault zones. Smaller faults seem also to be activated. Temporal and spatial investigation show that seismicity is clustered and seismic bursts often migrate to adjacent faults. The hypocentral distribution of precisely determined microearthquake foci reveals the existence of high-angle (> 60º) normal faults dipping both south and north. This is consistent with fault plane solutions of stronger earthquakes. The largest amount of earthquakes is generated along the NW-SE sub-basin bounded from "Assiros-Analipsi" and "Lagina" fault zone, as well as in "Sochos" fault in the north which dips with approximately 70º-80º to the south. All these structures played an important role in the seismotectonic evolution of the area. We used geomorphic indices in order to analyse the landscapes of the Mygdonia region. Geomorphic indices were derived from DEM and computed using MATLAB scripts. We classified the landscapes according to their erosional stages using hypsometric integral and surface roughness. Both indices suggest stronger erosion along the southern flank of the Mygdonia graben. Observed differences may be related to a diachronic evolution. River profiles crossing the Thessaloniki-Gerakarou fault system (TGFS) south of the Mygdonia basin display anomalies such as knickpoints or convex segments. These anomalies reflect significant changes in river base-levels possibly triggered by uplift/subsidence processes. We also computed the normalized steepness index (ksn) for concave segments in rivers. We observe an increase of ksn values towards the south while the lithology remains almost constant. These changes in ksn values may be thus related to an increase in deformation rates along the southern TGFS. Our geomorphic analysis also highlighted several flat paleo-surfaces located on top of main ranges at elevations comprised between 300 and 450m above the basin infill. Finally, we produced thematic maps combining present-day seismicity, historical earthquakes and geomorphic features derived from DEM. The combined use of both seismology and remote-sensed geomorphology allowed us to better understand the at-depth and surface expressions of active structures within the Mygdonia basin. It also provided further insights into the tectonic evolution of the study area. This project is funded by the German Academic Exchange Service (DAAD) and the Greek State Scholarschips Foundation (IKY) under the IKYDA initiative.

  1. Designing forward with an eye to the past: Morphogenesis of the lower Yuba River

    NASA Astrophysics Data System (ADS)

    James, L. Allan

    2015-12-01

    The early geomorphic evolution of the lower Yuba River (LYR), northern California, up to 1906 is reconstructed using cartographic, documentary, topographic, and stratigraphic evidence. The importance of early river mining is identified along with rates and patterns of floodplain aggradation and channel incision at the turn of the 20th century. The LYR is a classic example of anthropogeomorphic transformation of a river by episodic hydraulic mining sedimentation. This was followed by channelization, damming, dredging, and other engineering works to redirect, contain, and stabilize channels. These geomorphic changes and engineering controls continue to govern channel and floodplain form and process, control the trajectory of river responses, and constrain flood control, water quality, and aquatic ecosystem management options. Returning a river system to a prior condition should not be the primary goal of river rehabilitation projects, especially if hydrologic inputs have substantially changed. Reconstructing former conditions may be impractical and unsustainable under modern circumstances. Instead, fluvial systems should be designed and managed for present inputs and processes while anticipating future conditions. Rapid changes in land use and climate that generate changes in runoff and sediment loadings are likely to generate morphological instability, and these changes should be considered in the design and management of fluvial systems. The past geomorphic evolution of fluvial systems should also be considered in design and management decisions to recognize trajectories and suppressed tendencies. Recognition of trends and system vulnerabilities may avoid potential blunders, such as removing critical stabilizing works. Complex causalities may be difficult to reconstruct from geomorphic form alone, however, due to process-form dynamics. Detailed research on the geomorphic and engineering history of a river is essential, therefore, if substantial changes and morphologic instabilities have occurred.

  2. Emancipating traditional channel network types: quantification of topology and geometry, and relation to geologic boundary conditions

    NASA Astrophysics Data System (ADS)

    Temme, A.; Langston, A. L.

    2017-12-01

    Traditional classification of channel networks is helpful for qualitative geologic and geomorphic inference. For instance, a dendritic network indicates no strong lithological control on where channels flow. However, an approach where channel network structure is quantified, is required to be able to indicate for instance how increasing levels of lithological control lead, gradually or suddenly, to a trellis-type drainage network Our contribution aims to aid this transition to a quantitative analysis of channel networks. First, to establish the range of typically occurring channel network properties, we selected 30 examples of traditional drainage network types from around the world. For each of these, we calculated a set of topological and geometric properties, such as total drainage length, average length of a channel segment and the average angle of intersection of channel segments. A decision tree was used to formalize the relation between these newly quantified properties on the one hand, and traditional network types on the other hand. Then, to explore how variations in lithological and geomorphic boundary conditions affect channel network structure, we ran a set of experiments with landscape evolution model Landlab. For each simulated channel network, the same set of topological and geometric properties was calculated as for the 30 real-world channel networks. The latter were used for a first, visual evaluation to find out whether a simulated network that looked, for instance, rectangular, also had the same set of properties as real-world rectangular channel networks. Ultimately, the relation between these properties and the imposed lithological and geomorphic boundary conditions was explored using simple bivariate statistics.

  3. The relative importance of physical and biological energy in landscape evolution

    NASA Astrophysics Data System (ADS)

    Turowski, J. M.; Schwanghart, W.

    2017-12-01

    Landscapes are formed by the interplay of uplift and geomorphic processes, including interacting and competing physical and biological processes. For example, roots re-inforce soil and thereby stabilize hillslopes and the canopy cover of the forest may mediate the impact of precipitation. Furthermore, plants and animals act as geomorphic agents, directly altering landscape response and dynamics by their actions: tree roots may crack rocks, thus changing subsurface water flows and exposing fresh material for denudation; fungi excrete acids that accelerate rates of chemical weathering, and burrowing animals displace soil and rocks while digging holes for shelter or in search of food. Energetically, landscapes can be viewed as open systems in which topography stores potential energy above a base level. Tectonic processes add energy to the system by uplift and mechanically altering rock properties. Especially in unvegetated regions, erosion and transport by wind can be an important geomorphic process. Advection of atmospheric moisture in high altitudes provides potential energy that is converted by water fluxes through catchments. At the same time, the conversion of solar energy through atmospheric and biological processes drives primary production of living organisms. If we accept that biota influence geomorphic processes, then what is their energetic contribution to landscape evolution relative to physical processes? Using two case studies, we demonstrate that all components of energy input are negligible apart from biological production, quantified by net primary productivity (NPP) and potential energy conversion by water that is placed high up in the landscape as rainfall and leaves it as runoff. Assuming that the former is representative for biological energy and the latter for physical energy, we propose that the ratio of these two values can be used as a proxy for the relative importance of biological and physical processes in landscape evolution. All necessary parameters needed to calculate the ratio (NPP, runoff, elevation) are available globally. We find that biological processes are more important in arid and semiarid regions. The wide-spread lack of water strongly limits the energy available for fluvial erosion, while biota are geomorphic engineers less sensitive to water shortage.

  4. Rivers and valleys of Pennsylvania, revisited

    NASA Astrophysics Data System (ADS)

    Morisawa, Marie

    1989-09-01

    The 1889 paper by William Morris Davis on the "Rivers and Valleys of Pennsylvania" is a landmark in the history of geomorphology. It was in this manuscript that he set forth what came to be known as the Davisian system of landscape. It is important to understand that Davis' interpretation of landforms was restricted by the geologic paradigms of his day. Uniformitarianism was strongly entrenched and Darwin's theory of evolution had become popularly accepted. The concept of the landmass Appalachia and then current theories on mountain building affected the approach that Davis took in hypothesizing the origin and development of the Folded Appalachian drainage. All of these geologic precepts influenced the formulation and explanation of his theories. In his exposition he adapted, synthesized and embellished on ideas he derived from fellow geologists such as Gilbert, Dutton, Powell, and McGee. A number of the concepts he proposed in the 1889 paper quickly became the bases for geomorphic studies by others: the cycles of river erosion and landscape evolution and the peneplain (here called base level erosion). The cycle of erosion became the model for subsequent geomorphic analyses, and peneplain hunting became a popular sport for geomorphologists. Davis' hypothesis of the origin and development of Pennsylvanian drainage stimulated subsequent discussion and further hypotheses by others. In fact, many of the later theories were refinements and/or elaborations of ideas mentioned in this paper of Davis. He proposed the origin of the drainage as consequent streams, then antecedence, superposition, headward extension of divides by piracy, erosion along lines of weaknesses (faults, easily erodible beds) through resistant ridges and normal fluvial erosion. Thus, the hypotheses of regional superposition (Johnson), extended consequents (Ruedemann), consequents and local superposition (Meyerhoff and Olmstead), the utilization of structural weaknesses in development of transverse drainage (Thompson; Meyerhoff; Oberlander, among others), and migration of divides (Thompson), all had been suggested by Davis in 1889. Although the concepts of erosion cycles and peneplaination have waned in popularity in recent geomorphic research, the principles of formation of water and wind gaps, headward migration of divides, stream piracy and adjustment to streams to structure, so clearly and minutely explained in his 1889 publication, are still viable today.

  5. The geomorphic evolution of the lunar surface.

    NASA Technical Reports Server (NTRS)

    Ronca, L. B.

    1972-01-01

    The solution of the function relating craters of the continuous degradation sequence with degree of erosion was defined as the geomorphic index of the area. Studies of the geomorphic index of stratigraphic surfaces show that areas covered by considerable ballistic sediments have a geomorphic index which is not a monotonic function of time. On the other hand, areas covered almost exclusively by mare flooding show an index which is a monotonic function of the age of the flooding. As each mare surface shows a considerable range in indices, it is concluded that maria are covered by surfaces formed through a considerable length of time. By using Apollo 11 and 12 radiometric ages it is suggested that the time of mare flooding lasted on the order of one billion years. The geomorphic index of highland surfaces shows a remarkable degree of order - i.e., the farther an area is inland from the mare shores, the higher will be the index. No explanation is given for this phenomenon, but it is suggested that lunar erosion is not just a localized phenomenon centered on the locus of an impact, but has lateral trends of regional dimensions.

  6. Geomorphology and landscape organization of a northern peatland complex

    NASA Astrophysics Data System (ADS)

    Richardson, M. C.

    2012-12-01

    The geomorphic evolution of northern peatlands is governed by complex ecohydrological feedback mechanisms and associated hydro-climatic drivers. For example, prevailing models of bog development (i.e. Ingram's groundwater mounding hypothesis and variants) attempt to explicitly link bog dome characteristics to the regional climate based on analytical and numerical models of lateral groundwater flow and the first-order control of water table position on rates of peat accumulation. In this talk I will present new results from quantitative geomorphic analyses of a northern peatland complex at the De Beers Victor diamond mine site in the Hudson Bay Lowlands of northern Ontario. This work capitalizes on spatially-extensive, high-resolution topographic (LiDAR) data to rigorously test analytical and numerical models of bog dome development in this landscape. The analysis and discussion are then expanded beyond individual bog formations to more broadly consider ecohydrological drivers of landscape organization, with implications for understanding and modeling catchment-scale runoff response. Results show that in this landscape, drainage patterns exhibit relatively well-organized characteristics consistent with observed runoff responses in six gauged research catchments. Interpreted together, the results of these geomorphic and hydrologic analyses help refine our understanding of water balance partitioning among different landcover types within northern peatland complexes. These findings can be used to help guide the development of appropriate numerical model structures for hydrologic prediction in ungauged peatland basins of northern Canada.

  7. Geomorphic Evolution of Sputnik Planum and Surrounding Terrain

    NASA Astrophysics Data System (ADS)

    Howard, A. D.; Moore, J. M.; White, O. L.; Umurhan, O. M.; Schenk, P.; Beyer, R. A.; McKinnon, W. B.; Singer, K. N.; Spencer, J. R.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Ennico Smith, K.; Olkin, C.

    2015-12-01

    The informally-named Sputnik Planum is a vast expanse (about 835 km east-west and 1500 km north-south) of N2, CH4, and CO ices which appears craterless at current resolutions, but which gives evidence of both glacial and convective flow in the ices (Stern and the New Horizons Team, Science, 2015). This ice field is surrounded by uplands of varying morphology from hilly terrain to the northeast, plains of apparent ices interspersed with rough terrain to the east, and textured ice surrounding the mountainous terrain to the southwest. The morphology and composition of this bordering terrain will provide clues to the long-term evolution of Sputnik Planum as higher resolution visual and spectral imaging of this region are returned from the New Horizons spacecraft over the next few months. Interactions between Sputnik Planum and surrounding terrain may have involved glacial erosion and deposition. The geomorphic evolution of this region will be discussed in the context of newly-returned encounter data.

  8. Age and Prematurity of the Alps Derived from Topography

    NASA Astrophysics Data System (ADS)

    Hergarten, S.; Wagner, T.; Stüwe, K.

    2010-09-01

    The European Alps are one of the best studied mountain ranges on Earth, but yet the age of their topography is almost unknown. Even their relative stage of evolution is unclear: Are the Alps still growing, in a steady state or already decaying, and is there a significant difference between Western and Eastern Alps? Using a new geomorphic parameter we analyze the topography of the Alps and provide one of the first quantitative constraints demonstrating that the range is still in its infancy: In contrast to several other mountain ranges, the Alps have still more than half of their evolution to a geomorphic steady state to go. Combining our results with sediment budget data from the surrounding basins we infer that the formation of the present topography began only 5-6 million years ago. Our results question the apparent consensus that the topographic evolution is distributed over much of the Miocene and might give new impulses to the reconstruction of paleoclimate in Central Europe.

  9. Part 1: The geomorphic evolution of Eastern Margaritifer Sinus, Mars

    NASA Technical Reports Server (NTRS)

    Grant, John A., III

    1987-01-01

    Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins, were used to trace the geologic evolution of Margaritifer Sinus Quandrangle. The oldest dated surface covering these basins evolved during the period of intense bombardment. Since that time four resurfacing events have occurred. The first three were all of regional extent, while the fourth, occurred locally, filling basins. Valley networks, incised in the third event unit, are always buried by the fourth event unit when present. A peak in geomorphic activity occurred from 10,000 to 5000. Events during this period included the formation of Uzboi/Ladon Valles with deposition in Ladon Basin, and the formation of Samara and Parana/Loire Valles in MC19SE. Flow out of Ladon Basin and to a lesser extent Samara and Parana/Loire Valles created etched terrain at their confluence that was synchronous with initiation of Margaritifer and Iani Chaos. The range of dates for the chaos may be due to periodic collapse. The extensive, well integrted nature of Samara and Parana/Loire Valles requires the existence of a long period of favorable climatic conditions to allow their formation. Development of these two systems was probably through sapping processes.

  10. Unraveling the controls on biogeomorphic succession: the influence of groundwater, soil and geomorphic setting on bio-geomorphic channel evolution

    NASA Astrophysics Data System (ADS)

    Bätz, Nico; Verrecchia, Eric P.; Lane, Stuart N.

    2017-04-01

    Braided rivers are characterized by high rates of morphological change. However, despite the potential for frequent disturbance, vegetated patches may develop within this system and influence long-term channel dynamics and channel patterns through the "engineering effects" of biogeomorphic succession. The stabilizing effect of developing vegetation on morphological change has been widely shown by flume experiments and (historic) aerial pictures analysis. Thus, there is a balance between disturbance and stabilization, mediated through biogeomorphic succession, that may determine the long-term geomorphic and biogeomorphic evolution of the river. Research has addressed how changes in disturbance frequency affect river channel pattern, but much less has been done to understand what influences the rate of biogeomorphic succession and how it affects river morphodynamics. This study explores the complex pattern of ambient conditions in braided river systems driving the rate of biogeomorphic succession. In particular, we focus on the interplay between groundwater access, soil formation, disturbance frequency and geomorphic setting, in defining what drives vegetation succession rates and its long-term implications on channel pattern evolution. We studied these feedbacks in a transitional gravel-bed river system (braided, wandering, meandering) close to Geneva (Switzerland) - the Allondon River. Results show that, at the beginning of the succession, humification plays a negative role on local ambient conditions necessary for sprouting. Successful vegetation establishment is then related positively to humification, but also to higher disturbance rates. The third biogeomorphic phase, with the highest feedbacks on river morphology, appears to be mainly driven by groundwater access, which in turn defines the rates of humification in this gravelly environment. This in turn defines the decadal morphological response of the channel after a reduction in disturbance frequency over the last 50 years. Overall, these results show how the functioning and the developing ecosystem at local scale affect the ecosystem resilience at a larger scale, and thus affects the long-term geomorphological river response.

  11. Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, Erkan; Bras, Rafael L.

    2005-06-01

    Topography acts as a template for numerous landscape processes that include hydrologic, ecologic, and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on thresholds for channel initiation and landform evolution using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on a power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. This approach is validated using data. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants and is killed by geomorphic disturbances (runoff erosion and landsliding) and wildfires. Analytical results suggest that in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion-dominated landscape, under none or poor vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the Channel Hillslope Integrated Landscape Development (CHILD) model confirm the findings based on the analytical theory. A highly dissected fluvial landscape emerges when surface is assumed bare. When vegetation cover is modeled, landscape relief increases, resulting in hollow erosion dominated by landsliding. Interestingly, our simulations underscore the importance of vegetation disturbances by geomorphic events and wildfires on the landscape structure. Simulated landscapes resemble real-world catchments in the OCR when such disturbances are considered.

  12. Diatom-inferred hydrological changes and Holocene geomorphic transitioning of Africa's largest estuarine system, Lake St Lucia

    NASA Astrophysics Data System (ADS)

    Gomes, M.; Humphries, M. S.; Kirsten, K. L.; Green, A. N.; Finch, J. M.; de Lecea, A. M.

    2017-06-01

    The diverse lagoons and coastal lakes along the east coast of South Africa occupy incised valleys that were flooded during the rise and subsequent stabilisation of relative sea-level during the Holocene. Sedimentary deposits contained within these waterbodies provide an opportunity to investigate complex hydrological and sedimentological processes, and examine sea-level controls governing system geomorphic evolution. In this paper, we combine diatom and sulfur isotope analyses from two sediment cores extracted from the northern sub-basins of Lake St Lucia, a large shallow estuarine lake that is today largely isolated from direct ocean influence behind a Holocene-Pleistocene barrier complex. Analyses allow the reconstruction of hydrological changes associated with the geomorphic development of the system over the mid-to late Holocene. The sedimentary sequences indicate that St Lucia was a shallow, partially enclosed estuary/embayment dominated by strong tidal flows prior to ∼6200 cal. BP. Infilling was initiated when sea-level rise slowed and stabilised around present day levels, resulting in the accumulation of fine-grained sediment behind an emergent proto-barrier. Diatom assemblages, dominated by marine benthic and epiphytic species, reveal a system structured by marine water influx and characterised by marsh and tidal flat habitats until ∼4550 cal. BP. A shift in the biological community at ∼4550 cal. BP is linked to the development of a back-barrier water body that supported a brackish community. Marine planktonics and enrichments in δ34S suggest recurrent, large-scale barrier inundation events during this time, coincident with a mid-Holocene sea-level highstand. Periodic marine incursions associated with episodes of enhanced storminess and overwash remained prevalent until ∼1200 cal. BP, when further barrier construction ultimately isolated the northern basins from the ocean. This study provides the first reconstruction of the palaeohydrological environment at Lake St Lucia and highlights the long-term geomorphic controls that have shaped the recent evolution and natural dynamics of the system. Unlike most coastal lake systems, this system is particularly effective as an archive of geomorphological change. Systems driven by back-barrier modifications, such as Lake St Lucia, highlight how geomorphological changes driven by sediment-supply, climate and sea level can be distributed unevenly over several isolated back-barrier basins.

  13. Modelling the impact of dam removal on geomorphic channel response and sediment delivery: an Austrian case study

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald; Coulthard, Tom; Keesstra, Saskia; Keiler, Margreth

    2015-04-01

    Dams are often considered to have the most significant impact on rivers as dam construction generally reduces downstream sediment fluxes which further involves geomorphic changes in the affected river reaches. Since many dams no longer fulfill their intended purpose (e.g. due to siltation), are dangerous (e.g. catastrophic dam failures) and/or are ecologically damaging (e.g. habitat destruction), within the last two decades several dams have been removed and many more are already proposed for removal. Unfortunately, there is still only little empirical knowledge about the geomorphic consequences of dam removals and the related sediment release which represents a big challenge for river management. Modelling is one way to approach this problem. In the presented study we modelled the impacts of dam removal on geomorphic channel processes, channel morphology and sediment delivery further considering the role of channel engineering measures and reservoir excavation within a river reach impacted by a series of dams using the landscape evolution model CAESAR-Lisflood. The model was run with data from a small catchment located in Lower Austria. Modelled geomorphic channel changes and sediment fluxes were spatio-temporally analyzed, related to real-world data and are discussed in the context of river management issues.

  14. Coevolution of hydrology and topography on a basalt landscape in the Oregon Cascade Range, USA

    Treesearch

    A. Jefferson; G.E. Grant; S.L. Lewis; S.T. Lancaster

    2010-01-01

    Young basalt terrains offer an exceptional opportunity to study landscape and hydrologic evolution through time, as the age of the landscape itself can be determined by dating lava flows. These constructional terrains are also highly permeable, allowing one to examine timescales and process of geomorphic evolution as they relate to the partitioning of hydrologic...

  15. Influence of soil development on the geomorphic evolution of landscapes: An example from the Transverse Ranges of California

    NASA Astrophysics Data System (ADS)

    Eppes, M. C.; McFadden, L. D.; Matti, J.; Powell, R.

    2002-03-01

    Soil development can significantly influence the topographic evolution of a tectonically deforming mountain piedmont. Faults and folds associated with the North Frontal thrust system deform piedmont sediments of variable compositions along the north flank of the San Bernardino Mountains. The topographic expressions of folds with similar structural characteristics diverge appreciably, primarily as a function of differences in sediment composition and associated soil development. Soils with petrocalcic horizons in limestone- rich deposits are resistant to erosion, and anticlinal folds form prominent ridges. Folds forming in granite-derived deposits with argillic soil horizons are eroded and/or buried and are therefore topographically less pronounced. We propose that these landform contrasts can be explained by differences in soil-controlled hydrologic and erosion characteristics of deposits without calling upon changes in tectonic style along the mountain front.

  16. A multi-resolution analysis of lidar-DTMs to identify geomorphic processes from characteristic topographic length scales

    NASA Astrophysics Data System (ADS)

    Sangireddy, H.; Passalacqua, P.; Stark, C. P.

    2013-12-01

    Characteristic length scales are often present in topography, and they reflect the driving geomorphic processes. The wide availability of high resolution lidar Digital Terrain Models (DTMs) allows us to measure such characteristic scales, but new methods of topographic analysis are needed in order to do so. Here, we explore how transitions in probability distributions (pdfs) of topographic variables such as (log(area/slope)), defined as topoindex by Beven and Kirkby[1979], can be measured by Multi-Resolution Analysis (MRA) of lidar DTMs [Stark and Stark, 2001; Sangireddy et al.,2012] and used to infer dominant geomorphic processes such as non-linear diffusion and critical shear. We show this correlation between dominant geomorphic processes to characteristic length scales by comparing results from a landscape evolution model to natural landscapes. The landscape evolution model MARSSIM Howard[1994] includes components for modeling rock weathering, mass wasting by non-linear creep, detachment-limited channel erosion, and bedload sediment transport. We use MARSSIM to simulate steady state landscapes for a range of hillslope diffusivity and critical shear stresses. Using the MRA approach, we estimate modal values and inter-quartile ranges of slope, curvature, and topoindex as a function of resolution. We also construct pdfs at each resolution and identify and extract characteristic scale breaks. Following the approach of Tucker et al.,[2001], we measure the average length to channel from ridges, within the GeoNet framework developed by Passalacqua et al.,[2010] and compute pdfs for hillslope lengths at each scale defined in the MRA. We compare the hillslope diffusivity used in MARSSIM against inter-quartile ranges of topoindex and hillslope length scales, and observe power law relationships between the compared variables for simulated landscapes at steady state. We plot similar measures for natural landscapes and are able to qualitatively infer the dominant geomorphic processes. Also, we explore the variability in hillslope length scales as a function of hillslope diffusivity coefficients and critical shear stress in natural landscapes and show that we can infer signatures of dominant geomorphic processes by analyzing characteristic topographic length scales present in topography. References: Beven, K. and Kirkby, M. J.: A physically based variable contributing area model of basin hydrology, Hydrol. Sci. Bull., 24, 43-69, 1979 Howard, A. D. (1994). A detachment-limited model of drainage basin evolution.Water resources research, 30(7), 2261-2285. Passalacqua, P., Do Trung, T., Foufoula Georgiou, E., Sapiro, G., & Dietrich, W. E. (2010). A geometric framework for channel network extraction from lidar: Nonlinear diffusion and geodesic paths. Journal of Geophysical. Research: Earth Surface (2003-2012), 115(F1). Sangireddy, H., Passalacqua, P., Stark, C.P.(2012). Multi-resolution estimation of lidar-DTM surface flow metrics to identify characteristic topographic length scales, EP13C-0859: AGU Fall meeting 2012. Stark, C. P., & Stark, G. J. (2001). A channelization model of landscape evolution. American Journal of Science, 301(4-5), 486-512. Tucker, G. E., Catani, F., Rinaldo, A., & Bras, R. L. (2001). Statistical analysis of drainage density from digital terrain data. Geomorphology, 36(3), 187-202.

  17. Reconstructing the internal structure and long-term evolution of hazardous sinkholes combining trenching, electrical resistivity imaging (ERI) and ground penetrating radar (GPR)

    NASA Astrophysics Data System (ADS)

    Fabregat, Ivan; Gutiérrez, Francisco; Roqué, Carles; Comas, Xavier; Zarroca, Mario; Carbonel, Domingo; Guerrero, Jesús; Linares, Rogelio

    2017-05-01

    The approaches aimed at characterising specific damaging sinkholes have received limited attention compared with other ground instability phenomena (e.g. landslides). Moreover, the practicality of the trenching technique in combination with numerical dating and retro-deformation analysis for sinkhole site-investigations has been barely explored. This work illustrates the advantages of combining geomorphic mapping, electrical resistivity imaging (ERI), ground penetrating radar (GPR) and trenching for sinkhole characterisation and shows how the trenching technique contributes to fill significant gaps that neither geomorphic nor geophysical methods can address. Two large sinkholes (> 200 m long) related to the interstratal karstification of evaporites and generated by contrasting subsidence mechanisms (sagging, collapse) were investigated in the Fluvia Valley, NE Spain. Although GPR data may provide high resolution information on subsidence-related stratigraphic and structural features at shallow depth, the profiles acquired in the investigated sites with 100 MHz shielded and 40 MHz unshielded antennae provided limited insight into the internal geometry of the sinkholes due to reduced signal penetration related to the presence of conductive clayey material. The ERI sections satisfactorily imaged the general geometry of the sagging and collapse subsidence structures up to depths higher than 100 m and clearly captured the basal contact of the low-resistivity sinkhole fill in the sections with adequate layout and resolution. The trenches, despite their limited depth (ca. 5 m) allowed us to obtain valuable objective information on several key aspects of the subsidence phenomenon: (1) mechanisms (deformation style) and kinematics (progressive versus episodic); (2) limits of ground deformation; (3) temporal evolution (expansion versus contraction); (4) chronology and timing of most recent deformation phase; (5) rates of subsidence and sedimentation; and (6) the role played by subsidence in the development of lacustrine environments and the associated sedimentation patterns.

  18. Geomorphic mapping to support river restoration on the Trinity River downstream from Lewiston Dam, California, 1980-2011

    USGS Publications Warehouse

    Curtis, Jennifer A.; Guerrero, Timothy M.

    2015-01-01

    Historic land use, dam construction, water storage, and flow diversions in the Trinity River watershed have resulted in downstream geomorphic change, loss of salmonid habitat, and declines in salmonid populations. The USGS in cooperation with the Trinity River Restoration Program, a multi-agency partnership tasked with implementing federally mandated restoration, completed a geomorphic change assessment to inform the planning process for future restoration work. This report documents an ARCMAP geodatabase (v.10.0) containing geomorphic features digitized from a series of rectified orthophotographs (http://dx.doi.org/10.5066/F7TT4P04). Upland, riparian, and channel features were digitized from six available base images (1980, 1997, 2001, 2006, 2009, and 2011). This report describes the structure of the geodatabase and the methods used to delineate individual geomorphic features.

  19. Weathering and landscape evolution

    NASA Astrophysics Data System (ADS)

    Turkington, Alice V.; Phillips, Jonathan D.; Campbell, Sean W.

    2005-04-01

    In recognition of the fundamental control exerted by weathering on landscape evolution and topographic development, the 35th Binghamton Geomorphology Symposium was convened under the theme of Weathering and Landscape Evolution. The papers and posters presented at the conference imparted the state-of-the-art in weathering geomorphology, tackled the issue of scale linkage in geomorphic studies and offered a vehicle for interdisciplinary communication on research into weathering and landscape evolution. The papers included in this special issue are encapsulated here under the general themes of weathering mantles, weathering and relative dating, weathering and denudation, weathering processes and controls and the 'big picture'.

  20. On modeling the organization of landscapes and vegetation patterns controlled by solar radiation

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, E.; Yetemen, O.

    2014-12-01

    Solar radiation is a critical driver of ecohydrologic processes and vegetation dynamics. Patterns of runoff generation and vegetation dictate landscape geomorphic response. Distinct patterns in the organization of soil moisture, vegetation type, and landscape morphology have been documented in close relation to aspect in a range of climates. Within catchments, from north to south facing slopes, studies have shown ecotone shifts from forest to shrub species, and steep diffusion-dominated landforms to fluvial landforms. Over the long term differential evolution of ecohydrology and geomorphology leads to observed asymmetric structure in the planform of channel network and valley morphology. In this talk we present examples of coupled modeling of ecohydrology and geomorphology driven by solar radiation. In a cellular automata model of vegetation dynamics we will first show how plants organize in north and south facing slopes and how biodiversity changes with elevation. When vegetation-erosion feedbacks are coupled emergent properties of the coupled system are observed in the modeled elevation and vegetation fields. Integrating processes at a range of temporal and spatial scales, coupled models of ecohydrologic and geomorphic dynamics enable examination of global change impacts on landscapes and ecosystems.

  1. Interpretation of recent alpine landscape system evolution using geomorphic mapping and L-band InSAR analyses

    NASA Astrophysics Data System (ADS)

    Imaizumi, Fumitoshi; Nishiguchi, Takaki; Matsuoka, Norikazu; Trappmann, Daniel; Stoffel, Markus

    2018-06-01

    Alpine landscapes are typically characterized by inherited features of past glaciations and, for the more recent past, by the interplay of a multitude of types of geomorphic processes, including permafrost creep, rockfalls, debris flows, and landslides. These different processes usually exhibit large spatial and temporal variations in activity and velocity. The understanding of these processes in a wide alpine area is often hindered by difficulties in their surveying. In this study, we attempt to disentangle recent changes in an alpine landscape system using geomorphic mapping and L-band DInSAR analyses (ALOS-PALSAR) in the Zermatt Valley, Swiss Alps. Geomorphic mapping points to a preferential distribution of rock glaciers on north-facing slopes, whereas talus slopes are concentrated on south-facing slopes. Field-based interpretation of ground deformation in rock glaciers and movements in talus slopes correlates well with the ratio of InSAR images showing potential ground deformation. Moraines formed during the Little Ice Age, rock glaciers, and talus slopes on north-facing slopes are more active than landforms on south-facing slopes, implying that the presence of permafrost facilitates the deformation of these geomorphic units. Such deformations of geomorphic units prevail also at the elevation of glacier termini. For rock cliffs, the ratio of images indicating retreat is affected by slope orientation and elevation. Linkages between sediment supply from rock cliffs and sediment transport in torrents are different among tributaries, affected by relative locations between sediment supply areas and the channel network. We conclude that the combined use of field surveys and L-band DInSAR analyses can substantially improve process understanding in steep, high-mountain terrain.

  2. Comprehensive Seismological Monitoring of Geomorphic Processes in Taiwan

    NASA Astrophysics Data System (ADS)

    Chao, W. A.; Chen, C. H.

    2016-12-01

    Geomorphic processes such as hillslope mass wasting and river sediment transport are important for studying landscape dynamics. Mass movements induced from geomorphic events can generate seismic waves and be recorded by seismometers. Recent studies demonstrate that seismic monitoring techniques not only fully map the spatiotemporal patterns of geomorphic activity but also allow for exploration of the dynamic links between hillslope failures and channel processes, which may not be resolved by conventional techniques (e.g., optical remote sensing). We have recently developed a real-time landquake monitoring system (RLMS, here we use the term `landquake' to represent all hillslope failures such as rockfall, rock avalanche and landslide), which has been continuously monitoring landquake activities in Taiwan since June 2015 based on broadband seismic records, yielding source information (e.g., location, occurrence time, magnitude and mechanism) for large-sized events (http://140.112.57.117/main.html). Several seismic arrays have also been deployed over the past few years around the catchments and along the river channels in Taiwan for monitoring erosion processes at catchment scale, improving the spatiotemporal resolution in exploring the interaction between geomorphic events and specific meteorological conditions. Based on a forward model accounting for the impulsive impacts of saltating particles, we can further invert for the sediment load flux, a critical parameter in landscape evolution studies, by fitting the seismic observations only. To test the validity of the seismologically determined sediment load flux, we conduct a series of controlled dam breaking experiments that are advantageous in well constraining the spatiotemporal variations of the sediment transport. Incorporating the seismological constrains on geomorphic processes with the effects of tectonic and/or climate perturbations can provide valuable and quantitative information for more fully understanding and modeling of the dynamics of erosional mountain landscapes. Comprehensive seismic monitoring also yields important information for the evaluation, assessment and emergency response of hazardous geomorphic events.

  3. Coupled hydrogeomorphic and woody-seedling responses to controlled flood releases in a dryland river

    USGS Publications Warehouse

    Wilcox, Andrew C.; Shafroth, Patrick B.

    2013-01-01

    Interactions among flow, geomorphic processes, and riparian vegetation can strongly influence both channel form and vegetation communities. To investigate such interactions, we took advantage of a series of dam-managed flood releases that were designed in part to maintain a native riparian woodland system on a sand-bed, dryland river, the Bill Williams River, Arizona, USA. Our resulting multiyear flow experiment examined differential mortality among native and nonnative riparian seedlings, associated flood hydraulics and geomorphic changes, and the temporal evolution of feedbacks among vegetation, channel form, and hydraulics. We found that floods produced geomorphic and vegetation responses that varied with distance downstream of a dam, with scour and associated seedling mortality closer to the dam and aggradation and burial-induced mortality in a downstream reach. We also observed significantly greater mortality among nonnative tamarisk (Tamarix) seedlings than among native willow (Salix gooddingii) seedlings, reflecting the greater first-year growth of willow relative to tamarisk. When vegetation was small early in our study period, the effects of vegetation on flood hydraulics and on mediating flood-induced channel change were minimal. Vegetation growth in subsequent years resulted in stronger feedbacks, such that vegetation's stabilizing effect on bars and its drag effect on flow progressively increased, muting the geomorphic effects of a larger flood release. These observations suggest that the effectiveness of floods in producing geomorphic and ecological changes varies not only as a function of flood magnitude and duration, but also of antecedent vegetation density and size.

  4. Complex response of a midcontinent north America drainage system to late Wisconsinan sedimentation

    USGS Publications Warehouse

    Bettis, E. Arthur; Autin, W.J.

    1997-01-01

    The geomorphic evolution of Mud Creek basin in eastern Iowa, U.S.A. serves to illustrate how geomorphic influences such as sediment supply, valley gradient, climate, and vegetation are recorded in the alluvial stratigraphic record. Sediment supply to the fluvial system increased significantly during the late Wisconsinan through a combination of periglacial erosion and loess accumulation. Subsequent evolution of the Holocene alluvial stratigraphic record reflects long-term routing of the late Wisconsinan sediment through the drainage basin in a series of cut-and-fill cycles whose timing was influenced by hydrologic response to change in climate and vegetation. When viewed in a regional context, the alluvial stratigraphic record appears to reflect a long-term complex response of the fluvial system to increased sediment supply during the late Wisconsinan. Hydrologic and sediment-supply changes accompanying the spread of Euroamerican agriculture to the basin in the 180Os dramatically upset trends in sedimentation and channel behavior established during the Holocene. Copyright ?? 1997, SEPM (Society for Sedimentary Geology).

  5. Geomorphic analyses from space imagery

    NASA Technical Reports Server (NTRS)

    Morisawa, M.

    1985-01-01

    One of the most obvious applications of space imagery to geomorphological analyses is in the study of drainage patterns and channel networks. LANDSAT, high altitude photography and other types of remote sensing imagery are excellent for depicting stream networks on a regional scale because of their broad coverage in a single image. They offer a valuable tool for comparing and analyzing drainage patterns and channel networks all over the world. Three aspects considered in this geomorphological study are: (1) the origin, evolution and rates of development of drainage systems; (2) the topological studies of network and channel arrangements; and (3) the adjustment of streams to tectonic events and geologic structure (i.e., the mode and rate of adjustment).

  6. Excursions in fluvial (dis)continuity

    NASA Astrophysics Data System (ADS)

    Grant, Gordon E.; O'Connor, Jim; Safran, Elizabeth

    2017-01-01

    Lurking below the twin concepts of connectivity and disconnectivity are their first, and in some ways, richer cousins: continuity and discontinuity. In this paper we explore how continuity and discontinuity represent fundamental and complementary perspectives in fluvial geomorphology, and how these perspectives inform and underlie our conceptions of connectivity in landscapes and rivers. We examine the historical roots of continuum and discontinuum thinking, and how much of our understanding of geomorphology rests on contrasting views of continuity and discontinuity. By continuum thinking we refer to a conception of geomorphic processes as well as geomorphic features that are expressed along continuous gradients without abrupt changes, transitions, or thresholds. Balance of forces, graded streams, and hydraulic geometry are all examples of this perspective. The continuum view has played a prominent role in diverse disciplinary fields, including ecology, paleontology, and evolutionary biology, in large part because it allows us to treat complex phenomena as orderly progressions and invoke or assume equilibrium processes that introduce order and prediction into our sciences. In contrast the discontinuous view is a distinct though complementary conceptual framework that incorporates non-uniform, non-progressive, and non-equilibrium thinking into understanding geomorphic processes and landscapes. We distinguish and discuss examples of three different ways in which discontinuous thinking can be expressed: 1) discontinuous spatial arrangements or singular events; 2) specific process domains generally associated with thresholds, either intrinsic or extrinsic; and 3) physical dynamics or changes in state, again often threshold-linked. In moving beyond the continuous perspective, a fertile set of ideas comes into focus: thresholds, non-equilibrium states, heterogeneity, catastrophe. The range of phenomena that is thereby opened up to scientific exploration similarly expands: punctuated episodes of cutting and filling, discretization of landscapes into hierarchies of structure and control, the work of extreme events. Orderly and progressive evolution towards a steady or ideal state is replaced by chaotic episodes of disturbance and recovery. Recent developments in the field of geomorphology suggest that we may be on the cusp of a new paradigm that recognizes that both continuous and discontinuous processes and mechanisms play a role in fluvial processes and landscape evolution with neither holding sway over the other and both needed to see rivers as they are.

  7. Noise is the new signal: Moving beyond zeroth-order geomorphology (Invited)

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.

    2010-12-01

    The last several decades have witnessed a rapid growth in our understanding of landscape evolution, led by the development of geomorphic transport laws - time- and space-averaged equations relating mass flux to some physical process(es). In statistical mechanics this approach is called mean field theory (MFT), in which complex many-body interactions are replaced with an external field that represents the average effect of those interactions. Because MFT neglects all fluctuations around the mean, it has been described as a zeroth-order fluctuation model. The mean field approach to geomorphology has enabled the development of landscape evolution models, and led to a fundamental understanding of many landform patterns. Recent research, however, has highlighted two limitations of MFT: (1) The integral (averaging) time and space scales in geomorphic systems are sometimes poorly defined and often quite large, placing the mean field approximation on uncertain footing, and; (2) In systems exhibiting fractal behavior, an integral scale does not exist - e.g., properties like mass flux are scale-dependent. In both cases, fluctuations in sediment transport are non-negligible over the scales of interest. In this talk I will synthesize recent experimental and theoretical work that confronts these limitations. Discrete element models of fluid and grain interactions show promise for elucidating transport mechanics and pattern-forming instabilities, but require detailed knowledge of micro-scale processes and are computationally expensive. An alternative approach is to begin with a reasonable MFT, and then add higher-order terms that capture the statistical dynamics of fluctuations. In either case, moving beyond zeroth-order geomorphology requires a careful examination of the origins and structure of transport “noise”. I will attempt to show how studying the signal in noise can both reveal interesting new physics, and also help to formalize the applicability of geomorphic transport laws. Flooding on an experimental alluvial fan. Intensity is related to the cumulative amount of time flow has visited an area of the fan over the experiment. Dark areas represent an emergent channel network resulting from stochastic migration of river channels.

  8. Excursions in fluvial (dis)continuity

    USGS Publications Warehouse

    Grant, Gordon E.; O'Connor, James E.; Safran, Elizabeth

    2017-01-01

    Lurking below the twin concepts of connectivity and disconnectivity are their first, and in some ways, richer cousins: continuity and discontinuity. In this paper we explore how continuity and discontinuity represent fundamental and complementary perspectives in fluvial geomorphology, and how these perspectives inform and underlie our conceptions of connectivity in landscapes and rivers. We examine the historical roots of continuum and discontinuum thinking, and how much of our understanding of geomorphology rests on contrasting views of continuity and discontinuity. By continuum thinking we refer to a conception of geomorphic processes as well as geomorphic features that are expressed along continuous gradients without abrupt changes, transitions, or thresholds. Balance of forces, graded streams, and hydraulic geometry are all examples of this perspective. The continuum view has played a prominent role in diverse disciplinary fields, including ecology, paleontology, and evolutionary biology, in large part because it allows us to treat complex phenomena as orderly progressions and invoke or assume equilibrium processes that introduce order and prediction into our sciences.In contrast the discontinuous view is a distinct though complementary conceptual framework that incorporates non-uniform, non-progressive, and non-equilibrium thinking into understanding geomorphic processes and landscapes. We distinguish and discuss examples of three different ways in which discontinuous thinking can be expressed: 1) discontinuous spatial arrangements or singular events; 2) specific process domains generally associated with thresholds, either intrinsic or extrinsic; and 3) physical dynamics or changes in state, again often threshold-linked. In moving beyond the continuous perspective, a fertile set of ideas comes into focus: thresholds, non-equilibrium states, heterogeneity, catastrophe. The range of phenomena that is thereby opened up to scientific exploration similarly expands: punctuated episodes of cutting and filling, discretization of landscapes into hierarchies of structure and control, the work of extreme events. Orderly and progressive evolution towards a steady or ideal state is replaced by chaotic episodes of disturbance and recovery. Recent developments in the field of geomorphology suggest that we may be on the cusp of a new paradigm that recognizes that both continuous and discontinuous processes and mechanisms play a role in fluvial processes and landscape evolution with neither holding sway over the other and both needed to see rivers as they are.

  9. Geomorphic analysis of large alluvial rivers

    NASA Astrophysics Data System (ADS)

    Thorne, Colin R.

    2002-05-01

    Geomorphic analysis of a large river presents particular challenges and requires a systematic and organised approach because of the spatial scale and system complexity involved. This paper presents a framework and blueprint for geomorphic studies of large rivers developed in the course of basic, strategic and project-related investigations of a number of large rivers. The framework demonstrates the need to begin geomorphic studies early in the pre-feasibility stage of a river project and carry them through to implementation and post-project appraisal. The blueprint breaks down the multi-layered and multi-scaled complexity of a comprehensive geomorphic study into a number of well-defined and semi-independent topics, each of which can be performed separately to produce a clearly defined, deliverable product. Geomorphology increasingly plays a central role in multi-disciplinary river research and the importance of effective quality assurance makes it essential that audit trails and quality checks are hard-wired into study design. The structured approach presented here provides output products and production trails that can be rigorously audited, ensuring that the results of a geomorphic study can stand up to the closest scrutiny.

  10. Meandering rivers: Interpreting dynamics from planform geometry and the secret lives of migrating meanders

    NASA Astrophysics Data System (ADS)

    Schwenk, Jonathan

    Meandering rivers are dynamic agents of geomorphic change that rework landscapes through migration while maintaining beautiful looping planforms. This work investigates the relationships between the alluring planform geometries of meandering rivers, the dynamics of individual meander bend migration, and the dynamic processes driving meander evolution. A simple yet physically-based model of long-time meander migration is employed to understand the dynamic trajectories of individual meander bends and establish relationships between historic dynamics and cutoff bend geometry. At the reach scale, concepts from nonlinear dynamic theory are applied to river centerlines to determine if the dynamic nonlinearities driving meander evolution are preserved in the reachwide planform structure. Understanding how rivers move across their floodplains requires snapshots of planforms over long time periods from aerial photography or historic maps and surveys which are often taken at irregular and long intervals. Migration occurring between snapshots has thus largely remained a mystery. More recently, worldwide satellite imagery collected at least every 18 days by the NASA Landsat family of satellites offers the potential to reveal the secret lives of migrating, meandering rivers. This research mines the vault of Landsat imagery to resolve over 30 years of planform migration along more than 1,300 km of one of the Earth's most active meandering rivers: the Ucayali River in Peru. Analysis of the resulting annual binary channel masks suggests that migration rates are controlled by processes acting across bend-to-reach scales. An exciting new geomorphic discovery emerges from the analysis revealing the role of cutoffs as drivers of nonlocal morphodynamic change.

  11. Genesis and geomorphic evolution of the Velké pinky stopes in the Zlatohorská Highlands, Eastern Sudetes

    NASA Astrophysics Data System (ADS)

    Lenart, Jan; Tichavský, Radek; Večeřa, Josef; Kapustová, Veronika; Šilhán, Karel

    2017-11-01

    Montanogenic landforms are commonly viewed as hazards by society, but they are also holders of specific and uncommon morphology with unique dynamics that act as remarks on landscape history. The Velké pinky stopes in the Zlatohorská Highlands, Eastern Sudetes, are naturally revitalized post-mining landforms with long-term geoecological succession. Their genetic origin is diverse but recent processes, such as deep-seated slope deformations, rockfalls and ground subsidence, have resulted in a distinct morphology dominated by rock walls and the accumulation of blocks and debris wedges. This morphology predisposes the stopes to become the core area of the most recent dynamic geomorphic activity within the wider, relatively homogenous area. By dendrogeomorphic techniques, we identified more than 20 rockfall events within three of the stopes with increased activity since the 1980s. Only the 1991 and 2006 events were identical for all three stopes. We obtained the years of exposures from 10 roots, revealing the ground subsidence and opening of tension cracks or even the lateral retreat of the flanks of minor depressions. The Schmidt hammer test revealed the most recent and fresh gravitational activity in one of the stopes. A relationship between the superficial morphology and underground structure was proven by electrical resistivity profiling. Compared to the previous studies engaged with the abandoned mines, we presented how complex their evolution can be. Our study brings new information about the historical development of anthropogenic relief forms. Moreover, our results suggest that standard research approaches can be successfully applied for development analysis of these specific forms.

  12. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    ERIC Educational Resources Information Center

    Haddad, David Elias

    2014-01-01

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that…

  13. Coupled hydrological and geochemical process evolution at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Troch, P. A. A.

    2015-12-01

    Predictions of hydrologic and biogeochemical responses to natural and anthropogenic forcing at the landscape scale are highly uncertain due to the effects of heterogeneity on the scaling of reaction, flow and transport phenomena. The physical, chemical and biological structures and processes controlling reaction, flow and transport in natural landscapes interact at multiple space and time scales and are difficult to quantify. The current paradigm of hydrological and geochemical theory is that process descriptions derived from observations at small scales in controlled systems can be applied to predict system response at much larger scales, as long as some 'equivalent' or 'effective' values of the scale-dependent parameters can be identified. Furthermore, natural systems evolve in time in a way that is hard to observe in short-run laboratory experiments or in natural landscapes with unknown initial conditions and time-variant forcing. The spatial structure of flow pathways along hillslopes determines the rate, extent and distribution of geochemical reactions (and biological colonization) that drive weathering, the transport and precipitation of solutes and sediments, and the further evolution of soil structure. The resulting evolution of structures and processes, in turn, produces spatiotemporal variability of hydrological states and flow pathways. There is thus a need for experimental research to improve our understanding of hydrology-biogeochemistry interactions and feedbacks at appropriate spatial scales larger than laboratory soil column experiments. Such research is complicated in real-world settings because of poorly constrained impacts of initial conditions, climate variability, ecosystems dynamics, and geomorphic evolution. The Landscape Evolution Observatory (LEO) at Biosphere 2 offers a unique research facility that allows real-time observations of incipient hydrologic and biogeochemical response under well-constrained initial conditions and climate forcing. The LEO allows to close the water, carbon and energy budgets at hillslope scales, thereby enabling elucidation of the tight coupling between the time water spends along subsurface flow paths and geochemical weathering reactions, including the feedbacks between flow and pedogenesis.

  14. Quantifying uncertainty of measuring gully morphological evolution with close-range digital photogrammetry

    USDA-ARS?s Scientific Manuscript database

    Measurement of geomorphic change may be of interest to researchers and practitioners in a variety of fields including geology, geomorphology, hydrology, engineering, and soil science. Landscapes are often represented by digital elevation models. Surface models generated of the same landscape over a ...

  15. Geomorphic Transport Laws and the Statistics of Topography and Stratigraphy

    NASA Astrophysics Data System (ADS)

    Schumer, R.; Taloni, A.; Furbish, D. J.

    2016-12-01

    Geomorphic transport laws take the form of partial differential equations in which sediment motion is a deterministic function of slope. The addition of a noise term, representing unmeasurable, or subgrid scale autogenic forcing, reproduces scaling properties similar to those observed in topography, landforms, and stratigraphy. Here we describe a transport law that generalizes previous equations by permitting transport that is local or non-local in addition to different types of noise. More importantly, we use this transport law to link the character of sediment transport to the statistics of topography and stratigraphy. In particular, we link the origin of the Sadler effect to the evolution of the earth surface via a transport law.

  16. Hypsometry and relief analysis of the southern termination of the Calabrian arc, NE-Sicily (southern Italy)

    NASA Astrophysics Data System (ADS)

    Pavano, F.; Catalano, S.; Romagnoli, G.; Tortorici, G.

    2018-03-01

    Tectonic forcing causes the relief-building of mountain chains and enforces the surficial processes in a persistent dismantling of rock volumes, continuously modelling Earth's surface. Actually, we observe transient landscapes that have temporarily recorded tectonic forcing as a codified signal. The Late Quaternary tectonic evolution of northeastern Sicily, located along the Nubia-Eurasia plate boundary at the southern termination of the Calabrian arc, has been dominated by intense Plio-Pleistocene dynamics that severely modified the Late Miocene landscape. The present work aims to investigate geomorphically northeastern Sicily, essentially focusing on the hypsometric and relief analyses of the region in order to define how the topography responds to the post-Pliocene tectonic deformation. We apply different relief morphometric indices (Hypsometric Integral, Topographic Relief and Topographic Dissection) measured for each differently sized moving window, and we use different swath topographic profiles as well. Our analysis evidences differential morphological responses between distinct morphotectonic domains of the studied area, led by the combination of earlier morphological background and Late Quaternary tectonic deformation stages of the region. In addition, in the context of a constant and uniform tectonic uplift, the results define the general space- and time-relating pathways of the landscape geomorphic metrics. This enables us to bring out the controls of the vertical scale of landscape on hypsometry, exploring their mutual relationships. Finally, we reconstruct the Late Quaternary morphotectonic evolution of the region, defining the role played by the main tectonic alignments on the present geomorphic setting.

  17. Quantifying geomorphic change at ephemeral stream restoration sites using a coupled-model approach

    USGS Publications Warehouse

    Norman, Laura M.; Sankey, Joel B.; Dean, David; Caster, Joshua J.; DeLong, Stephen B.; Henderson-DeLong, Whitney; Pelletier, Jon D.

    2017-01-01

    Rock-detention structures are used as restoration treatments to engineer ephemeral stream channels of southeast Arizona, USA, to reduce streamflow velocity, limit erosion, retain sediment, and promote surface-water infiltration. Structures are intended to aggrade incised stream channels, yet little quantified evidence of efficacy is available. The goal of this 3-year study was to characterize the geomorphic impacts of rock-detention structures used as a restoration strategy and develop a methodology to predict the associated changes. We studied reaches of two ephemeral streams with different watershed management histories: one where thousands of loose-rock check dams were installed 30 years prior to our study, and one with structures constructed at the beginning of our study. The methods used included runoff, sediment transport, and geomorphic modelling and repeat terrestrial laser scanner (TLS) surveys to map landscape change. Where discharge data were not available, event-based runoff was estimated using KINEROS2, a one-dimensional kinematic-wave runoff and erosion model. Discharge measurements and estimates were used as input to a two-dimensional unsteady flow-and-sedimentation model (Nays2DH) that combined a gridded flow, transport, and bed and bank simulation with geomorphic change. Through comparison of consecutive DEMs, the potential to substitute uncalibrated models to analyze stream restoration is introduced. We demonstrate a new approach to assess hydraulics and associated patterns of aggradation and degradation resulting from the construction of check-dams and other transverse structures. Notably, we find that stream restoration using rock-detention structures is effective across vastly different timescales.

  18. Hillslope Evolution by Bedrock Landslides

    PubMed

    Densmore; Anderson; McAdoo; Ellis

    1997-01-17

    Bedrock landsliding is a dominant geomorphic process in a number of high-relief landscapes, yet is neglected in landscape evolution models. A physical model of sliding in beans is presented, in which incremental lowering of one wall simulates baselevel fall and generates slides. Frequent small slides produce irregular hillslopes, on which steep toes and head scarps persist until being cleared by infrequent large slides. These steep segments are observed on hillslopes in high-relief landscapes and have been interpreted as evidence for increases in tectonic or climatic process rates. In certain cases, they may instead reflect normal hillslope evolution by landsliding.

  19. Science synergism study for EOS on evolution of desert surfaces

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.

    1987-01-01

    The effectiveness of EOS data as a basis for the study of desert surfaces' evolution is presently evaluated for both long and short term geomorphic evolution. Attention is given to the usefulness of such sensor systems planned for EOS as MODIS for regional vegetation distribution/variability monitoring, HIRIS for visible-near IR observations, TIMS for lithological identification, HMMR and SSMI for soil characteristics, LASA for atmospheric profiles, SAR for surface roughness, ALT for two-dimensional topography, ACR for the calibration of imaging sensors, and ERBE for climate modeling and regional surface albedo variation determinations.

  20. Wet meadow ecosystems and the longevity of biologically-mediated geomorphic features

    NASA Astrophysics Data System (ADS)

    Nash, C.; Grant, G.; O'Connor, J. E.

    2016-12-01

    Upland meadows represent a ubiquitous feature of montane landscapes in the U.S. West and beyond. Characterized by flat valley floors flanked by higher-gradient hillslopes, these meadows are important features, both for the diverse ecosystems they support but also because they represent depositional features in what is primarily an erosional environment. As such, they serve as long-term chronometers of both geological and ecological processes in a portion of the landscape where such records are rare, and provide a useful microcosm for exploring many of the questions motivating critical zone science. Specifically, meadows can offer insights into questions regarding the longevity of theses biologically-mediated landscapes, and the geomorphic thresholds associated with transitions between metastable landscape states. Though categorically depositional, wet meadows have been shown to rapidly shift into erosional landscapes characterized by deep arroyos, declining water tables, and sparse, semi-arid ecosystems. Numerous hypotheses have been proposed explaining this shift: intensive ungulate usage, removal of beaver, climatic shifts, and intrinsic geomorphic evolution. Even less is known about the mechanisms controlling the construction of these meadow features. Evidence seems to suggest these channels oscillate between two metastable conditions: deeply incised, single-threaded channels and sheet-flow dominated valley-spanning wetlands. We present new evidence exploring the subsurface architecture of wet meadows and the bidirectional process cascades potentially responsible for their temporal evolution. Using a combination of near surface geophysical techniques and detailed stratigraphic descriptions of incised and un-incised meadows throughout the Silvies River Basin, OR, we examine mechanisms responsible both for the construction of these features and their apparently rapid transition from depositional to erosional. Our investigation focuses specifically on potential interactions between biogenic and geomorphic features and processes: beaver meadow complexes, downed wood, and the accumulation of senescent vegetation to form thick peat mounds. These observations have broad potential utility to help guide meadow restoration efforts across the Western U.S.

  1. Lithologic Effects on Landscape Response to Base Level Changes: A Modeling Study in the Context of the Eastern Jura Mountains, Switzerland

    NASA Astrophysics Data System (ADS)

    Yanites, Brian J.; Becker, Jens K.; Madritsch, Herfried; Schnellmann, Michael; Ehlers, Todd A.

    2017-11-01

    Landscape evolution is a product of the forces that drive geomorphic processes (e.g., tectonics and climate) and the resistance to those processes. The underlying lithology and structural setting in many landscapes set the resistance to erosion. This study uses a modified version of the Channel-Hillslope Integrated Landscape Development (CHILD) landscape evolution model to determine the effect of a spatially and temporally changing erodibility in a terrain with a complex base level history. Specifically, our focus is to quantify how the effects of variable lithology influence transient base level signals. We set up a series of numerical landscape evolution models with increasing levels of complexity based on the lithologic variability and base level history of the Jura Mountains of northern Switzerland. The models are consistent with lithology (and therewith erodibility) playing an important role in the transient evolution of the landscape. The results show that the erosion rate history at a location depends on the rock uplift and base level history, the range of erodibilities of the different lithologies, and the history of the surface geology downstream from the analyzed location. Near the model boundary, the history of erosion is dominated by the base level history. The transient wave of incision, however, is quite variable in the different model runs and depends on the geometric structure of lithology used. It is thus important to constrain the spatiotemporal erodibility patterns downstream of any given point of interest to understand the evolution of a landscape subject to variable base level in a quantitative framework.

  2. The geomorphic legacy of water and erosion control structures in a semiarid rangeland watershed

    USGS Publications Warehouse

    Nichols, Mary H.; Magirl, Christopher S.; Sayre, N.F.; Shaw, Jeremy R.

    2018-01-01

    Control over water supply and distribution is critical for agriculture in drylands where manipulating surface runoff often serves the dual purpose of erosion control. However, little is known of the geomorphic impacts and legacy effects of rangeland water manipulation infrastructure, especially if not maintained. This study investigated the geomorphic impacts of structures such as earthen berms, water control gates, and stock tanks, in a semiarid rangeland in the southwestern USA that is responding to both regional channel incision that was initiated over a century ago, and a more recent land use change that involved cattle removal and abandonment of structures. The functional condition of remnant structures was inventoried, mapped, and assessed using aerial imagery and lidar data. Headcut initiation, scour, and channel incision associated with compromised lateral channel berms, concrete water control structures, floodplain water spreader berms, and stock tanks were identified as threats to floodplains and associated habitat. Almost half of 27 identified lateral channel berms (48%) have been breached and 15% have experienced lateral scour; 18% of 218 shorter water spreader berms have been breached and 17% have experienced lateral scour. A relatively small number of 117 stock tanks (6%) are identified as structurally compromised based on analysis of aerial imagery, although many currently do not provide consistent water supplies. In some cases, the onset of localized disturbance is recent enough that opportunities for mitigation can be identified to alter the potentially damaging erosion trajectories that are ultimately driven by regional geomorphic instability. Understanding the effects of prior land use and remnant structures on channel and floodplain morphologic condition is critical because both current land management and future land use options are constrained by inherited land use legacy effects.

  3. Airborne laser swath mapping of the Denton Hills, Transantarctic Mountains, Antarctica: Applications for structural and glacial geomorphic mapping

    USGS Publications Warehouse

    Wilson, Terry; Csathó, Beata

    2007-01-01

    High-resolution digital elevation data acquired by airborne laser scanning (ALS) for the Denton Hills, along the coastal foothills of the Royal Society Range, Transantarctic Mountains, are examined for applications to bedrock and glacial geomorphic mapping. Digital elevation models (DEMs), displayed as shaded-relief images and slope maps, portray geomorphic landscape features in unprecedented detail across the region. Structures of both ductile and brittle origin, ranging in age from the Paleozoic to the Quaternary, can be mapped from the DEMs. Glacial features, providing a record of the limits of grounded ice, of lake paleoshorelines, and of proglacial lake-ice conveyor deposits, are also prominent on the DEMs. The ALS-derived topographic data have great potential for a range of mapping applications in regions of ice-free terrain in Antarctica

  4. Modelling geomorphic responses to human perturbations: Application to the Kander river, Switzerland

    NASA Astrophysics Data System (ADS)

    Ramirez, Jorge; Zischg, Andreas; Schürmann, Stefan; Zimmermann, Markus; Weingartner, Rolf; Coulthard, Tom; Keiler, Margreth

    2017-04-01

    Before 1714 the Kander river (Switzerland) flowed into the Aare river causing massive flooding and for this reason the Kander river was deviated (Kander correction) to lake Thun. The Kander correction was a pioneering hydrological project and induced a major human change to the landscape, but had unintended hydrological and geomorphic impacts that cascaded upstream and downstream. For example doubling the catchment area of Lake Thun, which gave rise to major flood problems, cessation of direct sediment delivery to the Aare, and sediment flux to lake Thun forming the Kander delta. More importantly the Kander correction shortened the Kander river and substantially increased the slope and bed shear of the Kander upstream from the correction. Consequently impacts of the correction cascaded upstream as a migrating knickpoint and eroded the river channel at unprecedented rates. Today we may have at our disposal the theoretical and empirical foundations to foresee the consequences of human intervention into natural systems. One method to investigate such geomorphic changes are numerical models that estimate the evolution of rivers by simulating the movement of water and sediment. Although much progress has been made in the development of these geomorphic models, few models have been tested in circumstances with rare perturbations and extreme forcings. As such, it remains uncertain if geomorphic models are useful and stable in extreme situations that include large movements of sediment and water. Here, in this study, we use historic maps and documents to develop a detailed geomorphic model of the Kander river starting in the year 1714. We use this model to simulate the extreme geomorphic events that preceded the deviation of the Kander river into Lake Thun and simulate changes to the river until conditions become relatively stable. We test our model by replicating long term impacts to the river that include 1) rates of incision within the correction, 2) knickpoint migration, and 3) delta formation in Lake Thun. In doing this we build confidence in the model and gain understanding of how the river system responded to anthropogenic perturbations.

  5. An evaluation of the suitability of ERTS data for the purposes of petroleum exploration

    NASA Technical Reports Server (NTRS)

    Collins, R. J., Jr. (Principal Investigator); Mccown, F. P.; Stonis, L. P.; Petzel, G.

    1973-01-01

    The author has identified the following significant results. ERTS-1 imagery seems to be good to excellent for reconnaissance level investigations of large sedimentary basins such as the Anadarko Basin. Many lithologic boundaries, and geomorphic features, and linear features inferred to be indicative of geologic structure are visible in the imagery. This imagery in conjunction with high altitude photography seems to be useful as a tool for intermediate level geologic exploration. Several types of crudely circular anomalous features, such as geomorphic/structural anomalies, hazy areas and tonal anomalies, are identifiable in the imagery. There seems to be a strong correlation between the geomorphic/structural and hazy anomalies and known structurally controlled oil and gas fields. The features recognizable on ERTS-1 imagery and their ease of recognition vary from area to area even in imagery acquired at the same time under essentially uniform atmospheric conditions. Repeated coverage is exceedingly valuable in geologic applications. One time complete coverage even for the various seasons does not reveal all the features that ERTS-1 can reveal.

  6. Continuous catchment-scale monitoring of geomorphic processes with a 2-D seismological array

    NASA Astrophysics Data System (ADS)

    Burtin, A.; Hovius, N.; Milodowski, D.; Chen, Y.-G.; Wu, Y.-M.; Lin, C.-W.; Chen, H.

    2012-04-01

    The monitoring of geomorphic processes during extreme climatic events is of a primary interest to estimate their impact on the landscape dynamics. However, available techniques to survey the surface activity do not provide a relevant time and/or space resolution. Furthermore, these methods hardly investigate the dynamics of the events since their detection are made a posteriori. To increase our knowledge of the landscape evolution and the influence of extreme climatic events on a catchment dynamics, we need to develop new tools and procedures. In many past works, it has been shown that seismic signals are relevant to detect and locate surface processes (landslides, debris flows). During the 2010 typhoon season, we deployed a network of 12 seismometers dedicated to monitor the surface processes of the Chenyoulan catchment in Taiwan. We test the ability of a two dimensional array and small inter-stations distances (~ 11 km) to map in continuous and at a catchment-scale the geomorphic activity. The spectral analysis of continuous records shows a high-frequency (> 1 Hz) seismic energy that is coherent with the occurrence of hillslope and river processes. Using a basic detection algorithm and a location approach running on the analysis of seismic amplitudes, we manage to locate the catchment activity. We mainly observe short-time events (> 300 occurrences) associated with debris falls and bank collapses during daily convective storms, where 69% of occurrences are coherent with the time distribution of precipitations. We also identify a couple of debris flows during a large tropical storm. In contrast, the FORMOSAT imagery does not detect any activity, which somehow reflects the lack of extreme climatic conditions during the experiment. However, high resolution pictures confirm the existence of links between most of geomorphic events and existing structures (landslide scars, gullies...). We thus conclude to an activity that is dominated by reactivation processes. It highlights the major interest of a seismic monitoring since it allows a detailed spatial and temporal survey of events that classic approaches are not able to observe. In the future, dense two dimensional seismological arrays will assess in real-time the landscape dynamics of an entire catchment, tracking sediments from slopes to rivers.

  7. Effects of dams and geomorphic context on riparian forests of the Elwha River, Washington

    USGS Publications Warehouse

    Shafroth, Patrick B.; Perry, Laura G; Rose, Chanoane A; Braatne, Jeffrey H

    2016-01-01

    Understanding how dams affect the shifting habitat mosaic of river bottomlands is key for protecting the many ecological functions and related goods and services that riparian forests provide and for informing approaches to riparian ecosystem restoration. We examined the downstream effects of two large dams on patterns of forest composition, structure, and dynamics within different geomorphic contexts and compared them to upstream reference conditions along the Elwha River, Washington, USA. Patterns of riparian vegetation in river segments downstream of the dams were driven largely by channel and bottomland geomorphic responses to a dramatically reduced sediment supply. The river segment upstream of both dams was the most geomorphically dynamic, whereas the segment between the dams was the least dynamic due to substantial channel armoring, and the segment downstream of both dams was intermediate due to some local sediment supply. These geomorphic differences were linked to altered characteristics of the shifting habitat mosaic, including older forest age structure and fewer young Populus balsamifera subsp. trichocarpa stands in the relatively static segment between the dams compared to more extensive early-successional forests (dominated by Alnus rubra and Salix spp.) and pioneer seedling recruitment upstream of the dams. Species composition of later-successional forest communities varied among river segments as well, with greater Pseudotsuga menziesii and Tsuga heterophylla abundance upstream of both dams, Acer spp. abundance between the dams, and P. balsamifera subsp. trichocarpa and Thuja plicata abundance below both dams. Riparian forest responses to the recent removal of the two dams on the Elwha River will depend largely on channel and geomorphic adjustments to the release, transport, and deposition of the large volume of sediment formerly stored in the reservoirs, together with changes in large wood dynamics.

  8. Premature Mobility of Boulders in Constructed Step-pool River Structures in the Carmel River, CA: The Role of Fish-centric Design Constraints, and Flow on Structural Stability

    NASA Astrophysics Data System (ADS)

    Smith, D. P.; Chow, K.; Luna, L.

    2017-12-01

    The 32 m tall San Clemente Dam (Carmel River, CA) was removed in 2015 to eliminate seismic risk and to improve fish passage for all life stages of steelhead (O. mykiss). Reservoir sediment was sequestered in place, rather than released, and a new 1000 m long channel/floodplain system was constructed to circumvent the stored sediment. The channel comprised a 250 m long, meandering low-gradient reach and a 750 m reach with alternating step-pool sections, plane beds, and resting pools. The floodprone surfaces were compacted, wrapped in geotechnical fabric and vegetated. This study analyzes the geomorphic evolution of the new channel system during its first two years of service based upon detailed field inspection, SfM photogrammetry, orthophoto analysis, and 2d hydraulic modeling. A significant proportion of the step-pool structures experienced premature mobility and several reaches of engineered stream banks were eroded in the first year. Individual, six-tonne boulders were mobilized despite experiencing less than the 3 yr flow. The channel and floodplain were fully repaired following the first year. Strong flows (two 10-yr floods and a 30-yr flood) during the second year catastrophically altered the constructed channel and floodplain. While the low-gradient reach remained intact, each of the original step-pool structures was either completely mobilized and destroyed, buried by gravel, or bypassed by the subsequent channel. Despite the overall structural failure of the constructed channel, the new channel does not block steelhead migration, and can be serendipitously considered an ecological success. Step-pool design was constrained by a fish-centric requirement that steps be 1 ft tall or less. Some constructed "resting pools" filled rather than transport sediment. Using fish-centric constraints in the design, rather than strictly fluvial geomorphic principles may have contributed to early failure of the step-pool structures and other parts of the system.

  9. New geomorphic data on the active Taiwan orogen: A multisource approach

    NASA Technical Reports Server (NTRS)

    Deffontaines, B.; Lee, J.-C.; Angelier, J.; Carvalho, J.; Rudant, J.-P.

    1994-01-01

    A multisource and multiscale approach of Taiwan morphotectonics combines different complementary geomorphic analyses based on a new elevation model (DEM), side-looking airborne radar (SLAR), and satellite (SPOT) imagery, aerial photographs, and control from independent field data. This analysis enables us not only to present an integrated geomorphic description of the Taiwan orogen but also to highlight some new geodynamic aspects. Well-known, major geological structures such as the Longitudinal Valley, Lishan, Pingtung, and the Foothills fault zones are of course clearly recognized, but numerous, previously unrecognized structures appear distributed within different regions of Taiwan. For instance, transfer fault zones within the Western Foothills and the Central Range are identified based on analyses of lineaments and general morphology. In many cases, the existence of geomorphic features identified in general images is supported by the results of geological field analyses carried out independently. In turn, the field analyses of structures and mechanisms at some sites provide a key for interpreting similar geomorphic featues in other areas. Examples are the conjugate pattern of strike-slip faults within the Central Range and the oblique fold-and-thrust pattern of the Coastal Range. Furthermore, neotectonic and morphological analyses (drainage and erosional surfaces) has been combined in order to obtain a more comprehensive description and interpretation of neotectonic features in Taiwan, such as for the Longitudinal Valley Fault. Next, at a more general scale, numerical processing of digital elevation models, resulting in average topography, summit level or base level maps, allows identification of major features related to the dynamics of uplift and erosion and estimates of erosion balance. Finally, a preliminary morphotectonic sketch map of Taiwan, combining information from all the sources listed above, is presented.

  10. The Geomorphology, Hydrology and Evolution of a Chain of Ponds River System: A Poorly Recognised and Unique River Planform Type.

    NASA Astrophysics Data System (ADS)

    Williams, R.; Fryirs, K.

    2016-12-01

    Chain-of-ponds river types are alluvial, discontinuous watercourses that contain irregularly spaced, deep, steep-sided ponds separated by an ephemeral flow path. Despite being widespread, chains of ponds are now rare in Australia, having experienced extensive channelisation since European settlement and landuse intensification. The Mulwaree system is one of the largest remaining chain of ponds systems in the country. Little is known about its geomorphic structure, Quaternary evolution or hydrological function. The valley fill of the Mulwaree River contains layers of gravel and cobble clast-supported sediments at a depth of 20 m. Atop, silt and fine sand sediments are 1-3 m deep. The ponds, which sit in this valley-fill, are large (1000-4000 m2 and up to 8 m deep), and are relic form from a much larger and more energetic gravel-bed river that occurred in this valley in the past. Optically-stimulated luminescence ages date the change from high-energy gravel bed to the very low energy system seen today at approximately 20-25 ka. The oldest dates for the gravel bed system at 5-7 m deep are 60-90 ka. The coarser substrate beneath the fine-grained floodplain is mostly saturated, forming a near-surface aquifer in the valley fill/floodplain. The water levels in the floodplain are similar to the level of the adjacent ponds (within 0.2 m) and this water level adjusts readily (within 0.5-2 days) to rain/flow. There is significant hydrological connectivity between the ponds and adjacent floodplain. During high flow conditions, stable isotope (δ18O and δ2H) results from the ponds show no deviation through the profile as the water column is being mixed. However, during low-flow conditions, water in the ponds is enriched near the surface due to evaporation, and has a similar signal to the adjacent near-surface, floodplain aquifer below a weak thermocline. This shows that these systems have a dual function, behaving more as groundwater dependent systems during low flow conditions, and surface water dependent systems during high flow. Understanding the unique hydro-geomorphic structure and evolution of this discontinuous watercourse is important as it provides a framework for its ecological function and increases our knowledge of river geodiversity.

  11. Constraints on the topographic evolution of Corsica and Sardinia from geological and geomorphic analyses

    NASA Astrophysics Data System (ADS)

    Quye-Sawyer, Jennifer; Whittaker, Alexander; Roberts, Gareth; Rood, Dylan

    2017-04-01

    The western Mediterranean Sea and its surroundings form part of a well-studied region whose geodynamic history is broadly known. However, how the topography of this area has responded to its tectonic and geodynamic influences is not fully understood. In particular, the relative importance of convergent, extensional and dynamic process is not known. Here we focus on the islands of Corsica, France, and Sardinia, Italy, which have played an important role in Alpine-Apennine system. They experienced a similar kinematic history during the Cenozoic, however their different positions on the Tethyan margin allow the relative effects of Alpine collision and rates of back-arc stretching to be compared. In particular, the two stages of back-arc extension (Liguro-Provençal basin to the west and Tyrrhenian Sea on the east) can provide information about how rollback-induced extension developed with time from the late Oligocene to the present. The two islands are historically tectonically quiescent, however they still preserve evidence of collision and subsequent extension from slab roll-back. In this study we have used a combination of geological and geomorphic techniques to provide new constraints into the vertical motions of Corsica and Sardinia. To quantify the spatial and temporal landscape evolution we have integrated stratigraphic, structural and thermochronological data and re-evaluated these alongside present-day geomorphic and geophysical observations. In addition, we have used digital elevation models to acquire 2030 fluvial longitudinal profiles for both islands. Knickpoints identified on these longitudinal profiles have been compared to geological maps to test the influence of rock strength on erosion. Our analysis reveals the presence of non-lithologically controlled knickpoints which we interpret to have been created by Miocene to Recent changes in uplift rate of the landscape. The longitudinal profiles were subsequently used in drainage inversion modelling, whose results show a spatially and temporally variable evolution of topography. Our results show that the initiation of normal fault bounded sedimentary basins, and the evolution from terrestrial to marine environments, is in agreement with progressive extension with eastward directed slab roll-back. However, observations including angular unconformities alongside terrestrial sedimentation and basalt eruptions during the Pliocene, imply basin inversion and uplift that is broadly simultaneous across both islands from the late Miocene. The magnitude of this uplift was probably variable, reaching several hundred metres in north-central Sardinia. Extension then recommenced as normal faults offset Pliocene units in Sardinia. Many of the islands' major faults have pronounced triangular facets with thick Quaternary alluvium in the hangingwall. Several knickpoints may relate to these fault movements. We evaluate potential causes of the landscape development and we suggest our data are consistent with long-lived tectonic processes in a migrating back-arc since the Oligocene, with minor inversion and uplift to expose the Miocene marine basins.

  12. Advances in planetary geology, volume 2

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This publication is a continuation of volume 1; it is a compilation of reports focusing on research into the origin and evolution of the solar system with emphasis on planetary geology. Specific reports include a multispectral and geomorphic investigation of the surface of Europa and a geologic interpretation of remote sensing data for the Martian volcano Ascreaus Mons.

  13. Coupling landscapes to solid-Earth deformation over the ice-age

    NASA Astrophysics Data System (ADS)

    Pico, T.; Mitrovica, J. X.; Ferrier, K.; Braun, J.

    2016-12-01

    We present initial results of a coupled ice-age sea level - landscape evolution code. Deformation of the solid Earth in response to the growth and ablation of continental ice sheets produces spatially-variable patterns of sea-level change. Recent modeling has considered the impact of sedimentation and erosion on sea level predictions across the last glacial cycle, but these studies have imposed, a-priori, a record of sediment flux and erosion, rather than computing them from a physics-based model of landscape evolution in the presence of sea-level (topography) changes. These topography changes range from 1-10 m/kyr in the near and intermediate field of the Late Pleistocene ice cover, and are thus comparable to (or exceed) tectonic rates in such regions. Our simulations aim to address the following question: how does solid-Earth deformation influence the evolution of landscapes over glacial periods? To address this issue, we couple a highly-efficient landscape evolution code, Fastscape (Braun & Willett, 2013), to a global, gravitationally-self consistent sea-level theory. Fastscape adopts standard geomorphic laws governing incision and marine deposition, and the sea-level model is based on the canonical work of Farrell & Clark (1976), with extensions to include the effects of rotation and time varying shoreline geometries (Kendall et al., 2005), and sediment erosion and deposition (Dalca et al, 2013). We will present global results and focus on a few regional case studies where deposition rates from a dataset of sedimentary cores can be used as a check on the simulations. These predictions quantify the influence of sea-level change (including that associated with sedimentation and erosion) on geomorphic drivers of landscape evolution, and in turn, the solid Earth deformation caused by these surface processes over an ice age.

  14. Morphotectonics of a high plateau on the northwestern flank of the Continental Rift of southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Modenesi-Gauttieri, May Christine; Takashi Hiruma, Silvio; Riccomini, Claudio

    2002-03-01

    Integration of landform and structural analysis allowed the identification of Late Pleistocene-Holocene pulses of tectonic activity in the Campos do Jordão Plateau with ages and regimes similar to the ones from the continental rift. Fault reactivation along Precambrian shear zones give rise to a series of conspicuous morphotectonic features, determine the formation of stream piracy phenomena, and divide the plateau into smaller blocks. Recognition of these tectonic pulses as well as of their effects in landform development—particularly clear on the Campos de São Francisco at the highest area of the SE edge of the plateau—show that besides the climate-related Quaternary environmental changes significant neotectonic instability should be considered in the geomorphic evolution of the Campos do Jordão Plateau.

  15. Geomorphic process fingerprints in submarine canyons

    USGS Publications Warehouse

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  16. Geomorphic evidence of deformation in the northern part of the New Madrid seismic zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, K.J.; Schumm, S.A.

    1993-03-01

    A geomorphic evaluation of the northern portion of the New Madrid seismic zone between Hickman, KY and Osceola, AR has identified several locations where anomalous geomorphic conditions indicate possible surface deformation. For example, the slope, course, sinuosity and dimensions of the Mississippi River have been affected by the Lake County uplift and Tertiary-age sediments are exposed in its channel. Also, anomalous channel behavior near Caruthersville, MO and Barfield, AR suggests that these two reaches of the Mississippi River are structurally controlled. The Black River northeast of Pocahontas follows a peculiar angular course that suggests fracture control, and course changes ofmore » the Black, St. Francis, and Little Rivers may be related to subsurface faulting, uplift, or downwarping, as well as to differential compaction or the effects of groundwater withdrawal. The topography of Crowley's Ridge suggests that, between Jonesboro and Castor River, it is composed of at least three structural blocks, that are bounded by northeast-southwest trending faults. Near Jonesboro, river patterns appear to be affected by the Jonesboro, AR pluton. The geomorphic evaluation has identified anomalous surface features in the New Madrid seismic zone. Some can be directly linked to mapped structures in the region, whereas others may result from previously unidentified areas of surface deformation. The identification of these anomalies should provide direction for scientists who are employing subsurface techniques in order to locate tectonic deformation in the area.« less

  17. Applications of Morphochronology to the Active Tectonics of Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F J; Tapponnier, P; Finkel, R C

    2005-01-28

    The Himalayas and the Tibetan Plateau were formed as a result of the collision of India and Asia, and provide an excellent opportunity to study the mechanical response of the continental lithosphere to tectonic stress. Geophysicists are divided in their views on the nature of this response advocating either (1) homogeneously distributed deformation with the lithosphere deforming as a fluid continuum or (2) deformation is highly localized with the lithosphere that deforms as a system of blocks. The resolution of this issue has broad implications for understanding the tectonic response of continental lithosphere in general. Homogeneous deformation is supported bymore » relatively low decadal, geodetic slip-rate estimates for the Altyn Tagh and Karakorum Faults. Localized deformation is supported by high millennial, geomorphic slip-rates constrained by both cosmogenic and radiocarbon dating on these faults. Based upon the agreement of rates determined by radiocarbon and cosmogenic dating, the overall linearity of offset versus age correlations, and on the plateau-wide correlation of landscape evolution and climate history, the disparity between geomorphic and geodetic slip-rate determinations is unlikely to be due to the effects of surface erosion on the cosmogenic age determinations. Similarly, based upon the consistency of slip-rates over various observation intervals, secular variations in slip-rate appear to persist no longer than 2000 years and are unlikely to provide reconciliation. Conversely, geodetic and geomorphic slip-rate estimates on the Kunlun fault, which does not have significant splays or associated thrust faults, are in good agreement, indicating that there is no fundamental reason why these complementary geodetic and geomorphic methods should disagree. Similarly, the geodetic and geomorphic estimates of shortening rates across the northeastern edge of the plateau are in reasonable agreement, and the geomorphic rates on individual thrust faults demonstrate a significant eastward decrease in the shortening rate. This rate decrease is consistent with the transfer of slip from the Altyn Tagh Fault (ATF) to genetically-related thrust mountain building at its terminus. Rates on the ATF suggest a similar decrease in rate, but the current data set is too small to be definitive. Overall, the high, late Pleistocene-Holocene, geomorphic slip velocities on the major strike-slip faults of Tibet, suggests that they absorb as much of India's convergence relative to Siberia as the Himalayan Main Frontal Thrust on the southern edge of the plateau.« less

  18. Geomorphic Evolution and Slip rate Measurements of the Noushki Segment , Chaman Fault Zone, Pakistan

    NASA Astrophysics Data System (ADS)

    Abubakar, Y.; Khan, S. D.; Owen, L. A.; Khan, A.

    2012-12-01

    The Nushki segment of the Chaman fault system is unique in its nature as it records both the imprints of oblique convergence along the western Indian Plate boundary as well as the deformation along the Makran subduction zone. The left-lateral Chaman transform zone has evolved from a subduction zone along the Arabian-Eurasian collision complex to a strike-slip fault system since the collision of the Indian Plate with the Eurasia. The geodetically and geologically constrained displacement rates along the Chaman fault varies from about 18 mm/yr to about 35 mm/yr respectively throughout its total length of ~ 860 km. Two major hypothesis has been proposed by workers for these variations; i) Variations in rates of elastic strain accumulation along the plate boundary and, ii) strain partitioning along the plate boundary. Morphotectonic analysis is a very useful tool in investigations of spatial variations in tectonic activities both regionally and locally. This work uses morphotectonic analysis to investigate the degree of variations in active tectonic deformation, which can be directly related to elastic strain accumulation and other kinematics in the western boundary of the plate margin. Geomorphic mapping was carried out using remotely sensed data. ASTER and RADAR data were used in establishing Quaternary stratigraphy and measurement of geomorphic indices such as stream length gradient index, valley floor width to height ratio and, river/stream longitudinal profile within the study area. High resolution satellite images (e.g., IKONOS imagery) and 30m ASTER DEMs were employed to measure displacement recorded by landforms along individual strands of the fault. Results from geomorphic analysis shows three distinct levels of tectonic deformation. Areas showing high levels of tectonic deformation are characterized by displaced fan surfaces, deflected streams and beheaded streams. Terrestrial Cosmogenic nuclide surface exposure dating of the displaced landforms is being carried out to calculate slip-rates. Slip-rates estimation along this segment of this plate boundary will help in understanding of tectonic evolution of this plate boundary and seismic activity in the region.

  19. The role of catastrophic geomorphic events in central Appalachian landscape evolution

    USGS Publications Warehouse

    Jacobson, R.B.; Miller, A.J.; Smith, J.A.

    1989-01-01

    Catastrophic geomorphic events are taken as those that are large, sudden, and rare on human timescales. In the nonglaciated, low-seismicity central Appalachians, these are dominantly floods and landslides. Evaluation of the role of catastrophic events in landscape evolution includes assessment of their contributions to denudation and formation of prominent landscape features, and how they vary through space and time. Tropical storm paths and topographic barriers at the Blue Ridge and Allegheny Front create significant climatic variability across the Appalachians. For moderate floods, the influence of basin geology is apparent in modifying severity of flooding, but for the most extreme events, flood discharges relate mainly to rainfall characteristics such as intensity, duration, storm size, and location. Landslide susceptibility relates more directly to geologic controls that determine what intensity and duration of rainfall will trigger slope instability. Large floods and landslides are not necessarily effective in producing prominent geomorphic features. Large historic floods in the Piedmont have been minimally effective in producing prominent and persistent geomorphic features. In contrast, smaller floods in the Valley and Ridge produced erosional and depositional features that probably will require thousands of years to efface. Scars and deposits of debris slide-avalanches triggered on sandstone ridges recover slowly and persist much longer than scars and deposits of smaller landslides triggered on finer-grained regolith, even though the smaller landslides may have eroded greater aggregate volume. The surficial stratigraphic record can be used to extend the spatial and temporal limits of our knowledge of catastrophic events. Many prominent alluvial and colluvial landforms in the central Appalachians are composed of sediments that were deposited by processes similar to those observed in historic catastrophic events. Available stratigraphic evidence shows two scales of temporal variation: one related to Quaternary climate changes and a more-recent, higher-frequency variation due to rare events during the Holocene. In much of the central Appalachians, landforms related to Quaternary climate changes persist as the most prominent features, despite the modifying effects of late-Holocene catastrophic events. ?? 1989.

  20. Interdependence of geomorphic and ecologic resilience properties in a geographic context

    NASA Astrophysics Data System (ADS)

    Anthony Stallins, J.; Corenblit, Dov

    2018-03-01

    Ecology and geomorphology recognize the dynamic aspects of resistance and resilience. However, formal resilience theory in ecology has tended to deemphasize the geomorphic habitat template. Conversely, landscape sensitivity and state-and-transition models in geomorphology downweight mechanisms of biotic adaptation operative in fluctuating, spatially explicit environments. Adding to the interdisciplinary challenge of understanding complex biogeomorphic systems is that environmental heterogeneity and overlapping gradients of disturbance complicate inference of the geographic patterns of resistance and resilience. We develop a conceptual model for comparing the resilience properties among barrier dunes. The model illustrates how adaptive cycles and panarchies, the formal building blocks of resilience recognized in ecology, can be expressed as a set of hierarchically nested geomorphic and ecological metrics. The variance structure of these data is proposed as a means to delineate different kinds and levels of resilience. Specifically, it is the dimensionality of these data and how geomorphic and ecological variables load on the first and succeeding axes that facilitates the delineation of resistance and resilience. The construction of dune topographic state space from observations among different barrier islands is proposed as a way to measure the interdependence of geomorphic and ecological resilience properties.

  1. Co-evolution of landforms and vegetation under the influence of orographic precipitation

    NASA Astrophysics Data System (ADS)

    Yetemen, Omer; Srivastava, Ankur; Saco, Patricia M.

    2017-04-01

    Landforms are controlled by the interaction between tectonics, climate, and vegetation. Orography induced precipitation not only has implications on erosion resistance through vegetation dynamics but also affects erosive forces through modifying runoff production. The implications of elevated precipitation due to orography on landscape morphology requires a numerical framework that integrates a range of ecohydrologic and geomorphic processes to explore the competition between erosive and resisting forces in catchments where pronounced orographic precipitation prevails. In this study, our aim was to realistically represent ecohydrology driven by orographic precipitation and explore its implications on landscape evolution through a numerical model. The model was used to investigate how ecohydro-geomorphic differences caused by differential precipitation patterns as a result of orographic influence and rain-shadow effect lead to differences in the organization of modelled topography, soil moisture, and plant biomass. We use the CHILD landscape evolution model equipped with a vegetation dynamics component that explicitly tracks above- and below-ground biomass, and a precipitation forcing component that simulates rainfall as a function of elevation and orientation. The preliminary results of the model have shown how the competition between an increased shear stress through runoff production and an enhanced resistance force due to denser canopy cover, shape the landscape. Hillslope asymmetry between polar- and equator-facing hillslopes are enhanced (diminished) when they coincide with windward (leeward) side of the mountain series. The mountain divide accommodates itself by migrating toward the windward direction to increase (decrease) hillslope gradients on windward (leeward) slopes. These results clearly demonstrate the strong coupling between landform evolution and climate processes.

  2. The hills are alive: Earth surface dynamics in the University of Arizona Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    DeLong, S.; Troch, P. A.; Barron-Gafford, G. A.; Huxman, T. E.; Pelletier, J. D.; Dontsova, K.; Niu, G.; Chorover, J.; Zeng, X.

    2012-12-01

    To meet the challenge of predicting landscape-scale changes in Earth system behavior, the University of Arizona has designed and constructed a new large-scale and community-oriented scientific facility - the Landscape Evolution Observatory (LEO). The primary scientific objectives are to quantify interactions among hydrologic partitioning, geochemical weathering, ecology, microbiology, atmospheric processes, and geomorphic change associated with incipient hillslope development. LEO consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1 meter of basaltic tephra ground to homogenous loamy sand and contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. Each ~1000 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation), to facilitate better quantification of evapotraspiration. Each landscape has an engineered rain system that allows application of precipitation at rates between3 and 45 mm/hr. These landscapes are being studied in replicate as "bare soil" for an initial period of several years. After this initial phase, heat- and drought-tolerant vascular plant communities will be introduced. Introduction of vascular plants is expected to change how water, carbon, and energy cycle through the landscapes, with potentially dramatic effects on co-evolution of the physical and biological systems. LEO also provides a physical comparison to computer models that are designed to predict interactions among hydrological, geochemical, atmospheric, ecological and geomorphic processes in changing climates. These computer models will be improved by comparing their predictions to physical measurements made in LEO. The main focus of our iterative modeling and measurement discovery cycle is to use rapid data assimilation to facilitate validation of newly coupled open-source Earth systems models. LEO will be a community resource for Earth system science research, education, and outreach. The LEO project operational philosophy includes 1) open and real-time availability of sensor network data, 2) a framework for community collaboration and facility access that includes integration of new or comparative measurement capabilities into existing facility cyberinfrastructure, 3) community-guided science planning and 4) development of novel education and outreach programs.Artistic rendering of the University of Arizona Landscape Evolution Observatory

  3. Comparison between flood prone areas' geomorphic features in the Abruzzo region

    NASA Astrophysics Data System (ADS)

    Orlando, D.; Giglioni, M.; Magnaldi, S.

    2017-07-01

    Flood risk maps are one of the main non-structural measures for risk mitigation, but, as the risk knowledge degree is directly proportional to the community interest and financial capability, many sites are devoid of flood inundation areas studies. Recently many authors have investigated the capability of flood prone areas individuation with geomorphological DIGITAL ELEVATION MODEL(DEM) based approaches. These approaches highlight the role of geomorphic features derived from DEM, in this case slope, curvature, elevation, and topographic wetness index, to preliminary inundated areas' identification, without using hydraulic simulations. The present studies aim to analyze the geomorphic features of different hazard levels that lie under the identified inundated areas that have been carried out by the Abruzzo Region Basin Authority. The Aterno-Pescara and Foro river basins have been investigated. The results show that the characteristics of the flooded areas can be clearly distinguished from those of the entire basin,however, the difficultly of geomorphic features in individuatingthe areas of different hazard classifications is obvious.

  4. Extreme Changes in Stream Geomorphic Conditions induced by Fluvial Scour in Bridges

    NASA Astrophysics Data System (ADS)

    Özcan, O.; Ozcan, O.

    2016-12-01

    The numerous complexities associated with bridge scour have caused scour to be one of the most active topics of stream geomorphic research. The assessment of local scouring mechanism around bridge piers provides information for decision-making regarding the pile footing design, predicting the safety of bridges under critical scoured conditions, and as a result, may help prevent unnecessary loses. In the study, bridge design plans and HEC-RAS modeling were used for the assessment of changes in stream geomorphic conditions. The derived fluvial scour depths were compared with the field measurements and the empirical formula which is based on stream flow discharge rate, streambed condition and shape of river. Preliminary results revealed that bridge damage resulting from the flood event in 2003 induced substantial scour around bridge piles. Afterwards, significant stream bed change was observed under the influence of fluvial scour in another flood occurred in 2009. Consequently, geomorphic conditions of the stream bed should be considered in the structural design of the bridges.

  5. Engineered channel controls limiting spawning habitat rehabilitation success on regulated gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Brown, Rocko A.; Pasternack, Gregory B.

    2008-05-01

    In efforts to rehabilitate regulated rivers for ecological benefits, the flow regime has been one of the primary focal points of management strategies. However, channel engineering can impact channel geometry such that hydraulic and geomorphic responses to flow reregulation do not yield the sought for benefits. To illustrate and assess the impacts of structural channel controls and flow reregulation on channel processes and fish habitat quality in multiple life stages, a highly detailed digital elevation model was collected and analyzed for a river reach right below a dam using a suite of hydrologic, hydraulic, geomorphic, and ecological methods. Results showed that, despite flow reregulation to produce a scaled-down natural hydrograph, anthropogenic boundary controls have severely altered geomorphic processes associated with geomorphic self-sustainability and instream habitat availability in the case study. Given the similarity of this stream to many others, we concluded that the potential utility of natural flow regime reinstatement in regulated gravel-bed rivers is conditional on concomitant channel rehabilitation.

  6. Age, origin and evolution of Antarctic debris-covered glaciers: Implications for landscape evolution and long-term climate change

    NASA Astrophysics Data System (ADS)

    Mackay, Sean Leland

    Antarctic debris-covered glaciers are potential archives of long-term climate change. However, the geomorphic response of these systems to climate forcing is not well understood. To address this concern, I conducted a series of field-based and numerical modeling studies in the McMurdo Dry Valleys of Antarctica (MDV), with a focus on Mullins and Friedman glaciers. I used data and results from geophysical surveys, ice-core collection and analysis, geomorphic mapping, micro-meteorological stations, and numerical-process models to (1) determine the precise origin and distribution of englacial and supraglacial debris within these buried-ice systems, (2) quantify the fundamental processes and feedbacks that govern interactions among englacial and supraglacial debris, (3) establish a process-based model to quantify the inventory of cosmogenic nuclides within englacial and supraglacial debris, and (4) isolate the governing relationships between the evolution of englacial /supraglacial debris and regional climate forcing. Results from 93 field excavations, 21 ice cores, and 24 km of ground-penetrating radar data show that Mullins and Friedman glaciers contain vast areas of clean glacier ice interspersed with inclined layers of concentrated debris. The similarity in the pattern of englacial debris bands across both glaciers, along with model results that call for negligible basal entrainment, is best explained by episodic environmental change at valley headwalls. To constrain better the timing of debris-band formation, I developed a modeling framework that tracks the accumulation of cosmogenic 3He in englacial and supraglacial debris. Results imply that ice within Mullins Glacier increases in age non-linearly from 12 ka to ˜220 ka in areas of active flow (up to >> 1.6 Ma in areas of slow-moving-to-stagnant ice) and that englacial debris bands originate with a periodicity of ˜41 ka. Modeling studies suggest that debris bands originate in synchronicity with changes in obliquity-paced, total integrated summer insolation. The implication is that the englacial structure and surface morphology of some cold-based, debris-covered glaciers can preserve high-resolution climate archives that exceed the typical resolution of Antarctic terrestrial deposits and moraine records.

  7. Field Investigations of Icelandic Joekulhlaups as an Analog to Floods on Mars

    NASA Astrophysics Data System (ADS)

    Rice, J. W., Jr.; Russell, A. J.; Tweed, F. S.; Knudsen, Ó.; Roberts, M. J.; Marren, P. M.; Waller, R. I.; Rushmer, E. L.; Fay, H.; Harris, T. D.

    2000-08-01

    Joekulhlaups are believed to play a dominant role in the evolution of proglacial outwash plains in many parts of the world and strongly influence the morphology and dynamics of glacier margins. Improved understanding of the characteristics and geomorphic effectiveness of such high magnitude events is invaluable for understanding former ice sheet dynamics, processes and rates of deglaciation, and predicting the environmental impacts of future events. Although the characteristics and immediate geomorphic impact of storage-release events such as the November 1996 joekulhlaup at Skeidararsandur have been investigated, few studies have focused on the impact of volcanically-generated joekulhlaups released directly into the proglacial zone. Spectacular joekulhlaup induced fracturing and sediment fills within Skeidarajoekull illustrate the importance of joekulhlaups as a mechanism of sediment entrainment into glaciers and ice sheets. Additional information is contained in the original extended abstract.

  8. Erosion and Deposition Monitoring Using High-Density Aerial Lidar and Geomorphic Change Detection Software Analysis at Los Alamos National Laboratory, Los Alamos New Mexico, LA-UR-17-26743

    NASA Astrophysics Data System (ADS)

    Walker, T.; Kostrubala, T. L.; Muggleton, S. R.; Veenis, S.; Reid, K. D.; White, A. B.

    2017-12-01

    The Los Alamos National Laboratory storm water program installed sediment transport mitigation structures to reduce the migration of contaminants within the Los Alamos and Pueblo (LA/P) watershed in Los Alamos, NM. The goals of these structures are to minimize storm water runoff and erosion, enhance deposition, and reduce mobility of contaminated sediments. Previous geomorphological monitoring used GPS surveyed cross-sections on a reach scale to interpolate annual geomorphic change in sediment volumes. While monitoring has confirmed the LA/P watershed structures are performing as designed, the cross-section method proved difficult to estimate uncertainty and the coverage area was limited. A new method, using the Geomorphic Change Detection (GCD) plugin for ESRI ArcGIS developed by Wheaton et al. (2010), with high-density aerial lidar data, has been used to provide high confidence uncertainty estimates and greater areal coverage. Following the 2014 monsoon season, airborne lidar data has been collected annually and the resulting DEMs processed using the GCD method. Additionally, a more accurate characterization of low-amplitude geomorphic changes, typical of low-flow/low-rainfall monsoon years, has been documented by applying a spatially variable error to volume change calculations using the GCD based fuzzy inference system (FIS). The FIS method allows for the calculation of uncertainty based on data set quality and density e.g. point cloud density, ground slope, and degree of surface roughness. At the 95% confidence level, propagated uncertainty estimates of the 2015 and 2016 lidar DEM comparisons yielded detectable changes greater than 0.3 m - 0.46 m. Geomorphic processes identified and verified in the field are typified by low-amplitude, within-channel aggradation and incision and out of channel bank collapse that over the course of a monsoon season result in localized and dectetable change. While the resulting reach scale volume change from 2015 - 2016 was often nonsignificant, it is estimated with a higher degree of confidence than the previous cross-section/interpolation method. Results from comparisons of the recent low-intensity rainfalls/storm peak discharges monsoon season DEMs have established the expected amount of geomorphic change to be minor and localized, yet demonstrable.

  9. The development and evolution of landform based on neotectonic movement: The Sancha river catchment in the southwestern China

    NASA Astrophysics Data System (ADS)

    Zhong, Lingmin; Xu, Mo; Yang, Yanna; Wang, Xingbing

    2018-02-01

    Neotectonics has changed the coupled process of endogenic and exogenic geological dynamics, which mold the modern landform. Geomorphologic analysis is essential for identifying and understanding the tectonic activity and indicates the responsive mechanism of the landform to tectonic activity. At first, this research reconstructed the twisted Shanpen period planation surface, computed the valley floor width-to-height ratio of Sancha river and extracted the cross sections marking the river terraces to analyze the characteristics of the neotectonics. And then, the relation between neotectonic movement and landform development was analyzed by dividing the landform types. At last, the spatial variation of landform evolution was analyzed by extracting the Hypsometric Integral of sub-catchments. The Sancha river catchment's neotectonic movement presents the tilt-lift of earth's crust from NW to SE, which is characterized by the posthumous activity of Yanshan tectonic deformation. The spatial distribution of river terraces indicates that Sancha river catchment has experienced at least four intermittent uplifts and the fault blocks at both the sides of Liuzhi-Zhijin basement fault have differentially uplifted since the late Pleistocene. As the resurgence of Liuzhi-Zhijin basement fault, the Sancha river catchment was broken into two relative independent landform units. The spatial variations of the landform types near the Sancha river and the sub-catchments' landform evolution are characterized by periodic replacement. The styles of geological structure have controlled the development of landform far away from the Sancha River and influenced the landform evolution. The posthumous activities of the secondary structure have resulted in the spatial variation of sub-catchments' landform evolution, which presents periodic replacement with local exceptions. The present study suggests that spatial variations of the development and evolution of modern landform of Sancha River catchment owe their genesis to the interplay between the hydrodynamic force and tectonic activity in the neotectonic period. Likewise, the application of geomorphic indicators also provides a new way to assess the regional crustal stability.

  10. The Twenty-Fifth Lunar and Planetary Science Conference. Part 1: A-G

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, and planetary mantles.

  11. Geomorphic Mapping Pool 7 - Upper Mississippi River Basin

    DTIC Science & Technology

    1987-10-05

    PSA deposit (greater than 1 meter). Anderson and Overstreet (1986) have shown that historical sedi- ment in the Iowa River at Coralville reservoir...1986 Holocene Landscape Evolution in the Iowa River Valley: Coralville Reservoir, Iowa . Unpublished M.S. Thesis, University of Wisconsin-Madison, WI...District. Donohue & Associates, Inc. Sheboygan, WI. ANDERSON, JEFFREY D. and D.F. OVERSTREET, 1986, The Archaeology of Coralville Lake, Iowa Volume II

  12. Geomorphology, active tectonics, and landscape evolution in the Mid-Atlantic region: Chapter

    USGS Publications Warehouse

    Pazzaglia, Frank J.; Carter, Mark W.; Berti, Claudio; Counts, Ronald C.; Hancock, Gregory S.; Harbor, David; Harrison, Richard W.; Heller, Matthew J.; Mahan, Shannon; Malenda, Helen; McKeon, Ryan; Nelson, Michelle S.; Prince, Phillip; Rittenour, Tammy M.; Spotilla, James; Whittecar, G. Richard

    2015-01-01

    In 2014, the geomorphology community marked the 125th birthday of one of its most influential papers, “The Rivers and Valleys of Pennsylvania” by William Morris Davis. Inspired by Davis’s work, the Appalachian landscape rapidly became fertile ground for the development and testing of several grand landscape evolution paradigms, culminating with John Hack’s dynamic equilibrium in 1960. As part of the 2015 GSA Annual Meeting, the Geomorphology, Active Tectonics, and Landscape Evolution field trip offers an excellent venue for exploring Appalachian geomorphology through the lens of the Appalachian landscape, leveraging exciting research by a new generation of process-oriented geomorphologists and geologic field mapping. Important geomorphologic scholarship has recently used the Appalachian landscape as the testing ground for ideas on long- and short-term erosion, dynamic topography, glacial-isostatic adjustments, active tectonics in an intraplate setting, river incision, periglacial processes, and soil-saprolite formation. This field trip explores a geologic and geomorphic transect of the mid-Atlantic margin, starting in the Blue Ridge of Virginia and proceeding to the east across the Piedmont to the Coastal Plain. The emphasis here will not only be on the geomorphology, but also the underlying geology that establishes the template and foundation upon which surface processes have etched out the familiar Appalachian landscape. The first day focuses on new and published work that highlights Cenozoic sedimentary deposits, soils, paleosols, and geomorphic markers (terraces and knickpoints) that are being used to reconstruct a late Cenozoic history of erosion, deposition, climate change, and active tectonics. The second day is similarly devoted to new and published work documenting the fluvial geomorphic response to active tectonics in the Central Virginia seismic zone (CVSZ), site of the 2011 M 5.8 Mineral earthquake and the integrated record of Appalachian erosion preserved on the Coastal Plain. The trip concludes on Day 3, joining the Kirk Bryan Field Trip at Great Falls, Virginia/ Maryland, to explore and discuss the dramatic processes of base-level fall, fluvial incision, and knickpoint retreat.

  13. Pathways of geomorphic evolution of sandstone escarpments in the Góry Stołowe tableland (SW Poland) - Insights from LiDAR-based high-resolution DEM

    NASA Astrophysics Data System (ADS)

    Migoń, Piotr; Kasprzak, Marek

    2016-05-01

    The tableland of the Stołowe Mountains (SW Poland), with its prominent mesas and sandstone-capped escarpments, belongs to the most spectacular geomorphic landscapes of Central Europe. While the gross morphological features of the area have long been recognized, the evolutionary pathways of densely forested and poorly accessible escarpment slopes remained poorly understood. In this paper we use LiDAR data to shed a new light on landform inventories within the escarpments, their spatial patterns and, using process-from-form reasoning, on the longer-term evolution of the escarpments. Four sites, two on each major escarpment, have been subject to detailed analysis which involved examination of shaded relief, slope, plan and profile curvature and topographic wetness index. In each case, the 1 × 1 m model was used, while for the most complex site at Mt. Szczeliniec Wielki the results were compared with the 5 × 5 m model to check the impact of model resolution on geomorphic interpretation. Despite some loss of information involved in model re-interpolation to the coarser scale, the main features of escarpment morphology could still be recognized. On the other hand, automatic landform classification based on the calculation of Topographic Position Index from the 10 × 10 m model and performed for the entire tableland failed to reveal differences between various sections of the escarpments, detectable on finer models. The analysis of spatial patterns of minor landforms within the escarpments, identified on LiDAR-derived models shows that no single pathway of escarpment evolution exists. Both the upper slopes (in sandstone caprock) and the mid-slopes (in weaker rocks) show signs of instability and these are not necessarily coupled. Large-scale caprock failures do occur but seem rare and localized. Sandstone free faces are rather subject to continuous slow retreat by detachment of individual joint-bound blocks. Another zone of instability occurs well below the caprock and the dominant processes are shallow landslips initiated within weak, deformable rocks.

  14. Scarp development in the Valles Marineris

    NASA Technical Reports Server (NTRS)

    Patton, P. C.

    1984-01-01

    The scarps along the margins of the Vales Marineris display a complex assemblage of forms that have been related to a variety of mass wasting and sapping processes. These scarp segments display variations in the degree of development of spur and gully topography, the number and density of apparent sapping features and the frequency of large scale landslides which reflect the age, geology and processes of slope development throughout the Valles Marineris. This regional analysis should provide more information on the geologic evolution of the Valles Marineris as well as new insight into the relative importance of different processes in the development of the scarp forms. In order to evaluate the regional variation in scarp form and the influence of time and structure on scarp development geomorphic mapping and morphometric analysis of geologically distinct regions of Valles Marineris is being undertaken.

  15. Quantifying the scale- and process- dependent reorganization of landscape under climatic change: inferences from an experimental landscape

    NASA Astrophysics Data System (ADS)

    Singh, A.; Tejedor, A.; Grimaud, J. L.; Zaliapin, I. V.; Foufoula-Georgiou, E.

    2016-12-01

    Knowledge of the dynamics of evolving landscapes in terms of their geomorphic and topologic re-organization in response to changing climatic or tectonic forcing is of scientific and practical interest. Although several studies have addressed the large-scale response (e.g., change in mean relief), studies on the smaller-scale drainage pattern re-organization and quantification of landscape vulnerability to the timing, magnitude, and frequency of changing forcing are lacking. The reason is the absence of data for such an analysis. To that goal, a series of controlled laboratory experiments were conducted at the St. Anthony Falls laboratory of the University of Minnesota to study the effect of changing precipitation patterns on landscape evolution at the short and long-time scales. High resolution digital elevation (DEM) both in space and time were measured for a range of rainfall patterns and uplift rates. Results from our study show a distinct signature of the precipitation increase on the probabilistic and geometrical structure of landscape features, evident in widening and deepening of channels and valleys, change in drainage patterns within sub-basins and change in the space-time structure of erosional and depositional events. A spatially explicit analysis of the locus of these erosional and depositional events suggests a regime shift, during the onset of the transient state, from supply-limited to transport-limited fluvial channels. We document a characteristic scale-dependent signature of erosion at steady state (which we term the "E50-area curve") and show that during reorganization, its evolving shape reflects process and scales of geomorphic change. Finally, we document changes in the longitudinal river profiles, in response to increased precipitation rate, with the formation of abrupt gradient (knickpoints) that migrate upstream as time proceeds.

  16. Andrean examples of mega-geomorphology themes

    NASA Technical Reports Server (NTRS)

    Bloom, A. L.

    1985-01-01

    Geomorphic (or physiographic) provinces have been a well known and useful method of regional landform classification for a century. Every earth scientist will recognize a phrase such as Appalachian Plateau or Southern Rocky Mountains as defining a discrete region of consistent geologic structure that has experienced a similar interval of erosion by a similar process or set of processes. The geomorphic provinces formalized in the United States by Fenneman in the 1920's continue to be highly satisfactory even though some boundaries were only vaguely drawn. Mosaics of LANDSAT images illustrate better than any earlier maps the validity and coherence of Fenneman's provinces. The concept of geomorphic provinces has been used subconsciously or intuitively, to describe the relief of the ocean floor and the topography of the Moon and other planets.

  17. Riparian vegetation recovery patterns following stream channelization: a geomorphic perspective

    USGS Publications Warehouse

    Hupp, C.R.

    1992-01-01

    Hundreds of kilometres of West Tennessee streams have been channelized since the turn of the century. After a stream is straightened, dredged, or cleared, basin-wide ecologic, hydrologic, and geomorphic processes bring about an integrated, characteristic recovery sequence. The rapid pace of channel responses to channelization provides an opportunity to document and interpret vegetation recovery patterns relative to otherwise long-term, concomitant evolution of river geomorphology. The linkage of channel bed aggradation, woody vegetation establishment, and bank accretion all lead to recovery of the channel. Pioneer species are hardy and fast growing, and can tolerate moderate amounts of slope instability and sediment deposition; these species include river birch (Betula nigra), black willow (Salix nigra), boxelder (Acer negundo), and silver maple (Acer saccharinum). High stem densities and root-mass development appear to enhance bank stability. Tree-ring analyses suggest that on average 65 yr may be required for recovery after channelization. -from Author

  18. Establishing a Geologic Baseline Of Cape Canaveral's Natural Landscape: Black Point Drive

    NASA Technical Reports Server (NTRS)

    Parkinson, Randall W.

    2001-01-01

    The goal of this project is to identify the process responsible for the formation of geomorphic features in the Black Point Drive area of Merritt Island National Wildlife Refuge/Kennedy Space Center (MINWR/KSC), northwest Cape Canaveral. This study confirms the principal landscape components (geomorphology) of Black Point Drive reflect interaction between surficial sediments deposited in association with late-Quaternary sea-level highstands and the chemical evolution of late-Cenozoic subsurface limestone formations. The Black Point Drive landscape consists of an undulatory mesic terrain which dips westward into myriad circular and channel-like depression marshes and lakes. This geomorphic gradient may reflect: (1) spatial distinctions in the elevation, character or age of buried (pre-Miocene) limestone formations, (2) dissolution history of late-Quaternary coquina and/or (3) thickness of unconsolidated surface sediment. More detailed evaluation of subsurface data will be necessary before this uncertainty can be resolved.

  19. Establishing A Geologic Baseline of Cape Canaveral''s Natural Landscape: Black Point Drive

    NASA Technical Reports Server (NTRS)

    Parkinson, Randall W.

    2002-01-01

    The goal of this project is to identify the process responsible for the formation of geomorphic features in the Black Point Drive area of Merritt Island National Wildlife Refuge/Kennedy Space Center (MINWR/KSC), northwest Cape Canaveral. This study confirms the principal landscape components (geomorphology) of Black Point Drive reflect interaction between surficial sediments deposited in association with late-Quaternary sea-level highstands and the chemical evolution of late-Cenozoic sub-surface limestone formations. The Black Point Drive landscape consists of an undulatory mesic terrain which dips westward into myriad circular and channel-like depression marshes and lakes. This geomorphic gradient may reflect: (1) spatial distinctions in the elevation, character or age of buried (pre-Miocene) limestone formations, (2) dissolution history of late-Quaternary coquina and/or (3) thickness of unconsolidated surface sediment. More detailed evaluation of subsurface data will be necessary before this uncertain0 can be resolved.

  20. Influences of Relative Sea-Level Rise and Mississippi River Delta Plain Evolution on the Holocene Middle Amite River, Southeastern Louisiana

    USGS Publications Warehouse

    Autin, W.J.

    1993-01-01

    The Holocene geomorphic history of southeastern Louisiana's middle Amite River is recorded in the stratigraphy of three alloformations, identified in decreasing age as the Watson (WAT), Denham Springs (DS), and Magnolia Bridge (MAG). The WAT meander belt formed by at least 9000 yr B.P., when sea level was lower and the Amite River was tributary to a larger ancestral drainage basin. The DS became an active meander belt by at least 3000 yr B.P., in response to relative sea-level rise and eastward progradation of the Mississippi River delta plain. The MAG developed its meander belt, in part, during the European settlement of the drainage basin, and is now attempting to adjust to modern anthropogenic influences. Geomorphic influences on the middle Amite River floodplain have temporal and spatial components that induce regional- and local-scale effects. Regional extrinsic influences caused meander belt avulsion that produced alloformations. However, local influences produced intrinsic geomorphic thresholds that modified channel morphology within a meander belt but did not induce alloformation development. Base-level influences of the relative sea-level rise and the Mississippi River delta plain were so dominant that the effects of possible climate change were not recognized in the Holocene Amite River system.

  1. Bend-scale geomorphic classification and assessment of the Lower Missouri River from Sioux City, Iowa, to the Mississippi River for application to pallid sturgeon management

    USGS Publications Warehouse

    Jacobson, Robert B.; Colvin, Michael E.; Bulliner, Edward A.; Pickard, Darcy; Elliott, Caroline M.

    2018-06-07

    Management actions intended to increase growth and survival of pallid sturgeon (Scaphirhynchus albus) age-0 larvae on the Lower Missouri River require a comprehensive understanding of the geomorphic habitat template of the river. The study described here had two objectives relating to where channel-reconfiguration projects should be located to optimize effectiveness. The first objective was to develop a bend-scale (that is, at the scale of individual bends, defined as “cross-over to cross-over”) geomorphic classification of the Lower Missouri River to help in the design of monitoring and evaluation of such projects. The second objective was to explore whether geomorphic variables could provide insight into varying capacities of bends to intercept drifting larvae. The bend-scale classification was based on geomorphic and engineering variables for 257 bends from Sioux City, Iowa, to the confluence with the Mississippi River near St. Louis, Missouri. We used k-means clustering to identify groupings of bends that shared the same characteristics. Separate 3-, 4-, and 6-cluster classifications were developed and mapped. The three classifications are nested in a hierarchical structure. We also explored capacities of bends to intercept larvae through evaluation of linear models that predicted persistent sand area or catch per unit effort (CPUE) of age-0 sturgeon as a function of the same geomorphic variables used in the classification. All highly ranked models that predict persistent sand area contained mean channel width and standard deviation of channel width as significant variables. Some top-ranked models also included contributions of channel sinuosity and density of navigation structures. The sand-area prediction models have r-squared values of 0.648–0.674. In contrast, the highest-ranking CPUE models have r-squared values of 0.011–0.170, indicating much more uncertainty for the biological response variable. Whereas the persistent sand model documents that physical processes of transport and accumulation are systematic and predictable, the poor performance of the CPUE models indicate that additional processes will need to be considered to predict biological transport and accumulation.

  2. Structural evolution of the east Sierra Valley system (Owens Valley and vicinity), California: a geologic and geophysical synthesis

    USGS Publications Warehouse

    Stevens, Calvin H.; Stone, Paul; Blakely, Richard J.

    2013-01-01

    The tectonically active East Sierra Valley System (ESVS), which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm), which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3-3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.

  3. Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Papers from the conference are presented, and the topics covered include the following: planetary geology, meteorites, planetary composition, meteoritic composition, planetary craters, lunar craters, meteorite craters, petrology, petrography, volcanology, planetary crusts, geochronology, geomorphism, mineralogy, lithology, planetary atmospheres, impact melts, K-T Boundary Layer, volcanoes, planetary evolution, tectonics, planetary mapping, asteroids, comets, lunar soil, lunar rocks, lunar geology, metamorphism, chemical composition, meteorite craters, planetary mantles, and space exploration.

  4. Morphotectonic evolution of Maviboğaz canyon and Suğla polje, SW central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Doğan, Uğur; Koçyiğit, Ali

    2018-04-01

    This study focuses on the morphotectonic evolutionary history of two significant geomorphic features, Suğla structural-border polje and Maviboğaz canyon, located within the Suğla-Seydişehir, Akören-Kavakköy, and Bozkır grabens in the central Taurides. Data were obtained by detailed field mapping of faults, rocks, and geomorphic features. Three phases of tectonic deformation were determined. The three erosional surfaces developed, especially in the form of tectonically controlled steps, during Oligocene-early Miocene, middle Miocene, and late Miocene-early Pliocene, sequentially. Southwest- to northeast-trending karstified hanging paleovalleys are present on the high erosional surfaces, which have been attributed to the end of early Miocene and late Miocene. Faulting-induced tectonic movements enabled the formation of Suğla-Seydişehir paleograben in early Miocene. We suggest that the Maviboğaz canyon was formed by captures at the beginning of late Miocene and late Pliocene and by incision in Late Pliocene-Quaternary, depending on the headward erosion of Çarşamba River. Starting from the beginning of Quaternary, a tensional neotectonic regime became prominent and then a series of modern graben-horst structures formed along the reactivated older grabens. One of these is the Suğla-Seydişehir reactivated graben. Suğla structural-border polje developed within the graben. Total visible tectonic subsidence of the polje is 134 m. Underground capture of surface water occurred on the southern slopes of the graben. Waters of Suğla polje are transported intermittently into Konya basin on the surface and into the Mediterranean basin via natural swallow holes. Beach deposits, water marks, cliffs, and notches marking the late Pleistocene lake level (10 m) and two perched corrosion surfaces ( 50 and 22 m) were detected around the polje.

  5. Fluvial Geomorphology and River Restoration: Uneasy Allies (Invited)

    NASA Astrophysics Data System (ADS)

    Kondolf, G. M.

    2009-12-01

    A growing body of literature demonstrates that river restoration based on understanding of geomorphic and ecological process is more likely to be sustainable than form-based approaches. In the early days of river ‘restoration’ in North America, most projects involved bank stabilization, habitat structure placement, or construction of rocked meandering channels, at odds with restoration of the dynamic processes we now see as fundamental to effective, sustainable restoration. Recent years have seen a growing body of restoration programs emphasizing restoration of connectivity and geomorphic process. This evolution has been reflected in publications, from the form-based approach advocated in the early 1990s by an NRC panel (which did not include a geomorphologist) to more recent works by interdisciplinary panels emphasizing process restoration. Large-scale river restoration came later to Europe, motivated by the EU Water Framework Directive (2000) requirements that member states implement measures to improve ecological status of degraded rivers. Interestingly, European approaches to restoration have often reflected a more nuanced understanding of process, including deliberate recreation of unstable braided channels, removal of bank protection, and reconnecting floodplains. In part this may reflect a reaction to the more thorough post-war channelization of rivers in western Europe. In part it may also reflect a greater influence of academic and research laboratories upon practitioners than in the US, where a strong anti-intellectual strain, cultural preference for easy fixes, and reluctance to conduct objective post-project assessments have contributed to the adoption of form-based approaches by many public agencies.

  6. Cryomagmatism in the outer solar system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kargel, J.S.

    1990-01-01

    Assemblages of cryovolcanic, tectonic, and impact structures form varied landscapes quite alien in their collective expression. Many variables can affect the cryovolcanic style of a satellite but none more so than cryolava composition. The compositional variable is examined in considerable detail. Existing knowledge of phase equilibria and physical properties of cosmochemically relevant unary, binary, and multi-component chemical systems are summarized. Where published knowledge was found lacking, measurements of the physical chemistry of volatile mixtures are presented. Cryovolcanic landscapes are briefly toured, and knowledge of the physical chemistry of volatile mixtures is applied to problems of cryovolcanological interest. Aqueous cryolavas maymore » range in composition from salt-water brines to cryogenic ammonia-water-rich multi-components solutions possibly involving methanol, ammonium sulfide, alkali chlorides, and many other potential components. Cryomagmatic distillation can greatly accentuate the importance of trace and minor constituents of icy satellites. The viscosities, densities, and other physical properties of these liquids vary considerably and depend sensitively on their exact compositions. These properties affect everything from cryovolcanic eruptive styles and landforms, to the way cryovolcanic crusts respond to tectonic stress. It is believed that the compositional variable is directly or indirectly implicated in a wide varity of geomorphic aspects of contrast among the icy satellites. Thus, even though as yet any specific morphology can be attributed to a specific composition, there appears to be a powerful link between composition of the ices originally accreted by a satellite and its subsequent interior evolution and exterior geomorphic appearance.« less

  7. River Sensitivity and Catchment Connectivity: Key Controls on Geomorphic Response and Effectiveness

    NASA Astrophysics Data System (ADS)

    Lisenby, P.; Fryirs, K.; Croke, J.

    2016-12-01

    The sensitivity of river channels to adjustment and the dynamics of sediment connectivity along a channel network are key controls on the capacity (ability) for a river system to adjust, i.e. the severity, distribution, and type of geomorphic response to disturbance events. In turn, the cumulative impact of geomorphic responses compared with event magnitude will determine the geomorphic effectiveness of a single disturbance event. River sensitivity and sediment connectivity can change significantly over space and time, and vary with changes in internal factors such as channel type and geomorphic landform and external factors such as event sequencing and lithological controls. Correspondingly, the capacity for a geomorphic system to respond to disturbance events will also vary, so that geomorphic effectiveness is not definitively characterized by a static relationship between event magnitude and geomorphic response, but rather is a dynamic comparison between geomorphic response and an actively changing capacity for geomorphic adjustment. Herein, we use the Lockyer Valley, Queensland as a case study to illustrate the variability of river sensitivity and sediment connectivity. We relate this variability to the potential and capacity for geomorphic channel response. We find that the sensitivity to and capacity for geomorphic adjustment varies significantly with channel morphometry and valley position. Additionally, the nature of bedload sediment connectivity changes with the distribution of geomorphic landforms and channel weirs that can impede sediment transference through the system. This variability of river sensitivity and sediment connectivity will control the nature of geomorphic response to disturbance events within the Lockyer Valley. Ultimately, determinations of geomorphic effectiveness for disturbance events will depend on comparisons of their geomorphic impacts with the capacity of the Lockyer geomorphic system to respond.

  8. Structural and lithographic study of northern coast ranges and Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The analysis of the ERTS data has disclosed three potentially important linear systems within the northern coast ranges and Sacramento Valley, California. A preliminary geomorphic analysis of the northern coast ranges discloses that the geomorphic characteristics of the area underlain by the Coastal system are much different from those associated with the Central system in the core of the Coast Ranges. Within the Coastal system, or Coastal belt, the drainage networks are moderately fine-textured and have moderately high density. The area associated with the Central system seems to be underlain by an heterogeneous assemblage of rock types which vary in their resistance to erosion. The boundary between the Coastal and Central geomorphic regions is poorly defined and, in a few places, the two regions can be separated only approximately.

  9. A geomorphological assessments of the distribution of sediment sinks along the lower Amazon River

    NASA Astrophysics Data System (ADS)

    Park, E.; Latrubesse, E. M.

    2017-12-01

    Floodplain sediment storage budget is examined along the 1,000 km reach of the lower Amazon River based on extensive sets of remote sensing data and field measurements. Incorporating the washload discharges at gauge stations at the main channel and major tributaries, we analyzed the roles of vast floodplain on the Amazon River seasonal variability in sediment discharges. Annual washload accumulation rate on floodplain along the reach in between Manacapuru and Obidos of is estimated to be 79 Mt over inter-annual average. Period that the net loss over to the floodplain of washload coincide with discharge rising phase of the Amazon River at Obidos, when the river water level rises to make hydrologic connections to floodplain. Only during the early falling phase (July-August), 3.6 Mt of washload net gain occurred in a year, which was less than 5% of the annual net loss to the floodplain. To assess the spatial distribution of sediment sinks along the lower Amazon, we incorporated various hydro-geomorphic factors regarding floodplain geomorphic styles and morphometric parameters, such floodplain width, levee heights, water-saturated area, suspended sediment distribution over floodplain and distribution of impeded floodplain. Impeded floodplain that contains numerous large rounded lakes is the definition of active sediment sinks along the lower Amazon, which seasonally stores most of the water and traps sediment from the river. The results of these hydro-geomorphic factors collectively indicate that the extent and magnitudes of sediment sinks becomes larger downstream (from Manacapuru to Monte Alegre), which is proportionally related to the development of the water-saturated floodplain. This indicates the nonlinear geomorphic evolution of the Amazon floodplain through its longitudinal profile since the late Holocene that downstream reaches are still to be infilled with sediments (incomplete floodplain) thus acting as sediment sinks.

  10. Geomorphic and habitat response to a large-dam removal in a Mediterranean river

    NASA Astrophysics Data System (ADS)

    Harrison, L.; East, A. E.; Smith, D. P.; Bond, R.; Logan, J. B.; Nicol, C.; Williams, T.; Boughton, D. A.; Chow, K.

    2017-12-01

    The presence of large dams has fundamentally altered physical and biological processes in riverine ecosystems, and dam removal is becoming more common as a river restoration strategy. We used a before-after-control-impact study design to investigate the geomorphic and habitat response to removal of 32-m-high San Clemente Dam on the Carmel River, CA. The project represents the first major dam removal in a Mediterranean river and is also unique among large dam removals in that most reservoir sediment was sequestered in place. We found that in the first year post-removal, a sediment pulse migrated 3.5 km downstream, filling pools and the interstitial pore spaces of gravels with sand. These sedimentary and topographic changes initially reduced the overall quality of steelhead (O. mykiss) spawning and rearing habitat in impacted reaches. Over the second winter after dam removal, a sequence of high flows flushed large volumes of sand from pools and mobilized the river bed throughout much of the active channel. The floods substantially altered fluvial evolution in the upper part of the reservoir, promoting new avulsion and the subsequent delivery of gravel and large wood to below dam reaches. These geomorphic processes increased the availability of spawning-sized gravel and enhanced channel complexity in reaches within several km of the former dam, which should improve habitat for multiple life stages of steelhead. Results indicate that when most reservoir sediment remains impounded, high flows become more important drivers of geomorphic and habitat change than dam removal alone. In such cases, the rates at which biophysical processes are reestablished will depend largely on post-dam removal flow sequencing and the upstream supply of sediment and large wood.

  11. Network Structure as a Modulator of Disturbance Impacts in Streams

    NASA Astrophysics Data System (ADS)

    Warner, S.; Tullos, D. D.

    2017-12-01

    This study examines how river network structure affects the propagation of geomorphic and anthropogenic disturbances through streams. Geomorphic processes such as debris flows can alter channel morphology and modify habitat for aquatic biota. Anthropogenic disturbances such as road construction can interact with the geomorphology and hydrology of forested watersheds to change sediment and water inputs to streams. It was hypothesized that the network structure of streams within forested watersheds would influence the location and magnitude of the impacts of debris flows and road construction on sediment size and channel width. Longitudinal surveys were conducted every 50 meters for 11 kilometers of third-to-fifth order streams in the H.J. Andrews Experimental Forest in the Western Cascade Range of Oregon. Particle counts and channel geometry measurements were collected to characterize the geomorphic impacts of road crossings and debris flows as disturbances. Sediment size distributions and width measurements were plotted against the distance of survey locations through the network to identify variations in longitudinal trends of channel characteristics. Thresholds for the background variation in sediment size and channel width, based on the standard deviations of sample points, were developed for sampled stream segments characterized by location as well as geomorphic and land use history. Survey locations were classified as "disturbed" when they deviated beyond the reference thresholds in expected sediment sizes and channel widths, as well as flow-connected proximity to debris flows and road crossings. River network structure was quantified by drainage density and centrality of nodes upstream of survey locations. Drainage density and node centrality were compared between survey locations with similar channel characteristic classifications. Cluster analysis was used to assess the significance of survey location, proximity of survey location to debris flows and road crossings, drainage density and node centrality in predicting sediment size and channel width classifications for locations within the watershed. Results contribute to the understanding of susceptibility and responses of streams supporting critical habitat for aquatic species to debris flows and forest road disturbances.

  12. Supervolcanoes Within an Ancient Volcanic Province in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Michalski, Joseph. R.; Bleacher, Jacob E.

    2014-01-01

    Several irregularly shaped craters located within Arabia Terra, Mars represent a new type of highland volcanic construct and together constitute a previously unrecognized martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae display a range of geomorphic features related to structural collapse, effusive volcanism, and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulfur and erupted fine-grained pyroclastics from these calderas likely fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. Discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  13. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars.

    PubMed

    Michalski, Joseph R; Bleacher, Jacob E

    2013-10-03

    Several irregularly shaped craters located within Arabia Terra, Mars, represent a new type of highland volcanic construct and together constitute a previously unrecognized Martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae possess a range of geomorphic features related to structural collapse, effusive volcanism and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulphur and erupted fine-grained pyroclastics from these calderas probably fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. The discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  14. Cultural Resources Management Plan: Coralville Lake, Iowa.

    DTIC Science & Technology

    1987-05-01

    7 iAlf now* E-* ILA’AUKEE -.WlSCCqSIN -. THE ARCHAEOLOGY OF CORALVILLE LAKE, IOWA - FINAL CULTURAL RESOURCES MANAGEMENT PLAN Prepared By...2004 In Fulfillment of: Contract No. DACW25-86-C-0036 May 1987 (A -P. 7V. V T This report entitled, "The Archaeology of Coralville Lake, Iowa - Final...various studies include survey, testing, and geomorphic investigations. "The Archaeology of Coralville Lake, Iowa - Landscape Evolution" presents the

  15. Late Quaternary stream piracy and strath terrace formation along the Belle Fourche and lower Cheyenne Rivers, South Dakota and Wyoming

    USGS Publications Warehouse

    Stamm, John F.; Hendricks, Robert R.; Sawyer, J. Foster; Mahan, Shannon; Zaprowski, Brent J.; Geibel, Nicholas M.; Azzolini, David C.

    2013-01-01

    Stream piracy substantially affected the geomorphic evolution of the Missouri River watershed and drainages within, including the Little Missouri, Cheyenne, Belle Fourche, Bad, and White Rivers. The ancestral Cheyenne River eroded headward in an annular pattern around the eastern and southern Black Hills and pirated the headwaters of the ancestral Bad and White Rivers after ~ 660 ka. The headwaters of the ancestral Little Missouri River were pirated by the ancestral Belle Fourche River, a tributary to the Cheyenne River that currently drains much of the northern Black Hills. Optically stimulated luminescence (OSL) dating techniques were used to estimate the timing of this piracy event at ~ 22–21 ka. The geomorphic evolution of the Cheyenne and Belle Fourche Rivers is also expressed by regionally recognized strath terraces that include (from oldest to youngest) the Sturgis, Bear Butte, and Farmingdale terraces. Radiocarbon and OSL dates from fluvial deposits on these terraces indicate incision to the level of the Bear Butte terrace by ~ 63 ka, incision to the level of the Farmingdale terrace at ~ 40 ka, and incision to the level of the modern channel after ~ 12–9 ka. Similar dates of terrace incision have been reported for the Laramie and Wind River Ranges. Hypothesized causes of incision are the onset of colder climate during the middle Wisconsinan and the transition to the full-glacial climate of the late-Wisconsinan/Pinedale glaciation. Incision during the Holocene of the lower Cheyenne River is as much as ~ 80 m and is 3 to 4 times the magnitude of incision at ~ 63 ka and ~ 40 ka. The magnitude of incision during the Holocene might be due to a combined effect of three geomorphic processes acting in concert: glacial isostatic rebound in lower reaches (~ 40 m), a change from glacial to interglacial climate, and adjustments to increased watershed area resulting from piracy of the ancestral headwaters of the Little Missouri River.

  16. Human alterations, dynamic equilibrium, and riparian ecosystem responses along selected rivers in Tuscany, Italy (Invited)

    NASA Astrophysics Data System (ADS)

    Hupp, C. R.; Rinaldi, M.

    2010-12-01

    Many, if not most, streams have been mildly to severely affected by human disturbance, which complicates efforts to understand riparian ecosystems. Mediterranean regions have a long history of human influences including: dams, stream channelization, mining of sediment, and levee /canal construction. Typically these alterations reduce the ecosystem services that functioning floodplains provide and may negatively impact the natural ecology of floodplains through reductions in suitable habitats, biodiversity, and nutrient cycling. Additionally, human alterations typically shift affected streams away from a state of natural dynamic equilibrium, where net sediment deposition is approximately in balance with net erosion. Lack of equilibrium typically affects the degree to which floodplain ecosystems are connected to streamflow regime. Low connectivity, usually from human- or climate-induced incision, may result in reduced flow on floodplains and lowered water tables. High connectivity may result in severe sediment deposition. Connectivity has a direct impact on vegetation communities. Riparian vegetation distribution patterns and diversity relative to various fluvial geomorphic channel patterns, landforms, and processes are described and interpreted for selected rivers of Tuscany, Central Italy; with emphasis on channel evolution following human impacts. Multivariate analysis reveals distinct quantitative vegetation patterns related to six fluvial geomorphic surfaces. Analysis of vegetation data also shows distinct associations of plants with adjustment processes related to the stage of channel evolution. Plant distribution patterns coincide with disturbance/landform/soil moisture gradients. Species richness increases from channel bed to terrace and on heterogeneous riparian areas, while species richness decreases from moderate to intense incision and from low to intense narrowing. As a feedback mechanism, woody vegetation in particular may facilitate geomorphic recovery of floodplains by affecting sedimentation dynamics. Identification and understanding of critical fluvial parameters related to floodplain connectivity (e.g. stream gradient, grain-size, and hydrography) and spatial and temporal sediment deposition/erosion process trajectories should facilitate management efforts to retain and/or regain important ecosystem services.

  17. Late Quaternary stream piracy and strath terrace formation along the Belle Fourche and lower Cheyenne Rivers, South Dakota and Wyoming

    NASA Astrophysics Data System (ADS)

    Stamm, John F.; Hendricks, Robert R.; Sawyer, J. Foster; Mahan, Shannon A.; Zaprowski, Brent J.; Geibel, Nicholas M.; Azzolini, David C.

    2013-09-01

    Stream piracy substantially affected the geomorphic evolution of the Missouri River watershed and drainages within, including the Little Missouri, Cheyenne, Belle Fourche, Bad, and White Rivers. The ancestral Cheyenne River eroded headward in an annular pattern around the eastern and southern Black Hills and pirated the headwaters of the ancestral Bad and White Rivers after ~ 660 ka. The headwaters of the ancestral Little Missouri River were pirated by the ancestral Belle Fourche River, a tributary to the Cheyenne River that currently drains much of the northern Black Hills. Optically stimulated luminescence (OSL) dating techniques were used to estimate the timing of this piracy event at ~ 22-21 ka. The geomorphic evolution of the Cheyenne and Belle Fourche Rivers is also expressed by regionally recognized strath terraces that include (from oldest to youngest) the Sturgis, Bear Butte, and Farmingdale terraces. Radiocarbon and OSL dates from fluvial deposits on these terraces indicate incision to the level of the Bear Butte terrace by ~ 63 ka, incision to the level of the Farmingdale terrace at ~ 40 ka, and incision to the level of the modern channel after ~ 12-9 ka. Similar dates of terrace incision have been reported for the Laramie and Wind River Ranges. Hypothesized causes of incision are the onset of colder climate during the middle Wisconsinan and the transition to the full-glacial climate of the late-Wisconsinan/Pinedale glaciation. Incision during the Holocene of the lower Cheyenne River is as much as ~ 80 m and is 3 to 4 times the magnitude of incision at ~ 63 ka and ~ 40 ka. The magnitude of incision during the Holocene might be due to a combined effect of three geomorphic processes acting in concert: glacial isostatic rebound in lower reaches (~ 40 m), a change from glacial to interglacial climate, and adjustments to increased watershed area resulting from piracy of the ancestral headwaters of the Little Missouri River.

  18. Perfection and complexity in the lower Brazos River

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2007-11-01

    The "perfect landscape" concept is based on the notion that any specific geomorphic system represents the combined, interacting effects of a set of generally applicable global laws and a set of geographically and historically contingent local controls. Because the joint probability of any specific combination of local and global controls is low, and the local controls are inherently idiosyncratic, the probability of existence of any given landscape is vanishingly small. A perfect landscape approach to geomorphic complexity views landscapes as circumstantial, contingent outcomes of deterministic laws operating in a specific environmental and historical context. Thus, explaining evolution of complex landscapes requires the integration of global and local approaches. Because perfection in this sense is the most important and pervasive form of complexity, the study of geomorphic complexity is not restricted to nonlinear dynamics, self-organization, or any other aspects of complexity theory. Beyond what can be achieved via complexity theory, the details of historical and geographic contexts must be addressed. One way to approach this is via synoptic analyses, where the relevant global laws are applied in specific situational contexts. A study of non-acute tributary junctions in the lower Brazos River, Texas illustrates this strategy. The application of generalizations about tributary junction angles, and of relevant theories, does not explain the unexpectedly high occurrence or the specific instances of barbed or straight junctions in the study area. At least five different causes for the development of straight or obtuse junction angles are evident in the lower Brazos. The dominant mechanism, however, is associated with river bank erosion and lateral channel migration which encroaches on upstream-oriented reaches of meandering tributaries. Because the tributaries are generally strongly incised in response to Holocene incision of the Brazos, the junctions are not readily reoriented to the expected acute angle. The findings are interpreted in the context of nonlinear divergent evolution, geographical and historical contingency, synoptic frameworks for generalizing results, and applicability of the dominant processes concept in geomorphology.

  19. The geomorphic legacy of water and sediment control structures in a semiarid rangeland watershed

    USDA-ARS?s Scientific Manuscript database

    An inventory of water and sediment control structures remnant of historic cattle ranching was assembled for the Buenos Aires National Wildlife Refuge (BANWR) in southern Arizona, USA. An assessment of structural condition based on aerial imagery identified headcut initiation and channel incision as...

  20. Coastal system mapping: a new approach to formalising and conceptualising the connectivity of large-scale coastal systems

    NASA Astrophysics Data System (ADS)

    French, J.; Burningham, H.; Whitehouse, R.

    2010-12-01

    The concept of the coastal sediment cell has proved invaluable as a basis for estimating sediment budgets and as a framework for coastal management. However, whilst coastal sediment cells are readily identified on compartmentalised coastlines dominated by beach-grade material, the cell concept is less suited to handling broader linkages between estuarine, coastal and offshore systems, and for incorporating longer-range suspended sediment transport. We present a new approach to the conceptualisation of large-scale coastal geomorphic systems based on a hierarchical classification of component landforms and management interventions and mapping of the interactions between them. Coastal system mapping is founded on a classification that identifies high-level landform features, low-level landform elements and engineering interventions. Geomorphic features define the large-scale organisation of a system and include landforms that define gross coastal configuration (e.g. headland, bay) as well as fluvial, estuarine and offshore sub-systems that exchange sediment with and influence the open coast. Detailed system structure is mapped out with reference to a larger set of geomorphic elements (e.g. cliff, dune, beach ridge). Element-element interactions define cross-shore linkages (conceptualised as hinterland, backshore and foreshore zones) and alongshore system structure. Both structural and non-structural engineering interventions are also represented at this level. Element-level mapping is rationalised to represent alongshore variation using as few elements as possible. System linkages include both sediment transfer pathways and influences not associated with direct mass transfer (e.g. effect of a jetty at an inlet). A formal procedure for capturing and graphically representing coastal system structure has been developed around free concept mapping software, CmapTools (http://cmap.ihmc.us). Appended meta-data allow geographic coordinates, data, images and literature pertaining to specific locations to be embedded in system maps. Exported maps can be analysed separately to quantify abundance of system components and their scales of interaction. Our approach is demonstrated for different scales and geomorphic contexts in the UK, including Alnmouth Bay (NE England; 15km), Lowestoft to Felixstowe (E England; 73km) and Cardigan Bay (Wales; 267km). Aerial imagery provides the primary basis for identifying features and elements and likely modes of interaction. This interpretation is then checked against relevant research literature and site data. Coastal system mapping is a kind of knowledge formalisation that generalises disparate sources of information (‘plain data’) into usable knowledge. Consensus-derived system maps are highly effective as a catalyst for structured discussion of geomorphic system behaviour and its implications for coastal management. They also function as a repository for results from quantitative analyses and modelling.

  1. Kasei Vallis of Mars: Dating the Interplay of Tectonics and Geomorphology

    NASA Technical Reports Server (NTRS)

    Wise, D. U.

    1985-01-01

    Crater density age dates on more than 250 small geomorphic surfaces in the Kasei Region of Mars show clusterings indicative of times of peak geomorphic and tectonic activity. Kasei Vallis is part of a 300 km wide channel system breaching a N-S trending ancient basement high (+50,000 crater age) separating the Chryse Basin from the Tharsis Volcanic Province of Mars. The basement high was covered by a least 3 groups of probable volcanic deposits. Major regional fracturing took place at age 4,000 to 5,000 and was immediately followed by deposition of regional volcanics of the Fesenkov Plains (age 3,000 to 4,200). Younger clusterings of dates in the 900 to 1,500 and 500 to 700 range represent only minor modification of the basic tectonic geomorphic landform. The data suggest that Kasei gap is a structurally controlled breach of a buried ridge by a rather brief episode of fluvial activity.

  2. Influences of geomorphology and geology on alpine treeline in the American West - More important than climatic influences?

    USGS Publications Warehouse

    Butler, D.R.; Malanson, G.P.; Walsh, S.J.; Fagre, D.B.

    2007-01-01

    The spatial distribution and pattern of alpine treeline in the American West reflect the overarching influences of geological history, lithology and structure, and geomorphic processes and landforms, and geologic and geomorphic factors—both forms and processes—can control the spatiotemporal response of the ecotone to climate change. These influences occur at spatial scales ranging from the continental scale to fine scale processes and landforms at the slope scale. Past geomorphic influences, particularly Pleistocene glaciation, have also left their impact on treeline, and treelines across the west are still adjusting to post-Pleistocene conditions within Pleistocene-created landforms. Current fine scale processes include solifluction and changes on relict solifluction and digging by animals. These processes should be examined in detail in future studies to facilitate a better understanding of where individual tree seedlings become established as a primary response of the ecotone to climate change.

  3. What are we monitoring and why? Using geomorphic principles to frame eco-hydrological assessments of river condition.

    PubMed

    Brierley, Gary; Reid, Helen; Fryirs, Kirstie; Trahan, Nadine

    2010-04-01

    Monitoring and assessment are integral components in adaptive management programmes that strive to improve the condition of river systems. Unfortunately, these procedures are generally applied with an emphasis upon biotic attributes and water quality, with limited regard for the geomorphic structure, function and evolutionary trajectory of a river system. Geomorphic principles convey an understanding of the landscape context within which ecohydrologic processes interact. Collectively, geo-eco-hydrologic understanding presents a coherent biophysical template that can be used to frame spatially and temporally rigorous approaches to monitoring that respect the inherent diversity, variability and complexity of any given river system. This understanding aids the development of management programmes that 'work with nature.' Unless an integrative perspective is used to monitor river condition, conservation and rehabilitation plans are unlikely to reach their true potential. (c) 2010 Elsevier B.V. All rights reserved.

  4. New insights into the geodiversity of the southeast Indian Ocean seafloor revealed by Malaysia Airlines flight MH370 search data

    NASA Astrophysics Data System (ADS)

    Picard, K.; Brooke, B. B.; Harris, P. T.; Siwabessy, J. P. W.; Coffin, M. F.; Tran, M.; Spinoccia, M.; Weales, J.; Macmillan-Lawler, M.; Sullivan, J.

    2017-12-01

    A large multibeam echo sounder (MBES) dataset (710, 000 km2, inclusive of transit data) was acquired in the SE Indian Ocean to assist the search for Malaysia Airlines Flight 370 (MH370). Here, we present the results of a geomorphic analysis of this new data and compare with the Global Seafloor Geomorphic Features Map (GSFM) that is based on coarser resolution satellite-derived bathymetry data. The analyses show that abyssal plains and basins are significantly more rugged than their representation in the GSFM, with a 20% increase in the extent of hills and mountains. The new model also reveals four times more seamounts than presented in the GSFM, suggesting a greater number of these features than previously estimated for the broader region and indeed globally. This is important considering the potential ecological significance of these high-relief structures. Analyses of the new data also enabled knolls, fans, valleys, canyons, troughs and holes to be identified, doubling the number of discrete features mapped and revealing the true geodiversity of the deep ocean in this area. This high-resolution mapping of the seafloor also provides new insights into the geological evolution of the region, both in terms of structural, tectonic, and sedimentary processes. For example, sub-parallel ridges extend over approximately 20% of the area mapped and their form and alignment provide valuable insight into Southeast Indian Ridge seafloor spreading processes. Rifting is recorded along the Broken Ridge - Diamantina Escarpment, with rift blocks and well-bedded sedimentary bedrock exposures discernible down to 2,400 m water depth. Ocean floor sedimentary processes are represented in sediment mass transport features, especially along and north of Broken Ridge, and pockmarks (the finest-scale features mapped) south of Diamantina Trench. The new MBES data highlight the complexity of the search area and serve to demonstrate how little we know about the 85-90% of the ocean floor that has not been mapped with this technology. The availability of high-resolution and accurate maps of the ocean floor can clearly provide new insights into the Earth's geological evolution, modern ocean floor processes, and the location of sites that are likely to have relatively high biodiversity.

  5. Long-Term Interactions of Streamflow Generation and River Basin Morphology

    NASA Astrophysics Data System (ADS)

    Huang, X.; Niemann, J.

    2005-12-01

    It is well known that the spatial patterns and dynamics of streamflow generation processes depend on river basin topography, but the impact of streamflow generation processes on the long-term evolution of river basins has not drawn as much attention. Fluvial erosion processes are driven by streamflow, which can be produced by Horton runoff, Dunne runoff, and groundwater discharge. In this analysis, we hypothesize that the dominant streamflow generation process in a basin affects the spatial patterns of fluvial erosion and that the nature of these patterns changes for storm events with differing return periods. Furthermore, we hypothesize that differences in the erosion patterns modify the topography over the long term in a way that promotes and/or inhibits the other streamflow generation mechanisms. In order to test these hypotheses, a detailed hydrologic model is imbedded into an existing landscape evolution model. Precipitation events are simulated with a Poisson process and have random intensities and durations. The precipitation is partitioned between Horton runoff and infiltration to groundwater using a specified infiltration capacity. Groundwater flow is described by a two-dimensional Dupuit equation for a homogeneous, isotropic, unconfined aquifer with an irregular underlying impervious layer. Dunne runoff occurs when precipitation falls on locations where the water table reaches the land surface. The combined hydrologic/geomorphic model is applied to the WE-38 basin, an experimental watershed in Pennsylvania that has substantial available hydrologic data. First, the hydrologic model is calibrated to reproduce the observed streamflow for 1990 using the observed rainfall as the input. Then, the relative roles of Horton runoff, Dunne runoff, and groundwater discharge are controlled by varying the infiltration capacity of the soil. For each infiltration capacity, the hydrologic and geomorphic behavior of the current topography is analyzed and the long-term evolution of the basin is simulated. The results indicate that the topography can be divided into three types of locations (unsaturated, saturated, and intermittently saturated) which control the patterns of streamflow generation for events with different return periods. The results also indicate that the streamflow generation processes can produce different geomorphic effective events at upstream and downstream locations. The model also suggests that a topography dominated by groundwater discharge evolves over a long period of time to a shape that tends to inhibit the development of saturated areas and Dunne runoff.

  6. Advances in Planetary Geology

    NASA Technical Reports Server (NTRS)

    Grant, John A., III; Nedell, Susan S.

    1987-01-01

    The surface of Mars displays a broad range of channel and valley features. There is as great a range in morphology as in scale. Some of the features of Martian geography are examined. Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins are used to trace the geologic evolution of the Margaritifer Sinus Quandrangle. The layered deposits in the Valles Marineris are described in detail and the geologic processes that could have led to their formation are analyzed.

  7. Detrital dating of Asian orogenesis: insights and caveats

    NASA Astrophysics Data System (ADS)

    Burbank, D. W.

    2007-12-01

    Technological advances over the past two decades have facilitated increasingly routine application of single- crystal dating and cosmogenic nuclide dating to studies of orogenic erosion. Both approaches commonly utilize grab samples of detrital sediment, either modern or ancient. Whereas detrital cosmogenic data are typically used to define mean erosion rates for upstream catchments, single-crystal ages are used both to discern provenance and to define lag times: interval between isotopic closure and deposition. Recent results from dating modern fluvial sediments illuminate key concepts that underpin interpretations of results from older strata: the fidelity of the detrital signal, its evolution through an orogen, its relationship to discrete source areas, and its temporal evolution. Despite the increasing availability of dates and rates for detrial grains, relatively few studies have addressed the sources of uncertainty that modulate the precision and accuracy with which detrital results should be interpreted. Such uncertainties derive not only from sampling statistics and measurement uncertainties, but also from both geomorphic sources (seasonal variation in sediment supply and source, changes in glacial cover, the impact of stochastic geomorphic events, such as landslides), as well as tectonic ones (time-dependent deformation and thermal models, particle paths through the orogen). A better understanding of the impact of these uncertainties will underpin more reliable and less speculative interpretations of future dating results from both ancient and modern detrital fluvial sediments.

  8. Studying the Thermal and Structural Evolution of Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Karimi, Mohammadali

    The focus of this research is to study the thermal and structural evolution of three planetary bodies, Mars, Venus and the asteroid Vesta. The almost uniform spatial distribution of craters on the surfaces of planets makes them excellent candidates to examine the evolution of planets as a whole. By modeling the viscoelastic deformation of craters at the surface and subsurface with the Finite Element Method (FEM), this study investigated the role of lower crustal flow in crater relaxation, and since lower crustal flow is sensitive to the thermal state, it serves as a probe into the thermal evolution of planets. The thermal history of Mars was explored by modeling the evolution of large craters and Quasi-Circular Depressions (QCDs) in the Southern Highlands and Northern Lowlands, respectively. Because of the spatial distribution of craters, this study yielded a thermal map for Mars that is more complete and less biased regionally relative to other studies. The results revealed a higher background heat flux for the Northern Lowlands relative to the Southern Highlands during the most ancient Noachian epoch, which suggests a thermal fingerprint to whatever process that formed the hemispherical crustal dichotomy, the oldest and most prominent geomorphic feature on Mars. Next, the largest crater on the surface of Venus, Mead, also appears to have undergone significant lower crustal flow. Modeling the viscoelastic deformation of Mead puts constraints on the thermal state of our sister planet in the vicinity of the basin. The background heat flux of Venus estimated here is higher than globally average values predicted by previous thermal models. Moreover, this study showed that Venus's crust and mantle seem to be dry relative to those of the Earth. Last, modeling the evolution of two large craters in the south polar region of Vesta (Rheasilvia and Veneneia) showed that the shallow topography and large central peak of these craters are likely the products of a planetary scale impact, and not relaxation. Additionally, the possibility of relaxation of the rotational bulge was tested for the asteroid and showed that True Polar Wander (TPW) is not a likely scenario for Vesta.

  9. Neotectonic control on drainage systems: GIS-based geomorphometric and morphotectonic assessment for Crete, Greece

    NASA Astrophysics Data System (ADS)

    Argyriou, Athanasios V.; Teeuw, Richard M.; Soupios, Pantelis; Sarris, Apostolos

    2017-11-01

    Geomorphic indices can be used to examine the geomorphological and tectonic processes responsible for the development of the drainage basins. Such indices can be dependent on tectonics, erosional processes and other factors that control the morphology of the landforms. The inter-relationships between geomorphic indices can determine the influence of regional tectonic activity in the shape development of drainage basins. A Multi-Criteria Decision Analysis (MCDA) procedure has been used to perform an integrated cluster analysis that highlights information associated with the dominant regional tectonic activity. Factor Analysis (FA) and Analytical Hierarchy Process (AHP) were considered within that procedure, producing a representation of the distributed regional tectonic activity of the drainage basins studied. The study area is western Crete, located in the outer fore-arc of the Hellenic subduction zone, one of the world's most tectonically active regions. The results indicate that in the landscape evolution of the study area (especially the western basins) tectonic controls dominate over lithological controls.

  10. Geo-diversity as an indicator of natural resources for geopark in human society

    NASA Astrophysics Data System (ADS)

    Lin, Jiun-Chuan

    2017-04-01

    Geo-diversity is a concept of richness and number of different landscapes in a small area. The higher geo-diversity the potential attraction is higher. Many geoparks will make use of those landscapes for sustainable development. The purpose of this study is trying to evaluate the geomorphic resources for geoparks in Taiwan. For the sustainable development, the concept of geopark is one of the tool for the development of society. The evaluation of geo-diversity helps our understanding of local resources and for future management. Therefore, the geomorphic resources should be evaluated systematically and aim to help the sustainable development of the geopark. The indicators of geo-diversity can be classified into four characters to review: 1. number of landscapes within geopark; 2. accessibility to the sites of geopark, 3. dynamic processes of the landforms, 4. method of landform evolution. Taiwan geoparks should make use of these four characters for conservation, management and education purposes. Yehliu, Matsu and Penghu geoparks are three typical cases for demonstration in this paper.

  11. Fluvial geomorphology and river engineering: future roles utilizing a fluvial hydrosystems framework

    NASA Astrophysics Data System (ADS)

    Gilvear, David J.

    1999-12-01

    River engineering is coming under increasing public scrutiny given failures to prevent flood hazards and economic and environmental concerns. This paper reviews the contribution that fluvial geomorphology can make in the future to river engineering. In particular, it highlights the need for fluvial geomorphology to be an integral part in engineering projects, that is, to be integral to the planning, implementation, and post-project appraisal stages of engineering projects. It should be proactive rather than reactive. Areas in which geomorphologists will increasingly be able to complement engineers in river management include risk and environmental impact assessment, floodplain planning, river audits, determination of instream flow needs, river restoration, and design of ecologically acceptable channels and structures. There are four key contributions that fluvial geomorphology can make to the engineering profession with regard to river and floodplain management: to promote recognition of lateral, vertical, and downstream connectivity in the fluvial system and the inter-relationships between river planform, profile, and cross-section; to stress the importance of understanding fluvial history and chronology over a range of time scales, and recognizing the significance of both palaeo and active landforms and deposits as indicators of levels of landscape stability; to highlight the sensitivity of geomorphic systems to environmental disturbances and change, especially when close to geomorphic thresholds, and the dynamics of the natural systems; and to demonstrate the importance of landforms and processes in controlling and defining fluvial biotopes and to thus promote ecologically acceptable engineering. Challenges facing fluvial geomorphology include: gaining full acceptance by the engineering profession; widespread utilization of new technologies including GPS, GIS, image analysis of satellite and airborne remote sensing data, computer-based hydraulic modeling and geophysical techniques; dovetailing engineering approaches to the study of river channels which emphasize reach-scale flow resistance, shear stresses, and material strength with catchment scale geomorphic approaches, empirical predictions, bed and bank processes, landform evolution, and magnitude-frequency concepts; producing accepted river channel typologies; fundamental research aimed at producing more reliable deterministic equations for prediction of bed and bank stability and bedload transport; and collaboration with aquatic biologists to determine the role and importance of geomorphologically and hydraulically defined habitats.

  12. Geomorphic characteristics and classification of Duluth-area streams, Minnesota

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Peppler, Marie C.; DePhilip, Michele M.; Lee, Kathy E.

    2006-01-01

    In 2003 and 2004, a geomorphic assessment of streams in 20 watersheds in the Duluth, Minn., area was conducted to identify and summarize geomorphic characteristics, processes, disturbance mechanisms, and potential responses to disturbance. Methods used to assess the streams included watershed characterization, descriptions of segment slopes and valley types, historical aerial photograph interpretation, and rapid field assessments and intensive field surveys of stream reaches. Geomorphic conditions were summarized into a segment-scale classification with 15 categories mainly based on drainage-network position and slope, and, secondarily, based on geologic setting, valley type, and dominant geomorphic processes. Main causes of geomorphic disturbance included historical logging and agriculture, and ongoing urban development, human-caused channel alterations, road and storm sewer drainage, ditching, hiking trails, and gravel pits or quarries. Geomorphic responses to these disturbances are dependent on a combination of drainage-network position, slope, and geologic setting. Geologic setting is related to drainage-network position because the geologic deposits parallel the Lake Superior shoreline. Headwater streams in large watersheds flow over glacial deposits above altitudes of about 1,200 feet (ft). Headwater tributaries and upper main stems have ditch-like channels with gentle slopes and no valleys. Urban development and road drainage cause increased runoff and flood peaks in these segments resulting in channel widening. Below about 1,200 ft, main-stem segments generally are affected by bedrock type and structure and have steep slopes and confined or entrenched valleys. Increases in flood peaks do not cause incision or widening in the bedrock-controlled valleys; instead, the flow and scour areas are expanded. Feeder tributaries to these main stems have steep, confined valleys and may be sources for sediment from urban areas, road runoff, or storm sewer outfalls. Main-stem segments near the glacial deposits/surficial bedrock contact (1,000–1,200 ft) have the most potential for response to disturbance because they tend to have narrow valleys with sandy glacial lakeshore deposits and moderate slopes. Increases in flood peaks (from upstream increases in runoff) increase the potential for landslides and mass wasting from valley sides as well as channel widening.

  13. Log Distribution, Persistence, and Geomorphic Function in Streams and Rivers, in the Northeastern U.S.

    NASA Astrophysics Data System (ADS)

    St Pierre, L.; Burchsted, D.; Warren, D.

    2015-12-01

    Large wood provides critical ecosystem services such as fish habitat, temperature regulation and bank stabilization. In the northeastern U.S., the distribution of large wood is documented; however, there is little understanding of the movement, longevity and geomorphic function. This research examines the hypothesis that tree species control the persistence and geomorphic function of instream wood in the Appalachian region of the northeastern U.S. To do this, we assessed size, location, and species of logs in New Hampshire rivers, including locations in the White Mountain National Forest (WMNF) where these data were collected ten years ago. We expanded the previous dataset to include assessment of geomorphic function, including creation of diversion channels, pool formation, and sediment storage, among others. We also added new sites in the WMNF and sites on a large rural river in southwestern NH to increase the range of geomorphic variables to now include: confined and unconfined channels; 1st to 4th order streams; low to high gradient; meandering, multithreaded, and straight channels; and land use such as historic logging, modern agriculture, and post-agricultural abandonment. At each study site, we located all large logs (>10cm diameter, > 1m length) and log jams (>3 accumulated logs that provide a geomorphic function) along 100m-700m reaches. We marked each identified log with a numbered tag and recorded species, diameter, length, orientation, GPS location, tag number, and photographs. We assessed function and accumulation, decay, stability, and source classes for each log. Along each reach we measured riparian forest composition and structure and channel width. Preliminary analysis suggests that tree species significantly affects the function of logs: yellow birch and American sycamore are highly represented. Additionally, geomorphic setting also plays a primary role, where unconfined reaches have large logs that provide important functions; those functions are rarely contributed by logs in confined channels. Land use limit the ability of logs to provide habitat for vegetation recruitment, notable in rivers adjacent to agricultural areas that maintain a straight channel; invasive vegetation dominate the banks and there is little to no recruitment of native vegetation.

  14. Landslides control the spatial and temporal variation of channel width in southern Taiwan: implications for landscape evolution and cascading hazards in steep, tectonically active landscapes

    NASA Astrophysics Data System (ADS)

    Yanites, B.; Bregy, J. C.; Carlson, G.; Cataldo, K.; Holahan, M.; Johnston, G.; Mitchell, N. A.; Nelson, A.; Valenza, J.; Wanker, M.

    2017-12-01

    Intense precipitation or seismic events can generate clustered mass movement processes across a landscape. These rare events have significant impacts on the landscape, however, the rarity of such events leads to uncertainty in how these events impact the entire geomorphic system over a range of timescales. Taiwan is a steep, seismically active region and is highly prone to landslide and debris flows, especially when exposed to heavy rainfall events. Typhoon Morakot made landfall in Taiwan in August of 2009, delivering record-breaking rainfall and inducing more than 22,000 landslides in southern Taiwan. The topographic gradient in southern Taiwan leads to spatial variability in landslide susceptibility providing an opportunity to infer the long-term impact of landslides on channel morphology. The availability of pre and post typhoon imagery allows a quantitative reconstruction on the propagating impact of this event on channel width. The pre and post typhoon patterns of channel width to river and hillslope gradients in 20 basins in the study area reveal the importance of cascading hazards from landslides on landscape evolution. Prior to Typhoon Morakot, the river channels in the central part of the study area were about 3-10 times wider than the channels in the south. Aggradation and widening was also a maximum in these basins where hillslope gradients and channel steepness is high. The results further show that the narrowest channels are located where channel steepness is the lowest, an observation inconsistent with a detachment-limited model for river evolution. We infer this pattern is indicative of a strong role of sediment supply, and associated landslide events, on long-term channel evolution. These findings have implications across a range of spatial and temporal scales including understanding the cascade of hazards in steep landscapes and geomorphic interpretation of channel morphology.

  15. Geomorphic Response of a Low-Gradient Channel to Modern, Progressive Base-Level Lowering: Nahal HaArava, the Dead Sea

    NASA Astrophysics Data System (ADS)

    Dente, Elad; Lensky, Nadav G.; Morin, Efrat; Grodek, Tamir; Sheffer, Nathan A.; Enzel, Yehouda

    2017-12-01

    The geomorphic response of channels to base-level fall is an important factor in landscape evolution. To better understand the complex interactions between the factors controlling channel evolution in an emerging continental shelf setting, we use an extensive data set (high-resolution digital elevation models, aerial photographs, and Landsat imagery) of a newly incising, perennial segment of Nahal (Wadi) HaArava, Israel. This channel responds to the rapid and progressive lowering of its base-level, the Dead Sea (>30 m in 35 years; 0.5-1.3 m yr-1). Progressively evolving longitudinal profiles, channel width, sinuosity, and knickpoint retreat during the last few decades were documented or reconstructed. The results indicate that even under fast base-level fall, rapid delta progradation on top of the shelf and shelf edge can moderate channel mouth slopes and, therefore, largely inhibit channel incision and knickpoint propagation. This channel elongation stage ends when the delta reaches an extended accommodation within the receiving basin and fails to keep the channel mouth slopes as low as the channel bed slopes. Then, processes of incision, narrowing, and meandering begin to shape the channel and expand upstream. When the down-cutting channel encounters a more resistant stratum within the channel substrate, these processes are restricted to a downstream reach by formation of a retreating vertical knickpoint. When the knickpoint and the channel incise to a level below this stratum, a spatially continuous, diffusion-like evolution characterizes the channel's response and source-to-sink transport can be implemented. These results emphasize the mouth slope and channel substrate resistance as the governing factors over long-term channel evolution, whereas flash floods have only local and short-lived impacts in a confined, continuously incising channel. The documented channel response applies to eustatic base-level fall under steepening basin bathymetry, rapid delta progradation, and lithologic variations in the channel substrate.

  16. The hydrological function of upland swamps in eastern Australia: The role of geomorphic condition in regulating water storage and discharge

    NASA Astrophysics Data System (ADS)

    Cowley, Kirsten L.; Fryirs, Kirstie A.; Hose, Grant C.

    2018-06-01

    Temperate Highland Peat Swamps on Sandstone (THPSS) are a type of wetland found in low-order streams on the plateaus of eastern Australia. They are sediment and organic matter accumulation zones, which combined with a climate of high rainfall and low evaporation function as water storage systems. Changes to the geomorphic structure of these systems via incision and channelisation can have profound impacts on their hydrological function. The aim of this study was to develop an understanding of how changes to the geomorphic structure of these systems alter their hydrological function, measured as changes and variability in swamp water table levels and discharge. We monitored the water table levels and discharges of three intact and three channelised THPSS in the Blue Mountains between March 2015 and June 2016. We found that water levels in intact swamps were largely stable over the monitoring period. Water levels rose only in high rainfall events, returned quickly to antecedent levels after rain, and drawdown during dry periods was not significant. In contrast, the water table levels in channelised THPSS were highly variable. Water levels rose quickly after almost all rainfall events and declined significantly during dry periods. Discharge also showed marked differences with the channelised THPSS discharging 13 times more water than intact swamps, even during dry periods. Channelised THPSS also had flashier storm hydrographs than intact swamps. These results have profound implications for the capacity of these swamps to act as water storage reservoirs in the headwaters of catchments and for their ability to maintain base flow to downstream catchments during dry times. Changes to geomorphic structure and hydrological function also have important implications for a range of other swamp functions such as carbon storage, emission and exports, contaminant sorption, downstream water quality and biodiversity, as well as the overall fate of these swamps under a changing climate.

  17. Competing feedbacks drive state transitions during initial catchment evolution: Examples from post-mining landscape and ecosystems evolution

    NASA Astrophysics Data System (ADS)

    Hinz, Christoph; Wolfgang, Schaaf; Werner, Gerwin

    2014-05-01

    Within the context of severely disturbed landscapes with little or no ecological memory, such as post-mining landscapes, we propose a simple framework that explains the catchment evolution as a result of competing feedbacks influenced by the initial conditions and the atmospheric drivers such as rainfall intermittency and intensity. The first stage of the evolution is dominated by abiotic feedbacks triggered by rainfall and subsequent fluid flow causing particle mobilisation on the surface and in the subsurface leading to flow concentration or in some instances to densification of surface and subsurface substrates. Subsequently, abiotic-biotic feedbacks start to compete in the sense that biological activity generally stabilizes substrate by preventing particle mobilisation and hence contribute to converting the substrate to a habitat. We suggest that these competing feedbacks may generate alternative stable states in particular under semi-arid and arid climatic conditions, while in temperate often energy limited environments biological process "outcompete" abiotic processes leading to a stable state, in particular from the water balance point of view for comparable geomorphic situations. To illustrate this framework, we provide examples from post-mining landscapes, in which soil, water and vegetation was monitored. In case of arid regions in Australia, we provide evidence that the initial conditions of a mine waste disposal "locked" the system into a state that was limited by water and nutrient storage capacity while at the same time it was stable from a geomorphic point of view for the observation period. The cause of the system to be locked in, is the very high hydraulic conductivity of the substrate, that has not undergone any changes during the first years. In contrast to this case study, we illustrate how this framework explains the evolution of an artificial catchment (Hühnerwasser Catchment) in Lusatia (150 km southeast of Berlin, Germany). During the initial phase of development the catchment changed very rapidly due to sediment transport, drainage network formation, and soil crusting very similar to geomorphic processes observed in arid and semi-arid landscapes void of dense vegetation. Hydraulic properties changed rapidly after few wet and dry cycles, indicative of particle mobilisation and trapping in the subsurface. Accordingly, the hydrological regime was controlled by rapid surface runoff enhanced through crust formation and at the same time a shallow ground water system developed. This surface runoff regime peeked about two years initialisation as shown by a maximum area of drainage channels. A major, fairly rapid transition occurred between three and five years after placement, in which the sediment transport ceased and vegetation coverage of the drainage channel exceeded 90%. The transition represents the onset of a transpiration dominated regime that is further enhanced by change of the plant composition of the vegetation with tree recruitment from the surrounding forming significant clusters in the catchment. This transition in the third year was also seen in a significant increase in soil fauna and plant diversity.

  18. Geomorphic and landform survey of Northern Appennine Range (NAR)

    NASA Technical Reports Server (NTRS)

    Marino, C. M. (Principal Investigator); Zilioli, E.

    1977-01-01

    The author has identified the following significant results. An approach to landslide hazard detection was developed through the analysis of satellite imagery (LANDSAT 2) showing many landslide areas that occur on marine silts and clays in northern Appennine Range in Italy. A landslide risk score was given for large areas by narrowing and extending well defined areas, whose behavior and reflectivity variation was due to upper surface changes. Results show that this methodology allows evolution pattern of clay outflows to be distinguished.

  19. Changes in Landscape-level Carbon Balance of an Arctic Coastal Plain Tundra Ecosystem Between 1970-2100, in Response to Projected Climate Change

    NASA Astrophysics Data System (ADS)

    Lara, M. J.; McGuire, A. D.; Euskirchen, E. S.; Genet, H.; Sloan, V. L.; Iversen, C. M.; Norby, R. J.; Zhang, Y.; Yuan, F.

    2014-12-01

    Northern permafrost regions are estimated to cover 16% of the global soil area and account for approximately 50% of the global belowground organic carbon pool. However, there are considerable uncertainties regarding the fate of this soil carbon pool with projected climate warming over the next century. In northern Alaska, nearly 65% of the terrestrial surface is composed of polygonal tundra, where geomorphic land cover types such as high-, flat-, and low-center polygons influence local surface hydrology, plant community composition, nutrient and biogeochemical cycling, over small spatial scales. Due to the lack of representation of these fine-scale geomorphic types and ecosystem processes, in large-scale terrestrial ecosystem models, future uncertainties are large for this tundra region. In this study, we use a new version of the terrestrial ecosystem model (TEM), that couples a dynamic vegetation model (in which plant functional types compete for water, nitrogen, and light) with a dynamic soil organic model (in which temperature, moisture, and associated organic/inorganic carbon and nitrogen pools/fluxes vary together in vertically resolved layers) to simulate ecosystem carbon balance. We parameterized and calibrated this model using data specific to the local climate, vegetation, and soil associated with tundra geomorphic types. We extrapolate model results at a 1km2 resolution across the ~1800 km2 Barrow Peninsula using a tundra geomorphology map, describing ten dominant geomorphic tundra types (Lara et al. submitted), to estimate the likely change in landscape-level carbon balance between 1970 and 2100 in response to projected climate change. Preliminary model runs for this region indicated temporal variability in carbon and active layer dynamics, specific to tundra geomorphic type over time. Overall, results suggest that it is important to consider small-scale discrete polygonal tundra geomorphic types that control local structure and function in regional estimates of carbon balance in northern Alaska.

  20. Scale-dependent geomorphic responses to active restoration and implications for cutthroat trout

    NASA Astrophysics Data System (ADS)

    Salant, N.; Miller, S. W.

    2009-12-01

    The predominant goal of instream habitat restoration is to increase the diversity, density and/or biomass of aquatic organisms through enhanced physical heterogeneity and increased food availability. In physically homogenized systems, habitat restoration is most commonly achieved at the reach-scale through the addition of structures or channel reconfiguration. Despite the completion of over 6,000 restoration projects in the United States, studies of fish responses to habitat restoration have largely produced equivocal results. Paradoxically, restoration monitoring overwhelmingly focuses on fish response without understanding how these responses link to the physical variables being altered and the scale at which geomorphic changes occur. Our study investigates whether instream habitat restoration affects geomorphic conditions at spatial scales relevant to the organism of interest (i.e. the spatial scale of the variables limiting to that organism). We measure the effects of active restoration on geomorphic metrics at three spatial scales (local, unit, and reach) using a before-after-control-impact design in a historically disturbed and heavily managed cutthroat trout stream. Observed trout habitat preferences (for spawning and juvenile/adult residence) are used to identify the limiting physical variables and are compared to the scale of spatially explicit geomorphic responses. Four reaches representing three different stages of restoration (before, one month and one year after) are surveyed for local-scale physical conditions, unit- and reach-scale morphology, resident fish use, and redd locations. Local-scale physical metrics include depth, nearbed and average velocity, overhead cover, particle size, and water quality metrics. Point measurements stratified by morphological unit are used to determine physical variability among unit types. Habitat complexity and availability are assessed at the reach-scale from topographic surveys and unit maps. Our multi-scale, process-based approach evaluates whether a commonly used restoration strategy creates geomorphic heterogeneity at scales relevant to fish diversity and microhabitat utilization, an understanding that will improve the efficiency and success of future restoration projects.

  1. Geologic evolution of the Akna Montes-Atropos Tessera region, Venus

    NASA Astrophysics Data System (ADS)

    Marinangeli, Lucia; Gilmore, Martha S.

    2000-05-01

    The investigated area comprises an arcuate mountain belt, Akna Montes, in Western Ishtar Terra, associated with an outboard plateau, Atropos Tessera, to the west and a volcanic plateau, Lakshmi Planum, to the east. Eight geologic units have been recognized on the basis of their geomorphic and structural characteristics as they appear on Magellan radar images. Our stratigraphic analysis shows that the geological evolution of the study area can be explained by four main steps: (1) formation of the older substrata of Atropos Tessera and Lakshmi, (2) extensive plains emplacement, (3) an orogenic phase including the formation of Akna Montes, and (4) local emplacement of younger plains. The tectonic evolution shows a deformational sequence characterized by contraction, shear, and topographic relaxation. This sequence is interpreted to be a consequence of the variation of crustal stresses and crustal thickening during orogenic events as observed for terrestrial high plateaus associated with a mountain belt (i.e., Himalaya and Tibet, Andes and Altiplano). In order to estimate the amount of crustal shortening associated with the Akna Montes, we considered two end-members for structural style of the mountain belt: a symmetric fold model and fault-bend fold model. The models are theoretical because terrestrial orogenic belts are often formed by a combination of different compressional structures. However, symmetric and fault-bend faults represent the minimum and maximum crustal shortening, respectively, and thus they do place bounds on the amount of strain recorded by Akna Montes. The first model yields a shortening value less than 1%, whereas a range of 17-34% is derived for the second model. The large difference between these values underscores the importance of fold geometries for estimating strain and to place constraints on geodynamic models for mountain belt formation. On the basis of our study we think that a combination of mantle downwelling and horizontal convergence may provide a good explanation of the geology and tectonics we observed in the Akna Montes-Atropos Tessera region.

  2. Geomorphic controls on fluvial carbon exports and emissions from upland swamps in eastern Australia.

    PubMed

    Cowley, Kirsten; Looman, Arun; Maher, Damien T; Fryirs, Kirstie

    2018-03-15

    Temperate Highland Peat Swamps on Sandstone (THPSS) are upland wetlands, similar to fens in the Northern Hemisphere and are found at the headwaters of low-order streams on the plateaus of Eastern Australia. They are classified as endangered ecological communities under State and National legislation. Previous works have identified particular geomorphic characteristics that are important to carbon storage in these low energy sediment accumulation zones. Changes in the geomorphic structure of THPSS, such as channelisation, may have profound implications for carbon storage. To assess the effect of channelisation on carbon budgets in these ecosystems it is essential to identify and quantify differences in carbon export, emissions and stocks of carbon of intact swamps and those that have become channelised. We undertook seasonal sampling of the perched swamp aquifers and surface waters of two intact swamps and two channelised fills in the Blue Mountains of New South Wales, Australia, to investigate differences in carbon exports and emissions between the two swamp types. We found that channelised fills' mean CO 2 emissions were almost four times higher than intact swamps with mean CH 4 emissions up to five times higher. Annual fluvial carbon exports for channelised fills were up to 18 times that of intact swamps. Channelised fill exports and emissions can represent up to 2% of the total swamp carbon stocks per annum which is 40 times higher than the intact swamps. This work clearly demonstrates that changes in geomorphic structure brought about by incision and channelisation results in profound changes to the carbon storage function of THPSS. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Geology and evolution of lakes in north-central Florida

    USGS Publications Warehouse

    Kindinger, J.L.; Davis, J.B.; Flocks, J.G.

    1999-01-01

    Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners. High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phases: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase (mature); and (4) polje (drowned prairie) - broad flat-bottom that have one or all phases of sinkhole. Using these criteria, Florida lakes can be classified by size, fill, subsurface features, and geomorphology.Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners. High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phased: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase (mature); and (4) polje (drowned prairie) - broad flat-bottom that have one or all phases of sinkhole. Using these criteria, Florida lakes can be classified by size, fill, subsurface features, and geomorphology.

  4. The Importance of Lake Overflow Floods for Early Martian Landscape Evolution: Insights From Licus Vallis

    NASA Technical Reports Server (NTRS)

    Goudge, T. A.; Fassett, C. I.

    2017-01-01

    Open-basin lake outlet valleys are incised when water breaches the basin-confining topography and overflows. Outlet valleys record this flooding event and provide insight into how the lake and surrounding terrain evolved over time. Here we present a study of the paleolake outlet Licus Vallis, a >350 km long, >2 km wide, >100 m deep valley that heads at the outlet breach of an approx.30 km diameter impact crater. Multiple geomorphic features of this valley system suggest it records a more complex evolution than formation from a single lake overflow flood. This provides unique insight into the paleohydrology of lakes on early Mars, as we can make inferences beyond the most recent phase of activity..

  5. Old River Control Complex Sedimentation Investigation

    DTIC Science & Technology

    2015-06-01

    efforts to describe the shoaling processes and sediment transport in the two-river system. Geomorphic analysis The geomorphic assessment utilized...District, New Orleans. The investigation was conducted via a combination of field data collection and laboratory analysis, geomorphic assessments, and...6 Geomorphic analysis

  6. Coastal wetlands, sea level, and the dimensions of geomorphic resilience

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2018-03-01

    Geomorphic system resilience is often perceived as an intrinsic property of system structure and interactions but is also related to idiosyncratic place and history factors. The importance of geographical and historical circumstances makes it difficult to generate categorical statements about geomorphic resilience. However, network-based analyses of system structure can be used to determine the dynamical stability (= resilience) based on generally applicable relationships and to determine scenarios of stability or instability. These provide guidelines for assessing place and history factors to assess resilience. A model of coastal wetlands is analyzed, based on interactions among relative sea level, wetland surface elevation, hydroperiod, vegetation, and sedimentation. The system is generally (but not always) dynamically unstable and non-resilient. Because of gradients of environmental factors and patchy distributions of microtopography and vegetation, a coastal wetland landscape may have extensive local variations in stability/resilience and in the key relationships that trigger instabilities. This is illustrated by a case study where dynamically unstable fragmentation is found in two nearby coastal wetlands in North Carolina's Neuse River estuary-Otter Creek Mouth and Anderson Creek. Neither is keeping pace with relative sea level rise, and both show unstable state transitions within the wetland system; but locally stable relationships exist within the wetland systems.

  7. Assessing the Geomorphic Evolution and Hydrographic Changes Induced by Winter Storms along the Louisiana Coast

    NASA Technical Reports Server (NTRS)

    Menzel, W. Paul; Moeller, Christopher, C; Huh, Oscar K.; Roberts, Harry H.

    1998-01-01

    The influence that cold front passages have on Louisiana coastal environments, including land loss and land building processes, has been the primary topic of this multidisciplinary research. This research has combined meteorological, remote sensing, and coastal expertise from the University of Wisconsin (UW) and Louisiana State University (LSU). Analyzed data sets include remotely sensed radiometric data (AVHRR on NOAA-12,13,14, Multispectral Atmospheric Mapping Sensor (MAMS) and MODIS Airborne Simulator (MAS) on NASA ER-2), U.S. Army Corps of Engineers (USACE) water level data, water quality data from the Coastal Studies Institute (CSI) at LSU, USACE river discharge data, National Weather Service (NWS) and CSI wind in sitzi measurements, geomorphic measurements from aerial photography (NASA ER-2 and Learjet), and CSI ground based sediment burial pipes (for monitoring topographic change along the Louisiana coast) and sediment cores. The work reported here-in is a continuation of an initial investigation into coastal Louisiana landform modification by cold front systems. That initial effort demonstrated the importance of cold front winds in the Atchafalaya Bay sediment plume distribution (Moeller et al.), documented the sediment transport and deposition process of the western Louisiana coast (Huh et al.) and developed tools (e.g. water types identification, suspended solids estimation) from multispectral radiometric data for application to the current study. This study has extended that work, developing a Geomorphic Impact Index (GI(sup 2)) for relating atmospheric forcing to coastal response and new tools to measure water motion and sediment transport.

  8. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection

    NASA Astrophysics Data System (ADS)

    Cook, Kristen L.

    2017-02-01

    The measurement of topography and of topographic change is essential for the study of many geomorphic processes. In recent years, structure from motion (SfM) techniques applied to photographs taken by camera-equipped unmanned aerial vehicles (UAVs) has become a powerful new tool for the generation of high resolution topography. The variety of available UAV systems continues to increase rapidly, but it is not clear whether increased UAV sophistication translates into improved quality of the calculated topography. To evaluate the lower end of the UAV spectrum, a simple low cost UAV was deployed to calculate high resolution topography in the Daan River gorge in western Taiwan, a site with a complicated 3D morphology and a wide range of surface types, making it a challenging site for topographic measurement. Terrestrial lidar surveys were conducted in parallel with UAV surveys in both June and November 2014, enabling an assessment of the reliability of the UAV survey to detect geomorphic changes in the range of 30 cm to several meters. A further UAV survey was conducted in June 2015 in order to quantify changes resulting from the 2015 spring monsoon. To evaluate the accuracy of the UAV derived topography, it was compared to terrestrial lidar data collected during the same survey period using the cloud-to-cloud comparison algorithm M3C2. The UAV-generated point clouds match the lidar point clouds well, with RMS errors of 30-40 cm; however, the accuracy of the SfM point clouds depends strongly on the characteristics of the surface being considered, with vegetation, water, and small scale texture causing inaccuracies. The lidar and SfM data yield similar maps of change from June to November 2014, with the same areas of geomorphic change detected by both methods. The SfM-generated change map for November 2014 to June 2015 indicates that the 2015 spring monsoon caused erosion throughout the gorge and highlights the importance of event-driven erosion in the Daan River. The results suggest that even very basic UAVs can yield data suitable for measuring geomorphic change on the scale of a channel reach.

  9. Eco-geomorphic controls on slope stability

    NASA Astrophysics Data System (ADS)

    Hales, T.; Ford, C.; Hwang, T.; Vose, J.; Band, L.

    2009-04-01

    Vegetation controls soil-mantled landscape evolution primarily through growth of roots into soil and rock. Root-soil interactions affect the spatial distribution and rate of shallow landsliding and other hillslope processes. Yet the distribution and tensile strength of roots depends on a number of geomorphically-influenced parameters, including soil moisture. Our field-based study investigated the effects of topography on root distributions, tensile strengths, and cohesion. Systematic differences in plant species distribution and soil properties are found in the hollow-nose topography of soil-mantled landscapes; with hollows containing thick colluvial soils and mesic tree species and noses containing thinner, more differentiated soils and more xeric species. We investigated whether these topographic variations in geomorphic and ecologic properties affected the spatial distribution of root cohesion by measuring the distribution and tensile strength of roots from soil pits dug downslope of fifteen individual trees in the Coweeta Hydrologic Laboratory, North Carolina. Our soil pits were located to capture variance in plant species (10 species total), topographic positions (nose, hollow), and sizes (a range of DBH between 5 cm and 60 cm). Root tensile strengths showed little variance with different species, but showed strong differences as a function of topography, with nose roots stronger than hollow roots. Similarly, within species, root cellulose content was systematically greater in trees on nose positions compared to those in hollows. For all species, roots were concentrated close to the soil surface (at least 70% of biomass occurred within 50 cm of the surface) and variations in this pattern were primarily a function of topographic position. Hollow roots were more evenly distributed in the soil column than those on noses, yet trees located on noses had higher mean root cohesion than those in hollows because of a higher root tensile force. These data provide an empirical basis for the development of simple geomorphic transport laws that explicitly include vegetation.

  10. Geomorphic Unit Tool (GUT): Applications of Fluvial Mapping

    NASA Astrophysics Data System (ADS)

    Kramer, N.; Bangen, S. G.; Wheaton, J. M.; Bouwes, N.; Wall, E.; Saunders, C.; Bennett, S.; Fortney, S.

    2017-12-01

    Geomorphic units are the building blocks of rivers and represent distinct habitat patches for many fluvial organisms. We present the Geomorphic Unit Toolkit (GUT), a flexible GIS geomorphic unit mapping tool, to generate maps of fluvial landforms from topography. GUT applies attributes to landforms based on flow stage (Tier 1), topographic signatures (Tier 2), geomorphic characteristics (Tier 3) and patch characteristics (Tier 4) to derive attributed maps at the level of detail required by analysts. We hypothesize that if more rigorous and consistent geomorphic mapping is conducted, better correlations between physical habitat units and ecohydraulic model results will be obtained compared to past work. Using output from GUT for coarse bed tributary streams in the Columbia River Basin, we explore relationships between salmonid habitat and geomorphic spatial metrics. We also highlight case studies of how GUT can be used to showcase geomorphic impact from large wood restoration efforts. Provided high resolution topography exists, this tool can be used to quickly assess changes in fluvial geomorphology in watersheds impacted by human activities.

  11. Characterization of geomorphic units in the alluvial valleys and channels of Gulf Coastal Plain rivers in Texas, with examples from the Brazos, Sabine, and Trinity Rivers, 2010

    USGS Publications Warehouse

    Coffman, David K.; Malstaff, Greg; Heitmuller, Franklin T.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Texas Water Development Board, described and characterized examples of geomorphic units within the channels and alluvial valleys of Texas Gulf Coastal Plain rivers using a geomorphic unit classification scale that differentiates geomorphic units on the basis of their location either outside or inside the river channel. The geomorphic properties of a river system determine the distribution and type of potential habitat both within and adjacent to the channel. This report characterizes the geomorphic units contained in the river channels and alluvial valleys of Texas Gulf Coastal Plain rivers in the context of the River Styles framework. This report is intended to help Texas Instream Flow Program practitioners, river managers, ecologists and biologists, and others interested in the geomorphology and the physical processes of the rivers of the Texas Gulf Coastal Plain (1) gain insights into how geomorphic units develop and adjust spatially and temporally, and (2) be able to recognize common geomorphic units from the examples cataloged in this report. Recent aerial imagery (high-resolution digital orthoimagery) collected in 2008 and 2009 were inspected by using geographic information system software to identify representative examples of the types of geomorphic units that occurred in the study area. Geomorphic units outside the channels of Texas Gulf Coastal Plain rivers are called \\"valley geomorphic units\\" in this report. Valley geomorphic units for the Texas Gulf Coastal Plain rivers described in this report are terraces, flood plains, crevasses and crevasse splays, flood-plain depressions, tie channels, tributaries, paleochannels, anabranches, distributaries, natural levees, neck cutoffs, oxbow lakes, and constructed channels. Channel geomorphic units occur in the river channel and are subject to frequent stresses associated with flowing water and sediment transport; they adjust (change) relatively quickly in response to short-term variations in flow. Channel geomorphic units described in this report are channel banks, benches and ledges, bank failures, point bars, cross-bar channels, channel bars, exposed bedrock, pools, runs, and crossovers.

  12. A 1-D mechanistic model for the evolution of earthflow-prone hillslopes

    NASA Astrophysics Data System (ADS)

    Booth, Adam M.; Roering, Josh J.

    2011-12-01

    In mountainous terrain, deep-seated landslides transport large volumes of material on hillslopes, exerting a dominant control on erosion rates and landscape form. Here, we develop a mathematical landscape evolution model to explore interactions between deep-seated earthflows, soil creep, and gully processes at the drainage basin scale over geomorphically relevant (>103 year) timescales. In the model, sediment flux or incision laws for these three geomorphic processes combine to determine the morphology of actively uplifting and eroding steady state topographic profiles. We apply the model to three sites, one in the Gabilan Mesa, California, with no earthflow activity, and two along the Eel River, California, with different lithologies and varying levels of historic earthflow activity. Representative topographic profiles from these sites are consistent with model predictions in which the magnitude of a dimensionless earthflow number, based on a non-Newtonian flow rheology, reflects the magnitude of recent earthflow activity on the different hillslopes. The model accurately predicts the behavior of earthflow collection and transport zones observed in the field and estimates long-term average sediment fluxes that are due to earthflows, in agreement with historical rates at our field sites. Finally, our model predicts that steady state hillslope relief in earthflow-prone terrain increases nonlinearly with the tectonic uplift rate, suggesting that the mean hillslope angle may record uplift rate in earthflow-prone landscapes even at high uplift rates, where threshold slope processes normally limit further topographic development.

  13. The Evolution of the Lower Missouri River: National Mapping Discipline Research at Lisbon Bottom

    USGS Publications Warehouse

    ,

    2002-01-01

    Before 1800, the Missouri River was one of North America's most diverse and dynamic ecosystems. During the past 200 years, civil engineering has transformed it into a navigation system regulated by reservoirs and confined by bank stabilization and flood control structures. These modifications have reduced seasonal flow variability and sediment load and have disconnected the river from backwater, off-channel, and floodplain habitats. Flooding along the Lower Missouri River in 1993 and again in 1996 created a side-channel chute across Lisbon Bottom, a well-formed loop bottom near Glasgow, Mo. The formation and subsequent development of the chute have provided USGS scientists with a glimpse of a preregulated Missouri River. Knowledge of geologic characteristics and processes in an alluvial setting like Lisbon Bottom provides a scientific basis for floodplain management. This knowledge is also vital to a complete understanding of riverine habitat disturbance, recovery, and rehabilitation. A critical component of this knowledge is an understanding of the spatial and temporal relationships between riverine habitats and geomorphic processes.

  14. Biologically-controlled multiple equilibria of tidal landforms and the fate of the Venice lagoon

    NASA Astrophysics Data System (ADS)

    Marani, Marco; D'Alpaos, Andrea; Lanzoni, Stefano; Carniello, Luca; Rinaldo, Andrea

    2007-06-01

    Looking across a tidal landscape, can one foresee the signs of impending shifts among different geomorphological structures? This is a question of paramount importance considering the ecological, cultural and socio-economic relevance of tidal environments and their worldwide decline. In this Letter we argue affirmatively by introducing a model of the coupled tidal physical and biological processes. Multiple equilibria, and transitions among them, appear in the evolutionary dynamics of tidal landforms. Vegetation type, disturbances of the benthic biofilm, sediment availability and marine transgressions or regressions drive the bio-geomorphic evolution of the system. Our approach provides general quantitative routes to model the fate of tidal landforms, which we illustrate in the case of the Venice lagoon (Italy), for which a large body of empirical observations exists spanning at least five centuries. Such observations are reproduced by the model, which also predicts that salt marshes in the Venice lagoon may not survive climatic changes in the next century if IPCC's scenarios of high relative sea level rise occur.

  15. Late Quaternary geomorphic history of a glacial landscape - new sedimentary and chronological data from the Cordillera de Cochabamba (Bolivia)

    NASA Astrophysics Data System (ADS)

    May, J.-H.; Preusser, F.; Zech, R.; Ilgner, J.; Veit, H.

    2009-04-01

    Throughout the Central Andes, glacial landscapes have long been used for the reconstruction of Late Quaternary glaciations and landscape evolution. Much work has focused on the Andes in Peru, Chile and the Bolivian Altiplano, whereas relatively little data has been published on glaciation history in the eastern Andean ranges and slopes. Even less is known with regard to the postglacial evolution of these glacial landscapes. In the Cordillera de Cochabamba (Bolivia), local maximum advances probably peaked around 20-25 ka BP and were followed by significant readvances between ~12-16 ka BP. This generally points to temperature controlled maximum glacial advances along the humid eastern slopes of the Central Andes, which is supported by glacier-climate-modelling studies. However, most studies include only marginal information with regard to the complex geomorphic and sedimentary situation in the Cordillera de Cochabamba. Furthermore, the chronological results are afflicted with several methodological uncertainties inherent to surface exposure dating and call for application of alternative, independent age dating methods. Therefore this study aims at i) documenting and interpreting the complex glacial geomorphology of the Huara Loma valley in the Cordillera de Cochabamba (Bolivia), ii) analyzing the involved units of glacial sediments, and iii) improving the chronological framework by applying optically stimulated luminescence (OSL) and radiocarbon dating (14C). For this purpose, geomorphic mapping was combined with field documentation of sedimentary profiles. The involved sediments were subject to geochemical and mineralogical analysis in order to deduce information on their erosional and weathering histories. In addition, the interpretation of OSL ages from glacial and proglacial sediments integrated several methodological procedures with regard to sample preparation and statistical analysis of the measurements in order to increase the degree of confidence. These combined efforts confirm two major glacial advances in the Cordillera de Cochabamba, which took place during the global LGM and during the Lateglacial. However, their relative chronologies and sedimentary interpretation indicate that the maximum extent of glaciation at Huara Loma was reached during humid Lateglacial times whereas conditions during the LGM were probably too dry.

  16. Constraints on the Miocene landscape evolution of the Eastern Alps from the Kalkspitze region, Niedere Tauern (Austria)

    NASA Astrophysics Data System (ADS)

    Dertnig, Florian; Stüwe, Kurt; Woodhead, Jon; Stuart, Finlay M.; Spötl, Christoph

    2017-12-01

    In order to unravel aspects of the Miocene landscape evolution of the eastern European Alps, we present geomorphic and isotopic data from the western Niedere Tauern region (Austria). The region is critical for such interpretations, because it is one of the few regions along the topographic axis of the Eastern Alps where the highest peaks (up to 2500 m a.s.l.) are dominated by limestone. As such, the region contains a record of Miocene landscape-forming events that survived the Pleistocene glaciations, not preserved elsewhere in the central Eastern Alps. This record includes karst caves, karstified planation surfaces and crystalline fluvial pebbles (Augenstein Formation) preserved on planation surfaces and in karst caves. Caves in the region occur in three distinct levels that correlate with well-known cave levels in the Northern Calcareous Alps, although they are somewhat higher in the Niedere Tauern. In part, these cave elevations also correlate with three planation surfaces and knickpoints of major streams draining the region, testifying their pre-glacial origin. We report details of a karst cave (Durchgangshöhle) from the highest cave level located at 2340 m a.s.l. In this cave, allochthonous fluvial gravels are present, overgrown by speleothems. One speleothem yielded an early middle Pleistocene U-Pb age (682 ± 17 ka). We regard this as a minimum age for the erosion of the fluvial cave deposits during Marine Isotope Stages 17 or 16. Carbon and oxygen isotope data of these speleothems imply a climate that is consistent with this interpretation. Cosmogenic 21Ne data of fluvial quartz clasts collected from the surface on plateaus of the Northern Calcareous Alps suggest minimum exposure durations of 115 and 262 ka. They probably reflect successive exposure since removal of the sediment cover of the Oligocene Augenstein Formation during the Pleistocene. While our geochronological data fail to record aspects of the earlier Miocene uplift history, they are consistent with the overall geomorphic history inferred from the geomorphic markers. This suggests that the Niedere Tauern share a common uplift history with the Northern Calcareous Aps and implies a moderate south-north topographic gradient that has been maintained since the Miocene.

  17. Constructed Pools-and-Riffles: Application and Assessment in Illinois.

    NASA Astrophysics Data System (ADS)

    Day, D. M.; Dodd, H. R.; Carney, D. A.; Holtrop, A. M.; Whiles, M. R.; White, B.; Roseboom, D.; Kinney, W.; Keefer, L. L.; Beardsley, J.

    2005-05-01

    The diversity of Illinois' streams provides a broad range of conditions, and thus a variety of restoration techniques may be required to adequately compensate for watershed alterations. Resource management agencies and research institutions in the state have collaborated on a variety of applied research initiatives to assess the efficacy of various stream protection and restoration techniques. Constructed pool-and-riffle structures have received significant attention because they tend to address watershed processes (i.e., channel evolution model) and may benefit biotic communities and processes along with physical habitat. Constructed pools-and-riffles have been applied primarily to address geomorphic instability, yet understanding biological responses can provide further rationale for their use and design specifications. In three stream systems around the state, fish were collected pre- and post- installation of structures, using primarily electrofishing techniques (e.g., electric seine & backpack). In general, within the first five years after installation, changes in fish communities have included a shift from high-abundance, small cyprinid-dominated assemblages to low-density Centrarchidae and Catostomidae assemblages. Changes in macro invertebrates at selected sites included increases in filter feeders and sensitive taxa such as the Ephemeroptera, Plecoptera, and Trichoptera (EPT). Ongoing assessments will be critical for understanding long-term influences on stream ecosystem structure and function.

  18. Controlling for Landform Age When Determining the Settlement History of the Kuril Islands

    PubMed Central

    MacInnes, Breanyn; Fitzhugh, Ben; Holman, Darryl

    2014-01-01

    Archaeological investigations of settlement patterns in dynamic landscapes can be strongly biased by the evolution of the Earth’s surface. The Kuril Island volcanic arc exemplifies such a dynamic landscape, where landscape-modifying geological forces were active during settlement, including sea-level changes, tectonic emergence, volcanic eruptive processes, coastal aggradation, and dune formation. With all these ongoing processes, in this paper we seek to understand how new landscape formation in the Holocene might bias archaeological interpretations of human settlement in the Kurils. Resolving this issue is fundamental to any interpretation of human settlement history derived from the distribution and age of archaeological sites from the region. On the basis of a comparison of landform ages and earliest archaeological occupation ages on those landforms, we conclude that landform creation did not significantly bias our aggregate archaeological evidence for earliest settlement. Some sections of the archipelago have larger proportions of landform creation dates closer to archaeological evidence of settlement and undoubtedly some archaeological sites have been lost to geomorphic processes. However, comparisons between regions reveal comparable archaeological establishment patterns irrespective of geomorphic antiquity. PMID:25684855

  19. Neogeomorphology, prediction, and the anthropic landscape

    NASA Astrophysics Data System (ADS)

    Haff, P. K.

    The surface of the earth is undergoing profound change due to human impact. By some measures the level of human impact is comparable to the effects of major classical geomorphic processes such as fluvial sediment transport. This change is occurring rapidly, has no geologic precedent, and may represent an irreversible transition to a new and novel landscape with which we have no experience. For these reasons prediction of future landscape evolution will be of increasing importance. The combination of physical and social forces that drive modern landscape change represents the Anthropic Force. Neogeomorphology is the study of the Anthropic Force and its present and likely future effects on the landscape. Unique properties associated with the Anthropic Force include consciousness, intention and design. These properties support the occurrence of nonclassical geomorphic phenomena, such as landscape planning, engineering, and management. The occurrence of short time-scale phenomena induced by anthropic landscape change, the direct effects of this change on society, and the ability to anticipate and intentionally influence the future trajectory of the global landscape underscore the importance of prediction in a neogeomorphic world.

  20. Ordering Interfluves: a Simple Proposal for Understanding Critical Zone Evolution and Function

    NASA Astrophysics Data System (ADS)

    Brecheisen, Z. S.; Richter, D., Jr.; Moon, S.; Halpin, P. N.

    2015-12-01

    A geomorphic interfluve ordering system, a reciprocal to the Hortonian-Strahler stream network order, is envisioned at the Calhoun Critical Zone Observatory (CCZO) in the South Carolina Piedmont. In this system the narrowest and most highly dissected interfluves (gentle ridges and hilltops) are 1st order and increase in rank dendritically through interfluve branching and broadening. Interfluve order attends to the structure, function, and management of residual porous-solid systems in the transport of water, solutes, and eroded solids in our deeply weathered (>30m soil/saprolite) critical zone. Recently generated geospatial data regarding the interactions of geomorphology, human land use, and forest ecology further strengthen the utility of this system. These upland networks and corresponding "land-sheds" have potential in linking recent work in the fields of geophysics and geomorphology regarding bedrock weathering front dynamics. Patterns of bedrock weathering depth, landcover & land-use change, and soil erosion are considered as they correspond to interfluve order. With LiDAR mapping and the burgeoning development and utilization of geophysical techniques and models enabling new quantitative research of critical zone landscape structure and function, many physiographic regions could benefit from a system that delineates and orders interfluve networks.

  1. Yangon River Geomorphology Identification and its Enviromental Imapacts Analsysi by Optical and Radar Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Lwin, A.; Khaing, M. M.

    2012-07-01

    The Yangon river, also known as the Rangoon river, is about 40 km long (25miles), and flows from southern Myanmar as an outlet of the Irrawaddy (Ayeyarwady) river into the Ayeyarwady delta. The Yangon river drains the Pegu Mountains; both the Yangon and the Pathein rivers enter the Ayeyarwady at the delta. Fluvial geomorphology is based primarily on rivers of manageable dimensions. The emphasis is on geomorphology, sedimentology of Yangon river and techniques for their identification and management. Present techniques such as remote sensing have made it easier to investigate and interpret in details analysis of river geomorphology. In this paper, attempt has been made the complicated issues of geomorphology, sedimentation patterns and management of river system and evolution studied. The analysis was carried out for the impact of land use/ land cover (LULC) changes on stream flow patterns. The hydrologic response to intense, flood producing rainfall events bears the signatures of the geomorphic structure of the channel network and of the characteristic slope lengths defining the drainage density of the basin. The interpretation of the hydrologic response as the travel time distribution of a water particle randomly injected in a distributed manner across the landscape inspired many geomorphic insights. In 2008, Cyclone Nargis was seriously damaged to mangrove area and its biodiversity system in and around of Yangon river terraces. A combination of digital image processing techniques was employed for enhancement and classification process. It is observed from the study that middle infra red band (0.77mm - 0.86mm) is highly suitable for mapping mangroves. Two major classes of mangroves, dense and open mangroves were delineated from the digital data.

  2. Effects of Fault Segmentation, Mechanical Interaction, and Structural Complexity on Earthquake-Generated Deformation

    NASA Astrophysics Data System (ADS)

    Haddad, David Elias

    Earth's topographic surface forms an interface across which the geodynamic and geomorphic engines interact. This interaction is best observed along crustal margins where topography is created by active faulting and sculpted by geomorphic processes. Crustal deformation manifests as earthquakes at centennial to millennial timescales. Given that nearly half of Earth's human population lives along active fault zones, a quantitative understanding of the mechanics of earthquakes and faulting is necessary to build accurate earthquake forecasts. My research relies on the quantitative documentation of the geomorphic expression of large earthquakes and the physical processes that control their spatiotemporal distributions. The first part of my research uses high-resolution topographic lidar data to quantitatively document the geomorphic expression of historic and prehistoric large earthquakes. Lidar data allow for enhanced visualization and reconstruction of structures and stratigraphy exposed by paleoseismic trenches. Lidar surveys of fault scarps formed by the 1992 Landers earthquake document the centimeter-scale erosional landforms developed by repeated winter storm-driven erosion. The second part of my research employs a quasi-static numerical earthquake simulator to explore the effects of fault roughness, friction, and structural complexities on earthquake-generated deformation. My experiments show that fault roughness plays a critical role in determining fault-to-fault rupture jumping probabilities. These results corroborate the accepted 3-5 km rupture jumping distance for smooth faults. However, my simulations show that the rupture jumping threshold distance is highly variable for rough faults due to heterogeneous elastic strain energies. Furthermore, fault roughness controls spatiotemporal variations in slip rates such that rough faults exhibit lower slip rates relative to their smooth counterparts. The central implication of these results lies in guiding the interpretation of paleoseismically derived slip rates that are used to form earthquake forecasts. The final part of my research evaluates a set of Earth science-themed lesson plans that I designed for elementary-level learning-disabled students. My findings show that a combination of concept delivery techniques is most effective for learning-disabled students and should incorporate interactive slide presentations, tactile manipulatives, teacher-assisted concept sketches, and student-led teaching to help learning-disabled students grasp Earth science concepts.

  3. Geomorphic Controls on Floodplain Soil Organic Carbon in the Yukon Flats, Interior Alaska, From Reach to River Basin Scales

    NASA Astrophysics Data System (ADS)

    Lininger, K. B.; Wohl, E.; Rose, J. R.

    2018-03-01

    Floodplains accumulate and store organic carbon (OC) and release OC to rivers, but studies of floodplain soil OC come from small rivers or small spatial extents on larger rivers in temperate latitudes. Warming climate is causing substantial change in geomorphic process and OC fluxes in high latitude rivers. We investigate geomorphic controls on floodplain soil OC concentrations in active-layer mineral sediment in the Yukon Flats, interior Alaska. We characterize OC along the Yukon River and four tributaries in relation to geomorphic controls at the river basin, segment, and reach scales. Average OC concentration within floodplain soil is 2.8% (median = 2.2%). Statistical analyses indicate that OC varies among river basins, among planform types along a river depending on the geomorphic unit, and among geomorphic units. OC decreases with sample depth, suggesting that most OC accumulates via autochthonous inputs from floodplain vegetation. Floodplain and river characteristics, such as grain size, soil moisture, planform, migration rate, and riverine DOC concentrations, likely influence differences among rivers. Grain size, soil moisture, and age of surface likely influence differences among geomorphic units. Mean OC concentrations vary more among geomorphic units (wetlands = 5.1% versus bars = 2.0%) than among study rivers (Dall River = 3.8% versus Teedrinjik River = 2.3%), suggesting that reach-scale geomorphic processes more strongly control the spatial distribution of OC than basin-scale processes. Investigating differences at the basin and reach scale is necessary to accurately assess the amount and distribution of floodplain soil OC, as well as the geomorphic controls on OC.

  4. Quantitative analysis of geomorphic processes using satellite image data at different scales

    NASA Technical Reports Server (NTRS)

    Williams, R. S., Jr.

    1985-01-01

    When aerial and satellite photographs and images are used in the quantitative analysis of geomorphic processes, either through direct observation of active processes or by analysis of landforms resulting from inferred active or dormant processes, a number of limitations in the use of such data must be considered. Active geomorphic processes work at different scales and rates. Therefore, the capability of imaging an active or dormant process depends primarily on the scale of the process and the spatial-resolution characteristic of the imaging system. Scale is an important factor in recording continuous and discontinuous active geomorphic processes, because what is not recorded will not be considered or even suspected in the analysis of orbital images. If the geomorphic process of landform change caused by the process is less than 200 m in x to y dimension, then it will not be recorded. Although the scale factor is critical, in the recording of discontinuous active geomorphic processes, the repeat interval of orbital-image acquisition of a planetary surface also is a consideration in order to capture a recurring short-lived geomorphic process or to record changes caused by either a continuous or a discontinuous geomorphic process.

  5. NUTRIENT DYNAMICS IN RELATION TO GEOMORPHOLOGY OF RIVERINE WETLANDS

    EPA Science Inventory

    Variation in water depth and soil properties associated with geomorphic structures can affect riverine wetland nutrient dynamics by altering biogeochemical processes. We examined the seasonal influence of soils and geomorphology on nutrient forms and concentrations in riverine we...

  6. Numerical modeling of the late Cenozoic geomorphic evolution of Grand Canyon, Arizona

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.

    2008-12-01

    The late Cenozoic geomorphic evolution of Grand Canyon has been influenced by three primary tectonic and drainage adjustment events. First, incision into the Paleozoic strata of the southwestern margin of the Colorado Plateau began at 16 Ma in response to relief production along the Grand Wash Fault. Second, the ancestral Upper Colorado River reversed drainage and became integrated with the Lower Colorado River basin through Grand Canyon between 5.5 and 6 Ma. Third, the Colorado River was influenced by Plio- Quaternary normal faulting along the Hurricane and Toroweap Faults. Despite the relatively firm constraints available on the timing of these events, the geomorphic evolution of Grand Canyon is still not well constrained and many questions remain. For example, was there a deeply-incised gorge in western Grand Canyon before Colorado River integration? How and where was the Colorado River integrated? How have incision rates varied in space and time? In this paper, I describe the results of a numerical modeling study designed to address these questions. The model integrates the stream power model for bedrock channel erosion with cliff retreat and the flexural-isostatic response to erosion. The model honors the structural geology of the Grand Canyon region, including the variable erodibility of rocks in the Colorado Plateau and the occurrence of Plio-Quaternary normal faulting along the Hurricane-Toroweap Fault system. We present the results of two models designed to bracket the possible drainage architectures of the southwestern margin of the Colorado Plateau in Miocene time. In the first model, we assume a 13,000 km2 drainage basin primarily sourced from the Hualapai and Coconino Plateaux. The results of this model indicate that relief production along the Grand Wash fault initiated the formation of a large (700 m) knickpoint that migrated headward at a rate of 15 km/Myr prior to drainage integration at 6 Ma to form a deep gorge in western Grand Canyon. This model also illustrates that integration of the Colorado River increased the rate of knickpoint migration to 60 km/Myr, resulting in rapid incision of eastern Grand, Marble, and Glen Canyons down to the level of the Redwall Limestone from 6-4 Ma. Widening of Grand Canyon by cliff retreat triggered flexural- isostatic rebound and renewed river incision of up to 400 m in Plio-Quaternary time. Plio-Quaternary normal faulting significantly dampened incision rates in western Grand Canyon relative to eastern Grand Canyon. As an alternative, we also consider the results of a model in which no incision in western Grand Canyon is assumed prior to 6 Ma. In that model, headward erosion prior to 6 Ma was not significant (by assumption), but the remaining results of the model are similar to that of the first model for the post-6 Ma period, illustrating the robustness of the post-integration behavior of the model with respect to pre-integration drainage scenarios. The results of the first model illustrate that headward erosion could be sufficient to capture the ancestral Upper Colorado River east of the Shiwitz Plateau, but the limited volume of Miocene clastic debris in the Grand Wash Trough and adjacent basins requires that slow rates of cliff widening and/or significant sediment storage in western Grand Canyon be invoked in order for this model to be consistent with the stratigraphic record.

  7. Building Models in the Classroom: Taking Advantage of Sophisticated Geomorphic Numerical Tools Using a Simple Graphical User Interface

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; Koons, P. O.; Gerbi, C. C.; Capps, D. K.; Tucker, G. E.; Rogers, Z. A.

    2014-12-01

    Sophisticated numerical tools exist for modeling geomorphic processes and linking them to tectonic and climatic systems, but they are often seen as inaccessible for users with an exploratory level of interest. We have improved the accessibility of landscape evolution models by producing a simple graphics user interface (GUI) that takes advantage of the Channel-Hillslope Integrated Landscape Development (CHILD) model. Model access is flexible: the user can edit values for basic geomorphic, tectonic, and climate parameters, or obtain greater control by defining the spatiotemporal distributions of those parameters. Users can make educated predictions by choosing their own parametric values for the governing equations and interpreting the results immediately through model graphics. This method of modeling allows users to iteratively build their understanding through experimentation. Use of this GUI is intended for inquiry and discovery-based learning activities. We discuss a number of examples of how the GUI can be used at the upper high school, introductory university, and advanced university level. Effective teaching modules initially focus on an inquiry-based example guided by the instructor. As students become familiar with the GUI and the CHILD model, the class can shift to more student-centered exploration and experimentation. To make model interpretations more robust, digital elevation models can be imported and direct comparisons can be made between CHILD model results and natural topography. The GUI is available online through the University of Maine's Earth and Climate Sciences website, through the Community Surface Dynamics Modeling System (CSDMS) model repository, or by contacting the corresponding author.

  8. Honeycomb development on Alexander Island, glacial history of George VI Sound and palaeoclimatic implications (Two Step Cliffs/Mars Oasis, W Antarctica)

    NASA Astrophysics Data System (ADS)

    André, Marie-Françoise; Hall, Kevin

    2005-02-01

    Analysis of three generations of glacial deposits and of a range of geomorphic features including widespread honeycombs and tafonis at Two Step Cliffs/Mars Oasis (71°52‧S, 68°15‧W) provides new insights into the geomorphological evolution of West Antarctica, with special respect to alveolar weathering. At Two Step Terrace, indicators of the inherited character of cavernous weathering were found, such as 97% non-flaking and varnished backwalls, and 80% tafoni floors that are till-covered and/or sealed by lithobiontic coatings. Based on the NE predominant aspect of the alveolized boulder faces, tafoni initiation is attributed to coastal salt spray weathering by halite coming from the George VI Sound during the 6.5 ka BP open water period. The present-day activity of these inherited cavities is restricted to roof flaking attributed to a combination of processes involving thermal stresses. This 6.5 ka BP phase of coastal alveolization is the first step of a six-stage Holocene geomorphological scenario that includes alternatively phases of glacial advance or stationing, and phases of vegetal colonization and/or rock weathering and aeolian abrasion on the deglaciated outcrops. This geomorphic scenario is tentatively correlated with the available palaeoenvironmental record in the Antarctic Peninsula region, with two potential geomorphic indicators of the Holocene Optimum being identified: (1) clusters of centimetric honeycombs facing the sound (marine optimum at 6.5 ka BP); (2) salmon-pink lithobiontic coatings preserved inside cavities and at the boulder surface (terrestrial optimum at 4 3 ka BP).

  9. Anthropogenic features and hillslope processes interaction

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Sofia, Giulia

    2016-04-01

    Topography emerges as a result of natural driving forces, but some human activities (such as mining, agricultural practices and the construction of road networks) directly or indirectly move large quantities of soil, which leave clear topographic signatures embedded on the Earth's morphology. These signatures can cause drastic changes to the geomorphological organization of the landscape, with direct consequences on Earth surface processes (Tarolli and Sofia, 2016). To this point, the present research investigates few case studies highlighting the influences of anthropogenic topographic signatures on hillslope processes, and it shows the effectiveness of High-Resolution Topography (HRT) derived from the recent remote sensing technologies (e.g. lidar, satellite, structure from motion photogrammetry), to better understand this interaction. The first example is related to agricultural terraces. In recent times, terraced areas acquired a new relevance to modern concerns about erosion and land instability, being the agricultural land mostly threatened by abandonment or intensification and specialization of agriculture, resulting in more landslide-prone bench terraces, or heavy land levelling with increased erosion. The second case study discusses about the role of agricultural and forest roads on surface erosion and landslides. The third case study investigates geomorphic processes in an open pit mine. In all case studies, HRT served as the basis for the development of new methodologies able to recognize and analyze changes on Earth surface processes along hillslopes. The results show how anthropogenic elements have crucial effects on sediment production and sediment delivery, also influencing the landscape connectivity. The availability of HRT can improve our ability to actually model anthropogenic morphologies, quantify them, and analyse the links between anthropogenic elements and geomorphic processes. The results presented here, and the creation and dissemination of HR datasets might allow the transfer the knowledge of geomorphic processes from the scientific to the practical world. Thus, it may allow an improved understanding and targeted mitigation of geomorphic changes during anthropogenic development and help guide future research directions for development-based watershed studies. References Tarolli, P., Sofia, G. (2016). Human topographic signatures and derived geomorphic processes across landscapes, Geomorphology, 255, 140-161, 10.1016/j.geomorph.2015.12.007.

  10. GeoGML - a Mark-up Language for 4-dimensional geomorphic objects and processes

    NASA Astrophysics Data System (ADS)

    Löwner, M.-O.

    2009-04-01

    We developed an use-oriented GML3 based data model that enables researchers to share 4-dimensional information about landforms and their process related interaction. Using the Unified Modelling Language it is implemented as a GML3-based application schema available on the Internet. As the science of the land's surface Geomorphology investigates landforms, their change, and the processes causing this change. The main problem of comparing research results in geomorphology is that the objects under investigation are composed of 3-dimensional geometries that change in time due to processes of material fluxes, e. g. soil erosion or mass movements. They have internal properties, e. g. soil texture or bulk density, that determine the effectiveness of these processes but are under change as well. Worldwide geographical data can be shared over the Internet using Web Feature Services. The precondition is the development of a semantic model or ontology based on international standards like GML3 as an implementation of the ISO 109107 and others. Here we present a GML3-based Mark-up Language or application schema for geomorphic purposes that fulfils the following requirements: First, an object-oriented view of landforms with a true 3-dimensional geometric data format was established. Second, the internal structure and attributes of landforms can be stored. Third, the interaction of processes and landforms is represented. Fourth, the change of all these mentioned attributes over time was considered. The presented application schema is available on the Internet and therefore a first step to enable researchers to share information using an OGC's Web feature service. In this vein comparing modelling results of landscape evolution with results of other scientist's observations is possible. Compared to prevalent data concepts the model presented makes it possible to store information about landforms, their geometry and the characteristics in more detail. It allows to represent the 3D-geometry, the set of material properties and the genesis of a landform by associating processes to a geoobject. Thus, time slices of a geomorphic system can be represented as well as scenarios of landscape modelling. Commercial GI-software is not adapted to the needs of the science of geomorphology. Therefore the development of an application model i. e. a formal description of semantics is imperative to partake in technologies like Web Feature Services supporting interoperable data transfer.

  11. The evolution of hillslope strength following large earthquakes

    NASA Astrophysics Data System (ADS)

    Brain, Matthew; Rosser, Nick; Tunstall, Neil

    2017-04-01

    Earthquake-induced landslides play an important role in the evolution of mountain landscapes. Earthquake ground shaking triggers near-instantaneous landsliding, but has also been shown to weaken hillslopes, preconditioning them for failure during subsequent seismicity and/or precipitation events. The temporal evolution of hillslope strength during and following primary seismicity, and if and how this ultimately results in failure, is poorly constrained due to the rarity of high-magnitude earthquakes and limited availability of suitable field datasets. We present results obtained from novel geotechnical laboratory tests to better constrain the mechanisms that control strength evolution in Earth materials of differing rheology. We consider how the strength of hillslope materials responds to ground-shaking events of different magnitude and if and how this persists to influence landslide activity during interseismic periods. We demonstrate the role of stress path and stress history, strain rate and foreshock and aftershock sequences in controlling the evolution of hillslope strength and stability. Critically, we show how hillslopes can be strengthened rather than weakened in some settings, challenging conventional assumptions. On the basis of our laboratory data, we consider the implications for earthquake-induced geomorphic perturbations in mountain landscapes over multiple timescales and in different seismogenic settings.

  12. Neogene geomorphic and climatic evolution of the central San Juan Mountains, Colorado: K/Ar age and stable isotope data on supergene alunite and jarosite from the Creede mining district

    USGS Publications Warehouse

    Rye, Robert O.; Bethke, Philip M.; Lanphere, Marvin A.; Steven, Thomas A.

    2000-01-01

    K/Ar age determinations or supergene alunite and jarosite, formed during Neogene weathering of the epithermal silver and base-metal ores of the Creede mining district, have been combined with geologic evidence to estimate the timing of regional uplift of the southern Rocky Mountains and related canyon cutting. In addition, oxygen and hydrogen isotopic studies suggest climate changes in the central San Juan Mountains during the past 5 m.y. Alunite [ideally (K,Na)Al3(SO4)2(OH)6] and jarosite [ideally KFe3(SO4)2(OH)6] can be dated by K/Ar or 40Ar/39Ar techniques and both contain OH and SO4 sites that enable four stable isotope analyses (δD, δ18OOH, and δ34S) to be made. This supergene alunite and jarosite formed by weathering of sulfide-rich ore bodies may record the evolution of the chemical and hydrologic processes affecting ancient oxidized acid ground water, as well as details of climate history and geomorphic evolution. Fine-grained (1-10 μm) supergene alunite and jarosite occur in minor fractures in the upper, oxidized parts of the 25 Ma sulfide-bearing veins of the Creede mining district, and jarosite also occurs in adjacent oxidized Ag-bearing clastic sediments. K/Ar ages for alunite range from 4.8 to 3.1 Ma, and for jarosite range from 2.6 to 0.9 Ma. The δD values for alunite and jarosite show opposite correlations with elevation, and values for jarosite correlate with age. Calculated δDH2O values of alunite fluids approach but are larger than those of present-day meteoric water. Calculated δDH2O values for jarosite fluids are more variable; the values of the youngest jarosites are lowest and are similar to those of present-day meteoric water in the district. The narrow δD-δ18OSO4 values of alunites reflects oxidation of sulfide below the water table. The greater range in these values for jarosites reflects oxidation of sulfide under vadose conditions. The ages of alunite mark the position of the paleo-water table at the end of a period of moderate erosion from ca. 25 to 5 Ma that exposed the tops of the ore bodies to oxidation. The younger jarosite formed in the vadose zone during or following subsequent canyon cutting related to regional uplift of the southern Rocky Mountains, The δD values suggest that climates in the area were similar to those of the present day prior to regional uplift but went through a warm period before returning to present conditions during or after regional uplift. The results of this study indicate that the combined stable and radiogenic isotope analysis of supergene alunite and jarosite has broad application in understanding climate and geomorphic evolution of selected areas.

  13. Stream power framework for predicting geomorphic change: The 2013 Colorado Front Range flood

    NASA Astrophysics Data System (ADS)

    Yochum, Steven E.; Sholtes, Joel S.; Scott, Julian A.; Bledsoe, Brian P.

    2017-09-01

    The Colorado Front Range flood of September 2013 induced a diverse range of geomorphic changes along numerous stream corridors, providing an opportunity to assess responses to a large flood in a semiarid landscape. We defined six classes of geomorphic change related to peak unit stream power and valley confinement for 531 stream reaches over 226 km, spanning a gradient of channel scales and slope. Geomorphic change was generally driven by erosion of channel margins in confined reaches and by a combination of deposition and erosion in unconfined reaches. The magnitude of geomorphic change typically increased with unit stream power (ω), with greater responses observed in unconfined channels. Cumulative logit modeling indicated that total stream power or unit stream power, unit stream power gradient, and valley confinement are significant predictors of geomorphic response for this flood event. Based on this dataset, thresholds for geomorphic adjustment were defined. For channel slopes < 3%, we noted a credible potential for substantial channel widening with ω > 230 W/m2 (16 lb/ft-s; at least 10% of the investigated sites experienced substantial channel widening) and a credible potential for avulsions, braiding, and loss of adjacent road embankments associated with ω > 480 W/m2 (33 lb/ft-s; at least 10% of the investigated sites experienced such geomorphic change). Infrequent to numerous eroded banks were very likely with ω > 700 W/m2 (48 lb/ft-s), with substantial channel widening or major geomorphic change shifting from credible to likely. Importantly, in reaches where there were large reductions in ω as the valley form shifted from confined to relatively unconfined, large amounts of deposition-induced, reach-scale geomorphic change occurred in some locations at relatively low ω. Additionally, alluvial channels with slopes > 3% had greater resistance to geomorphic change, likely caused by armoring by larger bed material and increased flow resistance from enhanced bedforms. Finally, we describe how these results can potentially be used by practitioners for assessing the risk of geomorphic change when evaluating current or planned conditions.

  14. Shallow Geologic Framework and Geomorphic Evolution of a Paleo-barrier Shoreline, Terrebonne and Timbalier Bay, Louisiana, USA.

    NASA Astrophysics Data System (ADS)

    Culling, D. P.; Allison, M. A.; Kulp, M. A.; Georgiou, I. Y.; Weathers, H. D., III

    2016-12-01

    The Louisiana coast is an invaluable asset to the nation's human, economic, and ecological welfare. However, due to the combined effects of coastal erosion, subsidence, and sea level rise, Louisiana is losing on average 25 km2 of its valuable coastal wetlands per year. Terrebonne- Timbalier Bay and the associated Lafourche deltaic lobe headland is a critical section of this coast for wetlands and infrastructure protection and restoration in the State's Master Plan. Historical imagery and bathymetry clearly show the rapid transgression and erosional degradation of both sets of headland-flanking barrier island shorelines due to wave attack and relative sea level rise in the past 150 y. The focus of the present study is a barrier island system: an ocean-fronting modern-barrier shoreline and a paleo-deltaic headland barrier arc inland of the active barrier. The evolution of the modern barrier arc is closely tied to the shallow geologic framework over which it is transgressing, and specifically the sand re-activation capacity of the antecedent geology once erosional forces are introduced. To understand the evolution of these barrier systems and how to address their protection and re-nourishment, it is important to quantify (1) the depositional facies geometry and (2) the volume of sand in these back-barrier sandy lithosomes. Here we present new observations from CHIRP sub-bottom seismic multibeam bathymetry and LIDAR topography, and surface grab and vibracore sampling in an effort to quantify the sediment availability within the underlying geologic framework and reconstruct the geomorphic evolution of these barrier shorelines. Preliminary results show the morphologic expression of antecedent geology, which is evident in seismic and bathymetric patterns, and the presence of near-surface and surface sandy stratigraphy within the back barrier bay. Observations of sandy units agree with results from Kulp et al. (2005), who showed the presence and extent of sandy lithofacies within 3 m of the surface proximal to the Raccoon Pass tidal-inlet. We suggest this sand is an important potential resource for the longevity of proximal sandy barriers as transgression continues; one identified lithesome alone is estimated to contain 5.25 km3 of fine-grained sand.

  15. Scaling Laws in Arctic Permafrost River Basins: Statistical Signature in Transition

    NASA Astrophysics Data System (ADS)

    Rowland, J. C.; Gangodagamage, C.; Wilson, C. J.; Prancevic, J. P.; Brumby, S. P.; Marsh, P.; Crosby, B. T.

    2011-12-01

    The Arctic landscape has been shown to be fundamentally different from the temperate landscape in many ways. Long winters and cold temperatures have led to the development of permafrost, perennially frozen ground, that controls geomorphic processes and the structure of the Arctic landscape. Climate warming is causing changes in permafrost and the active layer (the seasonally thawed surface layer) that is driving an increase in thermal erosion including thermokarst (collapsed soil), retrogressive thaw slumps, and gullies. These geomorphic anomalies in the arctic landscapes have not been well quantified, even though some of the landscape geomorphic and hydrologic characteristics and changes are detectable by our existing sensor networks. We currently lack understanding of the fundamental fluvio-thermal-erosional processes that underpin Arctic landscape structure and form, which limits our ability to develop models to predict the landscape response to current and future climate change. In this work, we seek a unified framework that can explain why permafrost landscapes are different from temperate landscapes. We use high resolution LIDAR data to analyze arctic geomorphic processes at a scale of less than a 1 m and demonstrate our ability to quantify the fundamental difference in the arctic landscape. We first simulate the arctic hillslopes from a stochastic space-filling network and demonstrate that the flow-path convergent properties of arctic landscape can be effectively captured from this simple model, where the simple model represents a landscape flowpath arrangement on a relatively impervious frozen soil layer. Further, we use a novel data processing algorithm to analyze landscape attributes such as slope, curvature, flow-accumulation, elevation-drops and other geomorphic properties, and show that the pattern of diffusion and advection dominated soil transport processes (diffusion/advection regime transition) in the arctic landscape is substantially different from the pattern in temperate landscapes. Our results suggest that Arctic landscapes are characterized by relatively undissected, long planar hillslopes, which convey sediment to quasi-fluvial valleys through long (~ 1 km) flow-paths. Further, we also document that broad planar hillslopes abruptly converge, forcing rapid subsurface flow accumulation at channel heads. This topographic characteristic can successfully be used to explain the position of erosion features. Finally we estimate the landscape model parameters for the arctic landscape that can be successfully used to model development and validation purposes.

  16. Recently active contractile deformation in the forearc of southern Peru

    NASA Astrophysics Data System (ADS)

    Hall, S. R.; Farber, D.; Audin, L.; Finkel, R. C.

    2010-12-01

    In the Precordillera and Western Cordillera of southern Peru (14°-18°S), vast pediment surfaces have been abandoned through drainage diversion and river incision, with the major drainages carving deep canyons. Within this region, we have identified range-sub-parallel contractile structures that accommodate significant distributed crustal deformation. Young geomorphic features document both the presence and youthfulness of these contractile structures. Here, we determine exposure ages on geomorphic features such as pediment surfaces and fluvial terraces using in situ produced cosmogenic radionuclides, in conjunction with field and remote mapping. This chronologic data reveals that ancient surfaces have been preserved as a result of very low erosion rates. We measure this rate to be <0.5m/Ma on genetically similar surfaces spanning over 4 degrees of latitude throughout this region. While many ancient surfaces are preserved in forearc localities, we also observe young (30ka-1Ma) low-relief pediment surfaces modified by recent processes. Specifically, active structures accommodating compressional stresses locally displace active drainages and offset river terraces leading to their abandonment. Based on our chronology and geomorphic mapping, we calculate a Pleistocene river incision rate of ~0.3mm/yr determined from data collected along exoreic rivers. This rate is consistent with longer-term incision rates measured in other localities along this margin. We suggest that, in this region of southern Peru, the steep western wedge of the Andean margin supports the high topography of the Altiplano through a combination of uplift along steeply dipping contractile west-vergent structures and isostatic responses to the focused removal of large amounts of crustal material through canyon incision. Further, that these range sub-parallel structures are related at depth to a thrust system that plays a role in not only the maintenance of the Andean margin, but potentially in its formation as well.

  17. Active Structures as Deduced from Geomorphic Features: A case in Hsinchu Area, northwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Shyu, J.; Ota, Y.; Chen, W.; Hu, J.; Tsai, B.; Wang, Y.

    2002-12-01

    Hsinchu area is located in the northwestern Taiwan, the fold-and thrust belt created by arc-continent collision between Eurasian and Philippine. Since the collision event is still ongoing, the island is tectonically active and full of active faults. According to the historical records, some of the faults are seismically acting. In Hsinchuarea two active faults, the Hsinchu and Hsincheng, have been previously mapped. To evaluate the recent activities, we studied the related geomorphic features by using newly developed Digital Elevation Model (DEM), the aerial photos and field investigation. Geologically, both of the faults are coupled with a hanging wall anticline. The anticlines are recently active due to the deformation of the geomorphic surfaces. The Hsinchu fault system shows complicate corresponding scarps, distributed sub-parallel to the fault trace previously suggested by projection of subsurface geology. This is probably caused by its strike-slip component tearing the surrounding area along the main trace. The scarps associated with the Hsincheng fault system are rather simple and unique. It offsets a flight of terraces all the way down to recent flood plain, indicating its long lasting activity. One to two kilometers to east of main trace a back-thrust is found, showing coupled vertical surface offsets with the main fault. The striking discovery in this study is that the surface deformation is only distributed in the southern bank of Touchien river, also suddenly decreasing when crossing another tear fault system, which is originated from Hsincheng fault in the west and extending southeastward parallel to the Touchien river. The strike-slip fault system mentioned above not only bisects the Hsinchu fault, but also divides the Hsincheng fault into segments. The supporting evidence found in this study includes pressure ridges and depressions. As a whole, the study area is tectonically dominated by three active fault systems and two actively growing anticlines. The interactions between active structural systems formed the complicate geomorphic features presented in this paper.

  18. Seafloor Structural Geomorphic Evolution in Response to Seamount Subduction, Poverty Bay Indentation, New Zealand

    NASA Astrophysics Data System (ADS)

    Bodger, K. L.; Pettinga, J. R.; Barnes, P. M.

    2006-12-01

    More than 4000 km2 of high quality bathymetric and backscatter imaging of the Poverty Bay Indentation across the northern part of the Hikurangi subduction zone provide new insights into the relationship between seafloor morphology and active structures. The swath bathymetry extends from the edge of the continental shelf to the abyssal plain, at depths of between 100 to 3500 metres. The origin of the slope re-entrant is inferred to be related to multiple seamount impacts, and these collisions have initiated numerous large-scale gravitational collapse structures, multiple debris flow and avalanche deposits, which range in down-slope length from a few hundred metres to more than 40 km. The Poverty Bay Indentation has been simultaneously eroded by canyon systems that exhibit many of the features of incised river systems onshore. The swath images are complemented by the availability of excellent high-quality processed multi-channel seismic reflection data, single channel high-resolution 3.5 kHz seismic reflection data, as well as a limited number of core samples. Seismic reflection profiles and seafloor morphology are used to provide three morpho-structural sections. The comparison of these sections highlights the different effects of seamount subduction on the evolution of the margin and the re-entrant. The northern two sections are located to the north side of the re-entrant and reveal the role of seamount impact on the interrelationship between the structural evolution with respect to seafloor morphology. Here the development of an over-steepened margin with fault reactivation, inversion and over- printing leads to very complex structural styles of deformation and geometry in both seismic reflection profiles and seafloor morphology. There is evidence of an older, inactive thrust front buried beneath the upper and mid- slope basins. Beneath the mid-slope a subducted seamount is revealed by the presence of relief on the subduction interface and associated structural complexity in the over-riding wedge. The Poverty Bay canyon represents a structural transition zone coinciding with the re-entrant. The accretionary slope south of the re- entrant conforms more closely to the classic accretionary slope style of deformation. Backthrusts in this section propagate from a much shallower level than in the northern sections. Inversion is commonly observed in the mid slope and continental shelf basins, particularly to the south. Initial interpretations indicate that: i) seamount impact significantly influences the structural evolution, and submarine geomorphology of the inboard slope of the Hikurangi subduction zone, including the generation of large-scale gravitational collapse features; ii) the large gully systems located at the upper shelf slope boundary represent the most likely source areas for the multiple mega debris flows recognised from seafloor morphology and in seismic sections; iii) there exists a complex interaction between the evolving thrust-driven submarine ridges, ponded slope basins and the structural geometry and evolution of the near-surface fault zones (imbrication); iv) the submarine canyons may initiate complex patterns of fault zone segmentation and displacement transfer within the accretionary slope; and v) seamount subduction and subsequent instability of the margin may directly result in tsunami generation.

  19. Critical zone evolution and the origins of organised complexity in watersheds

    NASA Astrophysics Data System (ADS)

    Harman, C.; Troch, P. A.; Pelletier, J.; Rasmussen, C.; Chorover, J.

    2012-04-01

    The capacity of the landscape to store and transmit water is the result of a historical trajectory of landscape, soil and vegetation development, much of which is driven by hydrology itself. Progress in geomorphology and pedology has produced models of surface and sub-surface evolution in soil-mantled uplands. These dissected, denuding modeled landscapes are emblematic of the kinds of dissipative self-organized flow structures whose hydrologic organization may also be understood by low-dimensional hydrologic models. They offer an exciting starting-point for examining the mapping between the long-term controls on landscape evolution and the high-frequency hydrologic dynamics. Here we build on recent theoretical developments in geomorphology and pedology to try to understand how the relative rates of erosion, sediment transport and soil development in a landscape determine catchment storage capacity and the relative dominance of runoff process, flow pathways and storage-discharge relationships. We do so by using a combination of landscape evolution models, hydrologic process models and data from a variety of sources, including the University of Arizona Critical Zone Observatory. A challenge to linking the landscape evolution and hydrologic model representations is the vast differences in the timescales implicit in the process representations. Furthermore the vast array of processes involved makes parameterization of such models an enormous challenge. The best data-constrained geomorphic transport and soil development laws only represent hydrologic processes implicitly, through the transport and weathering rate parameters. In this work we propose to avoid this problem by identifying the relationship between the landscape and soil evolution parameters and macroscopic climate and geological controls. These macroscopic controls (such as the aridity index) have two roles: 1) they express the water and energy constraints on the long-term evolution of the landscape system, and 2) they bound the range of plausible short-term hydroclimatic regimes that may drive a particular landscape's hydrologic dynamics. To ensure that the hydrologic dynamics implicit in the evolutionary parameters are compatible with the dynamics observed in the hydrologic modeling, a set of consistency checks based on flow process dominance are developed.

  20. A Photographic Atlas of Rock Breakdown Features in Geomorphic Environments

    NASA Technical Reports Server (NTRS)

    Bourke, Mary C. (Editor); Brearley, J. Alexander; Haas, Randall; Viles, Heather A.

    2007-01-01

    A primary goal of geomorphological enquiry is to make genetic associations between process and form. In rock breakdown studies, the links between process, inheritance and lithology are not well constrained. In particular, there is a need to establish an understanding of feature persistence. That is, to determine the extent to which in situ rock breakdown (e.g., aeolian abrasion or salt weathering) masks signatures of earlier geomorphic transport processes (e.g., fluvial transport or crater ejecta). Equally important is the extent to which breakdown during geomorphic transport masks the imprint of past weathering. The use of rock features in this way raises the important question: Can features on the surface of a rock reliably indicate its geomorphic history? This has not been determined for rock surfaces on Earth or other planets. A first step towards constraining the links between process, inheritance, and morphology is to identify pristine features produced by different process regimes. The purpose of this atlas is to provide a comprehensive image collection of breakdown features commonly observed on boulders in different geomorphic environments. The atlas is intended as a tool for planetary geoscientists and their students to assist in identifying features found on rocks on planetary surfaces. In compiling this atlas, we have attempted to include features that have formed 'recently' and where the potential for modification by another geomorphic process is low. However, we acknowledge that this is, in fact, difficult to achieve when selecting rocks in their natural environment. We group breakdown features according to their formative environment and process. In selecting images for inclusion in the atlas we were mindful to cover a wide range of climatic zones. For example, in the weathering chapter, clast features are shown from locations such as the hyper-arid polar desert of Antarctica and the semi-arid canyons of central Australia. This is important as some features (e.g., alveoli) occur across climate regimes. We have drawn on the published geomorphological literature and our own field experience. We use, where possible, images of extrusive igneous rocks as the data returned from Mars, Venus and the Moon indicates that this is the predominant rock type. One of the purposes of this atlas is to expand the range of surface features that are known to indicate a particular geomorphic environment or process history. The surface features on boulders in some environments such as aeolian and weathering are well understood. In contrast, those in fluvial or ejecta environments are not. Therefore we have presented a comprehensive assemblage of features that are likely to be produced in each of the geomorphic environments. We hope that this atlas will trigger more research on diagnostic features, particularly their morphometry and detailed morphology, their persistence and rates of formation. In this first edition of the atlas we detail the features found on clasts in three geomorphic environments: aeolian, fluvial and weathering. Future editions of the atlas will include chapters on ejecta, micro-impacts, coastal, colluvial, glacial and structural features.

  1. Assessment of geomorphic risks and attractiveness to recreational systems: a case of Nalychevo Nature Park (Kamchatka, Russia).

    NASA Astrophysics Data System (ADS)

    Blinova, I.; Bredikhin, A.

    2012-04-01

    Attractiveness of relief, diversity and rareness were always the basic features of overall recreational attractiveness of a territory. Mountainous regions with high geomorphic diversity served as model for first recreation and tourism researches. The above features often favoured sustainability of touristic system. Unique relief forms are commonly referred to natural sites. They differ from the others in structure or have some morphological and morphometric characteristics not found in other forms of the earth's surface. Such monuments form the main natural functional kernel for a recreation system which is created and exists around them. In general, functions of geomorphological sites in recreation can be divided into socio-cultural and economic. Socio-cultural function is the principal function of recreation. It responds to the cultural or spiritual needs of people such as the knowledge in the broader sense, knowledge of the world and their place in it. The economic function is to create consumer demand for goods and services, and sometimes an entire economy sector. Natural sites are particularly vulnerable to dangerous occurrence of endogenous and exogenous processes as guarantee of environmental stability is an essential condition for a proper system functioning. This requires a comprehensive study of relief dynamics, monitoring and forecasting its evolution in recreation areas. Nowadays educational and environmental tourism in Russia develop rapidly. The unique tectonic position of Kamchatka Peninsula (the active geodynamic area dedicated to the subduction zone) formed a variety of landscapes, attracting visitors from all over the world. Recreational development of this region is slow due to remoteness and poor transport accessibility. However, there are 3 state federal reserves and one federal wildlife sanctuary, 4 natural parks of regional significance, 23 nature preserves of regional significance, and 105 natural monuments officially marked in this region. "Volcanoes of Kamchatka" are included on UNESCO's World Heritage List. In spite of general fame of Far East recreational resources there are still areas which are not affected by human activities (including recreation and tourism) in immediate proximity to the regional center. This is usually caused by poor infrastructure and lack of information about natural objects. Natural Park Nalychevo, located 50 km NE from Petropavlovsk-Kamchatsky, represents an example of wild area not involved in human activities. The diversity of natural conditions and relief forms creates the necessary prerequisites for assignment a wide range of recreation specialization: balneal, hillwalking, sports (skiing, hiking etc.), environmental education. Hierarchical polycentric structure of Nature Park hampers its management and further development. Moreover, poor infrastructure aggravates the situation. Speaking of prospects for further elaboration of Nature Park, along with high geomorphic attractiveness we should take into account enormous risks induced by active relief dynamics. Sober assessment and analysis of these peculiarities allows to manage it effectively.

  2. Using soil properties as a tool to differentiate landslide generations and constrain their ages - Rogowiec landslide, Sudetes (SW Poland)

    NASA Astrophysics Data System (ADS)

    Kacprzak, Andrzej; Migoń, Piotr

    2013-04-01

    The Sudetes, at the border of Poland and the Czech Republic, are generally considered as a mountain range where landslides play a marginal geomorphic role. Only a few larger landslides have been recorded during historical times, mainly on steep valley sides undercut by rivers. Forested slopes, which dominate in the Sudetes, are usually inferred to be stable, except for near-surface bioturbation and localized accelerated surface erosion at sites subject to strong human impact. Large, apparently relict landslides in the Kamienne Mountains, Middle Sudetes, pose a considerable challenge to this view and two interpretations are possible. First, they may be indeed relict, pre-Holocene features that formed under different environmental conditions and have been completely stabilized since the origin. Second, they may be rare components of the contemporary (Holocene) geomorphic system but their frequency of occurrence is low and this is why none has been reported in written or oral records. If the second scenario captures the reality adequately, this would have significant implications for hazard and risk assessment. To address this issue, an extensive soil survey was carried out on the large landslide of Rogowiec, likely of complex flow nature as suggested by landform mapping. The rationale of the study involved an assumption that soil formation time in the area is limited to the Holocene, since harsh periglacial conditions typified the late Pleistocene. 15 soil pits were excavated within landslide terrain and on adjacent reference slopes which do not bear any evident traces of significant displacements. Despite the small area under investigation, the soil profiles are very diverse in terms of depth, horizonation, organic matter content, development of soil structure, as well as the content and lithology of coarse fragments. A great deal of this diversity can be explained by different duration of pedogenesis controlled by geomorphic processes. Very weakly developed soil profiles in the landslide body do not show evidence of protracted soil evolution under contemporary climate and hence, are interpreted as having been formed during a fraction of the Holocene. This implies a Holocene age of the landslide. In addition, an older shallow translational landslide has been recognized on the valley side, with the toe buried by the main Rogowiec landslide. The depletion area was identified through the occurrence of thin, truncated soils (compared to the neighbouring slopes). This and the occurrence of weakly horizonated and poorly structural soils in the landslide body itself suggest that this valley-side landslide is of the Holocene age too. Thus, soils proved a powerful tool to establish the relative chronology of landslides and give strong evidence of their Holocene age. Soil research is recommended as a part of landslide hazard and risk assessment for landslides of unknown age.

  3. Numerical reconstruction of Late-Cenosoic evolution of normal-fault scarps in Baikal Rift Zone

    NASA Astrophysics Data System (ADS)

    Byzov, Leonid; San'kov, Vladimir

    2014-05-01

    Numerical landscape development modeling has recently become a popular tool in geo-logic and geomorphic investigations. We employed this technique to reconstruct Late-Cenosoic evolution of Baikal Rift Zone mountains. The objects of research were Barguzin Range and Svyatoy Nos Upland. These structures are formed under conditions of crustal extension and bounded by active normal faults. In our experiments we used instruments, engineered by Greg Tucker (University of Colo-rado) - CHILD (Channel-Hillslope Integrated Landscape Development) and 'Bedrock Fault Scarp'. First program allowed constructing the complex landscape model considering tectonic uplift, fluvial and hillslope processes; second program is used for more accurate simulating of triangular facet evolution. In general, our experiments consisted in testing of tectonic parameters, and climatic char-acteristic, erosion and diffusion properties, hydraulic geometry were practically constant except for some special runs. Numerous experiments, with various scenarios of development, showed that Barguzin range and Svyatoy Nos Upland has many common features. These structures characterized by internal differentiation, which appear in height and shape of slopes. At the same time, individual segments of these objects are very similar - this conclusion refers to most developing parts, with pronounced facets and V-shaped valleys. Accordingly modelling, these landscapes are in a steady state and are undergoing a uplift with rate 0,4 mm/yr since Early Pliocene (this solution accords with AFT-dating). Lower segments of Barguzin Range and Svyatoy Nos Upland also have some general fea-tures, but the reasons of such similarity probably are different. In particular, southern segment of Svyatoy Nos Upland, which characterized by relative high slope with very weak incision, may be formed as result very rapid fault movement or catastrophic landslide. On the other hand, a lower segment of Barguzin Range (Ulun segment, for example) probably has small height and relative weak incision over later beginning of uplift.

  4. Rates of surface lowering and landscape development in southern South Africa: a cosmogenic view

    NASA Astrophysics Data System (ADS)

    Richardson, Janet; Vanacker, Veerle; Lang, Andreas; Hodgson, David

    2016-04-01

    The landscape of southern South Africa is characterised by large-scale erosion surfaces, including extensive pediments and multiple strath terraces, which document discordant river evolution through resistant quarzitic lithologies of the Cape Fold Belt (CFB). The timing and rate of erosion is poorly constrained. New cosmogenic ages from surfaces in South Africa are presented using in situ produced 10Be. Strath terraces in deeply incised rivers at two sites within the CFB indicate slow rates of erosion (1.54 - 11.79 m/Ma), which are some of the lowest rates recorded globally. Four pediment surfaces and a depth profile of the thickest pediment were also dated, and the results indicate that there are low rates of surface lowering on the pediments (0.44 - 1.24 m/Ma). The pediments are long-lived features (minimum exposure ages of 0.47 - 1.09 Ma), and are now deeply dissected. Given the minimum exposure ages, calculated river incision rates (42- 203 m/Ma) suggest that after a long period of geomorphic stability during pediment formation there was a discrete phase of increased geomorphic activity. The calculated minimum exposure ages are considered dubious because: 1) known rates of surrounding river incision (published and ours); 2) the climate conditions and time necessary for ferricrete formation on the pediment surfaces and; 3) the deeply incised catchments in the CFB on which the pediments sit, which all point to the pediments being much older. The pediments are fossilised remnants of a much larger geomorphic surface that formed after the main phase of exhumation in southern Africa. They form a store of sediment that currently sit above the surrounding rivers that have some of the lowest erosion rates in the world. These results indicate that steep topography can prevail even in areas of low erosion and tectonic quiescence, and that whilst cosmogenic dating of landscapes is an exciting development in earth sciences, care is needed especially in ancient settings. We strongly suggest benchmarking chronometric information with geomorphic and stratigraphic information.

  5. High Resolution Mapping and Interpretation of Channel and Floodplain Topography With a Narrow-Beam Terrestrial-Aquatic Lidar

    NASA Astrophysics Data System (ADS)

    McKean, J.; Isaak, D.; Tonina, D.; Wright, W.; Kinzel, P.

    2007-12-01

    Basic description of channel and floodplain topography remains a fundamental challenge for modeling flow and sediment transport or even simply mapping habitat. Standard field wading and boat surveys of stream topography are limited by costs and logistics to relatively small sample reaches and floodplain maps are seldom well- integrated with channel bathymetry. We used the NASA Experimental Advanced Airborne Research Lidar (EAARL) to map channel and floodplain topography and investigate geomorphic controls on physical habitat in two diverse channels in the watershed of the Middle Fork Salmon River, Idaho. Bear Valley Creek is a small low-gradient gravel-bed stream flowing across an unconfined valley filled with glacial outwash materials. A hierarchy of nested geomorphic features is evident in this channel with the broadest fluvial domains a legacy of ~15,000 years of post-glacial valley evolution. Contemporary hydraulics operate on this broad template and control two smaller scales of pool-riffle morphology. Salmon spawning patterns closely reflect these nested physical domains, demonstrating how geomorphic history can influence modern distributions of aquatic habitat and organisms. In contrast, Big Creek is a higher-gradient stream predominately confined by steep side slopes in a deep valley. Here, the distribution of geomorphic domains and physical habitat is controlled by modern erosion processes and rock quality. Tributaries and valley walls contribute coarse debris, up to large boulders, to the channel, resulting in very rough and poorly organized bed topography. Tributary fans also function as local grade control with sediment deposition in lower-gradient reaches upstream of fans. A GIS toolkit is under development to extract at-a-station channel metrics from EAARL data, including for example, cross section and longitudinal profile characteristics. A new investigation has also begun to further investigate the quality of EAARL data. This study will explore the question of how well we must describe channel topography to adequately: i) map the spatial distribution of physical habitat for management purposes and in support of organism population growth models, and ii) define boundary conditions for flow and sediment transport predictions using the USGS model MD SWMS.

  6. The Use of a Geomorphometric Classification to Estimate Subsurface Heterogeneity in the Unconsolidated Sediments of Mountain Watersheds

    NASA Astrophysics Data System (ADS)

    Cairns, D.; Byrne, J. M.; Jiskoot, H.; McKenzie, J. M.; Johnson, D. L.

    2013-12-01

    Groundwater controls many aspects of water quantity and quality in mountain watersheds. Groundwater recharge and flow originating in mountain watersheds are often difficult to quantify due to challenges in the characterization of the local geology, as subsurface data are sparse and difficult to collect. Remote sensing data are more readily available and are beneficial for the characterization of watershed hydrodynamics. We present an automated geomorphometric model to identify the approximate spatial distribution of geomorphic features, and to segment each of these features based on relative hydrostratigraphic differences. A digital elevation model (DEM) dataset and predefined indices are used as inputs in a mountain watershed. The model uses periglacial, glacial, fluvial, slope evolution and lacustrine processes to identify regions that are subsequently delineated using morphometric principles. A 10 m cell size DEM from the headwaters of the St. Mary River watershed in Glacier National Park, Montana, was considered sufficient for this research. Morphometric parameters extracted from the DEM that were found to be useful for the calibration of the model were elevation, slope, flow direction, flow accumulation, and surface roughness. Algorithms were developed to utilize these parameters and delineate the distributions of bedrock outcrops, periglacial landscapes, alluvial channels, fans and outwash plains, glacial depositional features, talus slopes, and other mass wasted material. Theoretical differences in sedimentation and hydrofacies associated with each of the geomorphic features were used to segment the watershed into units reflecting similar hydrogeologic properties such as hydraulic conductivity and thickness. The results of the model were verified by comparing the distribution of geomorphic features with published geomorphic maps. Although agreement in semantics between datasets caused difficulties, a consensus yielded a comparison Dice Coefficient of 0.65. The results can be used to assist in groundwater model calibration, or to estimate spatial differences in near-surface groundwater behaviour. Verification of the geomorphometric model would be augmented by evaluating its success after use in the calibration of the groundwater simulation. These results may also be used directly in momentum-based equations to create a stochastic routing routine beneath the soil interface for a hydrometeorological model.

  7. Active tectonic deformation along rejuvenated faults in tropical Borneo: Inferences obtained from tectono-geomorphic evaluation

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Kumar, Shashi Gaurav; Authemayou, Christine

    2016-08-01

    The island of Borneo is enveloped by tropical rainforests and hostile terrain characterized by high denudation rates. Owing to such conditions, studies pertaining to neotectonics and consequent geomorphic expressions with regard to surface processes and landscape evolution are inadequately constrained. Here we demonstrate the first systematic tectono-geomorphic evaluation of north Borneo through quantitative and qualitative morphotectonic analysis at sub-catchment scale, for two large drainage basins located in Sarawak: the Rajang and Baram basins. The extraction of morphometric parameters utilizing digital elevation models arranged within a GIS environment focuses on hypsometric curve analysis, distribution of hypsometric integrals through spatial autocorrelation statistics, relative uplift values, the asymmetry factor and the normalized channel steepness index. Hypsometric analysis suggests a young topography adjusting to changes in tectonic boundary conditions. Autocorrelation statistics show clusters of high values of hypsometric integrals as prominent hotspots that are associated with less eroded, young topography situated in the fold and thrust belts of the Interior Highlands of Borneo. High channel steepness and gradients (> 200 m0.9) are observed in zones corresponding to the hotspots. Relative uplift values reveal the presence of tectonically uplifted blocks together with relatively subsided or lesser uplifted zones along known faults. Sub-catchments of both basins display asymmetry indicating tectonic tilting. Stream longitudinal profiles demonstrate the presence of anomalies in the form of knickzones without apparent lithological controls along their channel reaches. Surfaces represented by cold spots of low HI values and low channel gradients observed in the high elevation headwaters of both basins are linked to isolated erosional planation surfaces that could be remnants of piracy processes. The implication of our results is that Borneo experiences active folding of the Rajang Group fold-thrust belt to present and these events reactivated old major faults and minor related dislocations. From geomorphic analysis associated with sedimentary record, we posit that the terrain could have undergone high uplift rates since 5 Ma or multi-phased uplift with periodic intermittent pulses of high and low uplift rates.

  8. Quaternary tectonic evolution of the Pamir-Tian Shan convergence zone, Northwest China

    NASA Astrophysics Data System (ADS)

    Thompson Jobe, Jessica Ann; Li, Tao; Chen, Jie; Burbank, Douglas W.; Bufe, Aaron

    2017-12-01

    The Pamir-Tian Shan collision zone in the western Tarim Basin, northwest China, formed from rapid and ongoing convergence in response to the Indo-Eurasian collision. The arid landscape preserves suites of fluvial terraces crossing structures active since the late Neogene that create fault and fold scarps recording Quaternary deformation. Using geologic and geomorphic mapping, differential GPS surveys of deformed terraces, and optically stimulated luminescence dating, we create a synthesis of the active structures that delineate the timing, rate, and migration of Quaternary deformation during ongoing convergence. New deformation rates on eight faults and folds, when combined with previous studies, highlight the spatial and temporal patterns of deformation within the Pamir-Tian Shan convergence zone during the Quaternary. Terraces spanning 130 to 8 ka record deformation rates between 0.1 and 5.6 mm/yr on individual structures. In the westernmost Tarim Basin, where the Pamir and Tian Shan are already juxtaposed, the fastest rates occur on actively deforming structures at the interface of the Pamir-Tian Shan orogens. Farther east, as the separation between the Pamir-Tian Shan orogens increases, the deformation has not been concentrated on a single structure, but rather has been concurrently distributed across a zone of faults and folds in the Kashi-Atushi fold-and-thrust belt and along the NE Pamir margin, where shortening rates vary on individual structures during the Quaternary. Although numerous structures accommodate the shortening and the locus of deformation shifts during the Quaternary, the total shortening across the western Tarim Basin has remained steady and approximately matches the current geodetic rate of 6-9 mm/yr.

  9. Tracking Geomorphic Signatures of Watershed Suburbanization with Multi-Temporal LiDAR

    EPA Science Inventory

    Urban development practices redistribute surface materials through filling, grading and terracing, causing drastic changes to the geomorphic organization of the landscape. Many studies document the hydrologic, biologic, or geomorphic consequences of urbanization using space-for-t...

  10. Assessment of habitat representation across a network of marine protected areas with implications for the spatial design of monitoring.

    PubMed

    Young, Mary; Carr, Mark

    2015-01-01

    Networks of marine protected areas (MPAs) are being adopted globally to protect ecosystems and supplement fisheries management. The state of California recently implemented a coast-wide network of MPAs, a statewide seafloor mapping program, and ecological characterizations of species and ecosystems targeted for protection by the network. The main goals of this study were to use these data to evaluate how well seafloor features, as proxies for habitats, are represented and replicated across an MPA network and how well ecological surveys representatively sampled fish habitats inside MPAs and adjacent reference sites. Seafloor data were classified into broad substrate categories (rock and sediment) and finer scale geomorphic classifications standard to marine classification schemes using surface analyses (slope, ruggedness, etc.) done on the digital elevation model derived from multibeam bathymetry data. These classifications were then used to evaluate the representation and replication of seafloor structure within the MPAs and across the ecological surveys. Both the broad substrate categories and the finer scale geomorphic features were proportionately represented for many of the classes with deviations of 1-6% and 0-7%, respectively. Within MPAs, however, representation of seafloor features differed markedly from original estimates, with differences ranging up to 28%. Seafloor structure in the biological monitoring design had mismatches between sampling in the MPAs and their corresponding reference sites and some seafloor structure classes were missed entirely. The geomorphic variables derived from multibeam bathymetry data for these analyses are known determinants of the distribution and abundance of marine species and for coastal marine biodiversity. Thus, analyses like those performed in this study can be a valuable initial method of evaluating and predicting the conservation value of MPAs across a regional network.

  11. Assessment of Habitat Representation across a Network of Marine Protected Areas with Implications for the Spatial Design of Monitoring

    PubMed Central

    Young, Mary; Carr, Mark

    2015-01-01

    Networks of marine protected areas (MPAs) are being adopted globally to protect ecosystems and supplement fisheries management. The state of California recently implemented a coast-wide network of MPAs, a statewide seafloor mapping program, and ecological characterizations of species and ecosystems targeted for protection by the network. The main goals of this study were to use these data to evaluate how well seafloor features, as proxies for habitats, are represented and replicated across an MPA network and how well ecological surveys representatively sampled fish habitats inside MPAs and adjacent reference sites. Seafloor data were classified into broad substrate categories (rock and sediment) and finer scale geomorphic classifications standard to marine classification schemes using surface analyses (slope, ruggedness, etc.) done on the digital elevation model derived from multibeam bathymetry data. These classifications were then used to evaluate the representation and replication of seafloor structure within the MPAs and across the ecological surveys. Both the broad substrate categories and the finer scale geomorphic features were proportionately represented for many of the classes with deviations of 1-6% and 0-7%, respectively. Within MPAs, however, representation of seafloor features differed markedly from original estimates, with differences ranging up to 28%. Seafloor structure in the biological monitoring design had mismatches between sampling in the MPAs and their corresponding reference sites and some seafloor structure classes were missed entirely. The geomorphic variables derived from multibeam bathymetry data for these analyses are known determinants of the distribution and abundance of marine species and for coastal marine biodiversity. Thus, analyses like those performed in this study can be a valuable initial method of evaluating and predicting the conservation value of MPAs across a regional network. PMID:25760858

  12. Geomorphic Proxies to Test Strain Accommodation in Southwestern Puerto Rico from Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Barrios Galindez, I. M.; Xue, L.; Laó-Dávila, D. A.

    2017-12-01

    The Puerto Rico and the Virgin Island microplate is located in at the northeastern corner of the Caribbean plate boundary with North America is placed within an oblique subduction zone in which strain patterns remain unresolved. Seismic hazard is a major concern in the region as seen from the seismic history of the Caribbean-North America plate boundary zone. Most of the tectonic models of the microplate show the accommodation of strain occurring offshore, despite evidence from seismic activity, trench studies, and geodetic studies suggesting the existence of strain accomodation in southwest Puerto Rico. These studies also suggest active faulting specially in the western part of the island, but limited work has been done regarding their mechanism. Therefore, this work aims to define and map these active faults in western Puerto Rico by integrating data from analysis of fluvial terrains, and detailed mapping using digital elevation model (DEM) extracted from Shuttle Radar Topography Mission (SRTM) and LIDAR data. The goal is to (1) identify structural features such as surface lineaments and fault scarps for the Cerro Goden fault, South Lajas fault, and other active faults in the western of Puerto Rico, (2) correlate these information with the distribution pattern and values of the geomorphic proxies, including Chi integral (χ), normalized steepness (ksn) and Asymmetric factor (AF). Our preliminary results from geomorphic proxies and Lidar data provide some insight of the displacement and stage of activities of these faults (e.g. Boqueron-Punta Malva Fault and Cerro Goden fault). Also, the anomaly of the geomorphic proxies generally correlate with the locations of the landslides in the southwestern Puerto Rico. The geomorphic model of this work include new information of active faulting fundamental to produce better seismic hazards maps. Additionally, active tectonics studies are vital to issue and adjust construction buildings codes and zonification codes.

  13. Geomorphic status of regulated rivers in the Iberian Peninsula.

    PubMed

    Lobera, G; Besné, P; Vericat, D; López-Tarazón, J A; Tena, A; Aristi, I; Díez, J R; Ibisate, A; Larrañaga, A; Elosegi, A; Batalla, R J

    2015-03-01

    River regulation by dams modifies flow regimes, interrupts the transfer of sediment through channel networks, and alters downstream bed dynamics, altogether affecting channel form and processes. So far, most studies on the geomorphic impacts of dams are restricted to single rivers, or even single river stretches. In this paper we analyse the geomorphic status of 74 river sites distributed across four large basins in the Iberian Peninsula (i.e. 47 sites located downstream of dams). For this purpose, we combine field data with hydrological data available from water agencies, and analyse historical (1970) and current aerial photographs. In particular, we have developed a Geomorphic Status (GS) index that allows us to assess the physical structure of a given channel reach and its change through time. The GS encompasses a determination of changes in sedimentary units, sediment availability, bar stability and channel flow capacity. Sites are statistically grouped in four clusters based on contrasted physical and climate characteristics. Results emphasise that regulation changes river's flow regime with a generalized reduction of the magnitude and frequency of floods (thus flow competence). This, in addition to the decrease downstream sediment supply, results in the loss of active bars as they are encroached by vegetation, to the point that only reaches with little or no regulation maintain exposed sedimentary deposits. The GS of regulated river reaches is negatively correlated with magnitude of the impoundment (regulation). Heavily impacted reaches present channel stabilization and, in contrast to the hydrological response, the distance and number of tributaries do not reverse the geomorphic impact of the dams. Stabilization limits river dynamics and may contribute to the environmental degradation of the fluvial ecosystem. Overall, results describe the degree of geomorphological alteration experienced by representative Iberian rivers mostly because of regulation, challenging the successful long-term implementation of river basin management programmes. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. A GIS-Based Model for the analysis of an urban flash flood and its hydro-geomorphic response. The Valencia event of 1957

    NASA Astrophysics Data System (ADS)

    Portugués-Mollá, I.; Bonache-Felici, X.; Mateu-Bellés, J. F.; Marco-Segura, J. B.

    2016-10-01

    Flash floods are recurrent events around the Mediterranean region. Extreme episodes activate hydro-geomorphic high-intensity processes with low frequency. In urban environments, the complexity becomes higher due to the existence of very quick-response runoff. However, immediate recovery works remove the urban marks. After a short time both the significance and magnitude of the hydro-geomorphic event become completely unrecognizable. Nevertheless, these episodes generate extensive documentation which is testimony of the processes in almost real time. It is necessary to exploit this source typology in order to draw flood sketches when events far in time may lack a sufficiently rich database. This is particularly the case for the Valencia flash flood (October 1957), located in the lower Turia River basin (Eastern Spain). It left numerous pieces of hydro-geomorphic evidence, but its tracks were covered a short while after the flood. In any case, it remains part of a non-systematic legacy that has not yet been exploited, consisting of immediate aerial and oblique high resolution photography, pictures at street level, water marks and administrative records. Paradoxically, despite being considered a milestone in metropolitan territorial planning (the river was definitely diverted), an accurate reconstruction of the hydraulic behaviour was required from an integrated point of view. To this aim, the development of a GIS-Based Model enabled the utilisation of the above-mentioned materials. This non-conventional information was treated jointly from a new perspective. It provided database support through a vast amount of organised, structured and georeferenced information about the 1957 event. In a second stage, the GBM made it possible to characterise the Turia urban reach and interpret both the hydro-geomorphic (trenches along barrier beaches, erosion, deposition, etc.) and hydraulic (urban streams along the streets, flow directions, flood extent, levees breaks, overflows and inflows, etc.) processes mainly through photo-interpretation.

  15. Geomorphic Function and Restoration Potential of Spring Creeks in Southeastern Idaho: Analysis and Communication

    NASA Astrophysics Data System (ADS)

    Hanrahan, T. P.; Hill, Z.; Levell, A.; Maguire, T.; Risso, D.

    2014-12-01

    A large wetland and floodplain complex adjacent to the Snake River in southeastern Idaho, USA, encompasses numerous spring-fed creeks that originate on the floodplain and discharge at their confluence with the Snake River and American Falls Reservoir. Resource managers are implementing a program to restore these spring creeks for the recovery of Yellowstone cutthroat trout and ecosystem health. Our objectives were to evaluate the physical characteristics of these spring creeks, develop a conceptual model of their geomorphic function, compare the restoration potential of individual reaches, and communicate our findings to a broad audience of resource managers and regional stakeholders in order to foster restoration planning. A geomorphic assessment along 38 km of three spring creeks was completed by collecting data at several transects within distinct geomorphic reaches, and by collecting data continuously throughout all reaches. These data were summarized in a GIS database and used to quantify the overall geomorphic functioning of each reach. The geomorphic functional scores were scaled from 0% (non-functional) to 100% (fully functional). Among all three spring creeks, geomorphic function ranged from 29% to 63%, with bank conditions and riparian vegetation being the primary causes of overall channel degradation. Results from the geomorphic assessment fostered the development of a conceptual model for spring creek function, whereby degraded bank conditions represent the primary controlling factor of decreased geomorphic function and fish habitat quality. The reach-based geomorphic functional scoring provides an indicator of relative restoration potential for each reach, and is one of the factors used in determining site-specific priorities for protecting, enhancing, and restoring spring creeks on the Fort Hall Bottoms. The study results, conceptual model and restoration strategy were communicated to resource managers and regional stakeholders through a graphically-rich, large format atlas document. Presentation of hard copy and electronic versions of maps and infographics fostered a high level of engagement among those interested in restoring these spring creek systems.

  16. Geologic, geomorphic, and meteorological aspects of debris flows triggered by Hurricanes Frances and Ivan during September 2004 in the Southern Appalachian Mountains of Macon County, North Carolina (southeastern USA)

    USGS Publications Warehouse

    Wooten, R.M.; Gillon, K.A.; Witt, A.C.; Latham, R.S.; Douglas, T.J.; Bauer, J.B.; Fuemmeler, S.J.; Lee, L.G.

    2008-01-01

    In September 2004, rain from the remnants of Hurricanes Frances and Ivan triggered at least 155 landslides in the Blue Ridge Mountains of North Carolina. At least 33 debris flows occurred in Macon County, causing 5 deaths, destroying 16 homes, and damaging infrastructure. We mapped debris flows and debris deposits using a light-detecting and ranging digital elevation model, remote imagery and field studies integrated in a geographic information system. Evidence of past debris flows was found at all recent debris flow sites. Orographic rainfall enhancement along topographic escarpments influenced debris flow frequency at higher elevations. A possible trigger for the Wayah and fatal Peeks Creek debris flows was a spiral rain band within Ivan that moved across the area with short duration rainfall rates of 150-230 mm/h. Intersecting bedrock structures in polydeformed metamorphic rock influence the formation of catchments within structural-geomorphic domains where debris flows originate. ?? 2007 Springer-Verlag.

  17. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems

    NASA Astrophysics Data System (ADS)

    Poeppl, Ronald E.; Keesstra, Saskia D.; Maroulis, Jerry

    2017-01-01

    Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to the coupling relationships between them. To better understand system complexity and system response to changing inputs, "connectivity thinking" has become an important recent paradigm within various disciplines including ecology, hydrology and geomorphology. With the presented conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Geomorphic response of fluvial systems to human disturbance is shown to be determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.

  18. A Biologically Informed, Mechanistic Model of Desert Shrub Population Dynamics Bearing on Arid Landscape Evolution

    NASA Astrophysics Data System (ADS)

    Worman, Stacey; Furbish, David; Fathel, Siobhan

    2014-05-01

    In arid landscapes, desert shrubs individually and collectively modify how sediment is transported (e.g by wind, overland-flow, and rain-splash). Addressing how desert shrubs modify landscapes on geomorphic timescales therefore necessitates spanning multiple shrub lifetimes and accounting for how processes affecting shrub dynamics on these longer timescales (e.g. fire, grazing, drought, and climate change) may in turn impact sediment transport. To fulfill this need, we present a mechanistic model of the spatiotemporal dynamics of a desert-shrub population that uses a simple accounting framework and tracks individual shrubs as they enter, age, and exit the population (via recruitment, growth, and mortality). Our model is novel insomuch as it (1) features a strong biophysical foundation, (2) mimics well-documented aspects of how shrub populations respond to changes in precipitation, and (3) possesses the process granularity appropriate for use in geomorphic simulations. In a complimentary abstract (Fathel et al. 2014), we demonstrate the potential of this biological model by coupling it to a physical model of rain-splash sediment transport: We mechanistically reproduce the empirical observation that the erosion rate of a hillslope decreases as its vegetation coverage increases and we predict erosion rates under different climate-change scenarios.

  19. The application of LiDAR to investigate foredune morphology and vegetation

    NASA Astrophysics Data System (ADS)

    Doyle, Thomas B.; Woodroffe, Colin D.

    2018-02-01

    LiDAR (Light Detection and Ranging) has been used to investigate coastal landform morphology, evolution, and change for almost a decade. Repeated airborne LiDAR surveys can provide the scientific community with significant observations of how shorelines have evolved, which may then enable forecasts of future patterns of change. However, there have been few studies that have considered the application of this new technology to the specific study of foredune morphology and vegetation. The accuracy and appropriateness of airborne LiDAR needs to be assessed, particularly where the density of vegetation may obscure the underlying topography, prior to interpreting derived geomorphic features. This study: i) tests the vertical accuracy of airborne LiDAR in 37 foredune systems along the coast of south-eastern Australia, and ii) demonstrates that it can be used to describe foredune morphology and vegetation in considerable detail. There was a strong correlation between the remotely-sensed LiDAR-derived elevation and field topographic and vegetation surveys (R2 = 0.96). A protocol for obtaining foredune geomorphic and botanical parameters is described. It enables widespread biogeomorphic characterisation along coasts for which LiDAR data is available, which can benefit both coastal managers and researchers alike.

  20. Terrestrial laser scanning observations of geomorphic changes and varying lava lake levels at Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Jones, Laura K.; Kyle, Philip R.; Oppenheimer, Clive; Frechette, Jedediah D.; Okal, Marianne H.

    2015-03-01

    A Terrestrial Laser Scanning (TLS) instrument was used to image the topography of the Main Crater at Erebus volcano each December in 2008, 2009, and 2010. Our high-spatial resolution TLS scans provide unique insights into annual and decadal scale geomorphic evolution of the summit area when integrated with comparable data collected by an airborne instrument in 2001. We observe both a pattern of subsidence within the Inner Crater of the volcano and an ~ 3 m per-year drop in the lava lake level over the same time period that are suggestive of decreasing overpressure in an underlying magma reservoir. We also scanned the active phonolite lava lake hosted within the Inner Crater, and recorded rapid cyclic fluctuations in the level of the lake. These were sporadically interrupted by minor explosions by bursting gas bubbles at the lake surface. The TLS data permit calculation of lake level rise and fall speeds and associated rates of volumetric change within the lake. These new observations, when considered with prior determinations of rates of lake surface motion and gas output, are indicative of unsteady magma flow in the conduit and its associated variability in gas volume fraction.

  1. Sediment connectivity at source-bordering aeolian dunefields along the Colorado River in the Grand Canyon, USA

    NASA Astrophysics Data System (ADS)

    Sankey, Joel; Kasprak, Alan; Caster, Joshua; East, Amy; Fairley, Helen

    2017-04-01

    Aeolian dunefields that are primarily built and maintained with river-derived sediment are found in many river valleys throughout the world and are impacted by changes in climate, land use, and river regulation. Quantifying the dynamic response of these aeolian dunefields to alterations in river flow is especially difficult given the highly correlated nature of the interacting geomorphic and sediment transport processes that drive their formation and maintenance. We characterize the effects of controlled river floods on changes in sediment connectivity at source-bordering aeolian dunefields in the Grand Canyon, USA. Controlled floods from the Glen Canyon Dam are used to build sandbars along the Colorado River in Grand Canyon which provide the main sediment source for aeolian dunefields. Aeolian dunefields are a primary resource of concern for land managers in the Grand Canyon because they often contain buried archaeological features. To characterize dunefield response to controlled floods, we use a novel, automated approach for the mechanistic segregation of geomorphic change to discern the geomorphic processes responsible for driving topographic change in very high resolution digital elevation models-of-difference (DODs) that span multiple, consecutive controlled river floods at source-bordering dunefields. We subsequently compare the results of mechanistic segregation with modelled estimates of aeolian dunefield evolution in order to understand how dunefields respond to contemporary, anthropogenically-driven variability in sediment supply and connectivity. These methods provide a rapid technique for sediment budgeting and enable the inference of spatial and temporal patterns in sediment flux between the fluvial and aeolian domains. We anticipate that this approach will be adaptable to other river valleys where the interactions of aeolian, fluvial, and hillslope processes drive sediment connectivity for the maintenance of source-bordering aeolian dunefields.

  2. A Bayesian Network to Predict Barrier Island Geomorphologic Characteristics

    NASA Astrophysics Data System (ADS)

    Gutierrez, B.; Plant, N. G.; Thieler, E. R.; Turecek, A.; Stippa, S.

    2014-12-01

    Understanding how barrier islands along the Atlantic and Gulf coasts of the United States respond to storms and sea-level rise is an important management concern. Although these threats are well recognized, quantifying the integrated vulnerability is challenging due to the range of time and space scalesover which these processes act. Developing datasets and methods to identify the physical vulnerabilities of coastal environments due to storms and sea-level rise thus is an important scientific focus that supports land management decision making. Here we employ a Bayesian Network (BN) to model the interactions between geomorphic variables sampled from existing datasets that capture both storm-and sea-level rise related coastal evolution. The BN provides a means of estimating probabilities of changes in specific geomorphic characteristics such as foredune crest height, beach width, beach height, given knowledge of barrier island width, maximum barrier island elevation, distance from an inlet, the presence of anthropogenic modifications, and long-term shoreline change rates, which we assume to be directly related to sea-level rise. We evaluate BN skill and explore how different constraints, such as shoreline change characteristics (eroding, stable, accreting), distance to nearby inlets and island width, affect the probability distributions of future morphological characteristics. Our work demonstrates that a skillful BN can be constructed and that factors such as distance to inlet, shoreline change rate, and the presence of human alterations have the strongest influences on network performance. For Assateague Island, Maryland/Virginia, USA, we find that different shoreline change behaviors affect the probabilities of specific geomorphic characteristics, such as dune height, which allows us to identify vulnerable locations on the barrier island where habitat or infrastructure may be vulnerable to storms and sea-level rise.

  3. Phase Transitions in Geomorphology

    NASA Astrophysics Data System (ADS)

    Ortiz, C. P.; Jerolmack, D. J.

    2015-12-01

    Landscapes are patterns in a dynamic steady-state, due to competing processes that smooth or sharpen features over large distances and times. Geomorphic transport laws have been developed to model the mass-flux due to different processes, but are unreasonably effective at recovering the scaling relations of landscape features. Using a continuum approximation to compare experimental landscapes and the observed landscapes of the earth, one finds they share similar morphodynamics despite a breakdown of classical dynamical similarity between the two. We propose the origin of this effectiveness is a different kind of dynamic similarity in the statistics of initiation and cessation of motion of groups of grains, which is common to disordered systems of grains under external driving. We will show how the existing data of sediment transport points to common signatures with dynamical phase transitions between "mobile" and "immobile" phases in other disordered systems, particularly granular materials, colloids, and foams. Viewing landscape evolution from the lens of non-equilibrium statistical physics of disordered systems leads to predictions that the transition of bulk measurements such as particle flux is continuous from one phase to another, that the collective nature of the particle dynamics leads to very slow aging of bulk properties, and that the dynamics are history-dependent. Recent results from sediment transport experiments support these predictions, suggesting that existing geomorphic transport laws may need to be replaced by a new generation of stochastic models with ingredients based on the physics of disordered phase transitions. We discuss possible strategies for extracting the necessary information to develop these models from measurements of geomorphic transport noise by connecting particle-scale collective dynamics and space-time fluctuations over landscape features.

  4. Altered hydrologic and geomorphic processes and bottomland hardwood plant communities of the lower White River Basin

    USGS Publications Warehouse

    King, Sammy L.; Keim, Richard F.; Hupp, Cliff R.; Edwards, Brandon L.; Kroschel, Whitney A.; Johnson, Erin L.; Cochran, J. Wesley

    2016-09-12

    Determine stand establishment patterns of bottomland hardwoods within selected plant communities along three sections of the floodplain. This study provides baseline information on the current geomorphic and hydrologic conditions of the river and can assist in the interpretation of forest responses to past hydrologic and geomorphic processes. Understanding the implications for floodplain forests of geomorphic adjustment in the Lower Mississippi Alluvial Valley is key to managing the region’s valuable resources for a sustainable future.

  5. Stochastic Downscaling of Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Rasera, Luiz Gustavo; Mariethoz, Gregoire; Lane, Stuart N.

    2016-04-01

    High-resolution digital elevation models (HR-DEMs) are extremely important for the understanding of small-scale geomorphic processes in Alpine environments. In the last decade, remote sensing techniques have experienced a major technological evolution, enabling fast and precise acquisition of HR-DEMs. However, sensors designed to measure elevation data still feature different spatial resolution and coverage capabilities. Terrestrial altimetry allows the acquisition of HR-DEMs with centimeter to millimeter-level precision, but only within small spatial extents and often with dead ground problems. Conversely, satellite radiometric sensors are able to gather elevation measurements over large areas but with limited spatial resolution. In the present study, we propose an algorithm to downscale low-resolution satellite-based DEMs using topographic patterns extracted from HR-DEMs derived for example from ground-based and airborne altimetry. The method consists of a multiple-point geostatistical simulation technique able to generate high-resolution elevation data from low-resolution digital elevation models (LR-DEMs). Initially, two collocated DEMs with different spatial resolutions serve as an input to construct a database of topographic patterns, which is also used to infer the statistical relationships between the two scales. High-resolution elevation patterns are then retrieved from the database to downscale a LR-DEM through a stochastic simulation process. The output of the simulations are multiple equally probable DEMs with higher spatial resolution that also depict the large-scale geomorphic structures present in the original LR-DEM. As these multiple models reflect the uncertainty related to the downscaling, they can be employed to quantify the uncertainty of phenomena that are dependent on fine topography, such as catchment hydrological processes. The proposed methodology is illustrated for a case study in the Swiss Alps. A swissALTI3D HR-DEM (with 5 m resolution) and a SRTM-derived LR-DEM from the Western Alps are used to downscale a SRTM-based LR-DEM from the eastern part of the Alps. The results show that the method is capable of generating multiple high-resolution synthetic DEMs that reproduce the spatial structure and statistics of the original DEM.

  6. GEOMORPHIC AND HYDROLOGIC INTERACTIONS IN THE DETERMINATION OF EQUILIBRIUM SOIL DEPTH

    NASA Astrophysics Data System (ADS)

    Nicotina, L.; Rinaldo, A.; Tarboton, D. G.

    2009-12-01

    In this work we propose numerical studies of the interactions between hydrology and geomorphology in the formation of the actual soil depth that drives ecologic and hydrologic processes. Sediment transport and geomorphic landscape evolution processes (i.e. erosion/deposition vs. soil production) strongly influence hydrology, carbon sequestration, soil formation and stream water chemistry. The process of rock conversion into soil originates a strong hydrologic control through the formation of the soil depth that participates to hydrologic processes, influence vegetation type and patterns and actively participate in the co-evolution mechanisms that shape the landscape. The description of spatial patterns in hydrology is usually constrained by the availability of field data, especially when dealing with quantities that are not easily measurable. In these circumstances it is deemed fundamental the capability of deriving hydrologic boundary conditions from physically based approaches. Here we aim, in a general framework, at the formulation of an integrated approach for the prediction of soil depth by mean of i) soil production models and ii) geomorphic transport laws. The processes that take place in the critical zone are driven by the extension of it and have foundamental importance over short time scales as well as on geologic time scales (i.e. as biota affects climate that drives hydrology and thus contributes on shaping the landscape). Our study aims at the investigation of the relationships between soil depth, topography and runoff production, we also address the mechanisms that bring to the development of actual patterns of soil depths which at the same time influence runoff. We use a schematic representation of the hydrologic processes that relies on the description of the topography (throuh a topographic wetness index) and the spatially variable soil depths. Such a model is applied in order to investigate the development of equilibrium soil depth patterns under different hydrologic regimes and under two different hypothesis for the dynamic equilibrium (local or topographic dynamic equilibrium) of soils as well as the temporal scales associated to them. The obtained results are tested against a field survey of soil depths carried out in the Dry Creek catchment located in southern Idaho, near Boise (USA). The develped approach results to be suitable for the problem at hand as the hydrologic model results to be sensitive to the soil depths distribution.

  7. Automated Detection of Geomorphic Features in LiDAR Point Clouds of Various Spatial Density

    NASA Astrophysics Data System (ADS)

    Dorninger, Peter; Székely, Balázs; Zámolyi, András.; Nothegger, Clemens

    2010-05-01

    LiDAR, also referred to as laser scanning, has proved to be an important tool for topographic data acquisition. Terrestrial laser scanning allows for accurate (several millimeter) and high resolution (several centimeter) data acquisition at distances of up to some hundred meters. By contrast, airborne laser scanning allows for acquiring homogeneous data for large areas, albeit with lower accuracy (decimeter) and resolution (some ten points per square meter) compared to terrestrial laser scanning. Hence, terrestrial laser scanning is preferably used for precise data acquisition of limited areas such as landslides or steep structures, while airborne laser scanning is well suited for the acquisition of topographic data of huge areas or even country wide. Laser scanners acquire more or less homogeneously distributed point clouds. These points represent natural objects like terrain and vegetation and artificial objects like buildings, streets or power lines. Typical products derived from such data are geometric models such as digital surface models representing all natural and artificial objects and digital terrain models representing the geomorphic topography only. As the LiDAR technology evolves, the amount of data produced increases almost exponentially even in smaller projects. This means a considerable challenge for the end user of the data: the experimenter has to have enough knowledge, experience and computer capacity in order to manage the acquired dataset and to derive geomorphologically relevant information from the raw or intermediate data products. Additionally, all this information might need to be integrated with other data like orthophotos. In all theses cases, in general, interactive interpretation is necessary to determine geomorphic structures from such models to achieve effective data reduction. There is little support for the automatic determination of characteristic features and their statistical evaluation. From the lessons learnt from automated extraction and modeling of buildings (Dorninger & Pfeifer, 2008) we expected that similar generalizations for geomorphic features can be achieved. Our aim is to recognize as many features as possible from the point cloud in the same processing loop, if they can be geometrically described with appropriate accuracy (e.g., as a plane). For this, we propose to apply a segmentation process allowing determining connected, planar structures within a surface represented by a point cloud. It is based on a robust determination of local tangential planes for all points acquired (Nothegger & Dorninger, 2009). It assumes that for points, belonging to a distinct planar structure, similar tangential planes can be determined. In passing, points acquired at continuous such as vegetation can be identified and eliminated. The plane parameters are used to define a four-dimensional feature space which is used to determine seed-clusters globally for the whole are of interest. Starting from these seeds, all points defining a connected, planar region are assigned to a segment. Due to the design of the algorithm, millions of input points can be processed with acceptable processing time on standard computer systems. This allows for processing geomorphically representative areas at once. For each segment, numerous parameter are derived which can be used for further exploitation. These are, for example, location, area, aspect, slope, and roughness. To prove the applicability of our method for automated geomorphic terrain analysis, we used terrestrial and airborne laser scanning data, acquired at two locations. The data of the Doren landslide located in Vorarlberg, Austria, was acquired by a terrestrial Riegl LS-321 laser scanner in 2008, by a terrestrial Riegl LMS-Z420i laser scanner in 2009, and additionally by three airborne LiDAR measurement campaigns, organized by the Landesvermessungsamt Vorarlberg, Feldkirch, in 2003, 2006, and 2007. The measurement distance of the terrestrial measurements was considerably varying considerably because of the various base points that were needed to cover the whole landslide. The resulting point spacing is approximately 20 cm. The achievable accuracy was about 10 cm. The airborne data was acquired with mean point densities of 2 points per square-meter. The accuracy of this dataset was about 15 cm. The second testing site is an area of the Leithagebirge in Burgenland, Austria. The data was acquired by an airborne Riegl LMS-Q560 laser scanner mounted on a helicopter. The mean point density was 6-8 points per square with an accuracy better than 10 cm. We applied our processing chain on the datasets individually. First, they were transformed to local reference frames and fine adjustments of the individual scans respectively flight strips were applied. Subsequently, the local regression planes were determined for each point of the point clouds and planar features were extracted by means of the proposed approach. It turned out that even small displacements can be detected if the number of points used for the fit is enough to define a parallel but somewhat displaced plane. Smaller cracks and erosional incisions do not disturb the plane fitting, because mostly they are filtered out as outliers. A comparison of the different campaigns of the Doren site showed exciting matches of the detected geomorphic structures. Although the geomorphic structure of the Leithagebirge differs from the Doren landslide, and the scales of the two studies were also different, reliable results were achieved in both cases. Additionally, the approach turned out to be highly robust against points which were not located on the terrain. Hence, no false positives were determined within the dense vegetation above the terrain, while it was possible to cover the investigated areas completely with reliable planes. In some cases, however, some structures in the tree crowns were also recognized, but these small patches could be very well sorted out from the geomorphically relevant results. Consequently, it could be verified that a topographic surface can be properly represented by a set of distinct planar structures. Therefore, the subsequent interpretation of those planes with respect to geomorphic characteristics is acceptable. The additional in situ geological measurements verified some of our findings in the sense that similar primary directions could be found that were derived from the LiDAR data set and (Zámolyi et al., 2010, this volume). References: P. Dorninger, N. Pfeifer: "A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds"; Sensors, 8 (2008), 11; 7323 - 7343. C. Nothegger, P. Dorninger: "3D Filtering of High-Resolution Terrestrial Laser Scanner Point Clouds for Cultural Heritage Documentation"; Photogrammetrie, Fernerkundung, Geoinformation, 1 (2009), 53 - 63. A. Zámolyi, B. Székely, G. Molnár, A. Roncat, P. Dorninger, A. Pocsai, M. Wyszyski, P. Drexel: "Comparison of LiDAR derived directional topographic features with geologic field evidence: a case study of Doren landslide (Vorarlberg, Austria)"; EGU General Assembly 2010, Vienna, Austria

  8. Implications of Sponge Biodiversity Patterns for the Management of a Marine Reserve in Northern Australia

    PubMed Central

    Przeslawski, Rachel; Alvarez, Belinda; Kool, Johnathan; Bridge, Tom; Caley, M. Julian; Nichol, Scott

    2015-01-01

    Marine reserves are becoming progressively more important as anthropogenic impacts continue to increase, but we have little baseline information for most marine environments. In this study, we focus on the Oceanic Shoals Commonwealth Marine Reserve (CMR) in northern Australia, particularly the carbonate banks and terraces of the Sahul Shelf and Van Diemen Rise which have been designated a Key Ecological Feature (KEF). We use a species-level inventory compiled from three marine surveys to the CMR to address several questions relevant to marine management: 1) Are carbonate banks and other raised geomorphic features associated with biodiversity hotspots? 2) Can environmental (depth, substrate hardness, slope) or biogeographic (east vs west) variables help explain local and regional differences in community structure? 3) Do sponge communities differ among individual raised geomorphic features? Approximately 750 sponge specimens were collected in the Oceanic Shoals CMR and assigned to 348 species, of which only 18% included taxonomically described species. Between eastern and western areas of the CMR, there was no difference between sponge species richness or assemblages on raised geomorphic features. Among individual raised geomorphic features, sponge assemblages were significantly different, but species richness was not. Species richness showed no linear relationships with measured environmental factors, but sponge assemblages were weakly associated with several environmental variables including mean depth and mean backscatter (east and west) and mean slope (east only). These patterns of sponge diversity are applied to support the future management and monitoring of this region, particularly noting the importance of spatial scale in biodiversity assessments and associated management strategies. PMID:26606745

  9. Earthquake geology of Kashmir Basin and its implications for future large earthquakes

    NASA Astrophysics Data System (ADS)

    Shah, A. A.

    2013-09-01

    Two major traces of active thrust faults were identified in the Kashmir Basin (KB) using satellite images and by mapping active geomorphic features. The ~N130°E strike of the mapped thrust faults is consistent with the regional ~NE-SW convergence along the Indian-Eurasian collision zone. The ~NE dipping thrust faults have uplifted the young alluvial fan surfaces at the SW side of the KB. This created a major tectono-geomorphic boundary along the entire strike length of the KB that is characterised by (1) a low relief with sediment-filled sluggish streams to the SE and (2) an uplifted region, with actively flowing streams to the SW. The overall tectono-geomorphic expression suggests that recent activity along these faults has tilted the entire Kashmir valley towards NE. Further, the Mw 7.6 earthquake, which struck Northern Pakistan and Kashmir on 8 October 2005, also suggests a similar strike and NE dipping fault plane, which could indicate that the KB fault is continuous over a distance of ~210 km and connects on the west with the Balakot Bagh fault. However, the geomorphic and the structural evidences of such a structure are not very apparent on the north-west, which thus suggest that it is not a contiguous structure with the Balakot Bagh fault. Therefore, it is more likely that the KB fault is an independent thrust, a possible ramp on the Main Himalayan Thrust, which has uplifting the SW portion of the KB and drowning everything to the NE (e.g. Madden et al. 2011). Furthermore, it seems very likely that the KB fault could be a right stepping segment of the Balakot Bagh fault, similar to Riasi Thrust, as proposed by Thakur et al. (2010). The earthquake magnitude is measured by estimating the fault rupture parameters (e.g. Wells and Coppersmith in Bull Seismol Soc Am 84:974-1002, 1994). Therefore, the total strike length of the mapped KB fault is ~120 km and by assuming a dip of 29° (Avouac et al. in Earth Planet Sci Lett 249:514-528, 2006) and a down-dip limit of 20 km, a Mw of 7.6 is possible on this fault.

  10. SaLEM (v1.0) - the Soil and Landscape Evolution Model (SaLEM) for simulation of regolith depth in periglacial environments

    NASA Astrophysics Data System (ADS)

    Bock, Michael; Conrad, Olaf; Günther, Andreas; Gehrt, Ernst; Baritz, Rainer; Böhner, Jürgen

    2018-04-01

    We propose the implementation of the Soil and Landscape Evolution Model (SaLEM) for the spatiotemporal investigation of soil parent material evolution following a lithologically differentiated approach. Relevant parts of the established Geomorphic/Orogenic Landscape Evolution Model (GOLEM) have been adapted for an operational Geographical Information System (GIS) tool within the open-source software framework System for Automated Geoscientific Analyses (SAGA), thus taking advantage of SAGA's capabilities for geomorphometric analyses. The model is driven by palaeoclimatic data (temperature, precipitation) representative of periglacial areas in northern Germany over the last 50 000 years. The initial conditions have been determined for a test site by a digital terrain model and a geological model. Weathering, erosion and transport functions are calibrated using extrinsic (climatic) and intrinsic (lithologic) parameter data. First results indicate that our differentiated SaLEM approach shows some evidence for the spatiotemporal prediction of important soil parental material properties (particularly its depth). Future research will focus on the validation of the results against field data, and the influence of discrete events (mass movements, floods) on soil parent material formation has to be evaluated.

  11. Geomorphology, active duplexing, and earthquakes within the Central Himalayan seismic gap

    NASA Astrophysics Data System (ADS)

    Morell, K. D.; Sandiford, M.; Rajendran, C. C.; Rajendran, K.

    2013-12-01

    The ~500 km long 'Central Himalayan seismic gap' of northwest India, is the largest section of the Himalaya that has not experienced a very large earthquake (Mw > 7.0) in the past 200-500 years. The slip deficit associated with this seismic quiescence has led many to suggest that the region is overdue for a great earthquake (Mw >8), an event which could be potentially devastating given the region's high population (>10 million). Despite the recognition that the region is under considerable seismic risk, the geometry of active fault structures that could potentially fail during large earthquakes remains poorly defined. This has arisen, to a certain extent, because moderate earthquakes, such as the Mw 6.3 1999 event near the city of Chamoli and the Mw 7.0 1991 earthquake near Uttarkashi (responsible for ~1000 deaths), have not produced obvious surface ruptures and do not appear to coincide with surficially mapped faults. We present new geomorphic and river longitudinal profile data that define a prominent ~400 km long distinctive geomorphic transition at the base of the high Himalaya in the seismic gap, defined as a sharp dividing line north of which there are significant increases in normalized river steepness (ksn), hillslope angles, and local relief. We interpret the morphologic changes across the geomorphic boundary to be produced due to a northward increase in rock uplift rate, given that the boundary cross-cuts mapped structures and lithologic contacts, yet coincides exactly with: 1) the axial trace of the geophysically-imaged ramp-flat transition in the Main Himalayan Thrust, 2) significant northward increases in instrumentally-recorded seismicity, and 3) an order of magnitude change in published Ar-Ar bedrock cooling ages. The available datasets suggest that such an increase in rock uplift rate is best explained by a ~400 km long by ~50 km wide active duplex along the Main Himalayan Thrust ramp, with the leading edge of the duplex giving rise to the geomorphic boundary. The observation that the geomorphic boundary of the seismic gap lies ~350 km to the west of the analogous PT2 of Central Nepal (yet there is no such well-defined physiographic transition in the region between them) suggests that the changing along-strike character of the middle/high Himalaya transition could reflect changes, on the order of 102 km, in the geometry and/or kinematics of the plate boundary thrust along-strike. These along-strike variations could segment the plate boundary and effectively restrict the locality and rupture length of large earthquakes. This hypothesis is supported by historical records of seismicity which indicate that the Mw ~7.5 earthquake of 1803 occurred roughly within the section of the seismic gap containing the geomorphic boundary, and the Mw ~7.7 earthquake of 1833 ruptured the ~350 km long section of the plate boundary occupied by the Nepalese PT2.

  12. Bankfull characteristics of Ohio streams and their relation to peak streamflows

    USGS Publications Warehouse

    Sherwood, James M.; Huitger, Carrie A.

    2005-01-01

    Regional curves, simple-regression equations, and multiple-regression equations were developed to estimate bankfull width, bankfull mean depth, bankfull cross-sectional area, and bankfull discharge of rural, unregulated streams in Ohio. The methods are based on geomorphic, basin, and flood-frequency data collected at 50 study sites on unregulated natural alluvial streams in Ohio, of which 40 sites are near streamflow-gaging stations. The regional curves and simple-regression equations relate the bankfull characteristics to drainage area. The multiple-regression equations relate the bankfull characteristics to drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope. Average standard errors of prediction for bankfull width equations range from 20.6 to 24.8 percent; for bankfull mean depth, 18.8 to 20.6 percent; for bankfull cross-sectional area, 25.4 to 30.6 percent; and for bankfull discharge, 27.0 to 78.7 percent. The simple-regression (drainage-area only) equations have the highest average standard errors of prediction. The multiple-regression equations in which the explanatory variables included drainage area, main-channel slope, main-channel elevation index, median bed-material particle size, bankfull cross-sectional area, and local-channel slope have the lowest average standard errors of prediction. Field surveys were done at each of the 50 study sites to collect the geomorphic data. Bankfull indicators were identified and evaluated, cross-section and longitudinal profiles were surveyed, and bed- and bank-material were sampled. Field data were analyzed to determine various geomorphic characteristics such as bankfull width, bankfull mean depth, bankfull cross-sectional area, bankfull discharge, streambed slope, and bed- and bank-material particle-size distribution. The various geomorphic characteristics were analyzed by means of a combination of graphical and statistical techniques. The logarithms of the annual peak discharges for the 40 gaged study sites were fit by a Pearson Type III frequency distribution to develop flood-peak discharges associated with recurrence intervals of 2, 5, 10, 25, 50, and 100 years. The peak-frequency data were related to geomorphic, basin, and climatic variables by multiple-regression analysis. Simple-regression equations were developed to estimate 2-, 5-, 10-, 25-, 50-, and 100-year flood-peak discharges of rural, unregulated streams in Ohio from bankfull channel cross-sectional area. The average standard errors of prediction are 31.6, 32.6, 35.9, 41.5, 46.2, and 51.2 percent, respectively. The study and methods developed are intended to improve understanding of the relations between geomorphic, basin, and flood characteristics of streams in Ohio and to aid in the design of hydraulic structures, such as culverts and bridges, where stability of the stream and structure is an important element of the design criteria. The study was done in cooperation with the Ohio Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration.

  13. Integrating geology and geomorphology; the key to unlocking Quaternary tectonic framework of the San Andreas Fault zone in the San Gorgonio Pass region, southern California

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.

    2012-12-01

    The San Gorgonio Pass (SGP) region of southern California is a locus of long-continued Quaternary deformation and landscape evolution within a structural complexity, colloquially referred to as a knot in the San Andreas Fault (SAF) zone. The geomorphology of the SGP region reflects the complex history of geologic events involved in the formation and resolution of this structural knot. We recognize five morphologically distinct terrains in and around SGP; the San Gorgonio Block (SGB), Yucaipa Ridge (YRB), Pisgah Peak (PPB), Kitching Peak (KPB), and Devil's Garden blocks (DGB). Morphometric analyses, including drainage density, hypsometry, topographic profiles, and stream-power measurements and discontinuities, consistently demonstrate distinctions between the blocks. Our focus in this study is on the KPB and PPB terrains, both developed in crystalline rocks of San Gabriel Mountains type. KPB is bounded on the north by the Mission Creek strand of the SAF and on the east by the Whitewater Fault; PPB is bounded on the north by the San Bernardino strand of the SAF, which continues southeastward into the core of SGP and there separates PPB from KPB. KPB has significantly greater topographic relief than PPB, and the two blocks have internal morphometric and geologic characteristics that differ significantly. Canyons in KPB lack thick Quaternary alluvial fills, and hillslopes have shed numerous bedrock landslides. Canyons in PPB contain large volumes of Middle-Pleistocene through Holocene alluvium, associated with areally extensive relict geomorphic surfaces. We use the geomorphic differences, along with geologic factors, to reconstruct tectonically driven landscape evolution over the last 100-200 Ka years. The KPB and PPB both are bounded southward by contractional structures of the San Gorgonio Pass Fault zone (SGPFZ), but geologic complexity within this zone differs markedly south of each block. South of KPB, the SGPFZ consists of multiple thrust-fault strands, some older than 500 ka, has a wide spatial footprint along a N-S axis, and Holocene alluvium is disrupted by numerous fault scarps. By contrast, south of PPB the SGPFZ consists of fewer thrust-fault strands, has a relatively narrow footprint, and faults breaking Holocene deposits are uncommon. The San Bernardino strand of the SAF intersects the SGPFZ at about the boundary between these two domains. Morphometric data indicate that the KPB has undergone significantly greater uplift than the PPB since inception of the San Bernardino strand, proposed by Matti and Morton (1993) to have occurred at ~125ka. Age estimates associated with the PPB and DGB allow us to broadly estimate relative uplift rates. Drainage reconstruction of the Whitewater River and its tributaries across the YRB likewise allow us to validate and refine the uplift estimated by Spotila and others (2001). YRB has been uplifted relative to SGB since the inception of the Mill Creek Strand of the SAF.

  14. Geomorphic Responses to Stream Channel Restoration at Minebank Run, Baltimore County, Maryland, 2002--2008

    EPA Science Inventory

    Data collected from 2002 through 2008 were used to assess geomorphic characteristics and geomorphic changes over time in a selected reach of Minebank Run, a small urban watershed near Towson, Maryland, prior to and after its physical restoration in 2004 and 2005. Data collected ...

  15. The Promise for Geomorphic Discovery in the South.

    ERIC Educational Resources Information Center

    Mossa, Joann

    1998-01-01

    Presents an overview of current geomorphic research in the southern United States. Conveys that the limited historical effort offers both challenges and opportunities for conducting geomorphic work in the region; much is unknown about these unique landscapes. States applied and theoretical geomorphology will benefit the society and future of the…

  16. Geomorphic Classification and Assessment of Channel Dynamics in the Missouri National Recreational River, South Dakota and Nebraska

    USGS Publications Warehouse

    Elliott, Caroline M.; Jacobson, Robert B.

    2006-01-01

    A multiscale geomorphic classification was established for the 39-mile, 59-mile, and adjacent segments of the Missouri National Recreational River administered by the National Park Service in South Dakota and Nebraska. The objective of the classification was to define naturally occurring clusters of geomorphic characteristics that would be indicative of discrete sets of geomorphic processes, with the intent that such a classification would be useful in river-management and rehabilitation decisions. The statistical classification was based on geomorphic characteristics of the river collected from 1999 orthophotography and the persistence of classified units was evaluated by comparison with similar datasets for 2003 and 2004 and by evaluating variation of bank erosion rates by geomorphic class. Changes in channel location and form were also explored using imagery and maps from 1993-2004, 1941 and 1894. The multivariate classification identified a hierarchy of naturally occurring clusters of reach-scale geomorphic characteristics. The simplest level of the hierarchy divides the river from segments into discrete reaches characterized by single and multithread channels and additional hierarchical levels established 4-part and 10-part classifications. The classification system presents a physical framework that can be applied to prioritization and design of bank stabilization projects, design of habitat rehabilitation projects, and stratification of monitoring and assessment sampling programs.

  17. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald; Keesstra, Saskia; Maroulis, Jerry

    2017-04-01

    Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to emerging coupling relationships between them. To better understand system complexity and system response to change, connectivity has become an important research paradigm within various disciplines including geomorphology, hydrology and ecology. With the proposed conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Underpinned by case study examples, the presented conceptual framework is able to explain how geomorphic response of fluvial systems to human disturbance is determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.

  18. Global seafloor geomorphic features map: applications for ocean conservation and management

    NASA Astrophysics Data System (ADS)

    Harris, P. T.; Macmillan-Lawler, M.; Rupp, J.; Baker, E.

    2013-12-01

    Seafloor geomorphology, mapped and measured by marine scientists, has proven to be a very useful physical attribute for ocean management because different geomorphic features (eg. submarine canyons, seamounts, spreading ridges, escarpments, plateaus, trenches etc.) are commonly associated with particular suites of habitats and biological communities. Although we now have better bathymetric datasets than ever before, there has been little effort to integrate these data to create an updated map of seabed geomorphic features or habitats. Currently the best available global seafloor geomorphic features map is over 30 years old. A new global seafloor geomorphic features map (GSGM) has been created based on the analysis and interpretation of the SRTM (Shuttle Radar Topography Mission) 30 arc-second (~1 km) global bathymetry grid. The new map includes global spatial data layers for 29 categories of geomorphic features, defined by the International Hydrographic Organisation. The new geomorphic features map will allow: 1) Characterization of bioregions in terms of their geomorphic content (eg. GOODS bioregions, Large Marine Ecosystems (LMEs), ecologically or biologically significant areas (EBSA)); 2) Prediction of the potential spatial distribution of vulnerable marine ecosystems (VME) and marine genetic resources (MGR; eg. associated with hydrothermal vent communities, shelf-incising submarine canyons and seamounts rising to a specified depth); and 3) Characterization of national marine jurisdictions in terms of their inventory of geomorphic features and their global representativeness of features. To demonstrate the utility of the GSGM, we have conducted an analysis of the geomorphic feature content of the current global inventory of marine protected areas (MPAs) to assess the extent to which features are currently represented. The analysis shows that many features have very low representation, for example fans and rises have less than 1 per cent of their total area inside existing protected areas. The ';best' represented features, trenches and troughs, have only 8.7 and 5.9 per cent respectively of their total area inside existing protected areas. Seamounts have only 2.8% of their area within existing MPAs. Diagram showing the hierarchy of geomorphic features mapped in the present study. Base layer features are the shelf, slope, abyss and hadal zones. The occurrence of some features is confined to one of the base layers, whereas the occurrence of other features is confined to two or more base layers, as illustrated by shading. Basins and sills are the only features that occur over all four base layers.

  19. Controls on large landslide distribution and implications for the geomorphic evolution of the southern interior Columbia River basin

    USGS Publications Warehouse

    Safran, E.B.; Anderson, S.W.; Mills-Novoa, M.; House, P.K.; Ely, L.

    2011-01-01

    Large landslides (>0.1 km2) are important agents of geomorphic change. While most common in rugged mountain ranges, large landslides can also be widespread in relatively low-relief (several 100 m) terrain, where their distribution has been relatively little studied. A fuller understanding of the role of large landslides in landscape evolution requires addressing this gap, since the distribution of large landslides may affect broad regions through interactions with channel processes, and since the dominant controls on landslide distribution might be expected to vary with tectonic setting. We documented >400 landslides between 0.1 and ~40 km2 across ~140,000 km2 of eastern Oregon, in the semiarid, southern interior Columbia River basin. The mapped landslides cluster in a NW-SE-trending band that is 50-100 km wide. Landslides predominantly occur where even modest local relief (~100 m) exists near key contacts between weak sedimentary or volcaniclastic rock and coherent cap rock. Fault density exerts no control on landslide distribution, while ~10% of mapped landslides cluster within 3-10 km of mapped fold axes. Landslide occurrence is curtailed to the NE by thick packages of coherent basalt and to the SW by limited local relief. Our results suggest that future mass movements will localize in areas stratigraphically preconditioned for landsliding by a geologic history of fluviolacustrine and volcaniclastic sedimentation and episodic capping by coherent lava flows. In such areas, episodic landsliding may persist for hundreds of thousands of years or more, producing valley wall slopes of ~7??-13?? and impacting local channels with an evolving array of mass movement styles. ?? 2011 Geological Society of America.

  20. Landscape evolution on Mars - A model of aeolian denudation in Gale Crater

    NASA Astrophysics Data System (ADS)

    Day, M. D.; Kocurek, G.; Grotzinger, J. P.

    2015-12-01

    Aeolian erosion has been the dominant geomorphic agent to shape the surface of Mars for the past ~3.5 billion years. Although individual geomorphic features evidencing aeolian activity are well understood (e.g., yardangs, dune fields, and wind streaks), landscapes formed by aeolian erosion remain poorly characterized. Intra-crater sedimentary mounds are hypothesized to have formed by wind deflation of craters once filled with flat-lying strata, and, therefore, should be surrounded by landscapes formed by aeolian erosion. Here we present a landscape evolution model that provides both an initial characterization of aeolian landscapes, and a mechanism for large-scale excavation. Wind excavation of Gale Crater to form the 5 km high Mount Sharp would require removal of 6.4 x 104 km3 of sediment. Imagery in Gale Crater from satellites and the Mars Science Laboratory rover Curiosity shows a surface characterized by first-cycle aeolian erosion of bedrock. The overall landscape is interpreted to represent stages in a cycle of aeolian deflation and excavation, enhanced by physical weathering (e.g., thermal fracturing, cratering). Initial wind erosion of bedrock is enhanced along fractures, producing retreating scarps. Underlying less resistant layers then erode faster than the armoring cap rock, increasing relief in scarps to form retreating mesas. As scarp retreat continues, boulders from the armoring cap unit break away and cover the hillslopes of less resistant material below the scarps. Eventually all material from the capping unit is eroded away and a boulder-capped hill remains. Winnowing of fine material flattens hillslope topography, leaving behind a desert pavement. Over long enough time, this pavement is breached and the cycle begins anew. This cycle of landscape denudation by the wind is similar to that of water, but lacks characteristic subaqueous features such as dendritic drainage networks.

  1. Implications of sediment redistribution on modeled sea-level changes over millennial timescales

    NASA Astrophysics Data System (ADS)

    Ferrier, Ken

    2016-04-01

    Sea level is a critical link in feedbacks among topography, tectonics, and climate. Over millennial timescales, changes in sea level reshape river networks, regulate organic carbon burial, influence sediment deposition, and set moving boundary conditions for landscape evolution. Sea-level changes influence tectonics by regulating rates and patterns of erosion and deposition, which perturb the surface loads that drive geodynamic processes at depth. These interactions are complex because sea-level changes are influenced by the geomorphic processes that they themselves modify, since sediment redistribution deforms the gravitational and crustal elevation fields that define sea level. A recent advance in understanding the coupling between sea level, tectonics, and topography was the incorporation of sediment redistribution into a gravitationally self-consistent sea-level model, which permits the computation of sea-level responses to erosion and deposition (Dalca et al., 2013, Geophysical Journal International). Here I use this model to quantify changes in sea level resulting from the erosion of some of the most rapidly eroding sites on Earth and the deposition of sediment offshore. These model results show that the sea-level fingerprints of sediment redistribution are strongly variable in space, and that they can represent a significant component of the total sea level change since the last interglacial. This work provides a basis for understanding a fundamental driver of landscape evolution at some of Earth's most geomorphically dynamic sites, and thus aids investigation of the couplings among tectonics, climate, and topography. References Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.

  2. UTILIZATION OF IN-STREAM STRUCTURES FOR WET MEADOW STABILIZATION IN THE CENTRAL GREAT BASIN: A PROCESS-ORIENTED APPROACH

    EPA Science Inventory

    Wet meadows, riparian corridor phreatophyte assemblages, and high-altitude spring-fed aspen meadows all serve as important habitats in the Great Basin of central Nevada. Geomorphic and biotic characterization of the wet meadow complexes demonstrates that most terminate downvalle...

  3. Linking biogeomorphic feedbacks from ecosystem engineer to landscape scale: a panarchy approach

    NASA Astrophysics Data System (ADS)

    Eichel, Jana

    2017-04-01

    Scale is a fundamental concept in both ecology and geomorphology. Therefore, scale-based approaches are a valuable tool to bridge the disciplines and improve the understanding of feedbacks between geomorphic processes, landforms, material and organisms and ecological processes in biogeomorphology. Yet, linkages between biogeomorphic feedbacks on different scales, e.g. between ecosystem engineering and landscape scale patterns and dynamics, are not well understood. A panarchy approach sensu Holling et al. (2002) can help to close this research gap and explain how structure and function are created in biogeomorphic ecosystems. Based on results from previous biogeomorphic research in Turtmann glacier foreland (Switzerland; Eichel, 2017; Eichel et al. 2013, 2016), a panarchy concept is presented for lateral moraine slope biogeomorphic ecosystems. It depicts biogeomorphic feedbacks on different spatiotemporal scales as a set of nested adaptive cycles and links them by 'remember' and 'revolt' connections. On a small scale (cm2 - m2; seconds to years), the life cycle of the ecosystem engineer Dryas octopetala L. is considered as an adaptive cycle. Biogeomorphic succession within patches created by geomorphic processes represents an intermediate scale adaptive cycle (m2 - ha, years to decades), while geomorphic and ecologic pattern development at a landscape scale (ha - km2, decades to centuries) can be illustrated by an adaptive cycle of ‚biogeomorphic patch dynamics' (Eichel, 2017). In the panarchy, revolt connections link the smaller scale adaptive cycles to larger scale cycles: on lateral moraine slopes, the development of ecosystem engineer biomass and cover controls the engineering threshold of the biogeomorphic feedback window (Eichel et al., 2016) and therefore the onset of the biogeomorphic phase during biogeomorphic succession. In this phase, engineer patches and biogeomorphic structures can be created in the patch mosaic of the landscape. Remember connections link larger scale adaptive cycles to smaller scale cycles: configuration and properties of the lateral moraine slope patch mosaic control patch recolonization during biogeomorphic succession, while the patch-internal disturbance regime determines when the engineer can establish (establishment threshold of the biogeomorphic feedback window). Jointly, biogeomorphic feedback adaptive cycles and their connections in the panarchy create structure and function in the lateral moraine slope biogeomorphic ecosystem. Thus, by linking feedbacks on different spatiotemporal scales in biogeomorphic ecosystems and explaining the creation of ecosystem structure and function, the panarchy concept represents a useful tool for future biogeomorphic research. Eichel, J. 2017. Biogeomorphic dynamics in the Turtmann glacier forefield, Switzerland. PhD thesis, University of Bonn. Eichel J, Corenblit D, Dikau R. 2016. Conditions for feedbacks between geomorphic and vegetation dynamics on lateral moraine slopes: a biogeomorphic feedback window. Earth Surface Processes and Landforms 41: 406-419. DOI: 10.1002/esp.3859 Eichel J, Krautblatter M, Schmidtlein S, Dikau R. 2013. Biogeomorphic interactions in the Turtmann glacier forefield, Switzerland. Geomorphology 201 : 98-110. DOI: 10.1016/j.geomorph.2013.06.012 Holling CS, Gunderson LH, Peterson GD. 2002. Sustainability and Panarchies. In Panarchy: Understanding Transformations in Human and Natural Systems , . Island Press: Washington, D.C.; 63-102.

  4. Changes in structure, composition, and nutrients during 15 years of hurricane-induced succession in a subtropical wet forest in Puerto Rico

    Treesearch

    Tamara Heartsill Scalley; Frederick N. Scatena; Ariel E. Lugo; Samuel Moya; Carlos R. Estrada Ruiz

    2010-01-01

    The trajectory of hurricane-induced succession was evaluated in a network of forest plots measured immediately before and 3 mo, 5, 10, and 15 yr after the direct impact of a Category 4 hurricane. Comparisons of forest structure, composition, and aboveground nutrients pools were made through time, and between species, lifehistory groups and geomorphic settings. The...

  5. Utilizing Undergraduate Research Projects to Assist in the Development of Interpretive Resources at City of Rocks National Reserve and Castle Rocks State Park, Idaho

    NASA Astrophysics Data System (ADS)

    Pogue, K. R.

    2003-12-01

    In the Albion Mountains of southern Idaho, granitic rock of the 28 Ma Almo pluton and 2.5 Ga Green Creek Complex of southern Idaho has weathered and eroded into a spectacular landscape of towers and spires. These unusual landforms impressed travelers on the California Trail who compared their shapes to cathedrals, castles, pyramids, and other man-made structures. The region eventually became know as the City of Rocks and was a local scenic attraction until City of Rocks National Reserve (CRNR) was established in 1989 to provide more effective management for the main group of spires which were drawing an increasing number of tourists. In 2003, Castle Rocks State Park (CRSP) was created to provide both access and protection to a less extensive group of spires located a few kilometers north of the City of Rocks. Interpretive resources at CRNR have generally focused on the human history of the region, particularly its importance to the California Trail, and have largely neglected the fascinating geologic story. Although the general framework of the geology of the Albion Mountains is reasonably well known, this "big-picture" geology does little to answer many of the questions posed by the average visitor. During the summer of 2001, a Keck Geology Consortium undergraduate research project was conducted in CRNR to seek answers to these types of questions. CRNR staff could then utilize the students' research to develop interpretive resources. Six students and two professors spent 4 weeks in the field investigating the structures and processes that have contributed to the architecture of the City of Rocks. The general geomorphology of the Albion Mountains was the focus of a Keck Geology Consortium undergraduate research project conducted during the summer of 2002. Nine students and three professors studied the glacial and landslide history of the highest peaks and the geomorphic evolution of the proposed CRSP. Students working in the Castle Rocks had 2 main goals: 1) assisting park management in the recognition of geologic features that are exceptional, unique, or fragile, and 2) investigating processes responsible for the large- and small-scale geomorphic evolution of the spires. These students were able to document evidence for the complex multi-stage evolution of the Big Cove, the basin that hosts Castle Rocks. Episodic exhumation of the spires is almost certainly related to variations in late Quaternary climate recorded in lake cores obtained by other students studying glaciation. The projects as a whole have produced extended abstracts published by the Keck Consortium and senior theses. A simplified geologic map of the CRNR and CRSP, as well as other maps, diagrams, and photographs suitable for use by the general public have been provided to park management. The staff of CRSP was also provided with GPS waypoints and aerial photographs detailing the locations of important or sensitive geologic features. A proposal has been made to CRNR for a self-guided interpretive geologic trail and road log. The Idaho Geological Survey has agreed to publish a geologic guidebook to the area that will incorporate many of the results of the Keck projects.

  6. Yardang geometries in the Qaidam Basin and their controlling factors

    NASA Astrophysics Data System (ADS)

    Hu, Chengqing; Chen, Ninghua; Kapp, Paul; Chen, Jianyu; Xiao, Ancheng; Zhao, Yanhui

    2017-12-01

    The hyperarid Qaidam Basin features extensive fields of yardangs (covering an area of 40,000km2) sculpted in tectonically folded sedimentary rocks. We extracted the geometries of 16,749 yardangs, such as length-to-width ratio (L/W), spatial density, and spacing, from multi-source remote sensing data provided by Google Earth™. We classified the yardangs into four types based on their L/W: short-axis (1-2), whale-back (2-6), hogsback (6-10) and long-ridge (10 - 210). We interpreted the yardang geometries in the context of their geologic setting (bedding orientation, location along anticline crests or syncline troughs, and lithologic heterogeneity). Our results show that the yardang geometries in the Qaidam Basin are mainly controlled by the structural geology and rheology of the sedimentary rocks (e.g., strike and dip of bedding, the presence or absence of interbedded soft and hard beds, and structural position with folds), the angle between geomorphically-effective wind directions and the strike of bedding, and the relative cumulative wind shear force where two geomorphically-effective wind directions are present. Our analysis revealed the following: 1) nearly 69% of the yardangs with long-ridge and hogsback geometries are distributed in syncline areas whereas 73% of the yardangs with short-axis geometries are distributed in anticline areas; 2) the L/W ratio of yardangs exposed along the windward limbs of anticlines is lower than that of yardangs exposed along the leeward limbs; and 3) in the westernmost parts of the basin, yardangs are locally sculpted into mounds by two geomorphically-effective wind directions.

  7. A model for the hydrologic and climatic behavior of water on Mars

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.

    1993-01-01

    An analysis is carried out of the hydrologic response of a water-rich Mars to climate change and to the physical and thermal evolution of its crust, with particular attention given to the potential role of the subsurface transport, assuming that the current models of insolation-driven change describe reasonably the atmospheric leg of the planet's long-term hydrologic cycle. Among the items considered are the thermal and hydrologic properties of the crust, the potential distribution of ground ice and ground water, the stability and replenishment of equatorial ground ice, basal melting and the polar mass balance, the thermal evolution of the early cryosphere, the recharge of the valley networks and outflow, and several processes that are likely to drive the large-scale vertical and horizontal transport of H2O within the crust. The results lead to the conclusion that subsurface transport has likely played an important role in the geomorphic evolution of the Martian surface and the long-term cycling of H2O between the atmosphere, polar caps, and near-surface crust.

  8. The role of thermal vapor diffusion in the subsurface hydrologic evolution of Mars

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.

    1991-01-01

    The hydrologic response of groundwater to the thermal evolution of the early martian crust is considered. When a temperature gradient is present in a moist porous medium, it gives rise to a vapor-pressure gradient that drives the diffusion of water vapor from regions of high to low temperature. By this process, a geothermal gradient as small as 15 K/km could drive the vertical transport of 1 km of water to the freezing front at the base of the martian crysophere every 10 exp 6-10 exp 7 years, or the equivalent of about 100-1000 km of water over the course of martian geologic history. Models of the thermal history of Mars suggest that this thermally-driven vapor flux may have been as much as 3-5 times greater in the past. The magnitude of this transport suggests that the process of geothermally-induced vapor diffusion may have played a critical role in the initial emplacement of ground ice and the subsequent geomorphic and geochemical evolution of the martian crust.

  9. The Importance of Long Wavelength Processes in Generating Landscapes

    NASA Astrophysics Data System (ADS)

    Roberts, Gareth G.; White, Nicky

    2017-04-01

    The processes responsible for generating landscapes observed on Earth and elsewhere are poorly understood. For example, the relative importance of long (>10 km) and short wavelength erosional processes in determining the evolution of topography is debated. Much work has focused on developing an observational and theoretical framework for evolution of longitudinal river profiles (i.e. elevation as a function of streamwise distance), which probably sets the pace of erosion in low-mid latitude continents. A large number of geomorphic studies emphasis the importance of short wavelength processes in sculpting topography (e.g. waterfall migration, interaction of biota and the solid Earth, hill slope evolution). However, it is not clear if these processes scale to generate topography observed at longer (>10 km) wavelengths. At wavelengths of tens to thousands of kilometers topography is generated by modification of the lithosphere (e.g. shortening, extension, flexure) and by sub-plate processes (e.g. dynamic support). Inversion of drainage patterns suggests that uplift rate histories can be reliably recovered at these long wavelengths using simple erosional models (e.g. stream power). Calculated uplift and erosion rate histories are insensitive to short wavelength (<10 km) or rapid (<100 ka) environmental changes (e.g. biota, precipitation, lithology). One way to examine the relative importance of short and long wavelength processes in generating topography is to transform river profiles into distance-frequency space. We calculate the wavelet power spectrum of a suite of river profiles and examine their spectral content. Big rivers in North America (e.g. Colorado, Rio Grande) and Africa (e.g. Niger, Orange) have a red noise spectrum (i.e. power inversely proportional to wavenumber-squared) at wavelengths > 100 km. More than 90% of river profile elevations in our inventory are determined at these wavelengths. At shorter wavelengths spectra more closely resemble pink noise (power inversely proportional to wavenumber). These observations suggest that short wavelength processes do not simply scale to generate the long wavelength changes in elevation. Instead we suggest that long wavelength processes (e.g. regional uplift, knickzone migration) determine the shape and evolution of nearly all topography. These results suggest that the erosional complexity observed in local geomorphic studies and the relative simplicity of erosional models required to fit continental-scale drainage patterns are not mutually exclusive. Rather that the problem of fluvial erosion is being tackled at different and probably unrelated scales.

  10. A fast, parallel algorithm to solve the basic fluvial erosion/transport equations

    NASA Astrophysics Data System (ADS)

    Braun, J.

    2012-04-01

    Quantitative models of landform evolution are commonly based on the solution of a set of equations representing the processes of fluvial erosion, transport and deposition, which leads to predict the geometry of a river channel network and its evolution through time. The river network is often regarded as the backbone of any surface processes model (SPM) that might include other physical processes acting at a range of spatial and temporal scales along hill slopes. The basic laws of fluvial erosion requires the computation of local (slope) and non-local (drainage area) quantities at every point of a given landscape, a computationally expensive operation which limits the resolution of most SPMs. I present here an algorithm to compute the various components required in the parameterization of fluvial erosion (and transport) and thus solve the basic fluvial geomorphic equation, that is very efficient because it is O(n) (the number of required arithmetic operations is linearly proportional to the number of nodes defining the landscape), and is fully parallelizable (the computation cost decreases in a direct inverse proportion to the number of processors used to solve the problem). The algorithm is ideally suited for use on latest multi-core processors. Using this new technique, geomorphic problems can be solved at an unprecedented resolution (typically of the order of 10,000 X 10,000 nodes) while keeping the computational cost reasonable (order 1 sec per time step). Furthermore, I will show that the algorithm is applicable to any regular or irregular representation of the landform, and is such that the temporal evolution of the landform can be discretized by a fully implicit time-marching algorithm, making it unconditionally stable. I will demonstrate that such an efficient algorithm is ideally suited to produce a fully predictive SPM that links observationally based parameterizations of small-scale processes to the evolution of large-scale features of the landscapes on geological time scales. It can also be used to model surface processes at the continental or planetary scale and be linked to lithospheric or mantle flow models to predict the potential interactions between tectonics driving surface uplift in orogenic areas, mantle flow producing dynamic topography on continental scales and surface processes.

  11. Testing Predictions of a Landscape Evolution Model Using the Dragon’s Back Pressure Ridge as a Natural Experiment

    NASA Astrophysics Data System (ADS)

    Perignon, M. C.; Tucker, G. E.; Hilley, G. E.; Arrowsmith, R.

    2009-12-01

    Landscape evolution models use mass transport rules to simulate the temporal development of topography over timescales too long for humans to observe. As such, these models are difficult to test using the decadal time-scale observations of topographic change that can be directly measured. In contrast, natural systems in which driving forces, boundary conditions, and timing of landscape evolution over millennial time-scales can be well constrained may be used to test the ability of mathematical models to reproduce various attributes of the observed topography. The Dragon’s Back pressure ridge, a 4km x 0.5 km x 100 m high area of elevated topography elongate parallel to the south-central San Andreas fault (SAF) in California, serves as a natural laboratory for studying how the timing and spatial distribution of uplift affects patterns of erosion and topography. Geologic mapping and geophysical studies show that, at this location, the Pacific plate is forced over a relatively stationary shallow discontinuity in the SAF, resulting in local uplift. Continued right-lateral motion along the fault results in the movement of material though the uplift zone at the SAF slip rate of 35 mm/yr. This allows for the substitution of space for time when observing topographic change, and can be used to constrain the tectonic conditions to which the surface processes responded and developed the resulting landscape. We used the CHILD model of landscape evolution to recreate the Dragon’s Back pressure ridge system in order to test the reliability of the model predictions and determine the necessary and sufficient conditions to explain the observed topography. To do this, we first ran a Monte Carlo simulation in which we varied the model inputs within a range of plausible values. We then compared the model results with LiDAR topography from the Dragon’s Back pressure ridge to determine which combinations of input parameters best reproduced the observed topography and how well it was reproduced. Our simulations show a nonlinear geomorphic response to tectonic processes, suggesting that landscape response time varies strongly with local relief. Our results demonstrate that a relatively simple combination of geomorphic transport laws, when suitably calibrated, can account for the morphology of the ridge.

  12. Late Cenozoic tephrochronology, stratigraphy, geomorphology, and neotectonics of the Western Black Mountains Piedmont, Death Valley, California: Implications for the spatial and temporal evolution of the Death Valley fault zone

    NASA Astrophysics Data System (ADS)

    Knott, Jeffrey Rayburn

    This study presents the first detailed tephrochronologic study of the central Death Valley area by correlation of a Nomlaki-like tuff (>3.35 Ma), tuffs of the Mesquite Spring family (3.1 -- 3.35 Ma), a tuff of the lower Glass Mountain family (1.86 -- 2.06 Ma), and tephra layers from the upper Glass Mountain family (0.8 -- 1.2 Ma), the Bishop ash bed (0.76 Ma), the Lava Creek B ash bed (~0.66 Ma), and the Dibekulewe ash bed (~0.51 Ma). Correlation of these tuffs and tephra layers provides the first reliable numeric-age stratigraphy for late Cenozoic alluvial fan and lacustrine deposits for Death Valley and resulted in the naming of the informal early to middle Pleistocene Mormon Ploint formation. Using the numeric-age stratigraphy, the Death Valley fault zone (DVFZ) is interpreted to have progressively stepped basinward since the late Pliocene at Mormon Point and Copper Canyon. The Mormon Point turtleback or low-angle normal fault is shown to have unequivocal late Quaternary slip at its present low angle dip. Tectonic geomorphic analysis indicates that the (DVFZ) is composed of five geomorphic segments with the most persistent segment boundaries being the en-echelon step at Mormon Point and the bedrock salient at Artists Drive. Subsequent geomorphic studies resulting from the numeric-age stratigraphy and structural relations include application of Gilberts field criteria to the benches at Mormon Point indicating that the upper bench is a lacustrine strandline and the remaining topographically-lower benches are fault scarps across the 160--185 ka lake abrasion platform. In addition, the first known application of cosmogenic 10Be and 26Al exposure dating to a rock avalanche complex south of Badwater yielded an age of 29.5 +/- 1.9 ka for the younger avalanche. The 28 meter offset of the older avalanche may be interpreted as post-160--185 ka yielding a 0.1 mm/year slip rate, or post-29.5 +/- 1.9 ka yielding a maximum slip rate of 0.9 nun/year for the DVFZ. A consequence of these studies is the hypothesis that the turtleback or low-angle normal faults represent a thermally-warped detachment fault related to the Black Mountains igneous complex and do not conform with the present domino or a rolling-hinge models of low-angle normal fault development.

  13. Development of Envelope Curves for Predicting Void Dimensions from Overturned Trees

    DTIC Science & Technology

    2014-07-01

    transport due to tree root throw: integrating tree population dynamics, wildfire, and geomorphic response (Gallaway et al. 2009...Johnson. 2009. Sediment transport due to tree root throw: Integrating tree population dynamics, wildfire and geomorphic response. Earth Surface Processes...environment, but not vegetation (Peterson and Leach 2008) ............................................................ 17 4.7 Pedologic and geomorphic impacts

  14. Combining Population Structure with Historic Abitoic Processes to Better Understand Species and Community Range Shifts in Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Graham, N. M.

    2015-12-01

    The evolution and speciation of plants is directly tied to the environment as the constrained stages of dispersal creates strong genetic differentiation among populations. This can result in differing genetic patterns between nuclear and chloroplast loci, where genes are inherited differently and dispersed via separate vectors. By developing distribution models based on genetic patterns found within a species, it is possible to begin understanding the influence of historic geomorphic and/or climatic processes on population evolution. If genetic patterns of the current range correlate with specific patterns of climate variability within the Pleistocene, it is possible that future shifts in species distribution in response to climate change can be more accurately modelled due to the historic signature that is found within inherited genes. Preliminary genetic analyses of Linanthus dichotomus, an annual herb distributed across California, suggests that the current taxonomic treatment does not accurately depict how this species is evolving. Genetic patterns of chloroplast genes suggest that populations are more correlated with biogeography than what the current nomenclature states. Additionally, chloroplast and nuclear genes show discrepancies in the dispersal across the landscape, suggesting pollinator driven gene flow overcoming seed dispersal boundaries. By comparing discrepancies between pollinator and seed induced gene flow we may be able to gain insight into historical pollinator communities within the Pleistocene. This information can then be applied to projected climate models to more accurately understand how species and/or communities will respond to a changing environment.

  15. Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius Caldera

    NASA Astrophysics Data System (ADS)

    Cioni, Raffaello; Santacroce, Roberto; Sbrana, Alessandro

    The evolution of the Somma-Vesuvius caldera has been reconstructed based on geomorphic observations, detailed stratigraphic studies, and the distribution and facies variations of pyroclastic and epiclastic deposits produced by the past 20,000years of volcanic activity. The present caldera is a multicyclic, nested structure related to the emptying of large, shallow reservoirs during Plinian eruptions. The caldera cuts a stratovolcano whose original summit was at 1600-1900m elevation, approximately 500m north of the present crater. Four caldera-forming events have been recognized, each occurring during major Plinian eruptions (18,300 BP "Pomici di Base", 8000 BP "Mercato Pumice", 3400 BP "Avellino Pumice" and AD 79 "Pompeii Pumice"). The timing of each caldera collapse is defined by peculiar "collapse-marking" deposits, characterized by large amounts of lithic clasts from the outer margins of the magma chamber and its apophysis as well as from the shallow volcanic and sedimentary units. In proximal sites the deposits consist of coarse breccias resulting from emplacement of either dense pyroclastic flows (Pomici di Base and Pompeii eruptions) or fall layers (Avellino eruption). During each caldera collapse, the destabilization of the shallow magmatic system induced decompression of hydrothermal-magmatic and hydrothermal fluids hosted in the wall rocks. This process, and the magma-ground water interaction triggered by the fracturing of the thick Mesozoic carbonate basement hosting the aquifer system, strongly enhanced the explosivity of the eruptions.

  16. Satellite images survey for the identification of the coastal sedimentary system changes and associated vulnerability along the western bay of the Gulf of Tunis (northern Africa)

    NASA Astrophysics Data System (ADS)

    Hzami, Abderraouf; Amrouni, Oula; Romanescu, Gheorghe; Constantin Stoleriu, Cristian; Mihu-Pintilie, Alin; Saâdi, Abdeljaouad

    2018-04-01

    The aim of this study consists in testing the effectiveness of satellite data in order to monitoring shoreline and sedimentary features changes, especially the rapidly changing of Gulf of Tunis coast. The study area is located in the Gulf of Tunis western bay (Southern Mediterranean Sea) which is characterized by sandy beaches of Ghar Melah and Raoued (Medjerda Delta area). The aerial photographs and satellite imageries were used for mapping the evolution of shoreline. Diachronic data (satellite imagery, aerial photography and topographic maps) were used to monitor and to quantify, the evolution of the coastal areas. These thematic data were digitally overlaid and vectorised for highlighting the shoreline changes between 1936 and 2016, in order to map the rate of erosion and accretion along the shoreline. Results show that the accretion and degradation are related to the Medjerda: change of outlet in 1973 and impoundment of the Sidi Salem dam in 1982. We found that the general trend of the coastal geomorphic processes can be monitored with satellite imageries (such as Sentinel A2, Spots 4 and 5), due to its repetitive coverage along the time and their high quality concerning the spectral contrast between land and sea areas. Improved satellite imageries with high resolution should be a valuable tool for complementing traditional methods for mapping and assessing the sedimentary structures (such as shoreline, delta, marine bars), and monitoring especially the lowlands coastal areas (slightly eroded).

  17. Recent advances in research on the aeolian geomorphology of China's Kumtagh Sand Sea

    NASA Astrophysics Data System (ADS)

    Dong, Z.; Lv, P.

    2014-02-01

    The Kumtagh Sand Sea in the hyper-arid region of northwestern China remained largely unexplored until the last decade. It deserves study due to its significance in understanding the evolution of the arid environments in northwestern China, and even central Asia. Aeolian geomorphology in the sand sea has received unprecedented study in the last decade. Encouraging advances have been made in types of aeolian landforms, geological outlines, wind systems, the formation of aeolian landforms, several unique aeolian landforms, aeolian geomorphic regionalization, aeolian geomorphological heritages and tourism development, and aeolian sand hazards and their control. These advances expand our knowledge of aeolian geomorphology.

  18. Geomorphology and Tectonics at the Intersection of Silurian and Death Valleys, Southern California - 2005 Guidebook Pacific Cell Friends of the Pleistocene

    USGS Publications Warehouse

    Miller, David M.; Valin, Zenon C.

    2007-01-01

    This publication describes results from new regional and detailed surficial geologic mapping, combined with geomorphologic, geochronologic, and tectonic studies, in Silurian Valley and Death Valley, California. The studies address a long-standing problem, the tectonic and geomorphic evolution of the intersection between three regional tectonic provinces: the eastern California shear zone, the Basin and Range region of southern Nevada and adjacent California, and the eastern Mojave Desert region. The chapters represent work presented on the 2005 Friends of the Pleistocene field trip and meeting as well as the field trip road log.

  19. The topographic signature of anthropogenic geomorphic processes

    NASA Astrophysics Data System (ADS)

    Tarolli, P.; Sofia, G.

    2014-12-01

    Within an abiotic-dominated context, geomorphologic patterns and dynamics are single expressions of trade-offs between the physical resistance forces, and the mechanical and chemical forces related to climate and erosion. Recently, however, it has become essential for the geomorphological community to take into account also biota as a fundamental geomorphologic agent acting from local to regional scales. However, while there is a recent flourishing literature about the impacts of vegetation on geomorphic processes, the study of anthropogenic pressure on geomorphology is still at its early stages. Humans are indeed among the most prominent geomorphic agents, redistributing land surface, and causing drastic changes to the geomorphic organization of the landscape (e.g. intensive agriculture, urbanization), with direct consequences on land degradation and watershed response. The reconstruction or identification of artificial or anthropogenic topographies, therefore, provides a mechanism for quantifying anthropogenic changes to the landscape systems in the context of the Anthropocene epoch. High-resolution topographic data derived from the recent remote sensing technologies (e.g. lidar, SAR, SfM), offer now new opportunities to recognize better understand geomorphic processes from topographic signatures, especially in engineered landscapes where the direct anthropic alteration of processes is significant. It is possible indeed to better recognize human-induced geomorphic and anthropogenic features (e.g. road networks, agricultural terraces), and the connected erosion. The study presented here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during urban development and help guide future research directions for development-based watershed studies. Human society is deeply affecting the environment with consequences on the landscape. It is therefore fundamental to establish greater management control over the Earth's rapidly changing ecosystems. Tarolli, P. (2014). High-resolution topography for understanding Earth surface processes: opportunities and challenges, Geomorphology, 216, 295-312, doi:10.1016/j.geomorph.2014.03.008.

  20. Geomorphic factors related to the persistence of subsurface oil from the Exxon Valdez oil spill

    USGS Publications Warehouse

    Nixon, Zachary; Michel, Jacqueline; Hayes, Miles O.; Irvine, Gail V.; Short, Jeffrey

    2013-01-01

    Oil from the 1989 Exxon Valdez oil spill has persisted along shorelines of Prince William Sound, Alaska, for more than two decades as both surface and subsurface oil residues. To better understand the distribution of persistent subsurface oil and assess the potential need for further restoration, a thorough and quantitative understanding of the geomorphic factors controlling the presence or absence of subsurface oil is required. Data on oiling and geomorphic features were collected at 198 sites in Prince William Sound to identify and quantify the relationships among these geomorphic factors and the presence and absence of persistent subsurface oil. Geomorphic factors associated with the presence of subsurface oil were initial oil exposure, substrate permeability, topographic slope, low exposure to waves, armoring on gravel beaches, tombolos, natural breakwaters, and rubble accumulations. Geomorphic factors associated with the absence of subsurface oil were impermeable bedrock; platforms with thin sediment veneer; fine-grained, well-sorted gravel beaches with no armor; and low-permeability, raised bay-bottom beaches. Relationships were found between the geomorphic and physical site characteristics and the likelihood of encountering persistent subsurface oiling at those sites. There is quantitative evidence of more complex interactions between the overall wave energy incident at a site and the presence of fine-scale geomorphic features that may have provided smaller, local wave energy sheltering of oil. Similarly, these data provide evidence for interactions between the shoreline slope and the presence of angular rubble, with decreased likelihood for encountering subsurface oil at steeply sloped sites except at high-angle sheltered rubble shoreline locations. These results reinforce the idea that the interactions of beach permeability, stability, and site-specific wave exposure are key drivers for subsurface oil persistence in exposed and intermittently exposed mixed gravel beach and rocky shoreline environments.

  1. Large-scale dam removal on the Elwha River, Washington, USA: river channel and floodplain geomorphic change

    USGS Publications Warehouse

    East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.

    2015-01-01

    As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~ 1 m (greater where pools filled), changed the river from pool–riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, ~ 1.2 million t of new sediment (~ 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along the Elwha River have important ecological implications, affecting aquatic habitat structure, benthic fauna, salmonid fish spawning and rearing potential, and riparian vegetation. The response of the river to dam removal represents a unique opportunity to observe and quantify fundamental geomorphic processes associated with a massive sediment influx, and also provides important lessons for future river-restoration endeavors.

  2. Geomorphic and hydrologic assessment of erosion hazards at the Norman municipal landfill, Canadian River floodplain, central Oklahoma

    USGS Publications Warehouse

    Curtis, Jennifer A.; Whitney, John W.

    2003-01-01

    The Norman, Oklahoma, municipal landfill closed in 1985 after 63 years of operation, because it was identified as a point source of hazardous leachate composed of organic and inorganic compounds. The landfill is located on the floodplain of the Canadian River, a sand-bed river characterized by erodible channel boundaries and by large variation in mean monthly discharges. In 1986, floodwaters eroded riprap protection at the southern end of the landfill and penetrated the landfill's clay cap, thereby exposing the landfill contents. The impact of this moderate-magnitude flood event (Q12) was the catalyst to investigate erosion hazards at the Norman landfill. This geomorphic investigation analyzed floodplain geomorphology and historical channel changes, flood-frequency distributions, an erosion threshold, the geomorphic effectiveness of discharge events, and other factors that influence erosion hazards at the landfill site. The erosion hazard at the Norman landfill is a function of the location of the landfill with respect to the channel thalweg, erosional resistance of the channel margins, magnitude and duration of discrete discharge events, channel form and hydraulic geometry, and cumulative effects related to a series of discharge events. Based on current climatic conditions and historical channel changes, a minimum erosion threshold is set at bankfull discharge (Q = 572 m3/s). The annual probability of exceeding this threshold is 0.53. In addition, this analysis indicates that peak stream power is less informative than total energy expenditures when estimating the erosion potential or geomorphic effectiveness of discrete discharge events. On the Canadian River, long-duration, moderate-magnitude floods can have larger total energy expenditures than shorter-duration, high-magnitude floods and therefore represent the most serious erosion hazard to floodplain structures.

  3. Statistical Analysis of Geomorphic, Petrographic and Structural Characteristics of the Dartmoor Tors, Southwest England

    DTIC Science & Technology

    1993-05-01

    slightly warmer than that of today, followed by periglacial removal of the weathered debris (Linton, 1955). The Dartmoor granite, which covers...and the distribution of its detritus in the sediments of southern England. Quarterly Journal of the Geological Society of London, vol. 87, pp. 62-96

  4. Vegetation-environment relationships in zero-order basins in coastal Oregon.

    Treesearch

    Chris D. Sheridan; Thomas A. Spies

    2005-01-01

    Zero-order basins, where hillslope topography converges to form drainages, are common in steep, forested landscapes but we know little about their ecological structure. We used indirect gradient analysis to characterize gradients in plant species composition and cluster analysis to characterize groups of plant species associated with specific geomorphic areas. We...

  5. Morphology and stratigraphy of small barrier-lagoon systems in Maine

    USGS Publications Warehouse

    Duffy, W.; Belknap, D.F.; Kelley, J.T.

    1989-01-01

    The coast of Maine contains over 200 individual barrier-lagoon systems, most quite small, with an aggregate length of nearly 100 km. Although they represent less than 5% of the tidally influenced coastline of Maine, they are widely distributed and occur in a variety of dynamic regimes and physiographic regions. Their morphology and backbarrier stratigraphy are different from better studied coastal plain systems, and provide important clues to the Holocene evolution of the Maine coast. In a study of geomorphic form and backbarrier stratigraphy, inlet processes and Holocene sea-level rise have been identified as the principal controls on coarse-grained barrier stratigraphy. Barriers in Maine are found in five distinct geomorphic forms, identified herein as: barrier spits, pocket barriers, double tombolos, cuspate barriers and looped barriers. The few long sandy beaches in southwestern Maine are mostly barrier spits. The remainder of the barrier types is composed primarily of gravel or mixed sand and gravel. The barriers protect a variety of backbarrier environments: fresh and brackish ponds, lagoons and fresh- and saltwater marshes. The barriers may or may not have inlets. Normal wave action, coarse-grain size and a deeply embayed coast result in barriers with steep, reflective profiles several meters above MHW. Occasional storm events completely wash over the barriers, building steep, lobate gravel fans along their landward margin. Few, if any, extensive storm layers are recognized as extending into the distal backbarrier environments, however. During sea-level rise and landward barrier retreat, this abrupt, storm-generated transition zone inters the backbarrier sediments. Statistical comparisons of barrier morphology, location and backbarrier environment type with backbarrier stratigraphy show that Holocene backbarrier stratigraphy is best predicted by the modern backbarrier environment type. This, in turn, is influenced most by the absence or presence, and long-term stability or instability of a tidal inlet. Geomorphic barrier form and location in coastal geomorphic compartments show little or no correlation with backbarrier stratigraphy. In contrast to previous classifications of barrier-lagoon systems based primarily on sandy, coastal plain examples, in Maine the shape or origin of the backbarrier system is relatively unimportant. The presence or absence of a tidal inlet is of paramount importance in shaping the Holocene stratigraphy of the backbarrier region. ?? 1989.

  6. Controls on drainage divide migration in the northern Sierras Pampeanas assessed through morphometric indicators

    NASA Astrophysics Data System (ADS)

    Seagren, E. G.; Schoenbohm, L. M.

    2017-12-01

    Drainage reorganization, primarily through progressive divide migration leading to discrete stream captures, is increasingly recognized as a common phenomenon during mountain-building events. This drainage rearrangement reflects complex interactions between tectonics, climate, and lithology, and can fundamentally change erosion and sedimentation patterns; therefore, determining the spatial extent and potential controls of divide migration is vital to understanding the topographic evolution of orogenic landscapes. Both geomorphic and morphometric evidence can be used to identify such drainage reorganization. The northern Sierras Pampeanas is an ideal location in which to study divide migration as limited glaciation and low out-of-channel erosion rates preserve evidence of reorganization. Additionally, several ranges in the region, such as Sierra de las Planchadas, exhibit geomorphic evidence of drainage rearrangement, including wind gaps and hairpin turns. Using ArcGIS, LSDTopoTools, and TopoToolbox, we conducted a systematic analysis of the spatial distribution of three morphometric indicators of divide migration: χ, Mx, and local headwater relief. Local `hotspots' undergoing drainage divide migration were identified using spatial autocorrelation and clustering methods - Gi* and Moran's I. Using spatial regression analysis, we assessed the potential controls of lithology, modern TRMM precipitation rates, and tectonics over divide migration. Preliminary results suggest broad westward migration of main drainage divides, following both the orographic precipitation gradient and regional slope.

  7. Evolution of a foredune and backshore river complex on a high-energy, drift-aligned beach

    NASA Astrophysics Data System (ADS)

    Heathfield, Derek K.; Walker, Ian J.

    2015-11-01

    This paper examines the multi-decadal evolution of a foredune and backshore river complex on a wave-dominated, drift-aligned coast at Wickaninnish Bay on southwestern Vancouver Island, British Columbia, Canada. Local shoreline positions are generally prograding seaward as fast as + 1.46 m a- 1 in response to rapid regional tectonic uplift and positive onshore sediment budgets. The northern end of the foredune system has extended rapidly alongshore in response to net northward littoral drift. Despite these net accretional responses, the beach-dune system experiences relatively frequent (return interval 1.53 years) erosive events when total water levels exceed a local erosional threshold elevation of 5.5 m above regional chart datum. Geomorphic recovery of the beach-dune system from erosive events is usually rapid (i.e., within a year) by way of high onshore sand transport and aeolian delivery to the upper beach. This response is complicated locally, however, by the influence of a backshore river that alters spatial-temporal patterns of both intertidal and supratidal erosion and deposition. Historic landscape changes and rates of shoreline positional change are derived from several years of aerial photography (1973, 1996, 2007, 2009, 2012) using the USGS Digital Shoreline Analysis System (DSAS). Significant volumetric changes are also estimated from aerial LiDAR-derived DEMs in 2005, 2009 and 2012, and related morphodynamics are interpreted using a statistically constrained geomorphic change detection method. Results suggest that supratidal bar development, overwash deposition and aeolian deposition on a low-lying supratidal platform, combined with alongshore extension of the foredune complex, is forcing Sandhill Creek to migrate northward in the direction of beach drift. In response, the river actively erodes (- 1.24 m a- 1) a bluff system landward of the channel, which generates substantial sediment volumes (- 0.137 m3 m- 2 a- 1) that feed a large intertidal braided channel and delta system. These local responses provide context for a conceptual model of the evolution of a wave-dominated, drift-aligned beach-foredune system that interacts with a backshore river. This model may provide useful information to local park managers as erosion and sedimentation hazards threaten visitor safety and park infrastructure.

  8. A Model of Beaver Meadow Complex Evolution in the Silvies River Basin, Oregon.

    NASA Astrophysics Data System (ADS)

    Nash, C.; Grant, G.; Campbell, S. D.

    2014-12-01

    There is increasing evidence to suggest that the pervasive incision seen in the American West is due, in part, to the removal of beaver (Castor canadensis) in the first half of the 19th century. New restoration strategies for these systems focus on the reintroduction of beaver and construction of beaver dam analogs. Such dams locally raise streams beds and water tables, reconnect incised channels to their former floodplains, trap sediment, increase hydraulic diversity, and promote riparian vegetation. However, the geomorphic and hydrologic impacts of both the original beaver dams and their analogs are poorly understood. Observations in the Silvies River basin in Oregon, USA - an upland, semi-arid catchment with extremely high historic beaver populations and a presently recovering population, inform a conceptual model for valley floor evolution with beaver dams. The evolution of the beaver dam complex is characterized by eight stages of morphologic adjustment: water impoundment, sediment deposition, pond filling, multi-thread meadow creation, dam breaching, channel incision, channel widening, and floodplain development. Well-constructed beaver dams, given sufficient time and sediment flux, will evolve from a series of ponds to a multi-threaded channel flowing through a wet meadow complex. If a dam in the system fails, due to overtopping, undercutting, lack of maintenance, or abandonment, the upstream channel will concentrate into a single channel and incise, followed over time by widening once critical bank heights are exceeded. From stratigraphic, dendrochronologic, and geomorphic measurements, we are constraining average timescales associated with each stage's duration and transitional period. Measured sedimentation rates behind modern beaver dam analogs on five stream systems permit calculation of sediment flux over recent time periods, and aid in developing regional rates of sediment deposition over a range of drainage areas and gradients. Stratigraphic and dendrochronologic records provide insight into rates of incision, widening, and floodplain development. These measurements are leading to an understanding of the timescales associated with each morphologic stage and transition period, as well as the long-term implications of reintroducing beaver into a wide range of stream systems.

  9. Kinematic evolution of the Maacama Fault Zone, Northern California Coast Ranges

    NASA Astrophysics Data System (ADS)

    Schroeder, Rick D.

    The Maacama Fault Zone (MFZ) is a major component of the Pacific-North American transform boundary in northern California, and its distribution of deformation and kinematic evolution defines that of a young continental transform boundary. The USGS Quaternary database (2010) currently defines the MFZ as a relatively narrow fault zone; however, a cluster analysis of microearthquakes beneath the MFZ defines a wider fault zone, composed of multiple seismogenically active faults. The surface projection of best-fit tabular zones through foci clusters correlates with previously interpreted faults that were assumed inactive. New investigations further delineate faults within the MFZ based on geomorphic features and shallow resistivity surveys, and these faults are interpreted to be part of several active pull-apart fault systems. The location of faults and changes in their geometry in relation to geomorphic features, indicate >8 km of cumulative dextral displacement across the eastern portion of the MFZ at Little Lake Valley, which includes other smaller offsets on fault strands in the valley. Some faults within the MFZ have geometries consistent with reactivated subduction-related reverse faults, and project near outcrops of pre-existing faults, filled with mechanically weak minerals. The mechanical behavior of fault zones is influenced by the spatial distribution and abundance of mechanically weak lithologies and mineralogies within the heterogeneous Franciscan melange that the MFZ displaces. This heterogeneity is characterized near Little Lake Valley (LLV) using remotely sensed data, field mapping, and wellbore data, and is composed of 2--5 km diameter disk-shaped coherent blocks that can be competent and resist deformation. Coherent blocks and the melange that surrounds them are the source for altered minerals that fill portions of fault zones. Mechanically weak minerals in pre-existing fault zones, identified by X-ray diffraction and electron microprobe analyses, are interpreted as a major reason for complex configurations of clusters of microearthquakes and zones of aseismic creep along the MFZ. Analysis of the kinematics of the MFZ and the distribution of its deformation is important because it improves the understanding of young stages of transform system evolution, which has implications that affect issues ranging from seismic hazard to petroleum and minerals exploration around the world.

  10. A laboratory experiment simulating the dynamics of topographic relief: methodology and results

    NASA Astrophysics Data System (ADS)

    Crave, A.; Lague, D.; Davy, P.; Bonnet, S.; Laguionie, P.

    2002-12-01

    Theoretical analysis and numerical models of landscape evolution have advanced several scenarios for the long-term evolution of terrestrial topography. These scenarios require quantitative evaluation. Analyses of topography, sediment fluxes, and the physical mechanisms of erosion and sediment transport can provide some constraints on the range of plausible models. But in natural systems the boundary conditions (tectonic uplift, climate, base level) are often not well constrained and the spatial heterogeneity of substrate, climate, vegetation, and prevalent processes commonly confounds attempts at extrapolation of observations to longer timescales. In the laboratory, boundary conditions are known and heterogeneity and complexity can be controlled. An experimental approach can thus provide valuable constraints on the dynamics of geomorphic systems, provided that (1) the elementary processes are well calibrated and (2) the topography and sediment fluxes are sufficiently well documented. We have built an experimental setup of decimeter scale that is designed to develop a complete drainage network by the growth and propagation of erosion instabilities in response to tectonic and climatic perturbations. Uplift and precipitation rates can be changed over an order of magnitude. Telemetric lasers and 3D stereo-photography allow the precise quantification of the topographic evolution of the experimental surface. In order to calibrate the principal processes of erosion and transport we have used three approaches: (1) theoretical derivation of erosion laws deduced from the geometrical properties of experimental surfaces at steady-state under different rates of tectonic uplift; (2) comparison of the experimental transient dynamics with a numerical simulation model to test the validity of the predicted erosion laws; and (3) detailed analysis of particle detachment and transport in a millimeter sheet flow on a two-meter long flume under precisely controlled water discharge, slope and flow width. The analogy with real geomorphic systems is limited by the imperfect downscaling in both time and space of the experiments. However, these simple experiments have allowed us to probe (1) the importance of a threshold for particle mobilization to the relationship between steady-state elevation and uplift rate, (2) the role of initial drainage network organization in the transient dynamics of tectonically perturbed systems and (3) the sediment flux dynamics of climatically perturbed systems.

  11. A drainage basin scale model for earthflow-prone landscapes over geomorphic timescales

    NASA Astrophysics Data System (ADS)

    Booth, A. M.; Roering, J. J.

    2009-12-01

    Landscape evolution models can be informative tools for understanding how sediment transport processes, regulated by tectonic and climatic forcing, interact to control fundamental landscape characteristics such as relief, channel network organization, and hillslope form. Many studies have proposed simple mathematical geomorphic transport laws for modeling hillslope and fluvial processes, and these models are capable of generating synthetic landscapes similar to many of those observed in nature. However, deep-seated mass movements dominate the topographic development of many tectonically active landscapes, yet few compelling transport laws exist for accurately describing these processes at the drainage basin scale. Specifically, several detailed field and theoretical studies describe the mechanics of deep-seated earthflows, such as those found throughout the northern California coast ranges, but these studies are often restricted to a single earthflow site. Here, we generalize earthflow behavior to larger spatial and geomorphically significant temporal scales using a mathematical model to determine how interactions between earthflow, weathering, hillslope, and fluvial processes control sediment flux and topographic form. The model couples the evolution of the land surface with the evolution of a weathered zone driven by fluctuations in the groundwater table. The lower boundary of this weathered zone sets the potential failure plane for earthflows, which occur once the shear stress on this plane exceeds a threshold value. Earthflows deform downslope with a non-Newtonian viscous rheology while gullying, modeled with a stream power equation, and soil creep, modeled with a diffusion equation, continuously act on the land surface. To compare the intensities of these different processes, we define a characteristic timescale for each modeled process, and demonstrate how the ratios of these timescales control the steady-state topographic characteristics of the simulated landscapes. As changes in earthflow rheological properties or thickening of the weathered zone increase the intensity of earthflow processes, relief decreases, hillslopes become more planar, and fluvial incision is inhibited at low drainage areas. The model also predicts that earthflows make their most significant contribution to long term lowering of the land surface at mid- and upper-slope locations. Fluvial processes dominate at high drainage area hillslope toes, and soil creep dominates at highly convex ridgelines. We find the predictions of our model in agreement with the following general observations of earthflow prone terrain, drawn from analysis of a 1m resolution LiDAR digital elevation model of terrain adjacent to the main stem of the Eel River, northern California: (1) hillslope profiles tend to be slightly convex at the foot, broadly concave through the mid-slope, and highly convex at the ridgeline, (2) gully incision of earthflow transport zones and toes may be important in delivering sediment from hillslopes to high order streams, and (3) as with shallow landsliding, magnitude-frequency distributions of active earthflows tend to be heavy tailed.

  12. Making riverscapes real

    NASA Astrophysics Data System (ADS)

    Carbonneau, Patrice; Fonstad, Mark A.; Marcus, W. Andrew; Dugdale, Stephen J.

    2012-01-01

    The structure and function of rivers have long been characterized either by: (1) qualitative models such as the River Continuum Concept or Serial Discontinuity Concept which paint broad descriptive portraits of how river habitats and communities vary, or (2) quantitative models, such as downstream hydraulic geometry, which rely on a limited number of measurements spread widely throughout a river basin. In contrast, authors such as Fausch et al. (2002) and Wiens (2002) proposed applying existing quantitative, spatially comprehensive ecology and landscape ecology methods to rivers. This new framework for river sciences which preserves variability and spatial relationships is called a riverine landscape or a 'riverscape'. Application of this riverscape concept requires information on the spatial distribution of organism-scale habitats throughout entire river systems. This article examines the ways in which recent technical and methodological developments can allow us to quantitatively implement and realize the riverscape concept. Using 3-cm true color aerial photos and 5-m resolution elevation data from the River Tromie, Scotland, we apply the newly developed Fluvial Information System which integrates a suite of cutting edge, high resolution, remote sensing methods in a spatially explicit framework. This new integrated approach allows for the extraction of primary fluvial variables such as width, depth, particle size, and elevation. From these first-order variables, we derive second-order geomorphic and hydraulic variables including velocity, stream power, Froude number and shear stress. Channel slope can be approximated from available topographic data. Based on these first and second-order variables, we produce riverscape metrics that begin to explore how geomorphic structures may influence river habitats, including connectivity, patchiness of habitat, and habitat distributions. The results show a complex interplay of geomorphic variable and habitat patchiness that is not predicted by existing fluvial theory. Riverscapes, thus, challenge the existing understanding of how rivers structure themselves and will force development of new paradigms.

  13. Quaternary Tectonic Tilting Governed by Rupture Segments Controls Surface Morphology and Drainage Evolution along the South-Central Coast of Chile

    NASA Astrophysics Data System (ADS)

    Echtler, H. P.; Bookhagen, B.; Melnick, D.; Strecker, M.

    2004-12-01

    The Chilean coast represents one of the most active convergent margins in the Pacific rim, where major earthquakes (M>8) have repeatedly ruptured the surface, involving vertical offsets of several meters. Deformation along this coast takes place in large-scale, semi-independent seismotectonic segments with partially overlapping transient boundaries. They are possibly related to reactivated inherited crustal anisotropies; internal seismogenic deformation may be accommodated by structures that have developed during accretionary wedge evolution. Seismotectonic segmentation and the identification of large-scale rupture zones, however, are based on limited seismologic und geodetic observations over short timespans. In order to better define the long-term behavior and deformation rates of these segments and to survey the tectonic impact on the landscape on various temporal and spatial scales, we investigated the south-central coast of Chile (37-38S). There, two highly active, competing seismotectonic compartments influence the coastal and fluvial morphology. A rigorous analysis of the geomorphic features is a key for an assessment of the tectonic evolution during the Quaternary and beyond. We studied the N-S oriented Santa María Island (SMI), 20 km off the coast and only ~70km off the trench, in the transition between the two major Valdivia (46-37S) and Concepción (38-35S) rupture segments. The SMI has been tectonically deformed throughout the Quaternary and comprises two tilt domains with two topographic highs in the north and south that are being tilted eastward. The low-lying and flat eastern part of the island is characterized by a set of emergent Holocene strandlines related to coseismic uplift. We measured detailed surface morphology of these strandlines and E-W traversing ephemeral stream channels with a laser-total station and used these data to calibrate and validate high-resolution, digital imagery. In addition, crucial geomorphic markers were dated by the radiocarbon and optical stimulation methods to better constrain deformation rates. In response to the ongoing deformation, formerly W flowing streams constituting small drainages (< 0.25km2) were inverted and formed closed basins. In contrast, larger streams were reversed or were able to maintain their channels, but formed distinct knickpoints along their longitudinal profiles. In order to reconstruct the Holocene tectonic tilting axis, we connected drainage boundaries of reversed channels and deformation-related knickpoints along more mature rivers. Interestingly, topography clearly indicates that the direction of Pleistocene tectonic tilting was different than that of recent conditions. The Holocene inversion of stream flow associated with continuous uplift may be related to the progressive migration of the tectonic tilting axis in the course of active folding (Melnick et al., this session). The classification of knickpoints and the overall tectonic development also the mainland coast on the Arauco peninsula, during the Quaternary clearly document the surface signature of tectonic segmentation and its spatial evolution through time. The migration of the tilting axes is discussed in relation with active basal accretion and active shortening in the South-Central Chilean forearc.

  14. Southeast Florida Sediment Assessment and Needs Determination (SAND) Study

    DTIC Science & Technology

    2014-09-01

    of previous studies, geophysical, geotechnical, and geomorphic data sets in their analysis, primarily deviating from one another in controlling... geomorphic features of the continental shelf north of latitude N26º 40’ (geographically around the upland location of Lake Worth Inlet, Florida) by cross...2012 NOAA bathymetry, recent borings, and historical seismic data to delineate shoal, flat, rock exposure, and other geomorphic boundaries. The

  15. Characterizing the Iron Wash fault: A fault line scarp in Utah

    NASA Astrophysics Data System (ADS)

    Kozaci, O.; Ostenaa, D.; Goodman, J.; Zellman, M.; Hoeft, J.; Sowers, J. M.; Retson, T.

    2015-12-01

    The Iron Wash fault (IWF) is an approximately 30 mile-long, NW-SE trending structure, oriented perpendicular to the San Rafael Monocline near Green River in Utah. IWF exhibits well-expressed geomorphic features such as a linear escarpment with consistently north side down displacement. The fault coincides with an abrupt change in San Rafael Monocline dip angle along its eastern margin. The IWF is exposed in incised drainages where Jurassic Navajo sandstone (oldest) and Lower Carmel Formation (old), are juxtaposed against Jurassic Entrada sandstone (younger) and Quaternary alluvium (youngest). To assess the recency of activity of the IWF we performed detailed geomorphic mapping and a paleoseismic trenching investigation. A benched trench was excavated across a Quaternary fluvial terrace remnant across the mapped trace of the IWF. The uppermost gravel units and overlying colluvium are exposed in the trench across the projection of the fault. In addition, we mapped the basal contact of the Quaternary gravel deposit in relation to the adjacent fault exposures in detail to show the geometry of the basal contact near and across the fault. We find no evidence of vertical displacement of these Quaternary gravels. A preliminary U-series date of calcite cementing unfaulted fluvial gravels and OSL dating of a sand lens within the unfaulted fluvial gravels yielded approximately 304,000 years and 78,000 years, respectively. These preliminary results of independent dating methods constrains the timing of last activity of the IWF to greater than 78,000 years before present suggesting that IWF not an active structure. Its distinct geomorphic expression is most likely the result of differential erosion, forming a fault-line scarp.

  16. Columbia River Estuary ecosystem classification—Concept and application

    USGS Publications Warehouse

    Simenstad, Charles A.; Burke, Jennifer L.; O'Connor, Jim E.; Cannon, Charles; Heatwole, Danelle W.; Ramirez, Mary F.; Waite, Ian R.; Counihan, Timothy D.; Jones, Krista L.

    2011-01-01

    This document describes the concept, organization, and application of a hierarchical ecosystem classification that integrates saline and tidal freshwater reaches of estuaries in order to characterize the ecosystems of large flood plain rivers that are strongly influenced by riverine and estuarine hydrology. We illustrate the classification by applying it to the Columbia River estuary (Oregon-Washington, USA), a system that extends about 233 river kilometers (rkm) inland from the Pacific Ocean. More than three-quarters of this length is tidal freshwater. The Columbia River Estuary Ecosystem Classification ("Classification") is based on six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. We define and map Levels 1-3 for the entire Columbia River estuary with existing geospatial datasets, and provide examples of Levels 4-6 for one hydrogeomorphic reach. In particular, three levels of the Classification capture the scales and categories of ecosystem structure and processes that are most tractable to estuarine research, monitoring, and management. These three levels are the (1) eight hydrogeomorphic reaches that embody the formative geologic and tectonic processes that created the existing estuarine landscape and encompass the influence of the resulting physiography on interactions between fluvial and tidal hydrology and geomorphology across 230 kilometers (km) of estuary, (2) more than 15 ecosystem complexes composed of broad landforms created predominantly by geologic processes during the Holocene, and (3) more than 25 geomorphic catenae embedded within ecosystem complexes that represent distinct geomorphic landforms, structures, ecosystems, and habitats, and components of the estuarine landscape most likely to change over short time periods.

  17. Application of structure from motion to digitized historical airphotos to document geomorphic change over the past century

    NASA Astrophysics Data System (ADS)

    Roberti, Gioachino; Ward, Brent; van Wyk de Vries, Benjamin; Perotti, Luigi; Giardino, Marco; Friele, Pierre; Clague, John

    2017-04-01

    Topographic modeling is becoming more accessible due to the development of structure from motion (SFM), and multi-view stereo (MVS) image matching algorithms in digital photogrammetry. Many studies are utilizing SFM-MVS with either UAV or hand-held consumer-grade digital cameras. However, little work has been done in using SFM-MVS with digitized historical air photos. Large databases of historical airphotos are available in university, public, and government libraries, commonly as paper copies. In many instances, the photos are in poor condition (i.e. deformed by humidity, scratched, or annotated). In addition, the negatives, as well as metadata on the camera and the flight mission, may be missing. Processing such photos using classic stereo-photogrammetry is difficult and in many instances impossible. Yet these photos can provide a valuable archive of geomorphic changes. In this study, we digitized over 1000 vertical air photos of the Mount Meager massif (British Columbia, Canada), acquired during flights between 1947 and 2006. We processed the scans using the commercial SFM-MVS software package PhotoScan. PhotoScan provided high-quality orthophotos (0.42-1.13 m/pixel) and DTMs (1-5 m/pixel). We used the orthophotos to document glacier retreat and deep-seated gravitational deformation over the 60-year photo period. Notably, we reconstructed geomorphic changes that led to the very large (˜50 x 106 m 3) 2010 failure of the south flank of Meager Peak and also documented other unstable areas that might fail catastrophically in the future. This technique can be applied to other photosets to provide rapid high-quality cartographic products that allow researchers to track landscape changes over large areas over the past century.

  18. Paleoseismic Investigation of the Ranong and Khlong Marui faults, Chumphon Province, Southern Thailand

    NASA Astrophysics Data System (ADS)

    Fenton, C. H.; Sutiwanich, C.

    2005-12-01

    The Ranong and Khlong Marui faults are northeast-southwest trending structures in the Isthmus of Kra, southern Thailand, that apparently link the extensional regimes of the Mergui Basin in the Andaman Sea and the Gulf of Thailand. These faults are depicted commonly as strike-slip faults, acting as conjugate structures to the dominant northwest-southeast trending strike-slip faults, in Southeast Asia. These faults are parallel to the predominant structural grain in the Carboniferous rocks of peninsular Thailand. In addition, they appear to be bounding structures for several Tertiary basins, including the onshore parts of the Surat Thani basin and the offshore Chumphon basin. Initial remote sensing studies showed that both faults have relatively subdued geomorphic expressions. Field reconnaissance investigations indicated a lack of youthful tectonic geomorphology along the Khlong Marui fault and ambiguous evidence for recent movement along the Ranong fault. Fault exposures along both fault trends and on minor parallel faults in the region indicated that, rather than predominantly strike-slip motion, these faults have experienced up-to-the-west reverse movement. Because of its more youthful geomorphic expression, several sites along the Ranong fault were chosen for paleoseismic trenching. Initial trench exposures indicate an absence of Holocene movement. Some exposures indicate the possibility of Late Tertiary-Early Holocene vertical movement. These investigations are currently ongoing and we hope to report our conclusions at the Fall Meeting.

  19. Geomorphic and hydrologic study of peak-flow management on the Cedar River, Washington

    USGS Publications Warehouse

    Magirl, Christopher S.; Gendaszek, Andrew S.; Czuba, Christiana R.; Konrad, Christopher P.; Marineau, Mathieu D.

    2012-01-01

    Assessing the linkages between high-flow events, geomorphic response, and effects on stream ecology is critical to river management. High flows on the gravel-bedded Cedar River in Washington are important to the geomorphic function of the river; however, high flows can deleteriously affect salmon embryos incubating in streambed gravels. A geomorphic analysis of the Cedar River showed evidence of historical changes in river form over time and quantified the effects of anthropogenic alterations to the river corridor. Field measurements with accelerometer scour monitors buried in the streambed provided insight into the depth and timing of streambed scour during high-flow events. Combined with a two-dimensional hydrodynamic model, the recorded accelerometer disturbances allowed the prediction of streambed disturbance at the burial depth of Chinook and sockeye salmon egg pockets for different peak discharges. Insight gained from these analyses led to the development of suggested monitoring metrics for an ongoing geomorphic monitoring program on the Cedar River.

  20. Geologic map of MTM -15027, -20027, -25027, and -25032 quadrangles, Margaritifer Terra region of Mars

    USGS Publications Warehouse

    Irwin, Rossman P.; Grant, John A.

    2013-01-01

    Mars Transverse Mercator (MTM) quadrangles −15027, −20027, −25027, and −25032 (lat 12.5°−28° S., long 330°−335° E. and lat 22.5°−28° S., long 324.5°−330° E.) in southwestern Margaritifer Terra include diverse erosional landforms, sedimentary deposits, and tectonic structures that record a long geologic and geomorphic history. The northeastern regional slope of the pre-Noachian crustal dichotomy (as expressed along the Chryse trough) and structures of the informally named Middle Noachian or older Holden and Ladon impact basins dominate the topography of the map area. A series of mesoscale outflow channels, Uzboi, Ladon, and Morava Valles, integrated these formerly enclosed basins by overflow and incision around the Noachian/Hesperian transition, although some flooding may have occurred earlier. The area includes excellent examples of Late Noachian to Hesperian valley networks, dissected crater rims, alluvial fans, deltas, and light-toned layered deposits, particularly in Holden and Eberswalde craters. Structural forms include Tharsis-radial grabens, Hesperian wrinkle ridges, floor-fractured impact craters, and severely disrupted chaotic terrains. These well-preserved landforms and sedimentary deposits represent multiple erosional epochs and discrete flooding events, which provide significant insight into the geomorphic processes and climate change on early Mars.

  1. Associations of the Van Dyke's salamander (Plethodon vandykei) with geomorphic conditions in headwall seeps of the Cascade Range, Washington State.

    Treesearch

    A.P. McIntyre; R.A. Schmitz; C.M. Crisafulli

    2006-01-01

    We explored the association between Van Dyke's salamander (Plethodon vandykei) and hydrologic condition, geomorphology, and vegetation structure in headwall seeps in the Cascade Range of Washington State. We modeled occurrence of P. vandykei at three site scales: between seeps, within seeps, and between microhabitat sites...

  2. Soil-Geomorphic and Paleoclimatic Characteristics of the Fort Bliss Maneuver Areas, Southern New Mexico and Western Texas

    DTIC Science & Technology

    1994-03-07

    archaeological investigations of buried structures, and locating underground pipelines (Teng 1985; Young et al. 1988; Mellett 1990). Detailed subsurface ... imaging with radar usually is done with a portable ground-based system that is designed to differentiate media at depths ranging from 0.5 m to 30 m

  3. Geomorphic Complexity of Sequential Fire and Floods in Mountain Watersheds

    NASA Astrophysics Data System (ADS)

    Brogan, D. J.; Nelson, P. A.; MacDonald, L. H.; Morgan, J. A.

    2017-12-01

    Fires and floods are important drivers of fluvial geomorphic changes. While each has been studied independently, there have been almost no situations where the hydrologic and geomorphic effects of fires and extreme floods could be compared at the watershed scale. Following the 2012 High Park fire in montane northcentral Colorado we began intensively monitoring channel changes in two 15 km2 watersheds (Skin Gulch and Hill Gulch) burned primarily at moderate to high severity. Summer thunderstorms resulted in extensive hillslope erosion and deposition in the valley bottoms, and subsequent incision through these deposits occurred due to spring snowmelt and elevated baseflows. The complex response associated with this state change from unburned to burned can be completely disrupted and overwhelmed by the larger changes resulting from extreme floods. Fifteen months after burning, both watersheds experienced an extreme flood resulting from a long-duration rainstorm; however, the geomorphic changes resulting from this flood differed markedly between the two watersheds. In Skin Gulch, sustained high flows from the September 2013 flood excavated nearly all of the accumulated sediment, expanded the active channel, and either scoured to bedrock or armored the bed with coarser substrate. Geomorphic changes in Hill Gulch due to the September 2013 flood, however, were small. The disparity between watersheds is likely the legacy of the catastrophic 1976 Big Thompson flood, which scoured out much of the previously accumulated sediment in Hill Gulch but did not appreciably impact Skin Gulch. These different sequences of disturbances indicate that fires in the Rocky Mountains often generate significant and dynamic geomorphic changes over sub-decadal timescales, while extreme floods can result in much longer lasting geomorphic changes. Our results allow us to compare the geomorphic sensitivity for different sequences of fire and floods, and propose a new conceptual model to explain the complicated interactions between the effects of fires and floods on the landscape.

  4. Geomorphic evidence for ancient seas in west Deuteronilus Mensae, Mars-1: Regional geomorphology

    NASA Technical Reports Server (NTRS)

    Parker, Timothy J.; Schneeberger, Dale M.; Pieri, David C.; Saunders, R. Stephen

    1987-01-01

    The fretted terrain in west Deuteronilus Mensae consists of extensive cratered upland penninsulas or isolated plateaus cut by long, finger-like canyons typically 10 to 20 km wide and upwards of 300 km long. The longest of these canyons trend roughly north-south to north-northeast, which may reflect some local structural and/or topographic control. At least three geomorphic zones roughly parallel to the lowland/upland boundary, suggestive of increasing modification northward, can be recognized on the fretted region of the region. The southern-most zone (zone A) consists of sharply defined fretted terrain. The middle zone (zone B) consists of well defined fretted terrain in which the plateau surfaces appear smoother, with a somewhat darker and much less varied albedo surface than those of zone A. The northern-most zone (zone C) consists of rounded or softened fretted terrain. The zones were interpreted as surface exposures of successively lower stratigraphic units.

  5. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA

    NASA Astrophysics Data System (ADS)

    Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.

    2017-08-01

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.

  6. Geology of Holden Crater and the Holden and Ladon Multi-Ring Impact Basins, Margaritifer Terra, Mars

    NASA Technical Reports Server (NTRS)

    Irwin, R. P., III; Grant, J. A.

    2008-01-01

    Geologic mapping at 1:500K scale of Mars quads 15s027, 20s027, 25s027, and 25s032 (Fig. 1) is in progress to constrain the geologic and geomorphic history of southwestern Margaritifer Terra. This work builds on earlier maps at 1:5M [1] and 1:15M scales [2], recent to concurrent 1:500Kscale mapping of adjacent areas to the east [3-5], and studies of drainage basin evolution along the Uzboi-Ladon-M (ULM; the third valley in the sequence has no formal name) Valles basin overflow system and nearby watersheds [6-9]. Two of the six landing sites under consideration for the Mars Science Laboratory rover are in this map area, targeting finely layered, phyllosilicate-rich strata and alluvial fans in Holden crater [10-12] (26degS, 34degW, 150 km diameter) or deposits southeast of a likely delta in Eberswalde crater [13-16] (24degS, 33degW, 50 km in diameter). Diverse processes including larger and smaller impacts, a wide range in fluvial activity, and local to regional structural influences have all affected the surface morphology.

  7. Investigating the Geomorphic Behavior of the Cape Canaveral Coast Through High-Resolution Beach Monitoring, Sediment Analysis, Oceanographic Observations, and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Adams, P. N.; Jaeger, J. M.; MacKenzie, R. A.; Kline, S. W.; Maibauer, B. J.; Plant, N. G.; Gravens, M. B.; Pierro, T. P.; Shaffer, J.

    2011-12-01

    The salient of Cape Canaveral interrupts a relatively straight, sandy, passive margin coastline that extends nearly 400 km from the St. Johns River mouth to the St. Lucie Inlet along the Florida Atlantic coast. OSL dating indicates that the modern cape has been prograding rapidly since the LGM and subtle topographic features, inland from the modern cape, suggest that this salient has persisted over several sea level cycles since the early Pleistocene. Dynamic shoreline change over the past decade at the Kennedy Space Center (KSC) is threatening critical NASA infrastructure and has prompted officials to develop a mitigation strategy through a partnership among researchers from the U.S. Geological Survey, the U.S. Army Corps of Engineers, private coastal engineering firms, and the University of Florida. Since May 2009, the research team has assembled data on decadal to event-scale shoreline change (dGPS), beach and nearshore morphodynamics (dGPS and Argus), beach sedimentary character (grain size analysis), wave climate and transformation (ADCP), and inner shelf bathymetry (Echo Sounding) in an effort to assess dune vulnerability and flooding risk. In addition, SWAN numerical modeling simulations offer insight into the influence of irregular bathymetry (cape-associated shoals) on the alteration of spatial patterns of wave energy flux during a decadal shift in deep-water wave climate. Beach-fx, modeling of cross-shore profile evolution is being applied to evaluate the performance of alternative protective measures, estimate project costs, and examine ecological influences of the proposed alternative protective measures. By combining contemporaneous data of coastal geomorphic and sedimentary response to wave forcing with numerical model results that explore a range of climate scenarios, we aim to develop a useful understanding of the coastal geomorphic behavior at KSC that can be used to make a mitigation recommendation.

  8. Understanding the geomorphology of macrochannel systems for flood risk management in Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Croke, Jacky

    2016-04-01

    The year 2010-2011 was the wettest on record for the state of Queensland, Australia producing catastrophic floods. A tropical low pressure system in 2013 delivered further extreme flood events across South East Queensland (SEQ) which prompted state and local governments to conduct studies into flood magnitude and frequency in the region and catchment factors contributing to flood hazards. The floods in the region are strongly influenced by El Nino-Southern Oscillation (ENSO) phenomenon, but also modulated by the Interdecadal Pacific Oscillation (IPO) which leads to flood and drought dominated regimes and high hydrological variability. One geomorphic feature in particular exerted a significant control on the transmission speed, the magnitude of flood inundation and resultant landscape resilience. This feature was referred to as a 'macrochannel', a term used to describe a 'large-channel' which has bankfull recurrence intervals generally greater than 10 years. The macrochannels display non-linear downstream hydraulic geometry which leads to zones of flood expansion (when hydraulic geometry decreases) and zones of flood contraction (when hydraulic geometry increases). The pattern of contraction and expansion zones determines flood hazard zones. The floods caused significant wet flow bank mass failures that mobilised over 1,000,000 m3 of sediment in one subcatchment. Results suggest that the wetflow bank mass failures are a stage in a cyclical evolution process which maintains the macrochannel morphology, hence channel resilience to floods. Chronological investigations further show the macrochannels are laterally stable and identify periods of heightened flood activity over the past millennium and upper limits on flood magnitude. This paper elaborates on the results of the geomorphic investigations on Lockyer Creek in SEQ and how the results have alerted managers and policy makers to the different flood responses of these systems and how flood risk management plans can be developed based on the identified hazard zones and geomorphic processes of macrochannel systems.

  9. Use of LiDAR to Assist in Delineating Waters of the United States, Including Wetlands

    DTIC Science & Technology

    2014-03-01

    investigator’s objective. For example, if the sole objective is to identify geomorphic breaks in slope associated with the OHWM, points representing vegetation... geomorphic position. During the data-gathering stage of wetland delinea- tions, measurements made using LiDAR data should be considered esti- mates...field. Field validation of LiDAR topographic data is essential before using them as evidence of a secondary hydrology indicator, such as geomorphic

  10. Hydrologic Modeling and Flood Frequency Analysis for Ordinary High Water Mark Delineation

    DTIC Science & Technology

    2016-02-01

    that may have adjacent floodplains and terraces. Each of these geomorphic features may have different characteristic sediment grain sizes, different...relationship between streamflow recurrence intervals and ERDC/CRREL TR-16-2 7 geomorphic features observed in the field. The bankfull channel is the cu... geomorphic features is one of many reasons described in this document why a specific recurrence interval cannot be used to determine the OHWM. At the same

  11. Chronology of wrinkle ridge formation and rate of crustal shortening on Lunae Planum, Mars

    NASA Astrophysics Data System (ADS)

    Karagoz, Oguzcan; Aksoy, M. Ersen; Erkeling, Gino

    2017-04-01

    The Lunae Planum, a plain between the Tharsis Montes and the Acidalia Planitia on Mars, represents a transitional zone from a volcanic rise to a lowland plain, respectively. From West to East at N20°, topography changes from 600 m to -750 m. Here, several wrinkle ridges that are compressional tectonic features formed by folding and thrust faulting [1], mark the surficial deformation of the martian crust. From the analysis of >25 wrinkle ridges in earlier studies a total shortening of ˜1840 m and a compressive strain of 0.29% has been suggested for the Lunae Planum [2]. In this study, we investigate the chronological order of geomorphic structures and determine the timing and duration of the crustal shortening of Lunae Planum. We use remote sensing mapping techniques [3] and crater size-frequency distribution measurements (CSFD) [e.g.,4,5]. In our analyses, we use HRSC (12.5 m/pixel), CTX (6 m/pixel) and HiRISE (0.3 m/pixel) satellite images and digital terrain models to document geomorphic structures such as wrinkles ridges, impact craters, crater ejecta blankets and intermontane plains. Our CSFD measurements of wrinkle ridges reveal an age distribution from 3.9 Ga to 3.0 Ga, with surfaces getting younger towards the East. Our findings are in accordance with earlier observations of greater shortening amounts towards the West (in older ridges) [2]. The age distribution of wrinkle ridges suggests a 9 Ma time interval for the proposed 1840 m horizontal shortening at a deformation rate of 2.04 x 10-3 mm/yr for compressional deformation on the Lunae Planum. [1] Watters, T.R., 2004, Elastic dislocation modeling of wrinkle ridges on Mars, Icarus, 171, 284-294. [2] Plescia, J.B., 1991.Wrinkle ridges in Lunae Planum, Mars: implications for shortening and strain. Geophys. Res. Lett. 18, 913-916. [3] Greeley, R. and Guest, J.E., 1987. Geologic map of the eastern equatorial region of Mars. USGS Miscellaneous Investigations Series Map. [4] Hartmann, W. K., and Neukum, G., 2001, Cratering chronology and the evolution of Mars. Space Sci. Rev. 96, 165-194. [5] Ivanov, B., 2001, Mars / Moon cratering ration estimates. Space Sci. Rev. 96, 87-104.

  12. Morphologic Evolution of the Mount St. Helens Crater Area, Washington

    NASA Technical Reports Server (NTRS)

    Beach, G. L.

    1985-01-01

    The large rockslide-avalanche that preceded the eruption of Mount St. Helens on 18 May 1980 removed approximately 2.8 cubic km of material from the summit and north flank of the volcano, forming a horseshoe-shaped crater 2.0 km wide and 3.9 km long. A variety of erosional and depositional processes, notably mass wasting and gully development, acted to modify the topographic configuration of the crater area. To document this morphologic evolution, a series of annual large-scale topographic maps is being produced as a base for comparitive geomorphic analysis. Four topographic maps of the Mount St. Helens crater area at a scale of 1:4000 were produced by the National Mapping Division of the U. S. Geological Survey. Stereo aerial photography for the maps was obtained on 23 October 1980, 10 September 1981, 1 September 1982, and 17 August 1983. To quantify topographic changes in the study area, each topographic map is being digitized and corresponding X, Y, and Z values from successive maps are being computer-compared.

  13. sedFlow - an efficient tool for simulating bedload transport, bed roughness, and longitudinal profile evolution in mountain streams

    NASA Astrophysics Data System (ADS)

    Heimann, F. U. M.; Rickenmann, D.; Turowski, J. M.; Kirchner, J. W.

    2014-07-01

    Especially in mountainuous environments, the prediction of sediment dynamics is important for managing natural hazards, assessing in-stream habitats, and understanding geomorphic evolution. We present the new modelling tool sedFlow for simulating fractional bedload transport dynamics in mountain streams. The model can deal with the effects of adverse slopes and uses state of the art approaches for quantifying macro-roughness effects in steep channels. Local grain size distributions are dynamically adjusted according to the transport dynamics of each grain size fraction. The tool sedFlow features fast calculations and straightforward pre- and postprocessing of simulation data. The model is provided together with its complete source code free of charge under the terms of the GNU General Public License (www.wsl.ch/sedFlow). Examples of the application of sedFlow are given in a companion article by Heimann et al. (2014).

  14. In Review (Geology): Alpine Landscape Evolution Dominated by Cirque Retreat

    NASA Technical Reports Server (NTRS)

    Oskin, Michael; Burbank, Doug

    2005-01-01

    Despite the abundance in alpine terrain of glacially dissected landscapes, the magnitude and geometry of glacial erosion can rarely be defined. In the eastern Kyrgyz Range, a widespread unconformity exhumed as a geomorphic surface provides a regional datum with which to calibrate erosion. As tectonically driven surface uplift has progressively pushed this surface into the zone of ice accumulation, glacial erosion has overprinted the landscape. With as little as 500 m of incision into rocks underlying the unconformity, distinctive glacial valleys display their deepest incision adjacent to cirque headwalls. The expansion of north-facing glacial cirques at the expense of south-facing valleys has driven the drainage divide southwards at rates up to 2 to 3 times the rate of valley incision. Existing ice-flux-based glacial erosion rules incompletely model expansion of glacial valleys via cirque retreat into the low-gradient unconformity remnants. Local processes that either directly sap cirque headwalls or inhibit erosion down-glacier appear to control, at least initially, alpine landscape evolution.

  15. Lunar and Planetary Science XXXV: Special Session: Mars Climate Change

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars Climate Change" contained the following reports:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape; Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.

  16. Lunar and Planetary Science XXXV: Special Session: Mars Climate Change

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars Climate Change" included the following topics:Geological Evidence for Climate Change on Mars; A New Astronomical Solution for the Long Term Evolution of the Insolation Quantities of Mars; Interpreting Martian Paleoclimate with a Mars General Circulation Model; History and Progress of GCM Simulations on Recent Mars Climate Change; Northern and Southern Permafrost Regions on Mars with High Content of Water Ice: Similarities and Differences; Periods of Active Permafrost Layer Formation in the Recent Geological History of Mars; Microclimate Zones in the Dry Valleys of Antarctica: Implications for Landscape Evolution and Climate Change on Mars; Geomorphic Evidence for Martian Ground Ice and Climate Change; Explaining the Mid-Latitude Ice Deposits with a General Circulation Model; Tharsis Montes Cold-based Glaciers: Observations and Constraints for Modeling and Preliminary Results; Ice Sheet Modeling: Terrestrial Background and Application to Arsia Mons Lobate Deposit, Mars; Enhanced Water-Equivalent Hydrogen on the Western Flanks of the Tharsis Montes and Olympus Mons: Remnant Subsurface Ice or Hydrate Minerals?; and New Age Mars.

  17. Linking Soil Moisture Variation and Abundance of Plants to Geomorphic Processes: A Generalized Model for Erosion-Uplifting Landscapes

    NASA Astrophysics Data System (ADS)

    Ding, Junyan; Johnson, Edward A.; Martin, Yvonne E.

    2018-03-01

    The diffusive and advective erosion-created landscapes have similar structure (hillslopes and channels) across different scales regardless of variations in drivers and controls. The relative magnitude of diffusive erosion to advective erosion (D/K ratio) in a landscape development model controls hillslope length, shape, and drainage density, which regulate soil moisture variation, one of the critical resources of plants, through the contributing area (A) and local slope (S) represented by a topographic index (TI). Here we explore the theoretical relation between geomorphic processes, TI, and the abundance and distribution of plants. We derived an analytical model that expresses the TI with D, K, and A. This gives us the relation between soil moisture variation and geomorphic processes. Plant tolerance curves are used to link plant performance to soil moisture. Using the hypothetical tolerance curves of three plants, we show that the abundance and distribution of xeric, mesic, and hydric plants on the landscape are regulated by the D/K ratio. Where diffusive erosion is the major erosion process (large D/K ratio), mesic plants have higher abundance relative to xeric and hydric plants and the landscape has longer and convex-upward hillslope and low channel density. Increasing the dominance of advective erosion increases relative abundance of xeric and hydric plants dominance, and the landscape has short and concave hillslope and high channel density.

  18. Introduction: CRevolution 2: origin and evolution of the Colorado River System II

    USGS Publications Warehouse

    Karlstrom, Karl E.; Beard, L. Sue; House, P. Kyle; Young, Richard A.; Aslan, Andres; Billingsley, George; Pederson, Joel

    2012-01-01

    A 2010 Colorado River symposium held in Flagstaff, Arizona, in May 2010, had 70 participants who engaged in intense debate about the origin and evolution of the Colorado River system. This symposium, built on two previous decadal scientific meetings, focused on forging scientific consensus where possible, while also articulating continued controversies regarding the Cenozoic evolution of the Colorado River System and the landscapes of the Colorado Plateau–Rocky Mountain region that it drains. New developments involved hypotheses that Neogene mantle flow is driving plateau tilting and differential uplift, with consensus that multidisciplinary studies involving differential incision studies and additional geochronology and thermochronology are needed to test the relative importance of tectonic and geomorphic forcings in shaping the spectacular landscapes of the Colorado Plateau region. In addition to the scientific goals, the meeting participants emphasized the iconic status of Grand Canyon for geosciences, and the importance of good communication between the research community, the geoscience education/interpretation community, the public, and the media. Building on a century-long tradition, this region still provides a globally important natural laboratory for studies of the interactions of erosion and tectonism in the shaping landscape of elevated plateaus.

  19. Field Investigation of Flow Structure and Channel Morphology at Confluent-Meander Bends

    NASA Astrophysics Data System (ADS)

    Riley, J. D.; Rhoads, B. L.

    2007-12-01

    The movement of water and sediment through drainage networks is inevitably influenced by the convergence of streams and rivers at channel confluences. These focal components of fluvial systems produce a complex hydrodynamic environment, where rapid changes in flow structure and sediment transport occur to accommodate the merging of separate channel flows. The inherent geometric and hydraulic change at confluences also initiates the development of distinct geomorphic features, reflected in the bedform and shape of the channel. An underlying assumption of previous experimental and theoretical models of confluence dynamics has been that converging streams have straight channels with angular configurations. This generalized conceptualization was necessary to establish confluence planform as symmetrical or asymmetrical and to describe subsequent flow structure and geomorphic features at confluences. However, natural channels, particularly those of meandering rivers, curve and bend. This property and observation of channel curvature at natural junctions have led to the hypothesis that natural stream and river confluences tend to occur on the concave outer bank of meander bends. The resulting confluence planform, referred to as a confluent-meander bend, was observed over a century ago but has received little scientific attention. This paper examines preliminary data on three-dimensional flow structure and channel morphology at two natural confluent-meander bends of varying size and with differing tributary entrance locations. The large river confluence of the Vermilion River and Wabash River in west central Indiana and the comparatively small junction of the Little Wabash River and Big Muddy Creek in southeastern Illinois are the location of study sites for field investigation. Measurements of time-averaged three-dimensional velocity components were obtained at these confluences with an acoustic Doppler current profiler for flow events with differing momentum ratios. Bed and channel morphology were also surveyed with a digital fathometer to document geomorphic change. Preliminary analysis of the velocity data reveals the presence of a well-defined shear layer between the converging flows and secondary circulation in the main channel. The tributary channel appears to oppose high velocity flow directed toward the outer bank by centrifugal acceleration through the meander bend of the main channel, thereby diminishing erosion along the cut bank and possibly stabilizing the meander bend channel. The flow structure and channel morphology of the study sites are compared to consider the effect of spatial scale and geometric characteristics on confluent-meander bend dynamics.

  20. Seed banks as a source of vegetation regeneration to support the recovery of degraded rivers: A comparison of river reaches of varying condition.

    PubMed

    O'Donnell, Jessica; Fryirs, Kirstie A; Leishman, Michelle R

    2016-01-15

    Anthropogenic disturbance has contributed to widespread geomorphic adjustment and the degradation of many rivers. This research compares for river reaches of varying condition, the potential for seed banks to support geomorphic river recovery through vegetation regeneration. Seven river reaches in the lower Hunter catchment of south-eastern Australia were assessed as being in poor, moderate, or good condition, based on geomorphic and ecological indicators. Seed bank composition within the channel and floodplain (determined in a seedling emergence study) was compared to standing vegetation. Seed bank potential for supporting geomorphic recovery was assessed by measuring native species richness, and the abundance of different plant growth forms, with consideration of the roles played by different growth forms in geomorphic adjustment. The exotic seed bank was considered a limiting factor for achieving ecological restoration goals, and similarly analysed. Seed bank native species richness was comparable between the reaches, and regardless of condition, early successional and pioneer herbs, sedges, grasses and rushes dominated the seed bank. The capacity for these growth forms to colonise and stabilise non-cohesive sediments and initiate biogeomorphic succession, indicates high potential for the seed banks of even highly degraded reaches to contribute to geomorphic river recovery. However, exotic propagules increasingly dominated the seed banks of moderate and poor condition reaches and reflected increasing encroachment by terrestrial exotic vegetation associated with riparian degradation. As the degree of riparian degradation increases, the resources required to control the regeneration of exotic species will similarly increase, if seed bank-based regeneration is to contribute to both geomorphic and ecological restoration goals. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Tracking geomorphic signatures of watershed suburbanization with multi-temporal LiDAR

    USGS Publications Warehouse

    Jones, Daniel K.; Baker, Matthew E.; Miller, Andrew J.; Jarnagin, S. Taylor; Hogan, Dianna M.

    2014-01-01

    Urban development practices redistribute surface materials through filling, grading, and terracing, causing drastic changes to the geomorphic organization of the landscape. Many studies document the hydrologic, biologic, or geomorphic consequences of urbanization using space-for-time comparisons of disparate urban and rural landscapes. However, no previous studies have documented geomorphic changes from development using multiple dates of high-resolution topographic data at the watershed scale. This study utilized a time series of five sequential light detection and ranging (LiDAR) derived digital elevation models (DEMs) to track watershed geomorphic changes within two watersheds throughout development (2002–2008) and across multiple spatial scales (0.01–1 km2). Development-induced changes were compared against an undeveloped forested watershed during the same time period. Changes in elevations, slopes, hypsometry, and surface flow pathways were tracked throughout the development process to assess watershed geomorphic alterations. Results suggest that development produced an increase in sharp topographic breaks between relatively flat surfaces and steep slopes, replacing smoothly varying hillslopes and leading to greater variation in slopes. Examinations of flowpath distributions highlight systematic modifications that favor rapid convergence in unchanneled upland areas. Evidence of channel additions in the form of engineered surface conduits is apparent in comparisons of pre- and post-development stream maps. These results suggest that topographic modification, in addition to impervious surfaces, contributes to altered hydrologic dynamics observed in urban systems. This work highlights important considerations for the use of repeat LiDAR flights in analyzing watershed change through time. Novel methods introduced here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during development and help guide future research directions for development-based watershed studies.

  2. Human-induced shifts in geomorphic process rates: An example of landslide activity following forest cover change.

    NASA Astrophysics Data System (ADS)

    Guns, Marie; Balthazar, Vincent; Vanacker, Veerle

    2013-04-01

    Mountain regions present unique challenges and opportunities to land use change research. Very few, if any, mountain ecosystems remain unaffected by human impact. Based on the exemplary evidence from local case studies, it is not yet possible to have an overall assessment of the extent and impact of human activities on mountain erosion as mountain regions are typically characterized by rapid changes in geomorphic, cryospheric, climatic, hydrologic, ecological and socio-economic conditions over relatively short distances. Here, we present a conceptual model that allows evaluating human-induced shifts in geomorphic process rates. The basic idea behind this model is that the magnitude-frequency distribution of geomorphic processes is dependent on the intensity of human disturbance. The conceptual model is here applied for characterising landslide activity following forest cover change. We selected a tropical Andean catchment with a deforestation rate of 1.4% over the last 45 years. Landslide inventories were established based on historical aerial photographs (1963, 1977, and 1989) and very high-resolution satellite images (2010). Statistical analyses show that the total number of landslides is rising, and that they are increasingly associated with human disturbances (deforestation, road construction). This is particularly the case for shallow landslides that become more frequent after clearcutting. As the human-induced shifts in landslide activity are significant for the low-magnitude events only, the total impact on geomorphic process rates is rather limited in this particular area. This work shows that including information on the magnitude-frequency of geomorphic events before, during and after human disturbances offers new possibilities to quantify the complex response of geomorphic processes to human disturbances.

  3. Ecologically relevant geomorphic attributes of streams are impaired by even low levels of watershed effective imperviousness

    NASA Astrophysics Data System (ADS)

    Vietz, Geoff J.; Sammonds, Michael J.; Walsh, Christopher J.; Fletcher, Tim D.; Rutherfurd, Ian D.; Stewardson, Michael J.

    2014-02-01

    Urbanization almost inevitably results in changes to stream morphology. Understanding the mechanisms for such impacts is a prerequisite to minimizing stream degradation and achieving restoration goals. However, investigations of urban-induced changes to stream morphology typically use indicators of watershed urbanization that may not adequately represent degrading mechanisms and commonly focus on geomorphic attributes such as channel dimensions that may be of little significance to the ecological goals for restoration. We address these shortcomings by testing if a measure characterizing urban stormwater drainage system connections to streams (effective imperviousness, EI) is a better predictor of change to ecologically relevant geomorphic attributes than a more general measure of urban density (total imperviousness, TI). We test this for 17 sites in independent watersheds across a gradient of urbanization. We found that EI was a better predictor of all geomorphic variables tested than was TI. Bank instability was positively correlated with EI, while width/depth (a measure of channel incision), bedload sediment depth, and frequency of bars, benches, and large wood were negatively correlated. Large changes in all geomorphic variables were detected at very low levels of EI (< 2-3%). Excess urban stormwater runoff, as represented by EI, drives geomorphic change in urban streams, highlighting the dominant role of the stormwater drainage system in efficiently transferring stormwater runoff from impervious surfaces to the stream, as found for ecological indicators. It is likely that geomorphic condition of streams in urbanizing watersheds, particularly those attributes of ecological relevance, can only be maintained if excess urban stormwater flows are kept out of streams through retention and harvesting. The extent to which EI can be reduced within urban and urbanizing watersheds, through techniques such as distributed stormwater harvesting and infiltration, and the components of the hydrologic regime to be addressed, requires further investigation. Urbanization influences stream morphology more than any other land use (Douglas, 2011): it alters hydrology and sediment inputs leading to deepening and widening of streams (Chin, 2006). Concomitantly, urbanization often directly impairs stream morphology through channel and riparian zone interventions, e.g., culverts (Hawley et al., 2012), rock protection (Vietz et al., 2012b), and constricted floodplains (Gurnell et al., 2007). These changes to channel geomorphology in turn contribute to poor in-stream ecological condition (Morley and Karr, 2002; Walsh et al., 2005b; Gurnell et al., 2007; Elosegi et al., 2010).The common conception is that channels undergo gross morphologic alterations if > 10-20% of their watershed is covered by impervious surfaces (total imperviousness, TI; Bledsoe and Watson, 2001; Chin, 2006; Table 1). Many of these studies may, however, underestimate the influence of urbanization by using insensitive channel metrics and assessing streams in early stages of urbanization. Most importantly, TI, as a measure of urban density, may not adequately represent the way in which urbanization alters the master variables of flow and sediment within a watershed.Hydrologists have long recognized that, rather than the proportion of impervious cover within a watershed, it is the proportion that is directly connected to the stream through stormwater drainage systems that may be a better predictor of urban-induced hydrologic change (Leopold, 1968). Referred to as effective imperviousness (EI) the proportion of impervious cover directly connected to the stream through stormwater drainage systems may also be a better predictor of geomorphic response than is TI. Over the last decade a direct measure of EI has been found to be a better predictor of ecological response in urban streams (Walsh et al., 2012), but use of such a metric has not found its way into geomorphic studies even though TI has been found to be ineffective (e.g., Bledsoe et al., 2012). A direct measure of EI - one that specifically accounts for the drainage from each impervious surface rather than using a generic reduction factor (e.g., Booth and Jackson, 1997; Wang et al., 2001) - has not previously been used in geomorphic investigations. In this paper, we advance on past studies by testing if EI is a stronger predictor than TI for urban-induced channel change.A second limitation of previous studies of urban-induced morphologic change is the common focus on channel dimensions (Chin, 2006). These are important for infrastructure and flood protection but do not necessarily have a strong mechanistic link to stream ecosystems. While some notable exceptions exist (Finkenbine et al., 2000; McBride and Booth, 2005), other geomorphic attributes are rarely investigated.This study examines how urbanization of a watershed can result in the impairment of a suite of geomorphic attributes of relevance to aquatic ecosystem condition, such as large wood, sediment availability, and structural and hydraulic complexity (of the bed, bank, and water column), represented by the following variables:

  4. The Pinjaur dun (intermontane longitudinal valley) and associated active mountain fronts, NW Himalaya: Tectonic geomorphology and morphotectonic evolution

    NASA Astrophysics Data System (ADS)

    Singh, Vimal; Tandon, S. K.

    2008-12-01

    The Himalayan orogenic belt, formed as a result of collision tectonic processes, shows abundant evidence of neotectonic activity, active tectonics, and the occurrence of historical earthquakes. Its frontal deformation zone is characterized, in some segments, by intermontane longitudinal valleys (duns). Such frontal segments of the Himalaya are marked by the occurrence of multiple mountain fronts. In one such segment of the foothills of the NW Himalaya, the Pinjaur dun is developed and marked by three mountain fronts: MF1A and MF1B associated with the southernmost Himalayan Frontal Thrust (HFT), MF2 associated with the Sirsa fault, and MF3 associated with the Barsar thrust along the southern margin of the relatively higher main part of the sub-Himalaya. Geomorphic responses to the tectonic activity of these and related structural features have been analyzed through the use of geomorphic indices, drainage density, stream longitudinal profiles, drainage anomalies, and hypsometric analysis. Also, fault and fold growth and their expression on landform development was studied using a combination of surface profiles and field observations. The values of valley floor width to height ratio ( Vf) for valleys associated with MF1 ranged between 0.07 and 0.74, and for valleys associated with MF2 ranged from 1.02-5.12. Vf for the four major valleys associated with MF1B ranged from 1.1-1.7. The asymmetry factor for 26 drainage basins related to MF1A indicate these have developed under the influence of a transverse structure. These results taken together with those obtained from the Hack profiles and SL index values, hypsometry, drainage density, and drainage anomalies suggest that the faults associated with the mountain fronts and related structures are active. Active tectonics and neotectonic activity have led to the formation of four surfaces in the Pinjaur dun. In addition, an important drainage divide separating the Sirsa and Jhajara drainage networks also developed in the intermontane valley. Surface profile analysis helped in deciphering the growth history of the fault bend fold structures of the outermost Siwalik hills. The effects of tectonic activity on the proximal part of the Indo-Gangetic plains are interpreted from the remarkable river deflections that are aligned linearly over tens of kilometers in a zone about 10 km south of the HFT. Based on these integrated structural and tectonic geomorphological approaches, a morphotectonic evolutionary model of the dun has been proposed. This model highlights the role of uplift and growth history of the fault bend fold structures of the outermost Siwalik hills on (i) the depositional landforms and drainage development of the Pinjaur dun, and (ii) valley development of the outermost Siwalik hills. Importantly, this study postulates the formation of an incipient mountain front that is evolving ahead of the HFT and the outermost Siwalik hills in the Indo-Gangetic plains.

  5. A new method to identify the fluvial regimes used by spawning salmonids

    Treesearch

    Hamish J. Moir; Christopher N. Gibbins; John M. Buffington; John H. Webb; Chris Soulsby; Mark J. Brewer

    2009-01-01

    Basin physiography and fluvial processes structure the availability of salmonid spawning habitat in river networks. However, methods that allow us to explicitly link hydrologic and geomorphic processes to spatial patterns of spawning at scales relevant to management are limited. Here we present a method that can be used to link the abundance of spawning salmonids to...

  6. Seismotectonic, structural, volcanologic, and geomorphic study of New Zealand; indigenous forest assessment in New Zealand; mapping, land use and environmental studies in New Zealand, volume 3

    NASA Technical Reports Server (NTRS)

    Probine, M. C.; Suggate, R. P.; Mcgreevy, M. G.; Stirling, I. F. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The present resolution of LANDSAT precludes its use for topographic mapping at scales larger than 1:250,000. Encouraging potential was displayed for environmental and land use studies at scales up to 1:100,000.

  7. Regional and geomorphic influence on the productivity, composition, and structure of oak ecosystems in the western central hardwoods region

    Treesearch

    Amber M. Steele; John M. Kabrick; Randall J. Miles

    2013-01-01

    The steeply dissected glaciated landscapes of the Chariton River Hills Ecological Subsection (CRHES) in northern Missouri have extensive, but largely unmanaged, oak forests that are relatively unstudied. There is increasing interest in these forests for oak ecosystem restoration, ecological site description, and production of oak timber for biofuels. Our objectives...

  8. Landslide Susceptibility Index Determination Using Aritificial Neural Network

    NASA Astrophysics Data System (ADS)

    Kawabata, D.; Bandibas, J.; Urai, M.

    2004-12-01

    The occurrence of landslide is the result of the interaction of complex and diverse environmental factors. The geomorphic features, rock types and geologic structure are especially important base factors of the landslide occurrence. Generating landslide susceptibility index by defining the relationship between landslide occurrence and that base factors using conventional mathematical and statistical methods is very difficult and inaccurate. This study focuses on generating landslide susceptibility index using artificial neural networks in Southern Japanese Alps. The training data are geomorphic (e.g. altitude, slope and aspect) and geologic parameters (e.g. rock type, distance from geologic boundary and geologic dip-strike angle) and landslides. Artificial neural network structure and training scheme are formulated to generate the index. Data from areas with and without landslide occurrences are used to train the network. The network is trained to output 1 when the input data are from areas with landslides and 0 when no landslide occurred. The trained network generates an output ranging from 0 to 1 reflecting the possibility of landslide occurrence based on the inputted data. Output values nearer to 1 means higher possibility of landslide occurrence. The artificial neural network model is incorporated into the GIS software to generate a landslide susceptibility map.

  9. Social-ecological resilience and geomorphic systems

    NASA Astrophysics Data System (ADS)

    Chaffin, Brian C.; Scown, Murray

    2018-03-01

    Governance of coupled social-ecological systems (SESs) and the underlying geomorphic processes that structure and alter Earth's surface is a key challenge for global sustainability amid the increasing uncertainty and change that defines the Anthropocene. Social-ecological resilience as a concept of scientific inquiry has contributed to new understandings of the dynamics of change in SESs, increasing our ability to contextualize and implement governance in these systems. Often, however, the importance of geomorphic change and geomorphological knowledge is somewhat missing from processes employed to inform SES governance. In this contribution, we argue that geomorphology and social-ecological resilience research should be integrated to improve governance toward sustainability. We first provide definitions of engineering, ecological, community, and social-ecological resilience and then explore the use of these concepts within and alongside geomorphology in the literature. While ecological studies often consider geomorphology as an important factor influencing the resilience of ecosystems and geomorphological studies often consider the engineering resilience of geomorphic systems of interest, very few studies define and employ a social-ecological resilience framing and explicitly link the concept to geomorphic systems. We present five key concepts-scale, feedbacks, state or regime, thresholds and regime shifts, and humans as part of the system-which we believe can help explicitly link important aspects of social-ecological resilience inquiry and geomorphological inquiry in order to strengthen the impact of both lines of research. Finally, we discuss how these five concepts might be used to integrate social-ecological resilience and geomorphology to better understand change in, and inform governance of, SESs. To compound these dynamics of resilience, complex systems are nested and cross-scale interactions from smaller and larger scales relative to the system of interest can play formative roles during periods of collapse and reorganization. Large- and small-scale disturbances as well as large-scale system memory/capacity and small-scale innovation can have significant impacts on the trajectory of a reorganizing system (Gunderson and Holling, 2002; Chaffin and Gunderson, 2016). Attempts to measure the property of ecological resilience across complex systems amounts to attempts to measure the persistence of system-controlling variables, including processes, parameters, and important feedbacks, when the system is exposed to varying degrees of disturbance (Folke, 2016).

  10. Occurrence and Distribution of Ordinary High Water Mark (OHWM) Indicators in Non-Perennial Streams in the Western Mountains, Valleys, and Coast Region of the United States

    DTIC Science & Technology

    2014-08-01

    1 Common hydrogeomorphic units that form in stream systems in response to spatially and temporally varying hydrologic and geomorphic processes... geomorphic , and vegetative indica- tors for use in OHWM delineations in arid streams and categorized their typical landscape positions with respect...the presence of a bed and banks. Hydrogeomorphic units are distinct macro- scale geomorphic features formed within stream systems in response to

  11. Mapping coastal morphodynamics with geospatial techniques, Cape Henry, Virginia, USA

    NASA Astrophysics Data System (ADS)

    Allen, Thomas R.; Oertel, George F.; Gares, Paul A.

    2012-01-01

    The advent and proliferation of digital terrain technologies have spawned concomitant advances in coastal geomorphology. Airborne topographic Light Detection and Ranging (LiDAR) has stimulated a renaissance in coastal mapping, and field-based mapping techniques have benefitted from improvements in real-time kinematic (RTK) Global Positioning System (GPS). Varied methodologies for mapping suggest a need to match geospatial products to geomorphic forms and processes, a task that should consider product and process ontologies from each perspective. Towards such synthesis, coastal morphodynamics on a cuspate foreland are reconstructed using spatial analysis. Sequential beach ridge and swale topography are mapped using photogrammetric spot heights and airborne LiDAR data and integrated with digital bathymetry and large-scale vector shoreline data. Isobaths from bathymetric charts were digitized to determine slope and toe depth of the modern shoreface and a reconstructed three-dimensional antecedent shoreface. Triangulated irregular networks were created for the subaerial cape and subaqueous shoreface models of the cape beach ridges and sets for volumetric analyses. Results provide estimates of relative age and progradation rate and corroborate other paleogeologic sea-level rise data from the region. Swale height elevations and other measurements quantifiable in these data provide several parameters suitable for studying coastal geomorphic evolution. Mapped paleoshorelines and volumes suggest the Virginia Beach coastal compartment is related to embryonic spit development from a late Holocene shoreline located some 5 km east of the current beach.

  12. Conceptual frameworks, geomorphic interpretation and storytelling: Tales from Lockyer Creek , Australia.

    NASA Astrophysics Data System (ADS)

    Croke, Jacky; Phillips, Jonathan; Van Dyke, Chris

    2017-04-01

    Earth science knowledge and insight begins with case studies, and theories should be derived from and ultimately evaluated against empirical, case study evidence. However, isolated case studies not linked conceptually to other locations or embedded within a broader framework are often of limited use beyond the study site. Geomorphic evidence and phenomena may be interpreted using a variety of conceptual frameworks (theories, models, laws, methodologies, etc.). The evidence may be, or at least appear to be, consistent with multiple frameworks, even when those constructs are derived from entirely different assumptions or frames of reference. Thus different interpretations and stories can be derived from the same evidence. Our purpose here is to illustrate this phenomenon via a case study from Lockyer Creek, southeast Queensland, Australia. Lockyer Creek is fast becoming one of Australia's most studied catchments with a wealth of data emerging following two extreme flood events in 2011 and 2013. Whilst the initial objective of the Big Flood project was to provide information on the frequency and magnitude of these extreme events, in essence the project revealed a rich 'story' of river evolution and adjustment which at first glance did not appear to 'fit' many established conceptual frameworks and theories. This presentation tells the tale of Lockyer Creek as it relates to selected key conceptual frameworks and importantly how this information can then be used for more effective catchment and flood management.

  13. Multiyear Downstream Response to Dam Removal on the White Salmon River, WA

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; O'Connor, J. E.; Major, J. J.

    2017-12-01

    The 2011 removal of the 38 m tall Condit Dam on the White Salmon River, Washington was one of the largest dam removals to date, in terms of both dam height and sediment release. We examined the multiyear geomorphic response to this event, through 2015, including in a bedrock-confined canyon and in a less-confined, backwater-influenced pool reach near the river's mouth, to the large, rapid influx of fine reservoir sediment produced by the breach and to subsequent sediment transfer in the free-flowing White Salmon River. In the canyon reach, aggraded sediments were rapidly eroded from riffles, returning them toward pre-breach bed elevations within weeks, but pool aggradation persisted for longer. The downstream, less-confined reach transformed from a deep pool to a narrower pool-riffle channel with alternate bars; multiyear observations showed persistence of bars and of this new and distinct morphology. This downstream reach marks a rare case in post-dam removal channel response; in most dam removals, channels have rapidly reverted toward pre-removal morphology, as in the canyon reach here. Comparison of the multiyear geomorphic evolution of the White Salmon River to other recent large dam removals in the U.S. allows evaluation of the relative influences of antecedent channel morphology, post-breach hydrology, and dam removal style, as well as providing a basis for predicting responses to future dam removals.

  14. Physical Drivers Vs. Effects of the Wolf-Elk Trophic Cascade on Fluvial Channel Planform, Olympic National Park, Washington

    NASA Astrophysics Data System (ADS)

    East, A. E.; Jenkins, K. J.; Happe, P. J.; Bountry, J.; Beechie, T. J.; Mastin, M. C.; Sankey, J. B.; Randle, T. J.

    2016-12-01

    Identifying the relative contributions of physical and ecological processes to channel evolution remains a substantial challenge in fluvial geomorphology. We use a 74-year aerial photographic record of the Hoh, Queets, Quinault, and Elwha Rivers, Olympic National Park, Washington, U.S.A., to investigate whether physical or trophic-cascade-driven ecological factors—excessive elk impacts after wolves were extirpated a century ago—are the dominant controls on channel planform of these gravel-bed rivers. We find that channel width and braiding show strong relationships with recent flood history; all four rivers have widened significantly in recent decades, consistent with increased flood activity since the 1970s. Channel planform also reflects sediment-supply changes, shown, for example, by the response of the Elwha River to a landslide. We surmise that the Hoh River, which shows a multi-decadal trend toward greater braiding, is adjusting to increased sediment supply associated with rapid glacial retreat. These rivers demonstrate rapid transmission of climatic signals through relatively short sediment-routing systems that lack substantial buffering by sediment storage. We infer no correspondence between channel evolution and elk abundance, suggesting that in this system effects of the wolf-driven trophic cascade are subsidiary to physical controls on channel morphology. Our examinations of stage-discharge history, historical maps, photographs, and descriptions, and empirical geomorphic thresholds do not support a previous conceptual model that these rivers underwent a fundamental geomorphic transition (widening, and a shift from single-thread to braided) resulting from large elk populations in the early 20th century. These findings differ from previous interpretations of Olympic National Park river dynamics, and also contrast with previous findings in Yellowstone National Park, where legacy effects of abundant elk nearly a century ago apparently still affect channel and floodplain morphology and connectivity. Different responses of Olympic and Yellowstone river morphology to trophic-cascade factors are likely due to hydrologic regime and large-wood availability.

  15. Evidence of a low-latitude glacial buzzsaw: Progressive hypsometry reveals height-limiting glacial erosion in tropical mountain belts

    NASA Astrophysics Data System (ADS)

    Cunningham, M.; Stark, C. P.; Kaplan, M. R.; Schaefer, J. M.; Winckler, G.

    2017-12-01

    It has been widely demonstrated that glacial erosion limits the height of mid-latitude mountain ranges—a phenomenon commonly referred to as the "glacial buzzsaw." The strength of the buzzsaw is thought to diminish, or die out completely, at lower latitudes, where glacial landscapes occupy only a small part of mountain belts affected by Pleistocene glaciation. Here we argue that glacial erosion has actually truncated the rise of many tropical orogens. To elicit signs of height-limiting glacial erosion in the tropics, we employ a new take on an old tool: we identify transient geomorphic features by tracking the evolution of (sub)catchment hypsometry with increasing elevation above base level, a method we term "progressive hypsometry." In several tropical mountain belts, including the Central Range of Taiwan, the Talamanca of Costa Rica, the Finisterres of Papua New Guinea, and the Rwenzoris of East Africa, progressive hypsometry reveals transient landscapes perched at various elevations, but the highest of these transient features are consistently glacial landscapes near the lower limit of late-Pleistocene glacial equilibrium line altitude (ELA) fluctuation. We attribute this pattern to an efficient glacial buzzsaw. In many cases, these glacial landscapes are undergoing contemporary destruction by headward propagating, fluvially-driven escarpments. We deduce that a duel between glacial buzzcutting and fluvially-driven scarp propagation has been ongoing throughout the Pleistocene in these places, and that the preservation potential of tropical glacial landscapes is low. To this end, we have identified possible remnants of glacial landscapes in the final stages of scarp consumption, and use 3He surface exposure age dating of boulders and bedrock surfaces in two of these landscapes to constrain major geomorphic activity to before the onset of the Last Glacial Maximum. Our work points to a profound climatic influence on the evolution of these warm, tectonically active, tropical mountain ranges and identifies glaciation as a trigger of autogenic behavior in flanking fluvial landscapes.

  16. Soil erosion predictions from a landscape evolution model - An assessment of a post-mining landform using spatial climate change analogues.

    PubMed

    Hancock, G R; Verdon-Kidd, D; Lowry, J B C

    2017-12-01

    Landscape Evolution Modelling (LEM) technologies provide a means by which it is possible to simulate the long-term geomorphic stability of a conceptual rehabilitated landform. However, simulations rarely consider the potential effects of anthropogenic climate change and consequently risk not accounting for the range of rainfall variability that might be expected in both the near and far future. One issue is that high resolution (both spatial and temporal) rainfall projections incorporating the potential effects of greenhouse forcing are required as input. However, projections of rainfall change are still highly uncertain for many regions, particularly at sub annual/seasonal scales. This is the case for northern Australia, where a decrease or an increase in rainfall post 2030 is considered equally likely based on climate model simulations. The aim of this study is therefore to investigate a spatial analogue approach to develop point scale hourly rainfall scenarios to be used as input to the CAESAR - Lisflood LEM to test the sensitivity of the geomorphic stability of a conceptual rehabilitated landform to potential changes in climate. Importantly, the scenarios incorporate the range of projected potential increase/decrease in rainfall for northern Australia and capture the expected envelope of erosion rates and erosion patterns (i.e. where erosion and deposition occurs) over a 100year modelled period. We show that all rainfall scenarios produce sediment output and gullying greater than that of the surrounding natural system, however a 'wetter' future climate produces the highest output. Importantly, incorporating analogue rainfall scenarios into LEM has the capacity to both improve landform design and enhance the modelling software. Further, the method can be easily transferred to other sites (both nationally and internationally) where rainfall variability is significant and climate change impacts are uncertain. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  17. Assessing geomorphic sensitivity in relation to river capacity for adjustment

    NASA Astrophysics Data System (ADS)

    Reid, H. E.; Brierley, G. J.

    2015-12-01

    River sensitivity describes the nature and rate of channel adjustments. An approach to analysis of geomorphic river sensitivity outlined in this paper relates potential sensitivity based on the expected capacity of adjustment for a river type to the recent history of channel adjustment. This approach was trialled to assess low, moderate and high geomorphic sensitivity for four different types of river (10 reaches in total) along the Lower Tongariro River, North Island, New Zealand. Building upon the River Styles framework, river types were differentiated based upon valley setting (width and confinement), channel planform, geomorphic unit assemblages and bed material size. From this, the behavioural regime and potential for adjustment (type and extent) were determined. Historical maps and aerial photographs were geo-rectified and the channel planform digitised to assess channel adjustments for each reach from 1928 to 2007. Floodplain width controlled by terraces, exerted a strong influence upon reach scale sensitivity for the partly-confined, wandering, cobble-bed river. Although forced boundaries occur infrequently, the width of the active channel zone is constrained. An unconfined braided river reach directly downstream of the terrace-confined section was the most geomorphically sensitive reach. The channel in this reach adjusted recurrently to sediment inputs that were flushed through more confined, better connected upstream reaches. A meandering, sand-bed river in downstream reaches has exhibited negligible rates of channel migration. However, channel narrowing in this reach and the associated delta indicate that the system is approaching a threshold condition, beyond which channel avulsion is likely to occur. As this would trigger more rapid migration, this reach is considered to be more geomorphically sensitive than analysis of its low migration rate alone would indicate. This demonstrates how sensitivity is fashioned both by the behavioural regime of a reach and flow/sediment input from upstream. The approach to assess geomorphic river sensitivity outlined here could support 'room to move' or 'freedom space' approaches to river management by relating likely channel adjustments for the type of river under consideration to the area of land that is required to contain 'natural' patterns and rates of geomorphic functionality.

  18. Do deglaciated mountainslopes contribute significantly to paraglacial sediment fluxes?

    NASA Astrophysics Data System (ADS)

    Cossart, Etienne

    2013-04-01

    Current models of paraglacial sediment generation and transport (Ballantyne, 2002 & 2003) are general in nature; they are probably inaccurate for many specific locations because of the wide range in local or regional geomorphic conditions encountered around the globe. One of the conditions that varies from place to place is the pattern of paraglacial landsliding; it varies in both the magnitude, scale, and timing, and therefore has variable influence on sediment generation. Another condition that varies is the sediment connectivity between slopes and the fluvial system; this can vary due to differences in topography, hydrologic regimes, or transient sediment buffers such as landslide dams. In this paper, we examine the extent to which variability in paraglacial landslide patterns and sediment connectivity may affect the applicability of the general paraglacial model. To achieve this we draw on both existing literature and our field experience from the European Alps and Iceland. Sediment generation and pathways, as influenced by post-glacial collapse of mountain slopes in particular, are studied in three steps. First, the processes involved in rock failure are identified and their possible influence on mass-movement locations at different spatial scales in various places is discussed. This comparison reveals a variable pattern of paraglacial landslide distribution, and allows the local/regional controlling parameters to be identified. Second, the rate of triggering of mass-movement over time is roughly assessed in various settings based on a review of recently published data. This comparison aims to identify typical temporal-models for slope evolution through the time elapsed since deglaciation. Third, an attempt is made to assess the contribution of landsliding to the whole paraglacial cascading system by evaluating the somewhat contradictory findings and assertions from previous authors: Some authors have argued for a high sediment yield at catchment sinks in relation to paraglacial landsliding (Church & Ryder, 1972; Ritter & Ten Brink, 1986), whereas others have identified that some long-lived sediment dams can occur after the deposition of a landslide mass, so that no or little sediment exportation occurs (Korup, 2009; Cossart & Fort, 2008). We add to this debate by developing a typology of geomorphic couples, between paraglacial landslides and other geomorphic processes, and present simulations of sediment yield evolution since glacier disappearance. BALLANTYNE C.K., 2002 - A general model of paraglacial landscape response. The Holocene, 12, 371-376. BALLANTYNE C.K., 2003 - Paraglacial landform succession and sediment storage in deglaciated mountain valleys: theory and approaches to calibration. Zeitschrift für Geomorphologie, 32, 1-18. CHURCH M., & RYDER J.M., 1972 - Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geological Society of America Bulletin, 83, 3059-3072. COSSART É., & FORT M., 2008 - Sediment release and storage in early deglaciated areas: Towards an application of the exhaustion model from the case of Massif des Écrins (French Alps) since the Little Ice Age. Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, 62, 115-131. KORUP O., 2009 - Linking landslides, hillslope erosion, and landscape evolution. Earth Surface Processes and Landforms, 34, 1315-1317. RITTER D.F., & TEN BRINK N.W., 1986 - Alluvial fan development and the glacial-glaciofluvial cycle. Nenana Valley, Alaska. Journal of Geology, 94, 613-615.

  19. The Landscape Evolution Observatory: a large-scale controllable infrastructure to study coupled Earth-surface processes

    USGS Publications Warehouse

    Pangle, Luke A.; DeLong, Stephen B.; Abramson, Nate; Adams, John; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Dietrich, William E.; Dontsova, Katerina; Durcik, Matej; Espeleta, Javier; Ferré, T.P.A.; Ferriere, Regis; Henderson, Whitney; Hunt, Edward A.; Huxman, Travis E.; Millar, David; Murphy, Brendan; Niu, Guo-Yue; Pavao-Zuckerman, Mitch; Pelletier, Jon D.; Rasmussen, Craig; Ruiz, Joaquin; Saleska, Scott; Schaap, Marcel; Sibayan, Michael; Troch, Peter A.; Tuller, Markus; van Haren, Joost; Zeng, Xubin

    2015-01-01

    Zero-order drainage basins, and their constituent hillslopes, are the fundamental geomorphic unit comprising much of Earth's uplands. The convergent topography of these landscapes generates spatially variable substrate and moisture content, facilitating biological diversity and influencing how the landscape filters precipitation and sequesters atmospheric carbon dioxide. In light of these significant ecosystem services, refining our understanding of how these functions are affected by landscape evolution, weather variability, and long-term climate change is imperative. In this paper we introduce the Landscape Evolution Observatory (LEO): a large-scale controllable infrastructure consisting of three replicated artificial landscapes (each 330 m2 surface area) within the climate-controlled Biosphere 2 facility in Arizona, USA. At LEO, experimental manipulation of rainfall, air temperature, relative humidity, and wind speed are possible at unprecedented scale. The Landscape Evolution Observatory was designed as a community resource to advance understanding of how topography, physical and chemical properties of soil, and biological communities coevolve, and how this coevolution affects water, carbon, and energy cycles at multiple spatial scales. With well-defined boundary conditions and an extensive network of sensors and samplers, LEO enables an iterative scientific approach that includes numerical model development and virtual experimentation, physical experimentation, data analysis, and model refinement. We plan to engage the broader scientific community through public dissemination of data from LEO, collaborative experimental design, and community-based model development.

  20. CRevolution 2—Origin and evolution of the Colorado River system, workshop abstracts

    USGS Publications Warehouse

    Beard, L. Sue; Karlstrom, Karl E.; Young, Richard A.; Billingsley, George H.

    2011-01-01

    A 2010 Colorado River symposium, held in Flagstaff, Arizona, involved 70 participants who engaged in intense debate about the origin and evolution of the Colorado River system. This symposium, built upon two previous decadal scientific meetings, focused on forging scientific consensus, where possible, while articulating continued controversies regarding the Cenozoic evolution of the Colorado River System and the landscapes of the Colorado Plateau-Rocky Mountain region that it drains. New developments involved hypotheses that Neogene mantle flow is driving plateau tilting and differential uplift and new and controversial hypotheses for the pre-6 Ma presence and evolution of ancestral rivers that may be important in the history and birth of the present Colorado River. There is a consensus that plateau tilt and uplift models must be tested with multidisciplinary studies involving differential incision studies and additional geochronology and thermochronology to determine the relative importance of tectonic and geomorphic forces that shape the spectacular landscapes of the Colorado Plateau, Arizona and region. In addition to the scientific goals, the meeting participants emphasized the iconic status of Grand Canyon for geosciences and the importance of good communication between the research community, the geoscience education/interpretation community, the public, and the media. Building on a century-long tradition, this region still provides a globally important natural laboratory for studies of the interactions of erosion and tectonism in shaping the landscape of elevated plateaus.

  1. Soil erosion assessment - Mind the gap

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone

    2016-12-01

    Accurate assessment of erosion rates remains an elusive problem because soil loss is strongly nonunique with respect to the main drivers. In addressing the mechanistic causes of erosion responses, we discriminate between macroscale effects of external factors - long studied and referred to as "geomorphic external variability", and microscale effects, introduced as "geomorphic internal variability." The latter source of erosion variations represents the knowledge gap, an overlooked but vital element of geomorphic response, significantly impacting the low predictability skill of deterministic models at field-catchment scales. This is corroborated with experiments using a comprehensive physical model that dynamically updates the soil mass and particle composition. As complete knowledge of microscale conditions for arbitrary location and time is infeasible, we propose that new predictive frameworks of soil erosion should embed stochastic components in deterministic assessments of external and internal types of geomorphic variability.

  2. Using Structure-from-Motion to Quantify Sediment Accumulation and Bedrock Erosion in a Debris-Flow Dominated Channel

    NASA Astrophysics Data System (ADS)

    Reitman, N. G.; Rengers, F.; Kean, J. W.

    2016-12-01

    One of the highest frequencies of observed debris flows in the US is located at the Chalk Cliffs in central Colorado. This high rate of debris-flow activity ( 3 per year) is supported by a similarly high rate of sediment supply from rock fall and ravel due to frost weathering of the highly-erodible, hydrothermally-altered quartz monzonite cliffs during the winter months. A first step toward understanding debris-flow initiation, and channel and hillslope evolution, is to quantify the magnitude and spatial distribution of sediment that accumulates by the end of the winter period. Here we test the ability of structure-from-motion photogrammetric surveys to produce high-resolution point clouds in order to quantify sediment deposition, and possibly bedrock erosion. We use point clouds obtained from surveys conducted in late September 2015 and early June 2016 to measure sediment deposition in a 42-m-long channel over one winter. All surveys are co-registered with control points (screws drilled into bedrock) measured in a local coordinate system with a total station. Point clouds derived from these surveys have average point densities >200,000 pts/m2, and accuracies within 2 cm. Initial analysis shows accumulation of 10-50 cm ( 10 m3) of unconsolidated loose sediment over eight months, providing ample material for debris-flow initiation during the following summer season. Sediment accumulated in a spatially-variable pattern dependent on existing channel-bottom bedrock topography. Future surveys are planned in order to measure bedrock erosion by debris flows and variation in sediment deposition rate through time. Our analysis indicates that photogrammetric surveys provide a high level of detail at low cost, and thus are a useful geomorphic monitoring tool that will ultimately lead to better understanding of the processes that contribute to debris-flow activity and landscape evolution.

  3. The efficacy of stream power and flow duration on geomorphic responses to catastrophic flooding

    NASA Astrophysics Data System (ADS)

    Magilligan, F. J.; Buraas, E. M.; Renshaw, C. E.

    2015-01-01

    Geomorphologists have long studied the impacts of extreme floods, yet the association between the magnitude of flow parameters (discharge, velocity, shear stress, or stream power) and resulting geomorphic effectiveness remains vague and non-deterministic. Attempts have been made to include flow duration and total expenditure of stream power, in combination with peak unit stream power, as important variables, but there has been minimal exploration of this hydraulic combination. Taking advantage of Tropical Storm Irene's rapid track through eastern Vermont (USA) in late summer 2011, this paper presents the array of geomorphic responses to a short duration (time to peak of < 8 h) but high magnitude flood that was the twentieth century flood of record for numerous watersheds. We present herein the geomorphic imprint of Tropical Storm Irene flooding within a larger context of fluvial theory concerning the role of, and trade-off between, the magnitude of energy expenditure during a flood and its duration. Focusing on a detailed field effort within the 187-km2 Saxtons River basin in southeastern VT, augmented by select sites along the adjacent lower gradient Williams River (291-km2), we elucidate (1) the geomorphic effects of a short duration flood in a humid, well-vegetated landscape; (2) the relationship between geomorphic response and (a) peak stream power, (b) total stream power, and (c) flow duration of stream power above a critical threshold; and (3) the spatial variation of geomorphic effects relative to reach-scale geologic and geomorphic controls. Flooding associated with Tropical Storm Irene ranged from the 1000 year recurrence interval (RI) flood (based on Weibull flood frequency analysis) to the 300 year RI flood (log Pearson Type III). Discharges spawned a peak unit stream power of 712 W/m2 (Saxtons River) and 361 W/m2 (Williams River), with total energy expenditure throughout the event of ~ 16,000 × 103 and 15,000 × 103 J, respectively. For the Saxtons River, channel widening was spatially infrequent and limited in magnitude; however, other geomorphic effects were profound (1) the entrainment, transport, and deposition of extremely coarse material; (2) stripping of floodplain surfaces; (3) channel avulsions and incision into Pleistocene-aged material; and (4) deposition of coarse material across floodplains. Based on our extensive field data and hydrologic/hydraulic analyses, we contend that short duration, high energy flows can have profound sedimentological effects but have limited erosive, channel widening impacts. Gravel entrainment and deposition of a catastrophic nature can certainly occur under these flow regimes, but the impacts of these extreme flows on channel geometry may have limited expression.

  4. Geomorphic reclmation of a coal refuse pile

    NASA Astrophysics Data System (ADS)

    Hopkinson, L. C.; Quaranta, J.

    2017-12-01

    Geomorphic reclamation is a technique that may offer opportunities to improve mine reclamation in Central Appalachia. The design approach is based on constructing a steady-state, mature landform condition and takes into account the long-term climatic conditions, soil types, terrain grade, and vegetation. Geomorphic reclamation has been applied successfully in semi-arid regions but has not yet been applied in Central Appalachia. This work describes a demonstration study where geomorphic landforming techniques are being applied to a coarse coal refuse pile in southern West Virginia, USA. The reclamation design includes four geomorphic watersheds that radially drain runoff from the pile. Each watershed has one central draining channel and incorporates compound slope profiles similarly to naturally eroded slopes. Planar slopes were also included to maintain the impacted area. The intent is to alter the hydrology to decrease water quality treatment costs. The excavation cut and fill volumes are comparable to those of more conventional refuse pile reclamation designs. If proven successful then this technique can be part of a cost-effective solution to improve water quality at active and future refuse facilities, abandoned mine lands, bond forfeiture sites, landfills, and major earthmoving activities within the region.

  5. Influence of landscape geomorphology on large wood jams and salmonids in an old-growth river of Upper Michigan

    Treesearch

    Arthur E. L. Morris; P. Charles Goebel; Lance R. Williams; Brian J. Palik

    2006-01-01

    We investigated the structure of large wood jams (LWJ) and their use by brook trout (Salvelinus fontinalis Mitchill) and other fish in four geomorphically-distinct sections of the Little Carp River, a small river flowing through an uncut, old-growth, northern hardwood-conifer forest along the south shore of Lake Superior, Upper Michigan. We...

  6. Geomorphic variation in riparian tree mortality and stream coarse woody debris recruitment from record flooding in a coastal plain stream

    Treesearch

    Brian J. Palik; Stephen W. Golladay; P. Charles Goebel; Brad W. Taylor

    1998-01-01

    Large floods are an important process controlling the structure and function of stream ecosystems. One of the ways floods affect streams is through the recruitment of coarse woody debris from stream-side forests. Stream valley geomorphology may mediate this interaction by altering flood velocity, depth, and duration. Little research has examined how floods and...

  7. The early Martian environment: Clues from the cratered highlands and the Precambrian Earth

    NASA Technical Reports Server (NTRS)

    Craddock, R. A.; Maxwell, T. A.

    1993-01-01

    There is abundant geomorphic evidence to suggest that Mars once had a much denser and warmer atmosphere than present today. Outflow channel, ancient valley networks, and degraded impact craters in the highlands all suggest that ancient Martian atmospheric conditions supported liquid water on the surface. The pressure, composition, and duration of this atmosphere is largely unknown. However, we have attempted to place some constraints on the nature of the early Martian atmosphere by analyzing morphologic variations of highland impact crater populations, synthesizing results of other investigators, and incorporating what is know about the geologic history of the early Earth. This is important for understanding the climatic evolution of Mars, the relative abundance of martian volatiles, and the nature of highland surface materials.

  8. Scaling Considerations Related to Interactions of Hydrologics, Pedologic and Geomorphic Processes

    EPA Science Inventory

    Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K...

  9. Geomorphology and Landscape Evolution Model for the natural and human-impacted regions of the Ganges-Brahmaputra-Meghna Delta

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Goodbred, S. L.; Wallace Auerbach, L.; Ahmed, K.; Paola, C.; Reitz, M. D.; Pickering, J.

    2013-12-01

    The Ganges-Brahmaputra-Meghna delta (GBMD) in south Asia is generally considered a tide-dominated system, but much of the subaerial delta plain is geomorphically similar to river-dominated systems such as the Mississippi River delta, with a well-developed distributary network separated by low-lying, organic-rich interdistributary basins. By contrast, the lower GBMD is dominated by tidal processes and comprises a 100-km wide coastal plain with dense, interconnected tidal channels that are amalgamated to the seaward edge of the river-dominated portion of the delta. These distinct river- and tide-dominated geomorphic regions are simultaneously sustained by the enormous sediment load of the GBM rivers and its efficient dispersal via the distributary channel network and onshore advection by tides. Together these processes have resulted in the ability of the GBMD to keep pace with sea-level rise throughout the Holocene, with comparatively little shoreline transgression. However, topographic data from the Shuttle Radar Topography Mission (SRTM) highlight low-lying regions of the delta that are located at the interface of the river- and tide-dominated portions of the delta, where the transport energy of small distributaries and the upper tidal zone go to zero. As a result, these are the most sediment-starved regions of the delta and those most at risk to flooding by the summer monsoon and storm surges. Compounding the slow rates of sedimentation and high local organic content, these regions have been strongly affected by the construction of embankments (polders) that artificially de-water the soils and accelerate organic decomposition during the dry season, and further starve the land surface of sediment. Here, we present an integrated conceptual model for the geomorphic evolution of the GBMD that incorporates river- and tide-dominated regions in conjunction with channel-avulsion processes and delta-lobe construction. Each of these is also overprinted by tectonic deformation and human-landscape modifications. A key goal of this model is to explain the wide-scale distribution of coarse-grained river-borne sediment (predominantly sand) that forms the underlying architecture of the GBMD, with only localized preservation of fine-grained (silt and clay) deposits. Finally, analysis of the channel networks in the tidal delta plain reveal that constructed embankments have significantly decreased the density of naturally functioning tidal channels, inducing locally rapid bank migration and affiliated changes in sinuosity. These rapid landscape changes suggest that there has been a resultant change in hydrodynamics of the tidal delta plain following widespread construction of the embankments. With concern to assess landscape vulnerabilities to environmental change and renewed efforts to rehabilitate and stabilize the embankments, this information is needed to support the successful outcome of coastal defense initiatives.

  10. Analysis of Landslide Kinematics using Multi-temporal UAV Imagery, La Honda, California

    NASA Astrophysics Data System (ADS)

    Carey, J.; Pickering, A.; Prentice, C. S.; Pinter, N.; DeLong, S.

    2017-12-01

    High-resolution topographic data are vital to studies of earth-surface processes. The combination of unmanned aerial vehicle (UAV) photography and structure-from-motion (SfM) digital photogrammetry provide a quickly deployable and cost-effective method for monitoring geomorphic change and landscape evolution. We acquired imagery of an active landslide in La Honda, California using a GPS-enabled quadcopter UAV with a 12.4 megapixel camera. Deep-seated landslides were previously documented in this region during the winter of 1997-98, with movement recurring and the landslide expanding during the winters of 2004-05 and 2005-06. This study documents the kinematics of a new and separate landslide immediately adjacent to the previous ones, throughout the winter of 2016-17. The roughly triangular-shaped, deep-seated landslide covers an area of approximately 10,000 m2. The area is underlain by SW dipping late Miocene to Pliocene sandstones and mudstones. A 3 m high head scarp stretches along the northeast portion of the slide for approximately 100 m. Internally, the direction of movement is towards the southwest, with two prominent NW-SE striking extensional grabens and numerous tension cracks across the landslide body. Here we calculate displaced landslide volumes and surface displacements from multi-temporal UAV surveys. Photogrammetric reconstruction of UAV/SfM-derived point clouds allowed creation of six digital elevation models (DEMs) with spatial resolutions ranging from 3 to 15 cm per pixel. We derived displacement magnitude, direction and rate by comparing multiple generations of DEMs and orthophotos, and estimated displaced volumes by differencing subsequent DEMs. We then correlated displacements with total rainfall and rainfall intensity measurements. Detailed geomorphic maps identify major landslide features, documenting dominant surface processes. Additionally, we compare the accuracy of the UAV/SfM-derived DEM with a DEM sourced from a synchronous terrestrial lidar survey. Conservative measurements yield 5.4 m of maximum horizontal displacement across the central portion of the slide. This study demonstrates the ability of the UAV/SfM workflow to map and monitor active mass-wasting processes in regions where landslides pose a direct threat to the surrounding community.

  11. Geomorphic process from topographic form: automating the interpretation of repeat survey data in river valleys

    USGS Publications Warehouse

    Kasprak, Alan; Caster, Joshua J.; Bangen, Sara G.; Sankey, Joel B.

    2017-01-01

    The ability to quantify the processes driving geomorphic change in river valley margins is vital to geomorphologists seeking to understand the relative role of transport mechanisms (e.g. fluvial, aeolian, and hillslope processes) in landscape dynamics. High-resolution, repeat topographic data are becoming readily available to geomorphologists. By contrasting digital elevation models derived from repeat surveys, the transport processes driving topographic changes can be inferred, a method termed ‘mechanistic segregation.’ Unfortunately, mechanistic segregation largely relies on subjective and time consuming manual classification, which has implications both for its reproducibility and the practical scale of its application. Here we present a novel computational workflow for the mechanistic segregation of geomorphic transport processes in geospatial datasets. We apply the workflow to seven sites along the Colorado River in the Grand Canyon, where geomorphic transport is driven by a diverse suite of mechanisms. The workflow performs well when compared to field observations, with an overall predictive accuracy of 84% across 113 validation points. The approach most accurately predicts changes due to fluvial processes (100% accuracy) and aeolian processes (96%), with reduced accuracy in predictions of alluvial and colluvial processes (64% and 73%, respectively). Our workflow is designed to be applicable to a diversity of river systems and will likely provide a rapid and objective understanding of the processes driving geomorphic change at the reach and network scales. We anticipate that such an understanding will allow insight into the response of geomorphic transport processes to external forcings, such as shifts in climate, land use, or river regulation, with implications for process-based river management and restoration.

  12. From Hype to an Operational Tool: Efforts to Establish a Long-Term Monitoring Protocol of Alluvial Sandbars using `Structure-from-Motion' Photogrammetry

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Buscombe, D.; Grams, P. E.; Schmidt, J. C.; Wheaton, J. M.

    2016-12-01

    Despite recent advances in the use of `Structure-from-Motion' (SfM) photogrammetry to accurately map landforms, its utility for reliably detecting and monitoring geomorphic change from repeat surveys remains underexplored in fluvial environments. It is unclear how the combination of various image acquisition platforms and techniques, survey scales, vegetation cover, and terrain complexities translate into accuracy and precision metrics for SfM-based construction of digital elevation models (DEMs) of fluvial landforms. Although unmanned aerial vehicles offer the potential to rapidly image large areas, they can be relatively costly, require skilled operators, are vulnerable in adverse weather conditions, and often rely on GPS-positioning to improve their stability. This research details image acquisition techniques for an underrepresented SfM platform: the pole-mounted camera. We highlight image acquisition and post-processing limitations of the SfM method for alluvial sandbars (10s to 100s m2) located in Marble and Grand Canyons in a remote, fluvial landscape with limited field access, strong light gradients, highly variable surface texture and limited ground control. We recommend a pole-based SfM protocol and evaluate it by comparing SfM-derived DEMs against concurrent, total station surveys. Error models of the sandbar surfaces are developed for a variety of surface characteristics (e.g., bare sand, steep slopes, and areas of shadow). The Geomorphic Change Detection (GCD) Software is used to compare SfM DEMs from before and after the 2014 high flow release from Glen Canyon Dam. Complementing existing total-station based sandbar surveys with potentially more efficient and cost-effective SfM methods will contribute to the understanding of morphodynamic responses of sandbars to high flow releases from Glen Canyon Dam. In addition, the development and implementation of a SfM-based operational method for monitoring geomorphic change will provide a methodological foundation for extending the approach to other fluvial environments.

  13. From Hype to an Operational Tool: Efforts to Establish a Long-Term Monitoring Protocol of Alluvial Sandbars using 'Structure-from-Motion' Photogrammetry

    NASA Astrophysics Data System (ADS)

    Rossi, R.; Buscombe, D.; Grams, P. E.; Wheaton, J. M.

    2015-12-01

    Despite recent advances in the use of 'Structure-from-Motion' (SfM) photogrammetry to accurately map landforms, its utility for reliably detecting and monitoring geomorphic change from repeat surveys remains underexplored in fluvial environments. It is unclear how the combination of various image acquisition platforms and techniques, survey scales, vegetation cover, and terrain complexities translate into accuracy and precision metrics for SfM-based construction of digital elevation models (DEMs) of fluvial landforms. Although unmanned aerial vehicles offer the potential to rapidly image large areas, they can be relatively costly, require skilled operators, are vulnerable in adverse weather conditions, and often rely on GPS-positioning to improve their stability. This research details image acquisition techniques for an underrepresented SfM platform: the pole-mounted camera. We highlight image acquisition and post-processing limitations of the SfM method for alluvial sandbars (10s to 100s m2) located in Marble and Grand Canyons in a remote, fluvial landscape with limited field access, strong light gradients, highly variable surface texture and limited ground control. We recommend a pole-based SfM protocol and evaluate it by comparing SfM-derived DEMs against concurrent, total station surveys and TLS derived DEMs. Error models of the sandbar surfaces are developed for a variety of surface characteristics (e.g., bare sand, steep slopes, and areas of shadow). The Geomorphic Change Detection (GCD) Software is used to compare SfM DEMs from before and after the 2014 high flow release from Glen Canyon Dam. Complementing existing total-station based sandbar surveys with potentially more efficient and cost-effective SfM methods will contribute to the understanding of morphodynamic responses of sandbars to high flow releases from Glen Canyon Dam. In addition, the development and implementation of a SfM-based operational protocol for monitoring geomorphic change will provide a methodological foundation for extending the approach to other fluvial environments.

  14. Comparison of Terrestrial Laser Scanning (TLS) and Structure from Motion (SfM) photogrammetry from unmanned aerial systems (UAS) for geomorphic change detection in beach-dune systems.

    NASA Astrophysics Data System (ADS)

    Heathfield, D.; Walker, I. J.; Grilliot, M. J.

    2016-12-01

    The recent emergence of terrestrial laser scanning (TLS) and unmanned aerial systems (UAS) as mapping platforms in geomorphology research has allowed for expedited acquisition of high spatial and temporal resolution, three-dimensional topographic datasets. TLS provides dense 3D `point cloud' datasets that require careful acquisition strategies and appreciable post-processing to produce accurate digital elevation models (DEMs). UAS provide overlapping nadir and oblique imagery that can be analysed using Structure from Motion (SfM) photogrammetry software to provide accurate, high-resolution orthophoto mosaics and accurate digital surface models (DSMs). Both methods yield centimeter to decimeter scale accuracy, depending on various hardware and field acquisition considerations (e.g., camera resolution, flight height, on-site GNSS control, etc.). Combined, the UAS-SfM workflow provides a comparable and more affordable solution to the more expensive TLS or aerial LiDAR methods. This paper compares and contrasts SfM and TLS survey methodologies and related workflow costs and benefits as used to quantify and examine seasonal beach-dune erosion and recovery processes at a site (Calvert Island) on British Columbia's central coast in western Canada. Seasonal SfM- and TLS-derived DEMs were used to quantify spatial patterns of surface elevation change, geomorphic responses, and related significant sediment volume changes. Cluster maps of positive (depositional) and negative (erosional) change are analysed to detect and interpret the geomorphic and sediment budget responses following an erosive water level event during winter 2016 season (Oct. 2015 - Apr. 2016). Vantage cameras also provided qualitative data on the frequency and magnitude of environmental drivers (e.g., tide, wave, wind forcing) of erosion and deposition events during the observation period. In addition, we evaluate the costs, time expenditures, and accuracy considerations for both SfM and TLS methodologies.

  15. Data mining of external and internal forcing of fluvial systems for catchment management: A case study on the Red River (Song Hong), Vietnam

    NASA Astrophysics Data System (ADS)

    Schmitt, Rafael; Bizzi, Simone; Castelletti, Andrea

    2013-04-01

    The understanding of river hydromorphological processes has been recognized in the last decades as a priority of modern catchment management, since interactions of natural and anthropogenic forces within the catchment drives fluvial geomorphic processes, which shape physical habitat, affect river infrastructures and influence freshwater ecological processes. The characterization of river hydromorphological features is commonly location and time specific and highly resource demanding. Therefore, its routine application at regional or national scales and the assessment of spatio-temporal changes as reaction to internal and external disturbances is rarely feasible at present. Information ranging from recently available high-resolution remote-sensing data (such as DEM), historic data such as land use maps or aerial photographs and monitoring networks of flow and rainfall, open up novel and promising capacity for basin-wide understanding of dominant hydromorphological drivers. Analysing the resulting multiparametric data sets in their temporal and spatial dimensions requires sophisticated data mining tools to exploit the potential of this information. We propose a novel framework that allows for the quantitative assessment of multiparametric data sets to identify classes of channel reaches characterized by similar geomorphic drivers using remote-sensing data and monitoring networks available in the catchment. This generic framework was applied to the Red River (Song Hong) basin, the second largest basin (87,800 sq.km) in Vietnam. Besides its economic importance, the river is experiencing severe river bed incisions due to recent construction of new dams in the upstream part of the catchment and sand mining in the surrounding of the capital city Hanoi. In this context, characterized by an high development rate, current efforts to increase water productivity and minimize impacts on the fluvial systems by means of focused infrastructure and management measures require a thorough understanding of the fluvial system and, in particular, basin-wide assessment of resilience to human-induced change. . The framework proposed has allowed producing high-dimensional samples of spatially distributed geomorphic drivers at catchment scale while integrating recent and historic point records for the Red River basin. This novel dataset has been then analysed using self-organizing maps (SOM) an artificial neural network model in combination with fuzzy clustering. The above framework is able to identify non-trivial correlations in driving forces and to derive a fuzzy classification at reach scale which represents continuities and discontinuities in the river systems. The use of the above framework allowed analyzing the spatial distribution of geomorphic features at catchment scale, revealing patterns of similarities and dissimilarities within the catchment and allowing a classification of river reaches characterized by similar geomorphic drivers, fluvial processes and response to external forcing. The paper proposes an innovative and promising technique to produce hydromorphological classifications at catchment scale integrating historical and recent available high resolution data. The framework aims at opening the way to a more structured organization and analyses of recently available information on river geomorphic features, so far often missing or rarely exploited. This approach poses the basis to produce efficient databases of river geomorphic features and processes related to natural and anthropogenic drivers. That is a necessity in order to enhance our understanding of the internal and external forces which drive fluvial systems, to assess the resilience and dynamic of river landscapes and to develop the more efficient river management strategies of the future.

  16. Geomorphic Consequences of Volcanic Eruptions in Alaska: A Review

    USGS Publications Warehouse

    Waythomas, Christopher F.

    2015-01-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment–water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite large, with flow volumes in the range of 107–109 m3. A review of the lahars generated during the 2009 eruption of Redoubt volcano will illustrate the geomorphic impacts of lahars on stream channels and riparian habitat. Although much work is needed to develop a comprehensive understanding of the geomorphic consequences of volcanic activity in Alaska, this review provides a synthesis of some of the best-studied eruptions and perhaps will serve as a starting point for future work on this topic.

  17. Geomorphic consequences of volcanic eruptions in Alaska: A review

    USGS Publications Warehouse

    Waythomas, Christopher F.

    2015-01-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment–water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite large, with flow volumes in the range of 107–109 m3. A review of the lahars generated during the 2009 eruption of Redoubt volcano will illustrate the geomorphic impacts of lahars on stream channels and riparian habitat. Although much work is needed to develop a comprehensive understanding of the geomorphic consequences of volcanic activity in Alaska, this review provides a synthesis of some of the best-studied eruptions and perhaps will serve as a starting point for future work on this topic.

  18. Geomorphic change caused by outburst floods and debris flows at Mount Rainier, Washington, with emphasis on Tahoma Creek valley

    USGS Publications Warehouse

    Walder, J.S.; Driedger, C.L.

    1994-01-01

    Debris flows have caused rapid geomorphic change in several glacierized drainages on Mount Rainier, Washington. Nearly all of these flows began as glacial outburst floods, then transformed to debris flows by incorporating large masses of sediment in channel reaches where streams have incised proglacial sediments and stagnant glacier ice. This stagnant ice is a relic of advanced glacier positions achieved during the mid-nineteenth century Little Ice Age maximum and the readvance of the 1960's and 1970's. Debris flows have been especially important agents of geomorphic change along Tahoma Creek, which drains South Tahoma Glacier. Debris flows in Tahoma Creek valley have transported downstream about 107 m3 Of sediment since 1967, causing substantial aggradation and damage to roads and facilities in Mount Rainier National Park. The average denudation rate in the upper part of the Tahoma Creek drainage basin in the same period has been extraordinarily high: more than 20 millimeters per year, a value exceeded only rarely in basins affected by debris flows. However, little or none of this sediment has yet passed out of the Tahoma Creek drainage basin. Outburst floods from South Tahoma Glacier form by release of subglacially stored water. The volume of stored water discharged during a typical outburst flood would form a layer several tens of millimeters thick over the bed of the entire glacier, though it is more likely that large linked cavities account for most of the storage. Statistical analysis shows that outburst floods usually occur during periods of atypically hot or rainy weather in summer or early autumn, and that the probability of an outburst increases with temperature (a proxy measure of ablation rate) or rainfall rate. On the basis of these results, we suggest that outburst floods are triggered when rapid input of water to the glacier bed causes transient increase in water pressure, thereby destabilizing the linked-cavity system. The probabilistic nature of the relation between water-input rate and outburst-flood occurrence suggests that the connections between englacial conduits, basal cavities and main meltwater channels may vary temporally. The correlation between outburst floods and meteorological factors casts doubt on an earlier hypothesis that melting around geothermal vents triggers outburst floods from South Tahoma Glacier. The likelihood that outburst floods from South Tahoma Glacier will trigger debris flows should decrease with time, as the deeply incised reach of Tahoma Creek widens by normal slope processes and stagnant ice decays. Drawing analogies to the geomorphic evolution of a reach of Tahoma Creek first incised by an outburst flood in 1967, we suggest the present period of debris-flow activity along Tahoma Creek will last about 25 years, that is, until about the year 2010. Comparison of geomorphic change at Tahoma Creek to that in two other glacierized alphine basins indicates that debris-rich stagnant ice can be an importantsource of sediment to debris flows as long as floods are frequent or channel slope is great.

  19. Applying 3D Dynamic Visualisation to (Palaeo) Geomorphic Reconstruction: Modelling a Tenth Century Jökulhlaup at Sólheimajökull Glacier, South Iceland.

    NASA Astrophysics Data System (ADS)

    Booth, Laura; Isaacs, John

    2014-05-01

    Jökulhlaup (glacial outburst floods) are caused by subglacial geothermal activity melting overlying ice, or by draining of ice-dammed lakes. They pose a recurring hazard along Iceland's south coast where volcano-glacial interactions create often unpredictable, high-magnitude floods. Gathering information about past floods is crucial for projecting findings to present day scenarios and developing future predictions for contemporary flood routes. Understanding the physical setting or surrounding environment is essential in palaeo-flood reconstruction as drainage routes are ultimately defined by local topography and changing ice cover. At Sólheimajökull glacier, which drains the southern portion of Mýrdalsjökull ice cap, field evidence has been collected of a Tenth Century flood, recorded in the Icelander's Landnámabók (Book of Settlements). It was an exceptional event in terms of generation, magnitude and geomorphic impact. Although now fragmented and piecemeal, many of its direct (and indirect) geomorphological and sedimentary markers are still relatively well preserved and have been identified, mapped and dated to unravel the sequence of events played out during this significant episode in the glacial history and complex regional flood chronology. VolcVis, an innovative, bespoke visualisation platform, is developed and applied for the first time in visualising volcanic jökulhlaup. The platform is created using the Microsoft XNA game development framework, which facilitates rapid game engine production by providing a set of tools utilising a managed runtime environment. VolcVis can render large amounts of data efficiently and still provide an extremely high level of interaction with the data being presented, including full freedom of motion. This enables synthesis and presentation of field results from Sólheimajökull in a novel way, creating an interactive, multi-perspective, three-dimensional (3D) prototype model. The platform combines Digital Elevation Models of the area with aerial photography to create a 3D virtual environment, which provides the basis for entering field data to the geomorphic reconstruction. The result is a visual simulation of Sólheimajökull's Tenth Century physical environment which places the flood into geomorphic and topographic context. The wider implications of developing this tool are many when considering its ease of use and first-person navigational controls. The animations allow immediate exposure to environments that are otherwise lost in reality. VolcVis is a powerful tool in bringing reconstructed palaeo-environments back to life, albeit in the virtual sphere. It allows a uniquely contemporary appreciation of an elapsed event; yet which was a critical episode in the geomorphic evolution of this dynamic region. When field data are pieced together into a simulation, they hold a greater cohesive strength, giving the results wider applicability and relevance to a range of users and decision-makers, serving both technical and nontechnical perspectives. VolcVis' ability to dynamically display field data presents new possibilities for generating hypotheses, and for data sharing with Icelandic hazard mitigation authorities and the general public.

  20. Geomorphic change along a gravel bed river affected by volcanic eruption: Rio Blanco - Volcan Chaiten (South Chile)

    NASA Astrophysics Data System (ADS)

    Picco, Lorenzo; Ravazzolo, Diego; Ulloa, Hector; Iroumé, Andres; Aristide Lenzi, Mario

    2014-05-01

    Gravel bed rivers are environments shaped by the balance of flow, sediment regimes, large wood (LW) and vegetation. Geomorphic changes are response to fluctuations and changes of runoff and sediment supply involving mutual interactions among these factors. Typically, many natural disasters (i.e. debris flows, floods and forest fires) can affect the river basin dynamics. Explosive volcanic eruptions present, instead, the potential of exerting severe impacts as, for example, filling river valleys or changing river network patterns thanks to massive deposition of tephra and volcanic sediment all over the main channel and over the basin. These consistent impacts can strongly affect both hydrology and sediment transport dynamics, all over the river system, producing huge geomorphic changes. During the last years there has been a consistent increase in the survey technologies that permit to monitor geomorphic changes and to estimate sediment budgets through repeat topographic surveys. The calculation of differences between subsequent DEMs (difference of DEMs, DoD) is a commonly applied method to analyze and quantify these dynamics. Typically the higher uncertainty values are registered in areas with higher topographic variability and lower point density. This research was conducted along a ~ 2.2 km-long sub-reach of the Blanco River (Southern Chile), a fourth-order stream that presents a mainly rainfall regime with winter peak flows. The May 2008 Chaitén volcanic eruption strongly affected the entire Rio Blanco basin. The entire valley was highly exposed to the pyroclastic and fluvial flows, which affected directly a consistent area of evergreen forests. Extreme runoff from the upper Blanco catchment aggraded the channel and deposited up to several meters of tephra, alluvium, and LW along the entire river system. Aims of this contribution are to define and quantify the short term evolution of the Blanco River after the big eruption event and a subsequent consistent flood that happened in 2013. A post eruption airborne LiDAR data set (2009) and two different Terrestrial Laser Scanner (TLS) surveys carried out in 2013 and 2014 have been used to investigate this. We applied an approach to assessing spatially variable uncertainty in DoDs computation that is based on the creation of an ad hoc fuzzy inference system (FIS) that permits us to combine individually errors of different sources. Particularly attention was applied to define a new approach that permit to filter the huge amount of LW present into the active channel, depending on the superficial roughness values. After the LW filtering, the very high point clouds density allowed us to derive three high resolution DEMs. Topographic data were more accurate for exposed surfaces than those collected in wet areas. Two DoDs were computed, showing consistent erosion processes and deposition within the study area, and changes in geomorphic characteristics of channel and bars could also be detected, demonstrating a strong dynamicity of the study reach. This research is been developed within the framework of Project FONDECYT 1110609. Project "SedAlp: sediment management in Alpine basins, integrating sediment continuum, risk mitigation and hydropower", 83-4-3-AT, in the framework of the European Territorial Cooperation Program "Alpine Space" 2007-2013.

  1. Chirp subbottom profile data collected in 2015 from the northern Chandeleur Islands, Louisiana

    USGS Publications Warehouse

    Forde, Arnell S.; DeWitt, Nancy T.; Fredericks, Jake J.; Miselis, Jennifer L.

    2018-01-30

    As part of the Barrier Island Evolution Research project, scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore geophysical survey around the northern Chandeleur Islands, Louisiana, in September 2015. The objective of the project is to improve the understanding of barrier island geomorphic evolution, particularly storm-related depositional and erosional processes that shape the islands over annual to interannual time scales (1–5 years). Collecting geophysical data can help researchers identify relations between the geologic history of the islands and their present day morphology and sediment distribution. High-resolution geophysical data collected along this rapidly changing barrier island system can provide a unique time-series dataset to further the analyses and geomorphological interpretations of this and other coastal systems, improving our understanding of coastal response and evolution over medium-term time scales (months to years). Subbottom profile data were collected in September 2015 offshore of the northern Chandeleur Islands, during USGS Field Activity Number 2015-331-FA. Data products, including raw digital chirp subbottom data, processed subbottom profile images, survey trackline map, navigation files, geographic information system data files and formal Federal Geographic Data Committee metadata, and Field Activity Collection System and operation logs are available for download.

  2. Temporal Dynamics of Gully Evolution in a Small, Ephemeral Channel in a Semiarid Watershed

    NASA Astrophysics Data System (ADS)

    Nichols, Mary; Nearing, Mark

    2015-04-01

    Incised channels that terminate at a vertical-wall gully heads are common features in semiarid watersheds. The geomorphic evolution of such channels is often dominated by migration of the headwall. The evolution of a headwall in a low order channel on the USDA-ARS Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona has been monitored since 2004, and since 2012, time-lapse photography has been employed to observe the temporal dynamics at high resolution. A Canon A1300 off the shelf point and shoot digital camera mounted inside a weatherproof Pelican case has been taking 15 mp photographs since 2012. The camera power supply was modified to run from a 12V car battery that was charged with a 25 Watt solar panel through a solar controller. During the runoff season from July through September, images were collected every 30 seconds and the time step was increase to 30 minutes during winter months. The field of view covers the headcut and the immediate surroundings. Runoff events were distinct flash floods in response to high intensity rain. The temporal sequencing of the dominant processes of erosion including mass wasting, plunge pool erosion, and piping are described. In addition, we present a description of the time-lapse camera system with suggestions for future improvements.

  3. Interpretation of fault-controlled ramp structures in sedimentary basins - example from Caspian Sea using Landsat TM data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iranpanah, A.

    1989-03-01

    Lineaments on a series of edge-enhanced images (TM data) from a region around the Caspian Sea form a geomorphically significant linear trend along the major Caucasus-Kopeh Dagh fault line. This fault represents the line of collision between the Cimmerian continents and the Turan plate on the south and north, respectively. The lineament zone manifests a ramp structure that forms a relatively narrow topographic high in the Caspian Sea. Paleogeographic studies of the Caspian Sea suggest that the basin is part of the eastern Paratethys, which began to develop in the early Paleogene during the Alpine-Himalayan uplift. On the basis ofmore » the lineaments and associated geomorphic features, the Caspian Sea can be divided into southern, central, and the northern Caspian subbasins. The Caucasus-Kopeh Dagh fault line trends N80/degrees/W and separates the southern Caspian from the central subbasin, approximately along 40/degrees/N latitude. The boundary between the central and the northern subbasins is also a linear topographic high which trends N70/degrees/E and lies approximately at 44/degrees/N latitude. The southern and central subbasins have subequal areal extension covering 35.64% and the 36.63% of the whole sea, whereas the northern subbasin occupies only 27.73% of the basin.« less

  4. Multiple resource evaluation of region 2 US forest service lands utilizing LANDSAT MSS data. [San Juan Mountains, Colorado

    NASA Technical Reports Server (NTRS)

    Krebs, P. V.; Hoffer, R. M. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. LANDSAT MSS imagery provided an excellent overview which put a geomorphic study into a regional perspective, using scale 1:250,000 or smaller. It was used for deriving a data base for land use planning for southern San Juan Mountains. Stereo pairing of adjacent images was the best method for all geomorphic mapping. Combining this with snow enhancement, seasonal enhancement, and reversal aided in interpretation of geomorphic features. Drainage patterns were mapped in much greater detail from LANDSAT than from a two deg quadrangle base.

  5. Multiresolution analysis of characteristic length scales with high-resolution topographic data

    NASA Astrophysics Data System (ADS)

    Sangireddy, Harish; Stark, Colin P.; Passalacqua, Paola

    2017-07-01

    Characteristic length scales (CLS) define landscape structure and delimit geomorphic processes. Here we use multiresolution analysis (MRA) to estimate such scales from high-resolution topographic data. MRA employs progressive terrain defocusing, via convolution of the terrain data with Gaussian kernels of increasing standard deviation, and calculation at each smoothing resolution of (i) the probability distributions of curvature and topographic index (defined as the ratio of slope to area in log scale) and (ii) characteristic spatial patterns of divergent and convergent topography identified by analyzing the curvature of the terrain. The MRA is first explored using synthetic 1-D and 2-D signals whose CLS are known. It is then validated against a set of MARSSIM (a landscape evolution model) steady state landscapes whose CLS were tuned by varying hillslope diffusivity and simulated noise amplitude. The known CLS match the scales at which the distributions of topographic index and curvature show scaling breaks, indicating that the MRA can identify CLS in landscapes based on the scaling behavior of topographic attributes. Finally, the MRA is deployed to measure the CLS of five natural landscapes using meter resolution digital terrain model data. CLS are inferred from the scaling breaks of the topographic index and curvature distributions and equated with (i) small-scale roughness features and (ii) the hillslope length scale.

  6. Volcanism in Elysium Planitia, Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, P. J.

    1984-01-01

    Geomorphic mapping revealed that the three volcanic constructs within Elysium Planitia (Hecates Tholus, elysium Mons and Albor Tholus) are very different in their overall morphology and represent three distinct types of martian volcano. Hecates Tholus was found to possess the most likely possible example of a young, explosively generated, air fall deposit, while the volume of magma erupted from Elysium Mons appears to have been orders of magnitude larger than that erupted from Albor Tholus. A primary aim of the regional geological analysis of Elysium Planitia is to further understand the volcanic and tectonic evolution of the area by the identification and interpretation of individual lava flows and their source vents. Lava flow size, spatial distribution, flow direction and the stratigraphic relationships of these lava flows to adjacent structural features were all measured. The topographic form of Elysium Mons has totally controlled the flow direction of lava flows within Elysium Planitia. Lava flows from Elysium Mons can be traced for distances of 150 to 250 km in a radial direction from the volcano. Parasitic vents located beyond the recognizable volcanic construct also conform to this radial pattern. A second unusual characteristic of the Elysium Planitia region is the high frequency of occurrence of sinuous channels that are morphologically similar to lunar sinuous rilles.

  7. Growth of the Pamir

    NASA Astrophysics Data System (ADS)

    Gloaguen, R.; Ratschbacher, L.

    2009-04-01

    We aim to establish the Late Cenozoic deformation field of the Pamir by localizing and characterizing active and neotectonic deformation structures, and setting up the drainage-basin, river-capture, river- reversal, and regional erosion history. The project thus aims to record the short-term, upper crustal response to active intra-continental subduction, orocline formation, and erosion. Our hypothesis is that the neotectonics is governed by subduction beneath the frontal part of the orocline, E-W extension in the intra-plateau Karakul-lake rift, and transtension (east) and transpression (west) along the lateral margins of the orocline, a result of oroclinal formation, rotation of the Indian indenter, and focused precipitation caused by the Westerlies. The model for the evolution of the drainage system involves: growth of the Pamir by N-ward propagating deformation, establishing E-trending belts of shortening and rivers/drainages; diversion and blocking of these rivers by the development of the lateral boundaries of the orocline that resulted in river capture and reversal. Even the present-day Panj (Amu Darya) is affected by ongoing uplift: tilted river terraces, wind gaps, and abnormal intersection of streams of different order indicate that large parts of the river have changed flow direction. The determination of a number of geomorphic indices with remote sensing techniques help us to identify areas experiencing tectonic deformation.

  8. Physical Heterogeneity and Aquatic Community Function in ...

    EPA Pesticide Factsheets

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) – large tracts of river with a similar geomorphic character - in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show the same basal resources were present throughout the Kanawha River but their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of secondary consumers – fish - were also recorded between FPZs. Overall, both the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity, supporting tenet 8 of the river ecosystem synthesis. In previous research efforts, we delineated the functional process zones (FPZs) of the Kanawha River. In this study, we examined the relationship between the hydrogeomorphically-derived zones with food webs.

  9. A coupled geomorphic and ecological model of tidal marsh evolution.

    PubMed

    Kirwan, Matthew L; Murray, A Brad

    2007-04-10

    The evolution of tidal marsh platforms and interwoven channel networks cannot be addressed without treating the two-way interactions that link biological and physical processes. We have developed a 3D model of tidal marsh accretion and channel network development that couples physical sediment transport processes with vegetation biomass productivity. Tidal flow tends to cause erosion, whereas vegetation biomass, a function of bed surface depth below high tide, influences the rate of sediment deposition and slope-driven transport processes such as creek bank slumping. With a steady, moderate rise in sea level, the model builds a marsh platform and channel network with accretion rates everywhere equal to the rate of sea-level rise, meaning water depths and biological productivity remain temporally constant. An increase in the rate of sea-level rise, or a reduction in sediment supply, causes marsh-surface depths, biomass productivity, and deposition rates to increase while simultaneously causing the channel network to expand. Vegetation on the marsh platform can promote a metastable equilibrium where the platform maintains elevation relative to a rapidly rising sea level, although disturbance to vegetation could cause irreversible loss of marsh habitat.

  10. Evolving soils and hydrologic connectivity in semiarid hillslopes

    NASA Astrophysics Data System (ADS)

    Saco, Patricia M.

    2015-04-01

    Soil moisture availability is essential for the stability and resilience of semiarid ecosystems. In these ecosystems the amount of soil moisture available for vegetation growth and survival is intrinsically related to the way water is redistributed, that is from source to sink areas, and therefore prescribed by the hydrologic connectivity of the landscape. Recent studies have shown that hydrologic connectivity is highly dynamic and linked to the coevolution of geomorphic, soil and vegetation structures at a variety of spatial and temporal scales. This study investigates the effect of evolving soil depths on hydrologic connectivity using a modelling framework. The focus is on Australian semiarid hillslopes with patterned vegetation that result from coevolving landforms, soils, water redistribution, and vegetation patterns. We present and analyse results from simulations using a coupled landform evolution-dynamic vegetation model, which includes a soil depth evolution module and accounts for soil production and sediment erosion and deposition processes. We analyse the effect of soils depths on surface connectivity for a range of biotic (plant functional type strategies) and abiotic (slope and erodibility) conditions. The analysis shows that different plant functional types, through their varying facilitation strategies, have a profound effect on soils depths and therefore affect hydrologic connectivity and soil moisture patterns. This interplay becomes particularly important for systems that coevolve to have very shallow soils. In this case soil depth becomes the key factor prescribing surface connectivity and available soil moisture for plants, which affect the recovery of the system after disturbance. Conditions for the existence of threshold behaviour for which small perturbations can trigger a sudden increase in hydrologic connectivity, reduced soil moisture availability and decrease in productivity leading to degraded states are investigated. Critical implications for effective restoration efforts are discussed.

  11. The combined effects of topography and vegetation on catchment connectivity

    NASA Astrophysics Data System (ADS)

    Nippgen, F.; McGlynn, B. L.; Emanuel, R. E.

    2012-12-01

    The deconvolution of whole catchment runoff response into its temporally dynamic source areas is a grand challenge in hydrology. The extent to which the intersection of static and dynamic catchment characteristics (e.g. topography and vegetation) influences water redistribution within a catchment and the hydrologic connectivity of hillslopes to the riparian and stream system is largely unknown. Over time, patterns of catchment storage shift and, because of threshold connectivity behavior, catchment areas become disconnected from the stream network. We developed a simple but spatially distributed modeling framework that explicitly incorporates static (topography) and dynamic (vegetation) catchment structure to document the evolution of catchment connectivity over the course of a water year. We employed directly measured eddy-covariance evapotranspiration data co-located within a highly instrumented (>150 recording groundwater wells) and gauged catchment to parse the effect of current and zero vegetation scenarios on the temporal evolution of hydrologic connectivity. In the absence of vegetation, and thus in the absence of evapotranspiration, modeled absolute connectivity was 4.5% greater during peak flow and 3.9% greater during late summer baseflow when compared to the actual vegetation scenario. The most significant differences in connected catchment area between current and zero vegetation (14.9%) occurred during the recession period in early July, when water and energy availability were at an optimum. However, the greatest relative difference in connected area occurs during the late summer baseflow period when the absence of evapotranspiration results in a connected area approximately 500% greater than when vegetation is present, while the relative increase during peak flow is just 6%. Changes in connected areas ultimately lead to propose a biologically modified geomorphic width function. This biogeomorphic width function is the result of lateral water redistribution driven by topography and water uptake by vegetation.

  12. Microbial Biomass and Activity in Geomorphic Features in Forested and Urban Restored and Degraded Streams

    EPA Science Inventory

    Geomorphic spatial heterogeneity affects sediment denitrification, an anaerobic microbial process that results in the loss of nitrogen (N), and other anaerobic microbial processes such as methanogenesis in urban streams. We measured sediment denitrification potential (DEA), metha...

  13. GEOMORPHIC THRESHOLDS AND CHANNEL MORPHOLOGY IN LARGE RIVERS

    EPA Science Inventory

    Systematic changes in channel morphology occur as channel gradient, streamflow, and sediment character change and interact. Geomorphic thresholds of various kinds are useful metrics to define these changes along the river network, as they are based on in-channel processes that d...

  14. Morphotectonic Index Analysis as an Indicator of Neotectonic Segmentation of the Nicoya Peninsula, Costa Rica

    NASA Astrophysics Data System (ADS)

    Morrish, S.; Marshall, J. S.

    2013-12-01

    The Nicoya Peninsula lies within the Costa Rican forearc where the Cocos plate subducts under the Caribbean plate at ~8.5 cm/yr. Rapid plate convergence produces frequent large earthquakes (~50yr recurrence interval) and pronounced crustal deformation (0.1-2.0m/ky uplift). Seven uplifted segments have been identified in previous studies using broad geomorphic surfaces (Hare & Gardner 1984) and late Quaternary marine terraces (Marshall et al. 2010). These surfaces suggest long term net uplift and segmentation of the peninsula in response to contrasting domains of subducting seafloor (EPR, CNS-1, CNS-2). In this study, newer 10m contour digital topographic data (CENIGA- Terra Project) will be used to characterize and delineate this segmentation using morphotectonic analysis of drainage basins and correlation of fluvial terrace/ geomorphic surface elevations. The peninsula has six primary watersheds which drain into the Pacific Ocean; the Río Andamojo, Río Tabaco, Río Nosara, Río Ora, Río Bongo, and Río Ario which range in area from 200 km2 to 350 km2. The trunk rivers follow major lineaments that define morphotectonic segment boundaries and in turn their drainage basins are bisected by them. Morphometric analysis of the lower (1st and 2nd) order drainage basins will provide insight into segmented tectonic uplift and deformation by comparing values of drainage basin asymmetry, stream length gradient, and hypsometry with respect to margin segmentation and subducting seafloor domain. A general geomorphic analysis will be conducted alongside the morphometric analysis to map previously recognized (Morrish et al. 2010) but poorly characterized late Quaternary fluvial terraces. Stream capture and drainage divide migration are common processes throughout the peninsula in response to the ongoing deformation. Identification and characterization of basin piracy throughout the peninsula will provide insight into the history of landscape evolution in response to differential uplift. Conducting this morphotectonic analysis of the Nicoya Peninsula will provide further constraints on rates of segment uplift, location of segment boundaries, and advance the understanding of the long term deformation of the region in relation to subduction.

  15. Beaver damming, fluvial geomorphology, and climate in Yellowstone National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Persico, L.; Meyer, G.

    2008-12-01

    Beaver habitation is an important component of many fluvial landscapes that can impact a variety of hydrologic, geomorphic, and ecologic processes. Beaver damming, via long term valley aggradation, is thought to be important to the postglacial geomorphic evolution of many smaller mountain stream networks in the western United States. Loss of beaver dams can also cause rapid channel incision. Although several studies have documented rapid short-term aggradation of channels behind single beaver dams, there is little actual data on the long-term cumulative effect of beaver damming. In Yellowstone''s Northern Range, field surveys and stratigraphic section along six streams in the Northern Range reveal net thickness of mostly <2 m and patchy distribution of Holocene beaver-pond deposits. We estimate that reaches with clear morphologic and stratigraphic evidence for beaver-related aggradation constitute about 19% of the total stream network length. Reaches with probable and possible beaver-related aggradation make up an additional 8% and 2% of the network, respectively. The remaining 71% of the network has no clear evidence for beaver-related aggradation. Thirty-nine radiocarbon ages on beaver-pond deposits in northern Yellowstone fall primarily within the last 4000 yr, but gaps in dated beaver occupation from 2200-1800 and 950-750 cal yr BP correspond with severe and persistent droughts that likely caused low to ephemeral discharges in smaller streams. In the last two decades, severe drought has also caused streams that were occupied by beaver in the 1920s to become ephemeral. Beaver have been largely absent from the Northern Range since the mid-20th century, probably due to multiple ecological and climatic factors. This loss of beaver is thought to have led to widespread degradation of stream and riparian habitat via channel incision. Although 20th-century beaver loss has caused significant channel incision at some former dam sites, downcutting elsewhere in northern Yellowstone is unrelated to beaver dams or predates historic beaver extirpation. Overall, historic incision affects a 26% of reaches that have experienced beaver related aggradation in the study area. These results highlight the importance of historical and Holocene geomorphic studies in understanding the role of beaver in landscape dynamics.

  16. The Evolution of Riparian Landscape Elements Following Upstream Regulation and Depletion on the Rio Grande

    NASA Astrophysics Data System (ADS)

    Everitt, B. L.

    2006-12-01

    In 1915 closure of Elephant Butte Dam in central New Mexico profoundly altered the hydrologic regime of the Rio Grande for 560 km downstream, and set in motion a cascade of interwoven geomorphic, biological, and cultural responses. Geomorphic response included shrinking of the width and depth of the channel, and an increase in sinuosity. Cultural responses included artificial channel modification on 320 km of the river within the boundaries of the original irrigation project, beginning in 1933. The pre-dam river and its flood plain consisted of a mosaic of geomorphic elements that formed a functional riverine landscape, and founded a diverse habitat for the plants, animals, and people that lived there. A preliminary comparison of the modern river with pre-dam topographic mapping permits identification of individual landscape elements, including overflow land (flood plain) both cultivated and uncultivated, with oxbows and back-swamps. The pre-dam channel included a low water thread and un-vegetated flood bars. From pre-dam description and photographs we can assume the usual complement of pools and riffles, point bars and undercut banks. Until dredged in the 1970s, the unmodified reach retained the entire suite of landscape elements, although in somewhat different proportions from the pre-dam river, and remained a functional riparian system. Channel sinuosity increased from 1.45 in 1910 to 1.7 in 1970, thus riverbank habitat increased by 1.17%. In 1970 undercut banks still provided protection for fish, and point bars generated by lateral migration still provided seed beds for pioneer species. The smaller shallower channel raised groundwater beneath the flood plain and retarded flood waves, creating a generally more mesic environment, although the river occasionally dries up, as it did prior to 1915. In contrast, an impoverished suite of landscape elements characterizes the channelized reach. Lateral stability precludes point bars and undercut banks. Bounding levees separate the channel from its former flood plain. All areas are impacted by heavy machinery during periodic channel maintenance. I conclude that the environmental degradation caused by artificial channel modification has far outweighed any generated by upstream hydrologic control.

  17. Geomorphic constraints on the evolution of the Kern Gorge, southern Sierra Nevada, California.

    NASA Astrophysics Data System (ADS)

    Foreshee, B. C.; Krugh, W. C.

    2016-12-01

    The Kern River is uniquely positioned to respond to tectonic activity that occurs within the southern Sierra Nevada and southern San Joaquin Basin, CA. The North and South forks of the upper Kern River (above Lake Isabella) are fed by tributaries that primarily drain the high-elevation low-relief landscape of the Kern Plateau. These south flowing trunk streams switch to a dominantly southwest flow direction at the Lake Isabella Reservoir and South Lake Valley respectively. Downstream from Lake Isabella, the Kern River steepens as it flows through the Kern Gorge and then crosses the Kern Arch region of the San Joaquin Basin. Clark et al., (2005) used low-temperature thermochronometry and trunk and tributary channel profiles from the upper Kern River catchment to identify two periods of rapid incision that occurred from 32.0 to 3.5 Ma and from 3.5 Ma to present. Cecil et al., (2014) used low-temperature thermochronometry from well cores of Oligocene-Miocene sandstones to investigate the time-temperature history of the Kern Arch and identified a period of subsidence and sedimentation between 6.0 and 1.0 Ma that was immediately followed by rapid exhumation. They attributed these results to the northwest migration of a delaminating lithospheric root. In this study we examine the erosional and depositional history within the Kern Gorge to investigate the response of the Kern River to Pliocene-Pleistocene tectonic activity within the Kern Arch and southern Sierra Nevada. Quantitative stream profile analyses and geomorphic mapping within the Kern Gorge are being conducted using USGS 10m DEM data, satellite and aerial imagery, and field based observations and measurements. Reconnaissance mapping efforts have so far identified several strath terraces, alluvial fill terraces, colluvial deposits, and multiple debris flow and landslide deposits that have been incised by the Kern River and are now preserved above the active channel. These geomorphic landforms are currently being targeted for geochronologic analyses to help constrain depositional ages as well as the timing and rate of incision along the lower Kern River. Combined methods of stream profile analysis, field investigation and geochronometry will shed light on transient signals propagating through the lower Kern River drainage basin.

  18. Numerical Modeling of Large-Scale Rocky Coastline Evolution

    NASA Astrophysics Data System (ADS)

    Limber, P.; Murray, A. B.; Littlewood, R.; Valvo, L.

    2008-12-01

    Seventy-five percent of the world's ocean coastline is rocky. On large scales (i.e. greater than a kilometer), many intertwined processes drive rocky coastline evolution, including coastal erosion and sediment transport, tectonics, antecedent topography, and variations in sea cliff lithology. In areas such as California, an additional aspect of rocky coastline evolution involves submarine canyons that cut across the continental shelf and extend into the nearshore zone. These types of canyons intercept alongshore sediment transport and flush sand to abyssal depths during periodic turbidity currents, thereby delineating coastal sediment transport pathways and affecting shoreline evolution over large spatial and time scales. How tectonic, sediment transport, and canyon processes interact with inherited topographic and lithologic settings to shape rocky coastlines remains an unanswered, and largely unexplored, question. We will present numerical model results of rocky coastline evolution that starts with an immature fractal coastline. The initial shape is modified by headland erosion, wave-driven alongshore sediment transport, and submarine canyon placement. Our previous model results have shown that, as expected, an initial sediment-free irregularly shaped rocky coastline with homogeneous lithology will undergo smoothing in response to wave attack; headlands erode and mobile sediment is swept into bays, forming isolated pocket beaches. As this diffusive process continues, pocket beaches coalesce, and a continuous sediment transport pathway results. However, when a randomly placed submarine canyon is introduced to the system as a sediment sink, the end results are wholly different: sediment cover is reduced, which in turn increases weathering and erosion rates and causes the entire shoreline to move landward more rapidly. The canyon's alongshore position also affects coastline morphology. When placed offshore of a headland, the submarine canyon captures local sediment, increases weathering and erosion around the headland, and eventually changes the headland into an embayment! Improvements to our modeling approach include refining the initial conditions. To create a fractal, immature rocky coastline, self-similar river networks with random side branches were drawn on the shoreline domain. River networks and side branches were scaled according to Horton's law and Tokunaga statistics, respectively, and each river pathway was assigned a simple exponential longitudinal profile. Topography was generated around the river networks to create drainage basins and, on a larger scale, represent a mountainous, fluvially-sculpted landscape. The resultant morphology was then flooded to a given elevation, leaving a fractal rocky coastline. In addition to the simulated terrain, actual digital elevation models will also be used to derive the initial conditions. Elevation data from different mountainous geomorphic settings such as the decaying Appalachian Mountains or actively uplifting Sierra Nevada can be effectively flooded to a given sea level, resulting in a fractal and immature coastline that can be input to the numerical model. This approach will offer insight into how rocky coastlines in different geomorphic settings evolve, and provide a useful complement to results using the simulated terrain.

  19. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan

    USGS Publications Warehouse

    Farrell, K.M.

    2001-01-01

    This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions - vertical (x), lateral (y), and down-the-basin (z). A flood basin fills in as landforms vertically (x) and laterally accrete (y), and prograde down-the-basin (z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution. ?? 2001 Elsevier Science B.V. All rights reserved.

  20. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan

    NASA Astrophysics Data System (ADS)

    Farrell, K. M.

    2001-02-01

    This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions — vertical ( x), lateral ( y), and down-the-basin ( z). A flood basin fills in as landforms vertically ( x) and laterally accrete ( y), and prograde down-the-basin ( z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution.

  1. Nearshore wave-induced cyclical flexing of sea cliffs

    USGS Publications Warehouse

    Adams, P.N.; Storlazzi, C.D.; Anderson, R. Scott

    2005-01-01

    [1] Evolution of a tectonically active coast is driven by geomorphically destructive energy supplied by ocean waves. Wave energy is episodic and concentrated; sea cliffs are battered by the geomorphic wrecking ball every 4-25 s. We measure the response of sea cliffs to wave assault by sensing the ground motion using near-coastal seismometers. Sea cliffs respond to waves in two distinct styles. High-frequency motion (20 Hz) reflects the natural frequency of the sea cliff as it rings in response to direct wave impact. Low-frequency motion in the 0.1-0.05 Hz (10-20 s) band consistently agrees with the dominant nearshore wave period. Integrating microseismic velocities suggests 50 ??m and 10 ??m displacements in horizontal and vertical directions, respectively. Displacement ellipsoids exhibit simultaneous downward and seaward sea cliff motion with each wave. Video footage corroborates the downward sea cliff flex in response to the imposed water load on the wave cut platform. Gradients in displacement amplitudes documented using multiple seismometers suggest longitudinal and shear strain of the flexing sea cliff on the order of 0.5-4 ?? strains during each wave loading cycle. As this sea cliff flexure occurs approximately 3 million times annually, it has the potential to fatigue the rock through cyclical loading. Local sea cliff retreat rates of 10 cm/yr imply that a given parcel of rock is flexed through roughly 109 cycles of increasing amplitude before exposure to direct wave attack at the cliff face. Copyright 2005 by the American Geophysical Union.

  2. Cold rock coast geomorphology: A quantitative analysis of rock coast processes in Hornsund.

    NASA Astrophysics Data System (ADS)

    Lim, Michael; Strzelecki, Matt; Kasprzak, Marek; Jaskolski, Marek; Pawlowski, Lukasz; Swirad, Zuzanna; Bell, Heather; Migon, Piotr

    2017-04-01

    Many arctic coastal systems are experiencing altered thermal and hydrological regimes. Of particular note within the High Arctic is Svalbard, a region undergoing a distinct and sustained rise in mean annual temperatures. Hornsund, at the southern tip of the Svalbard archipelago, is situated at the northern extreme of the North Atlantic current and as such provides a site of unique climate sensitivity with a concentration of geomorphic processes. There is a paucity of studies achieving sufficient resolution to account for geomorphic behaviour and over timescales that allow climatic conditioning to be considered. This research utilises high resolution multiscale surface monitoring and characterisation to quantify and model both contemporary and relic cliff responses in order to revisit one of the first quantitative studies, undertaken almost sixty years ago, on the rates and intensities of rock coast change. The fragmentation and failure in contemporary coastal cliff responses reflects a decrease in the overall rates of change relative to historic rates during a period that has seen the loss of an icefoot that regularly lasted until late summer and a transition to open water coastal dynamics. To investigate the drivers of rock degradation and failure, thermal analyses that characterise both spatial and temporal patterns across and within the rock coast have been used to indicate a potential shift in process activity zones. The significance of localised influences such as storm influences, iceberg influxes and topographic shading highlights some considerations for the development of broader scale models of rock coast evolution.

  3. Volatile reservoirs below the surface of the Elysium region of Mars: Geomorphic evidence

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric H.; Hopler, Jennifer A.

    1987-01-01

    The Elysium volcanic province contains a variety of geomorphic evidence for the existence of large volatile reservoirs of subsurface volatiles. Study of these landforms yields insight into the distribution and size of these reservoirs and how they interact with the surface environment and will ultimately place constraints on the geometry, constitution, origin, time of formation, and temporal evolution of these important components of the Martian crust. Three principal types of landforms appear to be related to subsurface volatile reservoirs in the Elysium region of Mars: small outflow channels; large lahars; and vast expanses of knobby terranes around the margins of the Elysium dome. The evidence provided by these landforms is internally consistent with the presence of a large relatively shallow volatile reservoir in the Elysium region. If the geologic features described are reliable indicators of subsurface volatiles, they imply that: volatile reservoirs lie relatively close to the surface and underlie millions of sq km in this region; there is no apparent latitudinal variation in the depth or thickness of the volatile reservoirs; the precursors of the knobby terranes are or were important volatile reservoirs; volatiles may be lost in a variety of ways from these reservoirs; and volatiles were incorporated in an easily eroded surficial deposit in the middle history of Mars. The ultimate origin of water in this reservoir is uncertain. A model to explain the preferential entrapment of volatiles into the region's surface materials may be required.

  4. Applying dam height-storage curve to geomorphic features analysis within virtual geographic environment: a case study of the Hong-Shi-Mao watershed

    NASA Astrophysics Data System (ADS)

    Wang, Daojun; Gong, Jianhua; Ma, Ainai; Li, Wenhang; Wang, Xijun

    2005-10-01

    There are generally two kinds of approaches to studying geomorphic features in terms of the quantification level and difference of major considerations. One is the earlier qualitative characterization, and the other is the 2-dimension measurement that includes section pattern and projection pattern. With the development of geo-information technology, especially the 3-D geo-visualization and virtual geographic environments (VGE), 3-dimension measurement and dynamic interactive between users and geo-data/geo-graphics can be developed to understand geomorphic features deeply, and to benefit to the effective applications of such features for geographic projects like dam construction. Storage-elevation curve is very useful for site selection of projects and flood dispatching in water conservancy region, but it is just a tool querying one value from the other one. In fact, storage-elevation curve can represent comprehensively the geomorphic features including vertical section, cross section of the stream and the landform nearby. In this paper, we use quadratic regression equation shaped like y = ax2 + bx + c and the DEM data of Hong-Shi-Mao watershed, Zi Chang County, ShaanXi Province, China to find out the relationship between the coefficients of the equation and the geomorphic features based on VGE platform. It's exciting that the coefficient "a" appear to be correlative strongly with the stream scale, and the coefficient "b" may give an index to the valley shape. In the end, we use a sub-basin named Hao-Jia-Gou of the watershed as an application. The result of correlative research about quadratic regression equation and geomorphic features can save computing and improve the efficiency in silt dam systems planning.

  5. EFFECTS OF GEOMORPHIC PROCESSES AND HYDROLOGIC REGIMES ON RIPARIAN VEGETATION

    EPA Science Inventory

    In this chapter, the relationships among riparian vegetation and geomorphic and hydrologic processes in central Great Basin watersheds are evaluated over a range of scales. These relationships are examined through a series of case studies that have been conducted by the Great Ba...

  6. Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes

    PubMed Central

    Macias-Fauria, Marc; Johnson, Edward A.

    2013-01-01

    Forests are expected to expand into alpine areas because of climate warming, causing land-cover change and fragmentation of alpine habitats. However, this expansion will only occur if the present upper treeline is limited by low-growing season temperatures that reduce plant growth. This temperature limitation has not been quantified at a landscape scale. Here, we show that temperature alone cannot realistically explain high-elevation tree cover over a >100-km2 area in the Canadian Rockies and that geologic/geomorphic processes are fundamental to understanding the heterogeneous landscape distribution of trees. Furthermore, upslope tree advance in a warmer scenario will be severely limited by availability of sites with adequate geomorphic/topographic characteristics. Our results imply that landscape-to-regional scale projections of warming-induced, high-elevation forest advance into alpine areas should not be based solely on temperature-sensitive, site-specific upper-treeline studies but also on geomorphic processes that control tree occurrence at long (centuries/millennia) timescales. PMID:23569221

  7. The application of remotely sensed data to pedologic and geomorphic mapping on alluvial fan and playa surfaces in Saline Valley, California

    NASA Technical Reports Server (NTRS)

    Miller, D. A.; Petersen, G. W.; Kahle, A. B.

    1986-01-01

    Arid and semiarid regions yield excellent opportunities for the study of pedologic and geomorphic processes. The dominance of rock and soil exposure over vegetation not only provides the ground observer with observational possibilities but also affords good opportunities for measurement by aircraft and satellite remote sensor devices. Previous studies conducted in the area of pedologic and geomorphic mapping in arid regions with remotely sensed data have utilized information obtained in the visible to near-infrared portion of the spectrum. Thermal Infrared Multispectral Scanner (TIMS) and Thematic Mapping (TM) data collected in 1984 are being used in comjunction with maps compiled during a Bureau of Land Management (BLM) soil survey to aid in a detailed mapping of alluvial fan and playa surfaces within the valley. The results from this study may yield valuable information concerning the application of thermal data and thermal/visible data combinations to the problem of dating pedologic and geomorphic features in arid regions.

  8. Time and the rivers flowing: Fluvial geomorphology since 1960

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2014-07-01

    Fluvial geomorphology has been the largest single subdiscipline within geomorphology for many decades. Fluvial geomorphic expertise is integral to understanding and managing rivers and to developing strategies for sustainable development. This paper provides an overview of some of the significant advances in fluvial geomorphology between 1960 and 2010 with respect to: conceptual models; fluvial features and environments being studied; tools used by fluvial geomorphologists; geomorphic specialty groups within professional societies; journals in which fluvial geomorphic research is published; and textbooks of fluvial geomorphology. During this half century, fluvial geomorphology broadened considerably in scope, from a focus primarily on physical principles underlying process and form in lower gradient channels with limited grain size range, to a more integrative view of rivers as ecosystems with nonlinear behavior and great diversity of gradient, substrate composition, and grain size. The array of tools for making basic observations, analyzing data, and disseminating research results also expanded considerably during this period, as did the diversity of the fluvial geomorphic community.

  9. Maintaining the Link to The Floodplain: Scour Dynamics in Crevasses

    NASA Astrophysics Data System (ADS)

    Esposito, C. R.; Liang, M.; Yuill, B. T.; Meselhe, E. A.

    2017-12-01

    In river deltas, crevasses are the primary geomorphic feature that traverse the levee, connecting the river to its floodplain and facilitating the transfer of water, sediment, and chemical constituents from the trunk channel. Despite their fundamental position linking river and floodplain, the factors that are important to crevasse evolution are not well understood, and their enumeration is the subject of active research across multiple earth surface process subfields. Crevasses are often associated with a zone of intense scour proximal to the trunk channel. Surprisingly little is known about the morphological dynamics in this zone, but there is evidence from studies of river avulsion that scour zone evolution plays an important role in determining crevasse sustainability. Here we use Delft3D to simulate the development of managed crevasse splays - river diversions - for the purpose of landscape management in the Mississippi River Delta. Our model runs vary the erodibility of the substrate in the receiving basin and the extent and location of erosion protection along the conveyance channel. We find that substrate erodibility in the basin plays a critical role in determining the long-term performance of sediment diversions. Crevasses that create large scours tend to maintain their performance over several decades, but those that only create small scours are subject to rapidly declining performance as the scour pit fills in with coarse sediments. Finally, we compare the evolution of our modeled scour zone to the West Bay Sediment Diversion, where regular bathymetric surveys have documented the evolution of the scour zone since 2004.

  10. Developing and exploring a theory for the lateral erosion of bedrock channels for use in landscape evolution models

    NASA Astrophysics Data System (ADS)

    Langston, Abigail L.; Tucker, Gregory E.

    2018-01-01

    Understanding how a bedrock river erodes its banks laterally is a frontier in geomorphology. Theories for the vertical incision of bedrock channels are widely implemented in the current generation of landscape evolution models. However, in general existing models do not seek to implement the lateral migration of bedrock channel walls. This is problematic, as modeling geomorphic processes such as terrace formation and hillslope-channel coupling depends on the accurate simulation of valley widening. We have developed and implemented a theory for the lateral migration of bedrock channel walls in a catchment-scale landscape evolution model. Two model formulations are presented, one representing the slow process of widening a bedrock canyon and the other representing undercutting, slumping, and rapid downstream sediment transport that occurs in softer bedrock. Model experiments were run with a range of values for bedrock erodibility and tendency towards transport- or detachment-limited behavior and varying magnitudes of sediment flux and water discharge in order to determine the role that each plays in the development of wide bedrock valleys. The results show that this simple, physics-based theory for the lateral erosion of bedrock channels produces bedrock valleys that are many times wider than the grid discretization scale. This theory for the lateral erosion of bedrock channel walls and the numerical implementation of the theory in a catchment-scale landscape evolution model is a significant first step towards understanding the factors that control the rates and spatial extent of wide bedrock valleys.

  11. A Conceptual Model of Riparian Forest Response to Channel Abandonment on Meandering Rivers

    NASA Astrophysics Data System (ADS)

    Stella, J. C.; Hayden, M. K.; Battles, J. J.; Piegay, H.; Dufour, S.; Fremier, A. K.

    2008-12-01

    On alluvial rivers, hydrogeomorphic regimes exert a primary control on the regeneration of pioneer riparian forest stands and thus their composition and age structure. Seasonal flow patterns provide the necessary conditions for recruitment, and channel migration drives patterns of forest stand dynamics. To date, studies of pioneer riparian forest structure have focused primarily on point bar habitats, where woody vegetation typically recruits with decadal frequency in even-aged bands parallel to the river margin. However, there are indications that other recruitment pathways exist and can be important from a population and conservation perspective. On floodplains where channel migration occurs as infrequent cutoff or avulsion events, the geometry and position of the old channel relative to the new one determines rates and patterns of sedimentation and flood frequency. These conditions provide a brief opportunity for forest recruitment, and geomorphic evolution of the former channel habitat in turn influences forest dynamics. The population implications of this alternative forest regeneration pathway depend on the temporal dynamics of channel abandonment versus the rate of lateral channel migration. Preliminary analysis indicates that the geographic scope of this ecogeomorphological process is sizable. Along the Sacramento River (CA) and Ain River (France), for example, cottonwood-dominated stands associated with abandoned channels tend to be less frequent in number (38% of all stands) but larger in area (accounting for 53% of all forest area) relative to forest stands associated with laterally migrating point bars. Dendrochronological analysis confirms that tree ages in floodplain stands corresponds to the first decade after channel abandonment. These data indicate that changes to the rate and scale of channel abandonment due to human and climatic alterations to the flow regime will likely influence riparian corridor-wide tree population structure and forest dynamics.

  12. Cool barnacles: Do common biogenic structures enhance or retard rates of deterioration of intertidal rocks and concrete?

    PubMed

    Coombes, Martin A; Viles, Heather A; Naylor, Larissa A; La Marca, Emanuela Claudia

    2017-02-15

    Sedentary and mobile organisms grow profusely on hard substrates within the coastal zone and contribute to the deterioration of coastal engineering structures and the geomorphic evolution of rocky shores by both enhancing and retarding weathering and erosion. There is a lack of quantitative evidence for the direction and magnitude of these effects. This study assesses the influence of globally-abundant intertidal organisms, barnacles, by measuring the response of limestone, granite and marine-grade concrete colonised with varying percentage covers of Chthamalus spp. under simulated, temperate intertidal conditions. Temperature regimes at 5 and 10mm below the surface of each material demonstrated a consistent and statistically significant negative relationship between barnacle abundance and indicators of thermal breakdown. With a 95% cover of barnacles, subsurface peak temperatures were reduced by 1.59°C for limestone, 5.54°C for concrete and 5.97°C for granite in comparison to no barnacle cover. The amplitudes of short-term (15-30min) thermal fluctuations conducive to breakdown via 'fatigue' effects were also buffered by 0.70°C in limestone, 1.50°C in concrete and 1.63°C in granite. Furthermore, concentrations of potentially damaging salt ions were consistently lower under barnacles in limestone and concrete. These results indicate that barnacles do not enhance, but likely reduce rates of mechanical breakdown on rock and concrete by buffering near-surface thermal cycling and reducing salt ion ingress. In these ways, we highlight the potential role of barnacles as agents of bioprotection. These findings support growing international efforts to enhance the ecological value of hard coastal structures by facilitating their colonisation (where appropriate) through design interventions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Causal Loop Analysis of coastal geomorphological systems

    NASA Astrophysics Data System (ADS)

    Payo, Andres; Hall, Jim W.; French, Jon; Sutherland, James; van Maanen, Barend; Nicholls, Robert J.; Reeve, Dominic E.

    2016-03-01

    As geomorphologists embrace ever more sophisticated theoretical frameworks that shift from simple notions of evolution towards single steady equilibria to recognise the possibility of multiple response pathways and outcomes, morphodynamic modellers are facing the problem of how to keep track of an ever-greater number of system feedbacks. Within coastal geomorphology, capturing these feedbacks is critically important, especially as the focus of activity shifts from reductionist models founded on sediment transport fundamentals to more synthesist ones intended to resolve emergent behaviours at decadal to centennial scales. This paper addresses the challenge of mapping the feedback structure of processes controlling geomorphic system behaviour with reference to illustrative applications of Causal Loop Analysis at two study cases: (1) the erosion-accretion behaviour of graded (mixed) sediment beds, and (2) the local alongshore sediment fluxes of sand-rich shorelines. These case study examples are chosen on account of their central role in the quantitative modelling of geomorphological futures and as they illustrate different types of causation. Causal loop diagrams, a form of directed graph, are used to distil the feedback structure to reveal, in advance of more quantitative modelling, multi-response pathways and multiple outcomes. In the case of graded sediment bed, up to three different outcomes (no response, and two disequilibrium states) can be derived from a simple qualitative stability analysis. For the sand-rich local shoreline behaviour case, two fundamentally different responses of the shoreline (diffusive and anti-diffusive), triggered by small changes of the shoreline cross-shore position, can be inferred purely through analysis of the causal pathways. Explicit depiction of feedback-structure diagrams is beneficial when developing numerical models to explore coastal morphological futures. By explicitly mapping the feedbacks included and neglected within a model, the modeller can readily assess if critical feedback loops are included.

  14. Anthropogenic disruption to the seismic driving of beach ridge formation: The Sendai coast, Japan.

    PubMed

    Goff, James; Knight, Jasper; Sugawara, Daisuke; Terry, James P

    2016-02-15

    The expected geomorphic after-effects of the Mw 9.0 Tōhoku-oki earthquake of 11 March 2011 (eastern Japan) are summarized by a schematic model of seismic driving, which details seismogenic disturbances to sediment systems that affect the rate or timing of sediment delivery to coastlines over timescales of 10(2)-10(4)years. The immediate physical environmental responses to this high-magnitude earthquake included a large tsunami and extensive region-wide slope failures. Normally, slope failures within mountain catchments would have significant impacts on Japan's river and coastal geomorphology in the coming decades with, for example, a new beach ridge expected to form within 20-100 years on the Sendai Plain. However, human activity has significantly modified the rate and timing of geomorphic processes of the region, which will have impacts on likely geomorphic responses to seismic driving. For example, the rivers draining into Sendai Bay have been dammed, providing sediment traps that will efficiently capture bedload and much suspended sediment in transit through the river system. Instead of the expected ~1 km of coastal progradation and formation of a ~3m high beach ridge prior to the next large tsunami, it is likely that progradation of the Sendai Plain will continue to slow or even cease as a result of damming of river systems and capture of river sediments behind dams. The resulting reduction of fluvial sediment delivery to the coast due to modification of rivers inadvertently makes seawalls and other engineered coastal structures even more necessary than they would be otherwise. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. On the role of "internal variability" on soil erosion assessment

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Ivanov, Valeriy; Fatichi, Simone

    2017-04-01

    Empirical data demonstrate that soil loss is highly non-unique with respect to meteorological or even runoff forcing and its frequency distributions exhibit heavy tails. However, all current erosion assessments do not describe the large associated uncertainties of temporal erosion variability and make unjustified assumptions by relying on central tendencies. Thus, the predictive skill of prognostic models and reliability of national-scale assessments have been repeatedly questioned. In this study, we attempt to reveal that the high variability in soil losses can be attributed to two sources: (1) 'external variability' referring to the uncertainties originating at macro-scale, such as climate, topography, and land use, which has been extensively studied; (2) 'geomorphic internal variability' referring to the micro-scale variations of pedologic properties (e.g., surface erodibility in soils with multi-sized particles), hydrologic properties (e.g., soil structure and degree of saturation), and hydraulic properties (e.g., surface roughness and surface topography). Using data and a physical hydraulic, hydrologic, and erosion and sediment transport model, we show that the geomorphic internal variability summarized by spatio-temporal variability in surface erodibility properties is a considerable source of uncertainty in erosion estimates and represents an overlooked but vital element of geomorphic response. The conclusion is that predictive frameworks of soil erosion should embed stochastic components together with deterministic assessments, if they do not want to largely underestimate uncertainty. Acknowledgement: This study was supported by the Basic Science Research Program of the National Research Foundation of Korea funded by the Ministry of Education (2016R1D1A1B03931886).

  16. Geomorphic evidence for recent uplift of the Fitzcarrald Arch (Peru): A response to the Nazca Ridge subduction

    NASA Astrophysics Data System (ADS)

    Regard, V.; Lagnous, R.; Espurt, N.; Darrozes, J.; Baby, P.; Roddaz, M.; Calderon, Y.; Hermoza, W.

    2009-06-01

    The 400 000 km 2-wide Fitzcarrald Arch constitutes a wide topographic high of the Amazon Basin against the central Andes. In order to constrain its formation mechanisms and in particular to test its relationships to the Nazca ridge subduction, a quantitative geomorphology analysis of the Arch is performed using hypsometric integrals, elongation and azimuths of 7th- and 5th-order catchments. They all express a trend from high maturity to low maturity from NW towards SE. This maturity gradient coupled with the local drainage direction demonstrate that the Fitzcarrald Arch is not a 'classical' alluvial fan, since its apex is located 100 km east to the Subandean Thrust Front and the corresponding sedimentary pile is lacking. Nor is the Arch the superficial expression of an inherited transfer zone, because its geomorphic shape is radial and it does not diverge from a symmetry axis; moreover, such a reactivated structure is not found at depth on seismic profiles. In addition, our data show that underlying geomorphic control on catchment initiation and development has progressed from NW to SE, which in combination with the observation of crustal doming by Espurt et al. [Espurt, N., Baby, P., Brusset, S., Roddaz, M., Hermoza, W., Regard, V., Antoine, P.O., Salas-Gismondi, R., Bolaños, R., 2007. How does the Nazca Ridge subduction influence the modern Amazonian foreland basin? Geology 35, 515-518.] suggests that this relief is caused by the eastward sliding of the buoyant Nazca ridge beneath the South American lithosphere.

  17. Landscape evolution in south-central Minnesota and the role of geomorphic history on modern erosional processes

    USGS Publications Warehouse

    Gran, K.B.; Belmont, P.; Day, S.S.; Finnegan, N.; Jennings, C.; Lauer, J.W.; Wilcock, P.R.

    2011-01-01

    The Minnesota River Valley was carved during catastrophic drainage of glacial Lake Agassiz at the end of the late Pleistocene. The ensuing base-level drop on tributaries created knickpoints that excavated deep valleys as they migrated upstream. A sediment budget compiled in one of these tributaries, the Le Sueur River, shows that these deep valleys are now the primary source of sediment to the Minnesota River. To compare modern sediment loads with pre-European settlement erosion rates, we analyzed incision history using fluvial terrace ages to constrain a valley incision model. Results indicate that even thoughthe dominant sediment sources are derived from natural sources (bluffs, ravines, and streambanks), erosion rates have increased substantially, due in part to pervasive changes in watershed hydrology.

  18. Evolution of Mars' northern polar seasonal CO2 deposits: Variations in surface brightness and bulk density

    NASA Astrophysics Data System (ADS)

    Mount, Christopher P.; Titus, Timothy N.

    2015-07-01

    Small-scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct end-members across the NPSC: (1) Snow deposits may anneal to form an overlying slab layer that fractures. These low-density deposits maintain relatively constant densities over springtime. (2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high-density deposits dramatically increase in density over time. The end-members appear to be correlated with latitude.

  19. Evolution of Mars’ Northern Polar Seasonal CO2 deposits: variations in surface brightness and bulk density

    USGS Publications Warehouse

    Mount, Christopher P.; Titus, Timothy N.

    2015-01-01

    Small scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct endmembers across the NPSC: 1) Snow deposits may anneal to form an overlying slab layer that fractures. These low density deposits maintain relatively constant densities over springtime. 2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high density deposits dramatically increase in density over time. The endmembers appear to be correlated with latitude.

  20. Camera system considerations for geomorphic applications of SfM photogrammetry

    USGS Publications Warehouse

    Mosbrucker, Adam; Major, Jon J.; Spicer, Kurt R.; Pitlick, John

    2017-01-01

    The availability of high-resolution, multi-temporal, remotely sensed topographic data is revolutionizing geomorphic analysis. Three-dimensional topographic point measurements acquired from structure-from-motion (SfM) photogrammetry have been shown to be highly accurate and cost-effective compared to laser-based alternatives in some environments. Use of consumer-grade digital cameras to generate terrain models and derivatives is becoming prevalent within the geomorphic community despite the details of these instruments being largely overlooked in current SfM literature. This article is protected by copyright. All rights reserved.A practical discussion of camera system selection, configuration, and image acquisition is presented. The hypothesis that optimizing source imagery can increase digital terrain model (DTM) accuracy is tested by evaluating accuracies of four SfM datasets conducted over multiple years of a gravel bed river floodplain using independent ground check points with the purpose of comparing morphological sediment budgets computed from SfM- and lidar-derived DTMs. Case study results are compared to existing SfM validation studies in an attempt to deconstruct the principle components of an SfM error budget. This article is protected by copyright. All rights reserved.Greater information capacity of source imagery was found to increase pixel matching quality, which produced 8 times greater point density and 6 times greater accuracy. When propagated through volumetric change analysis, individual DTM accuracy (6–37 cm) was sufficient to detect moderate geomorphic change (order 100,000 m3) on an unvegetated fluvial surface; change detection determined from repeat lidar and SfM surveys differed by about 10%. Simple camera selection criteria increased accuracy by 64%; configuration settings or image post-processing techniques increased point density by 5–25% and decreased processing time by 10–30%. This article is protected by copyright. All rights reserved.Regression analysis of 67 reviewed datasets revealed that the best explanatory variable to predict accuracy of SfM data is photographic scale. Despite the prevalent use of object distance ratios to describe scale, nominal ground sample distance is shown to be a superior metric, explaining 68% of the variability in mean absolute vertical error.

  1. HCMM: Soil moisture in relation to geologic structure and lithology, northern California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1981-01-01

    Some HCMM images of about 80,000 sq km in northern California were qualitatively evaluated for usefulness in regional geologic investigations of structure and lithology. The thermal characteristics recorded vary among the several geomorphic provinces and depends chiefly on the topographic expression and vegetation cover. Identification of rock types, or groups of rock types, was most successfully carried out within the semi-arid parts of the region; however, extensive features, such as faults, folds and volcanic fields could be delineated. Comparisons of seasonally obtained HCMM images were limited value, except in semi-arid regions.

  2. REGIONAL RELATIONSHIPS BETWEEN GEOMORPHIC/HYDROLOGIC PARAMETERS AND SURFACE WATER CHEMISTRY RELATIVE TO ACIDIC DEPOSITION

    EPA Science Inventory

    We determined geomorphic and hydrologic parameters for 144 forested, lake watersheds in the Northeast (NE) of the United States based primarily on measurements from topographic maps. hese parameters were used to test for relationships with selected surface water chemistry relevan...

  3. Geomorphic predictors of riparian vegetation in small mountain watersheds

    Treesearch

    Blake M. Engelhardt; Jeanne C. Chambers; Peter J. Weisberg

    2015-01-01

    Hydrogeomorphic processes operating at watershed, process zone and site scales influence the distribution of riparian vegetation. However, most studies examining the relationships between hydrogeomorphic processes and riparian vegetation are conducted at site scales. We quantified the relative importance of watershed, process zone and site geomorphic characteristics...

  4. Predicting geomorphic stability in low-order streams of the western Lake Superior basin

    EPA Science Inventory

    Width:depth ratios, entrenchment ratios, gradients, and median substrate particle sizes (D50s) were measured in 32 second and third order stream reaches in the western Lake Superior basin, and stream reaches were assigned a Rosgen geomorphic classification. Over 700 measurements ...

  5. What Should a Restored River Look Like? (Invited)

    NASA Astrophysics Data System (ADS)

    Florsheim, J. L.; Chin, A.

    2010-12-01

    Removal of infrastructure such as dams, levees, and erosion control structures is a promising approach toward restoring river system connectivity, processes, and ecology. Significant management challenges exist, however, related to removal of such structures that have already transformed riparian processes or societal perceptions. Here, we consider the effects of bank erosion infrastructure versus the benefits of allowing channel banks to erode in order to address the question: what should a restored river look like? The extent of channel bank infrastructure globally is unknown; nevertheless, it dominates rivers in most urban areas and is growing in rural areas as small projects merge and creeks and rivers are progressively channelized. Bank erosion control structures are usually installed to limit land loss and to reduce associated hazards. Structures are sometimes themselves considered restoration under the assumption that sediment erosion is bad for ecosystems. Geomorphic and ecological effects of bank erosion control structures are well understood, however, and include loss of sediment sources, bank substrate, dynamic geomorphic processes, and riparian habitat. Thus, a rationale for allowing eroding banks in restored rivers is as follows: 1) bank erosion processes are a component of system-scale channel adjustment needed to accommodate variable hydrology and sediment loads and to promote long-term stability; 2) bank erosion is a source of coarse and fine sediment to channels needed to maintain downstream bed elevations and topographic heterogeneity; and 3) bank erosion is a component of river migration, a process that promotes riparian vegetation succession and provides large woody material and morphologic diversity required to sustain habitat and riparian biodiversity. When structures that were originally intended to control or manage dynamic natural processes such as flooding and erosion are removed, not surprisingly, a return to dynamic processes may cause economic and cultural impacts to a public that that has often encroached on land too close to the riparian zone to accommodate the magnitude of these processes. Thus, to accomplish river system restoration in rural areas, science is needed to inform policy-makers and managers about the multidimensional physical extent of the riparian zone required for restoration of bio-hydro-geomorphic processes that promote functioning ecology. In urban areas, river system restoration requires a long-term dedication to education, fund raising for land acquisition, infrastructure removal, as well as planning, new riparian policy, governance, and management that takes into account the value and dynamic nature of river processes. So, what should a restored river look like? The banks of the restored river might be thought of as an aquatic-terrestrial ecotone that is longitudinally, laterally, and vertically connected to adjacent ecosystems. This ecotone includes a non-stationary mosaic of bare ground, irregular topography, live vegetation of diverse ages, sizes, and type, dead woody material, and diverse fauna.

  6. Using Digital Time-Lapse Videos to Teach Geomorphic Processes to Undergraduates

    NASA Astrophysics Data System (ADS)

    Clark, D. H.; Linneman, S. R.; Fuller, J.

    2004-12-01

    We demonstrate the use of relatively low-cost, computer-based digital imagery to create time-lapse videos of two distinct geomorphic processes in order to help students grasp the significance of the rates, styles, and temporal dependence of geologic phenomena. Student interviews indicate that such videos help them to understand the relationship between processes and landform development. Time-lapse videos have been used extensively in some sciences (e.g., biology - http://sbcf.iu.edu/goodpract/hangarter.html, meteorology - http://www.apple.com/education/hed/aua0101s/meteor/, chemistry - http://www.chem.yorku.ca/profs/hempsted/chemed/home.html) to demonstrate gradual processes that are difficult for many students to visualize. Most geologic processes are slower still, and are consequently even more difficult for students to grasp, yet time-lapse videos are rarely used in earth science classrooms. The advent of inexpensive web-cams and computers provides a new means to explore the temporal dimension of earth surface processes. To test the use of time-lapse videos in geoscience education, we are developing time-lapse movies that record the evolution of two landforms: a stream-table delta and a large, natural, active landslide. The former involves well-known processes in a controlled, repeatable laboratory experiment, whereas the latter tracks the developing dynamics of an otherwise poorly understood slope failure. The stream-table delta is small and grows in ca. 2 days; we capture a frame on an overhead web-cam every 3 minutes. Before seeing the video, students are asked to hypothesize how the delta will grow through time. The final time-lapse video, ca. 20-80 MB, elegantly shows channel migration, progradation rates, and formation of major geomorphic elements (topset, foreset, bottomset beds). The web-cam can also be "zoomed-in" to show smaller-scale processes, such as bedload transfer, and foreset slumping. Post-lab tests and interviews with students indicate that these time-lapse videos significantly improve student interest in the material, and comprehension of the processes. In contrast, the natural landslide is relatively unconstrained, and its processes of movement, both gradual and catastrophic, are essentially impossible to observe directly without the aid of time-lapse imagery. We are constructing a remote digital camera, mounted in a tree, which will capture 1-2 photos/day of the toe. The toe is extremely active geomorphically, and the time-lapse movie should help us (and the students) to constrain the style, frequency, and rates of movement, surface slumping, and debris-flow generation. Because we have also installed a remote weather station on the landslide, we will be able to test the links between these processes and local climate conditions.

  7. Impact of 1985 hurricanes on Isles Dernieres, Louisiana: Temporal and spatial analysis of coastal geomorphic changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debusshere, K.; Westphal, K.; Penland, S.

    1989-09-01

    Catastrophic geomorphic changes occurred in the Isles Dernieres barrier island arc as a result of the direct impact of three hurricanes in 1985. The severity of the impact of hurricanes Danny, Elena, and Juan had not been equaled since the landfall of hurricanes Betsy and Camille in the late 1960s. The Isles Dernieres had not been subjected to a direct hurricane landfall since hurricane Bob in 1979. The recent hurricane impacts provided the USGS/LGS Louisiana Cooperative Barrier Island and Land Loss Study the opportunity to examine the process-response characteristics of this low-profile transgressive barrier island arc to multiple hurricane impactsmore » in a single hurricane season. The geomorphic changes along the Isles Dernieres were determined using four sequential airborne videotape surveys acquired in July 1984, July 1985 (pre-storm), August 1985 (post-Danny) and November 1985 (post-Juan) and mapped on 1:24,000 base maps produced from concurrent vertical aerial photography. A coastal geomorphic classification was developed to describe, quantify, and map the alongshore geomorphic, sedimentologic , and vegetative character of this barrier shoreline. The classification consists of three levels of descriptors: (1) primary morphology to define the predominant longshore morphology, (2) modifiers to depict the small-scale longshore features, and (3) variants to locate and quantify important coastal features, not mappable at the scale used.« less

  8. Geomorphic and vegetative recovery processes along modified stream channels of West Tennessee

    USGS Publications Warehouse

    Simon, Andrew; Hupp, C.R. Tennessee

    1992-01-01

    Hundreds of miles of streams in West Tennessee have been channelized or otherwise modt@ed since the turn of century. After all or parts of a stream are straightened, dredged, or cleared, systematic hydrologic, geomorphic, and ecologic processes collectively begin to reduce energy conditions towards the premodified state. One hundred and five sites along 15 streams were studied in the Obion, Forked Deer, Hatchie, and Wolf River basins. All studied streams, except the Hatchie River, have had major channel modi@cation along all or parts of their courses. Bank material shear-strength properties were determined through drained borehole-shear testing (168 tests) and used to interpret present critical bank conditions and factors of safety, and to estimate future channel-bank stability. Mean values of cohesive strength and angle of internal friction were 1.26 pounds per square inch and 30.1 degrees, respectively. Dendrogeomorphic analyses were made using botanical evidence of channel-bank failures to determine rates of channel widening; buried riparian stems were analyzed to determine rates of bank accretion. Channel bed-level changes through time and space were represented by a power equation. Plant ecological analyses were ma& to infer relative bank stability, to identify indicator species of the stage of bank recovery, and to determine patterns of vegetation development through the course of channel evolution. Quantitative data on morphologic changes were used with previously developed six-stage models of channel evolution and bank-slope development to estimate trends of geomorphic and ecologic processes and forms through time. Immediately after channel modr@cations, a 10- to 1%yearperiod of channel-bed degradation ensues at and upstream from the most recent modifications (area of maximum disturbance). Channel-bed lowering by &gradation was as much as 20 feet along some stream reaches. Downstream from the area of maximum disturbance, the bed was aggraded by the deposition of sediment supplied by knickpoint migration upstream; aggradation also occurred in initially degraded sites with time. Additionally, if degradation caused an increase in bank height beyond the critical limits of the bank material, a period of channel widening by mass wasting followed. Degradation knickpoints migrated upstream at rates greater than 1 mile per year; the rates attenuated with distance above the area of maximum disturbance. Channel widening rates of up to 16 feet per year were documented along some severely degraded reaches. Planar failures were generally more frequent but rotational failures dominated the most rapidly widening reaches. Total volumes of bank erosion may represent 75percent or more of the total material eroded from the channel, but this material generally exits the drainage basin. Mean factors of safety vary with the stage of channel evolution with the lowest values for planar and rotational failures occurring during the threshold stage (stage IV) 1.00 and 1.15, respectively. As channel gradients decrease, degradation ceases and then a period of ?secondary aggradation ? (at lesser rates than degradation) and bank accretion begins that may fill the channel to near floodplain level. This shift@ in process represents an oscillation in channel bed-level adjustment. Streams in basins underlain by loess may require an order of magnitude more time than sand-bed streams to stabilize due to a lack of coarse-grained material (sand) for aggradation. A systematic progression of riparian species that reflects the six-stage model of channel evolution has been identified. This progression can be used to infer ambient channel stability and hydrogeomorphic conditions. Woody vegetation establishes on low- and mid-bank surfaces (the slough line, initially) at about the same time that bank accretion begins. This slough line forms at a mean temporary stability angle of 24 degrees and expands upslope with time by the accretion of sediments. Species involve

  9. Geomorphic Flood Area (GFA): a QGIS tool for a cost-effective delineation of the floodplains

    NASA Astrophysics Data System (ADS)

    Samela, Caterina; Albano, Raffaele; Sole, Aurelia; Manfreda, Salvatore

    2017-04-01

    The importance of delineating flood hazard and risk areas at a global scale has been highlighted for many years. However, its complete achievement regularly encounters practical difficulties, above all the lack of data and implementation costs. In conditions of scarce data availability (e.g. ungauged basins, large-scale analyses), a fast and cost-effective floodplain delineation can be carried out using geomorphic methods (e.g., Manfreda et al., 2011; 2014). In particular, an automatic DEM-based procedure has been implemented in an open-source QGIS plugin named Geomorphic Flood Area - tool (GFA - tool). This tool performs a linear binary classification based on the recently proposed Geomorphic Flood Index (GFI), which exhibited high classification accuracy and reliability in several test sites located in Europe, United States and Africa (Manfreda et al., 2015; Samela et al., 2016, 2017; Samela, 2016). The GFA - tool is designed to make available to all users the proposed procedure, that includes a number of operations requiring good geomorphic and GIS competences. It allows computing the GFI through terrain analysis, turning it into a binary classifier, and training it on the base of a standard inundation map derived for a portion of the river basin (a minimum of 2% of the river basin's area is suggested) using detailed methods of analysis (e.g. flood hazard maps produced by emergency management agencies or river basin authorities). Finally, GFA - tool allows to extend the classification outside the calibration area to delineate the flood-prone areas across the entire river basin. The full analysis has been implemented in this plugin with a user-friendly interface that should make it easy to all user to apply the approach and produce the desired results. Keywords: flood susceptibility; data scarce environments; geomorphic flood index; linear binary classification; Digital elevation models (DEMs). References Manfreda, S., Di Leo, M., Sole, A., (2011). Detection of Flood Prone Areas using Digital Elevation Models, Journal of Hydrologic Engineering, 16(10), 781-790. Manfreda, S., Nardi, F., Samela, C., Grimaldi, S., Taramasso, A. C., Roth, G., & Sole, A. (2014). Investigation on the Use of Geomorphic Approaches for the Delineation of Flood Prone Areas, Journal of Hydrology, 517, 863-876. Manfreda, S., Samela, C., Gioia, A., Consoli, G., Iacobellis, V., Giuzio, L., & Sole, A. (2015). Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models. Natural Hazards, Vol. 79 (2), pp 735-754. Samela, C. (2016), 100-year flood susceptibility maps for the continental U.S. derived with a geomorphic method. University of Basilicata. Dataset. Samela, C., Manfreda, S., Paola, F. D., Giugni, M., Sole, A., & Fiorentino, M. (2016). DEM-Based Approaches for the Delineation of Flood-Prone Areas in an Ungauged Basin in Africa. Journal of Hydrologic Engineering, 21(2), 1-10. Samela, C., Troy, T.J., Manfreda, S. (2017). Geomorphic classifiers for flood-prone areas delineation for data-scarce environments, Advances in Water Resources (under review).

  10. Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats

    NASA Astrophysics Data System (ADS)

    Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.

    2015-12-01

    The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate that some coral species are crucial in maintaining the structural diversity of coral reefs.

  11. 3D Quaternary deformation pattern in the central Po Plain (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Sileo, G.; Mueller, K.; Michetti, A. M.; Livio, F.; Berlusconi, A.; Carcano, C.; Rogledi, S.; Vittori, E.

    2009-04-01

    The Po Plain is a foredeep basin flanked by the two major and active orogens of the Italian Peninsula, the Alps to the North and the Apennines to the South. The basin has a quasi - triangular shape and grades longitudinally to the East in the Adriatic Sea. We used petroleum industry seismic reflection data acquired by ENI E&P in the Central Po Plain, over an area spanning about 6800 km2 from Lake Como to the W to Lake Garda to the E, and from the Lombardian Southern Alps to the N and the Emilia Apennines to the S, in order to analyze and interpret selected seismic reflectors and to define the evolution in space and time of the local active tectonic structures. Folds associated with underlying thrusts were recognized based on deformation recorded by two regional sequence boundary horizons, i.e. the ‘A' Surface (1.6 Myr) and the ‘R' Surface (0. 9 Myr; e.g., Carcano & Piccin, 2002; Muttoni et al., 2003), characterized by good stratigraphic and age bracketing, and marking significant changes in the sedimentary architecture of the Po Basin. Age controls are based on stratigraphic, paleontological and magnetostratigraphic analysis by ENI E&P and Regione Lombardia (Carcano & Piccin, 2002; Scardia et al., 2006). The analysis of strain recorded by these horizons allowed us to: A) recognize a belt of active fold and thrust structures, each 10 to 20 km long, arranged with an en-echelon pattern across the whole Po Basin, and B) analyze their evolution over the Quaternary. 'A' surface (1.6 Myr) The ‘A' surface has been mapped over about 7800 Km2. From North to South four major morphobathymetric domains can be defined in the Pleistocene marine Po Basin: an Alpine platform domain, a slope that links it with the wider central basin domain, a smaller and steeper slope and an Apennine platform domain. The basin shape has an asymmetric transversal profile and is ca. 40 km wide. Several tectonic structures affect this surface. On the Alpine platform domain two small structures have been identified. We interpreted them as N-verging fault propagation folds with low angle ramps that detach the Gonfolite Lombarda clastics (Oligo - Miocene; Bernoulli et al., 1989; Gelati et al., 1991) from the underlying Upper Cretaceous carbonates. The present-day geomorphic evidence of these two structures are represented by the Pievedizio, Capriano, Castenedolo and Ciliverghe Hills South of Brescia (Livio et al, 2008; Michetti et al., 2008). On the basin floor domain nine structures have been identified. Six of them belong to the Southern Alps and we interpreted them as S-verging fault propagation folds. All these structures have a double plunging termination (Burbank & Anderson, 2001) that mark the endpoints of actively slipping blind thrusts. These structures range from 11 to 16 km long with an average strike of N 110° E. The remaining three structures record shortening at the leading edge of the Apennines; their axial lengths range from 8 to 28 km and the average axial strike is 110°. These structures thus define the 3D architecture of blind thrusts hidden beneath the basin floor; these collectively define the two active, facing fronts of the Apennines and Southern Alps thrust belts (Fantoni et al. 2004). ‘R' Surface The second analyzed surface is the ‘R' surface (0.9 Myr.); strain measured across this sequence stratigraphic boundary confirmed and further defines the magnitude and timing of shortening accommodated by fault propagation folds described on the ‘A' surface. Differences between the basin between "A" and "R" surface time include the arrangement of the structures on the basin floor and by the number of the identified structures. The Alpine platform domain in "R" time is in fact more extended than on the ‘A' surface, and a less steep slope links it with a wider but less deep basin domain; the Apennines platform is smaller, because it has been involved in the deformation of the more internal Apennines structures. The basin floor is ca. 30 km wide with a progressive westward narrowing, and still displays an asymmetric transversal profile. Sedimentation rates are considerably higher than uplift rates of the structures, resulting in a paleobathymetry gentler than the ‘A' surface The measurement of the folds axial length becomes consequently more difficult. In order to filter the tectonic signal we conducted a profile curvature analysis perpendicular to the mean axial direction of the structures. We recognized six structures with an average length of 18 - 20 km and an average axial strike of N 110° E. The comparison of these structures with those recognized on the ‘A' surface clearly shows a decreasing number of folds, suggesting some thrusts shut off between "A" and "R" surface time. The similar geometry of folded "R" and "A" surfaces suggest consistent fault geometry and stress orientation during this time. This kinematic pattern is consistent with a spatially - varying shortening rate model (e.g., Salvini & Storti, 2002). The folds appear to grow with constant fault geometry and the displacement varies along strike since the tip of the faults migrates laterally in a direction perpendicular to the regional horizontal stress (Mueller & Talling, 1997, Keller et al., 1999; Champel et al, 2002; Burbank & Anderson, 2001). In summary, the analysis of the two described Quaternary seismic surfaces allowed us to understand the evolution of active folds within the Po Plain and their growth mechanism and evolution both in space and time. These folds are the modern loci of compressive strain that links the Southern Alps with the Northern Apennines. Comparing the two surfaces we can observe a significant shift in the localization of the tectonic deformation, consisting A) in the reactivation of N-verging backthrusts and associated folds in the Southern Alps instead of the main forethrusts, and B) in a similar backward skip of the activity from the outermost Apennines fronts, with the reactivation of the Pedeappenninic Thrust Fault (e.g. Boccaletti & Martelli, 2004). This might be related to a differential sedimentary load between proximal and distal portions of the basin related to increased erosion, especially in the Alps in hinterland areas and corresponding sedimentation in the foreland, both triggered by climate change in the Mid-Pleistocene (e.g. Muttoni et al., 2002). REFERENCES Boccaletti, M. & Martelli, L., (Editors) (2004) - Carta Sismotettonica della Regione Emilia-Romagna: Note Illustrative. Regione Emilia-Romagna, Servizio Geologico, Sismico e dei Suoli CNR - Firenze, SELCA S.r.l., Firenze, 60 p. Burbank, D., Anderson, R. (2001) - Tectonic Geomorphology. Wiley Blackwell. ISBN: 978-0-632-04386-6 Carcano, C. & Piccin, A. (Editors) (2002) - Geologia Degli Acquiferi Padani Della Regione Lombardia. Firenze: S.El.Ca. Champel, B., Van Der Beek, P., Mugnier J.& Leturmy, P. (2002) - Growth And Lateral Propagation Of Fault-Related Folds In The Siwaliks Of Western Nepal: Rates, Mechanisms, And Geomorphic Signature. Journal Of Geophysical Research, 107, B6, doi 10.1029/2001jb000578. Desio, A. (1965) - I Rilievi Isolati Della Pianura Lombarda Ed I Movimenti Tettonici Del Quaternario. Rend. Ist. Lom. Acc. Sc. Lett., Sez. A 99 pp.881-894. Fantoni, R., Bersezio, R., & Forcella, F., (2004) - Alpine structure and deformation chronology at the Southern Alps-Po Plain border in Lombardy. Boll. Soc. Geol. It., 123, 3, p. 463- 476. Keller, E. A., Gurrola, L. & Tierney, T. E. (1999) - Geomorphic Criteria To Determine Direction Of Lateral Propagation Of Reverse Faulting And Folding. Geology (Boulder), 27, 6, p. 515-518. Livio F., Berlusconi A., Michetti A.M., Sileo G., Zerboni A., Cremaschi M., Trombino L., Carcano C., Rogledi S., Vittori E., Mueller K. (2008) - Fagliazione Superficiale Olocenica E Paleoliquefazione Nel Sito Di Monte Netto, Brescia: Implicazioni Sismotettoniche. Rend. Online Sgi, 1, Note Brevi, www.Socgeol.It, p. 101-103. Michetti A.M., Berlusconi A., Livio F., Sileo G., Zerboni A., Cremaschi M., Trombino L, Mueller K., Vittori E., Carcano C., Rogledi S. (2008) - Holocene Surface Faulting At Monte Netto, Brescia, And The Christmas 1222 (Io = Ix Mcs) Earthquake In The Po Plain, Italy: What Does It Mean "Blind Fault"? Geophysical Research Abstracts, 10, Egu2008-A-00000, 2008 Egu General Assembly 2008. Mueller, K. & Talling, P. (1997) - Geomorphic Evidence For Tear Faults Accommodating Lateral Propagation Of An Active Fault-Bend Fold, Wheeler Ridge, California. Journal Of Structural Geology, 19, 3-4, p. 397-411. Muttoni G., Carcano, C., Garzanti, E., Ghielmi, M., Piccin, A., Pini, R., Rogledi, S., Sciunnach, D. (2002) - Onset Of Major Pleistocene Galciations In The Alps. Geology. - 2003. - 11 : 31. - p. 989-992. Salvini, F. & Storti, F. (2002) - Three-Dimensional Architecture Of Growth Strata Associated To Fault-Bend, Fault-Propagation, And Decollement Anticlines In Non-Erosional Environments. Sedimentary Geology, 146, p 57 - 73 Scardia, G., Muttoni, G. & Sciunnach, D. (2006) - Subsurface Magnetostratigraphy Of Pleistocene Sediments From The Po Plain (Italy): Constraints On Rates Of Sedimentation And Rock Uplift. GSA Bulletin 118, 11/12, p.1299-1312.

  12. Geomorphic and Structural Evidence for Rolling Hinge Style Deformation in the Footwall of an Active Low Angle Normal Fault, Mai'iu Fault, Woodlark Rift, SE Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Mizera, M.; Little, T.; Norton, K. P.; Webber, S.; Ellis, S. M.; Oesterle, J.

    2016-12-01

    While shown to operate in oceanic crust, rolling hinge style deformation remains a debated process in metamorpic core complexes (MCCs) in the continents. The model predicts that unloading and isostatic uplift during slip causes a progressive back-tilting in the upper crust of a normal fault that is more steeply dipping at depth. The Mai'iu Fault in the Woodlark Rift, SE Papua New Guinea, is one of the best-exposed and fastest slipping (probably >7 mm/yr) active low-angle normal faults (LANFs) on Earth. We analysed structural field data from this fault's exhumed slip surface and footwall, together with geomorphic data interpreted from aerial photographs and GeoSAR-derived digital elevation models (gridded at 5-30 m spacing), to evaluate deformational processes affecting the rapidly exhuming, domal-shaped detachment fault. The exhumed fault surface emerges from the ground at the rangefront near sea level with a northward dip of 21°. Up-dip, it is well-preserved, smooth and corrugated, with some fault remnants extending at least 29 km in the slip direction. The surface flattens over the crest of the dome, beyond where it dips S at up to 15°. Windgaps perched on the crestal main divide of the dome, indicate both up-dip tectonic advection and progressive back-tilting of the exhuming fault surface. We infer that slip on a serial array of m-to-km scale up-to-the-north, steeply S-dipping ( 75°) antithetic-sense normal faults accommodated some of the exhumation-related, inelastic bending of the footwall. These geomorphically well expressed faults strike parallel to the main Mai'iu fault at 110.9±5°, have a mean cross-strike spacing of 1520 m, and slip with a consistent up-to-the-north sense of throw ranging from <5 m to 120 m. Apparently the Mai'iu Fault was able to continue slipping despite having to negotiate this added fault-roughness. We interpret the antithetic faulting to result from bending stresses, and to provide the first clear examples of rolling hinge-style accommodation structures on a continental MCC.

  13. Effects of Land-Cover Change, Floods, and Stream Position on Geomorphic Processes - Implications for Restoration Activities

    USGS Publications Warehouse

    Fitzpatrick, F.A.; ,

    2001-01-01

    A geomorphic study for North Fish Creek, a northern Wisconsin tributary to Lake Superior was analyzed to determine the hydrologic and geomorphic changes caused by clear-cut logging and agricultural activity. Discharge magnitude estimated with HEC-2 for full-channel capacities indicate that modern full-channel discharges are about twice as large as pre-1946 full-channel discharges. Flood-plain deposition rates were high along the transitional main stem after European settlement. Restoration and protection activities would be most effective if focused on watershed practices to reduce runoff and on channel restoration that reduce buff and bank erosion in the upper and transitional main stems.

  14. Geomorphic control of radionuclide diffusion in desert soils

    USGS Publications Warehouse

    Pelletier, J.D.; Harrington, C.D.; Whitney, J.W.; Cline, M.; DeLong, S.B.; Keating, G.; Ebert, T.K.

    2005-01-01

    Diffusion is a standard model for the vertical migration of radionuclides in soil profiles. Here we show that diffusivity values inferred from fallout 137CS profiles in soils on the Fortymile Wash alluvial fan, Nye County, Nevada, have a strong inverse correlation with the age of the geomorphic surface. This result suggests that radionuclide-bound particles are predominantly transported by infiltration rather than by bulk-mixing processes such as wetting/ drying, freeze/thaw, and bioturbation. Our results provide a preliminary basis for using soil-geomorphic mapping, point-based calibration data, and the diffusion model to predict radionuclide trans desert soils within a pedotransfer-function approach. Copyright 2005 by the American Geophysical Union.

  15. Scaling relations in mountain streams: colluvial and Quaternary controls

    NASA Astrophysics Data System (ADS)

    Brardinoni, Francesco; Hassan, Marwan; Church, Michael

    2010-05-01

    In coastal British Columbia, Canada, the glacial palimpsest profoundly affects the geomorphic structure of mountain drainage basins. In this context, by combining remotely sensed, field- and GIS-based data, we examine the scaling behavior of bankfull width and depth with contributing area in a process-based framework. We propose a novel approach that, by detailing interactions between colluvial and fluvial processes, provides new insights on the geomorphic functioning of mountain channels. This approach evaluates the controls exerted by a parsimonious set of governing factors on channel size. Results indicate that systematic deviations from simple power-law trends in bankfull width and depth are common. Deviations are modulated by interactions between the inherited glacial and paraglacial topography (imposed slope), coarse grain-size fraction, and chiefly the rate of colluvial sediment delivery to streams. Cumulatively, departures produce distal cross-sections that are typically narrower and shallower than expected. These outcomes, while reinforcing the notion that mountain drainage basins in formerly glaciated systems are out of balance with current environmental conditions, show that cross-sectional scaling relations are useful metrics for understanding colluvial-alluvial interactions.

  16. Topographic expression of active faults in the foothills of the Northern Apennines

    NASA Astrophysics Data System (ADS)

    Picotti, Vincenzo; Ponza, Alessio; Pazzaglia, Frank J.

    2009-09-01

    Active faults that rupture the earth's surface leave an imprint on the topography that is recognized using a combination of geomorphic and geologic metrics including triangular facets, the shape of mountain fronts, the drainage network, and incised river valleys with inset terraces. We document the presence of a network of active, high-angle extensional faults, collectively embedded in the actively shortening mountain front of the Northern Apennines, that possess unique geomorphic expressions. We measure the strain rate for these structures and find that they have a constant throw-to-length ratio. We demonstrate the necessary and sufficient conditions for triangular facet development in the footwalls of these faults and argue that rock-type exerts the strongest control. The slip rates of these faults range from 0.1 to 0.3 mm/yr, which is similar to the average rate of river incision and mountain front unroofing determined by corollary studies. The faults are a near-surface manifestation of deeper crustal processes that are actively uplifting rocks and growing topography at a rate commensurate with surface processes that are eroding the mountain front to base level.

  17. Carbonate landscapes evolution: Insights from 36Cl

    NASA Astrophysics Data System (ADS)

    Godard, Vincent; Thomas, Franck; Ollivier, Vincent; Bellier, Olivier; Shabanian, Esmaeil; Miramont, Cécile; Fleury, Jules; Benedetti, Lucilla; Guillou, Valéry; Aster Team

    2017-04-01

    Carbonate landscapes cover a significant fraction of the Earth surface, but their long-term dynamics is still poorly understood. When comparing with the situation in areas underlain by quartz-rich lithologies, where the routine use of 10Be-derived denudation rates has delivered fundamental insights on landscape evolution processes, this knowledge gap is particularly notable. Recent advances in the measurement of 36Cl and better understanding of its production pathways has opened the way to the development of a similar physically-based and quantitative analysis of landscape evolution in carbonate settings. However, beyond these methodological considerations, we still face fundamental geomorphological open questions, as for example the assessment of the importance of congruent carbonate dissolution in long-wavelength topographic evolution. Such unresolved problems concerning the relative importance of physical and chemical weathering processes lead to question the applicability of standard slope-dependent Geomorphic Transport Laws in carbonate settings. These issues have been addressed studying the geomorphological evolution of selected limestone ranges in Provence, SE France, where 36Cl concentration measurements in bedrock and stream sediment samples allow constraining denudation over 10 ka time-scale. We first identify a significant denudation contrast between the summit surface and the flanks of the ranges, pointing to a substantial contribution of gravity-driven processes to the landscape evolution, in addition to dissolution. Furthermore, a detailed analysis of the relationships between hillslope morphology and hilltop denudation allow to identify a fundamental transition between two regimes: (1) a dynamics where hillslope evolution is controlled by linear diffusive downslope regolith transport; and, (2) a domain where denudation is limited by the rate at which physical and chemical weathering processes can produce clasts and lower the hilltop. Such an abrupt transition toward a weathering-limited dynamics may prevent hillslope denudation from balancing the rate of base level fall imposed by the river network and could potentially explain the development of high local relief observed in many Mediterranean carbonate landscapes.

  18. The mid-Holocene to present large-scale morphodynamic and coupled fluvial-tidal sedimentologic evolution of the Lower Columbia River, WA/OR, USA

    NASA Astrophysics Data System (ADS)

    Prokocki, E.; Best, J.; Ashworth, P. J.; Parsons, D. R.; Sambrook Smith, G.; Nicholas, A. P.; Simpson, C.; Wang, H.; Sandbach, S.; Keevil, C.

    2015-12-01

    Optically stimulated luminescence (OSL) dating of four deep sediment cores (≤ 20m depth), in conjunction with shallow vibracores (≤ 6m depth), obtained from mid-channel bars in the lower Columbia River (LCR), USA, provides new insights into the mid-Holocene to present geomorphic and coupled sedimentological evolution of the LCR fluvial-tidal zone. These data reveal that the relatively coarse-grained basal sediments of mid-channel bars positioned across the LCR tidal-fluvial hydraulic regime were deposited at c. 2.5 to 2.0 ka, and not at c. 8.0 ka as previously reported. Thus, these younger depositional ages of basal sediments relative to previous studies coupled with the overall sedimentary architecture of these bars, and the absence of a temporal lag in the timing of basal sedimentation between bars located from river kilometer 51.1 to 29.3, challenges existing models that these bars represent: (a) estuarine tidal-bars, or (b) bay-head deltaic deposits. Within the context of post glacial Holocene sea-level rise, our results suggest these bars represent vertical construction of a LCR fluvial top-set from c. 2.5- 2.0 ka to the present, as the regional rate of sea-level rise slowed to ≤ 1.4 mmyr-1. Within this geomorphic context, two tidal-fluvial sedimentological signatures can be identified: (i) in the downstream direction, basal bar deposits incorporate a larger percentage of finer-grained interbeds, and (ii) vertically stacked silt/very-fine sand draped current ripple cross-laminae become prevalent from approximately 5 m in depth to the bar surfaces. The preservation of finer-grained interbeds within basal bar deposits is reasoned to be caused by the flocculation and settling of suspended sediment enhanced by the turbidity maximum. The stacked draped current ripple cross-laminae are interpreted to result from tidal-currents generating asymmetric current ripples that were draped by fine-sediment entrained by wind-waves, which fell-out of suspension during reduced wave activity, slackwater intervals, and periods when the turbidity maximum was active.

  19. Effect of Mars Atmospheric Loss on Snow Melt Potential in a 3.5 Gyr Mars Climate Evolution Model

    NASA Astrophysics Data System (ADS)

    Mansfield, Megan; Kite, Edwin S.; Mischna, Michael A.

    2018-04-01

    Post-Noachian Martian paleochannels indicate the existence of liquid water on the surface of Mars after about 3.5 Gya (Irwin et al., 2015, https://doi.org/10.1016/j.geomorph.2014.10.012; Palucis et al., 2016, https://doi.org/10.1002/2015JE004905). In order to explore the effects of variations in CO2 partial pressure and obliquity on the possibility of surface water, we created a zero-dimensional surface energy balance model. We combine this model with physically consistent orbital histories to track conditions over the last 3.5 Gyr of Martian history. We find that melting is allowed for atmospheric pressures corresponding to exponential loss rates of dP/dt∝t-3.73 or faster, but this rate is within 0.5σ of the rate calculated from initial measurements made by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, if we assume all the escaping oxygen measured by MAVEN comes from atmospheric CO2 (Lillis et al., 2017, https://doi.org/10.1002/2016JA023525; Tu et al., 2015, https://doi.org/10.1051/0004-6361/201526146). Melting at this loss rate matches selected key geologic constraints on the formation of Hesperian river networks, assuming optimal melt conditions during the warmest part of each Mars year (Irwin et al., 2015, https://doi.org/10.1016/j.geomorph.2014.10.012; Kite, Gao, et al., 2017, https://doi.org/10.1038/ngeo3033; Kite, Sneed et al., 2017, https://doi.org/10.1002/2017GL072660; Stopar et al., 2006, https://doi.org/10.1016/j.gca.2006.07.039). The atmospheric pressure has a larger effect on the surface energy than changes in Mars's mean obliquity. These results show that initial measurements of atmosphere loss by MAVEN are consistent with atmospheric loss being the dominant process that switched Mars from a melt-permitting to a melt-absent climate (Jakosky et al., 2017, https://doi.org/10.1126/science.aai7721), but non-CO2 warming will be required if <2 Gya paleochannels are confirmed or if most of the escaping oxygen measured by MAVEN comes from H2O.

  20. Mechanisms controlling rock coast evolution in paraglacial landscapes - examples from Arctic, Antarctic and Scandinavian regions

    NASA Astrophysics Data System (ADS)

    Strzelecki, M. C.; Lim, M.; Kasprzek, M.; Swirad, Z. M.; Rachlewicz, G.; Migoń, P.; Pawlowski, L.; Jaskolski, M.

    2017-12-01

    This paper presents the results of an investigation into the processes controlling development of paraglacial rock coast systems in Hornsund, Svalbard, Admiralty Bay, South Shetland Islands and Gotland Island, Scandinavia. A suite of nested geomorphological and geophysical methods have been applied to characterize the functioning of rock cliffs, shore platforms and stacks influenced by lithological control and geomorphic processes driven by paraglacial coast environments - both in glaciated and deglaciated study sites. Rock hardness, quantified by Schmidt hammer rebound tests, demonstrate strong spatial control on the degree of rock weathering (rock strength) along studied rock coasts. Elevation controlled geomorphic zones are identified and linked to distinct processes and mechanisms, transitioning from peak hardness values at the icefoot/sea-ice through the wave and storm dominated scour zones to the lowest values on the cliff tops, where the effects of periglacial weathering dominate. Observations of rock surface change using a traversing micro-erosion meter (TMEM) indicate that significant changes in erosion rates occur at the junction between shore platform and the cliff toe, where rock erosion is facilitated by frequent wetting and drying and operation of nivation and sea ice processes (formation and melting of snow patches and icefoot complexes). Electrical resistivity tomography (ERT) surveys have been used to investigate frozen ground control on rock coast dynamics and reveal the strong interaction with marine processes in polar coastal settings. In Gotland, Scandinavia the morphology of rocky coastal landforms (rauks) bear traces of numerous environmental changes that occurred in Baltic region over the Holocene including salinity, temperature, ice-cover/storminess and relative sea-level. The results are synthesised to propose a new conceptual model of paraglacial rock coast systems, with the aim of contributing towards a unifying concept of cold region landscape evolution and providing direction for future research regarding the state of rock coasts in deglaciated regions. This is a contribution to National Science Centre projects: RAUK (2016/21/D/ST10/01976) and POROCO (UMO-2013/11/B/ST10/00283).

  1. Will Coral Islands Maintain Their Growth over the Next Century? A Deterministic Model of Sediment Availability at Lady Elliot Island, Great Barrier Reef

    PubMed Central

    Hamylton, Sarah

    2014-01-01

    A geomorphic assessment of reef system calcification is conducted for past (3200 Ka to present), present and future (2010–2100) time periods. Reef platform sediment production is estimated at 569 m3 yr−1 using rate laws that express gross community carbonate production as a function of seawater aragonite saturation, community composition and rugosity and incorporating estimates of carbonate removal from the reef system. Key carbonate producers including hard coral, crustose coralline algae and Halimeda are mapped accurately (mean R2 = 0.81). Community net production estimates correspond closely to independent census-based estimates made in-situ (R2 = 0.86). Reef-scale outputs are compared with historic rates of production generated from (i) radiocarbon evidence of island deposition initiation around 3200 years ago, and (ii) island volume calculated from a high resolution island digital elevation model. Contemporary carbonate production rates appear to be remarkably similar to historical values of 573 m3 yr−1. Anticipated future seawater chemistry parameters associated with an RCP8.5 emissions scenario are employed to model rates of net community calcification for the period 2000–2100 on the basis of an inorganic aragonite precipitation law, under the assumption of constant benthic community character. Simulations indicate that carbonate production will decrease linearly to a level of 118 m3 yr−1 by 2100 and that by 2150 aragonite saturation levels may no longer support the positive budgetary status necessary to sustain island accretion. Novel aspects of this assessment include the development of rate law parameters to realistically represent the variable composition of coral reef benthic carbonate producers, incorporation of three dimensional rugosity of the entire reef platform and the coupling of model outputs with both historical radiocarbon dating evidence and forward hydrochemical projections to conduct an assessment of island evolution through time. By combining several lines of evidence in a deterministic manner, an assessment of changes in carbonate production is carried out that has tangible geomorphic implications for sediment availability and associated island evolution. PMID:24759700

  2. Recent coastal evolution in a carbonate sandy environments and relation to beach ridge formation: the case of Anegada, British Virgin Islands

    NASA Astrophysics Data System (ADS)

    Cescon, Anna Lisa; Cooper, J. Andrew G.; Jackson, Derek W. T.

    2014-05-01

    In a changing climate context coastal areas will be affected by more frequent extreme events. Understanding the relationship between extreme events and coastal geomorphic response is critical to future adaptation plans. Beach ridge landforms commonly identified as hurricane deposits along tropical coasts in Australia and in the Caribbean Sea. However their formative processes in such environments are still not well understood. In particular, the role of different extreme wave events (storm waves, tsunami waves and extreme swell), in generating beach ridges is critical to their use as palaeotempestology archives. Anegada Island is a carbonate platform situated in the British Virgin Island between the Atlantic Ocean and the Caribbean Sea. Pleistocene in age, Anegada is surrounded by the Horseshoe fringing coral reef. Two Holocene sandy beach ridge plains are present on the western part of the island. The north beach ridge plain is Atlantic facing and has at least 30 ridges; the south beach ridge plain is Caribbean Sea facing and contains 10 ridges. Historical aerial photos enabled the shoreline evolution from 1953 to 2012 to be studied. Three different coastal domains are associate with the beach ridge plains: strong east-west longshore transport affects the north coastline, the south-west coastline from West End to Pomato Point represents an export corridor for these sediments and finally, along the southern coastline, from Pomato Point to Settling Point the area presents a depositional zone with little to no change in the last 70 years. The link between the extreme wave events that have affected Anegada Island in the last 70 years and beach ridge creation is discussed. Hurricane Donna crossed over Anegada Island in 1960: its geomorphological signature is tracked in the shoreline change analysis and its implication in beach ridge formation is discussed. Anegada Island has also been impacted by tsunami waves (Atwater et al., 2012) and a comparative discussion of the effects of hurricane and tsunami on the island will be presented. Atwater, B. et al., 2012. Geomorphic and stratigraphic evidence for an unusual tsunami or storm a few centuries ago at Anegada, British Virgin Islands. Natural Hazards, 63, pp. 51-84.

  3. The Geomorphically Effective Hydrograph: An Emerging Concept For Interpreting Channel Morphology And Evolution

    NASA Astrophysics Data System (ADS)

    Grant, G.; Hempel, L. A.; Marwan, H.; Eaton, B. C.; Lewis, S.

    2017-12-01

    Predicting how alluvial channels adjust to changes in their flow and sediment regimes is one of the Holy Grails of geomorphology. Consider Lane's balance - one of the most widely recognized conceptual models in geomorphology - which graphically shows how a change in any one of the driving variables of slope, grain size, sediment transport rate, or discharge can be accommodated by changes in the other variables. Much of the history of process geomorphology addresses how channels respond to these controlling factors. Yet the emphasis has been disproportionately focused on the effects and consequences of changing sediment transport rates or grain size. Much less attention has been paid to how changing discharge itself, particularly over short, event-based timescales influences the channel. Discharge has typically been treated as a single value - often the bankfull discharge - with little attention paid to how the unsteady nature of flow during floods may influence the morphology of the channel. More attention has been paid recently to the effect of hydrograph shape on channel characteristics, notably the texture of the channel bed. There is little theory and scant data, however, that highlights how the hydrograph affects the channel. We have begun to address this problem through models and targeted experiments. Our goal is to explore the idea of the geomorphically effective hydrograph: the concept that hydrographs with different forms, durations, and sequences play a major, controlling role in shaping the form and organization of alluvial channels. We report on results from both field studies and flume experiments that lend support to this hypothesis. We compare channel forms in channels with radically different flow regimes. The distinctive rectangular shape, constant slope, and absence of alluvial bars in spring-fed channels are in sharp contrast to the more asymmetric channels with regular pool/riffle patterns observed in systems where discharge varies over orders of magnitude. Flume studies reveal how channel organization, defined as the tendency to form regularly-spaced pools, riffles, and bars, is related to the flashiness of the hydrograph. Drawing on these and other studies, we develop a conceptual model that accounts for hydrograph shape as an overarching control on channel development and evolution.

  4. Will Coral Islands maintain their growth over the next century? A deterministic model of sediment availability at Lady Elliot Island, Great Barrier Reef.

    PubMed

    Hamylton, Sarah

    2014-01-01

    A geomorphic assessment of reef system calcification is conducted for past (3200 Ka to present), present and future (2010-2100) time periods. Reef platform sediment production is estimated at 569 m3 yr-1 using rate laws that express gross community carbonate production as a function of seawater aragonite saturation, community composition and rugosity and incorporating estimates of carbonate removal from the reef system. Key carbonate producers including hard coral, crustose coralline algae and Halimeda are mapped accurately (mean R2 = 0.81). Community net production estimates correspond closely to independent census-based estimates made in-situ (R2 = 0.86). Reef-scale outputs are compared with historic rates of production generated from (i) radiocarbon evidence of island deposition initiation around 3200 years ago, and (ii) island volume calculated from a high resolution island digital elevation model. Contemporary carbonate production rates appear to be remarkably similar to historical values of 573 m3 yr-1. Anticipated future seawater chemistry parameters associated with an RCP8.5 emissions scenario are employed to model rates of net community calcification for the period 2000-2100 on the basis of an inorganic aragonite precipitation law, under the assumption of constant benthic community character. Simulations indicate that carbonate production will decrease linearly to a level of 118 m3 yr-1 by 2100 and that by 2150 aragonite saturation levels may no longer support the positive budgetary status necessary to sustain island accretion. Novel aspects of this assessment include the development of rate law parameters to realistically represent the variable composition of coral reef benthic carbonate producers, incorporation of three dimensional rugosity of the entire reef platform and the coupling of model outputs with both historical radiocarbon dating evidence and forward hydrochemical projections to conduct an assessment of island evolution through time. By combining several lines of evidence in a deterministic manner, an assessment of changes in carbonate production is carried out that has tangible geomorphic implications for sediment availability and associated island evolution.

  5. Experimental investigation into the impact of vegetation on fan morphology and flow

    NASA Astrophysics Data System (ADS)

    Clarke, Lucy; McLelland, Stuart; Coulthard, Tom

    2013-04-01

    Riparian vegetation can significantly influence the geomorphology of fluvial systems, affecting channel geometry and flow dynamics. However, there is still limited understanding of the role vegetation plays in the development of alluvial fans, despite the large number of vegetated fans located in temperate and humid climates. An understanding of the feedback loops between water flow, sediment dynamics and vegetation is key to understanding the geomorphological response of alluvial fans. But it is difficult to investigate these relationships in the natural world due to the complexity of the geomorphic and biological processes and timescales involved. To examine the effects of vegetation on channel form, flow dynamics and morphology during fan evolution, a series of experiments were conducted using the Total Environment Simulator at the Deep, an experimental facility operated by the University of Hull. The experiments followed a 'similarity of processes' approach and so were not scaled to a specific field prototype. Live vegetation (alfalfa) was used to simulate the influence of vegetation on the fan development. A range of experiments were conducted on fan plots 2x2m in size, the same initial conditions and constant water discharge and sediment feed rates were used, but the vegetation density and amount of geomorphic time (when the sediment and water were running and there was active fan development) between seeding / vegetation growth varied between runs. The fan morphology was recorded at regular intervals using a laser scanner (at 1mm resolution) and high resolution video recording and overhead photography was also used to gain near-continuous data quantifying fan topography, flow patterns, channel migration and avulsion frequency. Image analysis also monitored the spatial extent of vegetation establishment. The use of these techniques allowed collection of high resolution spatial and temporal data on fan development with minimal disruption to the experiments. The results of the preliminary experiments showed that vegetation did influence the morphology and flow conditions during fan evolution. Vegetation reduced the number of active channels, and increasing the vegetation density also led to lower lateral migration rates, the formation of narrower and deeper channels and an increase in fan slope.

  6. Plio-Pleistocene North-South and East-West Extension at the Southern Margin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    McDermott, Jeni Amber

    The tectonic significance of the physiographic transition from the low-relief Tibetan plateau to the high peaks, rugged topography and deep gorges of the Himalaya is the source of much controversy. Some workers have suggested the transition may be structurally controlled (e.g. Hodges et al., 2001), and indeed, the sharp change in geomorphic character across the transition strongly suggests differential uplift between the Himalayan realm and the southernmost Tibetan Plateau. Most Himalayan researchers credit the South Tibetan fault system (STFS), a family of predominantly east-west trending, low-angle normal faults with a known trace of over 2,000 km along the Himalayan crest (e.g. Burchfiel et al., 1992), with defining the southern margin of the Tibetan Plateau in the Early Miocene. Inasmuch as most mapped strands of the STFS have not been active since the Middle Miocene (e.g., Searle & Godin, 2003), modern-day control of the physiographic transition by this fault system seems unlikely. However, several workers have documented Quaternary slip on east-west striking, N-directed extensional faults, of a similar structural nature but typically at a different tectonostratigraphic level than the principal STFS strand, in several locations across the range (Nakata, 1989; Wu et al., 1998; Hurtado et al., 2001). In order to explore the nature of the physiographic transition and determine its relationship to potential Quaternary faulting, I examined three field sites: the Kali Gandaki valley in central Nepal (˜28°39'54"N; 83°35'06"E), the Nyalam region of south-central Tibet (28°03'23.3"N, 86°03'54.08"E), and the Ama Drime Range in southernmost Tibet (87º15'-87º50'E; 27º45'-28º30'N). Research in each of these areas yielded evidence of young faulting on structures with normal-sense displacement in various forms: the structural truncation of lithostratigraphic units, distinctive fault scarps, or abrupt changes in bedrock cooling age patterns. These structures are accompanied by geomorphic changes implying structural control, particularly sharp knickpoints in rivers that drain from the Tibetan Plateau, across the range crest, and down through the southern flank of the Himalaya. Collectively, my structural, geomorphic, and thermochronometric studies confirm the existence of extensional structures near the physiographic transition that have been active more recently than 1.5 Ma in central Nepal, and over the last 3.5 Ma in south-central Tibet. The structural history of the Ama Drime Range is complex and new thermochronologic data suggest multiple phases of E-W extension from the Middle Miocene to the Holocene. Mapping in the accessible portions of the range did not yield evidence for young N-S extension, although my observations do not preclude such deformation on structures south of the study area. In contrast, the two other study areas yielded direct evidence that Quaternary faulting may be controlling the position and nature of the physiographic transition across the central Tibetan Plateau-Himalaya orogenic system.

  7. Numerical simulation of geomorphic, climatic and anthropogenic drivers of soil distribution on semi-arid hillslopes

    NASA Astrophysics Data System (ADS)

    Willgoose, G. R.; Cohen, S.; Svoray, T.; Sela, S.; Hancock, G. R.

    2010-12-01

    Numerical models are an important tool for studying landscape processes as they allow us to isolate specific processes and drivers and test various physics and spatio-temporal scenarios. Here we use a distributed physically-based soil evolution model (mARM4D) to describe the drivers and processes controlling soil-landscape evolution on a field-site at the fringe between the Mediterranean and desert regions of Israel. This study is an initial effort in a larger project aimed at improving our understanding of the mechanisms and drivers that led to the extensive removal of soils from the loess covered hillslopes of this region. This specific region is interesting as it is located between the Mediterranean climate region in which widespread erosion from hillslopes was attributed to human activity during the Holocene and the arid region in which extensive removal of loess from hillslopes was shown to have been driven by climatic changes during the late-Pleistocene. First we study the sediment transport mechanism of the soil-landscape evolution processes in our study-site. We simulate soil-landscape evolution with only one sediment transport process (fluvial or diffusive) at a time. We find that diffusive sediment transport is likely the dominant process in this site as it resulted in soil distributions that better corresponds to current observations. We then simulate several realistic climatic/anthropogenic scenarios (based on the literature) in order to quantify the sensitivity of the soil-landscape evolution process to temporal fluctuations. We find that this site is relatively insensitive to short term (several thousands of years) sharp, changes. This suggests that climate, rather then human activity, was the main driver for the extensive removal of loess from the hillslopes.

  8. On the Application of an Enthalpy Method to the Evolution of Fluvial Deltas Under Sea-Level Changes

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Lorenzo-Trueba, J.; Voller, V. R.

    2017-12-01

    Fluvial deltas are composites of two primary sedimentary environments: a depositional fluvial region and an offshore region. The fluvial region is defined by two geomorphic moving boundaries: an alluvial-bedrock transition (ABT), which separates the sediment prism from the non-erodible bedrock basement, and the shoreline (SH), where the delta meets the ocean. The trajectories of these boundaries in time and space define the evolution of the shape of the sedimentary prism, and are often used as stratigraphic indicators, particularly in seismic studies, of changes in relative sea level and the identification of stratigraphic sequences. In order to better understand the relative role of sea-level variations, tectonics, and sediment supply on the evolution of these boundaries, we develop a forward stratigraphic model that captures the dynamic behavior of the fluvial surface and treats the SH and ABT as moving boundaries (i.e., internal boundaries whose location must be determined as part of the solution to the overall morphological evolution problem). This forward model extends a numerical technique from heat transfer (i.e., enthalpy method), previously applied to the evolution of sedimentary basins, to account for sea-level changes. The mathematics of the approach are verified by comparing predictions from the numerical model with both existing and newly developed closed form analytical solutions. Model results support previous work, which suggests that the migration of the ABT can respond very differently to the sea-level signal. This response depends on factors such as sediment supply and delta length, which can vary greatly between basins. These results can have important implications for the reconstruction of past sea-level changes from the stratigraphic record of sedimentary basins.

  9. Lithologic controls on landscape dynamics and aquatic species evolution in post-orogenic mountains

    NASA Astrophysics Data System (ADS)

    Gallen, Sean F.

    2018-07-01

    Determining factors that modify Earth's topography is essential for understanding continental mass and nutrient fluxes, and the evolution and diversity of species. Contrary to the paradigm of slow, steady topographic decay after orogenesis ceases, nearly all ancient mountain belts exhibit evidence of unsteady landscape evolution at large spatial scales. External forcing from uplift from dynamic mantle processes or climate change is commonly invoked to explain the unexpected dynamics of dead orogens, yet direct evidence supporting such inferences is generally lacking. Here I use quantitative analysis of fluvial topography in the southern Appalachian Mountains to show that the exhumation of rocks of variable erosional resistance exerts a fundamental, autogenic control on the evolution of post-orogenic landscapes that continually reshapes river networks. I characterize the spatial pattern of erodibility associated with individual rock-types, and use inverse modeling of river profiles to document a ∼150 m base level fall event at 9 ± 3 Ma in the Upper Tennessee drainage basin. This analysis, combined with existing geological and biological data, demonstrates that base level fall was triggered by capture of the Upper Tennessee River basin by the Lower Tennessee River basin in the Late Miocene. I demonstrate that rock-type triggered changes in river network topology gave rise to the modern Tennessee River system and enhanced erosion rates, changed sediment flux and dispersal patterns, and altered bio-evolutionary pathways in the southeastern U.S.A., a biodiversity hotspot. These findings suggest that variability observed in the stratigraphic, geomorphic, and biologic archives of tectonically quiescent regions does not require external drivers, such as geodynamic or climate forcing, as is typically the interpretation. Rather, my findings lead to a new model of inherently unsteady evolution of ancient mountain landscapes due to the geologic legacy of plate tectonics.

  10. Relief Evolution in Tectonically Active Mountain Ranges

    NASA Technical Reports Server (NTRS)

    Whipple, Kelin X.

    2004-01-01

    The overall aims of this 3-yr project, as originally proposed were to: (1) investigate quantitatively the roles of fluvial and glacial erosion in the evolution of relief in mountainous regions, and (2) test rigorously the quality and accuracy of SRTM topographic data in areas of rugged relief - both the most challenging and of greatest interest to geomorphic, neotectonic, and hazards applications. Natural laboratories in both the western US and the Southern Alps of New Zealand were identified as most promising. The project has been both successful and productive, despite the fact that no SRTM data for our primary field sites in New Zealand were released on the time frame of the work effort. Given the delayed release of SRTM data, we pursued the scientific questions of the roles of fluvial and, especially, glacial erosion in the evolution of relief in mountainous regions using available digital elevation models (DEMs) for the Southern Alps of New Zealand (available at both 25m and 50m pixel sizes), and USGS 10m and 30m DEMs within the Western US. As emphasized in the original proposal, we chose the emphasis on the role of glacial modification of topographic relief because there has been little quantitative investigation of glacial erosion processes at landscape scale. This is particularly surprising considering the dramatic sculpting of most mid- and high-latitude mountain ranges, the prodigious quantities of glacially-derived sediment in terrestrial and marine basins, and the current cross-disciplinary interest in the role of denudational processes in orogenesis and the evolution of topography in general. Moreover, the evolution of glaciated landscapes is not only a fundamental problem in geomorphology in its own right, but also is at the heart of the debate over Late Cenozoic linkages between climate and tectonics.

  11. Linking high-resolution geomorphic mapping, sediment sources, and channel types in a formerly glaciated basin of northeastern Alto-Adige/Sudtirol, Italy

    NASA Astrophysics Data System (ADS)

    Brardinoni, F.; Perina, E.; Bonfanti, G.; Falsitta, G.; Agliardi, F.

    2012-04-01

    To characterize channel-network morphodynamics and response potential in the Gadria-Strimm basin (14.8 km^2) we conduct a concerted effort entailing: (i) high-resolution mapping of landforms, channel reaches, and sediment sources; and (ii) historical evolution of colluvial channel disturbance through sequential aerial photosets (1945-59-69-82-90-00-06-11). The mapping was carried out via stereographic inspection of aerial photographs, examination of 2.5-m gridded DTM and DSM, and extensive field work. The study area is a formerly glaciated basin characterized by peculiar landform assemblages imposed by a combination of tectonic and glacial first-order structures. The most striking feature in Strimm Creek is a structurally-controlled valley step separating an upper hanging valley, dominated by periglacial and fluvial processes, and a V-notched lower part in which lateral colluvial channels are directly connected to Strimm's main stem. In Gadria Creek, massive kame terraces located in proximity of the headwaters provide virtually unlimited sediment supply to frequent debris-flow activity, making this sub-catchment an ideal site for monitoring, hence studying the mechanics of these processes. Preliminary results point to a high spatial variability of the colluvial channel network, in which sub-sectors have remained consistently active during the study period while others have become progressively dormant with notable forest re-growth. In an attempt to link sediment flux to topography and substrate type, future work will involve photogrammetric analysis across the sequential aerial photosets as well as a morphometric/geomechanical characterization of the surficial materials.

  12. GEOMORPHIC CONTROLS ON MEADOW ECOSYSTEMS – INSIGHTS INTO LOCAL PROCESSES USING NEAR-SURFACE SEISMIC TECHNIQUES AND GROUND PENETRATING RADAR

    EPA Science Inventory

    Geomorphic controls on riparian meadows in the Central Great Basin of Nevada are an important aspect in determining the formation of and planning the management of these systems. The current hypothesis is that both alluvial fan sediment and faulted bedrock steps interact to cont...

  13. Multivariate geomorphic analysis of forest streams: Implications for assessment of land use impacts on channel condition

    Treesearch

    Richard. D. Wood-Smith; John M. Buffington

    1996-01-01

    Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10...

  14. Geomorphic processes affecting meadow ecosystems [chapter 3

    Treesearch

    Jerry R. Miller; Dru Germanoski; Mark L. Lord

    2011-01-01

    Three geomorphic processes are of primary concern with respect to the current and future state of wet meadow ecosystems: channel incision, avulsion (the abrupt movement of the channel to a new location on the valley floor), and gully formation. Gully formation often is accompanied by upvalley headcut migration and a phenomenon referred to as "groundwater sapping...

  15. Application of Terrestrial Geomorphic Threshold Theory to the Analysis of Small Channels on Mars

    NASA Technical Reports Server (NTRS)

    Rosenshein, E. B.; Greeley, R.; Arrowsmith, J. R.

    2001-01-01

    New terrestrial work on the geomorphic thresholds for channel initiation use the drainage area above a channel head vs. the slope at the channel head to delineate surface process types. This method has been used to characterize martian landscapes. Additional information is contained in the original extended abstract.

  16. Bulletin of the Association of North Dakota Geographers. Volume XXXVII, 1987.

    ERIC Educational Resources Information Center

    Munski, Douglas C., Ed.

    1987-01-01

    The first paper in this volume, "Geomorphic Effects of Flood-Control Channel Works" (H. Rasid), examines the basic mechanisms of morphologic instabilities in man-made or modified channels in terms of their altered hydraulic characteristics and geomorphic responses to such induced changes. Two tables, two figures, and a 33-item…

  17. Zoogeomorphology in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Butler, David R.

    2018-02-01

    The Anthropocene embodies the concept of human impacts on the natural environment, but disagreements exist as to when to identify its inception/starting date. In this paper I illustrate that regardless of the proposed starting date of the Anthropocene, important zoogeomorphic impacts were initiated at each of these proposed starting dates. Humans have profoundly altered geomorphic pathways through extinctions and the near-extirpation of native populations of animal species that strongly influenced hydrology and removal of surface sediment and through the introduction of populations of animals that bring to bear a suite of different geomorphic effects on environmental systems. Domestication of animals brought its own suite of zoogeomorphic implications. Introductions of exotic species, and the spread of feral species, often led to dramatic new geomorphic landscapes because of the absence of natural controls on population expansion. In the mountains of the western USA and elsewhere, the geomorphic actions of animals are being impacted by human-induced climate change. Climate change in some cases affects the spatial pattern and range of species, whereas in other cases it may lead to the extirpation of species with zoogeomorphic impacts.

  18. Geomorphic degradations on the surface of venus: an analysis of venera 9 and venera 10 data.

    PubMed

    Florensky, C P; Ronca, L B; Basilevsky, A T

    1977-05-20

    On the basis of the physical and chemical measurements made on the surface of Venus and transmitted back to Earth by the Soviet automatic landers Venera 9 and Venera 10, a geomorphically inactive environment should be expected. An analysis of the television photographs reveals, however, that at least two processes of degradation occur. One operates on a scale of decimeters to meters and is responsible for the fracturing of a layered source rock and the subsequent downslope movement of the fragments. Mass-wasting, perhaps activated by venusian quakes or by unknown geological processes, is likely to be the agent. Another geomorphic degradation process occurs on the scale of a centimeter or less and is responsible for the rounding of edges and the pitting of rock surfaces. The agents of this process are not known, but atmospheric action, perhaps in connection with volcanic episodes, may be the cause. From a geomorphic point of view, the landscape of the Venera 9 landing site can be considered young and that of the Venera 10 landing site, mature.

  19. Historical Sediment Budget (1860s to Present) for the United States Shoreline of Lake Erie

    DTIC Science & Technology

    2016-08-01

    B. Monroe, and D. E. Guy, Jr. 1986. Lake Erie shore erosion: The effect of beach width and shore protection structures. Journal of Coastal Research...2005. Concepts in sediment budgets. Journal of Coastal Research 21(2):307–322. Stewart, C. J. 1999. A revised geomorphic, shore protection , and...Engineer District, Buffalo 1776 Niagara Street Buffalo, NY 14207 Andrew Morang and Ashley E. Frey Coastal and Hydraulics Laboratory U.S. Army

  20. Cultural Resources Survey of Greenwood Bend and Iowa Point Revetment, Mississippi River M-293.1 to 280-L

    DTIC Science & Technology

    1993-10-01

    as Mesoamerica (Neuman 1984:218). Sometime after A.D. 1000, the Plaquemine phenomenon, originally defined by the Medora Site (16WBR1), continued the...the surface in the study area. Commonly called the Tunica Hills, it corresponds closely with the area originally delineated as the Citronelle...of dissection and structural influence, the original geomorphic expression of the surface has been obliterated, and depositional environment is best

  1. Using earthquake-triggered landslides as a hillslope-scale shear strength test: Insights into rock strength properties at geomorphically relevant spatial scales in high-relief, tectonically active settings

    NASA Astrophysics Data System (ADS)

    Gallen, Sean; Clark, Marin; Godt, Jonathan; Lowe, Katherine

    2016-04-01

    The material strength of rock is known to be a fundamental property in setting landscape form and geomorphic process rates as it acts to modulate feedbacks between earth surface processes, tectonics, and climate. Despite the long recognition of its importance in landscape evolution, a quantitative understanding of the role of rock strength in affecting geomorphic processes lags our knowledge of the influence of tectonics and climate. This gap stems largely from the fact that it remains challenging to quantify rock strength at the hillslope scale. Rock strength is strongly scale dependent because the number, size, spacing, and aperture of fractures sets the upper limit on rock strength, making it difficult to extrapolate laboratory measurements to landscape-scale interpretations. Here we present a method to determine near-surface rock strength at the hillslope-scale, relying on earthquake-triggered landslides as a regional-scale "shear strength" test. We define near-surface strength as the average strength of rock sample by the landslides, which is typically < 10 m. Based on a Newmark sliding block model, which approximates slope stability during an earthquake assuming a material with frictional and cohesive strength, we developed a coseismic landslide model that is capable of reproducing statistical characteristics of the distribution of earthquake-triggered landslides. We present results from two well-documented case-studies of earthquakes that caused widespread mass-wasting; the 2008 Mw 7.9 Wenchuan Earthquake, Sichuan Province, China and the 1994 Mw. 6.8 Northridge Earthquake, CA, USA. We show how this model can be used to determine near-surface rock strength and reproduce mapped landslide patterns provided the spatial distribution of local hillslope gradient, earthquake peak ground acceleration (PGA), and coseismic landsliding are well constrained. Results suggest that near-surface rock strength in these tectonically active settings is much lower than that obtained using typical laboratory shear strength measurements on intact rock samples. Furthermore, the near-surface material strength is similar between the study areas despite differences in tectonic, climatic, and lithologic conditions. Variations in near-surface strength within each setting appear to be more strongly associated with factors contributing to the weakening rock through chemical or physical weathering, such as mean annual precipitation and distance to active faults (a proxy for rock shattering intensity), rather than intrinsic lithologic properties. We hypothesize that the shattering of rock through long-term permanent strain accumulation and by repeated earthquakes is an important mechanism that can explain low rock strength values among the different study sites and the spatial pattern of rock strength within each location. These findings emphasize the potential role of factors other than lithology in controlling the spatial distribution of near-surface rock strength in high-relief, tectonically active settings, which has important implications for understanding the evolution of landscapes, interpreting tectonic and climatic signals from topography, critical zone processes, and natural hazard assessment.

  2. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, Sergio; Kirwan, Matthew L.; Mudd, Simon M.; Guntenspergen, Glenn R.; Temmerman, Stijn; D'Alpaos, Andrea; van de Koppel, Johan; Rybczyk, John; Reyes, Enrique; Craft, Chris; Clough, Jonathan

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise.

  3. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D'Alpaos, A.; Van De Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; Clough, J.

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise. Copyright 2012 by the American Geophysical Union.

  4. Integrating channel form and processes in the Gangetic plains rivers: Implications for geomorphic diversity

    NASA Astrophysics Data System (ADS)

    Roy, N. G.; Sinha, R.

    2018-02-01

    Geomorphic diversity at a variety of spatial and temporal scales has been studied in the western Ganga plains (WGP), India, to isolate the dominating factors at each scale that have the potential to cause major geomorphic change. The Ganga River and its major tributaries draining the WGP have been investigated in terms of longitudinal, cross-sectional, and planform morphology to assess the influence of potential controls such as climate, geology, topography, land use, hydrology, and sediment transport. These data were then compared with those from the rivers draining the eastern Ganga plains (EGP) to understand the geomorphic diversity across the Ganga plains and the causal factors. Our investigations suggest that in-channel geomorphic diversity over decadal scale in rivers with low width-to-depth (W/D) ratio is caused by periodic incision/aggradation, but it is driven by channel avulsion in rivers characterized by high W/D ratio. Similarly, planform (reach-scale) parameters such as sinuosity and braid-channel-ratio are influenced by intrinsic factors such as changes in hydrological conditions and morphodynamics (cutoffs, small-scale avulsion) that are in turn impacted by natural and human-induced factors. Finally, we have isolated the climatic and hydrologic effects on the longitudinal profile concavity of alluvial trunk channels in tectonically stable and unstable landscapes. We demonstrate that the rivers flowing through a tectonically stable landscape are graded in nature where higher discharge tends to create more concave longitudinal profiles compared to those in tectonically unstable landscape at 103-year scale.

  5. Recovery of perennial vegetation in military target sites in the eastern Mohave Desert, Arizona

    USGS Publications Warehouse

    Steiger, John W.; Webb, Robert H.

    2000-01-01

    The effect of the age of geomorphic surfaces on the recovery of desert vegetation in military target sites was studied in the Mohave and Cerbat Mountains of northwestern Arizona. The target sites were cleared of all vegetation during military exercises in 1942-1943 and have not been subsequently disturbed. The degree of recovery was measured by calculating percentage-similarity (PS) and correlation-coefficient indices on the basis of differences in cover, density, and volume of species growing in and out of each target site. PS values, ranging from 22.7 to 95.1 percent (100 percent = identical composition), indicate a wide range of recovery that is partially controlled by the edaphic properties of the geomorphic surfaces. Statistical analyses show a strong pattern that indicates a greater variability in the degree of recovery for sites on older surfaces than on younger surfaces and a weak pattern that indicates an inverse relation between the degree of recovery and geomorphic age. Comparisons of the different effects of target site construction on the edaphic characteristics of each target site provides an explanation for these patterns and suggests the soil properties critical to the recovery process. Statistically significant negative or positive response to disturbance for most species are independent of the age of the geomorphic surfaces; however, there is strong evidence for a shift in response for the common perennial species Acamptopappus sphaerocephalus, and to a lesser extent, Salazaria mexicana, Encelia farinosa, and Coldenia canescens, among different geomorphic surfaces.

  6. Geomorphic and vegetation changes in a meandering dryland river regulated by a large dam, Sauce Grande River, Argentina

    NASA Astrophysics Data System (ADS)

    Casado, Ana; Peiry, Jean-Luc; Campo, Alicia M.

    2016-09-01

    This paper investigates post-dam geomorphic and vegetation changes in the Sauce Grande River, a meandering dryland river impounded by a large water-conservation dam. As the dam impounds a river section with scarce influence of tributaries, sources for fresh water and sediment downstream are limited. Changes were inspected based on (i) analysis of historical photographs/imagery spanning pre- (1961) and post-dam (1981, 2004) channel conditions for two river segments located above and below the dam, and (ii) field survey of present channel conditions for a set of eight reference reaches along the river segments. Whilst the unregulated river exhibited active lateral migration with consequent adjustments of the channel shape and size, the river section below the dam was characterized by (i) marked planform stability (93 to 97%), and by (ii) vegetation encroachment leading to alternating yet localized contraction of the channel width (up to 30%). The present river displays a moribund, stable channel where (i) redistribution of sediment along the river course no longer occurs and (ii) channel forms constitute a remnant of a fluvial environment created before closing the dam, under conditions of higher energy. In addition to providing new information on the complex geomorphic response of dryland rivers to impoundment, this paper represents the very first geomorphic assessment of the regulated Sauce Grande and therefore provides an important platform to underpin further research assessing the geomorphic state of this highly regulated dryland river.

  7. Locality and nonlocality in geomorphic transport laws: Implications of a particle-based model of hillslope evolution

    NASA Astrophysics Data System (ADS)

    Tucker, G. E.; Bradley, D. N.

    2008-12-01

    Many geomorphic transport laws assume that the transport process is local, meaning that the space and time scales of particle displacement are short relative to those of the system as a whole. This assumption allows one to express sediment flux in terms of at-a-point properties such as the local surface gradient. However, while this assumption is quite reasonable for some processes (for example, grain displacement by raindrop impact), it is questionable for others (such as landsliding). Moreover, particle displacement distance may also depend on slope angle, becoming longer as gradient increases. For example, the average motion distance during sediment ravel events on very steep slopes may approach the length of the entire hillslope. In such cases, the mass flux through a given point may depend not only on the local topography but also on topography some distance upslope, thus violating the locality assumption. Here we use a stochastic, particle- based model of hillslope evolution to gain insight into the potential for, and consequences of, nonlocality in sediment transport. The model is designed as a simple analogy for a host of different processes that displace sediment grains on hillslopes. The hillslope is represented as a two-dimensional pile of particles. These particles undergo quasi-random motion according to the following rules: (1) during each iteration, a particle and a direction are selected at random; (2) the particle hops in the direction of motion with a probability that depends on the its height relative to that of its immediate neighbor; (3) the particle continues making hops in the same direction and with the same probability dependence, until coming to rest or exiting the base of the slope. The topography and motion statistics that emerge from these rules show a range of behavior that depends on a dimensionless relief parameter. At low relief, hillslope shape is parabolic, mean displacement length is on the order of two particle widths, and the probability distribution of displacement length is thin- tailed (approximately exponential). At high relief, hillslopes become planar, average displacement length increases by an order of magnitude, and the displacement-length distribution becomes heavy-tailed (albeit truncated at the slope length). Across the spectrum of relief values, the relationship between mean flux and gradient resembles the family of nonlinear flux-gradient curves that has been used to model hillslope evolution. We compare the emergent morphology and transport statistics with linear, nonlinear, and fractional diffusion models of hillslope transport.

  8. Near-census Delineation of Laterally Organized Geomorphic Zones and Associated Sub-width Fluvial Landforms

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; Hopkins, C.

    2017-12-01

    A river channel and its associated riparian corridor exhibit a pattern of nested, geomorphically imprinted, lateral inundation zones (IZs). Each zone plays a key role in fluvial geomorphic processes and ecological functions. Within each zone, distinct landforms (aka geomorphic or morphological units, MUs) reside at the 0.1-10 channel width scale. These features are basic units linking river corridor morphology with local ecosystem services. Objective, automated delineation of nested inundation zones and morphological units remains a significant scientific challenge. This study describes and demonstrates new, objective methods for solving this problem, using the 35-km alluvial lower Yuba River as a testbed. A detrended, high-resolution digital elevation model constructed from near-census topographic and bathymetric data was produced and used in a hypsograph analysis, a commonly used method in oceanographic studies capable of identifying slope breaks at IZ transitions. Geomorphic interpretation mindful of the river's setting was required to properly describe each IZ identified by the hypsograph analysis. Then, a 2D hydrodynamic model was used to determine what flow yields the wetted area that most closely matches each IZ domain. The model also provided meter-scale rasters of depth and velocity useful for MU mapping. Even though MUs are discharge-independent landforms, they can be revealed by analyzing their overlying hydraulics at low flows. Baseflow depth and velocity rasters are used along with a hydraulic landform classification system to quantitatively delineate in-channel bed MU types. In-channel bar and off-channel flood and valley MUs are delineated using a combination of hydraulic and geomorphic indicators, such as depth and velocity rasters for different discharges, topographic contours, NAIP imagery, and a raster of vegetation. The ability to objectively delineate inundation zones and morphological units in tandem allows for better informed river management and restoration strategies as well as scientific studies about abiotic-biotic linkages.

  9. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska.

    PubMed

    Sloat, Matthew R; Reeves, Gordon H; Christiansen, Kelly R

    2017-02-01

    In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach-scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9-10% and 13-16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher-gradient streams that provide only moderate-quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach-scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream networks will hamper efforts to understand and mitigate the vulnerability of anadromous fish habitat to climate-induced hydrologic change. © 2016 John Wiley & Sons Ltd.

  10. Fire and Fish: Using Radiocarbon And Stratigraphy To Discern The Impact Of Wildfire On Fish Metapopulations

    NASA Astrophysics Data System (ADS)

    Schaffrath, K. R.; Finch, C.; Belmont, P.; Budy, P.

    2015-12-01

    Wildfires have profound and variable impacts on erosion, channel morphology, and aquatic habitat. Previous research has quantified post-fire geomorphic response on event and millennial timescales. While these studies have informed our understanding of post-fire geomorphic response during the Holocene, we have yet to fully understand the variability of post-wildfire geomorphic response and how it might change in response to changing climate. Response of aquatic biota is just as variable as post-wildfire response yet we know very little about effects on metapopulations and how management decisions affect aquatic populations. Barriers to movement are installed to isolate native fish populations and prescribed fire and thinning are used to try to reduce future wildfire severity and extent. In order to improve understanding of the implications of management decisions, we evaluated geomorphic response and synchronicity of wildfires over the Holocene relative to the impact to the metapopulation of Bonneville cutthroat trout from a recent wildfire. The Twitchell Canyon fire burned 45,000 acres near Beaver, UT in July 2010. Over 30% of the area burned at high severity, which included two major headwater streams that sustained a trout population. In summer 2011, monsoonal thunderstorms caused massive debris flows and sheetflow erosion that altered channel morphology and aquatic habitat in the burned area. A previously robust, non-native trout fishery was nearly extirpated as a result of the geomorphic response to the wildfire. We used radiocarbon dating of burned material to determine how often headwater streams burned synchronously over the Holocene. Radiocarbon dates are associated with field observations of stratigraphy in order to infer geomorphic response to historic wildfires. Thirty samples were collected from sediment layers in 10 alluvial fans distributed among three watersheds (two burned and one unburned in the 2010 fire). Preliminary results suggest that we sampled 10-15 individual wildfires and radiocarbon ages range from 150-8,100 years.

  11. Geomorphic controls on floodplain organic carbon storage in sediment along five rivers in interior Alaska

    NASA Astrophysics Data System (ADS)

    Lininger, K.; Wohl, E.; Rose, J. R.

    2016-12-01

    High latitude permafrost regions contain large amounts of organic carbon (OC) in the subsurface, but little work has quantified OC storage in floodplain sediment in the high latitudes. Floodplains influence the export of OC to the ocean by temporarily storing OC at timescales of 101 to 103 years. To fully understand terrestrial carbon cycling, the storage and residence time of OC in floodplains, and the geomorphic controls on OC storage, must be taken into account. Small-scale spatial variations in OC storage within floodplains likely reflect geomorphic processes of deposition and floodplain development. We present results of floodplain OC storage and residence time in sediment along 5 rivers in the Yukon Flats National Wildlife Refuge in interior Alaska, a region with discontinuous permafrost. We collected sediment samples within the active layer along tributaries to the Yukon River and the mainstem Yukon River and analyzed the sediment samples for OC content. We classified sample locations by geomorphic type (filled secondary channels, levees, point bars) and vegetation type (herbaceous, deciduous/shrub, white spruce, and black spruce wetlands), and found that both geomorphology and vegetation influence OC concentration and OC mass per area. Preliminary results suggest that filled secondary channels contain more OC per area compared to other geomorphic types. We present results of radiocarbon dates from river cutbanks associated with our sampling sites, which give a maximum age for residence times of OC in sediment before erosion and transport. The radiocarbon dates also provide estimates of long-term OC accretion within the Yukon Flats floodplains. Small-scale variations within floodplains as a result of floodplain depositional processes and vegetation communities shed light on the geomorphic controls on OC storage. This work will help constrain the spatial variation in OC storage and OC residence time across the landscape in a region experiencing rapid climate change and permafrost thaw.

  12. Geomorphic evidence of active faults growth in the Norcia seismic area (central Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Materazzi, Marco; Aringoli, Domenico; Farabollini, Piero; Giacopetti, Marco; Pambianchi, Gilberto; Tondi, Emanuele; Troiani, Francesco

    2016-04-01

    Fault-growth by segment linkage is one of the fundamental processes controlling the evolution, in both time and the space, of fault systems. In fact, step-like trajectories shown by length-displacement diagrams for individual fault arrays suggest that the development of evolved structures result by the linkage of single fault segments. The type of interaction between faults and the rate at which faults reactivate not only control the long term tectonic evolution of an area, but also influence the seismic hazard, as earthquake recurrence intervals tend to decrease as fault slip rate increase. The use of Geomorphological investigations represents an important tool to constrain the latest history of active faults. In this case, attention has to be given to recognize morphostructural, historical, environmental features at the surface, since they record the long-term seismic behavior due to the fault growth processes (Tondi and Cello, 2003). The aim of this work is to investigate the long term morphotectonic evolution of a well know seismic area in the central Apennines: the Norcia intramontane basin (Aringoli et al., 2005). The activity of the Norcia seismic area is characterized by moderate events and by strong earthquakes with maximum intensities of X-XI degrees MCS and equivalent magnitudes around 6.5±7.0 (CPTI, 2004). Based on the morphostructural features as well as on the historical seismicity of the area, we may divide the Norcia seismic area into three minor basins roughly NW-SE oriented: the Preci sub-basin in the north; the S. Scolastica and the Castel S. Maria sub-basins in the south. The wider basin (S. Scolastica) is separated from the other two by ridges transversally oriented with respect the basins themselves; they are the geomorphological response to the tectonic deformation which characterizes the whole area. Other geomorphological evidences of tectonic activity are represented by deformation of old summit erosional surfaces, hydrographic network diversion, faulted deposits, deep-seated gravitational slope deformations and large landslides. Moreover the sub-basins represent the surface evidence of traits belonging to the Norcia seismogenic structure, which have repeatedly caused earthquakes in the past, thus determining similar geological, structural and morphostructural features within the wider Norcia area, without causing the whole structure to rupture. The size of these sub-basins and, thus, the size of the relevant seismogenic segments, allows to calculate a maximum magnitude for the three sub-basins and for the seismogenic area as a whole. References Aringoli D., Cavitolo P., Farabollini P., Galindo-Zaldivar J., Gentili B., Giano S.I., Lòpez-Garrido A.C.,. Materazzi M, Nibbi L., Pedrera A., Pambianchi G., Ruano P., Ruiz-Constàn A., Sanz de Galdeano C., Savelli D., Tondi E., Troiani F. 2014. Morphotectonic characterization of the quaternary intermontane basins in the Umbria-Marche Apennines (Italy). Rend. Fis. Acc. Lincei 25 (Suppl 2), S111-S128. DOI 10.1007/s12210-014-0330-0 CPTI, Working Group, 2004. Catalogo Parametrico Terremoti Italiani, ING, GNDT, SGA, SSN, 92 pp., Bologna. Tondi, E., Cello, G. 2003. Spatiotemporal Evolution of the Central Apennines Fault System (Italy). Journal of Geodynamics, 36, 113-128

  13. Geomorphic responses of Duluth-area streams to the June 2012 flood, Minnesota

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Ellison, Christopher A.; Czuba, Christiana R.; Young, Benjamin M.; McCool, Molly M.; Groten, Joel T.

    2016-09-01

    In 2013, the U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency, completed a geomorphic assessment of 51 Duluth-area stream sites in 20 basins to describe and document the stream geomorphic changes associated with the June 2012 flood. Heavy rainfall caused flood peaks with annual exceedance probabilities of less than 0.002 (flood recurrence interval of greater than 500 years) on large and small streams in and surrounding the Duluth area. A geomorphic segment-scale classification previously developed in 2003–4 by the U.S. Geological Survey for Duluth-area streams was used as a framework to characterize the observed flood-related responses along a longitudinal continuum from headwaters to rivermouths at Lake Superior related to drainage network position, slope, geologic setting, and valley type. Field assessments in 2013 followed and expanded on techniques used in 2003–4 at intensive and rapid sites. A third level of assessment was added in 2013 to increase the amount of quantitative data at a subset of 2003–4 rapid sites. Characteristics of channel morphology, channel bed substrate, exposed bars and soft sediment deposition, large wood, pools, and bank erosion were measured; and repeat photographs were taken. Additional measurements in 2013 included identification of Rosgen Level II stream types. The comparative analyses of field data collected in 2003–4 and again in 2013 indicated notable geomorphic changes, some of them expected and others not. As expected, in headwaters with gently sloping wetland segments, geomorphic changes were negligible (little measured or observed change). Downstream, middle main stems generally had bank and bluff erosion and bar formation as expected. Steep bedrock sites along middle and lower main stems had localized bank and bluff erosion in short sections with intermittent bedrock. Lower main stem and alluvial sites had bank erosion, widening, gravel bar deposition, and aggradation. Bar formation and accumulation of gravel was more widespread than expected among all main stems, especially for sites upstream and downstream from channel constrictions from road crossings, or even steep sites with localized, more gently sloping sections. Decreases in large wood and pools also were observed throughout the longitudinal continuum of main-stem sites, with immediate implications for fish and benthic invertebrate aquatic habitat. Whether or not the geomorphic conditions will return to their preflood condition depends on the location along the longitudinal continuum. The amount of large wood and pools may return after more moderate floods, whereas bars with coarse material may remain in place, locally altering flow direction and causing continued bank erosion. Results from this study can be used by local managers in postflood reconstruction efforts and provide baseline information for continued monitoring of geomorphic responses to the June 2012 flood.

  14. Geomorphic domains and linear features on Landsat images, Circle Quadrangle, Alaska

    USGS Publications Warehouse

    Simpson, S.L.

    1984-01-01

    A remote sensing study using Landsat images was undertaken as part of the Alaska Mineral Resource Assessment Program (AMRAP). Geomorphic domains A and B, identified on enhanced Landsat images, divide Circle quadrangle south of Tintina fault zone into two regional areas having major differences in surface characteristics. Domain A is a roughly rectangular, northeast-trending area of relatively low relief and simple, widely spaced drainages, except where igneous rocks are exposed. In contrast, domain B, which bounds two sides of domain A, is more intricately dissected showing abrupt changes in slope and relatively high relief. The northwestern part of geomorphic domain A includes a previously mapped tectonostratigraphic terrane. The southeastern boundary of domain A occurs entirely within the adjoining tectonostratigraphic terrane. The sharp geomorphic contrast along the southeastern boundary of domain A and the existence of known faults along this boundary suggest that the southeastern part of domain A may be a subdivision of the adjoining terrane. Detailed field studies would be necessary to determine the characteristics of the subdivision. Domain B appears to be divisible into large areas of different geomorphic terrains by east-northeast-trending curvilinear lines drawn on Landsat images. Segments of two of these lines correlate with parts of boundaries of mapped tectonostratigraphic terranes. On Landsat images prominent north-trending lineaments together with the curvilinear lines form a large-scale regional pattern that is transected by mapped north-northeast-trending high-angle faults. The lineaments indicate possible lithlogic variations and/or structural boundaries. A statistical strike-frequency analysis of the linear features data for Circle quadrangle shows that northeast-trending linear features predominate throughout, and that most northwest-trending linear features are found south of Tintina fault zone. A major trend interval of N.64-72E. in the linear feature data, corresponds to the strike of foliations in metamorphic rocks and magnetic anomalies reflecting compositional variations suggesting that most linear features in the southern part of the quadrangle probably are related to lithologic variations brought about by folding and foliation of metamorphic rocks. A second important trend interval, N.14-35E., may be related to thrusting south of the Tintina fault zone, as high concentrations of linear features within this interval are found in areas of mapped thrusts. Low concentrations of linear features are found in areas of most igneous intrusives. High concentrations of linear features do not correspond to areas of mineralization in any consistent or significant way that would allow concentration patterns to be easily used as an aid in locating areas of mineralization. The results of this remote sensing study indicate that there are several possibly important areas where further detailed studies are warranted.

  15. Geomorphic response to tectonically-induced ground deformation in the Wabash Valley

    USGS Publications Warehouse

    Fraser, G.S.; Thompson, T.A.; Olyphant, G.A.; Furer, L.; Bennett, S.W.

    1997-01-01

    Numerous low- to moderate-intensity earthquakes have been recorded in a zone of diffuse modern seismicity in southwest Indiana, southeast Illinois, and northernmost Kentucky. Structural elements within the zone include the Wabash Valley Fault System, the LaSalle Anticlinal Belt in western Illinois, and the Rough Creek-Shawneetown Fault System in northern Kentucky. The presence of seismically-induced liquefaction features in the near-surface alluvial sediments in the region indicates that strong ground motion has occurred in the recent geological past, but because the glacial and alluvial sediments in the Wabash Valley appear to be otherwise undisturbed, post-Paleozoic ground deformation resulting from movement on these structural elements has not yet been documented. Morphometric analysis of the land surface, detailed mapping of geomorphic elements in the valley, reconnaissance drilling of the Holocene and Pleistocene alluvium, and structural analysis of the bedrock underlying the valley were used to determine whether the geomorphology of the valley and the patterns of alluviation of the Wabash River were affected by surface deformation associated with the seismic zone during the late Pleistocene and Holocene. Among the observed features in the valley that can be attributed to deformation are: (1) tilting of the modern land surface to the west, (2) preferred channel migration toward the west side of the valley, with concomitant impact on patterns of soil development and sedimentation rate, (3) a convex longitudinal profile of the Wabash River where it crosses the LaSalle Anticlinal Belt, and (4) increased incision of the river into its floodplain downstream from the anticlinal belt.

  16. Profile convexities in bedrock and alluvial streams

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.; Lutz, J. David

    2008-12-01

    Longitudinal profiles of bedrock streams in central Kentucky, and of coastal plain streams in southeast Texas, were analyzed to determine the extent to which they exhibit smoothly concave profiles and to relate profile convexities to environmental controls. None of the Kentucky streams have smoothly concave profiles. Because all observed knickpoints are associated with vertical joints, if they are migrating it either occurs rapidly between vertical joints, or migrating knickpoints become stalled at structural features. These streams have been adjusting to downcutting of the Kentucky River for at least 1.3 Ma, suggesting that the time required to produce a concave profile is long compared to the typical timescale of environmental change. A graded concave longitudinal profile is not a reasonable prediction or benchmark condition for these streams. The characteristic profile forms of the Kentucky River gorge area are contingent on a particular combination of lithology, structure, hydrologic regime, and geomorphic history, and therefore do not represent any general type of equilibrium state. Few stream profiles in SE Texas conform to the ideal of the smoothly, strongly concave profile. Major convexities are caused by inherited topography, geologic controls, recent and contemporary geomorphic processes, and anthropic effects. Both the legacy of Quaternary environmental change and ongoing changes make it unlikely that consistent boundary conditions will exist for long. Further, the few exceptions within the study area-i.e., strongly and smoothly concave longitudinal profiles-suggest that ample time has occurred for strongly concave profiles to develop and that such profiles do not necessarily represent any mutual adjustments between slope, transport capacity, and sediment supply. The simplest explanation of any tendency toward concavity is related to basic constraints on channel steepness associated with geomechanical stability and minimum slopes necessary to convey flow. This constrained gradient concept (CGC) can explain the general tendency toward concavity in channels of sufficient size, with minimal lithological constraints and with sufficient time for adjustment. Unlike grade- or equilibrium-based theories, the CGC results in interpretations of convex or low-concavity profiles or reaches in terms of local environmental constraints and geomorphic histories rather than as "disequilibrium" features.

  17. Characterizing Process-Based River and Floodplain Restoration Projects on Federal Lands in Oregon, and Assessing Catalysts and Barriers to Implementation

    NASA Astrophysics Data System (ADS)

    Bianco, S.; Jones, J. A.; Gosnell, H.

    2017-12-01

    Process-based restoration, a new approach to river and floodplain management, is being implemented on federal lands across Oregon. These management efforts are aimed at promoting key physical processes in order to improve river ecological function, create diverse habitat, and increase biological productivity for ESA-listed bull trout and spring Chinook salmon. Although the practice is being disseminated across the Pacific Northwest, it remains unclear what is driving aquatic and riparian ecosystem restoration towards this process-based approach and away from form-based methods such as Rosgen's Natural Channel Design. The technical aspects of process-based restoration have been described in the literature (ex. Beechie et al. 2010), but little is known about the practice from a social science perspective, and few case studies exist to assess the impact of these efforts. We combine semi-structured qualitative interviews with management experts and photogrammetric analysis to better understand how complex social processes and changing ideas about aquatic ecosystems are manifesting on the ground in federal land management. This study characterizes process-based river and floodplain restoration projects on federal lands in Oregon, and identifies catalysts and barriers to its implementation. The Deer Creek Floodplain Enhancement project serves as a case study for photogrammetric analysis. To characterize long-term changes at Deer Creek, geomorphic features were mapped and classified using orthoimage mosaics developed from a time series of historic aerial photographs dating back to 1954. 3D Digital Elevation Models (3D-DEMs) were created of portions of the modified sections of Deer Creek and its floodplain immediately before and after restoration using drone-captured aerial photography and a photogrammetric technique called Structure from Motion. These 3D-DEMs have enabled extraction of first-order geomorphic variables to compare pre- and post-project conditions. This study improves understanding of the historic range of conditions at Deer Creek, and assesses how process-based restoration activities drive short-term changes in geomorphic features, which can in turn influence complex riverine processes such as energy dissipation and sediment deposition.

  18. Spatial organisation of ecologically-relevant high frequency flow properties and implications for habitat assessment.

    NASA Astrophysics Data System (ADS)

    Trinci, G.; Harvey, G.; Henshaw, A.; Bertoldi, W.

    2016-12-01

    Turbulence plays a crucial role in the life cycle of river plants and animals. Turbulent flow facilitates access to food, maintenance of adequate oxygen levels, removal of wastes, locomotion and predator evasion, but can also act as a stressor, leading to dislodgement from habitats, increased energy costs, physiological damage and even mortality. Despite this, hydraulic habitat assessments for river appraisal and restoration design have largely focused on temporally and spatially averaged flow properties rather than more complex descriptors of turbulence (turbulence intensity, and the periodicity, orientation and scale of coherent flow structures) that are known to directly influence aquatic organisms. Contrasting relationships between turbulence and mean flow velocity have been reported and there is a pressing need to improve understanding of the hydraulic environment provided by mesoscale river features, such as geomorphic units (e.g. riffles, pools, steps), upon which river management and restoration often focuses. We undertook high frequency velocity surveys within three river reaches (low, medium and high gradient) using a 3-dimensional Acoustic Doppler Velocimeter, combined with detailed surveys of bed topography and visual assessments of the spatial organisation of geomorphic units. Using a combination of multivariate statistical analysis (Principal Components Analysis, Cluster Analysis and GLMs) and geostatistics (semi-variance), the paper explores the spatial organisation of key turbulence parameters across the reaches and linkages with mean flow velocity and characteristic roughness elements. The ability of `higher order' turbulence properties to distinguish between visually identified geomorphic units is also assessed. The findings provide insights into scales of variability in turbulence properties that have direct ecological relevance, helping to inform river assessment and restoration efforts.

  19. How does landscape structure influence catchment transit time across different geomorphic provinces?

    USGS Publications Warehouse

    Tetzlaff, D.; Seibert, J.; McGuire, K.J.; Laudon, H.; Burns, Douglas A.; Dunn, S.M.; Soulsby, C.

    2009-01-01

    Despite an increasing number of empirical investigations of catchment transit times (TTs), virtually all are based on individual catchments and there are few attempts to synthesize understanding across different geographical regions. Uniquely, this paper examines data from 55 catchments in five geomorphic provinces in northern temperate regions (Scotland, United States of America and Sweden). The objective is to understand how the role of catchment topography as a control on the TTs differs in contrasting geographical settings. Catchment inverse transit time proxies (ITTPs) were inferred by a simple metric of isotopic tracer damping, using the ratio of standard deviation of ??18O in streamwater to the standard deviation of ??18O in precipitation. Quantitative landscape analysis was undertaken to characterize the catchments according to hydrologically relevant topographic indices that could be readily determined from a digital terrain model (DTM). The nature of topographic controls on transit times varied markedly in different geomorphic regions. In steeper montane regions, there are stronger gravitational influences on hydraulic gradients and TTs tend to be lower in the steepest catchments. In provinces where terrain is more subdued, direct topographic control weakened; in particular, where flatter areas with less permeable soils give rise to overland flow and lower TTs. The steeper slopes within this flatter terrain appear to have a greater coverage of freely draining soils, which increase sub-surface flow, therefore increasing TTs. Quantitative landscape analysis proved a useful tool for intercatchment comparison. However, the critical influence of sub-surface permeability and connectivity may limit the transferability of predictive tools of hydrological function based on topographic parameters alone. Copyright ?? 2009 John Wiley & Sons, Ltd.

  20. Synthetic river valleys: Creating prescribed topography for form-process inquiry and river rehabilitation design

    NASA Astrophysics Data System (ADS)

    Brown, R. A.; Pasternack, G. B.; Wallender, W. W.

    2014-06-01

    The synthesis of artificial landforms is complementary to geomorphic analysis because it affords a reflection on both the characteristics and intrinsic formative processes of real world conditions. Moreover, the applied terminus of geomorphic theory is commonly manifested in the engineering and rehabilitation of riverine landforms where the goal is to create specific processes associated with specific morphology. To date, the synthesis of river topography has been explored outside of geomorphology through artistic renderings, computer science applications, and river rehabilitation design; while within geomorphology it has been explored using morphodynamic modeling, such as one-dimensional simulation of river reach profiles, two-dimensional simulation of river networks, and three-dimensional simulation of subreach scale river morphology. To date, no approach allows geomorphologists, engineers, or river rehabilitation practitioners to create landforms of prescribed conditions. In this paper a method for creating topography of synthetic river valleys is introduced that utilizes a theoretical framework that draws from fluvial geomorphology, computer science, and geometric modeling. Such a method would be valuable to geomorphologists in understanding form-process linkages as well as to engineers and river rehabilitation practitioners in developing design surfaces that can be rapidly iterated. The method introduced herein relies on the discretization of river valley topography into geometric elements associated with overlapping and orthogonal two-dimensional planes such as the planform, profile, and cross section that are represented by mathematical functions, termed geometric element equations. Topographic surfaces can be parameterized independently or dependently using a geomorphic covariance structure between the spatial series of geometric element equations. To illustrate the approach and overall model flexibility examples are provided that are associated with mountain, lowland, and hybrid synthetic river valleys. To conclude, recommended advances such as multithread channels are discussed along with potential applications.

  1. Reconstructing the geomorphic history of Liang Bua, Flores, Indonesia: a stratigraphic interpretation of the occupational environment.

    PubMed

    Westaway, K E; Sutikna, T; Saptomo, W E; Jatmiko; Morwood, M J; Roberts, R G; Hobbs, D R

    2009-11-01

    Liang Bua, in Flores, Indonesia, was formed as a subterranean chamber over 600ka. From this time to the present, a series of geomorphic events influenced the structure of the cave and cave deposits, creating a complex stratigraphy. Within these deposits, nine main sedimentary units have been identified. The stratigraphic relationships between these units provide the evidence needed to reconstruct the geomorphic history of the cave. This history was dominated by water action, including slope wash processes, channel formation, pooling of water, and flowstone precipitation, which created waterfalls, cut-and-fill stratigraphy, large pools of water, and extensive flowstone cappings. The reconstructed sequence of events over the last 190k.yr. has been summarized by a series of time slices that demonstrate the nature of the occupational environment in Liang Bua. The earliest artifacts at the site, dated to approximately 190ka, testify to hominin presence in the area, but the reconstructions suggest that occupation of the cave itself may not have been possible until after approximately 100ka. At approximately 95ka, channel erosion of a basal unit, which displays evidence of deposition in a pond environment, created a greater relief on the cave floor, and formed remanent areas of higher ground that later became a focus for hominin occupation from 74-61ka by the west wall and in the center of the cave, and from approximately 18-17ka by the east wall. These zones have been identified according to the sloping nature of the stratigraphy and the distribution of artifacts, and their locations have implications for the archaeological interpretation of the site.

  2. The Barrancas anticline in west-central Argentina: new geomorphic and geologic constraints on the geometry and activity of a fault-related fold

    NASA Astrophysics Data System (ADS)

    Rimando, J. M.; Schoenbohm, L. M.

    2016-12-01

    The Barrancas anticline in Mendoza Province, west-central Argentina is a N-NW-oriented, east-vergent fault-bend fold located in the transition from the mainly east-vergent, thin-skinned Argentine Precordillera to the mainly west-vergent, thick-skinned Sierras Pampeanas — one of the most active thrust zones on Earth. Previous studies of the Barrancas anticline interpreted its structure from 2-D and 3-D seismic data. The anticline is a fault-bend fold with multiple segments with different uplift histories and which linked only after 2.3Ma. This study aims to establish the temporal persistence of segmentation and to describe the role, extent and rates of deformation processes involved in the development of the Barrancas anticline from morphometric analyses, geologic and geomorphic mapping, and accurate dating of relevant geomorphic features. Longitudinal profile analysis of streams on the anticline reveals marked differences in normalized steepness index (ksn) between the western and eastern limbs as well as variation along strike. This distribution of ksn values reveals patterns consistent with asymmetry and segmentation of the Barrancas anticline. Swath profiles parallel to the fold axis resemble fault slip distribution profiles which was a basis for segmentation from previous studies. Drainage basin morphometric indices such as hypsometry, drainage density, and basin elongation were also measured. Hypsometric integral values were particularly higher on the west than on the east, possibly indicating younger folding on the western limb. This study will contribute to a better understanding of the nature, extent, timing, and rate of folding at the transition from thin- to thick-skinned thrust deformation in west-central Argentina. Additionally, this study will contribute to assessment of seismic hazards associated with fault-related folds in Argentina and in similar tectonic settings worldwide.

  3. Living Shorelines: Assessing Geomorphic Change and Water Quality in an Urban Waterway

    NASA Astrophysics Data System (ADS)

    Huggins, A.; Schwartz, M. C.; Schmutz, P. P.

    2017-12-01

    In recent years, alternative strategies for shoreline armoring have become increasingly popular with coastal property owners. In Northwest Florida, local agencies implemented plans to attenuate wave action and reduce landward shore recession in an urban bayou by installing living shorelines. Living shorelines are constructed in the inter-tidal zones and incorporate both hard and soft structured stabilization. Generally, the hard component is fossilized oyster shells and the soft component is planted intertidal vegetation, such as Spartina alterniflora (Smooth cordgrass) and Juncus roemererianus (Black needlerush). Living shorelines were intended to comprise both ecological and societal implications by significantly slowing erosion processes for property owners, by utilizing oyster beds to improve water quality, and by fostering new ecological habitats in the marsh grasses. The issue presented with living shoreline management is long-term studies have not been carried out on these engineered systems. For this study, geospatial technology was utilized to create 3D images of terrain by interpolation of data points using a TotalStation to compute geomorphic change. Additionally, water samples were analyzed using traditional wet chemistry laboratory methods to determine total oxidized nitrogen (TON), ammonium, and orthophosphate content in water. Over a short three-month preliminary study, sediment accretion was observed primarily within the vegetation with the bulk of the erosion occurring around the oyster beds. TON was detected at levels between 10 µM and 30 µM, ammonium up to 5 µM, and orthophosphate was only detected in very low levels, consistently < 2 µM. The project is in its infancy, as the topographic profiles and water quality data will be used to establish baseline data for future research to determine volumetric geomorphic change,and to set a standard for water quality trends, surrounding oyster beds and vegetation in response to climatic events.

  4. Effects of large deep-seated landslides on hillslope morphology, western Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Korup, Oliver

    2006-03-01

    Morphometric analysis and air photo interpretation highlight geomorphic imprints of large landslides (i.e., affecting ≥1 km2) on hillslopes in the western Southern Alps (WSA), New Zealand. Large landslides attain kilometer-scale runout, affect >50% of total basin relief, and in 70% are slope clearing, and thus relief limiting. Landslide terrain shows lower mean local relief, relief variability, slope angles, steepness, and concavity than surrounding terrain. Measuring mean slope angle smoothes out local landslide morphology, masking any relationship between large landslides and possible threshold hillslopes. Large failures also occurred on low-gradient slopes, indicating persistent low-frequency/high-magnitude hillslope adjustment independent of fluvial bedrock incision. At the basin and hillslope scale, slope-area plots partly constrain the effects of landslides on geomorphic process regimes. Landslide imprints gradually blend with relief characteristics at orogen scale (102 km), while being sensitive to length scales of slope failure, topography, sampling, and digital elevation model resolution. This limits means of automated detection, and underlines the importance of local morphologic contrasts for detecting large landslides in the WSA. Landslide controls on low-order drainage include divide lowering and shifting, formation of headwater basins and hanging valleys, and stream piracy. Volumes typically mobilized, yet still stored in numerous deposits despite high denudation rates, are >107 m3, and theoretically equal to 102 years of basin-wide debris production from historic shallow landslides; lack of absolute ages precludes further estimates. Deposit size and mature forest cover indicate residence times of 101-104 years. On these timescales, large landslides require further attention in landscape evolution models of tectonically active orogens.

  5. Cryo-conditioned rocky coast systems: A case study from Wilczekodden, Svalbard.

    PubMed

    Strzelecki, M C; Kasprzak, M; Lim, M; Swirad, Z M; Jaskólski, M; Pawłowski, Ł; Modzel, P

    2017-12-31

    This paper presents the results of an investigation into the processes controlling development of a cryo-conditioned rock coast system in Hornsund, Svalbard. A suite of nested geomorphological and geophysical methods have been applied to characterise the functioning of rock cliffs and shore platforms influenced by lithological control and geomorphic processes driven by polar coast environments. Electrical resistivity tomography (ERT) surveys have been used to investigate permafrost control on rock coast dynamics and reveal the strong interaction with marine processes in High Arctic coastal settings. Schmidt hammer rock tests, demonstrated strong spatial control on the degree of rock weathering (rock strength) along High Arctic rock coasts. Elevation controlled geomorphic zones are identified and linked to distinct processes and mechanisms, transitioning from peak hardness values at the ice foot through the wave and storm dominated scour zones to the lowest values on the cliff tops, where the effects of periglacial weathering dominate. Observations of rock surface change using a traversing micro-erosion meter (TMEM) indicate that significant changes in erosion rates occur at the junction between the shore platform and the cliff toe, where rock erosion is facilitated by frequent wetting and drying and operation of nivation and sea ice processes (formation and melting of snow patches and icefoot complexes). The results are synthesised to propose a new conceptual model of High Arctic rock coast systems, with the aim of contributing towards a unifying concept of cold region landscape evolution and providing direction for future research regarding the state of polar rock coasts. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Rapid fluvial incision of a late Holocene lava flow: Insights from LiDAR, alluvial stratigraphy, and numerical modeling

    USGS Publications Warehouse

    Sweeney, Kristin; Roering, Joshua J.

    2016-01-01

    Volcanic eruptions fundamentally alter landscapes, paving over channels, decimating biota, and emplacing fresh, unweathered material. The fluvial incision of blocky lava flows is a geomorphic puzzle. First, high surface permeability and lack of sediment should preclude geomorphically effective surface runoff and dissection. Furthermore, past work has demonstrated the importance of extreme floods in driving incision via column toppling and plucking in columnar basalt, but it is unclear how incision occurs in systems where surface blocks are readily mobile. We examine rapid fluvial incision of the Collier lava flow, an andesitic Holocene lava flow in the High Cascades of Oregon. Since lava flow emplacement ∼1600 yr ago, White Branch Creek has incised bedrock gorges up to 8 m deep into the coherent core of the lava flow and deposited >0.2 km3 of sediment on the lava flow surface. Field observation points to a bimodal discharge regime in the channel, with evidence for both annual snowmelt runoff and outburst floods from Collier glacier, as well as historical evidence of vigorous glacial meltwater. To determine the range of discharge events capable of incision in White Branch Creek, we used a mechanistic model of fluvial abrasion. We show that the observed incision implies that moderate flows are capable of both initiating channel formation and sustaining incision. Our results have implications for the evolution of volcanic systems worldwide, where glaciation and/or mass wasting may accelerate fluvial processes by providing large amounts of sediment to otherwise porous, sediment-starved landscapes.

  7. Using Fluvial Geomorphology as a Physical Template in Process-Based and Recovery Enhancement Approaches to River Management

    NASA Astrophysics Data System (ADS)

    Fryirs, K.

    2016-12-01

    In an `era of river repair' fluvial geomorphology has emerged as a key science in river management practice. Geomorphologists are ideally placed to use their science in an applied manner to provide guidance on the impact of floods and droughts, landuse and climate change, and water use on river forms, processes and evolution. Increasingly, fluvial geomorphologists are also asked to make forecasts about how systems might adjust in the future, and to work with managers to implement strategies on-the-ground. Using case study material from Eastern Australia (Bega, Hunter, Wollombi and Lockyer catchments) I will focus on how process-based understanding of rivers has developed and evolved to provide a coherent physical template for effective and proactive, river management practice. I will focus on four key principles and demonstrate how geomorphology has been, and should continue to be, used in process-based, recovery enhancement approaches to river management. How understanding the difference between river behaviour and river change is used to determine how a river is `expected' to function, and how to identify anomalous processes requiring a treatment response. How understanding evolutionary trajectory is used to make future forecasts on river condition and recovery potential, and how working with processes can enhance river recovery. How geomorphic information can be used as a physical template atop which to analyse a range of biotic processes and habitat outcomes. How geomorphic information is used to effectively prioritise and plan river conservation and rehabilitation activities as part of catchment and region-scale action plans.

  8. Trouble with diffusion: Reassessing hillslope erosion laws with a particle-based model

    NASA Astrophysics Data System (ADS)

    Tucker, Gregory E.; Bradley, D. Nathan

    2010-03-01

    Many geomorphic systems involve a broad distribution of grain motion length scales, ranging from a few particle diameters to the length of an entire hillslope or stream. Studies of analogous physical systems have revealed that such broad motion distributions can have a significant impact on macroscale dynamics and can violate the assumptions behind standard, local gradient flux laws. Here, a simple particle-based model of sediment transport on a hillslope is used to study the relationship between grain motion statistics and macroscopic landform evolution. Surface grains are dislodged by random disturbance events with probabilities and distances that depend on local microtopography. Despite its simplicity, the particle model reproduces a surprisingly broad range of slope forms, including asymmetric degrading scarps and cinder cone profiles. At low slope angles the dynamics are diffusion like, with a short-range, thin-tailed hop length distribution, a parabolic, convex upward equilibrium slope form, and a linear relationship between transport rate and gradient. As slope angle steepens, the characteristic grain motion length scale begins to approach the length of the slope, leading to planar equilibrium forms that show a strongly nonlinear correlation between transport rate and gradient. These high-probability, long-distance motions violate the locality assumption embedded in many common gradient-based geomorphic transport laws. The example of a degrading scarp illustrates the potential for grain motion dynamics to vary in space and time as topography evolves. This characteristic renders models based on independent, stationary statistics inapplicable. An accompanying analytical framework based on treating grain motion as a survival process is briefly outlined.

  9. Drainage basin and topographic analysis of a tropical landscape: Insights into surface and tectonic processes in northern Borneo

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Ramkumar, Mu.; Santosh, M.; Kumar, Shashi; Hassaan, Muhammad

    2016-07-01

    We investigated the recent landscape development of Borneo through geomorphic analysis of two large drainage basins (Rajang and Baram basins). The extraction of morphometric parameters utilizing digital terrain data in a GIS environment, focusing on hydrography (stream length-gradient index, ratio of valley floor width to valley height, and transverse topographic symmetry factor) and topography (local relief and relief anomaly), was carried out in order to elucidate processes governing drainage and landscape evolution. Anomalously high and low values of stream length-gradient indices of main tributary streams associated with faults and multiple knick-points along the channel profiles are linked to deformation events. The development of deeply incised V-shaped valleys show enhanced incision capability of streams in response to steepening of hillslope gradients following tectonic inputs. Deflection of streams and probable dynamic reorganization of the drainage system through stream capture processes as feedbacks to tectonic uplift and orographic effect are observed. Local relief and relief anomaly maps highlight the presence of preserved elevation-accordant relict portions of landscapes characterized by low amplitude relief, nested between ridgelines in regions of complex folding. Our results reveal dynamic geomorphic adjustment of the landscape due to perturbations in tectonic and climatic boundary conditions. The implication is that the landscape of north Borneo experienced a tectonic phase of rapid uplift after 5 Ma and undergoes active folding of the Rajang Group thrust belts in the present-day. Active shortening combined with high rates of denudation in Sarawak, demonstrates transience emphasized by the drainage system attempting to adjust to tectonic and climatic forcing.

  10. Analysis of airborne LiDAR surveys to quantify the characteristic morphologies of northern forested wetlands

    Treesearch

    Murray C. Richardson; Carl P. J. Mitchell; Brian A. Branfireun; Randall K. Kolka

    2010-01-01

    A new technique for quantifying the geomorphic form of northern forested wetlands from airborne LiDAR surveys is introduced, demonstrating the unprecedented ability to characterize the geomorphic form of northern forested wetlands using high-resolution digital topography. Two quantitative indices are presented, including the lagg width index (LWI) which objectively...

  11. The geomorphic response of gravel-bed rivers to dams: perspectives and prospects

    Treesearch

    Gordon E. Grant

    2012-01-01

    The paper summarizes over 40 years of research on the downstream geomorphic responses of rivers to dams, with a particular emphasis on gravel-bed rivers, and evaluates the state if the science with respect to predicting channel adjustments: channel incision, lateral adjustments, and bed textural changes. Effects of vegetation and implications for management are also...

  12. Beavers as Agents of Biogeomorphic Change: A Review and Suggestions for Teaching Exercises.

    ERIC Educational Resources Information Center

    Butler, David R.

    1991-01-01

    Discusses beavers and their geomorphic impacts on their environment. Considers dam building, bank burrowing, and canal building. Suggests using the beaver as a classroom and field trip example to illustrate animals' effects on the physical landscape. Provides a review of published works on beavers in their roles as geomorphic agents. (DK)

  13. Methodology for calculating shear stress in a meandering channel

    Treesearch

    Kyung-Seop Sin; Christopher I. Thornton; Amanda L. Cox; Steven R. Abt

    2012-01-01

    Natural channels never stop changing their geomorphic characteristics. Natural alluvial streams are similar to living creatures because they generate water flow, develop point bars, alter bed profile, scour the bed, erode the bank, and cause other phenomena in the stream system. The geomorphic changes in a natural system lead to a wide array of research worldwide,...

  14. A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications

    Treesearch

    David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode

    2014-01-01

    Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...

  15. Land-surface evolution at the continental time-scale: An example from interior Western Australia

    NASA Astrophysics Data System (ADS)

    Mabbutt, J. A.

    1988-12-01

    The interior plateau of Western Australia in the Wiluna—Meekatharra area is in part an exhumed pre-Permian surface of low relief and to that extent of Gondwana age. A lateritic duricrust on interfluvial remnants of an Old Plateau surface is probably the outcome of several cycles of weathering and stripping, rather than of a single geomorphic episode. Landforms above the Old Plateau have maintained their relief during this circumdenudation and there is no regional evidence of their isolation by major escarpment retreat. A New Plateau surface has extended by stripping of saprolite and is an etchplain, as also is the Old Plateau under the genesis postulated. The New Plateau cycle was initiated by general drainage rejuvenation whilst lateritic weathering still continued, but its extension was halted through increasing climatic aridity, probably during the Miocene.

  16. HCMM: Soil moisture in relation to geologic structure and lithology, northern California. [Northern Coast Range, Sacramento Valley, and the Modoc Plateau

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1981-01-01

    Heat capacity mapping mission images of about 80,000 sq km in northern California were qualitatively evaluated for usefulness in regional geologic investigations of structure and lithology. The thermal characteristics recorded vary among the several geomorphic provinces and depend chiefly on the topographic expression and vegetation cover. Identification of rock types, or groups of rock types, was most successfully carried out within the semiarid parts of the region; however, extensive features, such as faults, folds and volcanic fields could be delineated. Comparisons of seasonally obtained HCMM images are of limited value except in semiarid regions.

  17. Gully formation in terrestrial simple craters: Meteor Crater, USA and Lonar Crater, India

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Head, J. W.; Kring, D. A.

    2007-12-01

    Geomorphic features such as gullies, valley networks, and channels on Mars have been used as a proxy to understand the climate and landscape evolution of Mars. Terrestrial analogues provide significant insight as to how the various exogenic and endogenic processes might contribute to the evolution of these martian landscapes. We describe here a terrestrial example from Meteor Crater, which shows a spectacular development of gullies throughout the inner wall in response to rainwater precipitation, snow melting and groundwater discharge. As liquid water has been envisaged as one of the important agents of landscape sculpturing, Meteor Crater remains a useful landmark, where planetary geologists can learn some lessons. We also show here how the lithology and structural framework of this crater controls the gully distribution. Like many martian impact craters, it was emplaced in layered sedimentary rocks with an exceptionally well-developed centripetal drainage pattern consisting of individual alcoves, channels and fans. Some of the gullies originate from the rim crest and others from the middle crater wall, where a lithologic transition occurs. Deeply incised alcoves are well-developed on the soft sandstones of the Coconino Formation exposed on the middle crater wall, beneath overlying dolomite. In general, the gully locations are along crater wall radial fractures and faults, which are favorable locales of groundwater flow and discharge; these structural discontinuities are also the locales where the surface runoff from rain precipitation and snow melting can preferentially flow, causing degradation. Like martian craters, channels are well developed on the talus deposits and alluvial fans on the periphery of the crater floor. In addition, lake sediments on the crater floor provide significant evidence of a past pluvial climate, when groundwater seeped from springs on the crater wall. Caves exposed on the lower crater level may point to percolation of surface runoff and selective discharge through fractures on the crater wall. Similar relationships are seen at Lonar Crater, India. Although these hydrological processes continue at Meteor Crater today, conditions at the crater are much more arid than they were soon after impact, reflecting a climatic shift similar in direction to that inferred for Mars.

  18. Universality of fragment shapes.

    PubMed

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-03-16

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism.

  19. Megafans and Trumpeter Bird Biodiversity-Psophia Phylogeography and Landscape Evolution in Amazonia

    NASA Technical Reports Server (NTRS)

    Wilkinson, Justin

    2014-01-01

    Based on geomorphic character and mapped geology, geologists have interpreted the landscape surrounding the Andes Mountains as becoming progressively younger to the East. These sedimentary materials filled the late Miocene swampland that formerly occupied central and western Amazonia. Apart from the ancient landscapes of the Guiana Highlands (top right, figure 1a), Zone Ac is the oldest, followed by Zone Aw, within which megafan Jw is older than megafan Je (figure 1a). DNA-based paleogeography of the trumpeters shows that younger clades diverge from parent lineages with increasing distance from the Andes chain. Thus, Psophia napensis diverges from the P. crepitans parent, and P. ochroptera diverges from P. napensis. The P. ochroptera population is confined solely to the Je megafan (figure 1a). The same trend is seen on the south side of the Amazon depression. Since the timing of the events seems to be of exactly the same order [post-Miocene for the land surfaces and trumpeter divergence within the last 3 million years (figure 1d)], it seems reasonable to think that the megafans provided the substrate on which new bird lineages could speciate. Such physical controls of evolution are becoming more important in the understanding of biodiversity.

  20. Drainage evolution in the debris avalanche deposits near Mount Saint Helens, Washington

    NASA Technical Reports Server (NTRS)

    Beach, G. L.; Dzurisin, D.

    1984-01-01

    The 18 May 1980 eruption of Mount St. Helens was initiated by a massive rockslide-debris avalanche which completely transformed the upper 25 km of the North Fork Toutle River valley. The debris was generated by one of the largest gravitational mass movements ever recorded on Earth. Moving at an average velocity of 35 m/s, the debris avalanche buried approximately 60 sq km of terrain to an average depth of 45 m with unconsolidated, poorly sorted volcaniclastic material, all within a period of 10 minutes. Where exposed and unaltered by subsequent lahars and pyroclastic flows, the new terrain surface was characterized predominantly by hummocks, closed depressions, and the absence of an identifiable channel network. Following emplacement of the debris avalanche, a complex interrelationship of fluvial and mass wasting processes immediately began operating to return the impacted area to an equilibrium status through the removal of material (potential energy) and re-establishment of graded conditions. In an attempt to chronicle the morphologic evolution of this unique environmental setting, a systematic series of interpretative maps of several selected areas was produced. These maps, which document the rate and character of active geomorphic processes, are discussed.

  1. Comment on: "Morphotectonic records of neotectonic activity in the vicinity of North Almora Thrust Zone, Central Kumaun Himalaya", by Kothyari et al. 2017, Geomorphology (285), 272-286

    NASA Astrophysics Data System (ADS)

    Rana, Naresh; Sharma, Shubhra

    2018-01-01

    The recent paper by Kothyari et al. (2017) suggests that the North Almora Thrust (NAT) and a few subsidiary faults in the central Lesser Himalaya were active during the late Quaternary and Holocene. Considering that in the Indian Summer Monsoon (ISM) dominated and tectonically active central Himalaya, the landscape owes their genesis to a coupling between the tectonics and climate. The present study would have been a good contribution toward improving our understanding on this important topic. Unfortunately, the inferences drawn by the authors are based on inadequate/vague field observations, supported by misquoted references, which reflects their poor understanding of the geomorphic processes. For example, authors implicate tectonics in the landform evolution without providing an argument to negate the role of climate (ISM). In view of this, the above contribution does not add anything substantial in improving our existing knowledge of climate-tectonic interaction in landform evolution. On the contrary, if the above publication is not questioned for its scientific merit, it may create enormous confusion and proliferation of wrong scientific data and inferences.

  2. Universality of fragment shapes

    PubMed Central

    Domokos, Gábor; Kun, Ferenc; Sipos, András Árpád; Szabó, Tímea

    2015-01-01

    The shape of fragments generated by the breakup of solids is central to a wide variety of problems ranging from the geomorphic evolution of boulders to the accumulation of space debris orbiting Earth. Although the statistics of the mass of fragments has been found to show a universal scaling behavior, the comprehensive characterization of fragment shapes still remained a fundamental challenge. We performed a thorough experimental study of the problem fragmenting various types of materials by slowly proceeding weathering and by rapid breakup due to explosion and hammering. We demonstrate that the shape of fragments obeys an astonishing universality having the same generic evolution with the fragment size irrespective of materials details and loading conditions. There exists a cutoff size below which fragments have an isotropic shape, however, as the size increases an exponential convergence is obtained to a unique elongated form. We show that a discrete stochastic model of fragmentation reproduces both the size and shape of fragments tuning only a single parameter which strengthens the general validity of the scaling laws. The dependence of the probability of the crack plan orientation on the linear extension of fragments proved to be essential for the shape selection mechanism. PMID:25772300

  3. On the control of riverbed incision induced by run-of-river power plant

    NASA Astrophysics Data System (ADS)

    Bizzi, Simone; Dinh, Quang; Bernardi, Dario; Denaro, Simona; Schippa, Leonardo; Soncini-Sessa, Rodolfo

    2015-07-01

    Water resource management (WRM) through dams or reservoirs is worldwide necessary to support key human-related activities, ranging from hydropower production to water allocation and flood risk mitigation. Designing of reservoir operations aims primarily to fulfill the main purpose (or purposes) for which the structure has been built. However, it is well known that reservoirs strongly influence river geomorphic processes, causing sediment deficits downstream, altering water, and sediment fluxes, leading to riverbed incision and causing infrastructure instability and ecological degradation. We propose a framework that, by combining physically based modeling, surrogate modeling techniques, and multiobjective (MO) optimization, allows to include fluvial geomorphology into MO optimization whose main objectives are the maximization of hydropower revenue and the minimization of riverbed degradation. The case study is a run-of-the-river power plant on the River Po (Italy). A 1-D mobile-bed hydro-morphological model simulated the riverbed evolution over a 10 year horizon for alternatives operation rules of the power plant. The knowledge provided by such a physically based model is integrated into a MO optimization routine via surrogate modeling using the response surface methodology. Hence, this framework overcomes the high computational costs that so far hindered the integration of river geomorphology into WRM. We provided numerical proof that river morphologic processes and hydropower production are indeed in conflict but that the conflict may be mitigated with appropriate control strategies.

  4. Geologic and mineral and water resources investigations in western Colorado using ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Knepper, D. H., Jr. (Compiler)

    1973-01-01

    The author has identified the following significant results. Geologic interpretation of ERTS-1 imagery is dependent on recognition of the distribution, continuity, trend, and geometry of key surface features. In the examination of ERTS-1 imagery, lithology must be interpreted largely from the geomorphic expression of the terrain. ERTS-1 imagery is extremely useful in detecting local structures. Most mapped structures are topographically-expressed. Consequently, ERTS-1 imagery acquired during mid-winter, when the solar illumination angle is low, provides the largest amount of structural information. Stereoscopic analyses of ERTS-1 images significantly aid geologic interpretation. Positive transparencies of ERTS-1 images (1:1,000,000) commonly contain more geologic information than can be adequately annotated during geologic interpretation.

  5. Cultural Resources Survey of Fort Adams Reach Revetment, Mile 312.2 to 306.0-L, Mississippi River, Wilkinson County, Mississippi

    DTIC Science & Technology

    1993-01-01

    closely with the area originally delineated as the Citronelle Formation by Matson (1916), is a tan to orange clay, silt, and sand with a large amount...surface are generally appreciably greater than that of the lower terraces. Because of dissection and structural influence, the original geomorphic...area, the origin of these deposits has been attributed to an eastern Gulf or Appalachian provenance (Rosen 1969; Cullinan 1969). The stratigraphic

  6. Ecologically Enhancing Coastal Infrastructure

    NASA Astrophysics Data System (ADS)

    Mac Arthur, Mairi; Naylor, Larissa; Hansom, Jim; Burrows, Mike; Boyd, Ian

    2017-04-01

    Hard engineering structures continue to proliferate in the coastal zone globally in response to increasing pressures associated with rising sea levels, coastal flooding and erosion. These structures are typically plain-cast by design and function as poor ecological surrogates for natural rocky shores which are highly topographically complex and host a range of available microhabitats for intertidal species. Ecological enhancement mitigates some of these negative impacts by integrating components of nature into the construction and design of these structures to improve their sustainability, resilience and multifunctionality. In the largest UK ecological enhancement trial to date, 184 tiles (15x15cm) of up to nine potential designs were deployed on vertical concrete coastal infrastructure in 2016 at three sites across the UK (Saltcoats, Blackness and Isle of Wight). The surface texture and complexity of the tiles were varied to test the effect of settlement surface texture at the mm-cm scale of enhancement on the success of colonisation and biodiversity in the mid-upper intertidal zone in order to answer the following experimental hypotheses: • Tiles with mm-scale geomorphic complexity will have greater barnacle abundances • Tiles with cm-scale geomorphic complexity will have greater species richness than mm-scale tiles. A range of methods were used in creating the tile designs including terrestrial laser scanning of creviced rock surfaces to mimic natural rocky shore complexity as well as artificially generated complexity using computer software. The designs replicated the topographic features of high ecological importance found on natural rocky shores and promoted species recruitment and community composition on artificial surfaces; thus enabling us to evaluate biological responses to geomorphic complexity in a controlled field trial. At two of the sites, the roughest tile designs (cm scale) did not have the highest levels of barnacle recruits which were instead counted on tiles of intermediate roughness such as the grooved concrete with 257 recruits on average (n=8) at four months' post-installation (Saltcoats) and 1291 recruits at two months' post-installation (Isle of Wight). This indicates that a higher level of complexity does not always reflect the most appropriate roughness scale for some colonisers. On average, tiles with mm scale texture were more successful in terms of barnacle colonisation compared to plain-cast control tiles (n=8 per site). The poor performance of the control tiles (9 recruits, Saltcoats; 147 recruits, Isle of Wight after 4 and 2 months, respectively) further highlights that artificial, hard substrates are poor ecological surrogates for natural rocky shores. One of the sites, Blackness, was an observed outlier to the general trend of colonisation, likely due to its estuarine location. This factor may contribute to why every design, including the control tile, had high abundances of barnacles. Artificially designed tiles with cm-scale complexity had higher levels of species richness, with periwinkles and topshells frequently observed to utilise the tile microhabitats in greater numbers than found on other tile designs. These results show that the scale of geomorphic complexity influences early stage colonisation. Data analysis is being carried out between now and the EGU - these advanced analyses would be presented.

  7. An assessment of anthropogenic and climatic stressors on estuaries using a spatio-temporal GIS-modelling approach for sustainability: Towamba estuary, southeastern Australia.

    PubMed

    Al-Nasrawi, Ali K M; Hamylton, Sarah M; Jones, Brian G

    2018-06-03

    Monitoring estuarine ecological-geomorphological dynamics has become a crucial aspect of studying the impacts of climate change and worldwide infrastructure development in coastal zones. Together, these factors have changed the natural eco-geomorphic processes that affect estuarine regimes and comprehensive modelling of coastal resources can assist managers to make appropriate decisions about their sustainable use. This study has utilised Towamba estuary (southeastern NSW, Australia), to demonstrate the value and priority of modelling estuarine dynamism as a measure of the rates and consequences of eco-geomorphic changes. This research employs several geoinformatic modelling approaches over time to investigate and assess how climate change and human activities have altered this estuarine eco-geomorphic setting. Multitemporal trend/change analysis of sediment delivery, shoreline positions and land cover, determined from fieldwork and GIS analysis of remote sensing datasets, shows significant spatio-temporal changes to the elevation and areal extent of sedimentary facies in the Towamba estuary over the past 65 years. Geomorphic growth (~ 2600 m 2 annually) has stabilised the estuarine habitats, particularly within native vegetation, salt marsh and mangrove areas. Geomorphic changes have occurred because of a combination of sediment runoff from the mostly unmodified terrestrial catchment, nearshore processes (ocean dynamics) and human activities. The construction of GIS models, verified with water and sediment samples, can characterise physical processes and quantify changes within the estuarine ecosystem. Such robust models will allow resource managers to evaluate the potential effects of changes to the current coastal ecosystems.

  8. Anthropogenic control on geomorphic process rates: can we slow down the erosion rates? (Geomorphology Outstanding Young Scientist Award & Penck Lecture)

    NASA Astrophysics Data System (ADS)

    Vanacker, V.

    2012-04-01

    The surface of the Earth is changing rapidly, largely in response to anthropogenic perturbation. Direct anthropogenic disturbance of natural environments may be much larger in many places than the (projected) indirect effects of climate change. There is now large evidence that humans have significantly altered geomorphic process rates, mainly through changes in vegetation composition, density and cover. While much attention has been given to the impact of vegetation degradation on geomorphic process rates, I suggest that the pathway of restoration is equally important to investigate. First, vegetation recovery after crop abandonment has a rapid and drastic impact on geomorphic process rates. Our data from degraded catchments in the tropical Andes show that erosion rates can be reduced by up to 100 times when increasing the protective vegetation cover. During vegetation restoration, the combined effects of the reduction in surface runoff, sediment production and hydrological connectivity are stronger than the individual effects together. Therefore, changes in erosion and sedimentation during restoration are not simply the reverse of those observed during degradation. Second, anthropogenic perturbation causes a profound but often temporary change in geomorphic process rates. Reconstruction of soil erosion rates in Spain shows us that modern erosion rates in well-vegetated areas are similar to long-term rates, despite evidence of strong pulses in historical erosion rates after vegetation clearance and agriculture. The soil vegetation system might be resilient to short pulses of accelerated erosion (and deposition), as there might exist a dynamic coupling between soil erosion and production also in degraded environments.

  9. Soil-geomorphic significance of land surface characteristics in an arid mountain range, Mojave Desert, USA

    USGS Publications Warehouse

    Hirmas, D.R.; Graham, R.C.; Kendrick, K.J.

    2011-01-01

    Mountains comprise an extensive and visually prominent portion of the landscape in the Mojave Desert, California. Landform surface properties influence the role these mountains have in geomorphic processes such as dust flux and surface hydrology across the region. The primary goal of this study was to describe and quantify land surface properties of arid-mountain landforms as a step toward unraveling the role these properties have in soil-geomorphic processes. As part of a larger soil-geomorphic study, four major landform types were identified within the southern Fry Mountains in the southwestern Mojave Desert on the basis of topography and landscape position: mountaintop, mountainflank, mountainflat (intra-range low-relief surface), and mountainbase. A suite of rock, vegetation, and morphometric land surface characteristic variables was measured at each of 65 locations across the study area, which included an associated piedmont and playa. Our findings show that despite the variation within types, landforms have distinct land surface properties that likely control soil-geomorphic processes. We hypothesize that surface expression influences a feedback process at this site where water transports sediment to low lying areas on the landscape and wind carries dust and soluble salts to the mountains where they are washed between rocks, incorporated into the soil, and retained as relatively long-term storage. Recent land-based video and satellite photographs of the dust cloud emanating from the Sierra Cucapá Mountains in response to the 7.2-magnitude earthquake near Mexicali, Mexico, support the hypothesis that these landforms are massive repositories of dust.

  10. Development and Application of Flow Duration Curves for Stream Restoration

    DTIC Science & Technology

    2016-02-01

    hydrograph (TNC 2009). Colorado State University’s GeoTools offers an FDC computation focusing on the geomorphic implications of hydrology (Bledsoe...processes • Assessment of changes in stream metabolism using temperature duration curves • Evaluation of pollutant or contaminant transport using...major concern associated with stream restoration projects, due to the many chemical, ecological, and geomorphic advantages a robust riparian buffer

  11. The Geomorphic Road Analysis and Inventory Package (GRAIP) Volume 2: Office Procedures

    Treesearch

    Richard M. Cissel; Thomas A. Black; Kimberly A. T. Schreuders; Ajay Prasad; Charles H. Luce; David G. Tarboton; Nathan A. Nelson

    2012-01-01

    An important first step in managing forest roads for improved water quality and aquatic habitat is the performance of an inventory. The Geomorphic Roads Analysis and Inventory Package (GRAIP) was developed as a tool for making a comprehensive inventory and analysis of the effects of forest roads on watersheds. This manual describes the data analysis and process of a...

  12. Geomorphic effectiveness of a long profile shape and the role of inherent geological controls in the Himalayan hinterland area of the Ganga River basin, India

    NASA Astrophysics Data System (ADS)

    Sonam; Jain, Vikrant

    2018-03-01

    Long profiles of rivers provide a platform to analyse interaction between geological and geomorphic processes operating at different time scales. Identification of an appropriate model for river long profile becomes important in order to establish a quantitative relationship between the profile shape, its geomorphic effectiveness, and inherent geological characteristics. This work highlights the variability in the long profile shape of the Ganga River and its major tributaries, its impact on stream power distribution pattern, and role of the geological controls on it. Long profile shapes are represented by the sum of two exponential functions through the curve fitting method. We have shown that coefficients of river long profile equations are governed by the geological characteristics of subbasins. These equations further define the spatial distribution pattern of stream power and help to understand stream power variability in different geological terrains. Spatial distribution of stream power in different geological terrains successfully explains spatial variability in geomorphic processes within the Himalayan hinterland area. In general, the stream power peaks of larger rivers lie in the Higher Himalaya, and rivers in the eastern hinterland area are characterised by the highest magnitude of stream power.

  13. Wildfire in the Critical Zone: Pyro-Geomorphic Feedbacks in Upland Forests

    NASA Astrophysics Data System (ADS)

    Sheridan, G. J.; Inbar, A.; Metzen, D.; Van der Sant, R.; Lane, P. N. J.; Nyman, P.

    2017-12-01

    Wildfire often triggers a dramatic geomorphic response, with erosion rates several orders of magnitude greater than background rates. The fact that wildfire is linked to increased soil erosion is well established, but could it also work the other way around? Is it possible that, over time, soil erosion could lead to an increase in wildfire? The proposed mechanism for this is a potential positive feedback between post-fire soil erosion, soil depth, and forest flammability. More fire-related erosion may, over time, lead to less soil water holding capacity, more open vegetation with drier fuels, more fire, and in turn more fire related erosion. These pyro-geomorphic feedbacks may help explain the co-evolved soil-vegetation-fire systems that are observed in the landscape. More broadly, the concept of "wildfire in the critical zone", with a greater emphasis on the interactions between fire, vegetation, hydrology, and geomorphology, may help us understand and predict the trajectory of change as the vegetation-soil-fire system responds and adjusts to the new climate forcing. This presentation will combine an extensive soil, vegetation, and post fire erosion experimental dataset, with conceptual and numerical modelling, to evaluate the significance of the potential pyro-geomorphic feedbacks described above.

  14. Active shortening, intermontane basin formation, and geomorphic evolution in an orogenic plateau: Central Puna Plateau, NW Argentina (24°37'S, 67°03'W)

    NASA Astrophysics Data System (ADS)

    Strecker, Manfred R.; Alonso, Ricardo N.; Bookhagen, Bodo; Freymark, Jessica; Pingel, Heiko

    2017-04-01

    The high-elevation Andean Plateau (Altiplano-Puna; 4km) is a first-order morphotectonic province of the Central Andes and constitutes the world's second largest orogenic plateau. While there are many unifying basin characteristics in this region, including internal drainage, semi-arid to arid climate and associated deposition of evaporites, there are notable differences between the northern and southern parts of the plateau. In contrast to the vast basins of the Altiplano (north) and incipient establishment of fluvial connectivity and sediment transport to the foreland, the Puna (south) comprises numerous smaller basins, bordered by reverse-fault bounded ranges up to 6 km high. The plateau is internally drained and fluvial connectivity with the foreland does not exist leading to thick sedimentary basin fills that comprise continental evaporites, volcanic and clastic deposits, typically between 3 and 5 km thick. However, repeated impacts of climate change and superposed tectonic activity in the southern plateau have resulted in further basin differentiation, abandonment or re-arrangement of fluvial networks and impacts on sediment transport. Here we report evidence for sustained contractional tectonic activity in the Pocitos Basin in the southern plateau. On the western margin of the basin fanning of dipping strata and regraded, steeply inclined gravel-covered pediment surfaces and wind gaps associated with gravel derived from distant sources in the west document late Tertiary to Pleistocene growth of an approximately N-S oriented and N plunging anticline. The growth of the eastern limb of this anticline has caused the isolation of a formerly more extensive basin. In addition, Late Pleistocene and Holocene lake shorelines and lacustrine deposits are tilted eastward along the same structure and InSAR measurements of deformed lake terraces document that the fold is growing. Despite widely reported extensional faulting in the southern Puna, we conclude (1) that the central sectors of the plateau are deformed by active shortening, suggesting that the kinematic changeover from shortening to neotectonic extension on the plateau must be highly disparate in space and time; (2) sustained deformation within the plateau results in a high degree of basin compartmentalization, which impacts the fluvial network and re-distribution of sediments, leading to similar geomorphic and sedimentary processes, although highly disparate in space and time.

  15. The Northwestern Slope Valleys Region, Mars: A Prime Target for the Future Exploration of Mars

    NASA Astrophysics Data System (ADS)

    Dohm, J. M.; Ferris, J. C.; Anderson, R. C.; Baker, V. R.; Hare, T. M.; Mahaney, W. C.

    2002-12-01

    Mars is a water-enriched planet theorized to have had Earth-like conditions during its embryonic stages of evolution (Early into Middle Noachian or > 3.8 GA). The Earth-like conditions include: (1) plate tectonism, (2) an active hydrosphere resulting in higher erosion rates and the presence of layered sedimentary deposits, and (3) a potential biosphere. Due to its smaller size and lower gravity, its thermal energy rapidly declined, sending the planet into a permanent monoplate regime. The Tharsis superplume, Elysium superplume, and structural discontinuities in the lithosphere are sites of long-lived energy releases and hydrothermal activity. Furthermore, as its atmosphere thinned and cooled, and water was lost to hydrodynamic escape, the Earth-like hydrological cycle transitioned into a persisting cold desert climate, approximating the present-day climate of the Dry Valleys in Antarctica. Stratigraphic, hydrogeomorphic, and paleotectonic information indicate an active Mars (e.g., late-stage superplume activity) that experienced punctuated periods of magmatic-driven hydrologic activity long after the Earth-like hydrologic regime had ended. Existing geologic, geomorphic, geophysical, topographic, impact cratering, spectral, and elemental information collectively point to a prime target site for future exploration that has the potential to yield significant geologic, paleoclimatic, paleohydrologic, and exobiologic information. The Northwestern Slope Valleys (NSVs) region archives traits similar to terrestrial field sites where the processes associated with: (1) fluvial, eolian, and hydrothermal activity, (2) modification due to landslides and glaciers, and (3) the formation of diverse rock assemblages (e.g., provenances include Noachian Thaumasia highlands mountain range and Europe-sized sedimentary basin and Noachian-Amazonian basaltic and possibly silica-enriched volcanoes and lava flow fields) are recorded. The region is especially remarkable since it encapsulates at least three distinct paleohydrologic regimes: Noachian-Early Hesperian NSVs flooding (~108 - 1010 m3/sec), Late Hesperian-Early Amazonian Mangala Valles flooding (~107 m3/sec), Amazonian sapping channel formation (~103 m3/sec), and recent groundwater seeps (<102 m3/sec), all of which expose deposits for in-situ study and sample return. Terrestrial analogs include: (1) Wet Beaver Creek, Arizona, which reveals intriguing geologic, hydrogeologic, and geomorphic similarities to a well-developed martian sapping channel, Abus Vallis, and (2) the Gray Mountain FIDO rover test site, which records diverse geological terrains similar to what might be encountered at the proposed NSVs prime target site.

  16. Understanding the structure of Exmoor's peatland ecosystems using laser-scanning technologies

    NASA Astrophysics Data System (ADS)

    Luscombe, D. J.; Anderson, K.; Wetherelt, A.; Grand-Clement, E.; Le-Feuvre, N.; Smith, D.; Brazier, R. E.

    2012-04-01

    Upland blanket peatlands in the UK are of high conservation value and in an intact state, provide important landscape services, such as carbon sequestration and flood attenuation. The drainage of many such wetlands for agricultural reclamation has resulted in changes to upland blanket mire topography, ecology, hydrological processes and carbon fluxes. There is a need for spatially explicit monitoring approaches at peatland sites in the UK as although there has been a national effort to restore drained peat uplands, baseline and post restoration monitoring of changes to ecosystem structure and function is largely absent. Climate change policy and the emerging carbon markets also necessitate the need for enhanced system understanding to inform carbon targets and understand the impacts of restoration. Exmoor is the focus of this research because many areas of upland peat have, in the past, been extensively drained through government "moorland reclamation" programs. A large restoration project funded by South West Water is currently underway in association with Exmoor National Park, The Environment Agency and Natural England. Exmoor also provides an analogue for other westerly peatlands in the British Isles in terms of its climate, ecology and drainage characteristics. Our approach employed airborne LiDAR data gathered by the Environment Agency Geomatics Group coupled with Terrestrial Laser Scanning (TLS) surveys. LiDAR data were processed to produce digital surface models (DSM) of the peatland surface at a 0.5m resolution. These data were further interrogated to separate vegetation structures and geomorphic features such as man-made drainage channels which have damaged the peatland. Over small extents the LiDAR derived DSM surface was then compared to a TLS derived DSM to examine the ability of these models to describe fine scale vegetation and geomorphic structure, which could then be extrapolated to larger spatial extents. Exploration of the data has shown that ecosystem structure can be described at a fine resolution (>10 million measurements, resolution

  17. Legacy effects in linked ecological-soil-geomorphic systems of drylands

    USGS Publications Warehouse

    Monger, Curtis; Sala, Osvaldo E.; Duniway, Michael C.; Goldfus, Haim; Meir, Isaac A.; Poch, Rosa M.; Throop, Heather L.; Vivoni, Enrique R.

    2015-01-01

    A legacy effect refers to the impacts that previous conditions have on current processes or properties. Legacies have been recognized by many disciplines, from physiology and ecology to anthropology and geology. Within the context of climatic change, ecological legacies in drylands (eg vegetative patterns) result from feedbacks between biotic, soil, and geomorphic processes that operate at multiple spatial and temporal scales. Legacy effects depend on (1) the magnitude of the original phenomenon, (2) the time since the occurrence of the phenomenon, and (3) the sensitivity of the ecological–soil–geomorphic system to change. Here we present a conceptual framework for legacy effects at short-term (days to months), medium-term (years to decades), and long-term (centuries to millennia) timescales, which reveals the ubiquity of such effects in drylands across research disciplines.

  18. Vegetation ecogeomorphology, dynamic equilibrium, and disturbance: chapter 7

    USGS Publications Warehouse

    Hupp, Cliff R.

    2013-01-01

    Early ecologists understood the need to document geomorphic form and process to explain plant species distributions. Although this relationship has been acknowledged for over a century, with the exception of a few landmark papers, only the past few decades have experienced intensive research on this interdisciplinary topic. Here the authors provide a summary of the intimate relations between vegetation and geomorphic/process on hillslopes and fluvial systems. These relations are separated into systems (primarily fluvial) in dynamic equilibrium and those that are in nonequilibrium conditions including the impacts of various human disturbances affecting landforms, geomorphic processes, and interrelated, attendant vegetation patterns and processes. The authors conclude with a conceptual model of stream regime focusing on sediment deposition, erosion, and equilibrium that can be expanded to organize and predict vegetation patterns and life history strategies.

  19. Human geomorphic footprint and global geomorphic change: implications for hydrogeomorphic hazards

    NASA Astrophysics Data System (ADS)

    Remondo, Juan

    2010-05-01

    The human geomorphic footprint (HGF), expressed as the area affected by the construction of new 'anthropogeoforms' or the volume of geologic materials directly or indirectly displaced by human action has grown considerably in the last decades. Available data suggest that the present HGF is roughly 50,000 km2 a-1 of new anthropogeoforms and 300 x109 t a-1 of solid materials transferred from one part of the earth's surface to another. The latter represents a 'technological denudation' that could be 1-2 orders of magnitude greater than denudation by natural agents or sediment transport by the world's rivers. This implies a profound modification of geomorphic processes that produces a series of often disregarded environmental consequences. Some of those can by directly linked to excavation/accumulation activities and are essentially local, but in other cases the possible relationship appears to be more indirect and could have a widespread character. The transformation of land surface by human action is shown not only by landform construction and transfer of geologic materials, but also by land-use change in general and modification of the characteristics of the surface layer. This seems to affect both the hydrologic response and the sensitivity of that surface layer to different geomorphic agents. The magnitude of the above mentioned modification is logically related to the intensity of human activities, themselves related to the number of people on the planet and their economic and technological capabilities, which grow practically in all regions of the planet. It is thus reasonable to expect that the HGF and its effects should grow with time. If this were so, we should expect to find evidences of a general acceleration of geomorphic processes in the world that could represent a 'global geomorphic change'. The final expression of geomorphic processes, which could be used to test that hypothesis, is sediment generation and deposition. Data are presented on sedimentation rates in different areas showing that in most of them sedimentation has increased significantly during the last century (by about one order of magnitude in most cases) and that such increase does not seem to be related to climate but rather to human activity. If a global geomorphic change is indeed taking place, an increase in the frequency/intensity of related hazards, such as landslides or floods, should be expected. Data are presented indicating that it could be so. If what the data presented suggest is confirmed by further and deeper analyses, existing hazard and risk assessments for those processes should be reconsidered, because they would likely represent underestimates. The CAMGEO Team is formed by the following persons: Antonio Cendrero1, Gonzalo Méndez2, Jaime Bonachea1, José Gómez-Arozamena1, José Luis Cavallotto5, José Manuel Naredo3, Juan Remondo1, Lazaro V. Zuquette6, Luis Salas1, Luis M. Forte4, Marcilene Dantas-Ferreira6, Maria Angélica de O. Bezerra7, Mario da Silva, Martín A. Hurtado4, Osni J. Pejon6, Victoria Rivas1, Viola M. Bruschi1. 1) Universidad de Cantabria, Spain; 2) Universidad de Vigo, Spain; 3) Universidad Politécnica de Madrid, Spain; 4) Universidad Nacional de La Plata, Argentina; 5) Servicio de Hidrografía Naval, Argentina; 6) Universidade de Sao Paulo, Sao Carlos, Brazil; 7) Universidade Federal de Mato Grosso do Sul, Brazil.

  20. Host heterogeneity influences the impact of a non-native disease invasion on populations of a foundation tree species

    USGS Publications Warehouse

    Jules, Erik S.; Carroll, Allyson L.; Garcia, Andrea M.; Steenbock, Christopher M.; Kauffman, Matthew J.

    2014-01-01

    Invasive pathogens are becoming increasingly important in forested ecosystems, yet they are often difficult to study because of their rapid transmission. The rate and extent of pathogen spread are thought to be partially controlled by variation in host characteristics, such as when host size and location influence susceptibility. Few host-pathogen systems, however, have been used to test this prediction. We used Port Orford cedar (Chamaecyparis lawsoniana), a foundation tree species in riparian areas of California and Oregon (USA), and the invasive oomycete Phytophthora lateralis to assess pathogen impacts and the role of host characteristics on invasion. Across three streams that had been infected for 13–18 years by P. lateralis, we mapped 2241 trees and determined whether they had been infected using dendrochronology. The infection probability of trees was governed by host size (diameter at breast height [DBH]) and geomorphic position (e.g., active channel, stream bank, floodplain, etc.) similarly across streams. For instance, only 23% of trees <20 cm DBH were infected, while 69% of trees ≥20 cm DBH were infected. Presumably, because spores of P. lateralis are transported downstream in water, they are more likely to encounter well-developed root systems of larger trees. Also because of this water-transport of spores, differences in infection probability were found across the geomorphic positions: 59% of cedar in the active channel and the stream bank (combined) were infected, while 23% of trees found on higher geomorphic types were infected. Overall, 32% of cedar had been infected across the three streams. However, 63% of the total cedar basal area had been killed, because the greatest number of trees, and the largest trees, were found in the most susceptible positions. In the active channel and stream bank, 91% of the basal area was infected, while 46% was infected across higher geomorphic positions. The invasion of Port Orford cedar populations by P. lateralis causes profound impacts to population structure and the invasion outcome will be governed by the heterogeneity found in host size and location. Models of disease invasion will require an understanding of how heterogeneity influences spread dynamics to adequately predict the outcome for host populations.

  1. 75 FR 75501 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... surface of ponds. The goal of the project is to define the rate of geomorphic change in Garwood Valley in response to changing climate conditions. The geomorphic record will be reconstructed over the past 1-=2- kyr to infer past climate-driven landscape alteration at the end of the LGM and examine the current...

  2. 76 FR 9611 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... 20g each. The goal of the project is to define the rate of geomorphic change in Garwood Valley in response to changing climate conditions. The geomorphic record will be reconstructed over the past 1- = 2-kyr to infer past climate-driven landscape alteration at the end of the LGM and examine the current...

  3. Late Holocene geomorphic record of fire in ponderosa pine and mixed-conifer forests, Kendrick Mountain, northern Arizona, USA

    Treesearch

    Sara E. Jenkins; Carolyn Hull Sieg; Diana E. Anderson; Darrell S. Kaufman; Philip A. Pearthree

    2011-01-01

    Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area...

  4. Geomorphic Influences on Large Wood Dam Loadings, Particulate Organic Matter and Dissolved Organic Carbon in an 0ld-Growth Northern Hardwood Watershed

    Treesearch

    P. Charles Goebel; Kurt S. Pregitzer; Brain J. Palik

    2003-01-01

    We quantified large wood loadings and seasonal concentrations of particulate organic matter (POM) and dissolved organic carbon (DOC) in three different geomonghic zones (each with unique hydrogeomorphic characteristics) of a pristine, old-growth northern hardwood watershed. The highest large wood dam loadings were in the high-gradient, bedrock controlled geomorphic...

  5. The Geomorphic Road Analysis and Inventory Package (GRAIP) Volume 1: Data Collection Method

    Treesearch

    Thomas A. Black; Richard M. Cissel; Charles H. Luce

    2012-01-01

    An important first step in managing forest roads for improved water quality and aquatic habitat is the performance of an inventory. The Geomorphic Roads Analysis and Inventory Package (GRAIP) was developed as a tool for making a comprehensive inventory and analysis of the effects of forest roads on watersheds. This manual describes the data collection and process of a...

  6. The geomorphic effectiveness of a large flood on the Rio Grande in the Big Bend region: insights on geomorphic controls and post-flood geomorphic response

    USGS Publications Warehouse

    Dean, David J.; Schmidt, John C.

    2013-01-01

    Since the 1940s, the Rio Grande in the Big Bend region has undergone long periods of channel narrowing, which have been occasionally interrupted by rare, large floods that widen the channel (termed a channel reset). The most recent channel reset occurred in 2008 following a 17-year period of extremely low stream flow and rapid channel narrowing. Flooding was caused by precipitation associated with the remnants of tropical depression Lowell in the Rio Conchos watershed, the largest tributary to the Rio Grande. Floodwaters approached 1500 m3/s (between a 13 and 15 year recurrence interval) and breached levees, inundated communities, and flooded the alluvial valley of the Rio Grande; the wetted width exceeding 2.5 km in some locations. The 2008 flood had the 7th largest magnitude of record, however, conveyed the largest volume of water than any other flood. Because of the narrow pre-flood channel conditions, record flood stages occurred. We used pre- and post-flood aerial photographs, channel and floodplain surveys, and 1-dimensional hydraulic models to quantify the magnitude of channel change, investigate the controls of flood-induced geomorphic changes, and measure the post-flood response of the widened channel. These analyses show that geomorphic changes included channel widening, meander migration, avulsions, extensive bar formation, and vertical floodplain accretion. Reach-averaged channel widening between 26 and 52% occurred, but in some localities exceeded 500%. The degree and style of channel response was related, but not limited to, three factors: 1) bed-load supply and transport, 2) pre-flood channel plan form, and 3) rapid declines in specific stream power downstream of constrictions and areas of high channel bed slope. The post-flood channel response has consisted of channel contraction through the aggradation of the channel bed and the formation of fine-grained benches inset within the widened channel margins. The most significant post-flood geomorphic changes have occurred at and downstream from ephemeral tributaries that contribute large volumes of sediment.

  7. Tree ring-based chronology of hydro-geomorphic processes as a fundament for identification of hydro-meteorological triggers in the Hrubý Jeseník Mountains (Central Europe).

    PubMed

    Tichavský, Radek; Šilhán, Karel; Tolasz, Radim

    2017-02-01

    Hydro-geomorphic processes have significantly influenced the recent development of valley floors, river banks and depositional forms in mountain environments, have caused considerable damage to manmade developments and have disrupted forest management. Trees growing along streams are affected by the transported debris mass and provide valuable records of debris flow/flood histories in their tree-ring series. Dendrogeomorphic approaches are currently the most accurate methods for creating a chronology of the debris flow/flood events in forested catchments without any field-monitoring or a stream-gauging station. Comprehensive studies focusing on the detailed chronology of hydro-geomorphic events and analysis of meteorological triggers and weather circulation patterns are still lacking for the studied area. We provide a spatio-temporal reconstruction of hydro-geomorphic events in four catchments of the Hrubý Jeseník Mountains, Czech Republic, with an analysis of their triggering factors using meteorological data from four nearby rain gauges. Increment cores from 794 coniferous trees (Picea abies [L.] Karst.) allowed the identification of 40 hydro-geomorphic events during the period of 1889-2013. Most of the events can be explained by extreme daily rainfalls (≥50mm) occurring in at least one rain gauge. However, in several cases, there was no record of extreme precipitation at rain gauges during the debris flow/flood event year, suggesting extremely localised rainstorms at the mountain summits. We concluded that the localisation, intensity and duration of rainstorms; antecedent moisture conditions; and amount of available sediments all influenced the initiation, spatial distribution and characteristics of hydro-geomorphic events. The most frequent synoptic situations responsible for the extreme rainfalls (1946-2015) were related to the meridional atmospheric circulation pattern. Our results enhance current knowledge of the occurrences and triggers of debris flows/floods in the Central European mountains in transition between temperate oceanic and continental climatic conditions and may prompt further research of these phenomena in the Eastern Sudetes in general. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Geomorphic effects, flood power, and channel competence of a catastrophic flood in confined and unconfined reaches of the upper Lockyer valley, southeast Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Thompson, Chris; Croke, Jacky

    2013-09-01

    Flooding is a persistent natural hazard, and even modest changes in future climate are believed to lead to large increases in flood magnitude. Previous studies of extreme floods have reported a range of geomorphic responses from negligible change to catastrophic channel change. This paper provides an assessment of the geomorphic effects of a rare, high magnitude event that occurred in the Lockyer valley, southeast Queensland in January 2011. The average return interval of the resulting flood was ~ 2000 years in the upper catchment and decreased to ~ 30 years downstream. A multitemporal LiDAR-derived DEM of Difference (DoD) is used to quantify morphological change in two study reaches with contrasting valley settings (confined and unconfined). Differences in geomorphic response between reaches are examined in the context of changes in flood power, channel competence and degree of valley confinement using a combination of one-dimensional (1-D) and two-dimensional (2-D) hydraulic modelling. Flood power peaked at 9800 W m- 2 along the confined reach and was 2-3 times lower along the unconfined reach. Results from the DoD confirm that the confined reach was net erosional, exporting ~ 287,000 m3 of sediment whilst the unconfined reach was net depositional gaining ~ 209,000 m3 of sediment, 70% of the amount exported from the upstream, confined reach. The major sources of eroded sediment in the confined reach were within channel benches and macrochannel banks resulting in a significant increase of channel width. In the unconfined reach, the benches and floodplains were the major loci for deposition, whilst the inner channel exhibited minor width increases. The presence of high stream power values, and resultant high erosion rates, within the confined reach is a function of the higher energy gradient of the steeper channel that is associated with knickpoint development. Dramatic differences in geomorphic responses were observed between the two adjacent reaches of contrasting valley configuration. The confined reach experienced large-scale erosion and reorganisation of the channel morphology that resulted in significantly different areal representations of the five geomorphic features classified in this study.

  9. Examples of geomorphic reclamation on mined lands in Spain by using the GeoFluv method

    NASA Astrophysics Data System (ADS)

    Martín Duque, José F.; Bugosh, Nicholas; de Francisco, Cristina; Hernando, Néstor; Martín, Cristina; Nicolau, José M.; Nyssen, Sara; Tejedor, María; Zapico, Ignacio

    2015-04-01

    This paper describes seven examples of geomorphic reclamation on mined lands of Spain, as solutions for complex environmental problems, by using the GeoFluv method through the Natural Regrade software (Carlson). Of these seven examples, four of them have been partially or totally constructed. Each of them has its own particularities and contributions, becoming innovative geomorphic solutions to existing environmental (ecological, social and economic) problems. The Quebraderos de la Serrana example (Toledo province) allowed a local company to get permission for slate quarrying in a highly ecologically vulnerable area; before that, the permission for extracting rocks had been rejected with a conventional reclamation approach. The Somolinos case is, to this date, the most complete geomorphic reclamation in Spain, and the first one in Europe to have been built by using the GeoFluv method. This restoration has healed a degraded area of about six hectares at the outskirts of the Somolinos hamlet, in a valuable rural landscape of the Guadalajara province. The Arlanza example (Leon province) shows a design which proposes to restore the hydrological connectivity of a coal mine dump which blocked a valley. The Machorro and María Jose examples (Guadalajara province) are allowing kaolin mining to be compatible with the preservation of protected areas at the edge of the Upper Tagus Natural Park (UTNP), in highly vulnerable conditions for water erosion. The Campredó case (Tarragona province) shows an agreement between a mining company, the academia, and the Catalonian Agency of Water, to combine a high standard of geomorphic reclamation with solving problems caused by flooding downstream of a clay mining area. Finally, the Nuria example is also located at the UTNP area; the goals here are to stabilize a large landslide in a waste dump and to minimize the risk of occurrence of flash floods from mining ponds. Additional information on these examples and about the state of art of the Geomorphic Reclamation practice in Spain can be found at http://www.restauraciongeomorfologica.es.

  10. Inferring tectonic activity using drainage network and RT model: an example from the western Himalayas, India

    NASA Astrophysics Data System (ADS)

    Sahoo, Ramendra; Jain, Vikrant

    2017-04-01

    Morphology of the landscape and derived features are regarded to be an important tool for inferring about tectonic activity in an area, since surface exposures of these subsurface processes may not be available or may get eroded away over time. This has led to an extensive research in application of the non-planar morphological attributes like river long profile and hypsometry for tectonic studies, whereas drainage network as a proxy for tectonic activity has not been explored greatly. Though, significant work has been done on drainage network pattern which started in a qualitative manner and over the years, has evolved to incorporate more quantitative aspects, like studying the evolution of a network under the influence of external and internal controls. Random Topology (RT) model is one of these concepts, which elucidates the connection between evolution of a drainage network pattern and the entropy of the drainage system and it states that in absence of any geological controls, a natural population of channel networks will be topologically random. We have used the entropy maximization principle to provide a theoretical structure for the RT model. Furthermore, analysis was carried out on the drainage network structures around Jwalamukhi thrust in the Kangra reentrant in western Himalayas, India, to investigate the tectonic activity in the region. Around one thousand networks were extracted from the foot-wall (fw) and hanging-wall (hw) region of the thrust sheet and later categorized based on their magnitudes. We have adopted the goodness of fit test for comparing the network patterns in fw and hw drainage with those derived using the RT model. The null hypothesis for the test was, the drainage networks in the fw are statistically more similar than those on the hw, to the network patterns derived using the RT model for any given magnitude. The test results are favorable to our null hypothesis for networks with smaller magnitudes (< 9), whereas for larger magnitudes, both hw and fw networks were found to be statistically not similar to the model network patterns. Calculation of pattern frequency for each magnitude and subsequent hypothesis testing were carried out using Matlab (v R2015a). Our results will help to define drainage network pattern as one of the geomorphic proxy to identify tectonically active area. This study also serve as a supplementary proof of the neo-tectonic control on the morphology of landscape and its derivatives around the Jwalamukhi thrust. Additionally, it will help to verify the theory of probabilistic evolution of drainage networks.

  11. Mapping the Riverscape of the Middle Fork John Day River with Structure-from-Motion

    NASA Astrophysics Data System (ADS)

    Dietrich, J. T.

    2014-12-01

    Aerial photography has proven an efficient method to collect a wide range of continuous variables for large sections of rivers. These data include variables such as the planimetric shape, low-flow and bank-full widths, bathymetry, and sediment sizes. Mapping these variables in a continuous manner allows us to explore the heterogeneity of the river and build a more complete picture of the holistic riverscape. To explore a low-cost option for aerial photography and riverscape mapping, I used the combination of a piloted helicopter and an off-the-shelf digital SLR camera to collect aerial imagery for a 32 km segment of the Middle Fork John Day River in eastern Oregon. This imagery was processed with Structure-from-Motion (SfM) photogrammetry to produce high-resolution 10 cm orthophotos and digital surface models that were used to extract riverscape variables. The Middle Fork John Day River is an important spawning river for anadromous Chinnook and Steelhead and has been the focus of widespread restoration and conservation activities in response to the legacies of extensive grazing and mining activity. By mapping the riverscape of the Middle Fork John Day, I explored downstream relationships between several geomorphic variables with hyperscale analysis. These riverscape data also provided an opportunity to make a continuous map of habitat suitability for migrating adult Chinook. Both the geomorphic and habitat suitability analysis provide an important assessment of the natural variation in the river and the impact of human modification, both positive and negative.

  12. Geomorphic evidence of Quaternary tectonics within an underlap fault zone of southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo

    2018-02-01

    A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.

  13. Spatial heterogeneity of within-stream methane concentrations

    NASA Astrophysics Data System (ADS)

    Crawford, John T.; Loken, Luke C.; West, William E.; Crary, Benjamin; Spawn, Seth A.; Gubbins, Nicholas; Jones, Stuart E.; Striegl, Robert G.; Stanley, Emily H.

    2017-05-01

    Streams, rivers, and other freshwater features may be significant sources of CH4 to the atmosphere. However, high spatial and temporal variabilities hinder our ability to understand the underlying processes of CH4 production and delivery to streams and also challenge the use of scaling approaches across large areas. We studied a stream having high geomorphic variability to assess the underlying scale of CH4 spatial variability and to examine whether the physical structure of a stream can explain the variation in surface CH4. A combination of high-resolution CH4 mapping, a survey of groundwater CH4 concentrations, quantitative analysis of methanogen DNA, and sediment CH4 production potentials illustrates the spatial and geomorphic controls on CH4 emissions to the atmosphere. We observed significant spatial clustering with high CH4 concentrations in organic-rich stream reaches and lake transitions. These sites were also enriched in the methane-producing mcrA gene and had highest CH4 production rates in the laboratory. In contrast, mineral-rich reaches had significantly lower concentrations and had lesser abundances of mcrA. Strong relationships between CH4 and the physical structure of this aquatic system, along with high spatial variability, suggest that future investigations will benefit from viewing streams as landscapes, as opposed to ecosystems simply embedded in larger terrestrial mosaics. In light of such high spatial variability, we recommend that future workers evaluate stream networks first by using similar spatial tools in order to build effective sampling programs.

  14. Coastal geomorphic conditions and styles of storm surge washover deposits from Southern Thailand

    NASA Astrophysics Data System (ADS)

    Phantuwongraj, Sumet; Choowong, Montri; Nanayama, Futoshi; Hisada, Ken-Ichiro; Charusiri, Punya; Chutakositkanon, Vichai; Pailoplee, Santi; Chabangbon, Akkaneewut

    2013-06-01

    The characteristics of tropical storm washover deposits laid down during the years 2007 to 2011 along the southern peninsular coast of the Gulf of Thailand (GOT) were described in relation to their different geomorphic conditions, including perched fan, washover terrace and sheetwash lineations preserved behind the beach zone within 100 m of the shoreline. As a result, washover terrace and sheetwash lineations were found where the beach configuration was uniform and promoted an unconfined flow. Non-uniform beach configurations that promoted a confined flow resulted in a perched fan deposit. Washover sediments were differentiated into two types based on sedimentary characteristics, including (i) a thick-bedded sand of multiple reverse grading layers and (ii) a medium-bedded sand of multiple normal grading layers. In the case of thick-bedded washover deposits, the internal sedimentary structures were characterized by the presence of sub-horizontal bedding, reverse grading, lamination, foreset bedding and wavy bedding, whereas, horizontal bedding, normal grading, and dunes were the dominant structures in the medium-bedded washover sand. Rip-up clasts were rare and recognized only in the washover deposits in the bottom unit, which reflects the condition when a mud supply was available. All washover successions were found in the landward inclined-bedding with a basal sharp contact. A high elevated beach ridge associated with a large swale at the backshore proved suitable for a thick-bedded washover type, whereas a small beach ridge with uniformly flat backshore topography promoted a medium-bedded washover sediment.

  15. Geomorphic and Ecological Disturbance and Recovery from Two Small Dams and Their Removal

    PubMed Central

    Tullos, Desirée D.; Finn, Debra S.; Walter, Cara

    2014-01-01

    Dams are known to impact river channels and ecosystems, both during their lifetime and in their decommissioning. In this study, we applied a before-after-control-impact design associated with two small dam removals to investigate abiotic and biotic recovery trajectories from both the elimination of the press disturbance associated with the presence of dams and the introduction of a pulse disturbance associated with removal of dams. The two case studies represent different geomorphic and ecological conditions that we expected to represent low and high sensitivities to the pulse disturbance of dam removal: the 4 m tall, gravel-filled Brownsville Dam on the wadeable Calapooia River and the 12.5 m tall, sand and gravel-filled Savage Rapids Dam on the largely non-wadeable Rogue River. We evaluated both geomorphic and ecological responses annually for two years post removal, and asked if functional traits of the macroinvertebrate assemblages provided more persistent signals of ecological disturbance than taxonomically defined assemblages over the period of study. Results indicate that: 1) the presence of the dams constituted a strong ecological press disturbance to the near-downstream reaches on both rivers, despite the fact that both rivers passed unregulated flow and sediment during the high flow season; 2) ecological recovery from this press disturbance occurred within the year following the restoration action of dam removal, whereas signals of geomorphic disturbance from the pulse of released sediment persisted two years post-removal, and 3) the strength of the press disturbance and the rapid ecological recovery were detected regardless of whether recovery was assessed by taxonomic or functional assemblages and for both case studies, in spite of their different geomorphic settings. PMID:25233231

  16. Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.

    2010-01-01

    Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales. ?? The Author(s) 2009.

  17. Miocene to present deformation rates in the Yakima Fold Province and implications for earthquake hazards in central Washington State, USA

    NASA Astrophysics Data System (ADS)

    Staisch, Lydia; Sherrod, Brian; Kelsey, Harvey; Blakely, Richard; Möller, Andreas; Styron, Richard

    2017-04-01

    The Yakima fold province (YFP), located in the Cascadia backarc of central Washington, is a region of active distributed deformation that accommodates NNE-SSW shortening. Geodetic data show modern strain accumulation of 2 mm/yr across this large-scale fold province. Deformation rates on individual structures, however, are difficult to assess from GPS data given low strain rates and the relatively short time period of geodetic observation. Geomorphic and geologic records, on the other hand, span sufficient time to investigate deformation rates on the folds. Resolving fault geometries and slip rates of the YFP is imperative to seismic hazard assessment for nearby infrastructure, including a large nuclear waste facility and hydroelectric dams along the Columbia and Yakima Rivers. We present new results on the timing and magnitude of deformation across several Yakima folds, including the Manastash Ridge, Umtanum Ridge, and Saddle Mountains anticlines. We constructed several line-balanced cross sections across the folds to calculated the magnitude of total shortening since Miocene time. To further constrain our structural models, we include forward-modeling of magnetic and gravity anomaly data. We estimate total shortening between 1.0 and 2.4 km across individual folds, decreasing eastward, consistent with geodetically and geologically measured clockwise rotation. Importantly, we find that thrust faults reactivate and invert normal faults in the basement, and do not appear to sole into a common décollement at shallow to mid-crustal depth. We constrain spatial and temporal variability in deformation rates along the Saddle Mountains, Manastash Ridge and Umtanum Ridge anticlines using geomorphic and stratigraphic markers of topographic evolution. From stratigraphy and geochronology of growth strata along the Saddle Mountains we find that the rate of deformation has increased up to six-fold since late Miocene time. To constrain deformation rates along other Yakima folds, which lack syntectonic growth strata, we exploit 2-m LiDAR data and invert stream profiles to analytically solve for a linear solution to relative uplift rate. From stream profile inversion, we see an increase in incision rates in Pliocene time and suggest that this increased rate is tectonically controlled. Our analyses indicate that deformation rates along the Manastash and Umtanum Ridge anticlines are significantly higher than along the Saddle Mountains. We use our new estimates of slip rates along individual anticlines to calculate the time required to accumulate enough strain energy for a large magnitude earthquake (M≥7) along faults within the YFP. Our results indicate that it takes between several hundred to several thousand years to accumulate sufficient strain energy for a M≥7 earthquake, with the greatest hazard posed by the Umtanum Ridge anticline.

  18. Solar radiation as a global driver of hillslope asymmetry: Insights from an ecogeomorphic landscape evolution model

    NASA Astrophysics Data System (ADS)

    Yetemen, Omer; Istanbulluoglu, Erkan; Duvall, Alison R.

    2015-12-01

    Observations at the field, catchment, and continental scales across a range of arid and semiarid climates and latitudes reveal aspect-controlled patterns in soil properties, vegetation types, ecohydrologic fluxes, and hillslope morphology. Although the global distribution of solar radiation on earth's surface and its implications on vegetation dynamics are well documented, we know little about how variation of solar radiation across latitudes influence landscape evolution and resulting geomorphic difference. Here, we used a landscape evolution model that couples the continuity equations for water, sediment, and aboveground vegetation biomass at each model element in order to explore the controls of latitude and mean annual precipitation (MAP) on the development of hillslope asymmetry (HA). In our model, asymmetric hillslopes emerged from the competition between soil creep and vegetation-modulated fluvial transport, driven by spatial distribution of solar radiation. Latitude was a primary driver of HA because of its effects on the global distribution of solar radiation. In the Northern Hemisphere, north-facing slopes (NFS), which support more vegetation cover and have lower transport efficiency, get steeper toward the North Pole while south-facing slopes (SFS) get gentler. In the Southern Hemisphere, the patterns are reversed and SFS get steeper toward the South Pole. For any given latitude, MAP is found to have minor control on HA. Our results underscore the potential influence of solar radiation as a global control on the development of asymmetric hillslopes in fluvial landscapes.

  19. Provenance of Des Moines lobe till records ice-stream catchment evolution during Laurentide deglaciation

    USGS Publications Warehouse

    Lusardi, B.A.; Jennings, C.E.; Harris, K.L.

    2011-01-01

    Mapping and analysis of deposits of the Des Moines lobe of the Laurentide Ice Sheet, active after the Last Glacial Maximum (LGM), reveal several texturally and lithologically distinct tills within what had been considered to be a homogeneous deposit. Although the differences between tills are subtle, minor distinctions are predictable and mappable, and till sheets within the area covered by the lobe can be correlated for hundreds of kilometres parallel to ice flow. Lateral till-sheet contacts are abrupt or overlap in a narrow zone, coincident with a geomorphic discontinuity interpreted to be a shear margin. Till sheets 10 to 20m thick show mixing in their lower 2 to 3m. We suggest that: (i) lithologically distinct till sheets correspond to unique ice-stream source areas; (ii) the sequence of tills deposited by the Des Moines lobe was the result of the evolution and varying dominance of nearby and competing ice streams and their tributaries; and (iii) in at least one instance, more than one ice stream simultaneously contributed to the lobe. Therefore the complex sequence of tills of subtly different provenances, and the unconformities between them record the evolution of an ice-catchment area during Laurentide Ice Sheet drawdown. Till provenance data suggest that, after till is created in the ice-stream source area, the subglacial conditions required for transporting till decline and incorporation of new material is limited. ?? 2011 The Authors. Boreas ?? 2011 The Boreas Collegium.

  20. Origin of the Blue Ridge escarpment along the passive margin of Eastern North America

    USGS Publications Warehouse

    Spotila, J.A.; Bank, G.C.; Reiners, P.W.; Naeser, C.W.; Naeser, N.D.; Henika, B.S.

    2004-01-01

    The Blue Ridge escarpment is a rugged landform situated within the ancient Appalachian orogen. While similar in some respects to the great escarpments along other passive margins, which have evolved by erosion following rifting, its youthful topographic expression has inspired proposals of Cenozoic tectonic rejuvenation in eastern North America. To better understand the post-orogenic and post-rift geomorphic evolution of passive margins, we have examined the origin of this landform using low-temperature thermochronometry and manipulation of topographic indices. Apatite (U-Th)/He and fission-track analyses along transects across the escarpment reveal a younging trend towards the coast. This pattern is consistent with other great escarpments and fits with an interpretation of having evolved by prolonged erosion, without the requirement of tectonic rejuvenation. Measured ages are also comparable specifically to those measured along other great escarpments that are as much as 100 Myr younger. This suggests that erosional mechanisms that maintain rugged escarpments in the early post-rift stages may remain active on ancient passive margins for prolonged periods. The precise erosional evolution of the escarpment is less clear, however, and several end-member models can explain the data. Our preferred model, which fits with all data, involves a significant degree of erosional escarpment retreat in the Cenozoic. Although this suggests that early onset of topographic stability is not required of passive margin evolution, more data are required to better constrain the details of the escarpment's development. ?? 2003 Blackwell Publishing Ltd.

Top