Sample records for structural glass assemblies

  1. Cluster-assembled metallic glasses

    PubMed Central

    2013-01-01

    A bottom-up approach to nanofabricate metallic glasses from metal clusters as building blocks is presented. Considering metallic glasses as a subclass of cluster-assembled materials, the relation between the two lively fields of metal clusters and metallic glasses is pointed out. Deposition of selected clusters or collections of them, generated by state-of-the-art cluster beam sources, could lead to the production of a well-defined amorphous material. In contrast to rapidly quenched glasses where only the composition of the glass can be controlled, in cluster-assembled glasses, one can precisely control the structural building blocks. Comparing properties of glasses with similar compositions but differing in building blocks and therefore different in structure will facilitate the study of structure–property correlation in metallic glasses. This bottom-up method provides a novel alternative path to the synthesis of glassy alloys and will contribute to improving fundamental understanding in the field of metallic glasses. It may even permit the production of glassy materials for alloys that cannot be quenched rapidly enough to circumvent crystallization. Additionally, gaining deeper insight into the parameters governing the structure–property relation in metallic glasses can have a great impact on understanding and design of other cluster-assembled materials. PMID:23899019

  2. Method and apparatus for performing in-situ vacuum-assisted metal to glass sealing

    DOEpatents

    Kramer, D.P.; Massey, R.T.

    1985-07-18

    A method and apparatus for assembling and fusing glass to metal in a glass-metal electrical component is disclosed. The component includes a metallic shell formed with upper and lower cylindrical recesses connected together by longitudinal passages, a pair of metal rings and plural metal pins assembled to define electrical feed-throughs. The component parts are assembled on a fixture having a sleeve-like projection and a central mounting projection establishing concentric nesting surfaces to which the metal rings are slip-fitted in concentric alignment with each other spaced from sidewalls of the lower recess. The pins are in electrical contact with the metal rings. A glass pre-form is seated within the upper recess. The assembled structure is heated to a temperature sufficient to melt the glass pre-form which flows under gravity through the passages into the lower recess to provide an insulative seal between the metal parts. The gravity flow of glass is assisted by applying vacuum to the lower recess, ensuring that all spaces between the metal parts are filled with sealing glass without formation of bubbles.

  3. Method and apparatus for performing in-situ vacuum-assisted metal to glass sealing

    DOEpatents

    Kramer, Daniel P.; Massey, Richard T.

    1986-01-01

    A method and apparatus for assembling and fusing glass to metal in a glass-metal electrical component is disclosed. The component includes a metallic shell formed with upper and lower cylindrical recesses connected together by longitudinal passages, a pair of metal rings and plural metal pins assembled to define electrical feed-throughs. The component parts are assembled on a fixture having a sleeve-like projection and a central mounting projection establishing concentric nesting surfaces to which the metal rings are slip-fitted in concentric alignment with each other spaced from sidewalls of the lower recess. The pins are in electrical contact with the metal rings. A glass pre-form is seated within the upper recess. The assembled structure is heated to a temperature sufficient to melt the glass pre-form which flows under gravity through the passages into the lower recess to provide an insulative seal between the metal parts. The gravity flow of glass is assisted by applying vacuum to the lower recess, ensuring that all spaces between the metal parts are filled with sealing glass without formation of bubbles.

  4. Morphology and Magnetic Properties of Ferriferous Two-Phase Sodium Borosilicate Glasses

    PubMed Central

    Naberezhnov, Alexander; Porechnaya, Nadezda; Nizhankovskii, Viktor; Filimonov, Alexey; Nacke, Bernard

    2014-01-01

    This contribution is devoted to the study of morphology and magnetic properties of sodium borosilicate glasses with different concentrations (15, 20, and 25 wt.%) of α-Fe2O3 in an initial furnace charge. These glasses were prepared by a melt-quenching method. For all glasses a coexistence of drop-like and two-phase interpenetrative structures is observed. The most part of a drop structure is formed by self-assembling iron oxides particles. All types of glasses demonstrate the magnetic properties and can be used for preparation of porous magnetic matrices with nanometer through dendrite channel structure. PMID:25162045

  5. X-ray structural analysis of two-dimensional assembling lead sulfide nanocrystals of different sizes

    NASA Astrophysics Data System (ADS)

    Ushakova, Elena V.; Golubkov, Valery V.; Litvin, Aleksandr P.; Parfenov, Peter S.; Cherevkov, Sergei A.; Fedorov, Anatoly V.; Baranov, Alexander V.

    2016-08-01

    We report on the structural investigation of self-organized assemblies of PbS nanocrystals (NCs) of different sizes, which were deposited on a glass substrate or embedded in a porous matrix. Regardless of the NC size and the type of the substrate and matrix, the assemblies were ordered in two-dimensional superlattices with densely packed NCs.

  6. Inorganic glass ceramic slip rings

    NASA Technical Reports Server (NTRS)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  7. Antireflective surface structures in glass by self-assembly of SiO2 nanoparticles and wet etching.

    PubMed

    Maier, Thomas; Bach, David; Müllner, Paul; Hainberger, Rainer; Brückl, Hubert

    2013-08-26

    We describe the fabrication of an antireflective surface structure with sub-wavelength dimensions on a glass surface using scalable low-cost techniques involving sol-gel coating, thermal annealing, and wet chemical etching. The glass surface structure consists of sand dune like protrusions with 250 nm periodicity and a maximum peak-to-valley height of 120 nm. The antireflective structure increases the transmission of the glass up to 0.9% at 700 nm, and the transmission remains enhanced over a wide spectral range and for a wide range of incident angles. Our measurements reveal a strong polarization dependence of the transmission change.

  8. The molten glass sewing machine

    PubMed Central

    Inamura, Chikara; Lizardo, Daniel; Franchin, Giorgia; Stern, Michael; Houk, Peter; Oxman, Neri

    2017-01-01

    We present a fluid-instability-based approach for digitally fabricating geometrically complex uniformly sized structures in molten glass. Formed by mathematically defined and physically characterized instability patterns, such structures are produced via the additive manufacturing of optically transparent glass, and result from the coiling of an extruded glass thread. We propose a minimal geometrical model—and a methodology—to reliably control the morphology of patterns, so that these building blocks can be assembled into larger structures with tailored functionally and optically tunable properties. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications’. PMID:28373379

  9. Transparent electrodes fabricated via the self-assembly of silver nanowires using a bubble template.

    PubMed

    Tokuno, Takehiro; Nogi, Masaya; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki

    2012-06-26

    To shore up the demand of transparent electrodes for wide applications such as organic light emitting diodes and solar cells, transparent electrodes are required as an alternative for indium tin oxide electrodes. Herein the self-assembly method with a bubble template paves the way for cost-effective fabrication of transparent electrodes with high conductivity and transparency using self-assembly of silver nanowires (AgNWs) in a bubble template. AgNWs were first dispersed in water that was bubbled with a surfactant and a thickening agent. Furthermore, these AgNWs were assembled by lining along the bubble ridges. When the bubbles containing the AgNWs were sandwiched between two glass substrates, the bubble ridges including the AgNWs formed continuous polygonal structures. Mesh structures were formed on both glass substrates after air-drying. The mesh structures evolved into mesh transparent electrodes following heat-treatment. The AgNW mesh structure exhibited a low sheet resistance of 6.2 Ω/square with a transparency of 84% after heat treatment at 200 °C for 20 min. The performance is higher than that of transparent electrodes with random networks of AgNWs. Furthermore, the conductivity and transparency of the mesh transparent electrodes can be adjusted by changing the amount of the AgNW suspension and the space between the two glass substrates.

  10. Bubble-driven light-absorbing hydrogel microrobot for the assembly of bio-objects.

    PubMed

    Hu, Wenqi; Fan, Qihui; Tonaki, Wade; Ohta, Aaron T

    2013-01-01

    Microrobots made of light-absorbing hydrogel material were actuated by optically induced thermocapillary flow and move at up to 700 µm/s. The micro-assembly capabilities of the microrobots were demonstrated by assembling polystyrene beads and yeast cells into various patterns on standard glass microscope slides. Two microrobots operating independently in parallel were also used to assemble micro-hydrogel structures.

  11. Glial cell adhesion and protein adsorption on SAM coated semiconductor and glass surfaces of a microfluidic structure

    NASA Astrophysics Data System (ADS)

    Sasaki, Darryl Y.; Cox, Jimmy D.; Follstaedt, Susan C.; Curry, Mark S.; Skirboll, Steven K.; Gourley, Paul L.

    2001-05-01

    The development of microsystems that merge biological materials with microfabricated structures is highly dependent on the successful interfacial interactions between these innately incompatible materials. Surface passivation of semiconductor and glass surfaces with thin organic films can attenuate the adhesion of proteins and cells that lead to biofilm formation and biofouling of fluidic structures. We have examined the adhesion of glial cells and serum albumin proteins to microfabricated glass and semiconductor surfaces coated with self-assembled monolayers of octadecyltrimethoxysilane and N-(triethoxysilylpropyl)-O- polyethylene oxide urethane, to evaluate the biocompatibility and surface passivation those coatings provide.

  12. Development of assembly techniques for fire resistant aircraft interior panels

    NASA Technical Reports Server (NTRS)

    Lee, S. C. S.

    1978-01-01

    Ten NASA Type A fire resistant aircraft interior panels were fabricated and tested to develop assembly techniques. These techiques were used in the construction of a full scale lavatory test structure for flame propagation testing. The Type A panel is of sandwich construction consisting of Nomex honeycomb filled with quinone dioxime foam, and bismaleimide/glass face sheets bonded to the core with polyimide film adhesive. The materials selected and the assembly techniques developed for the lavatory test structure were designed for obtaining maximum fire containment with minimum smoke and toxic emission.

  13. Glass sample preparation and performance investigations

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry

    1992-04-01

    This final report details the work performed under this delivery order from April 1991 through April 1992. The currently available capabilities for integrated optical performance modeling at MSFC for large and complex systems such as AXAF were investigated. The Integrated Structural Modeling (ISM) program developed by Boeing for the U.S. Air Force was obtained and installed on two DECstations 5000 at MSFC. The structural, thermal and optical analysis programs available in ISM were evaluated. As part of the optomechanical engineering activities, technical support was provided in the design of support structure, mirror assembly, filter wheel assembly and material selection for the Solar X-ray Imager (SXI) program. As part of the fabrication activities, a large number of zerodur glass samples were prepared in different sizes and shapes for acid etching, coating and polishing experiments to characterize the subsurface damage and stresses produced by the grinding and polishing operations. Various optical components for AXAF video microscope and the x-ray test facility were also fabricated. A number of glass fabrication and test instruments such as a scatter plate interferometer, a gravity feed saw and some phenolic cutting blades were fabricated, integrated and tested.

  14. Evaporation-Induced Assembly of Quantum Dots into Nanorings

    PubMed Central

    Chen, Jixin; Liao, Wei-Ssu; Chen, Xin; Yang, Tinglu; Wark, Stacey E.; Son, Dong Hee; Batteas, James D.; Cremer, Paul S.

    2011-01-01

    Herein, we demonstrate the controlled formation of two-dimensional periodic arrays of ring-shaped nanostructures assembled from CdSe semiconductor quantum dots (QDs). The patterns were fabricated by using an evaporative templating method. This involves the introduction of an aqueous solution containing both quantum dots and polystyrene microspheres onto the surface of a planar hydrophilic glass substrate. The quantum dots became confined to the meniscus of the microspheres during evaporation, which drove ring assembly via capillary forces at the polystyrene sphere/glass substrate interface. The geometric parameters for nanoring formation could be controlled by tuning the size of the microspheres and the concentration of the QDs employed. This allowed hexagonal arrays of nanorings to be formed with thicknesses ranging from single dot necklaces to thick multilayer structures over surface areas of many square millimeters. Moreover, the diameter of the ring structures could be simultaneously controlled. A simple model was employed to explain the forces involved in the formation of nanoparticle nanorings. PMID:19206264

  15. Glass sample preparation and performance investigations. [solar x-ray imager

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1992-01-01

    This final report details the work performed under this delivery order from April 1991 through April 1992. The currently available capabilities for integrated optical performance modeling at MSFC for large and complex systems such as AXAF were investigated. The Integrated Structural Modeling (ISM) program developed by Boeing for the U.S. Air Force was obtained and installed on two DECstations 5000 at MSFC. The structural, thermal and optical analysis programs available in ISM were evaluated. As part of the optomechanical engineering activities, technical support was provided in the design of support structure, mirror assembly, filter wheel assembly and material selection for the Solar X-ray Imager (SXI) program. As part of the fabrication activities, a large number of zerodur glass samples were prepared in different sizes and shapes for acid etching, coating and polishing experiments to characterize the subsurface damage and stresses produced by the grinding and polishing operations. Various optical components for AXAF video microscope and the x-ray test facility were also fabricated. A number of glass fabrication and test instruments such as a scatter plate interferometer, a gravity feed saw and some phenolic cutting blades were fabricated, integrated and tested.

  16. Low temperature biosynthesis of Li2O-MgO-P2O5-TiO2 nanocrystalline glass with mesoporous structure exhibiting fast lithium ion conduction.

    PubMed

    Du, Xiaoyong; He, Wen; Zhang, Xudong; Ma, Jinyun; Wang, Chonghai; Li, Chuanshan; Yue, Yuanzheng

    2013-04-01

    We demonstrate a biomimetic synthesis methodology that allows us to create Li2O-MgO-P2O5-TiO2 nanocrystalline glass with mesoporous structure at lower temperature. We design a 'nanocrystal-glass' configuration to build a nanoarchitecture by means of yeast cell templates self-assembly followed by the controlled in-situ biomineralization of materials on the cell wall. Electrochemically active nanocrystals are used as the lamellar building blocks of mesopores, and the semiconductive glass phase can act both as the 'glue' between nanocrystals and functionalized component. The Li2O-MgO-P2O5-TiO2 nanocrystalline glass exhibits outstanding thermal stability, high conductivity and wide potential window. This approach could be applied to many other multicomponent glass-ceramics to fabricate mesoporous conducting materials for solid-state lithium batteries. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. In Situ Generation of Two-Dimensional Au–Pt Core–Shell Nanoparticle Assemblies

    PubMed Central

    2010-01-01

    Two-dimensional assemblies of Au–Pt bimetallic nanoparticles are generated in situ on polyethyleneimmine (PEI) silane functionalized silicon and indium tin oxide (ITO) coated glass surfaces. Atomic force microscopy (AFM), UV–Visible spectroscopy, and electrochemical measurements reveal the formation of core–shell structure with Au as core and Pt as shell. The core–shell structure is further supported by comparing with the corresponding data of Au nanoparticle assemblies. Static contact angle measurements with water show an increase in hydrophilic character due to bimetallic nanoparticle generation on different surfaces. It is further observed that these Au–Pt core–shell bimetallic nanoparticle assemblies are catalytically active towards methanol electro-oxidation, which is the key reaction for direct methanol fuel cells (DMFCs). PMID:20651923

  18. Superhydrophobic and transparent coatings prepared by self-assembly of dual-sized silica particles

    NASA Astrophysics Data System (ADS)

    Xu, Qian-Feng; Wang, Jian-Nong

    2010-06-01

    Superhydrophobic and transparent coatings have been prepared by self-assembly of dual-sized silica particles from a mixed dispersion. The desirable micro/nano hierarchical structure for superhydrophobicity is constructed simply by adjusting the size and ratio of the dual-sized particles without organic/inorganic templates. The transparency of the prepared coatings is also researched, and the light scattering can be reduced by lowering the ratio of big sub-micro particles while the superhydrophobicity maintains unchanged. When nano particles with a diameter of 50 nm and sub-micro particles with a diameter of 350 nm are assembled, a superhydrophobic property with a water contact angle of 161° is achieved. Additionally, the coated glass is also very transparent. The highest transmittance of the coated glass can reach 85%. Compared to traditional colloid self-assembly approach, which often involves dozens of steps of layer-by-layer processing and organic/inorganic templates, the present approach is much simpler and has advantages for large-scale coating.

  19. Composite of coated magnetic alloy particle

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.

  20. Composite of ceramic-coated magnetic alloy particles

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    2000-01-01

    A composite structure and method for manufacturing same, the composite structure being comprised of metal particles and an inorganic bonding media. The method comprises the steps of coating particles of a metal powder with a thin layer of an inorganic bonding media selected from the group of powders consisting of a ceramic, glass, and glass-ceramic. The particles are assembled in a cavity and heat, with or without the addition of pressure, is thereafter applied to the particles until the layer of inorganic bonding media forms a strong bond with the particles and with the layer of inorganic bonding media on adjacent particles. The resulting composite structure is strong and remains cohesive at high temperatures.

  1. Thiol-ene immobilisation of carbohydrates onto glass slides as a simple alternative to gold-thiol monolayers, amines or lipid binding.

    PubMed

    Biggs, Caroline I; Edmondson, Steve; Gibson, Matthew I

    2015-01-01

    Carbohydrate arrays are a vital tool in studying infection, probing the mechanisms of bacterial, viral and toxin adhesion and the development of new treatments, by mimicking the structure of the glycocalyx. Current methods rely on the formation of monolayers of carbohydrates that have been chemically modified with a linker to enable interaction with a functionalised surface. This includes amines, biotin, lipids or thiols. Thiol-addition to gold to form self-assembled monolayers is perhaps the simplest method for immobilisation as thiolated glycans are readily accessible from reducing carbohydrates in a single step, but are limited to gold surfaces. Here we have developed a quick and versatile methodology which enables the use of thiolated carbohydrates to be immobilised as monolayers directly onto acrylate-functional glass slides via a 'thiol-ene'/Michael-type reaction. By combining the ease of thiol chemistry with glass slides, which are compatible with microarray scanners this offers a cost effective, but also useful method to assemble arrays.

  2. Improved cell disruption of Pichia pastoris utilizing aminopropyl magnesium phyllosilicate (AMP) clay.

    PubMed

    Kim, Sun-Il; Wu, Yuanzheng; Kim, Ka-Lyun; Kim, Geun-Joong; Shin, Hyun-Jae

    2013-06-01

    An efficient method for Pichia cell disruption that employs an aminopropyl magnesium phyllosilicate (AMP) clay-assisted glass beads mill is presented. AMP clay is functionalized nanocomposite resembling the talc parent structure Si8Mg6O20(OH)4 that has been proven to permeate the bacterial membrane and cause cell lysis. The recombinant capsid protein of cowpea chlorotic mottle virus (CCMV) expressed in Pichia pastoris GS115 was used as demonstration system for their ability of self-assembly into icosahedral virus-like particles (VLPs). The total protein concentration reached 4.24 mg/ml after 4 min treatment by glass beads mill combined with 0.2 % AMP clay, which was 11.2 % higher compared to glass beads mill only and the time was half shortened. The stability of purified CCMV VLPs illustrated AMP clay had no influence on virus assembly process. Considering the tiny amount added and simple approach of AMP clay, it could be a reliable method for yeast cell disruption.

  3. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.

    PubMed

    Uba, Franklin I; Hu, Bo; Weerakoon-Ratnayake, Kumuditha; Oliver-Calixte, Nyote; Soper, Steven A

    2015-02-21

    Over the past decade, thermoplastics have been used as alternative substrates to glass and Si for microfluidic devices because of the diverse and robust fabrication protocols available for thermoplastics that can generate high production rates of the desired structures at low cost and with high replication fidelity, the extensive array of physiochemical properties they possess, and the simple surface activation strategies that can be employed to tune their surface chemistry appropriate for the intended application. While the advantages of polymer microfluidics are currently being realized, the evolution of thermoplastic-based nanofluidic devices is fraught with challenges. One challenge is assembly of the device, which consists of sealing a cover plate to the patterned fluidic substrate. Typically, channel collapse or substrate dissolution occurs during assembly making the device inoperable resulting in low process yield rates. In this work, we report a low temperature hybrid assembly approach for the generation of functional thermoplastic nanofluidic devices with high process yield rates (>90%) and with a short total assembly time (16 min). The approach involves thermally sealing a high T(g) (glass transition temperature) substrate containing the nanofluidic structures to a cover plate possessing a lower T(g). Nanofluidic devices with critical feature sizes ranging between 25-250 nm were fabricated in a thermoplastic substrate (T(g) = 104 °C) and sealed with a cover plate (T(g) = 75 °C) at a temperature significantly below the T(g) of the substrate. Results obtained from sealing tests revealed that the integrity of the nanochannels remained intact after assembly and devices were useful for fluorescence imaging at high signal-to-noise ratios. The functionality of the assembled devices was demonstrated by studying the stretching and translocation dynamics of dsDNA in the enclosed thermoplastic nanofluidic channels.

  4. Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage

    NASA Astrophysics Data System (ADS)

    Sigaev, Vladimir N.; Savinkov, Vitaly I.; Lotarev, Sergey V.; Shakhgildyan, Georgiy Yu; Lorenzi, Roberto; Paleari, Alberto

    2013-06-01

    Herein we describe how UV excitation of localized electronic states in phosphate glasses can activate structural rearrangements that influence the kinetics of Au nanoparticle (NP) thermal growth in Au-doped glass. The results suggest a novel strategy to address the problem of controlling nano-assembly processes of metal NP patterns in fully inorganic and chemically stable hard materials, such as laser-quality glasses. We show that the mechanism is promoted by opening and subsequent cross-linkage of phosphate chains under UV excitation of non-bridging groups in the amorphous network of the glass, with a consequent modification of Au diffusion and metal NP growth. Importantly, the micro-Raman mapping of the UV-induced modifications demonstrates that the process is restricted within the beam waist region of the focused UV laser beam. This fact is consistent with the need for more than one excitation event, close in time and in space, in order to promote structural cross-linkage and Au diffusion confinement. The stability of the photo-induced modifications makes it possible to design new metal patterning approaches for the fabrication of three-dimensional metal structures in laser-quality materials for high-power nonlinear applications.

  5. Spatially selective Au nanoparticle growth in laser-quality glass controlled by UV-induced phosphate-chain cross-linkage.

    PubMed

    Sigaev, Vladimir N; Savinkov, Vitaly I; Lotarev, Sergey V; Shakhgildyan, Georgiy Yu; Lorenzi, Roberto; Paleari, Alberto

    2013-06-07

    Herein we describe how UV excitation of localized electronic states in phosphate glasses can activate structural rearrangements that influence the kinetics of Au nanoparticle (NP) thermal growth in Au-doped glass. The results suggest a novel strategy to address the problem of controlling nano-assembly processes of metal NP patterns in fully inorganic and chemically stable hard materials, such as laser-quality glasses. We show that the mechanism is promoted by opening and subsequent cross-linkage of phosphate chains under UV excitation of non-bridging groups in the amorphous network of the glass, with a consequent modification of Au diffusion and metal NP growth. Importantly, the micro-Raman mapping of the UV-induced modifications demonstrates that the process is restricted within the beam waist region of the focused UV laser beam. This fact is consistent with the need for more than one excitation event, close in time and in space, in order to promote structural cross-linkage and Au diffusion confinement. The stability of the photo-induced modifications makes it possible to design new metal patterning approaches for the fabrication of three-dimensional metal structures in laser-quality materials for high-power nonlinear applications.

  6. Thermal transport in binary colloidal glasses: Composition dependence and percolation assessment

    NASA Astrophysics Data System (ADS)

    Ruckdeschel, Pia; Philipp, Alexandra; Kopera, Bernd A. F.; Bitterlich, Flora; Dulle, Martin; Pech-May, Nelson W.; Retsch, Markus

    2018-02-01

    The combination of various types of materials is often used to create superior composites that outperform the pure phase components. For any rational design, the thermal conductivity of the composite as a function of the volume fraction of the filler component needs to be known. When approaching the nanoscale, the homogeneous mixture of various components poses an additional challenge. Here, we investigate binary nanocomposite materials based on polymer latex beads and hollow silica nanoparticles. These form randomly mixed colloidal glasses on a sub-μ m scale. We focus on the heat transport properties through such binary assembly structures. The thermal conductivity can be well described by the effective medium theory. However, film formation of the soft polymer component leads to phase segregation and a mismatch between existing mixing models. We confirm our experimental data by finite element modeling. This additionally allowed us to assess the onset of thermal transport percolation in such random particulate structures. Our study contributes to a better understanding of thermal transport through heterostructured particulate assemblies.

  7. Frequency-Modulated Continuous-Wave Fm-Cw Radar for Evaluation of Refractory Structures Used in Glass Manufacturing Furnaces

    NASA Astrophysics Data System (ADS)

    Carroll, B.; Kharkovsky, S.; Zoughi, R.; Limmer, R.

    2009-03-01

    A frequency-modulated continuous-wave (FM-CW) handheld radar operating in the frequency range of 8-18 GHz, resulting in a relatively fine range resolution was designed and constructed for on-site inspection of refractory structure thickness. This paper presents the design of the radar and the results of measurements conducted on typical refractory furnace structures assembled in the laboratory.

  8. Glass fiber reinforced concrete for terrestrial photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Maxwell, H.

    1979-01-01

    The use of glass-fiber-reinforced concrete (GRC) as a low-cost structural substrate for terrestrial solar cell arrays is discussed. The properties and fabrication of glass-reinforced concrete structures are considered, and a preliminary design for a laminated solar cell assembly built on a GRC substrate is presented. A total cost for such a photovoltaic module, composed of a Korad acrylic plastic film front cover, an aluminum foil back cover, an ethylene/vinyl acetate pottant/adhesive and a cotton fabric electrical isolator in addition to the GRC substrate, of $9.42/sq m is projected, which is less than the $11.00/sq m cost goal set by the Department of Energy. Preliminary evaluations are concluded to have shown the design capabilities and cost effectiveness of GRC; however, its potential for automated mass production has yet to be evaluated.

  9. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, Arthur J.; Kim, Hyoun-Ee

    1999-01-01

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are discosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder.

  10. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, A.J.; Kim, H.

    1999-08-10

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are disclosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder. 9 figs.

  11. Amorphous Metals and Composites as Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Davis, Gregory L. (Inventor); Agnes, Gregory S. (Inventor); Shapiro, Andrew A. (Inventor)

    2016-01-01

    A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.

  12. Assembly kinetics determine the architecture of α-actinin crosslinked F-actin networks.

    PubMed

    Falzone, Tobias T; Lenz, Martin; Kovar, David R; Gardel, Margaret L

    2012-05-29

    The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and crosslinking determine the architecture of reconstituted actin networks formed with α-actinin crosslinks. Crosslink-mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semiflexible biopolymer networks.

  13. Bio-inspired method to obtain multifunctional dynamic nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushner, Aaron M.; Guan, Zhibin; Williams, Gregory

    A method for a polymeric or nanocomposite material. The method includes assembling a multiphase hard-soft structure, where the structure includes a hard micro- or nano-phase, and a soft micro- or nano-phase that includes a polymeric scaffold. In the method, the polymeric scaffold includes dynamically interacting motifs and has a glass transition temperature (T.sub.g) lower than the intended operating temperature of the material.

  14. Growth study of self-assembled GaN nanocolumns on silica glass by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Liudi Mulyo, Andreas; Konno, Yuta; Nilsen, Julie S.; van Helvoort, Antonius T. J.; Fimland, Bjørn-Ove; Weman, Helge; Kishino, Katsumi

    2017-12-01

    We demonstrate GaN nanocolumn growth on fused silica glass by plasma-assisted molecular beam epitaxy. The effect of the substrate temperature, Ga flux and N2 flow rate on the structural and optical properties are studied. At optimum growth conditions, GaN nanocolumns are vertically aligned and well separated with an average diameter, height and density of 72 nm, 1.2 μm and 1.6 × 109 cm-2, respectively. The nanocolumns exhibit wurtzite crystal structure with no threading dislocations, stacking faults or twinning and grow in the [0 0 0 1] direction. At the interface adjacent to the glass, there is a few atom layers thick intermediate phase with ABC stacking order (zinc blende). Photoluminescence measurements evidence intense and narrow excitonic emissions, along with the absence of any defect-related zinc blende and yellow luminescence emission.

  15. Experimental studies of glued Aluminum-glass joints

    NASA Astrophysics Data System (ADS)

    Ligaj, B.; Wirwicki, M.; Karolewska, K.; Jasińska, A.

    2018-04-01

    Glued steel-glass or aluminum-glass joints are to be found, among other things, in vehicles (cars, buses, trains, trams) as windscreen assembly pieces for the supporting structure. For the purposes of the experiments, samples were made in which the top beam was made of the AW-2017A aluminum alloy and the bottom beam was made of thermally reinforced soda-lime glass whereas the glued joints were made of one-component polyurethane glue Körapur 175. The tests were performed under four-point bending conditions at monotonic incremental bending moment values on the Instron 5965 durability machine. The experimental study of the durability of glued joints under four-point bending conditions with the monotonic incremental bending moment allows to determine the values of stresses, whose value is related to initiation of damage of the tested joint.

  16. Research on the Mechanical Properties of a Glass Fiber Reinforced Polymer-Steel Combined Truss Structure

    PubMed Central

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status. PMID:25247203

  17. Research on the mechanical properties of a glass fiber reinforced polymer-steel combined truss structure.

    PubMed

    Liu, Pengfei; Zhao, Qilin; Li, Fei; Liu, Jinchun; Chen, Haosen

    2014-01-01

    An assembled plane truss structure used for vehicle loading is designed and manufactured. In the truss, the glass fiber reinforced polymer (GFRP) tube and the steel joint are connected by a new technology featuring a pretightened tooth connection. The detailed description for the rod and node design is introduced in this paper, and a typical truss panel is fabricated. Under natural conditions, the short-term load test and long-term mechanical performance test for one year are performed to analyze its performance and conduct a comparative analysis for a reasonable FEM model. The study shows that the design and fabrication for the node of an assembled truss panel are convenient, safe, and reliable; because of the creep control design of the rods, not only does the short-term structural stiffness meet the design requirement but also the long-term creep deformation tends towards stability. In addition, no significant change is found in the elastic modules, so this structure can be applied in actual engineering. Although the safety factor for the strength of the composite rods is very large, it has a lightweight advantage over the steel truss for the low density of GFRP. In the FEM model, simplifying the node as a hinge connection relatively conforms to the actual status.

  18. Assembly Required

    ERIC Educational Resources Information Center

    Cardenas, Alberto; Domenech, Fernando

    2005-01-01

    One of the defining elements of a university is its architecture. Whether a school has ivy-covered brick buildings or modern steel and glass structures, the character of its campus may be largely shaped by its buildings and the atmosphere they create. It is essential for a university to provide sufficient housing to meet its needs, but it is also…

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoming; Nan, Zhaodong, E-mail: zdnan@yzu.edu.cn

    Graphical abstract: Glass-slices were used as a template to induce formation and assembly of aragonite. Different morphologies, such as hemisphere, twinborn hemisphere and flower-shaped particles, were produced by direction of the glass-slices. Highlights: {yields} Glass-slices were used as a template to induce formation and assembly of aragonite. {yields} Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. {yields} Planes were always appeared in these as-synthesized samples. {yields} Thermodynamic theory was applied to explain the production of the aragonite. -- Abstract: A glass-slice was used as a template to induce formation and assembly of aragonite. Thermodynamic theorymore » was applied to explain the production of the aragonite. Transformation of three-dimensional nucleation to template-based two-dimensional surface nucleation caused the production of aragonite. Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. Planes were always appeared in these as-synthesized samples because the nucleation and the growth of these samples were adsorbed at the surfaces of the glass-slices. The formation mechanism of the as-formed sample was proposed. Compared with organic template, the present study provides a facile method to apply inorganic template to prepare functional materials.« less

  20. Temperature-dependent self-assembly and rheological behavior of a thermoreversible pmma-P n BA-PMMA triblock copolymer gel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabet, Mahla; Mishra, Satish; Boy, Ramiz

    Self-assembly and mechanical properties of triblock copolymers in a mid-block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–PnBA–PMMA] in two different mid-block selective solvents, n-butanol and 2-ethyl-1-hexanol. Gel formation resulting from end-block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of -80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear-rheometry, thermal analysis, and small-angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state to a gel statemore » to a percolated cluster network with decrease in temperature. The aggregated PMMA end-blocks display a glass transition temperature. Our results provide new understanding into the structural changes of a self-assembled triblock copolymer gel over a large length scale and wide temperature range.« less

  1. Thermoplastic Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge

    NASA Technical Reports Server (NTRS)

    Roberts, Scott N. (Inventor); Schramm, Joseph P. (Inventor); Hofmann, Douglas C. (Inventor); Johnson, William L. (Inventor); Kozachkov, Henry (Inventor); Demetriou, Marios D. (Inventor)

    2015-01-01

    Systems and methods for joining BMG Composites are disclosed. Specifically, the joining of BMG Composites is implemented so as to preserve the amorphicity of their matrix phase and the microstructure of their particulate phase. Implementation of the joining method with respect to the construction of modular cellular structures that comprise BMG Composites is also discussed.

  2. Self-assembled structures of hydroxyapatite in the biomimetic coating on a bioinert ceramic substrate.

    PubMed

    Chakraborty, Jui; Sarkar, Soumi Dey; Chatterjee, Saradiya; Sinha, Mithlesh Kumar; Basu, Debabrata

    2008-10-15

    The tribological properties of alumina ceramic are excellent due in part to a high wettability because of the hydrophilic surface and fluid film lubrication that minimizes the adhesive wear. Such surfaces are further modified with bioactive glass/ceramic coating to promote direct bone apposition in orthopedic applications. The present communication reports the biomimetic coating of calcium hydroxyapatite (HAp) on dense (2-3% porosity) alumina (alpha-Al(2)O(3)) substrate (1cm x 1cm x 0.5 cm), at 37 degrees C. After a total period of 6 days immersion in simulated body fluid (SBF), at 37 degrees C, linear self-assembled porous (pore size: approximately 0.2 microm) structures (length: approximately 375.39 microm and width: 5-6 microm) of HAp were obtained. The phenomenon has been demonstrated by self-assembly and diffusion-limited aggregation (DLA) principles. Structural and compositional characterization of the coating was carried out using SEM with EDX facility, XRD and FT-IR data.

  3. Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888

  4. Single molecule characterization of DNA binding and strand displacement reactions on lithographic DNA origami microarrays.

    PubMed

    Scheible, Max B; Pardatscher, Günther; Kuzyk, Anton; Simmel, Friedrich C

    2014-03-12

    The combination of molecular self-assembly based on the DNA origami technique with lithographic patterning enables the creation of hierarchically ordered nanosystems, in which single molecules are positioned at precise locations on multiple length scales. Based on a hybrid assembly protocol utilizing DNA self-assembly and electron-beam lithography on transparent glass substrates, we here demonstrate a DNA origami microarray, which is compatible with the requirements of single molecule fluorescence and super-resolution microscopy. The spatial arrangement allows for a simple and reliable identification of single molecule events and facilitates automated read-out and data analysis. As a specific application, we utilize the microarray to characterize the performance of DNA strand displacement reactions localized on the DNA origami structures. We find considerable variability within the array, which results both from structural variations and stochastic reaction dynamics prevalent at the single molecule level.

  5. Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting

    PubMed Central

    Lee, Sun-Kyu; Hwang, Sori; Kim, Yoon-Kee

    2017-01-01

    We propose a nanofabrication process to generate large-area arrays of noble metal nanoparticles on glass substrates via nanoimprinting and dewetting of metallic thin films. Glass templates were made via pattern transfer from a topographic Si mold to an inorganically cross-linked sol–gel (IGSG) resist on glass using a two-layer polydimethylsiloxane (PDMS) stamp followed by annealing, which turned the imprinted resist into pure silica. The transparent, topographic glass successfully templated the assembly of Au and Ag nanoparticle arrays via thin-film deposition and dewetting at elevated temperatures. The microstructural and mechanical characteristics that developed during the processes were discussed. The results are promising for low-cost mass fabrication of devices for several photonic applications. PMID:28546899

  6. Assembly of metallic nanoparticle arrays on glass via nanoimprinting and thin-film dewetting.

    PubMed

    Lee, Sun-Kyu; Hwang, Sori; Kim, Yoon-Kee; Oh, Yong-Jun

    2017-01-01

    We propose a nanofabrication process to generate large-area arrays of noble metal nanoparticles on glass substrates via nanoimprinting and dewetting of metallic thin films. Glass templates were made via pattern transfer from a topographic Si mold to an inorganically cross-linked sol-gel (IGSG) resist on glass using a two-layer polydimethylsiloxane (PDMS) stamp followed by annealing, which turned the imprinted resist into pure silica. The transparent, topographic glass successfully templated the assembly of Au and Ag nanoparticle arrays via thin-film deposition and dewetting at elevated temperatures. The microstructural and mechanical characteristics that developed during the processes were discussed. The results are promising for low-cost mass fabrication of devices for several photonic applications.

  7. Easily melting glass for assembly of optical fiber into connectors

    NASA Astrophysics Data System (ADS)

    Setina, Janina; Auzans, Juris J.; Zolotarjova, J. J.

    1994-09-01

    The easily melting fluorine containing borophosphate glasses for construction knots have been obtained and investigated. The unique optical properties i.e. low refractive index - nD equals 1.41-1.45, wide spectral transparency region from 200 to 2000 nm as well as extended temperature application range from - 70 to +300 degree(s)C, thermostability and mechanical properties determine possibility to use fluorine containing borophosphate glass as optical glue. The process of structure formation within temperature range 20-1000 degree(s)C has been investigated in details. It has been determined by IR and X-ray methods that the development of glass network begins with decomposition of components at 500 degree(s)C with further formation of glass elements within temperature range 625-675 degree(s)C. The stable glassforming area is determined by P-O-B groups. The role of fluorine in structure development depends on its depolymerizator behavior, on the other hand it has some glassforming ability. Latter is based on ability of fluorine to move from boron to phosphorus coordination sphere. For the compositions under research the formation of monofluorophosphate groups at higher temperatures have been determined. The ratio P:B equals 1, 2:2 defines obtaining of stable glass without devitrification within the temperature range from 300 to 700 degree(s)C. The interfacial processes between fluorine containing melts and quartz fiber have been investigated.

  8. Luminescence in the fluoride-containing phosphate-based glasses: A possible origin of their high resistance to nanosecond pulse laser-induced damage

    PubMed Central

    Wang, Pengfei; Lu, Min; Gao, Fei; Guo, Haitao; Xu, Yantao; Hou, Chaoqi; Zhou, Zhiwei; Peng, Bo

    2015-01-01

    Fusion power offers the prospect of an almost inexhaustible source of energy for future generations. It was reported that fusion fuel gains exceeding unity on the National Ignition Facility (NIF) were achieved, but so far great deal of scientific and engineering challenges have to be overcome for realizing fusion power generation. There is a bottleneck for color-separation gratings in NIF and other similar inertial confinement fusion (ICF) lasers. Here we show a series of high performance phosphate-based glasses that can transmit the third harmonic frequency (3ω) laser light with high efficiency meanwhile filter the fundamental (1ω) and the second harmonic frequency (2ω) laser lights through direct absorption, and especially they exhibit excellent damage threshold induced by nanosecond pulse laser compared with that of the fused silica used in NIF. Yellowish-orange fluorescence emits during the laser-material interaction process, and it can be tailored through regulating the glass structure. Study on its structural origin suggests that the fluorescence emission is a key factor that conduces to the high laser-induced damage resistance of these glasses. The results also indicated the feasibility of utilizing these high performance glasses in novel color separation optics, allowing novel design for the final optics assembly in ICF lasers. PMID:25716328

  9. Luminescence in the fluoride-containing phosphate-based glasses: a possible origin of their high resistance to nanosecond pulse laser-induced damage.

    PubMed

    Wang, Pengfei; Lu, Min; Gao, Fei; Guo, Haitao; Xu, Yantao; Hou, Chaoqi; Zhou, Zhiwei; Peng, Bo

    2015-02-26

    Fusion power offers the prospect of an almost inexhaustible source of energy for future generations. It was reported that fusion fuel gains exceeding unity on the National Ignition Facility (NIF) were achieved, but so far great deal of scientific and engineering challenges have to be overcome for realizing fusion power generation. There is a bottleneck for color-separation gratings in NIF and other similar inertial confinement fusion (ICF) lasers. Here we show a series of high performance phosphate-based glasses that can transmit the third harmonic frequency (3ω) laser light with high efficiency meanwhile filter the fundamental (1ω) and the second harmonic frequency (2ω) laser lights through direct absorption, and especially they exhibit excellent damage threshold induced by nanosecond pulse laser compared with that of the fused silica used in NIF. Yellowish-orange fluorescence emits during the laser-material interaction process, and it can be tailored through regulating the glass structure. Study on its structural origin suggests that the fluorescence emission is a key factor that conduces to the high laser-induced damage resistance of these glasses. The results also indicated the feasibility of utilizing these high performance glasses in novel color separation optics, allowing novel design for the final optics assembly in ICF lasers.

  10. Fabrication of biomimetic dry-adhesion structures through nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Kuo, P. C.; Chang, N. W.; Suen, Y.; Yang, S. Y.

    2018-03-01

    Components with surface nanostructures suitable for biomimetic dry adhesion have a great potential in applications such as gecko tape, climbing robots, and skin patches. In this study, a nanosphere lithography technique with self-assembly nanospheres was developed to achieve effective and efficient fabrication of dry-adhesion structures. Self-assembled monolayer nanospheres with high regularity were obtained through tilted dip-coating. Reactive-ion etching of the self-assembled nanospheres was used to fabricate nanostructures of different shapes and aspect ratios by varying the etching time. Thereafter, nickel molds with inverse nanostructures were replicated using the electroforming process. Polydimethylsiloxane (PDMS) nanostructures were fabricated through a gas-assisted hot-embossing method. The pulling test was performed to measure the shear adhesion on the glass substrate of a sample, and the static contact angle was measured to verify the hydrophobic property of the structure. The enhancement of the structure indicates that the adhesion force increased from 1.2 to 4.05 N/cm2 and the contact angle increased from 118.6° to 135.2°. This columnar structure can effectively enhance the adhesion ability of PDMS, demonstrating the potential of using nanosphere lithography for the fabrication of adhesive structures.

  11. Formation mechanism of self-assembled polarization-dependent periodic nanostructures in β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Nakanishi, Y.; Shimotsuma, Y.; Sakakura, M.; Shimizu, M.; Miura, K.

    2018-02-01

    We have successfully observed self-assembled periodic nanostructures inside Si single crystal and GaP crystal, by the femtosecond double-pulse irradiation. These results experimentally indicate that the self-assembly of the periodic nanostructures inside semiconductors triggered by ultrashort pulses irradiation are possibly associated with a direct or an indirect band gap. More recently we have also empirically classified the photoinduced bulk nanogratings into the following three types: (1) structural deficiency, (2) compressed structure, (3) partial crystallization. We have still a big question about what material properties are involved in the bulk nanograting structure formation. In this study, to expand the selectivity of the material for bulk nanograting formation, we have employed β-Ga2O3 crystals (indirect bandgap Eg 4.8 eV) as a sample for femtosecond laser irradiation. The nanograting structure inside β-Ga2O3 crystal was aligned perpendicular to the laser polarization direction. Such phenomenon is similar to the nanograting in SiO2 glass (Eg 9 eV). Moreover, to clarify the band structure, we have also investigate the photoinduced structure in Sn doped β-Ga2O3 crystals, which exhibit direct bandgap according to the first principle calculation.

  12. Reverse Monte Carlo simulation of Se{sub 80}Te{sub 20} and Se{sub 80}Te{sub 15}Sb{sub 5} glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Baset, A. M.; Rashad, M.; Moharram, A. H.

    2013-12-16

    Two-dimensional Monte Carlo of the total pair distribution functions g(r) is determined for Se{sub 80}Te{sub 20} and Se{sub 80}Te{sub 15}Sb{sub 5} alloys, and then it used to assemble the three-dimensional atomic configurations using the reverse Monte Carlo simulation. The partial pair distribution functions g{sub ij}(r) indicate that the basic structure unit in the Se{sub 80}Te{sub 15}Sb{sub 5} glass is di-antimony tri-selenide units connected together through Se-Se and Se-Te chain. The structure of Se{sub 80}Te{sub 20} alloys is a chain of Se-Te and Se-Se in addition to some rings of Se atoms.

  13. Magnetic antenna using metallic glass

    NASA Technical Reports Server (NTRS)

    Desch, Michael D. (Inventor); Farrell, William M. (Inventor); Houser, Jeffrey G. (Inventor)

    1996-01-01

    A lightweight search-coil antenna or sensor assembly for detecting magnetic fields and including a multi-turn electromagnetic induction coil wound on a spool type coil form through which is inserted an elongated coil loading member comprised of metallic glass material wrapped around a dielectric rod. The dielectric rod consists of a plastic or a wooden dowel having a length which is relatively larger than its thickness so as to provide a large length-to-diameter ratio. A tri-axial configuration includes a housing in which is located three substantially identical mutually orthogonal electromagnetic induction coil assemblies of the type described above wherein each of the assemblies include an electromagnetic coil wound on a dielectric spool with an elongated metallic glass coil loading member projecting therethrough.

  14. Water-assisted femtosecond laser machining of electrospray nozzles on glass microfluidic devices.

    PubMed

    An, Ran; Hoffman, Michelle D; Donoghue, Margaret A; Hunt, Alan J; Jacobson, Stephen C

    2008-09-15

    Using water-assisted femtosecond laser machining, we fabricated electrospray nozzles on glass coverslips and on assembled microfluidic devices. Machining the nozzles after device assembly facilitated alignment of the nozzles over the microchannels. The basic nozzle design is a through-hole in the coverslip to pass liquids and a trough machined around the through-hole to confine the electrospray and prevent liquid from wicking across the glass surface. Electrospray from the nozzles was stable with and without pressure-driven flow applied and was evaluated using mass spectra of the peptide bradykinin.

  15. Giant Enhancement of Small Photoluminescent Signals on Glass Surfaces Covered by Self-Assembled Silver Nanorings.

    PubMed

    Sousanis, A; Poulopoulos, P; Karoutsos, V; Trachylis, D; Politis, C

    2017-02-01

    Self-assembled nanostructures with the shape of nanospheres or nanorings were formed after annealing of ultrathin Ag films grown on glass, in a furnace with air at 460 °C. Intense localized surface plasmon resonances were recorded for these nanostructures with maxima at the green-blue light. The surface became functional in terms of enhancing the weak photoluminescence of glass between 2–400 times. This system provides an easy way of enhancing the photoluminescence emission of initially low performance materials.

  16. Temperature-dependent self-assembly and rheological behavior of a thermoreversible pmma-P n BA-PMMA triblock copolymer gel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabet, Mahla; Mishra, Satish; Boy, Ramiz

    We present that self-assembly and mechanical properties of triblock copolymers in a mid-block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–PnBA–PMMA] in two different mid-block selective solvents, n-butanol and 2-ethyl-1-hexanol. Gel formation resulting from end-block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of -80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear-rheometry, thermal analysis, and small-angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state tomore » a gel state to a percolated cluster network with decrease in temperature. The aggregated PMMA end-blocks display a glass transition temperature. Finally, our results provide new understanding into the structural changes of a self-assembled triblock copolymer gel over a large length scale and wide temperature range.« less

  17. Temperature-dependent self-assembly and rheological behavior of a thermoreversible pmma-P n BA-PMMA triblock copolymer gel

    DOE PAGES

    Zabet, Mahla; Mishra, Satish; Boy, Ramiz; ...

    2017-03-25

    We present that self-assembly and mechanical properties of triblock copolymers in a mid-block selective solvent are of interest in many applications. Herein, we report physical assembly of an ABA triblock copolymer, [PMMA–PnBA–PMMA] in two different mid-block selective solvents, n-butanol and 2-ethyl-1-hexanol. Gel formation resulting from end-block associations and the corresponding changes in mechanical properties have been investigated over a temperature range of -80 °C to 60 °C, from near the solvent melting points to above the gelation temperature. Shear-rheometry, thermal analysis, and small-angle neutron scattering data reveal formation and transition of structure in these systems from a liquid state tomore » a gel state to a percolated cluster network with decrease in temperature. The aggregated PMMA end-blocks display a glass transition temperature. Finally, our results provide new understanding into the structural changes of a self-assembled triblock copolymer gel over a large length scale and wide temperature range.« less

  18. Novel hermetic packaging methods for MOEMS

    NASA Astrophysics Data System (ADS)

    Stark, David

    2003-01-01

    Hermetic packaging of micro-optoelectromechanical systems (MOEMS) is an immature technology, lacking industry-consensus methods and standards. Off-the-shelf, catalog window assemblies are not yet available. Window assemblies are in general custom designed and manufactured for each new product, resulting in longer than acceptable cycle times, high procurement costs and questionable reliability. There are currently two dominant window-manufacturing methods wherein a metal frame is attached to glass, as well as a third, less-used method. The first method creates a glass-to-metal seal by heating the glass above its Tg to fuse it to the frame. The second method involves first metallizing the glass where it is to be attached to the frame, and then soldering the glass to the frame. The third method employs solder-glass to bond the glass to the frame. A novel alternative with superior features compared to the three previously described window-manufacturing methods is proposed. The new approach lends itself to a plurality of glass-to-metal attachment techniques. Benefits include lower temperature processing than two of the current methods and potentially more cost-effective manufacturing than all three of today"s attachment methods.

  19. Study and Behaviour of Prefabricated Composite Cladding

    NASA Astrophysics Data System (ADS)

    Sai Avinash, P.; Thiagarajan, N.; Santhi, A. S.

    2017-07-01

    The incessant population rise entailed for an expeditious construction at competitive prices that steered the customary path to the light weight structural components. This lead to construction of structural components using ferrocement. The load bearing structural cladding, sizing 3200x900x100 mm, is chosen for the study, which, is analyzed using the software ABAQUS 6.14 in accordance with the IS:875-87 Part1, IS:875-87 Part2, ACI 549R-97, ACI 318R-08 and NZS:3101-06 Part1 standards. The Ferrocement claddings (FCs) are fabricated to a scaled dimension of 400x115x38 mm. The light weight-high strength phenomena are corroborated by incorporating Glass Fibre Reinforced Polymer Laminates (GFRPL) of thickness 6mm, engineered with the aid of hand layup (wet layup) technique wielding epoxy resin, followed by curing under room temperature. The epoxy resin is employed for fastening ferrocement cladding with the Glass fiber reinforced polymer laminate, with the contemporary methodology. The compressive load carrying capacity of the amalgamated assembly, both in presence and absence of Glass Fibre Reinforced polymer laminates (GFRPL) on either side of Ferrocement cladding, has been experimented.

  20. Method for sealing an oxygen transport membrane assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, Javier E.; Grant, Arthur F.

    An improved method of sealing a ceramic part to a solid part made of ceramic, metal, cermet or a ceramic coated metal is provided. The improved method includes placing a bond agent comprising an Al 2O 3 and SiO 2 based glass-ceramic material and organic binder material on adjoining surfaces of the ceramic part and the solid part. The assembly is heated to a first target temperature that removes or dissolves the organic binder material from the bond agent and the assembly is subjected to a second induction heating step at a temperature ramp rate of between about 100.degree. C.more » and 200.degree. C. per minute to temperatures where the glass-ceramic material flows and wets the interface between adjoining surfaces. The assembly is rapidly cooled at a cooling rate of about 140.degree. C. per minute or more to induce nucleation and re-crystallization of the glass-ceramic material to form a dense, durable and gas-tight seal.« less

  1. Self-assembled nanotextures impart broadband transparency to glass windows and solar cell encapsulants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.

    Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. In this paper, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450–2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminatingmore » reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Finally, ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.« less

  2. Self-assembled nanotextures impart broadband transparency to glass windows and solar cell encapsulants

    DOE PAGES

    Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.

    2017-10-30

    Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. In this paper, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450–2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminatingmore » reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Finally, ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.« less

  3. Self-assembled nanotextures impart broadband transparency to glass windows and solar cell encapsulants

    NASA Astrophysics Data System (ADS)

    Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.

    2017-10-01

    Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. Here, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450-2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminating reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.

  4. Self-assembly of colloid-cholesteric composites provides a possible route to switchable optical materials

    NASA Astrophysics Data System (ADS)

    Stratford, K.; Henrich, O.; Lintuvuori, J. S.; Cates, M. E.; Marenduzzo, D.

    2014-06-01

    Colloidal particles dispersed in liquid crystals can form new materials with tunable elastic and electro-optic properties. In a periodic ‘blue phase’ host, particles should template into colloidal crystals with potential uses in photonics, metamaterials and transformational optics. Here we show by computer simulation that colloid/cholesteric mixtures can give rise to regular crystals, glasses, percolating gels, isolated clusters, twisted rings and undulating colloidal ropes. This structure can be tuned via particle concentration, and by varying the surface interactions of the cholesteric host with both the particles and confining walls. Many of these new materials are metastable: two or more structures can arise under identical thermodynamic conditions. The observed structure depends not only on the formulation protocol but also on the history of an applied electric field. This new class of soft materials should thus be relevant to design of switchable, multistable devices for optical technologies such as smart glass and e-paper.

  5. Synthesis and characterization of tunable coumarin- linked glasses as new class of organic/inorganic phosphors

    NASA Astrophysics Data System (ADS)

    Luridiana, Alberto; Pretta, Gianluca; Secci, Francesco; Frongia, Angelo; Chiriu, Daniele; Carbonaro, Carlo Maria; Corpino, Riccardo; Ricci, Pier Carlo

    2014-10-01

    It is well known that stilbene with a trans conformation is highly fluorescent. From the viewpoint of molecular structure, coumarins bear a carbon-carbon double bond which is fixed as trans conformation as in trans-stilbene through a lactone structure. This can help to avoid the trans-cis transformation of the double bond under ultraviolet (UV) irradiation as observed in stilbene compounds and results in strong fluorescence and high fluorescence quantum yield and photostability in most of coumarin derivatives. Herein we report some preliminary results about the synthesis and spectroscopic characterization of tunable coumarins and the development of a new linkage protocol for the obtainment of monolayer coumarin-covalently linked glasses. The resulting organic/inorganic coumarin/silica based Self-Assembled Monolayer (SMA) film is proposed as new phosphors for the substituting of critical raw materials, like rare earths, in photonics applications.

  6. Development and Testing of a Power Trough System Using a Structurally-Efficient, High-Performance, Large-Aperture Concentrator with Thin Glass Reflector and Focal Point Rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, E. K.; Forristall, R.

    2005-11-01

    Industrial Solar Technology has assembled a team of experts to develop a large-aperture parabolic trough for the electric power market that moves beyond cost and operating limitations of 1980's designs based on sagged glass reflectors. IST's structurally efficient space frame design will require nearly 50% less material per square meter than a Solel LS-2 concentrator and the new trough will rotate around the focal point. This feature eliminates flexhoses that increase pump power, installation and maintenance costs. IST aims to deliver a concentrator module costing less than $100 per square meter that can produce temperatures up to 400 C. Themore » IST concentrator is ideally suited for application of front surface film reflectors and ensures that US corporations will manufacture major components, except for the high temperature receivers.« less

  7. Hole Quality Assessment in Drilling of Glass Microballoon/Epoxy Syntactic Foams

    NASA Astrophysics Data System (ADS)

    Ashrith, H. S.; Doddamani, Mrityunjay; Gaitonde, Vinayak; Gupta, Nikhil

    2018-05-01

    Syntactic foams reinforced with glass microballoons are used as alternatives for conventional materials in structural application of aircrafts and automobiles due to their unique properties such as light weight, high compressive strength, and low moisture absorption. Drilling is the most commonly used process of making holes for assembling structural components. In the present investigation, grey relation analysis (GRA) is used to optimize cutting speed, feed, drill diameter, and filler content to minimize cylindricity, circularity error, and damage factor. Experiments based on full factorial design are conducted using a vertical computer numerical control machine and tungsten carbide twist drills. GRA reveals that a combination of lower cutting speed, filler content, and drill diameter produces a good quality hole at optimum intermediate feed in drilling syntactic foams composites. GRA also shows that the drill diameter has a significant effect on the hole quality. Furthermore, damage on the hole exit side is analyzed using a scanning electron microscope.

  8. Synthesis and characterization of tunable coumarin- linked glasses as new class of organic/inorganic phosphors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luridiana, Alberto; Pretta, Gianluca; Secci, Francesco

    2014-10-21

    It is well known that stilbene with a trans conformation is highly fluorescent. From the viewpoint of molecular structure, coumarins bear a carbon-carbon double bond which is fixed as trans conformation as in trans-stilbene through a lactone structure. This can help to avoid the trans-cis transformation of the double bond under ultraviolet (UV) irradiation as observed in stilbene compounds and results in strong fluorescence and high fluorescence quantum yield and photostability in most of coumarin derivatives. Herein we report some preliminary results about the synthesis and spectroscopic characterization of tunable coumarins and the development of a new linkage protocol formore » the obtainment of monolayer coumarin-covalently linked glasses. The resulting organic/inorganic coumarin/silica based Self-Assembled Monolayer (SMA) film is proposed as new phosphors for the substituting of critical raw materials, like rare earths, in photonics applications.« less

  9. 30 CFR 20.9 - Class 2 lamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of extra-heavy glass to withstand pick blows, and be adequately protected by shrouds or by an... permit assembly, the flanges comprising the joints between parts shall have surfaces with metal-to-metal contact, except enclosures requiring glass, in which case glass-to-metal joints are permitted. Gaskets, if...

  10. 82. Neg. No. F66A, Apr 13, 1930, INTERIORASSEMBLY BUILDING, TRIM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    82. Neg. No. F-66A, Apr 13, 1930, INTERIOR-ASSEMBLY BUILDING, TRIM LINE AND GLASS DEPARTMENTS - Ford Motor Company Long Beach Assembly Plant, Assembly Building, 700 Henry Ford Avenue, Long Beach, Los Angeles County, CA

  11. Self-assembly and glass-formation in a lattice model of telechelic polymer melts: Influence of stiffness of the sticky bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wen-Sheng, E-mail: wsxu@uchicago.edu; Freed, Karl F., E-mail: freed@uchicago.edu; Department of Chemistry, The University of Chicago, Chicago, Illinois 60637

    2016-06-07

    Telechelic polymers are chain macromolecules that may self-assemble through the association of their two mono-functional end groups (called “stickers”). A deep understanding of the relation between microscopic molecular details and the macroscopic physical properties of telechelic polymers is important in guiding the rational design of telechelic polymer materials with desired properties. The lattice cluster theory (LCT) for strongly interacting, self-assembling telechelic polymers provides a theoretical tool that enables establishing the connections between important microscopic molecular details of self-assembling polymers and their bulk thermodynamics. The original LCT for self-assembly of telechelic polymers considers a model of fully flexible linear chains [J.more » Dudowicz and K. F. Freed, J. Chem. Phys. 136, 064902 (2012)], while our recent work introduces a significant improvement to the LCT by including a description of chain semiflexibility for the bonds within each individual telechelic chain [W.-S. Xu and K. F. Freed, J. Chem. Phys. 143, 024901 (2015)], but the physically associative (or called “sticky”) bonds between the ends of the telechelics are left as fully flexible. Motivated by the ubiquitous presence of steric constraints on the association of real telechelic polymers that impart an additional degree of bond stiffness (or rigidity), the present paper further extends the LCT to permit the sticky bonds to be semiflexible but to have a stiffness differing from that within each telechelic chain. An analytical expression for the Helmholtz free energy is provided for this model of linear telechelic polymer melts, and illustrative calculations demonstrate the significant influence of the stiffness of the sticky bonds on the self-assembly and thermodynamics of telechelic polymers. A brief discussion is also provided for the impact of self-assembly on glass-formation by combining the LCT description for this extended model of telechelic polymers with the Adam-Gibbs relation between the structural relaxation time and the configurational entropy.« less

  12. Anisometric C 60 Fullerene Colloids Assisted by Structure-Directing Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penterman, S.; Liddell Watson, Chekesha M.; Escobedo, Fernando A.

    2016-08-05

    Colloidal synthesis and assembly provide low cost, large area routes to mesoscale structures. In particular, shape-anisotropic particles may form crystalline, plastic crystalline, complex liquid crystalline and glassy phases. Arrangements in each order class have been used to generate photonic materials. For example, large photonic band gaps have been found for photonic crystals, hyperuniform photonic glasses, and also for plastic crystals at sufficient refractive index contrast. The latter structures support highly isotropic bandgaps that are desirable for free-form waveguides and LED out-coupling. Photonic glasses with optical gain lead to self-tuned lasing by the superposition of multiply scattered light. Typically, extrinsic mediamore » such as organic dyes, rare earths, lanthanides and quantum dots are used to impart optical gain in photonic solids. The present work advances fullerene microcrystals as a new materials platform for ‘active’ light emitting in colloid-based photonic crystals. Fullerenes support singlet excited states that recombine to produce a characteristic red photoluminescence. C 60 also has a high refractive index (n ~ 2.2) and transparency (> 560 nm) 9 so that inverse structures are not required.« less

  13. Digital Photonic Production of Micro Structures in Glass by In-Volume Selective Laser-Induced Etching using a High Speed Micro Scanner

    NASA Astrophysics Data System (ADS)

    Gottmann, Jens; Hermans, Martin; Ortmann, Jürgen

    Digital photonic production of 3D microfluidic devices and assembled micro mechanics inside fused silica glass is carried out using ISLE directly from digital CAD data. To exploit the potential productivity of new high average power fs-lasers >150 W a modular high speed scanning system has been developed. Acousto-optical beam deflection, galvo-scanners and translation stages are controlled by CAM software. Using a lens with 10 mm focal length a focus radius of 1 μm is scanned with a velocity of 12 m/s on 400 μm track radius enabling the up-scaling of the ISLE- process using fs-laser radiation with up to 30 W.

  14. Reactive magnetron sputtering of N-doped carbon thin films on quartz glass for transmission photocathode applications

    NASA Astrophysics Data System (ADS)

    Balalykin, N. I.; Huran, J.; Nozdrin, M. A.; Feshchenko, A. A.; Kobzev, A. P.; Sasinková, V.; Boháček, P.; Arbet, J.

    2018-03-01

    N-doped carbon thin films were deposited on a silicon substrate and quartz glass by RF reactive magnetron sputtering using a carbon target and an Ar+N2 gas mixture. During the magnetron sputtering, the substrate holder temperatures was kept at 800 °C. The carbon film thickness on the silicon substrate was about 70 nm, while on the quartz glass it was in the range 15 nm – 60 nm. The elemental concentration in the films was determined by RBS and ERD. Raman spectroscopy was used to evaluate the intensity ratios I D/I G of the D and G peaks of the carbon films. The transmission photocathodes prepared were placed in the hollow-cathode assembly of a Pierce-structure DC gun to produce photoelectrons. The quantum efficiency (QE) was calculated from the laser energy and cathode charge measured. The properties of the transmission photocathodes based on semitransparent N-doped carbon thin films on quartz glass and their potential for application in DC gun technology are discussed.

  15. Home page | prc.gatech.edu | Georgia Institute of Technology | Atlanta, GA

    Science.gov Websites

    Interconnections & Assembly Low Cost Glass Interposers & Packages MEMS and Sensors GRA Opportunities addressing electrical, mechanical and thermal barriers. Low-cost Glass Interposer and Package Panel-based ultra-thin glass as a high performance, high I/O density, and low cost platform. Interconnections and

  16. Electro-optical backplane demonstrator with integrated multimode gradient-index thin glass waveguide panel

    NASA Astrophysics Data System (ADS)

    Schröder, Henning; Brusberg, Lars; Pitwon, Richard; Whalley, Simon; Wang, Kai; Miller, Allen; Herbst, Christian; Weber, Daniel; Lang, Klaus-Dieter

    2015-03-01

    Optical interconnects for data transmission at board level offer increased energy efficiency, system density, and bandwidth scalability compared to purely copper driven systems. We present recent results on manufacturing of electrooptical printed circuit board (PCB) with integrated planar glass waveguides. The graded index multi-mode waveguides are patterned inside commercially available thin-glass panels by performing a specific ion-exchange process. The glass waveguide panel is embedded within the layer stack-up of a PCB using proven industrial processes. This paper describes the design, manufacture, assembly and characterization of the first electro-optical backplane demonstrator based on integrated planar glass waveguides. The electro-optical backplane in question is created by laminating the glass waveguide panel into a conventional multi-layer electronic printed circuit board stack-up. High precision ferrule mounts are automatically assembled, which will enable MT compliant connectors to be plugged accurately to the embedded waveguide interfaces on the glass panel edges. The demonstration platform comprises a standardized sub-rack chassis and five pluggable test cards each housing optical engines and pluggable optical connectors. The test cards support a variety of different data interfaces and can support data rates of up to 32 Gb/s per channel.

  17. The structural coloration of textile materials using self-assembled silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2017-09-01

    The work presented investigates how to produce structural colours on textile materials by applying a surface coating of silica nanoparticles (SNPs). Uniform SNPs with particle diameters in a controlled micron size range (207-350 nm) were synthesized using a Stöber-based solvent varying (SV) method which has been reported previously. Photonic crystals (PCs) were formed on the surface of a piece of textile fabric through a process of natural sedimentation self-assembly of the colloidal suspension containing uniform SNPs. Due to the uniformity and a particular diameter range of the prepared SNPs, structural colours were observed from the fabric surface due to the Bragg diffraction of white light with the ordered structure of the silica PCs. By varying the mean particle diameter, a wide range of spectral colours from red to blue were obtained. The comparison of structural colours on fabrics and on glasses suggests that a smooth substrate is critical when producing materials with high colour intensity and spatial uniformity. This work suggested a promising approach to colour textile materials without the need for traditional dyes and/or pigments. [Figure not available: see fulltext.

  18. The structural coloration of textile materials using self-assembled silica nanoparticles.

    PubMed

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2017-01-01

    The work presented investigates how to produce structural colours on textile materials by applying a surface coating of silica nanoparticles (SNPs). Uniform SNPs with particle diameters in a controlled micron size range (207-350 nm) were synthesized using a Stöber-based solvent varying (SV) method which has been reported previously. Photonic crystals (PCs) were formed on the surface of a piece of textile fabric through a process of natural sedimentation self-assembly of the colloidal suspension containing uniform SNPs. Due to the uniformity and a particular diameter range of the prepared SNPs, structural colours were observed from the fabric surface due to the Bragg diffraction of white light with the ordered structure of the silica PCs. By varying the mean particle diameter, a wide range of spectral colours from red to blue were obtained. The comparison of structural colours on fabrics and on glasses suggests that a smooth substrate is critical when producing materials with high colour intensity and spatial uniformity. This work suggested a promising approach to colour textile materials without the need for traditional dyes and/or pigments. Graphical abstract.

  19. Automated standardization technique for an inductively-coupled plasma emission spectrometer

    USGS Publications Warehouse

    Garbarino, John R.; Taylor, Howard E.

    1982-01-01

    The manifold assembly subsystem described permits real-time computer-controlled standardization and quality control of a commercial inductively-coupled plasma atomic emission spectrometer. The manifold assembly consists of a branch-structured glass manifold, a series of microcomputer-controlled solenoid valves, and a reservoir for each standard. Automated standardization involves selective actuation of each solenoid valve that permits a specific mixed standard solution to be pumped to the nebulizer of the spectrometer. Quality control is based on the evaluation of results obtained for a mixed standard containing 17 analytes, that is measured periodically with unknown samples. An inaccurate standard evaluation triggers restandardization of the instrument according to a predetermined protocol. Interaction of the computer-controlled manifold assembly hardware with the spectrometer system is outlined. Evaluation of the automated standardization system with respect to reliability, simplicity, flexibility, and efficiency is compared to the manual procedure. ?? 1982.

  20. Measuring electrode assembly

    DOEpatents

    Bordenick, John E.

    1989-01-01

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture.

  1. Biomimetic Branched Hollow Fibers Templated by Self-assembled Fibrous Polyvinylpyrrolidone (PVP) Structures in Aqueous Solution

    PubMed Central

    Qiu, Penghe; Mao, Chuanbin

    2010-01-01

    Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. Based on this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering. PMID:20158250

  2. INTERIOR OF OFFICE SECTION, SHOWING GLASS AND STEEL PARTITIONING IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF OFFICE SECTION, SHOWING GLASS AND STEEL PARTITIONING IN SOUTH PART OF SECTION, VIEW FACING SOUTHEAST. - Naval Air Station Barbers Point, Assembly & Repair Shop, Between Enterprise Avenue & Wright, Midway, & Langley Streets, Ewa, Honolulu County, HI

  3. INTERIOR OF OFFICE SECTION, SHOWING GLASS AND STEEL PARTITIONING IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF OFFICE SECTION, SHOWING GLASS AND STEEL PARTITIONING IN CENTRAL PART OF SECTION, VIEW FACING EAST. - Naval Air Station Barbers Point, Assembly & Repair Shop, Between Enterprise Avenue & Wright, Midway, & Langley Streets, Ewa, Honolulu County, HI

  4. Analysis on the hot spot and trend of the foreign assembly building research

    NASA Astrophysics Data System (ADS)

    Bi, Xiaoqing; Luo, Yanbing

    2017-03-01

    First of all, the paper analyzes the research on the front of the assembly building in the past 15 years. This article mainly adopts the method of CO word analysis, construct the co word matrix, correlation matrix, and then into a dissimilarity matrix, and on this basis, using factor analysis, cluster analysis and multi scale analysis method to study the structure of prefabricated construction field display. Finally, the results of the analysis are discussed, and summarized the current research focus of foreign prefabricated construction mainly concentrated in 7 aspects: embankment construction, wood construction, bridge construction, crane layout, PCM wall and glass system, based on neural network test, energy saving and recycling, and forecast the future trend of development study.

  5. Direct hot slumping and accurate integration process to manufacture prototypal x-ray optical units made of glass

    NASA Astrophysics Data System (ADS)

    Civitani, M.; Ghigo, M.; Basso, S.; Proserpio, L.; Spiga, D.; Salmaso, B.; Pareschi, G.; Tagliaferri, G.; Burwitz, V.; Hartner, G.; Menz, B.; Bavdaz, M.; Wille, E.

    2013-09-01

    X-ray telescopes with very large collecting area, like the proposed International X-ray Observatory (IXO, with around 3 m2 at 1 keV), need to be composed of a large number high quality mirror segments, aiming at achieving an angular resolution better than 5 arcsec HEW (Half-Energy-Width). A possible technology to manufacture the modular elements that will compose the entire optical module, named X-ray Optical Units (XOUs), consists of stacking in Wolter-I configuration several layers of thin foils of borosilicate glass, previously formed by hot slumping. The XOUs are subsequently assembled to form complete multi-shell optics with Wolter-I geometry. The achievable global angular resolution of the optic relies on the required surface shape accuracy of slumped foils, on the smoothness of the mirror surfaces and on the correct integration and co-alignment of the mirror segments. The Brera Astronomical Observatory (INAF-OAB) is leading a study, supported by ESA, concerning the implementation of the IXO telescopes based on thin slumped glass foils. In addition to the opto-mechanical design, the study foresees the development of a direct hot slumping thin glass foils production technology. Moreover, an innovative assembly concept making use of Wolter-I counter-form moulds and glass reinforcing ribs is under development. The ribs connect pairs of consecutive foils in an XOU stack, playing a structural and a functional role. In fact, as the ribs constrain the foil profile to the correct shape during the bonding, they damp the low-frequency profile errors still present on the foil after slumping. A dedicated semirobotic Integration MAchine (IMA) has been realized to this scope and used to build a few integrated prototypes made of several layers of slumped plates. In this paper we provide an overview of the project, we report the results achieved so far, including full illumination intra-focus X-ray tests of the last integrated prototype that are compliant with a HEW of around 17''.

  6. Linear particle accelerator with seal structure between electrodes and insulators

    DOEpatents

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  7. Extreme Precision Antenna Reflector Study Results

    NASA Technical Reports Server (NTRS)

    Sharp, G. R.; Gilger, L. D.; Ard, K. E.

    1985-01-01

    Thermal and mechanical distortion degrade the RF performance of antennas. The complexity of future communications antennas requires accurate, dimensionally stable antenna reflectors and structures built from materials other than those currently used. The advantages and disadvantages of using carbon fibers in an epoxy matrix are reviewed as well as current reflector fabrications technology and adjustment. The manufacturing sequence and coefficient of thermal expansion of carbon fiber/borosilicate glass composites is described. The construction of a parabolic reflector from this material and the assembling of both reflector and antenna are described. A 3M-aperture-diameter carbon/glass reflector that can be used as a subassembly for large reflectors is depicted. The deployment sequence for a 10.5M-aperture-diameter antenna, final reflector adjustment, and the deployment sequence for large reflectors are also illustrated.

  8. Micro and nano-biomimetic structures for cell migration study fabricated by hybrid subtractive and additive 3D femtosecond laser processing

    NASA Astrophysics Data System (ADS)

    Sima, Felix; Serien, Daniela; Wu, Dong; Xu, Jian; Kawano, Hiroyuki; Midorikawa, Katsumi; Sugioka, Koji

    2017-02-01

    Lab-on-a-chip devices have been intensively developed during the last decade when emerging technologies offered possibilities to manufacture reliable devices with increased spatial resolution. These biochips allowed testing chemical reactions in nanoliter volumes with enhanced sensitivity and lower consumption of reagents. There is space to further consolidate biochip assembling processing since the new technologies attempt direct fabrication in view of reducing costs and time by increasing efficiency and functionalities. Rapid prototyping by ultrafast lasers which induces local modifications inside transparent materials of both glass and polymers with high precision at micro- and nanoscale is a promising tool for fabrication of such biochips. We have developed a new technology by combining subtractive ultrafast laser assisted chemical etching of glasses and additive two-photon polymerization to integrate 3D glass microfluidics and polymer microcomponents in a single biochip. The innovative hybrid "ship-in-a-bottle" approach is not only an instrument that can tailor 3D environments but also a tool to fabricate biomimetic in vivo structures inside a glass microfluidic chip. It was possible to create appropriate environment for cell culturing and to offer robustness and transparency for optical interrogation. Cancer cells were cultivated inside biochips and monitored over short and long periods. With the view of understanding cancer cells specific behavior such as migration or invasiveness inside human body, introduction of different geometrical configurations and chemical conditions were proposed. The cells were found responsive to a gradient of nutrient concentration through the microchannels of a 3D polymeric scaffold integrated inside glass biochip.

  9. Spider Silk-CBD-Cellulose Nanocrystal Composites: Mechanism of Assembly

    PubMed Central

    Meirovitch, Sigal; Shtein, Zvi; Ben-Shalom, Tal; Lapidot, Shaul; Tamburu, Carmen; Hu, Xiao; Kluge, Jonathan A.; Raviv, Uri; Kaplan, David L.; Shoseyov, Oded

    2016-01-01

    The fabrication of cellulose-spider silk bio-nanocomposites comprised of cellulose nanocrystals (CNCs) and recombinant spider silk protein fused to a cellulose binding domain (CBD) is described. Silk-CBD successfully binds cellulose, and unlike recombinant silk alone, silk-CBD self-assembles into microfibrils even in the absence of CNCs. Silk-CBD-CNC composite sponges and films show changes in internal structure and CNC alignment related to the addition of silk-CBD. The silk-CBD sponges exhibit improved thermal and structural characteristics in comparison to control recombinant spider silk sponges. The glass transition temperature (Tg) of the silk-CBD sponge was higher than the control silk sponge and similar to native dragline spider silk fibers. Gel filtration analysis, dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and cryo-transmission electron microscopy (TEM) indicated that silk-CBD, but not the recombinant silk control, formed a nematic liquid crystalline phase similar to that observed in native spider silk during the silk spinning process. Silk-CBD microfibrils spontaneously formed in solution upon ultrasonication. We suggest a model for silk-CBD assembly that implicates CBD in the central role of driving the dimerization of spider silk monomers, a process essential to the molecular assembly of spider-silk nanofibers and silk-CNC composites. PMID:27649169

  10. Spider Silk-CBD-Cellulose Nanocrystal Composites: Mechanism of Assembly.

    PubMed

    Meirovitch, Sigal; Shtein, Zvi; Ben-Shalom, Tal; Lapidot, Shaul; Tamburu, Carmen; Hu, Xiao; Kluge, Jonathan A; Raviv, Uri; Kaplan, David L; Shoseyov, Oded

    2016-09-18

    The fabrication of cellulose-spider silk bio-nanocomposites comprised of cellulose nanocrystals (CNCs) and recombinant spider silk protein fused to a cellulose binding domain (CBD) is described. Silk-CBD successfully binds cellulose, and unlike recombinant silk alone, silk-CBD self-assembles into microfibrils even in the absence of CNCs. Silk-CBD-CNC composite sponges and films show changes in internal structure and CNC alignment related to the addition of silk-CBD. The silk-CBD sponges exhibit improved thermal and structural characteristics in comparison to control recombinant spider silk sponges. The glass transition temperature (Tg) of the silk-CBD sponge was higher than the control silk sponge and similar to native dragline spider silk fibers. Gel filtration analysis, dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and cryo-transmission electron microscopy (TEM) indicated that silk-CBD, but not the recombinant silk control, formed a nematic liquid crystalline phase similar to that observed in native spider silk during the silk spinning process. Silk-CBD microfibrils spontaneously formed in solution upon ultrasonication. We suggest a model for silk-CBD assembly that implicates CBD in the central role of driving the dimerization of spider silk monomers, a process essential to the molecular assembly of spider-silk nanofibers and silk-CNC composites.

  11. Exploitation of molecular mobilities for advanced organic optoelectronic and photonic nano-materials

    NASA Astrophysics Data System (ADS)

    Gray, Tomoko O.

    Electro-optically active organic materials have shown great potential in advanced technologies such as ultrafast electro-optical switches for broadband communication, light-emitting diodes, and photovoltaic cells. Currently, the maturity of chemical synthesis enables a sophisticated integration of the active elements into complex macromolecules. Also, the structure-property relationships of the isolated single electrically/optically active elements are well established. Unfortunately, such correlations involving single molecule are not applicable to complex unstructured condensed systems, in which unique mesoscale properties and complex dynamics of super-/supra-molecular structures are present. Our current challenge arises, in particular, from a deficiency of appropriate characterization tools that close the gap between phenomenological measurements and theoretical models. This work addresses submolecular mobilities relevant for opto-electronic functionalities of photoluminescent polymers and non-linear optical (NLO) materials. Thereby, I will introduce novel nanoscale thermomechanical characterization tools that are based on scanning force microscopy. From nanoscale thermomechanical measurements sub-/super-molecular mobilities of novel optoelectronic materials can be inferred and to some degree controlled. For instance, we have explored interfacial constraints as a engineering tool to control molecular mobility. This will be illustrated with electroluminescent polymers, which are prone to undesired pi-pi aggregation due to the rod-like structure---intrinsic to all conjugated polymers. The nanoscale confinement is used to reduced chain mobility, and thus, hinders undesired aggregation, and consequently, yields superior spectral stability. From the nanomaterial design perspective, I will also address mobility control with targeted molecular designs. This involves two classes of novel NLO materials, side-chain dendronized polymers and self-assembling molecular glasses. The side-chain dendronized polymers are, due to the structural complexity, self-constrained systems. Our thermomechanical investigations identified that a local relaxation mode associated to the NLO side-chain is the critical design parameter in yielding high mobility to the active element. Relaxation processes of the self-assembling molecular glasses are discussed from a thermodynamic perspective involving both enthalpic and entropic contributions, considering the very special nature of interactions for the NLO molecular glasses, i.e., the formation and dissociation of phenyl/perfluorophenyl quadrupol pairs.

  12. Testing of multigap Resistive Plate Chambers for Electron Ion Collider Detector Development

    NASA Astrophysics Data System (ADS)

    Hamilton, Hannah; Phenix Collaboration

    2015-10-01

    Despite decades of research on the subject, some details of the spin structure of the nucleon continues to be unknown. To improve our knowledge of the nucleon spin structure, the construction of a new collider is needed. This is one of the primary goals of the proposed Electron Ion Collider (EIC). Planned EIC spectrometers will require good particle identification. This can be provided by time of flight (TOF) detectors with excellent timing resolutions of 10 ps. A potential TOF detector that could meet this requirement is a glass multigap resistive plate chamber (mRPC). These mRPCs can provide excellent timing resolution at a low cost. The current glass mRPC prototypes have a total of twenty 0.1 mm thick gas gaps. In order to test the feasibility of this design, a cosmic test stand was assembled. This stand used the coincidence of scintillators as a trigger, and contains fast electronics. The construction, the method of testing, and the test results of the mRPCs will be presented.

  13. Direct Nanoscale Characterization of Submolecular Mobility in Complex Organic Non-linear Optical Systems

    NASA Astrophysics Data System (ADS)

    Knorr, Daniel; Gray, Tomoko; Kim, Tae-Dong; Luo, Jingdong; Jen, Alex; Overney, Rene

    2008-03-01

    For organic non-linear optical (NLO) materials composed of intricate molecular building blocks, the challenge is to deduce meaningful molecular scale mobility information to understand complex relaxation and phase behavior. This is crucial, as the process of achieving a robust acentric alignment strongly depends on the availability of inter- and intra-molecular mobilities outside the temperature range of the device operation window. Here, we introduce a nanoscale methodology based on scanning probe microscopy that provides direct insight into structural relaxations and shows great potential to direct material design of sophisticated macromolecules. It also offers a means by which mesoscale dynamics and cooperativity involved in relaxation processes can be quantified in terms of dynamic entropy and enthalpy. This study demonstrates this methodology to describe the mesocale dynamics of two systems (1) organic networking dendronized NLO molecular glasses that self-assemble into physically linked polymers due to quadrupolar phenyl-perfluorophenyl interactions and (2) dendronized side-chain electro-optic (EO) polymers. For the self assembling glasses, the degree of intermolecular cooperativity can be deduced using this methodology, while for the dendronized side-chain polymers, specific side chain mobilities are exploited to improve EO properties.

  14. Glue-free assembly of glass fiber reinforced thermoplastics using laser light

    NASA Astrophysics Data System (ADS)

    Binetruy, C.; Clement, S.; Deleglise, M.; Franz, C.; Knapp, W.; Oumarou, M.; Renard, J.; Roesner, A.

    2011-05-01

    The use of laser light for bonding of continuous fiber reinforced thermoplastic composites (CFTPC) offers new possibilities to overcome the constraints of conventional joining technologies. Laser bonding is environmentally friendly as no chemical additive or glue is necessary. Accuracy and flexibility of the laser process as well as the quality of the weld seams provide benefits which are already used in many industrial applications. Laser transmission welding has already been introduced in manufacturing of short fiber thermoplastic composites. The laser replaces hot air in tapelaying systems for pre-preg carbon fiber placement. The paper provides an overview concerning the technical basics of the joining process and outline some material inherent characteristics to be considered when using continuous glass fiber reinforced composites The technical feasibility and the mechanical characterization of laser bonded CFTPC are demonstrated. The influence of the different layer configurations on the laser interaction with the material is investigated and the dependency on the mechanical strength of the weld seem is analyzed. The results show that the laser provides an alternative joining technique and offers new perspectives to assemble structural components emerging in automotive or aeronautical manufacturing. It overcomes the environmental and technical difficulties related to existing gluing processes.

  15. Fixture for assembling solar panels

    NASA Technical Reports Server (NTRS)

    Dillard, P. A.; Fritz, W. M.

    1979-01-01

    Vacuum fixture attaches array of silicon solar cells to mounting plate made of clear glass which holds and protects cells. Glass plate transmits, rather than absorbs, solar energy thus cooling cells for efficient operation. Device therefore reduces handling of cells and interconnecting conductors to one operation.

  16. Simulation and Implementation of a Morphology-Tuned Gold Nano-Islands Integrated Plasmonic Sensor

    PubMed Central

    Ozhikandathil, Jayan; Packirisamy, Muthukumaran

    2014-01-01

    This work presents simulation, analysis and implementation of morphology tuning of gold nano-island structures deposited by a novel convective assembly technique. The gold nano-islands were simulated using 3D Finite-Difference Time-Domain (FDTD) techniques to investigate the effect of morphological changes and adsorption of protein layers on the localized surface plasmon resonance (LSPR) properties. Gold nano-island structures were deposited on glass substrates by a novel and low-cost convective assembly process. The structure formed by an uncontrolled deposition method resulted in a nano-cluster morphology, which was annealed at various temperatures to tune the optical absorbance properties by transforming the nano-clusters to a nano-island morphology by modifying the structural shape and interparticle separation distances. The dependence of the size and the interparticle separation distance of the nano-islands on the LSPR properties were analyzed in the simulation. The effect of adsorption of protein layer on the nano-island structures was simulated and a relation between the thickness and the refractive index of the protein layer on the LSPR peak was presented. Further, the sensitivity of the gold nano-island integrated sensor against refractive index was computed and compared with the experimental results. PMID:24932868

  17. Null Lens Assembly for X-Ray Mirror Segments

    NASA Technical Reports Server (NTRS)

    Robinson, David W.

    2011-01-01

    A document discusses a null lens assembly that allows laser interferometry of 60 deg. slumped glass mirror segments used in x-ray mirrors. The assembly consists of four lenses in precise alignment to each other, with incorporated piezoelectric nanometer stepping actuators to position the lenses in six degrees of freedom for positioning relative to each other.

  18. Castable Amorphous Metal Mirrors and Mirror Assemblies

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Davis, Gregory L.; Agnes, Gregory S.; Shapiro, Andrew A.

    2013-01-01

    A revolutionary way to produce a mirror and mirror assembly is to cast the entire part at once from a metal alloy that combines all of the desired features into the final part: optical smoothness, curvature, flexures, tabs, isogrids, low CTE, and toughness. In this work, it has been demonstrated that castable mirrors are possible using bulk metallic glasses (BMGs, also called amorphous metals) and BMG matrix composites (BMGMCs). These novel alloys have all of the desired mechanical and thermal properties to fabricate an entire mirror assembly without machining, bonding, brazing, welding, or epoxy. BMGs are multi-component metal alloys that have been cooled in such a manner as to avoid crystallization leading to an amorphous (non-crystalline) microstructure. This lack of crystal structure and the fact that these alloys are glasses, leads to a wide assortment of mechanical and thermal properties that are unlike those observed in crystalline metals. Among these are high yield strength, carbide-like hardness, low melting temperatures (making them castable like aluminum), a thermoplastic processing region (for improving smoothness), low stiffness, high strength-to-weight ratios, relatively low CTE, density similar to titanium alloys, high elasticity and ultra-smooth cast parts (as low as 0.2-nm surface roughness has been demonstrated in cast BMGs). BMGMCs are composite alloys that consist of a BMG matrix with crystalline dendrites embedded throughout. BMGMCs are used to overcome the typically brittle failure observed in monolithic BMGs by adding a soft phase that arrests the formation of cracks in the BMG matrix. In some cases, BMGMCs offer superior castability, toughness, and fatigue resistance, if not as good a surface finish as BMGs. This work has demonstrated that BMGs and BMGMCs can be cast into prototype mirrors and mirror assemblies without difficulty.

  19. Pressure activated interconnection of micro transfer printed components

    NASA Astrophysics Data System (ADS)

    Prevatte, Carl; Guven, Ibrahim; Ghosal, Kanchan; Gomez, David; Moore, Tanya; Bonafede, Salvatore; Raymond, Brook; Trindade, António Jose; Fecioru, Alin; Kneeburg, David; Meitl, Matthew A.; Bower, Christopher A.

    2016-05-01

    Micro transfer printing and other forms of micro assembly deterministically produce heterogeneously integrated systems of miniaturized components on non-native substrates. Most micro assembled systems include electrical interconnections to the miniaturized components, typically accomplished by metal wires formed on the non-native substrate after the assembly operation. An alternative scheme establishing interconnections during the assembly operation is a cost-effective manufacturing method for producing heterogeneous microsystems, and facilitates the repair of integrated microsystems, such as displays, by ex post facto addition of components to correct defects after system-level tests. This letter describes pressure-concentrating conductor structures formed on silicon (1 0 0) wafers to establish connections to preexisting conductive traces on glass and plastic substrates during micro transfer printing with an elastomer stamp. The pressure concentrators penetrate a polymer layer to form the connection, and reflow of the polymer layer bonds the components securely to the target substrate. The experimental yield of series-connected test systems with >1000 electrical connections demonstrates the suitability of the process for manufacturing, and robustness of the test systems against exposure to thermal shock, damp heat, and mechanical flexure shows reliability of the resulting bonds.

  20. Measuring electrode assembly

    DOEpatents

    Bordenick, J.E.

    1988-04-26

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture. 2 figs.

  1. Presence of global and local α-relaxations in an alkyl phosphate glass former

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Jin, Xiao; Saini, Manoj K.; Liu, Ying Dan; Ngai, K. L.; Wang, Li-Min

    2017-10-01

    The dynamics of a molecular glass former, tributyl phosphate (TBP), with an alkyl phosphate structure (three alkyl branches emanating from a polar core of PO4) is studied in the supercooled regime by dielectric and thermal (or enthalpic) relaxations. The dielectric fragility index md and the stretching exponent βd of the Kohlrausch-Williams-Watts correlation function are determined. Analyses of the enthalpic relaxation data by the Tool-Narayanaswamy-Moynihan-Hodge formalism yield the enthalpic fragility index mH and stretching exponent βH. The large difference between the dielectric md and the enthalpic mH, as well as between βd and βH, is a remarkable finding. The differences are interpreted by the formation of molecular self-assemblies. The interpretation is supported by the quite comparable fragility determined by viscosity and the enthalpic relaxation. The Kirkwood factor calculated at low temperatures is also consistent with the interpretation. The results suggest that the enthalpic relaxation involving the motions of all parts of TBP is global, while the dielectric relaxation detects the local rotation, which might originate from the rotation of the dipole moment of the core. The presence of two structural α-relaxations, one global and one local, with a large difference in dynamics is revealed for the first time in a molecular glass former.

  2. Tunable Multiscale Nanoparticle Ordering by Polymer Crystallization

    PubMed Central

    2017-01-01

    While ∼75% of commercially utilized polymers are semicrystalline, the generally low mechanical modulus of these materials, especially for those possessing a glass transition temperature below room temperature, restricts their use for structural applications. Our focus in this paper is to address this deficiency through the controlled, multiscale assembly of nanoparticles (NPs), in particular by leveraging the kinetics of polymer crystallization. This process yields a multiscale NP structure that is templated by the lamellar semicrystalline polymer morphology and spans NPs engulfed by the growing crystals, NPs ordered into layers in the interlamellar zone [spacing of (10–100 nm)], and NPs assembled into fractal objects at the interfibrillar scale, (1–10 μm). The relative fraction of NPs in this hierarchy is readily manipulated by the crystallization speed. Adding NPs usually increases the Young’s modulus of the polymer, but the effects of multiscale ordering are nearly an order of magnitude larger than those for a state where the NPs are not ordered, i.e., randomly dispersed in the matrix. Since the material’s fracture toughness remains practically unaffected in this process, this assembly strategy allows us to create high modulus materials that retain the attractive high toughness and low density of polymers. PMID:28776017

  3. Floating assembly of diatom Coscinodiscus sp. microshells.

    PubMed

    Wang, Yu; Pan, Junfeng; Cai, Jun; Zhang, Deyuan

    2012-03-30

    Diatoms have silica frustules with transparent and delicate micro/nano scale structures, two dimensional pore arrays, and large surface areas. Although, the diatom cells of Coscinodiscus sp. live underwater, we found that their valves can float on water and assemble together. Experiments show that the convex shape and the 40 nm sieve pores of the valves allow them to float on water, and that the buoyancy and the micro-range attractive forces cause the valves to assemble together at the highest point of water. As measured by AFM calibrated glass needles fixed in manipulator, the buoyancy force on a single floating valve may reach up to 10 μN in water. Turning the valves over, enlarging the sieve pores, reducing the surface tension of water, or vacuum pumping may cause the floating valves to sink. After the water has evaporated, the floating valves remained in their assembled state and formed a monolayer film. The bonded diatom monolayer may be valuable in studies on diatom based optical devices, biosensors, solar cells, and batteries, to better use the optical and adsorption properties of frustules. The floating assembly phenomenon can also be used as a self-assembly method for fabricating monolayer of circular plates. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. DNA Based Electrochromic and Photovoltaic Cells

    DTIC Science & Technology

    2012-01-01

    electrolyte/CeO2- TiO2 /ITO/glass configuration [29]. 2. Experimental 2.1 Gel polymeric electrolytes The electrolytes were prepared according to the...transparent membranes. Blend samples were also prepared by the addition of other macromolecules (gelatin), synthetic polymers, such as poly(ethylene...Electrochromic devices Electrochromic devices with the glass/ITO/WO3/DNA-based electrolyte/CeO2- TiO2 /ITO/glass configuration were obtained by assembling

  5. Hydrothermal growth of VO2 nanoplate thermochromic films on glass with high visible transmittance

    PubMed Central

    Zhang, Jiasong; Li, Jingbo; Chen, Pengwan; Rehman, Fida; Jiang, Yijie; Cao, Maosheng; Zhao, Yongjie; Jin, Haibo

    2016-01-01

    The preparation of thermochromic vanadium dioxide (VO2) films in an economical way is of interest to realizing the application of smart windows. Here, we reported a successful preparation of self-assembly VO2 nanoplate films on TiO2-buffered glass by a facile hydrothermal process. The VO2 films composed of triangle-shaped plates standing on substrates exhibit a self-generated porous structure, which favors the transmission of solar light. The porosity of films is easily controlled by changing the concentration of precursor solutions. Excellent thermochromic properties are observed with visible light transmittance as high as 70.3% and solar modulating efficiency up to 9.3% in a VO2 film with porosity of ~35.9%. This work demonstrates a promising technique to promote the commercial utilization of VO2 in smart windows. PMID:27296772

  6. Composite prepreg application device

    NASA Technical Reports Server (NTRS)

    Sandusky, Donald A. (Inventor); Marchello, Joseph M. (Inventor)

    1995-01-01

    A heated shoe and cooled pressure roller assembly for composite prepreg application is provided. The shoe assembly includes a heated forward contact surface having a curved pressure surface. The following cooled roller provides a continuous pressure to the thermoplastic while reducing the temperature to approximately 5 C below glass transition temperature. Electric heating coils inside the forward portion of the shoe heat a thermoplastic workpiece to approximately 100 C above the glass transition. Immediately following the heated contact surface, a cooled roller cools the work. The end sharpened shape of the heated shoe trailing edge tends to prevent slag buildup and maintain a uniform, relaxed stress fabrication.

  7. Fabrication of focus-tunable liquid crystal microlens array with spherical electrode

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Ming; Su, Guo-Dung J.

    2016-09-01

    In this paper, a new approach to fabricate a liquid crystal (LC) microlens array with spherical-shaped electrode is demonstrated, which can create the inhomogeneous electric field. Inkjet-printing, hydrophilic confinement, self-assemble and replication process is used to form the convex microlens array on glass. After the spherical-shaped electrode is done, we assemble it with ITO glass to form a liquid crystal cell. We used Zemax® to simulate the liquid crystal lens as a Gradient-index (GRIN) lens. The simulation results show that a GRIN lens model can well match with the theoretical focal length of liquid crystal lens. The dimension of the glass is 1.5 cm x 1.5 cm x 0.7 mm which has 7 concave microlens on the top surface. These microlens have same diameter and height about 300 μm and 85 μm. The gap between each other is 100 μm. We first fabricate microlens array on silicon substrate by hydrophilic confinement, which between hydrophilicity of silicon substrate and hydrophobicity of SU-8, and inkjet printing process. Then we start replication process with polydimethylsiloxane (PDMS) to transfer microlens array form silicon to glass substrate. After the transparent conducted polymer, PEDOT:PSS, is spin-coated on the microlens arrays surface, we flatten it by NOA65. Finally we assemble it with ITO glass and inkjet liquid crystal. From measuring the interference rings, the optical power range is from 47.28 to 331 diopter. This will be useful for the optical zoom system or focus-tunable lens applications.

  8. Self-assembling holographic biosensors and biocomputers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Light, Yooli Kim; Bachand, George David; Schoeniger, Joseph S.

    2006-05-01

    We present concepts for self-assembly of diffractive optics with potential uses in biosensors and biocomputers. The simplest such optics, diffraction gratings, can potentially be made from chemically-stabilized microtubules migrating on nanopatterned tracks of the motor protein kinesin. We discuss the fabrication challenges involved in patterning sub-micron-scale structures with proteins that must be maintained in aqueous buffers to preserve their activity. A novel strategy is presented that employs dry contact printing onto glass-supported amino-silane monolayers of heterobifunctional crosslinkers, followed by solid-state reactions of these cross-linkers, to graft patterns of reactive groups onto the surface. Successive solution-phase addition of cysteine-mutant proteins andmore » amine-reactive polyethylene glycol allows assembly of features onto the printed patterns. We present data from initial experiments showing successful micro- and nanopatterning of lines of single-cysteine mutants of kinesin interleaved with lines of polyethylene, indicating that this strategy can be employed to arrays of features with resolutions suitable for gratings.« less

  9. Study of curved glass photovoltaic module and module electrical isolation design requirements

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design of a 1.2 by 2.4 m curved glass superstrate and support clip assembly is presented, along with the results of finite element computer analysis and a glass industry survey conducted to assess the technical and economic feasibility of the concept. Installed costs for four curved glass module array configurations are estimated and compared with cost previously reported for comparable flat glass module configurations. Electrical properties of candidate module encapsulation systems are evaluated along with present industry practice for the design and testing of electrical insulation systems. Electric design requirements for module encapsulation systems are also discussed.

  10. Study of curved glass photovoltaic module and module electrical isolation design requirements

    NASA Astrophysics Data System (ADS)

    1980-06-01

    The design of a 1.2 by 2.4 m curved glass superstrate and support clip assembly is presented, along with the results of finite element computer analysis and a glass industry survey conducted to assess the technical and economic feasibility of the concept. Installed costs for four curved glass module array configurations are estimated and compared with cost previously reported for comparable flat glass module configurations. Electrical properties of candidate module encapsulation systems are evaluated along with present industry practice for the design and testing of electrical insulation systems. Electric design requirements for module encapsulation systems are also discussed.

  11. Characteristics of a Power Line Used as a VLF Antenna.

    DTIC Science & Technology

    1982-05-01

    were glass melamine . Assemblies of 12 layers were fabricated at El Segundo, CA and shipped by air to Tromso, Norway for final assembly of the full 120...sciences, applied electronics, semiconductor crystal and device physics, radiometric Imaging; millimeter-wave and microwave technology. Information

  12. Brillouin-scattering studies of K2Si4O9 glass and melt up to 1000 °C

    NASA Astrophysics Data System (ADS)

    Xu, Ji-An; Manghnani, Murli H.; Richet, Pascal

    1992-10-01

    The Brillouin-scattering technique has been used with glass plate samples and with glass sandwich assemblies to measure the acoustic velocities of K2Si4O9 glass as a function of temperature up to 1000 °C. Results differ from those of the sodium silicate glass reported earlier in that the turning points of the velocity versus temperature curves for the potassium silicate glass are found not only at the strain point (466 °C) but also at the softening point (720 °C). Combined with the results of the 90° platelet- and 180° back-scattering geometry measurements, the refractive index n and equation of state of the glass and melt as a function of temperature were also determined.

  13. Split-field pupil plane determination apparatus

    DOEpatents

    Salmon, Joseph T.

    1996-01-01

    A split-field pupil plane determination apparatus (10) having a wedge assembly (16) with a first glass wedge (18) and a second glass wedge (20) positioned to divide a laser beam (12) into a first laser beam half (22) and a second laser beam half (24) which diverge away from the wedge assembly (16). A wire mask (26) is positioned immediately after the wedge assembly (16) in the path of the laser beam halves (22, 24) such that a shadow thereof is cast as a first shadow half (30) and a second shadow half (32) at the input to a relay telescope (14). The relay telescope (14) causes the laser beam halves (22, 24) to converge such that the first shadow half (30) of the wire mask (26) is aligned with the second shadow half (32) at any subsequent pupil plane (34).

  14. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies.

    PubMed

    Yoon, Jongseung; Jo, Sungjin; Chun, Ik Su; Jung, Inhwa; Kim, Hoon-Sik; Meitl, Matthew; Menard, Etienne; Li, Xiuling; Coleman, James J; Paik, Ungyu; Rogers, John A

    2010-05-20

    Compound semiconductors like gallium arsenide (GaAs) provide advantages over silicon for many applications, owing to their direct bandgaps and high electron mobilities. Examples range from efficient photovoltaic devices to radio-frequency electronics and most forms of optoelectronics. However, growing large, high quality wafers of these materials, and intimately integrating them on silicon or amorphous substrates (such as glass or plastic) is expensive, which restricts their use. Here we describe materials and fabrication concepts that address many of these challenges, through the use of films of GaAs or AlGaAs grown in thick, multilayer epitaxial assemblies, then separated from each other and distributed on foreign substrates by printing. This method yields large quantities of high quality semiconductor material capable of device integration in large area formats, in a manner that also allows the wafer to be reused for additional growths. We demonstrate some capabilities of this approach with three different applications: GaAs-based metal semiconductor field effect transistors and logic gates on plates of glass, near-infrared imaging devices on wafers of silicon, and photovoltaic modules on sheets of plastic. These results illustrate the implementation of compound semiconductors such as GaAs in applications whose cost structures, formats, area coverages or modes of use are incompatible with conventional growth or integration strategies.

  15. Self-Assembly of Colloidal Photonic Crystals of PS@PNIPAM Nanoparticles and Temperature-Responsive Tunable Fluorescence.

    PubMed

    Yuan, Shuai; Ge, Fengyan; Yang, Xue; Guang, Shanyi

    2016-11-01

    A strategy for significantly enhancing fluorescence is developed based on the coupling of optical properties of colloidal photonic crystals (CPCs) with responsive microgel. In this paper, thermoresponsive microgel PNIPAM was employed for the fabrication of core-shell structure. The core-shell PS@PNIPAM nanoparticles (NPs) are then assembled to CPCs by a vertical deposition method. Subsequently, the novel functional material (RhB/CPCs) can be prepared by depositing fluorescent dye molecules (RhB) on the top of PS@PNIPAM CPCs. We obtained an increase in the fluorescent intensity up to 15-fold and 22-fold compared with RhB on the glass slid and the uneven film. Due to the unique responsive shrinking properties of PNIPAM shell, the amplifying fluorescence behavior of CPCs can be well tuned by varying the temperature. In contrast to RhB on the glass slid, a 15-fold and 12-fold fluorescence enhancement can be observed when the temperature of RhB/CPCs was 20 °C and 50 °C, respectively. The mechanism on enhancement fluorescence of tunable CPCs can be achieved by measurements of thermoresponsive properties. The results indicate that the responsive fluorescence-amplifying method based on CPCs made with responsive core-shell NPs has a potential application for the development of efficient fluorescence sensors.

  16. Direct writing of birefringent elements by ultrafast laser nanostructuring in multicomponent glass

    NASA Astrophysics Data System (ADS)

    Fedotov, S. S.; Drevinskas, R.; Lotarev, S. V.; Lipatiev, A. S.; Beresna, M.; ČerkauskaitÄ--, A.; Sigaev, V. N.; Kazansky, P. G.

    2016-02-01

    Self-assembled nanostructures created by femtosecond laser irradiation are demonstrated in alkali-free aluminoborosilicate glass. The growth of the induced retardance associated with the nanograting formation is three orders of magnitude slower than in silica glass and is observed only within a narrow range of pulse energies. However, the strength of retardance asymptotically approaches the value typically measured in pure silica glass, which is attractive for practical applications. A similar intensity threshold for nanograting formation of about 1 TW/cm2 is observed for all glasses studied. The radially polarized vortex beam micro-converter designed as a space-variant quarter-wave retarder for the near-infrared spectral range is imprinted in commercial Schott AF32 glass.

  17. Advanced Simulation in Undergraduate Pilot Training: Visual Display Development

    DTIC Science & Technology

    1975-12-01

    properties of each member were calculated manually and were inserted by means of punched cards, thus it was relatively easy (but time consuming ) to...investigations leading to the decision to employ an all-glass approach which consisted of a two-part glass funnel produced by Corning Glass Wo ks... consuming . After complete sets of materials were selected they had to be cemented into a final assembly. This had to be done in two operations because of the

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiaoyu; Graduate University of Chinese Academy of Sciences, Beijing 100049; He, Junhui, E-mail: jhhe@mail.ipc.ac.cn

    Graphical abstract: High performance broadband antireflective and water-repellent coatings were fabricated on glass substrates, which can improve the short-circuit current of solar cells as much as 6.6% in comparison with glass substrates without the coatings. - Highlights: • Broadband anti-reflective and water-repellent coatings were fabricated. • Transmittance increased to 99.0%, significantly higher than that of commercial solar glasses. • The performance of standard solar cells with the AR coating was enhanced as much as 6.6%. - Abstract: High performance broadband antireflective (AR) and water-repellent coatings were fabricated on glass substrates by assembly of silica nanoparticles and polyelectrolytes via the layer-by-layermore » (LbL) assembly technique, followed by calcination and hydrophobic modification. A porous poly(diallyladimethylammonium chloride) (PDDA)/20 nm SiO{sub 2} nanoparticles (S-20) multilayer coating with AR property was prepared first. The maximum transmittance is as high as 99.0%, while that of the glass substrate is only 91.3%. After calcination and hydrophobic modification, the coating became water-repellent while maintaining the good AR property. Such water-repellent AR coatings can improve the short-circuit current of solar cells as much as 6.6% in comparison with glass substrates without the coatings. Scanning electron microscopy (SEM) was used to observe the morphology and thickness of coatings. Transmission spectra and reflection spectra were characterized by UV–vis spectrophotometer. The surface wettability was studied by a contact angle/interface system.« less

  19. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartan, Chloe C., E-mail: chloe.tartan@eng.ox.ac.uk, E-mail: steve.elston@eng.ox.ac.uk; Salter, Patrick S.; Booth, Martin J.

    2016-05-14

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phasemore » of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.« less

  20. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    NASA Astrophysics Data System (ADS)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-05-01

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10-100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  1. Structural considerations for fabrication and mounting of the AXAF HRMA optics

    NASA Technical Reports Server (NTRS)

    Cohen, Lester M.; Cernoch, Larry; Mathews, Gary; Stallcup, Michael

    1990-01-01

    A methodology is described which minimizes optics distortion in the fabrication, metrology, and launch configuration phases. The significance of finite element modeling and breadboard testing is described with respect to performance analyses of support structures and material effects in NASA's AXAF X-ray optics. The paper outlines the requirements for AXAF performance, optical fabrication, metrology, and glass support fixtures, as well as the specifications for mirror sensitivity and the high-resolution mirror assembly. Analytical modeling of the tools is shown to coincide with grinding and polishing experiments, and is useful for designing large-area polishing and grinding tools. Metrological subcomponents that have undergone initial testing show evidence of meeting force requirements.

  2. Composite prepreg application device

    NASA Technical Reports Server (NTRS)

    Sandusky, Donald A. (Inventor); Marchello, Joseph M. (Inventor)

    1996-01-01

    A heated shoe and cooled pressure roller assembly for composite prepreg application is provided. The shoe assembly includes a heated forward contact surface having a curved pressure surface. The following cooled roller provides a continuous pressure to the thermoplastic while reducing the temperature to approximately 5.degree. C. below glass transition temperature. Electric heating coils inside the forward portion of the shoe heat a thermoplastic workpiece to approximately 100.degree. C. above the glass transition. Immediately following the heated contact surface, a cooled roller cools the work. The end sharpened shape of the heated shoe trailing edge tends to prevent slag buildup and maintain a uniform, relaxed stress fabrication.

  3. Thermomechanical Properties and Glass Dynamics of Polymer-Tethered Colloidal Particles and Films

    PubMed Central

    2017-01-01

    Polymer-tethered colloidal particles (aka “particle brush materials”) have attracted interest as a platform for innovative material technologies and as a model system to elucidate glass formation in complex structured media. In this contribution, Brillouin light scattering is used to sequentially evaluate the role of brush architecture on the dynamical properties of brush particles in both the individual and assembled (film) state. In the former state, the analysis reveals that brush–brush interactions as well as global chain relaxation sensitively depend on grafting density; i.e., more polymer-like behavior is observed in sparse brush systems. This is interpreted to be a consequence of more extensive chain entanglement. In contrast, the local relaxation of films does not depend on grafting density. The results highlight that relaxation processes in particle brush-based materials span a wider range of time and length scales as compared to linear chain polymers. Differentiation between relaxation on local and global scale is necessary to reveal the influence of molecular structure and connectivity on the aging behavior of these complex systems. PMID:29755139

  4. Thermomechanical Properties and Glass Dynamics of Polymer-Tethered Colloidal Particles and Films.

    PubMed

    Cang, Yu; Reuss, Anna N; Lee, Jaejun; Yan, Jiajun; Zhang, Jianan; Alonso-Redondo, Elena; Sainidou, Rebecca; Rembert, Pascal; Matyjaszewski, Krzysztof; Bockstaller, Michael R; Fytas, George

    2017-11-14

    Polymer-tethered colloidal particles (aka "particle brush materials") have attracted interest as a platform for innovative material technologies and as a model system to elucidate glass formation in complex structured media. In this contribution, Brillouin light scattering is used to sequentially evaluate the role of brush architecture on the dynamical properties of brush particles in both the individual and assembled (film) state. In the former state, the analysis reveals that brush-brush interactions as well as global chain relaxation sensitively depend on grafting density; i.e., more polymer-like behavior is observed in sparse brush systems. This is interpreted to be a consequence of more extensive chain entanglement. In contrast, the local relaxation of films does not depend on grafting density. The results highlight that relaxation processes in particle brush-based materials span a wider range of time and length scales as compared to linear chain polymers. Differentiation between relaxation on local and global scale is necessary to reveal the influence of molecular structure and connectivity on the aging behavior of these complex systems.

  5. Design, Fabrication, and Testing of Composite Energy-Absorbing Keel Beams for General Aviation Type Aircraft

    NASA Technical Reports Server (NTRS)

    Kellas, Sotiris; Knight, Norman F., Jr.

    2002-01-01

    A lightweight energy-absorbing keel-beam concept was developed and retrofitted in a general aviation type aircraft to improve crashworthiness performance. The energy-absorbing beam consisted of a foam-filled cellular structure with glass fiber and hybrid glass/kevlar cell walls. Design, analysis, fabrication and testing of the keel beams prior to installation and subsequent full-scale crash testing of the aircraft are described. Factors such as material and fabrication constraints, damage tolerance, crush stress/strain response, seat-rail loading, and post crush integrity, which influenced the course of the design process are also presented. A theory similar to the one often used for ductile metal box structures was employed with appropriate modifications to estimate the sustained crush loads for the beams. This, analytical tool, coupled with dynamic finite element simulation using MSC.Dytran were the prime design and analysis tools. The validity of the theory as a reliable design tool was examined against test data from static crush tests of beam sections while the overall performance of the energy-absorbing subfloor was assessed through dynamic testing of 24 in long subfloor assemblies.

  6. Structure and property relations of macromolecular self-assemblies at interfaces

    NASA Astrophysics Data System (ADS)

    Yang, Zhihao

    Hydrophilic polymer chains, poly(ethylene glycol) (PEG), are attached to glass surfaces by silylation of the silanol groups on glass surfaces with the omega-(methoxyl terminated PEG) trimethoxysilanes. These tethered polymer chains resemble the self-assembled monolayers (SAMs) of PEG, which exhibit excellent biocompatibility and provide a model system for studying the interactions of proteins with polymer surfaces. The low molecular weight PEGs tend to extend, forming a brush-like monolayer, whereas the longer polymer chains tend to interpenetrate each other, forming a mushroom-like PEG monolayer at the interface. Interactions between a plasma protein, bovine serum albumin, and the PEG-SAMs are investigated in terms of protein adsorption and diffusion on the surfaces by the technique of fluorescence recovery after photobleaching (FRAP). The diffusion and aggregation behaviors of the protein on the two monolayers are found to be quite different despite the similarities in adsorption and desorption behaviors. The results are analyzed with a hypothesis of the hydrated surface dynamics. A method of covalently bonding phospholipid molecules to silica substrates followed by loading with free phospholipids is demonstrated to form well organized and stable phospholipid self-assembled monolayers. Surfaces of such SAMs structurally mimic the aqueous sides of phospholipid bilayer membranes. The dynamics of phospholipids and an adsorbed protein, lipase, in the SAMs are probed with FRAP, in terms of lateral diffusion of both phospholipids and protein molecules. The esterase activity of lipase on the SAM surfaces is confirmed by the hydrolysis reaction of a substrate, umbelliferone stearate, showing such lipid SAMs posess biomembrane functionality in terms of interfacial activation of the membranous enzymes. Dynamics of polyethylene oxide and polypropylene oxide tri-block copolymers, PEO-PPO-PEO and PPO-PEO-PPO, at the air/water interface upon thermal stimulation is studied by surface light scattering, in terms of the dynamic surface tension changes in response to a temperature jump. The characteristic of the surface tension relaxation is found to be highly related to the molecular structure and concentration of the copolymers at the interface.

  7. Statistical simplex approach to primary and secondary color correction in thick lens assemblies

    NASA Astrophysics Data System (ADS)

    Ament, Shelby D. V.; Pfisterer, Richard

    2017-11-01

    A glass selection optimization algorithm is developed for primary and secondary color correction in thick lens systems. The approach is based on the downhill simplex method, and requires manipulation of the surface color equations to obtain a single glass-dependent parameter for each lens element. Linear correlation is used to relate this parameter to all other glass-dependent variables. The algorithm provides a statistical distribution of Abbe numbers for each element in the system. Examples of several lenses, from 2-element to 6-element systems, are performed to verify this approach. The optimization algorithm proposed is capable of finding glass solutions with high color correction without requiring an exhaustive search of the glass catalog.

  8. Synthesis, Self-Assembly, and Drug-Release Properties of New Amphipathic Liquid Crystal Polycarbonates

    PubMed Central

    Xie, Yujiao; Liu, Xiaofeng; Hu, Zhuang; Hou, Zhipeng; Chen, Zhangpei; Hu, Jianshe; Yang, Liqun

    2018-01-01

    New amphiphilic liquid crystal (LC) polycarbonate block copolymers containing side-chain cholesteryl units were synthesized. Their structure, thermal stability, and LC phase behavior were characterized with Fourier transform infrared (FT-IR) spectrum, 1H NMR, gel permeation chromatographic (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), polarizing optical microscope (POM), and XRD methods. The results demonstrated that the LC copolymers showed a double molecular arrangement of a smectic A phase at room temperature. With the elevating of LC unit content in such LC copolymers, the corresponding properties including decomposition temperature (Td), glass temperature (Tg), and isotropic temperature (Ti) increased. The LC copolymers showed pH-responsive self-assembly behavior under the weakly acidic condition, and with more side-chain LC units, the self-assembly process was faster, and the formed particle size was smaller. It indicated that the self-assembly driving force was derived from the orientational ability of LC. The particle size and morphologies of self-assembled microspheres loaded with doxorubicin (DOX), together with drug release tracking, were evaluated by dynamic light scattering (DLS), SEM, and UV–vis spectroscopy. The results showed that DOX could be quickly released in a weakly acidic environment due to the pH response of the self-assembled microspheres. This would offer a new strategy for drug delivery in clinic applications. PMID:29584691

  9. Hierarchical Metal-Organic Framework-Assembled Membrane Filter for Efficient Removal of Particulate Matter.

    PubMed

    Koo, Won-Tae; Jang, Ji-Soo; Qiao, Shaopeng; Hwang, Wontae; Jha, Gaurav; Penner, Reginald M; Kim, Il-Doo

    2018-06-13

    Here, we propose heterogeneous nucleation-assisted hierarchical growth of metal-organic frameworks (MOFs) for efficient particulate matter (PM) removal. The assembly of two-dimensional (2D) Zn-based zeolite imidazole frameworks (2D-ZIF-L) in deionized water over a period of time produced hierarchical ZIF-L (H-ZIF-L) on hydrophilic substrates. During the assembly, the second nucleation and growth of ZIF-L occurred on the surface of the first ZIF-L, leading to the formation of flowerlike H-ZIF-L on the substrate. The flowerlike H-ZIF-L was easily synthesized on various substrates, namely, glass, polyurethane three-dimensional foam, nylon microfibers, and nonwoven fabrics. We demonstrated H-ZIF-L-assembled polypropylene microfibers as a washable membrane filter with highly efficient PM removal property (92.5 ± 0.8% for PM 2.5 and 99.5 ± 0.2% for PM 10 ), low pressure drop (10.5 Pa at 25 L min -1 ), long-term stability, and superior recyclability. These outstanding particle filtering properties are mainly attributed to the unique structure of the 2D-shaped H-ZIF-L, which is tightly anchored on individual fibers comprising the membrane.

  10. Improvement of a Continuous-Culture Apparatus for Long-Term Use1

    PubMed Central

    Taub, Frieda B.; Dollar, Alexander M.

    1968-01-01

    A glass and plastic apparatus was designed to meet requirements for continuous culture of cells. Some of the improvements incorporated into this apparatus include an all-glass growth vessel with a self-cleaning bottom, special compression fittings to connect tubing to glass tubing, a removable yield reservoir, and a nonwetting gas exhaust assembly. All portions of the system can be autoclaved for sterilization, and medium bottles and pump lines are replaced aseptically. Images Fig. 1 PMID:5645410

  11. Microfluidic assembly blocks.

    PubMed

    Rhee, Minsoung; Burns, Mark A

    2008-08-01

    An assembly approach for microdevice construction using prefabricated microfluidic components is presented. Although microfluidic systems are convenient platforms for biological assays, their use in the life sciences is still limited mainly due to the high-level fabrication expertise required for construction. This approach involves prefabrication of individual microfluidic assembly blocks (MABs) in PDMS that can be readily assembled to form microfluidic systems. Non-expert users can assemble the blocks on glass slides to build their devices in minutes without any fabrication steps. In this paper, we describe the construction and assembly of the devices using the MAB methodology, and demonstrate common microfluidic applications including laminar flow development, valve control, and cell culture.

  12. The Design, Synthesis, and Study of Solid-State Molecular Rotors: Structure/Function Relationships for Condensed-Phase Anisotropic Dynamics

    NASA Astrophysics Data System (ADS)

    Vogelsberg, Cortnie Sue

    Amphidynamic crystals are an extremely promising platform for the development of artificial molecular machines and stimuli-responsive materials. In analogy to skeletal muscle, their function will rely upon the collective operation of many densely packed molecular machines (i.e. actin-bound myosin) that are self-assembled in a highly organized anisotropic medium. By choosing lattice-forming elements and moving "parts" with specific functionalities, individual molecular machines may be synthesized and self-assembled in order to carry out desirable functions. In recent years, efforts in the design of amphidynamic materials based on molecular gyroscopes and compasses have shown that a certain amount of free volume is essential to facilitate internal rotation and reorientation within a crystal. In order to further establish structure/function relationships to advance the development of increasingly complex molecular machinery, molecular rotors and a molecular "spinning" top were synthesized and incorporated into a variety of solid-state architectures with different degrees of periodicity, dimensionality, and free volume. Specifically, lamellar molecular crystals, hierarchically ordered periodic mesoporous organosilicas, and metal-organic frameworks were targeted for the development of solid-state molecular machines. Using an array of solid-state nuclear magnetic resonance spectroscopy techniques, the dynamic properties of these novel molecular machine assemblies were determined and correlated with their corresponding structural features. It was found that architecture type has a profound influence on functional dynamics. The study of layered molecular crystals, composed of either molecular rotors or "spinning" tops, probed functional dynamics within dense, highly organized environments. From their study, it was discovered that: 1) crystallographically distinct sites may be utilized to differentiate machine function, 2) halogen bonding interactions are sufficiently strong to direct an assembly of molecular machines, 3) the relative flexibility of the crystal environment proximate to a dynamic component may have a significant effect on its function, and, 4) molecular machines, which possess both solid-state photochemical reactivity and dynamics may show complex reaction kinetics if the correlation time of the dynamic process and the lifetime of the excited state occur on the same time scale and the dynamic moiety inherently participates as a reaction intermediate. The study of periodic mesoporous organosilica with hierarchical order probed molecular dynamics within 2D layers of molecular rotors, organized in only one dimension and with ca. 50% exposed to the mesopore free volume. From their study, it was discovered that: 1) molecular rotors, which comprise the layers of the mesopore walls, form a 2D rotational glass, 2) rotator dynamics within the 2D rotational glass undergo a transition to a 2D rotational fluid, and, 3) a 2D rotational glass transition may be exploited to develop hyper-sensitive thermally activated molecular machines. The study of a metal-organic framework assembled from molecular rotors probed dynamics in a periodic three-dimensional free-volume environment, without the presence of close contacts. From the study of this solid-state material, it was determined that: 1) the intrinsic electronic barrier is one of the few factors, which may affect functional dynamics in a true free-volume environment, and, 2) molecular machines with dynamic barriers <

  13. Confinement and Structural Changes in Vertically Aligned Dust Structures

    NASA Astrophysics Data System (ADS)

    Hyde, Truell

    2013-10-01

    In physics, confinement is known to influence collective system behavior. Examples include coulomb crystal variants such as those formed from ions or dust particles (classical), electrons in quantum dots (quantum) and the structural changes observed in vertically aligned dust particle systems formed within a glass box placed on the lower electrode of a Gaseous Electronics Conference (GEC) rf reference cell. Recent experimental studies have expanded the above to include the biological domain by showing that the stability and dynamics of proteins confined through encapsulation and enzyme molecules placed in inorganic cavities such as those found in biosensors are also directly influenced by their confinement. In this paper, the self-assembly and subsequent collective behavior of structures formed from n, charged dust particles interacting with one another and located within a glass box placed on the lower, powered electrode of a GEC rf reference cell is discussed. Self-organized formation of vertically aligned one-dimensional chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from one-dimensional chain structures, through a zigzag transition to a two-dimensional, spindle like structures, and then to various three-dimensional, helical structures exhibiting various symmetries. Stable configurations are shown to be strongly dependent upon system confinement. The critical conditions for structural transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop will be shown to be in good agreement with molecular dynamics simulations.

  14. Self-assembled micro-/nanostructured WO3 thin films by aqueous chemical growth and their applications in H2 and CO2 sensing

    NASA Astrophysics Data System (ADS)

    Sone, B. T.; Nkosi, S. S.; Nkosi, M. M.; Coetsee-Hugo, E.; Swart, H. C.; Maaza, M.

    2018-05-01

    Application of thin film technology is increasing in many areas such as energy production, energy saving, telecommunications, protective and smart coatings, etc. This increased application creates a need for simple, cost-effective methods for the synthesis of highly multifunctional metal oxide thin films. The technique of Aqueous Chemical Growth is presented in this paper as a simple inexpensive means of producing WO3 thin films that find applications in gas sensing, electrochromism and photocatalysis. We demonstrate, through this technique, that heterogeneous nucleation and growth of WO3 thin films on plain glass substrates takes place at low pHs and low temperatures (75-95 °C) without the use of surfactants and template directing methods. The substrates used needed no surface-modification. On the plain glass substrates (soda lime silicates) a variety of micro-nanostructures could be observed most important of which were nanoplatelets that acted as a basic building block for the self-assembly of more hierarchical 3-d microspheres and thin films. The dominant crystallographic structure observed through X-ray diffraction analysis was found to be hexagonal-WO3 and monoclinic WO3. The thin films produced showed a fair degree of porosity. Some of the thin films on glass showed ability to sense, unaided, H2 at 250 °C. Sensor responses were observed to be 1 - 2 orders of magnitude. The films also demonstrated potential to sense CO2 even though this could only be achieved using high concentrations of CO2 gas at temperatures of 300 °C and above. The sensor responses at 300 °C were estimated to be less than 1 order of magnitude.

  15. Large and pristine films of reduced graphene oxide

    PubMed Central

    Ahn, Sung Il; Kim, Kukjoo; Jung, Jura; Choi, Kyung Cheol

    2015-01-01

    A new self-assembly concept is introduced to form large and pristine films (15 cm in diameter) of reduced graphene oxide (RGO). The resulting film has different degrees of polarity on its two different sides due to the characteristic nature of the self-assembly process. The RGO film can be easily transferred from a glass substrate onto water and a polymer substrate after injection of water molecules between the RGO film and glass substrate using an electric steamer. The RGO film can also be easily patterned into various shapes with a resolution of around ±10 μm by a simple taping method, which is suitable for mass production of printed electronics at low cost. PMID:26689267

  16. Improvement in the amine glass platform by bubbling method for a DNA microarray

    PubMed Central

    Jee, Seung Hyun; Kim, Jong Won; Lee, Ji Hyeong; Yoon, Young Soo

    2015-01-01

    A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool. PMID:26468293

  17. Improvement in the amine glass platform by bubbling method for a DNA microarray.

    PubMed

    Jee, Seung Hyun; Kim, Jong Won; Lee, Ji Hyeong; Yoon, Young Soo

    2015-01-01

    A glass platform with high sensitivity for sexually transmitted diseases microarray is described here. An amino-silane-based self-assembled monolayer was coated on the surface of a glass platform using a novel bubbling method. The optimized surface of the glass platform had highly uniform surface modifications using this method, as well as improved hybridization properties with capture probes in the DNA microarray. On the basis of these results, the improved glass platform serves as a highly reliable and optimal material for the DNA microarray. Moreover, in this study, we demonstrated that our glass platform, manufactured by utilizing the bubbling method, had higher uniformity, shorter processing time, lower background signal, and higher spot signal than the platforms manufactured by the general dipping method. The DNA microarray manufactured with a glass platform prepared using bubbling method can be used as a clinical diagnostic tool.

  18. Self-assembled hierarchical nanostructures for high-efficiency porous photonic crystals.

    PubMed

    Passoni, Luca; Criante, Luigino; Fumagalli, Francesco; Scotognella, Francesco; Lanzani, Guglielmo; Di Fonzo, Fabio

    2014-12-23

    The nanoscale modulation of material properties such as porosity and morphology is used in the natural world to mold the flow of light and to obtain structural colors. The ability to mimic these strategies while adding technological functionality has the potential to open up a broad array of applications. Porous photonic crystals are one such technological candidate, but have typically underachieved in terms of available materials, structural and optical quality, compatibility with different substrates (e.g., silicon, flexible organics), and scalability. We report here an alternative fabrication method based on the bottom-up self-assembly of elementary building blocks from the gas phase into high surface area photonic hierarchical nanostructures at room temperature. Periodic refractive index modulation is achieved by stacking layers with different nanoarchitectures. High-efficiency porous Bragg reflectors are successfully fabricated with sub-micrometer thick films on glass, silicon, and flexible substrates. High diffraction efficiency broadband mirrors (R≈1), opto-fluidic switches, and arrays of photonic crystal pixels with size<10 μm are demonstrated. Possible applications in filtering, sensing, electro-optical modulation, solar cells, and photocatalysis are envisioned.

  19. Indanedione based binary chromophore supramolecular systems as a NLO active polymer composites

    NASA Astrophysics Data System (ADS)

    Rutkis, M.; Tokmakovs, A.; Jecs, E.; Kreicberga, J.; Kampars, V.; Kokars, V.

    2010-06-01

    Novel route to obtain EO material is proposed by supramolecular assembly of neutral-ground-state (NGS) and zwitterionic (ZWI) NLO chromophores in binary chromophore organic glass (BCOG) host-guest system. On a basis of our Langeven Dynamics (LD) molecular modeling combined with quantum chemical calculations, we have shown that anticipated enhancement NLO efficiency of BCOG material is possible via electrostatic supramolecular assembly of NGS with ZWI chromophore in antiparallel manner. Binding energy of such complex could be more dependent on molecular compatibility of components and local (atomic) charge distribution, then overall molecular dipole moments. According to our LD simulations these supramolecular bind structures of NGS and ZWI chromophores can sustain thermally assisted electrical field poling. For the one of experimentally investigated systems, build from dimethylaminobenzylidene 1,3-indanedione containing host and zwitterionic indanedione-1,3 pyridinium betaine as a guest, almost twofold enhancement of NLO efficiency was observed.

  20. Optical Property Requirements for Glasses, Ceramics and Plastics in Spacecraft Window Systems

    NASA Technical Reports Server (NTRS)

    Estes, Lynda

    2011-01-01

    This is a preliminary draft of a standard published by the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) that is intended to provide uniform window optical design requirements in support of the development of human-rated spaceflight hardware. The material covered in this standard is based on data from extensive testing by the Advanced Sensing and Optical Measurement Branch at NASA Langley Research Center, and compiled into requirements format by the NASA JSC Structural Engineering Division. At the time of this initial document release, a broader technical community has not reviewed this standard. The technical content of this standard is primarily based on the Constellation Program Orion Crew Exploration Vehicle Window Optical Properties Requirements, CxP 72407, Baseline. Unlike other optical requirements documents available for human rated spacecraft, this document includes requirements that ensure functionality for windows that contain glass/ceramic and/or plastic window substrate materials. These requirements were derived by measuring the optical properties of fused silica and aluminosilicate glass window assemblies and ensuring that the performance of any window assembly that includes a plastic pane or panes will meet the performance level of the all-glass assemblies. The resulting requirements are based upon the performance and parameter metrology testing of a variety of materials, including glass, transparent ceramics, acrylics, and polycarbonates. In general, these requirements are minimum specifications for each optical parameter in order to achieve the function specified for each functional category, A through D. Because acrylic materials perform at a higher level than polycarbonates in the optics regime, and CxP/Orion is planning to use acrylic in the Orion spacecraft, these requirements are based heavily on metrology from that material. As a result, two of the current Category D requirements for plastics are cited in such a way that will result in the screening out of polycarbonates. It is acknowledged that many polycarbonates can perform the functions of Category D, such as piloting and imagery with lens with apertures up to 25mm, without performance issues. Therefore, this forward warns users that certain requirements, such as birefringence and wavefront, for Category D plastics need to be revised to allow those polycarbonates that perform adequately in Category D to be accepted, while at the same time, screen out those materials that do not perform up to par. At the time of document release, the requirements in question have been identified by a TBD beside the proposed requirement criteria (which is based upon acrylic performance). Vehicles that are designed with acrylic materials for windowpanes are encouraged to use the values presented in this document for all requirements, in order to ensure adequate optical performance.

  1. 19. Photocopy of photograph. VIEW OF WORKER MANIPULATING SMALL GLASS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Photocopy of photograph. VIEW OF WORKER MANIPULATING SMALL GLASS OBJECTS IN THE HOT BAY WITH MANIPULATOR ARMS AT WORK STATION E-2. Photographer unknown, ca. 1969, original photograph and negative on file at the Remote Sensing Laboratory, Department of Energy, Nevada Operations Office. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV

  2. Controlled immobilization of His-tagged proteins for protein-ligand interaction experiments using Ni²⁺-NTA layer on glass surfaces.

    PubMed

    Cherkouk, Charaf; Rebohle, Lars; Lenk, Jens; Keller, Adrian; Ou, Xin; Laube, Markus; Neuber, Christin; Haase-Kohn, Cathleen; Skorupa, Wolfgang; Pietzsch, Jens

    2015-01-01

    Gold surfaces functionalized with nickel-nitrilotriacetic acid (Ni²⁺-NTA) as self-assembled monolayers (SAM) to immobilize histidine (His)-tagged biomolecules are broadly reported in the literature. However, the increasing demand of using microfluidic systems and biosensors takes more and more advantage on silicon technology which provides dedicated glass surfaces and substantially allows cost and resource savings. Here we present a novel method for the controlled oriented immobilization of His-tagged proteins on glass surfaces functionalized with a Ni²⁺-NTA layer. Exemplarily, the protein pattern morphology after immobilization on the Ni²⁺-NTA layer of His6-tagged soluble receptor for advanced glycation endproducts (sRAGE) was investigated and compared to non-oriented immobilization of sRAGE on amino SAM by using scanning electron microscopy (SEM). Moreover, we demonstrated interaction of immobilized sRAGE with three structurally different ligands, S100A12, S100A4, and glycated low density lipoproteins (glycLDL), by means of peak-force tapping atomic force microscopy (PF-AFM). We showed a clear discrimination of different protein-ligand orientations by differential height measurements.

  3. The synthesis of branched TCP chromophores and the research on their electro-optical properties

    NASA Astrophysics Data System (ADS)

    Bo, Shuhui; Chen, Zhuo; Gao, Wu; Zhen, Zhen; Liu, Xinhou

    2012-10-01

    In order to minimize the intermolecular electrostatic interactions and effectively translate high value of chromophore into macroscopic electro-optical (EO) coeffcient (r33), the shape-modification of aniline-pyrroline (TCP) chromophore by combining three kinds of dendritic groups respectively to the N atom of pyrroline acceptor produced three kinds of dendritic chromophores. Their spherical structures can minimize intermolecular electrostatic interactions, and thus the poling efficience was higher than the chromophores without dendritic groups when chromophores as a guest in the host polymer APC. A large electro-optical (EO) coefficient was achieved as high as 75 pm/V at 1315 nm with 9% chromophores loading in APC film. On the basis of the above TCP chromophores, two kinds of novel molecular glasses based on self-assembly dendritic chromophores are also designed and synthesized as second-order nonlinear optical (NLO) materials, which named ETO and ETF. The NLO chromophore glasses ETO and ETF showed excellent filmforming ability by themselves. Their glass transition temperatures (Tg) were determined at 41° and 39°, respectively. The in-situ second harmonic generation (SHG) measurement revealed the resonant electro-optical (EO) coefficient (d33) values of 38 and 32 pm/V for the poled films of ETO and ETF, respectively. The results indicate molecular glasses provide a new possible way different from the conventional polymer approach to prepare second-order NLO materials.

  4. A predictive structural model for bulk metallic glasses

    PubMed Central

    Laws, K. J.; Miracle, D. B.; Ferry, M.

    2015-01-01

    Great progress has been made in understanding the atomic structure of metallic glasses, but there is still no clear connection between atomic structure and glass-forming ability. Here we give new insights into perhaps the most important question in the field of amorphous metals: how can glass-forming ability be predicted from atomic structure? We give a new approach to modelling metallic glass atomic structures by solving three long-standing problems: we discover a new family of structural defects that discourage glass formation; we impose efficient local packing around all atoms simultaneously; and we enforce structural self-consistency. Fewer than a dozen binary structures satisfy these constraints, but extra degrees of freedom in structures with three or more different atom sizes significantly expand the number of relatively stable, ‘bulk' metallic glasses. The present work gives a new approach towards achieving the long-sought goal of a predictive capability for bulk metallic glasses. PMID:26370667

  5. Effect of double-tailed surfactant architecture on the conformation, self-assembly, and processing in polypeptide-surfactant complexes.

    PubMed

    Junnila, Susanna; Hanski, Sirkku; Oakley, Richard J; Nummelin, Sami; Ruokolainen, Janne; Faul, Charl F J; Ikkala, Olli

    2009-10-12

    This work describes the solid-state conformational and structural properties of self-assembled polypeptide-surfactant complexes with double-tailed surfactants. Poly(L-lysine) was complexed with three dialkyl esters of phosphoric acid (i.e., phosphodiester surfactants), where the surfactant tail branching and length was varied to tune the supramolecular architecture in a facile way. After complexation with the branched surfactant bis(2-ethylhexyl) phosphate in an aqueous solution, the polypeptide chains adopted an alpha-helical conformation. These rod-like helices self-assembled into cylindrical phases with the amorphous alkyl tails pointing outward. In complexes with dioctyl phosphate and didodecyl phosphate, which have two linear n-octyl or n-dodecyl tails, respectively, the polypeptide formed antiparallel beta-sheets separated by alkyl layers, resulting in well-ordered lamellar self-assemblies. By heating, it was possible to trigger a partial opening of the beta-sheets and disruption of the lamellar phase. After repeated heating/cooling, all of these complexes also showed a glass transition between 37 and 50 degrees C. Organic solvent treatment and plasticization by overstoichiometric amount of surfactant led to structure modification in poly(L-lysine)-dioctyl phosphate complexes, PLL(diC8)(x) (x = 1.0-3.0). Here, the alpha-helical PLL is surrounded by the surfactants and these bottle-brush-like chains self-assemble in a hexagonal cylindrical morphology. As x is increased, the materials are clearly plasticized and the degree of ordering is improved: The stiff alpha-helical backbones in a softened surfactant matrix give rise to thermotropic liquid-crystalline phases. The complexes were examined by Fourier transform infrared spectroscopy, small- and wide-angle X-ray scattering, transmission electron microscopy, differential scanning calorimetry, polarized optical microscopy, and circular dichroism.

  6. The Molecular Boat: A Hands-On Experiment to Demonstrate the Forces Applied to Self-Assembled Monolayers at Interfaces

    ERIC Educational Resources Information Center

    Chan, Charlene J.; Salaita, Khalid

    2012-01-01

    Demonstrating how surface chemistry and self-assembled monolayers (SAMs) control the macroscopic properties of materials is challenging as it often necessitates the use of specialized instrumentation. In this hands-on experiment, students directly measure a macroscopic property, the floatation of glass coverslips on water as a function of…

  7. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations.

    PubMed

    Deng, Lu; Du, Jincheng

    2018-01-14

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Q n distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3 B and 4 B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  8. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Deng, Lu; Du, Jincheng

    2018-01-01

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Qn distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3B and 4B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  9. Mechanics of evolving thin film structures

    NASA Astrophysics Data System (ADS)

    Liang, Jim

    In the Stranski-Krastanov system, the lattice mismatch between the film and the substrate causes the film to break into islands. During annealing, both the surface energy and the elastic energy drive the islands to coarsen. Motivated by several related studies, we suggest that stable islands should form when a stiff ceiling is placed at a small gap above the film. We show that the role of elasticity is reversed: with the ceiling, the total elastic energy stored in the system increases as the islands coarsen laterally. Consequently, the islands select an equilibrium size to minimize the combined elastic energy and surface energy. In lithographically-induced self-assembly, when a two-phase fluid confined between parallel substrates is subjected to an electric field, one phase can self-assemble into a triangular lattice of islands in another phase. We describe a theory of the stability of the island lattice. The islands select the equilibrium diameter to minimize the combined interface energy and electrostatic energy. Furthermore, we study compressed SiGe thin film islands fabricated on a glass layer, which itself lies on a silicon wafer. Upon annealing, the glass flows, and the islands relax. A small island relaxes by in-plane expansion. A large island, however, wrinkles at the center before the in-plane relaxation arrives. The wrinkles may cause significant tensile stress in the island, leading to fracture. We model the island by the von Karman plate theory and the glass layer by the Reynolds lubrication theory. Numerical simulations evolve the in-plane expansion and the wrinkles simultaneously. We determine the critical island size, below which in-plane expansion prevails over wrinkling. Finally, in devices that integrate dissimilar materials in small dimensions, crack extension in one material often accompanies inelastic deformation in another. We analyze a channel crack advancing in an elastic film under tension, while an underlayer creeps. We use a two-dimensional shear lag model to approximate the three-dimensional fracture process. Based on the computational results, we propose new experiments to measure fracture toughness and creep laws in small structures. Similarly, we study delayed crack initiation, steady crack growth, and transient crack growth when the underlayer is viscoelastic.

  10. Molecular dynamics simulation of metal nanoislands growth

    NASA Astrophysics Data System (ADS)

    Kapralov, N. V.; Babich, E. S.; Redkov, A. V.

    2017-11-01

    We present the atomistic model and the simulation of a self-assembled growth of a silver nanoisland film and small groups of nanoislands on a glass substrate after thermal poling of the glass with a profiled electrode. The calculations were performed in molecular dynamics simulator LAMMPS taking into account the diffusion of the metal atoms towards and along the glass surface and their clustering. Lennard-Jones potential was used to describe metal-metal and metal-glass interaction. The potential parameters were determined to provide qualitative coincidence of the simulated configurations of the metal nanostructures and the experimental ones, such as an isolated nanoisland, a pair and a set of three nanoislands and a “plasmonic molecule”.

  11. Characterization of 10,12-pentacosadiynoic acid Langmuir–Blodgett monolayers and their use in metal–insulator–metal tunnel devices

    PubMed Central

    Sharma, Saumya; Khawaja, Mohamad; Ram, Manoj K; Goswami, D Yogi

    2014-01-01

    Summary The characterization of Langmuir–Blodgett thin films of 10,12-pentacosadiynoic acid (PDA) and their use in metal–insulator–metal (MIM) devices were studied. The Langmuir monolayer behavior of the PDA film was studied at the air/water interface using surface tension–area isotherms of polymeric and monomeric PDA. Langmuir–Blodgett (LB, vertical deposition) and Langmuir–Schaefer (LS, horizontal deposition) techniques were used to deposit the PDA film on various substrates (glass, quartz, silicon, and nickel-coated film on glass). The electrochemical, electrical and optical properties of the LB and LS PDA films were studied using cyclic voltammetry, current–voltage characteristics (I–V), and UV–vis and FTIR spectroscopies. Atomic force microscopy measurements were performed in order to analyze the surface morphology and roughness of the films. A MIM tunnel diode was fabricated using a PDA monolayer assembly as the insulating barrier, which was sandwiched between two nickel layers. The precise control of the thickness of the insulating monolayers proved critical for electron tunneling to take place in the MIM structure. The current–voltage characteristics of the MIM diode revealed tunneling behavior in the fabricated Ni–PDA LB film–Ni structures. PMID:25551052

  12. Scaled Anatomical Model Creation of Biomedical Tomographic Imaging Data and Associated Labels for Subsequent Sub-surface Laser Engraving (SSLE) of Glass Crystals.

    PubMed

    Betts, Aislinn M; McGoldrick, Matthew T; Dethlefs, Christopher R; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W M

    2017-04-25

    Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings.

  13. Characterization of 10,12-pentacosadiynoic acid Langmuir-Blodgett monolayers and their use in metal-insulator-metal tunnel devices.

    PubMed

    Sharma, Saumya; Khawaja, Mohamad; Ram, Manoj K; Goswami, D Yogi; Stefanakos, Elias

    2014-01-01

    The characterization of Langmuir-Blodgett thin films of 10,12-pentacosadiynoic acid (PDA) and their use in metal-insulator-metal (MIM) devices were studied. The Langmuir monolayer behavior of the PDA film was studied at the air/water interface using surface tension-area isotherms of polymeric and monomeric PDA. Langmuir-Blodgett (LB, vertical deposition) and Langmuir-Schaefer (LS, horizontal deposition) techniques were used to deposit the PDA film on various substrates (glass, quartz, silicon, and nickel-coated film on glass). The electrochemical, electrical and optical properties of the LB and LS PDA films were studied using cyclic voltammetry, current-voltage characteristics (I-V), and UV-vis and FTIR spectroscopies. Atomic force microscopy measurements were performed in order to analyze the surface morphology and roughness of the films. A MIM tunnel diode was fabricated using a PDA monolayer assembly as the insulating barrier, which was sandwiched between two nickel layers. The precise control of the thickness of the insulating monolayers proved critical for electron tunneling to take place in the MIM structure. The current-voltage characteristics of the MIM diode revealed tunneling behavior in the fabricated Ni-PDA LB film-Ni structures.

  14. Spectroscopic study of biologically active glasses

    NASA Astrophysics Data System (ADS)

    Szumera, M.; Wacławska, I.; Mozgawa, W.; Sitarz, M.

    2005-06-01

    It is known that the chemical activity phenomenon is characteristic for some inorganic glasses and they are able to participate in biological processes of living organisms (plants, animals and human bodies). An example here is the selective removal of silicate-phosphate glass components under the influence of biological solutions, which has been applied in designing glasses acting as ecological fertilizers of controlled release rate of the nutrients for plants. The structure of model silicate-phosphate glasses containing the different amounts of the glass network formers, i.e. Ca 2+ and Mg 2+, as a binding components were studied. These elements besides other are indispensable of the normal growth of plants. In order to establish the function and position occupied by the particular components in the glass structure, the glasses were examined by FTIR spectroscopy (with spectra decomposition) and XRD methods. It has been found that the increasing amount of MgO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes systematically from a structure of the cristobalite type to a structure corresponding to forsterite type. Whilst the increasing content of CaO in the structure of silicate-phosphate glasses causes the formation of domains the structure of which changes from a structure typical for cristobalite through one similar to the structure of calcium orthophosphate, to a structure corresponding to calcium silicates. The changing character of domains structure is the reason of different chemical activity of glasses.

  15. Bipolar battery construction

    NASA Technical Reports Server (NTRS)

    Edwards, Dean B. (Inventor); Rippel, Wally E. (Inventor)

    1981-01-01

    A lightweight, bipolar battery construction for lead acid batteries in which a plurality of thin, rigid, biplates each comprise a graphite fiber thermoplastic composition in conductive relation to lead stripes plated on opposite flat surfaces of the plates, and wherein a plurality of nonconductive thermoplastic separator plates support resilient yieldable porous glass mats in which active material is carried, the biplates and separator plates with active material being contained and maintained in stacked assembly by axial compression of the stacked assembly. A method of assembling such a bipolar battery construction.

  16. Fabrication of Covalently Crosslinked and Amine-Reactive Microcapsules by Reactive Layer-by-Layer Assembly of Azlactone-Containing Polymer Multilayers on Sacrificial Microparticle Templates

    PubMed Central

    Saurer, Eric M.; Flessner, Ryan M.; Buck, Maren E.; Lynn, David M.

    2011-01-01

    We report on the fabrication of covalently crosslinked and amine-reactive hollow microcapsules using ‘reactive’ layer-by-layer assembly to deposit thin polymer films on sacrificial microparticle templates. Our approach is based on the alternating deposition of layers of a synthetic polyamine and a polymer containing reactive azlactone functionality. Multilayered films composed of branched poly(ethylene imine) (BPEI) and poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) were fabricated layer-by-layer on the surfaces of calcium carbonate and glass microparticle templates. After fabrication, these films contained residual azlactone functionality that was accessible for reaction with amine-containing molecules. Dissolution of the calcium carbonate or glass cores using aqueous ethylenediamine tetraacetic acid (EDTA) or hydrofluoric acid (HF), respectively, led to the formation of hollow polymer microcapsules. These microcapsules were robust enough to encapsulate and retain a model macromolecule (FITC-dextran) and were stable for at least 22 hours in high ionic strength environments, in low and high pH solutions, and in several common organic solvents. Significant differences in the behaviors of capsules fabricated on CaCO3 and glass cores were observed and characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Whereas capsules fabricated on CaCO3 templates collapsed upon drying, capsules fabricated on glass templates remained rigid and spherical. Characterization using EDS suggested that this latter behavior results, at least in part, from the presence of insoluble metal fluoride salts that are trapped or precipitate within the walls of capsules after etching of the glass cores using HF. Our results demonstrate that the assembly of BPEI/PVDMA films on sacrificial templates can be used to fabricate reactive microcapsules of potential use in a wide range of fields, including catalysis, drug and gene delivery, imaging, and biomedical research. PMID:21383867

  17. Direct comparison of polymethylmetacrylate (PMMA) and silicone-on-glass (SOG) for Fresnel lenses in concentrating photovoltaics (CPV)

    NASA Astrophysics Data System (ADS)

    Annen, Hans Philipp; Fu, Ling; Leutz, Ralf; González, Luis; Mbakop, Jehu

    2011-09-01

    The CPV community is still undecided on one critical issue: what material to use best for Fresnel lens parquets. Reliability and longevity are the most important, but all other properties play roles as well. We have developed and manufactured Fresnel lenses with the two commonly used materials: PMMA (Polymethylmethacrylate) and silicone on glass (SOG). Both lenses are designed for the same optical train for best comparability. This allows for better understanding the pros and cons of the materials and making an informed choice for a specific CPV module. While PMMA lenses are embossed from pre-fab sheets in a hot-cold process, the silicone lenses are cast from a heat-curing silicone rubber at moderate temperatures, reducing the energy consumption. PMMA allows for the inclusion of custom low-profile 3D (2.5D) structures for module assembly and mechanical alignment, a feature not possible in silicone due to its low rigidity. Both lenses suffer from thermal expansion and refractive index change. While PMMA parquets expand isotropically, SOG prisms deform due to the difference of expansion coefficients between the glass and the silicone. SOG lenses are prone to delamination of the silicone film. The adhesive strength of the film to the glass can be measured using a modified blister test that we developed. The results show large difference with different materials and confirm the necessity of controlling this issue closely. While the small thermal expansion of the glass sheets allows for larger parquet sizes, the deformation of the prisms with temperature may cause a performance hit.

  18. Phases and Dynamics of Self-Assembled DNA Programmed Nanocubes

    NASA Astrophysics Data System (ADS)

    Knorowski, Christopher; Travesset, Alex

    2013-03-01

    Systems of Nanoparticles grafted with complementary DNA strands have been shown to self-assemble into an array of superlattices. In this talk, we extend our previous model, which successfully predicted equilibrium phases and dynamics of assembly for spherical Nanoparticles without fitting parameters, to the case of nanocubes. We show that the phase diagram consists of bcc and sc lattices, depending on DNA length. The bcc lattices are either rotator and orientational glass or cubatic. For temperatures above the DNA melting temperature, the system is equivalent to f-star polymer systems, and consist of bcc, also with rotator, orientational glass or cubatic orientational order as well as sc. We also provide a characterization of the dynamics, including the role of topological defects in crystal nucleation and growth. This work is funded by DOE through the Ames Lab under Contract DE-AC02-07CH11358. Most simulations are performed on the Exalted GPU cluster, which is funded by a grant from Iowa State University and Nvidia Corp.

  19. Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing

    NASA Astrophysics Data System (ADS)

    Llordés, Anna; Wang, Yang; Fernandez-Martinez, Alejandro; Xiao, Penghao; Lee, Tom; Poulain, Agnieszka; Zandi, Omid; Saez Cabezas, Camila A.; Henkelman, Graeme; Milliron, Delia J.

    2016-12-01

    Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbOx) and `nanocrystal-in-glass’ composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbOx glass) via acid-catalysed condensation of polyniobate clusters. A combination of X-ray scattering and spectroscopic characterization with complementary simulations reveals that this strategy leads to a unique one-dimensional chain-like NbOx structure, which significantly enhances the electrochromic performance, compared to a typical three-dimensional NbOx network obtained from conventional high-temperature thermal processing. In addition, we show how self-assembled ITO-in-NbOx composite films can be successfully integrated into high-performance flexible electrochromic devices.

  20. The effects of motor vehicle window tinting on traffic safety and enforcement : final report : a report to the Governor and General Assembly in response to Senate Joint Resolution 293, 1993 Session.

    DOT National Transportation Integrated Search

    1994-01-01

    The 1993 Session of the Virginia General Assembly lessened restrictions relating to the application of aftermarket tinted window films to motor vehicle glass. Effective July 1, 1993, vehicles are allowed to have window tinting treatments that do not ...

  1. Synthesis and applications of novel silver nanoparticle structures

    NASA Astrophysics Data System (ADS)

    Dukes, Kyle

    The field of nanotechnology is rapidly expanding across disciplines as each new development is realized. New exciting technologies are being driven by advances in the application of nanotechnology; including biochemical, optical, and semiconductors research. This thesis will focus on the use of silver nanoparticles as optical labels on cells, methods of forming different small structures of silver nanoparticles, as well as the use of silver nanoparticles in the development of a photovoltaic cell. Silver nanoparticles have been modified with self-assembled monolayers of hydroxyl-terminated long chain thiols and encapsulated with a silica shell. The resulting core-shell nanoparticles were used as optical labels for cell analysis using flow cytometry and microscopy. The excitation of plasmon resonances in nanoparticles results in strong depolarized scattering of visible light permitting detection at the single nanoparticle level. The nanoparticles were modified with neutravidin via epoxide-azide coupling chemistry and biotinylated antibodies targeting cell surface receptors were bound to the nanoparticle surface. The nanoparticle labels exhibited long-term stability under physiological conditions without aggregation or silver ion leaching. Labeled cells exhibited two orders of magnitude enhancement of the scattering intensity compared to unlabeled cells. Dimers of silver nanoparticles have been fabricated by first immobilizing a monolayer of single silver nanoparticles onto poly(4-vinylpyridine) covered glass slides. The monolayer was then exposed to adenine, which has two amines which will bind to silver. The nanoparticle monolayer, now modified with adenine, is exposed to a second suspension of nanoparticles which will bind with the amine modified monolayer. Finally, a thin silica shell is formed about the structure via solgel chemistry to prevent dissolution or aggregation upon sonication/striping. Circular arrays of silver nanoparticels are developed using a template base self assembly. A 1.5 micron silica sphere is bound to poly(4-vinylpyridine) coated glass and used as a template. a mask of silica monoxide is vacuum deposited atop the spheres/glass leaving a ring just below the sphere untouched and able to bind silver nanoparticles. Optical microscopy reveal interesting results under depolarized light conditions, but ultimate structural analysis has proven elusive. Semiconducting p-type cuprous oxide was electrochemically deposited on both silver and indium tin oxide electrodes. Silver nanoparticles were incorporated into the architecture either atop the cuprous oxide or sandwiched between cuprous oxide and n-type material. Increases in photocurrent were observed in both cases and further work must be conducted to optimize a solid state device for photovoltaic applications.

  2. Reconfigurable interactions and three-dimensional patterning of colloidal particles and defects in lamellar soft media

    PubMed Central

    Trivedi, Rahul P.; Klevets, Ivan I.; Senyuk, Bohdan; Lee, Taewoo; Smalyukh, Ivan I.

    2012-01-01

    Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena typically encountered in atomic crystals and glasses. New applications—such as nanoantennas, plasmonic sensors, and nanocircuits—pose a challenge of achieving sparse colloidal assemblies with tunable interparticle separations that can be controlled at will. We demonstrate reconfigurable multiscale interactions and assembly of colloids mediated by defects in cholesteric liquid crystals that are probed by means of laser manipulation and three-dimensional imaging. We find that colloids attract via distance-independent elastic interactions when pinned to the ends of cholesteric oily streaks, line defects at which one or more layers are interrupted. However, dislocations and oily streaks can also be optically manipulated to induce kinks, allowing one to lock them into the desired configurations that are stabilized by elastic energy barriers for structural transformation of the particle-connecting defects. Under the influence of elastic energy landscape due to these defects, sublamellar-sized colloids self-assemble into structures mimicking the cores of dislocations and oily streaks. Interactions between these defect-embedded colloids can be varied from attractive to repulsive by optically introducing dislocation kinks. The reconfigurable nature of defect–particle interactions allows for patterning of defects by manipulation of colloids and, in turn, patterning of particles by these defects, thus achieving desired colloidal configurations on scales ranging from the size of defect core to the sample size. This defect-colloidal sculpturing may be extended to other lamellar media, providing the means for optically guided self-assembly of mesoscopic composites with predesigned properties. PMID:22411822

  3. De Novo Assembly of the Whole Transcriptome of the Wild Embryo, Preleptocephalus, Leptocephalus, and Glass Eel of Anguilla japonica and Deciphering the Digestive and Absorptive Capacities during Early Development.

    PubMed

    Hsu, Hsiang-Yi; Chen, Shu-Hwa; Cha, Yuh-Ru; Tsukamoto, Katsumi; Lin, Chung-Yen; Han, Yu-San

    2015-01-01

    Natural stocks of Japanese eel (Anguilla japonica) have decreased drastically because of overfishing, habitat destruction, and changes in the ocean environment over the past few decades. However, to date, artificial mass production of glass eels is far from reality because of the lack of appropriate feed for the eel larvae. In this study, wild glass eel, leptocephali, preleptocephali, and embryos were collected to conduct RNA-seq. Approximately 279 million reads were generated and assembled into 224,043 transcripts. The transcript levels of genes coding for digestive enzymes and nutrient transporters were investigated to estimate the capacities for nutrient digestion and absorption during early development. The results showed that the transcript levels of protein digestion enzymes were higher than those of carbohydrate and lipid digestion enzymes in the preleptocephali and leptocephali, and the transcript levels of amino acid transporters were also higher than those of glucose and fructose transporters and the cholesterol transporter. In addition, the transcript levels of glucose and fructose transporters were significantly raising in the leptocephali. Moreover, the transcript levels of protein, carbohydrate, and lipid digestion enzymes were balanced in the glass eel, but the transcript levels of amino acid transporters were higher than those of glucose and cholesterol transporters. These findings implied that preleptocephali and leptocephali prefer high-protein food, and the nutritional requirements of monosaccharides and lipids for the eel larvae vary with growth. An online database (http://molas.iis.sinica.edu.tw/jpeel/) that will provide the sequences and the annotated results of assembled transcripts was established for the eel research community.

  4. De Novo Assembly of the Whole Transcriptome of the Wild Embryo, Preleptocephalus, Leptocephalus, and Glass Eel of Anguilla japonica and Deciphering the Digestive and Absorptive Capacities during Early Development

    PubMed Central

    Cha, Yuh-Ru; Tsukamoto, Katsumi; Lin, Chung-Yen; Han, Yu-San

    2015-01-01

    Natural stocks of Japanese eel (Anguilla japonica) have decreased drastically because of overfishing, habitat destruction, and changes in the ocean environment over the past few decades. However, to date, artificial mass production of glass eels is far from reality because of the lack of appropriate feed for the eel larvae. In this study, wild glass eel, leptocephali, preleptocephali, and embryos were collected to conduct RNA-seq. Approximately 279 million reads were generated and assembled into 224,043 transcripts. The transcript levels of genes coding for digestive enzymes and nutrient transporters were investigated to estimate the capacities for nutrient digestion and absorption during early development. The results showed that the transcript levels of protein digestion enzymes were higher than those of carbohydrate and lipid digestion enzymes in the preleptocephali and leptocephali, and the transcript levels of amino acid transporters were also higher than those of glucose and fructose transporters and the cholesterol transporter. In addition, the transcript levels of glucose and fructose transporters were significantly raising in the leptocephali. Moreover, the transcript levels of protein, carbohydrate, and lipid digestion enzymes were balanced in the glass eel, but the transcript levels of amino acid transporters were higher than those of glucose and cholesterol transporters. These findings implied that preleptocephali and leptocephali prefer high-protein food, and the nutritional requirements of monosaccharides and lipids for the eel larvae vary with growth. An online database (http://molas.iis.sinica.edu.tw/jpeel/) that will provide the sequences and the annotated results of assembled transcripts was established for the eel research community. PMID:26406914

  5. Complexity of Curved Glass Structures

    NASA Astrophysics Data System (ADS)

    Kosić, T.; Svetel, I.; Cekić, Z.

    2017-11-01

    Despite the increasing number of research on the architectural structures of curvilinear forms and technological and practical improvement of the glass production observed over recent years, there is still a lack of comprehensive codes and standards, recommendations and experience data linked to real-life curved glass structures applications regarding design, manufacture, use, performance and economy. However, more and more complex buildings and structures with the large areas of glass envelope geometrically complex shape are built every year. The aim of the presented research is to collect data on the existing design philosophy on curved glass structure cases. The investigation includes a survey about how architects and engineers deal with different design aspects of curved glass structures with a special focus on the design and construction process, glass types and structural and fixing systems. The current paper gives a brief overview of the survey findings.

  6. 76 FR 71121 - Notice of Proposed Buy America Waiver

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... seeking a waiver for the procurement of glass panels needed to construct two structural glass pavilions... produced in the United States. 49 CFR 661.7(c)(1). Structural glass is a manufactured product. As such, it.... The proposals included glass panels to be utilized in the construction of two structural glass...

  7. A Microfluidic Route to Breaking Chiral Symmetry: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Ocko, Samuel; Adams, Laura

    A robust route for the biased production of single handed chiral structures has been found in generating non-spherical, multi-component double emulsions using glass microfluidic devices. The specific type of handedness is determined by the final packing geometry of four different inner drops inside an ultra-thin sheath of oil. Before the three dimensional chiral structures are formed, the quasi-one dimensional chain of four inner drops re-arranges in two dimensions into either checkerboard or stripe patterns. We derive an analytical model predicting which pattern is more likely and assembles in the least amount of time. Moreover, our model accurately predicts our experimental results and is based on local bending dynamics, rather than global surface energy minimization. We gratefully acknowledge Professors D. Weitz and L. Mahadevan's support.

  8. Stabilization of gold nanoparticle films on glass by thermal embedding.

    PubMed

    Karakouz, Tanya; Maoz, Ben M; Lando, Gilad; Vaskevich, Alexander; Rubinstein, Israel

    2011-04-01

    The poor adhesion of gold nanoparticles (NPs) to glass has been a known obstacle to studies and applications of NP-based systems, such as glass/Au-NP optical devices. Here we present a simple scheme for obtaining stable localized surface plasmon resonance (LSPR) transducers based on Au NP films immobilized on silanized glass and annealed. The procedure includes high-temperature annealing of the Au NP film, leading to partial embedding in the glass substrate and stabilization of the morphology and optical properties. The method is demonstrated using citrate-stabilized Au NPs, 20 and 63 nm mean diameter, immobilized electrostatically on glass microscope cover slides precoated with an aminosilane monolayer. Partial thermal embedding of the Au NPs in the glass occurs at temperatures in the vicinity of the glass transition temperature of the substrate. Upon annealing in air the Au NPs gradually settle into the glass and become encircled by a glass rim. In situ transmission UV-vis spectroscopy carried out during the annealing in a specially designed optical oven shows three regions: The most pronounced change of the surface plasmon (SP) band shape occurs in the first ca. 15 min of annealing; this is followed by a blue-shift of the SP band maximum (up to ca. 5 h), after which a steady red-shift of the SP band is observed (up to ca. 70 h, when the experiment was terminated). The development of the SP extinction spectrum was correlated to changes in the system structure, including thermal modification of the NP film morphology and embedding in the glass. The partially embedded Au NP films pass successfully the adhesive-tape test, while their morphology and optical response are stable toward immersion in solvents, drying, and thiol self-assembly. The enhanced adhesion is attributed to the metal NP embedding and rim formation. The stabilized NP films display a refractive index sensitivity (RIS) of 34-48 nm/RIU and 0.1-0.4 abs.u./RIU in SP band shift and extinction change, respectively. The RIS can be improved significantly by electroless deposition of Au on the embedded NPs, while the system stability is maintained. The method presented provides a simple route to obtaining stable Au NP film transducers. © 2011 American Chemical Society

  9. Fabrication of Superconducting Quantum Interference Device Magnetometers on a Glass Epoxy Polyimide Resin Substrate with Copper Terminals

    NASA Astrophysics Data System (ADS)

    Kawai, Jun; Kawabata, Miki; Oyama, Daisuke; Uehara, Gen

    We have developed fabrication technique of superconducting quantum interference device (SQUID) magnetometers based on Nb/AlAlOx/Nb junctions directly on a glass epoxy polyimide resin substrate, which has copper terminals embedded in advance. The advantage of this method is that no additional substrate and wirebonds are needed for assembly. Compared to conventional SQUID magnetometers, which are assembled with a SQUID chip fabricated on a Si substrate and wirebonding technique, low risk of disconnection can be expected. A directly-coupled multi-loop SQUID magnetometer fabricated with this method has as good noise performance as a SQUID magnetometer with the same design fabricated on a Si wafer. The magnetometer sustained its performance through thermal cycle test 13 times so far.

  10. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1995-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  11. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1993-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper weldment, a lower hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  12. Development of sheet-metal parabolic-trough reflector panels

    NASA Astrophysics Data System (ADS)

    Biester, A. W.

    1982-06-01

    Efforts to develop accurate, durable, and mass producible sheet metal parabolic trough solar collectors and the associated support for the collectors are described. The design considered is similar to an automobile hood, a two-piece sheet metal structure consisting of a formed steel frame or stiffening panel and a smooth contoured skin. The two pieces may be bonded or welded to form a rigid structure, and a reflective surface applied such as a film, glass mirror, or any of the presently utilized materials. The work encompassed material selection, adhesive selection and testing, tool design and fabrication, prototype panel production, and design and development of torque tube assemblies on which the trough is inclined. Results of adhesive bonding studies are given. It is found that high volume technology can be used to produce accurate and structurally sound reflector panels, and one configuration was selected for fabrication in suitable quantities for performance testing.

  13. Novel fluorescence adjustable photonic crystal materials

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Liu, Xiaoxia; Ni, Yaru; Fang, Jiaojiao; Fang, Liang; Lu, Chunhua; Xu, Zhongzi

    2017-11-01

    Novel photonic crystal materials (PCMs) with adjustable fluorescence were fabricated by distributing organic fluorescent powders of Yb0.2Er0.4Tm0.4(TTA)3Phen into the opal structures of self-assembled silica photonic crystals (PCs). Via removing the silica solution in a constant speed, PCs with controllable thicknesses and different periodic sizes were obtained on glass slides. Yb0.2Er0.4Tm0.4(TTA)3Phen powders were subsequently distributed into the opal structures. The structures and optical properties of the prepared PCMs were investigated. Finite-difference-time-domain (FDTD) calculation was used to further analyze the electric field distributions in PCs with different periodic sizes while the relation between periodic sizes and fluorescent spectra of PCMs was discussed. The results showed that the emission color of the PCMs under irradiation of 980 nm laser can be easily adjusted from green to blue by increasing the periodic size from 250 to 450 nm.

  14. Preparation of Sb2S3 nanocrystals modified TiO2 dendritic structure with nanotubes for hybrid solar cell

    NASA Astrophysics Data System (ADS)

    Li, Yingpin; Wei, Yanan; Feng, Kangning; Hao, Yanzhong; Pei, Juan; Sun, Bao

    2018-06-01

    Array of TiO2 dendritic structure with nanotubes was constructed on transparent conductive fluorine-doped tin oxide glass (FTO) with titanium potassium oxalate as titanium source. Sb2S3 nanocrystals were successfully deposited on the TiO2 substrate via spin-coating method. Furthermore, TiO2/Sb2S3/P3HT/PEDOT:PSS composite film was prepared by successively spin-coating P3HT and PEDOT:PSS on TiO2/Sb2S3. It was demonstrated that the modification of TiO2 dendritic structure with Sb2S3 could enhance the light absorption in the visible region. The champion hybrid solar cell assembled by TiO2/Sb2S3/P3HT/PEDOT:PSS composite film achieved a power conversion efficiency (PCE) of 1.56%.

  15. Thermal stress analysis of a planar SOFC stack

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Kuang; Chen, Tsung-Ting; Chyou, Yau-Pin; Chiang, Lieh-Kwang

    The aim of this study is, by using finite element analysis (FEA), to characterize the thermal stress distribution in a planar solid oxide fuel cell (SOFC) stack during various stages. The temperature profiles generated by an integrated thermo-electrochemical model were applied to calculate the thermal stress distributions in a multiple-cell SOFC stack by using a three-dimensional (3D) FEA model. The constructed 3D FEA model consists of the complete components used in a practical SOFC stack, including positive electrode-electrolyte-negative electrode (PEN) assembly, interconnect, nickel mesh, and gas-tight glass-ceramic seals. Incorporation of the glass-ceramic sealant, which was never considered in previous studies, into the 3D FEA model would produce more realistic results in thermal stress analysis and enhance the reliability of predicting potential failure locations in an SOFC stack. The effects of stack support condition, viscous behavior of the glass-ceramic sealant, temperature gradient, and thermal expansion mismatch between components were characterized. Modeling results indicated that a change in the support condition at the bottom frame of the SOFC stack would not cause significant changes in thermal stress distribution. Thermal stress distribution did not differ significantly in each unit cell of the multiple-cell stack due to a comparable in-plane temperature profile. By considering the viscous characteristics of the glass-ceramic sealant at temperatures above the glass-transition temperature, relaxation of thermal stresses in the PEN was predicted. The thermal expansion behavior of the metallic interconnect/frame had a greater influence on the thermal stress distribution in the PEN than did that of the glass-ceramic sealant due to the domination of interconnect/frame in the volume of a planar SOFC assembly.

  16. Location-Specific Measurements of The Glass Transition Temperature in Fluorescently Labeled Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Christie, Dane; Register, Richard; Priestley, Rodney

    Block copolymers can self-assemble into periodic structures containing a high internal surface area, nanoscale domain periods, and periodically varying composition profiles. Depending on their components, block copolymers may also exhibit variations in their dynamic properties e.g., glass transition temperature (Tg) across the domain period. Measuring the variation of Tg across the domain period of block copolymers has remained a significant challenge due to the nanometer length scale of the domain period. Here we use fluorescence spectroscopy and the selective incorporation of a pyrene-containing methacrylate monomer at various positions along the chain to characterize the distribution of glass transition temperatures across the domain period of an amorphous block copolymer. The pyrene-containing monomer location is determined from the monomer segment distribution calculated using self-consistent field theory. Our model system is a lamella-forming diblock copolymer of poly(butyl methacrylate - b- methyl methacrylate). We show that Tg is asymmetrically distributed across the interface; as the interface is approached, larger gradients in Tg exist in the hard PMMA-rich domain than in the soft PBMA-rich domain. By characterizing Tg of PBMA or PMMA interfacial segments, we show that polymer dynamics at the interface are heterogeneous; there is a 15 K difference in Tg measured between PBMA interfacial segments and PMMA interfacial segments.

  17. Dramatic Increase in the Signal and Sensitivity of Detection via Self-Assembly of Branched DNA

    PubMed Central

    Kim, Kyung-Tae; Chae, Chi-Bom

    2011-01-01

    In molecular testing using PCR, the target DNA is amplified via PCR and the sequence of interest is investigated via hybridization with short oligonucleotide capture probes that are either in a solution or immobilized on solid supports such as beads or glass slides. In this report, we report the discovery of assembly of DNA complex(es) between a capture probe and multiple strands of the PCR product. The DNA complex most likely has branched structure. The assembly of branched DNA was facilitated by the product of asymmetric PCR. The amount of branched DNA assembled was increased five fold when the asymmetric PCR product was denatured and hybridized with a capture probe all in the same PCR reaction mixture. The major branched DNA species appeared to contain three reverse strands (the strand complementary to the capture probe) and two forward strands. The DNA was sensitive to S1 nuclease suggesting that it had single-stranded gaps. Branched DNA also appeared to be assembled with the capture probes immobilized on the surface of solid support when the product of asymmetric PCR was hybridized. Assembly of the branched DNA was also increased when hybridization was performed in complete PCR reaction mixture suggesting the requirement of DNA synthesis. Integration of asymmetric PCR, heat denaturation and hybridization in the same PCR reaction mixture with the capture probes immobilized on the surface of solid support achieved dramatic increase in the signal and sensitivity of detection of DNA. Such a system should be advantageously applied for development of automated process for detection of DNA. PMID:21870112

  18. pH Meter probe assembly

    DOEpatents

    Hale, C.J.

    1983-11-15

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe. 1 fig.

  19. pH Meter probe assembly

    DOEpatents

    Hale, Charles J.

    1983-01-01

    An assembly for mounting a pH probe in a flowing solution, such as a sanitary sewer line, which prevents the sensitive glass portion of the probe from becoming coated with grease, oil, and other contaminants, whereby the probe gives reliable pH indication over an extended period of time. The pH probe assembly utilizes a special filter media and a timed back-rinse feature for flushing clear surface contaminants of the filter. The flushing liquid is of a known pH and is utilized to check performance of the probe.

  20. Molecular Dynamics Simulation of Salt Diffusion in Polyelectrolyte Assemblies.

    PubMed

    Zhang, Ran; Duan, Xiaozheng; Ding, Mingming; Shi, Tongfei

    2018-06-05

    The diffusion of salt ions and charged probe molecules in polyelectrolyte assemblies is often assumed to follow a theoretical hopping model, in which the diffusing ion is hopping between charged sites of chains based on electroneutrality. However, experimental verification of diffusing pathway at such microscales is difficult, and the corresponding molecular mechanisms remain elusive. In this study, we perform all-atom molecular dynamics (MD) simulations of salt diffusion in polyelectrolyte (PE) assembly of poly (sodium 4-styrenesulfonate) (PSS) and poly (diallyldimethylammonium chloride) (PDAC). Besides the ion hopping mode, the diffusing trajectories are found presenting common features of a jump process, i.e., subjecting to PE relaxation, water pockets in the structure open and close, thus the ion can move from one pocket to another. Anomalous subdiffusion of ions and water is observed due to the trapping scenarios in these water pockets. The jump events are much rarer compared with ion hopping but significantly increases salt diffusion with increasing temperature. Our result strongly indicates that salt diffusion in hydrated PDAC/PSS is a combined process of ion hopping and jump motion. This provides new molecular explanation for the coupling of salt motion with chain motion and the nonlinear increase of salt diffusion at glass transition temperature.

  1. Inverse opal photonic crystals with photonic band gaps in the visible and near-infrared

    NASA Astrophysics Data System (ADS)

    Jarvis, Brandon C.; Gilleland, Cody L.; Renfro, Tim; Gutierrez, Jose; Parikh, Kunjal; Glosser, R.; Landon, Preston B.

    2005-08-01

    Colloidal silica spheres with 200nm, 250nm, and 290nm diameters were self-assembled with single crystal crystallites 4-5mm wide and 10-15mm long. Larger spheres with diameters between 1000-2300nm were self-assembled with single crystal crystallites up to 1.5mm wide and 2mm long. The silica opals self-assembled vertically along the [100] direction of the face centered cubic lattice resulting in self-templated opals. Inverse opal photonic crystals with a partial band gap possessing a maximum in the near infrared at 3.8μm were constructed from opal templates composed of 2300nm diameter spheres with chalcogenide Ge33As12Se55 (AMTIR-1), a transparent glass in the near infrared with high refractive index. Inverse gold and gold/ polypropylene composite photonic crystals were fabricated from synthetic opal templates composed of 200-290nm silica spheres. The reflectance spectra and electrical conductance of the resulting structures is presented. Gold was infiltrated into opal templates as gold chloride and heat converted to metallic gold. Opals partially infiltrated with gold were co-infiltrated with polypropylene plastic for mechanical support prior to removal of the silica template with hydrofluoric acid.

  2. Highχ block copolymers for directed self-assembly patterning without the need for topcoat or solvent annealing

    NASA Astrophysics Data System (ADS)

    Xu, Kui; Hockey, Mary Ann; Calderas, Eric; Guerrero, Douglas; Sweat, Daniel; Fiehler, Jeffrey

    2017-03-01

    High-χ block copolymers for directed self-assembly (DSA) patterning that do not need topcoat or solvent annealing have been developed. A variety of functionalities have been successfully added into the block copolymers, such as balanced surface energy between the polymer blocks, outstandingly high χ, tunable glass transition temperature (Tg), and selective crosslinking. Perpendicular orientation control, as desired for patterning, of the block copolymers can be simply achieved by thermal annealing due to the equal surface energy of the polymer blocks at the annealing temperatures, which allows avoiding solvent annealing or top-coat. The χ value can be tuned up to achieve L0 as low as 8-10 nm for lamellar-structured block copolymers and hole/pillar size as small as 5-6 nm for cylinder-structured block copolymers. The Tg of the block copolymers can be tuned to improve the kinetics of thermal annealing by enhancing the polymer chain mobility. Block-selective crosslinking facilitates the pattern transfer by mitigating pattern collapse during wet etching and improving oxygen plasma etching selectivity between the polymer blocks. This paper provides an introductory review of our high-χ block copolymer materials with various functionalities for achieving improved DSA performance.

  3. Assembling tungsten oxide hydrate nanocrystal colloids formed by laser ablation in liquid into fast-response electrochromic films.

    PubMed

    Wang, Shalong; Dou, Kang; Zou, Yousheng; Dong, Yuhang; Li, Jubin; Ju, Dan; Zeng, Haibo

    2017-03-01

    High-performance electrochromic films based on tungsten oxide hydrate ([WO 2 (O 2 )H 2 O]·1.66H 2 O) colloidal nanocrystals with fast switching speed were fabricated by laser ablation in a mixture of water and hydrogen peroxide followed by electrophoretic methods. Through electrophoretic deposition, the nanoparticles in the colloids synthesized by laser ablation aggregated onto the FTO coated glass substrate forming a lager cell with a uniform size of around 200nm, which subsequently self-assembled into a porous tungsten oxide hydrate film. By optimizing the electrophoretic time (800s) and voltage (-0.5V), the mesh-like porous tungsten oxide hydrate film achieved a wide optical modulation of 32% at 632nm, fast coloration and bleaching response speed of 7.8 s and 1.7s respectively due to the synergetic effect of the unique atomic structure of [WO 2 (O 2 )H 2 O]·1.66H 2 O and porous structure with large surface area that facilitates the ion insertion/extraction. Thus the tungsten oxide hydrate can be a promising electrochromic material for practical applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Examining porous bio-active glass as a potential osteo-odonto-keratoprosthetic skirt material.

    PubMed

    Huhtinen, Reeta; Sandeman, Susan; Rose, Susanna; Fok, Elsie; Howell, Carol; Fröberg, Linda; Moritz, Niko; Hupa, Leena; Lloyd, Andrew

    2013-05-01

    Bio-active glass has been developed for use as a bone substitute with strong osteo-inductive capacity and the ability to form strong bonds with soft and hard tissue. The ability of this material to enhance tissue in-growth suggests its potential use as a substitute for the dental laminate of an osteo-odonto-keratoprosthesis. A preliminary in vitro investigation of porous bio-active glass as an OOKP skirt material was carried out. Porous glass structures were manufactured from bio-active glasses 1-98 and 28-04 containing varying oxide formulation (1-98, 28-04) and particle size range (250-315 μm for 1-98 and 28-04a, 315-500 μm for 28-04b). Dissolution of the porous glass structure and its effect on pH was measured. Structural 2D and 3D analysis of porous structures were performed. Cell culture experiments were carried out to study keratocyte adhesion and the inflammatory response induced by the porous glass materials. The dissolution results suggested that the porous structure made out of 1-98 dissolves faster than the structures made from glass 28-04. pH experiments showed that the dissolution of the porous glass increased the pH of the surrounding solution. The cell culture results showed that keratocytes adhered onto the surface of each of the porous glass structures, but cell adhesion and spreading was greatest for the 98a bio-glass. Cytokine production by all porous glass samples was similar to that of the negative control indicating that the glasses do not induce a cytokine driven inflammatory response. Cell culture results support the potential use of synthetic porous bio-glass as an OOKP skirt material in terms of limited inflammatory potential and capacity to induce and support tissue ingrowth.

  5. Motion control in free-standing shape-memory actuators

    NASA Astrophysics Data System (ADS)

    Belmonte, Alberto; Lama, Giuseppe C.; Cerruti, Pierfrancesco; Ambrogi, Veronica; Fernández-Francos, Xavier; De la Flor, Silvia

    2018-07-01

    In this work, free-standing shape-memory thermally triggered actuators are developed by laminating ‘thiol-epoxy’-based glassy thermoset (GT) and stretched liquid-crystalline network (LCN) films. A sequential curing process was used to obtain GTs with tailored thermomechanical properties and network relaxation dynamics, and also to assemble the final actuator. The actuation extent, rate and time were studied by varying the GT and the heating rate in thermo-actuation with an experimental approach. The results demonstrate that it is possible to tailor the actuation rate and time by designing GT materials with a glass transition temperature close to that of the liquid-crystalline-to-isotropic phase transition of the LCN, thus making it possible to couple the two processes. Such coupling is also possible in rapid heating processes even when the glass transition temperature of the GT is clearly lower than the isotropization temperature of the LCN, depending on the network relaxation dynamics of the GT and the presence of thermal gradients within the actuators. Interestingly, varying the GT network relaxation dynamics does not affect the actuation extent. As predicted by the analytical model developed in our previous work, the modulus of the GT layer is mainly responsible for the actuation extent. Finally, to demonstrate the enhanced control of the actuation, specifically designed actuators were assembled in a three-dimensional actuating device able to make complex motions (including ‘S-type’ bending). This approach makes it possible to engineer advanced functional materials for application in self-adaptable structures and soft robotics.

  6. Fabrication of tunable plasmonic 3D nanostructures for SERS applications

    NASA Astrophysics Data System (ADS)

    Ozbay, Ayse; Yuksel, Handan; Solmaz, Ramazan; Kahraman, Mehmet

    2016-03-01

    Surface-enhanced Raman scattering (SERS) is a powerful technique used for characterization of biological and nonbiological molecules and structures. Since plasmonic properties of the nanomaterials is one of the most important factor influencing SERS activity, tunable plasmonic properties (wavelength of the surface plasmons and magnitude of the electromagnetic field generated on the surface) of SERS substrates are crucial in SERS studies. SERS enhancement can be maximized by controlling of plasmonic properties of the nanomaterials. In this study, a novel approach to fabricate tunable plasmonic 3D nanostructures based on combination of soft lithography and nanosphere lithography is studied. Spherical latex particles having different diameters are uniformly deposited on glass slides with convective assembly method. The experimental parameters for the convective assembly are optimized by changing of latex spheres concentration, stage velocity and latex particles volume placed between to two glass slides that staying with a certain angle to each other. Afterwards, polydimethylsiloxane (PDMS) elastomer is poured on the deposited latex particles and cured to obtain nanovoids on the PDMS surfaces. The diameter and depth of the nanovoids on the PDMS surface are controlled by the size of the latex particles. Finally, fabricated nanovoid template on the PDMS surfaces are filled with the silver coating to obtain plasmonic 3D nanostructures. Characterization of the fabricated surfaces is performed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SERS performance of fabricated 3D plasmonic nanostructures will be evaluated using Raman reporter molecules.

  7. Evaluation of Behaviours of Laminated Glass

    NASA Astrophysics Data System (ADS)

    Sable, L.; Japins, G.; Kalnins, K.

    2015-11-01

    Visual appearance of building facades and other load bearing structures, which now are part of modern architecture, is the reason why it is important to investigate in more detail the reliability of laminated glass for civil structures. Laminated glass in particular has become one of the trendy materials, for example Apple© stores have both load carrying capacity and transparent appearance. Glass has high mechanical strength and relatively medium density, however, the risk of sudden brittle failure like concrete or other ceramics determine relatively high conservatism in design practice of glass structures. This should be changed as consumer requirements evolve calling for a safe and reliable design methodology and corresponding building standards. A design methodology for glass and glass laminates should be urgently developed and included as a chapter in Eurocode. This paper presents initial experimental investigation of behaviour of simple glass sheets and laminated glass samples in 4-point bending test. The aim of the current research is to investigate laminated glass characteristic values and to verify the obtained experimental results with finite element method for glass and EVA material in line with future European Structural Design of Glass Components code.

  8. RGB and white-emitting organic lasers on flexible glass.

    PubMed

    Foucher, C; Guilhabert, B; Kanibolotsky, A L; Skabara, P J; Laurand, N; Dawson, M D

    2016-02-08

    Two formats of multiwavelength red, green and blue (RGB) laser on mechanically-flexible glass are demonstrated. In both cases, three all-organic, vertically-emitting distributed feedback (DFB) lasers are assembled onto a common ultra-thin glass membrane substrate and fully encapsulated by a thin polymer overlayer and an additional 50 µm-thick glass membrane in order to improve the performance. The first device format has the three DFB lasers sitting next to each other on the glass substrate. The DFB lasers are simultaneously excited by a single overlapping optical pump, emitting spatially separated red, green and blue laser output with individual thresholds of, respectively, 28 µJ/cm(2), 11 µJ/cm(2) and 32 µJ/cm(2) (for 5 ns pump pulses). The second device format has the three DFB lasers, respectively the red, green and blue laser, vertically stacked onto the flexible glass. This device format emits a white laser output for an optical pump fluence above 42 µJ/cm(2).

  9. Soft lithography using perfluorinated polyether molds and PRINT technology for fabrication of 3-D arrays on glass substrates

    NASA Astrophysics Data System (ADS)

    Wiles, Kenton B.; Wiles, Natasha S.; Herlihy, Kevin P.; Maynor, Benjamin W.; Rolland, Jason P.; DeSimone, Joseph M.

    2006-03-01

    The fabrication of nanometer size structures and complex devices for microelectronics is of increasing importance so as to meet the challenges of large-scale commercial applications. Soft lithography typically employs elastomeric polydimethylsiloxane (PDMS) molds to replicate micro- and nanoscale features. However, the difficulties of PDMS for nanoscale fabrication include inherent incompatibility with organic liquids and the production of a residual scum or flash layer that link features where the nano-structures meet the substrate. An emerging technologically advanced technique known as Pattern Replication in Non-wetting Templates (PRINT) avoids both of these dilemmas by utilizing photocurable perfluorinated polyether (PFPE) rather than PDMS as the elastomeric molding material. PFPE is a liquid at room temperature that exhibits low modulus and high gas permeability when cured. The highly fluorinated PFPE material allows for resistance to swelling by organic liquids and very low surface energies, thereby preventing flash layer formation and ease of separation of PFPE molds from the substrates. These enhanced characteristics enable easy removal of the stamp from the molded material, thereby minimizing damage to the nanoscale features. Herein we describe that PRINT can be operated in two different modes depending on whether the objects to be molded are to be removed and harvested (i.e. to make shape specific organic particles) or whether scum free objects are desired which are adhered onto the substrate (i.e. for scum free pattern generation using imprint lithography). The former can be achieved using a non-reactive, low surface energy substrate (PRINT: Particle Replication in Non-wetting Templates) and the latter can be achieved using a reactive, low surface energy substrate (PRINT: Pattern Replication in Non-wetting Templates). We show that the PRINT technology can been used to fabricate nano-particle arrays covalently bound to a glass substrate with no scum layer. The nanometer size arrays were fabricated using a PFPE mold and a self-assembled monolayer (SAM) fluorinated glass substrate that was also functionalized with free-radically reactive SAM methacrylate moieties. The molded polymeric materials were covalently bound to the glass substrate through thermal curing with the methacrylate groups to permit three dimensional array fabrication. The low surface energies of the PFPE mold and fluorinated glass substrate allowed for no flash layer formation, permitting well resolved structures.

  10. Packaging of ferroelectric liquid crystal-on-silicon spatial light modulators

    NASA Astrophysics Data System (ADS)

    Lin, W.; Morozova, Nina D.; Ju, TehHua; Zhang, Weidong; Lee, Yung-Cheng; McKnight, Douglas J.; Johnson, Kristina M.

    1996-11-01

    A self-pulling soldering technology has been demonstrated for assembling liquid crystal on silicon (LCOS) spatial light modulators (SLMs). One of the major challenges in manufacturing the LCOS modules is to reproducibly control the thickness of the gap between the very large scale integrated circuit (VLSI) chip and the cover glass. The liquid crystal material is sandwiched between the VLSI chop and the cover glass which is coated with a transparent conductor. Solder joints with different profiles and sizes have been designed to provide surface tension forces to control the gap accommodating the ferroelectric liquid crystal layer in the range of a micron level with sub- micron uniformity. The optimum solder joint design is defined as a joint that results in the maximum pulling force. This technology provides an automatic, batch assembly process for a LCOS SLM through one reflow process. Fluxless soldering technology is used to assemble the module. This approach avoids residues from chemical of flux and oxides, and eliminates potential contamination to the device. Two different LCOS SLM designs and the process optimization are described.

  11. 46 CFR 160.047-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... instruments of closure for buoyant vests. 160.047-3a Section 160.047-3a Shipping COAST GUARD, DEPARTMENT OF... LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Kapok or Fibrous Glass, Adult and Child § 160.047-3a Materials—Dee ring and snap hook assemblies and other instruments of closure for buoyant vests. (a...

  12. 46 CFR 160.047-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... instruments of closure for buoyant vests. 160.047-3a Section 160.047-3a Shipping COAST GUARD, DEPARTMENT OF... LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Kapok or Fibrous Glass, Adult and Child § 160.047-3a Materials—Dee ring and snap hook assemblies and other instruments of closure for buoyant vests. (a...

  13. 46 CFR 160.047-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... instruments of closure for buoyant vests. 160.047-3a Section 160.047-3a Shipping COAST GUARD, DEPARTMENT OF... LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Kapok or Fibrous Glass, Adult and Child § 160.047-3a Materials—Dee ring and snap hook assemblies and other instruments of closure for buoyant vests. (a...

  14. 46 CFR 160.047-3a - Materials-Dee ring and snap hook assemblies and other instruments of closure for buoyant vests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... instruments of closure for buoyant vests. 160.047-3a Section 160.047-3a Shipping COAST GUARD, DEPARTMENT OF... LIFESAVING EQUIPMENT Specification for a Buoyant Vest, Kapok or Fibrous Glass, Adult and Child § 160.047-3a Materials—Dee ring and snap hook assemblies and other instruments of closure for buoyant vests. (a...

  15. Influence of ionic strength and surfactant concentration on electrostatic surfacial assembly of cetyltrimethylammonium bromide-capped gold nanorods on fully immersed glass.

    PubMed

    Ferhan, Abdul Rahim; Guo, Longhua; Kim, Dong-Hwan

    2010-07-20

    The effect of ionic strength as well as surfactant concentration on the surface assembly of cetyltrimethylammonium bromide (CTAB)-capped gold nanorods (GNRs) has been studied. Glass substrates were modified to yield a net negative charge through electrostatic coating of polystyrenesulfonate (PSS) over a self-assembled monolayer (SAM) of positively charged aminopropyltriethoxysilane (APTS). The substrates were then fully immersed in GNR solutions at different CTAB concentrations and ionic strengths. Under slightly excess CTAB concentrations, it was observed that the density of GNRs immobilized on a substrate was predictably tunable through the adjustment of NaCl concentration over a wide range. Motivated by the experimental observation, we hypothesize that electrostatic shielding of charges around the GNRs affects the density of GNR immobilization. This model ultimately explains that at moderate to high CTAB concentrations a second electrostatic shielding effect contributed by excess CTAB molecules occurs, resulting in a parabolic trend of nanorod surface density when ionic strength is continually increased. In contrast, at a low CTAB concentration, the effect of ionic strength becomes much less significant due to insufficient CTAB molecules to provide for the second electrostatic shielding effect. The tunability of electrostatic-based surface assembly of GNRs enables the attainment of a dense surface assembly of nanorods without significant removal of CTAB or any other substituted stabilizing agent, both of which could compromise the stability and morphology of GNRs in solution. An additional study performed to investigate the robustness of such electrostatic-based surface assembly also proved its reliability to be used as biosensing platforms.

  16. Coordination-based gold nanoparticle layers.

    PubMed

    Wanunu, Meni; Popovitz-Biro, Ronit; Cohen, Hagai; Vaskevich, Alexander; Rubinstein, Israel

    2005-06-29

    Gold nanoparticle (NP) mono- and multilayers were constructed on gold surfaces using coordination chemistry. Hydrophilic Au NPs (6.4 nm average core diameter), capped with a monolayer of 6-mercaptohexanol, were modified by partial substitution of bishydroxamic acid disulfide ligand molecules into their capping layer. A monolayer of the ligand-modified Au NPs was assembled via coordination with Zr4+ ions onto a semitransparent Au substrate (15 nm Au, evaporated on silanized glass and annealed) precoated with a self-assembled monolayer of the bishydroxamate disulfide ligand. Layer-by-layer construction of NP multilayers was achieved by alternate binding of Zr4+ ions and ligand-modified NPs onto the first NP layer. Characterization by atomic force microscopy (AFM), ellipsometry, wettability, transmission UV-vis spectroscopy, and cross-sectional transmission electron microscopy showed regular growth of NP layers, with a similar NP density in successive layers and gradually increased roughness. The use of coordination chemistry enables convenient step-by-step assembly of different ligand-possessing components to obtain elaborate structures. This is demonstrated by introducing nanometer-scale vertical spacing between a NP layer and the gold surface, using a coordination-based organic multilayer. Electrical characterization of the NP films was carried out using conductive AFM, emphasizing the barrier properties of the organic spacer multilayer. The results exhibit the potential of coordination self-assembly in achieving highly controlled composite nanostructures comprising molecules, NPs, and other ligand-derivatized components.

  17. Teaching Climate Change Through Music

    NASA Astrophysics Data System (ADS)

    Weiss, P. S.

    2007-12-01

    During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".

  18. Geometry in Biomimetic Network: Double Gyroid to Pseudo-Single Gyroid in Nanohybrid Materials

    NASA Astrophysics Data System (ADS)

    Hsueh, Han-Yu; Ho, Rong-Ming; Hung, Yu-Chueh; Ling, Yi-Chun; Hasegawa, Hirokazu

    2013-03-01

    Biological systems have developed delicately arranged micro- and architectures to produce striking optical effects since millions of years ago. Inspired by the textures of butterfly wings with single gyroid (SG) structure, herein, we aim to fabricate biocompatible and robust materials with SG-like structure in nanometer size so as to give new materials with unprecedented optical properties for applications. Biommicking from the biological photonic structures of butterfly wings, a double gyroid (DG) structure in nanometer size is obtained from the self-assembly of polystyrene-b-poly(L-lactide) (PS-PLLA). To acquire robust backbone networks, inorganic networks in polymer matrix are fabricated by using the hydrolyzed PS-PLLA with DG structure as a template for sol-gel reaction. Owing to the soft polymer matrix, two co-continuous inorganic networks embedded in the polymer matrix can be rearranged by thermal annealing at temperature above the glass transition of the polymer. Consequently, the rearrangement of these inorganic networks leads the formation of SG-like structure possessing unique nanohybrids with ordered texture. This unique nanomaterials with SG-like structure is referred as a pseudo-SG (p-SG) nanohybrids.

  19. Layered chalcogenide glass structures for IR lenses

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel; Bayya, Shyam; Sanghera, Jas; Nguyen, Vinh; Scribner, Dean; Maksimovic, Velimir; Gill, John; Yi, Allen; Deegan, John; Unger, Blair

    2014-07-01

    A technique for fabricating novel infrared (IR) lenses can enable a reduction in the size and weight of IR imaging optics through the use of layered glass structures. These structures can range from having a few thick glass layers, mimicking cemented doublets and triplets, to having many thin glass layers approximating graded index (GRIN) lenses. The effectiveness of these structures relies on having materials with diversity in refractive index (large Δn) and dispersion and similar thermo-viscous behavior (common glass transition temperature, ΔTg = 10°C). A library of 13 chalcogenide glasses with broad IR transmission (NIR through LWIR bands) was developed to satisfy these criteria. The lens fabrication methodology, including glass design and synthesis, sheet fabrication, preform making, lens molding and surface finishing are presented.

  20. Failure Investigation & Design Optimization of a Photo-Multiplier Tube Assembly Under Thermal Loading

    NASA Technical Reports Server (NTRS)

    Dahya, Kevin

    2004-01-01

    Analysis of GLAST ACD Photo-Multiplier Tube (PMT) assembly under thermal loading demonstrates that the glass tube experiences high stresses due to Coefficient of Thermal Expansion mismatch, as well as increased stress due to high stiffness and incompressibility of potting compound. Further investigation shows adverse loading effects due to the magnetic shield, a thin piece of steel wrapped around the PMT. This steel, Mu Metal, contained an overlap region that directly attributed to crack propagation in the outside surface of the tube. Sensitivities to different configurations were studied to reduce the stress and provide a more uniform loading throughout the PMT to ensure mission success. Studies indicate substituting a softer and more compressible potting compound and moving the Mu metal from the glass tube to the outside wall of the aluminum housing yields lower stress.

  1. X-ray Absorption Fine Structure (XAFS) Studies of Oxide Glasses—A 45-Year Overview

    PubMed Central

    Zanotto, Edgar Dutra

    2018-01-01

    X-ray Absorption Fine Structure (XAFS) spectroscopy has been widely used to characterize the short-range order of glassy materials since the theoretical basis was established 45 years ago. Soon after the technique became accessible, mainly due to the existence of Synchrotron laboratories, a wide range of glassy materials was characterized. Silicate glasses have been the most studied because they are easy to prepare, they have commercial value and are similar to natural glasses, but borate, germanate, phosphate, tellurite and other less frequent oxide glasses have also been studied. In this manuscript, we review reported advances in the structural characterization of oxide-based glasses using this technique. A focus is on structural characterization of transition metal ions, especially Ti, Fe, and Ni, and their role in different properties of synthetic oxide-based glasses, as well as their important function in the formation of natural glasses and magmas, and in nucleation and crystallization. We also give some examples of XAFS applications for structural characterization of glasses submitted to high pressure, glasses used to store radioactive waste and medieval glasses. This updated, comprehensive review will likely serve as a useful guide to clarify the details of the short-range structure of oxide glasses. PMID:29382102

  2. Effect of lithium on thermal and structural properties of zinc vanadate tellurite glass

    NASA Astrophysics Data System (ADS)

    Rani, Sunita; Kundu, R. S.; Ahlawat, Neetu; Rani, Suman; Sangwan, Kanta Maan; Ahlawat, Navneet

    2018-04-01

    Glasses having composition 60TeO2-15V2O5-(25-x) ZnO-xLi2O where x= 0, 5, 10 mol% were prepared by standard melt quench technique. The glass transition temperature is measured by DSC technique using TA instrument and found to decrease with increase in Li2O signifies that glass formation tendency, thermal stability and compactness of glass structure decreases. The deconvolution of FTIR spectra evidenced the existence of TeO4, TeO3 and TeO6 structural units in glass network and vanadium exists as VO4 and VO5 structural units.

  3. Composite Laminate With Coefficient of Thermal Expansion Matching D263 Glass

    NASA Technical Reports Server (NTRS)

    Robinson, David; Rodini, Benjamin

    2012-01-01

    The International X-ray Observatory project seeks to make an X-ray telescope assembly with 14,000 flexible glass segments. The glass used is commercially available SCHOTT D263 glass. Thermal expansion causes the mirror to distort out of alignment. A housing material is needed that has a matching coefficient of thermal expansion (CTE) so that when temperatures change in the X-ray mirror assembly, the glass and housing pieces expand equally, thus reducing or eliminating distortion. Desirable characteristics of this material include a high stiffness/weight ratio, and low density. Some metal alloys show promise in matching the CTE of D263 glass, but their density is high compared to aluminum, and their stiffness/weight ratio is not favorable. A laminate made from carbon fiber reinforced plastic (CFRP) should provide more favorable characteristics, but there has not been any made with the CTE matching D263 Glass. It is common to create CFRP laminates of various CTEs by stacking layers of prepreg material at various angles. However, the CTE of D263 glass is 6.3 ppm/ C at 20 C, which is quite high, and actually unachievable solely with carbon fiber and resin. A composite laminate has been developed that has a coefficient of thermal expansion identical to that of SCHOTT D263 glass. The laminate is made of a combination of T300 carbon fiber, Eglass, and RS3C resin. The laminate has 50% uni-T300 plies and 50% uni-E-glass plies, with each fiber-layer type laid up in a quasi-isotropic laminate for a total of 16 plies. The fiber volume (percent of fiber compared to the resin) controls the CTE to a great extent. Tests have confirmed that a fiber volume around 48% gives a CTE of 6.3 ppm/ C. This is a fairly simple composite laminate, following well established industry procedures. The unique feature of this laminate is a somewhat unusual combination of carbon fiber with E-glass (fiberglass). The advantage is that the resulting CTE comes out to 6.3 ppm/ C at 20 C, which matches D263 glass. The trick with this laminate is to establish the proper fiber volume to get the desired CTE. Laminates were made with several different fiber volumes and coupons were tested to establish the relationship between fiber volume and CTE. Testing proved that fiber volume should be about 48%.

  4. Scaled Anatomical Model Creation of Biomedical Tomographic Imaging Data and Associated Labels for Subsequent Sub-surface Laser Engraving (SSLE) of Glass Crystals

    PubMed Central

    Dethlefs, Christopher R.; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W. M.

    2017-01-01

    Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings. PMID:28518066

  5. Tuning Interfacial Properties and Processes by Controlling the Rheology and Structure of Poly( N-isopropylacrylamide) Particles at Air/Water Interfaces.

    PubMed

    Maestro, Armando; Jones, Daniel; Sánchez de Rojas Candela, Carmen; Guzman, Eduardo; Duits, Michel H G; Cicuta, Pietro

    2018-06-05

    By combining controlled experiments on single interfaces with measurements on solitary bubbles and liquid foams, we show that poly( N-isopropylacrylamide) (PNIPAM) microgels assembled at air/water interfaces exhibit a solid to liquid transition changing the temperature, and that this is associated with the change in the interfacial microstructure of the PNIPAM particles around their volume phase transition temperature. We show that the solid behaves as a soft 2D colloidal glass, and that the existence of this solid/liquid transition offers an ideal platform to tune the permeability of air bubbles covered by PNIPAM and to control macroscopic foam properties such as drainage, stability, and foamability. PNIPAM particles on fluid interfaces allow new tunable materials, for example foam structures with variable mechanical properties upon small temperature changes.

  6. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.

  7. Carbohydrate Cluster Microarrays Fabricated on 3-Dimensional Dendrimeric Platforms for Functional Glycomics Exploration

    PubMed Central

    Zhou, Xichun; Turchi, Craig; Wang, Denong

    2009-01-01

    We reported here a novel, ready-to-use bioarray platform and methodology for construction of sensitive carbohydrate cluster microarrays. This technology utilizes a 3-dimensional (3-D) poly(amidoamine) starburst dendrimer monolayer assembled on glass surface, which is functionalized with terminal aminooxy and hydrazide groups for site-specific coupling of carbohydrates. A wide range of saccharides, including monosaccharides, oligosaccharides and polysaccharides of diverse structures, are applicable for the 3-D bioarray platform without prior chemical derivatization. The process of carbohydrate coupling is effectively accelerated by microwave radiation energy. The carbohydrate concentration required for microarray fabrication is substantially reduced using this technology. Importantly, this bioarray platform presents sugar chains in defined orientation and cluster configurations. It is, thus, uniquely useful for exploration of the structural and conformational diversities of glyco-epitope and their functional properties. PMID:19791771

  8. Molecular dynamics simulation of sodium aluminosilicate glass structures and glass surface-water reactions using the reactive force field (ReaxFF)

    NASA Astrophysics Data System (ADS)

    Dongol, R.; Wang, L.; Cormack, A. N.; Sundaram, S. K.

    2018-05-01

    Reactive potentials are increasingly used to study the properties of glasses and glass water reactions in a reactive molecular dynamics (MD) framework. In this study, we have simulated a ternary sodium aluminosilicate glass and investigated the initial stages of the glass surface-water reactions at 300 K using reactive force field (ReaxFF). On comparison of the simulated glass structures generated using ReaxFF and classical Buckingham potentials, our results show that the atomic density profiles calculated for the surface glass structures indicate a bond-angle distribution dependency. The atomic density profiles also show higher concentrations of non-bridging oxygens (NBOs) and sodium ions at the glass surface. Additionally, we present our results of formation of silanol species and the diffusion of water molecules at the glass surface using ReaxFF.

  9. Experimental approach for thermal parameters estimation during glass forming process

    NASA Astrophysics Data System (ADS)

    Abdulhay, B.; Bourouga, B.; Alzetto, F.; Challita, C.

    2016-10-01

    In this paper, an experimental device designed and developedto estimate thermal conditions at the Glass / piston contact interface is presented. This deviceis made of two parts: the upper part contains the piston made of metal and a heating device to raise the temperature of the piston up to 500 °C. The lower part is composed of a lead crucible and a glass sample. The assembly is provided with a heating system, an induction furnace of 6 kW for heating the glass up to 950 °C.The developed experimental procedure has permitted in a previous published study to estimate the Thermal Contact ResistanceTCR using the inverse technique developed by Beck [1]. The semi-transparent character of the glass has been taken into account by an additional radiative heat flux and an equivalent thermal conductivity. After the set-up tests, reproducibility experiments for a specific contact pressure have been carried outwith a maximum dispersion that doesn't exceed 6%. Then, experiments under different conditions for a specific glass forming process regarding the application (Packaging, Buildings and Automobile) were carried out. The objective is to determine, experimentallyfor each application,the typical conditions capable to minimize the glass temperature loss during the glass forming process.

  10. Structure-topology-property correlations of sodium phosphosilicate glasses.

    PubMed

    Hermansen, Christian; Guo, Xiaoju; Youngman, Randall E; Mauro, John C; Smedskjaer, Morten M; Yue, Yuanzheng

    2015-08-14

    In this work, we investigate the correlations among structure, topology, and properties in a series of sodium phosphosilicate glasses with [SiO2]/[SiO2 + P2O5] ranging from 0 to 1. The network structure is characterized by (29)Si and (31)P magic-angle spinning nuclear magnetic resonance and Raman spectroscopy. The results show the formation of six-fold coordinated silicon species in phosphorous-rich glasses. Based on the structural data, we propose a formation mechanism of the six-fold coordinated silicon, which is used to develop a quantitative structural model for predicting the speciation of the network forming units as a function of chemical composition. The structural model is then used to establish a temperature-dependent constraint description of phosphosilicate glass topology that enables prediction of glass transition temperature, liquid fragility, and indentation hardness. The topological constraint model provides insight into structural origin of the mixed network former effect in phosphosilicate glasses.

  11. 3D-Printed Transparent Glass

    DOE PAGES

    Nguyen, Du T.; Meyers, Cameron; Yee, Timothy D.; ...

    2017-04-28

    In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

  12. 3D-Printed Transparent Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Du T.; Meyers, Cameron; Yee, Timothy D.

    In this study, silica inks are developed, which may be 3D printed and thermally processed to produce optically transparent glass structures with sub-millimeter features in forms ranging from scaffolds to monoliths. The inks are composed of silica powder suspended in a liquid and are printed using direct ink writing. The printed structures are then dried and sintered at temperatures well below the silica melting point to form amorphous, solid, transparent glass structures. This technique enables the mold-free formation of transparent glass structures previously inaccessible using conventional glass fabrication processes.

  13. Isochoric structural recovery in molecular glasses and its analog in colloidal glasses

    NASA Astrophysics Data System (ADS)

    Banik, Sourya; McKenna, Gregory B.

    2018-06-01

    Concentrated colloidal dispersions have been regarded as models for molecular glasses. One of the many ways to compare the behavior in these two different systems is by comparing the structural recovery or the physical aging behavior. However, recent investigations from our group to examine structural recovery in thermosensitive colloidal dispersions have shown contrasting results between the colloidal and the molecular glasses. The differences in the behaviors of the two systems have led us to pose this question: Is structural recovery behavior in colloidal glasses truly distinct from that of molecular glasses or is the conventional experimental condition (isobaric temperature-jumps) in determining the structural recovery in molecular glasses different from the experimental condition in the colloidal experiments (concentration- or volume fraction-jumps); i.e., are colloidal glasses inherently different from molecular glasses or not? To address the question, we resort to model calculations of structural recovery in a molecular glass under constant volume (isochoric) conditions following temperature only- and simultaneous volume- and temperature-jumps, which are closer to the volume fraction-jump conditions used in the thermosensitive-colloidal experiments. The current model predictions are then compared with the signatures of structural recovery under the conventional isobaric state in a molecular glass and with structural recovery behavior in colloidal glasses following volume fraction-jumps. We show that the results obtained from the experiments conducted by our group were contrasting to classical molecular glass behavior because the basis of our comparisons were incorrect (the histories were not analogous). The present calculations (with analogous histories) are qualitatively closer to the colloidal behavior. The signatures of "intrinsic isotherms" and "asymmetry of approach" in the current isochoric model predictions are quite different from those in the classical isobaric conditions while the "memory" signatures remain essentially the same. While there are qualitative similarities between the current isochoric model predictions and results from colloidal glasses, it appears from the calculations that the origins of these are different. The isochoric histories in the molecular glasses have compensating effects of pressure and departure from equilibrium which determines the structure dependence on mobility of the molecules. On the other hand, in the colloids it simply appears that the volume fraction-jump conditions simply do not exhibit such structure mobility dependence. The determining interplay of thermodynamic phase variables in colloidal and molecular systems might be very different or at least their correlations are yet to be ascertained. This topic requires further investigation to bring the similarities and differences between molecular and colloidal glass formers into fuller clarity.

  14. Medium-range structure and glass forming ability in Zr–Cu–Al bulk metallic glasses

    DOE PAGES

    Zhang, Pei; Maldonis, Jason J.; Besser, M. F.; ...

    2016-03-05

    Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr 50Cu 35Al 15 and Zr 50Cu 45Al 5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr 50Cu 35Al 15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, T g, than in Zr 50Cu 45Al 5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr 50Cu 35Al 15more » on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clusters grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.« less

  15. Safety assessment of continuous glass filaments used in eclipse.

    PubMed

    Swauger, J E; Foy, J W

    2000-11-01

    Eclipse is a cigarette that produces smoke by primarily heating, rather than burning, tobacco. The Eclipse heat source assembly employs a continuous filament glass mat jacket to insulate the heat source. The glass mat insulator is composed of continuous glass filaments and a binder. The purpose of this article is to address the potential toxicological significance of the continuous glass filaments under the conditions of intended use. Transfer data and the unique physical characteristics of the filaments demonstrate that significant exposure of the smoker will not occur. The available environmental survey data clearly demonstrate that Eclipse smokers are extremely unlikely to be exposed to continuous glass filaments at a level that represents a biologically significant increase over background exposure to glass fibers. The chemical composition of the continuous glass filaments used in Eclipse is generally similar to C-glass fiber compositions such as MMVF 11 that have failed to produce either tumors or fibrosis in chronic inhalation studies conducted in rats. In vitro dissolution data demonstrate that the continuous glass filaments used in Eclipse are more soluble than biologically active fibers such as rock wool (MMVF 21) or asbestos. However, the continuous glass filaments used in Eclipse were not as soluble in simulated extracellular lung fluid as representative C-glass fibers (MMVF 10 and MMVF 11). In brief, exposure of Eclipse smokers to continuous glass filaments is extremely unlikely to occur at a level that may be construed to be of biological significance.

  16. Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass

    NASA Astrophysics Data System (ADS)

    Onodera, Yohei; Kohara, Shinji; Masai, Hirokazu; Koreeda, Akitoshi; Okamura, Shun; Ohkubo, Takahiro

    2017-05-01

    Understanding glass structure is still challenging due to the result of disorder, although novel materials design on the basis of atomistic structure has been strongly demanded. Here we report on the atomic structures of the zinc phosphate glass determined by reverse Monte Carlo modelling based on diffraction and spectroscopic data. The zinc-rich glass exhibits the network formed by ZnOx (averaged x<4) polyhedra. Although the elastic modulus, refractive index and glass transition temperature of the zinc phosphate glass monotonically increase with the amount of ZnO, we find for the first time that the thermal expansion coefficient is very sensitive to the substitution of the phosphate chain network by a network consisting of Zn-O units in zinc-rich glass. Our results imply that the control of the structure of intermediate groups may enable new functionalities in the design of oxide glass materials.

  17. Formation of metallic cation-oxygen network for anomalous thermal expansion coefficients in binary phosphate glass.

    PubMed

    Onodera, Yohei; Kohara, Shinji; Masai, Hirokazu; Koreeda, Akitoshi; Okamura, Shun; Ohkubo, Takahiro

    2017-05-31

    Understanding glass structure is still challenging due to the result of disorder, although novel materials design on the basis of atomistic structure has been strongly demanded. Here we report on the atomic structures of the zinc phosphate glass determined by reverse Monte Carlo modelling based on diffraction and spectroscopic data. The zinc-rich glass exhibits the network formed by ZnO x (averaged x<4) polyhedra. Although the elastic modulus, refractive index and glass transition temperature of the zinc phosphate glass monotonically increase with the amount of ZnO, we find for the first time that the thermal expansion coefficient is very sensitive to the substitution of the phosphate chain network by a network consisting of Zn-O units in zinc-rich glass. Our results imply that the control of the structure of intermediate groups may enable new functionalities in the design of oxide glass materials.

  18. Characterization of screen-printed dye-sensitized nanocrystalline TiO2 solar cells

    NASA Astrophysics Data System (ADS)

    Gupta, Tapan K.; Cirignano, Leonard J.; Shah, Kanai S.; Moy, Larry P.; Kelly, David J.; Squillante, Michael R.; Entine, Gerald; Smestad, Greg P.

    1999-10-01

    Titanium dioxide (TiO2) films have been deposited on SnO2 coated glass substrates by screen-printing. Film morphology and structure have been characterized by scanning electron microscopy, x-ray diffraction and BET analysis. Dye-sensitized TiO2 photoelectrochemical cells have been assembled and characterized. Cells sensitized with anthocyanin and a ruthenium complex have been investigated. A 0.77 cm2 ruthenium dye sensitized cell with 6.1% power conversion efficiency under Air Mass (AM1.5) conditions was obtained. Results obtained with a pure anthocyanin dye and dye extracted from blackberries were compared. Finally, a natural gel was found to improve the stability of anthocyanin sensitized cells.

  19. Two-axis tracking solar collector mechanism

    DOEpatents

    Johnson, Kenneth C.

    1992-01-01

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  20. Two-axis tracking solar collector mechanism

    DOEpatents

    Johnson, Kenneth C.

    1990-01-01

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion.

  1. Two-axis tracking solar collector mechanism

    DOEpatents

    Johnson, K.C.

    1992-12-08

    This invention is a novel solar tracking mechanism incorporating a number of practical features that give it superior environmental resilience and exceptional tracking accuracy. The mechanism comprises a lightweight space-frame assembly supporting an array of point-focus Fresnel lenses in a two-axis tracking structure. The system is enclosed under a glass cover which isolates it from environmental exposure and enhances tracking accuracy by eliminating wind loading. Tracking accuracy is also enhanced by the system's broad-based tracking support. The system's primary intended application would be to focus highly concentrated sunlight into optical fibers for transmission to core building illumination zones, and the system may also have potential for photovoltaic or photothermal solar energy conversion. 16 figs.

  2. Glass sample characterization

    NASA Technical Reports Server (NTRS)

    Ahmad, Anees

    1990-01-01

    The development of in-house integrated optical performance modelling capability at MSFC is described. This performance model will take into account the effects of structural and thermal distortions, as well as metrology errors in optical surfaces to predict the performance of large an complex optical systems, such as Advanced X-Ray Astrophysics Facility. The necessary hardware and software were identified to implement an integrated optical performance model. A number of design, development, and testing tasks were supported to identify the debonded mirror pad, and rebuilding of the Technology Mirror Assembly. Over 300 samples of Zerodur were prepared in different sizes and shapes for acid etching, coating, and polishing experiments to characterize the subsurface damage and stresses produced by the grinding and polishing operations.

  3. Mars Science Laboratory Mission Curiosity Rover Stereo

    NASA Image and Video Library

    2011-07-22

    This stereo image of NASA Mars Science Laboratory Curiosity Rovert was taken May 26, 2011, in Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory in Pasadena, Calif. 3D glasses are necessary to view this image.

  4. Atomistic simulations of TeO₂-based glasses: interatomic potentials and molecular dynamics.

    PubMed

    Gulenko, Anastasia; Masson, Olivier; Berghout, Abid; Hamani, David; Thomas, Philippe

    2014-07-21

    In this work we present for the first time empirical interatomic potentials that are able to reproduce TeO2-based systems. Using these potentials in classical molecular dynamics simulations, we obtained first results for the pure TeO2 glass structure model. The calculated pair distribution function is in good agreement with the experimental one, which indicates a realistic glass structure model. We investigated the short- and medium-range TeO2 glass structures. The local environment of the Te atom strongly varies, so that the glass structure model has a broad Q polyhedral distribution. The glass network is described as weakly connected with a large number of terminal oxygen atoms.

  5. Predicting the glass transition temperature of bioactive glasses from their molecular chemical composition.

    PubMed

    Hill, Robert G; Brauer, Delia S

    2011-10-01

    A recently published paper (M.D. O'Donnell, Acta Biomaterialia 7 (2011) 2264-2269) suggests that it is possible to correlate the glass transition temperature (T(g)) of bioactive glasses with their molar composition, based on iterative least-squares fitting of published T(g) data. However, we show that the glass structure is an important parameter in determining T(g). Phase separation, local structural effects and components (intermediate oxides) which can switch their structural role in the glass network need to be taken into consideration, as they are likely to influence the glass transition temperature of bioactive glasses. Although the model suggested by O'Donnell works reasonably well for glasses within the composition range presented, it is oversimplified and fails for glasses outside certain compositional boundaries. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Structure of rhenium-containing sodium borosilicate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Ashutosh; McCloy, John S.; Windisch, Charles F.

    2013-03-01

    A series of sodium borosilicate glasses were synthesized with increasing fractions of KReO4 or Re2O7, to 10000 ppm (1 mass%) target Re in glass, to assess the effects of large concentrations of rhenium on glass structure and to estimate the solubility of technetium, a radioactive component in typical low active waste nuclear waste glasses. Magic angle spinning nuclear magnetic resonance (MAS-NMR), Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy were performed to characterize the glasses as a function of Re source additions. In general, silicon was found coordinated in a mixture of Q2 and Q3 structural units, while Al wasmore » 4-coordinated and B was largely 3-coordinate and partially 4-coordinated. The rhenium source did not appear to have significant effects on the glass structure. Thus, at the up to the concentrations that remain in dissolved in glass, ~3000 ppm Re by mass maximum. , the Re appeared to be neither a glass-former nor a strong glass modifier., Rhenium likely exists in isolated ReO4- anions in the interstices of the glass network, as evidenced by the polarized Raman spectrum of the Re glass in the absence of sulfate. Analogous to SO42-¬ in similar glasses, ReO4- is likely a network modifier and forms alkali salt phases on the surface and in the bulk glass above solubility.« less

  7. Water diffusion in silicate glasses: the effect of glass structure

    NASA Astrophysics Data System (ADS)

    Kuroda, M.; Tachibana, S.

    2016-12-01

    Water diffusion in silicate melts (glasses) is one of the main controlling factors of magmatism in a volcanic system. Water diffusivity in silicate glasses depends on its own concentration. However, the mechanism causing those dependences has not been fully understood yet. In order to construct a general model for water diffusion in various silicate glasses, we performed water diffusion experiments in silica glass and proposed a new water diffusion model [Kuroda et al., 2015]. In the model, water diffusivity is controlled by the concentration of both main diffusion species (i.e. molecular water) and diffusion pathways, which are determined by the concentrations of hydroxyl groups and network modifier cations. The model well explains the water diffusivity in various silicate glasses from silica glass to basalt glass. However, pre-exponential factors of water diffusivity in various glasses show five orders of magnitude variations although the pre-exponential factor should ideally represent the jump frequency and the jump distance of molecular water and show a much smaller variation. Here, we attribute the large variation of pre-exponential factors to a glass structure dependence of activation energy for molecular water diffusion. It has been known that the activation energy depends on the water concentration [Nowak and Behrens, 1997]. The concentration of hydroxyls, which cut Si-O-Si network in the glass structure, increases with water concentration, resulting in lowering the activation energy for water diffusion probably due to more fragmented structure. Network modifier cations are likely to play the same role as water. With taking the effect of glass structure into account, we found that the variation of pre-exponential factors of water diffusivity in silicate glasses can be much smaller than the five orders of magnitude, implying that the diffusion of molecular water in silicate glasses is controlled by the same atomic process.

  8. Single Molecule Sensing by Nanopores and Nanopore Devices

    PubMed Central

    Gu, Li-Qun; Shim, Ji Wook

    2010-01-01

    Molecular-scale pore structures, called nanopores, can be assembled by protein ion channels through genetic engineering or be artificially fabricated on solid substrates using fashion nanotechnology. When target molecules interact with the functionalized lumen of a nanopore, they characteristically block the ion pathway. The resulting conductance changes allow for identification of single molecules and quantification of target species in the mixture. In this review, we first overview nanopore-based sensory techniques that have been created for the detection of myriad biomedical targets, from metal ions, drug compounds, and cellular second messengers to proteins and DNA. Then we introduce our recent discoveries in nanopore single molecule detection: (1) using the protein nanopore to study folding/unfolding of the G-quadruplex aptamer; (2) creating a portable and durable biochip that is integrated with a single-protein pore sensor (this chip is compared with recently developed protein pore sensors based on stabilized bilayers on glass nanopore membranes and droplet interface bilayer); and (3) creating a glass nanopore-terminated probe for single-molecule DNA detection, chiral enantiomer discrimination, and identification of the bioterrorist agent ricin with an aptamer-encoded nanopore. PMID:20174694

  9. Effect of alkali earth oxides on hydroxy-carbonated apatite nano layer formation for SiO2-BaO-CaO-Na2O-P2O5 glass system

    NASA Astrophysics Data System (ADS)

    Kiran, P.; Ramakrishna, V.; Shashikala, H. D.; Udayashankar, N. K.

    2017-11-01

    Barium soda lime phosphosilicate [(58SiO2-(32 - x)BaO- xCao-6Na2O-4P2O5 (where x = 15, 20, 25 and 30 mol%)] samples were synthesised using conventional sol-gel method at 700 °C sintering temperature. Thermal, structural properties were studied using thermo gravimetric analysis and differential thermal analysis, X-ray diffraction, scanning electron microscopy, fourier transform infrared and Raman spectroscopy. Using Raman spectra non-bridging oxygen concentrations were estimated. The hydroxy-carbonated apatite (HCA) layer formation on samples was analysed for 7 days using simulated body fluid (SBF) soaked samples. The growth of HCA layers self-assembled on the sample surface was discussed as a function of NBO/BO ratio. Results indicated that the number of Ca2+ ions released into SBF solution in dissolution process and weight loss of SB-treated samples vary with NBO/BO ratio. The changes in NBO/BO ratios were observed to be proportional to HCA forming ability of barium soda lime phosphosilicate glasses.

  10. Laser alchemy: direct writing of multifunctional components in a glass chip with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Liao, Yang; Lin, Jintian; Cheng, Ya

    2013-12-01

    Recently, hybrid integration of multifunctional micro-components for creating complex, intelligent micro/nano systems has attracted significant attention. These micro-/nano-systems have important applications in a variety of areas, such as healthcare, environment, communication, national security, and so on. However, fabrication of micro/nano systems incorporated with different functions is still a challenging task, which generally requires fabrication of discrete microcomponents beforehand followed by assembly and packaging procedures. Furthermore, current micro-/nano-fabrication techniques are mainly based on the well-established planar lithographic approach, which suffer from severe issues in producing three dimensional (3D) structures with complex geometries and arbitrary configurations. In recent years, the rapid development of femtosecond laser machining technology has enabled 3D direct fabrication and integration of multifunctional components, such as microfluidics, microoptics, micromechanics, microelectronics, etc., into single substrates. In this invited talk, we present our recent progress in this active area. Particularly, we focus on fabrication of 3D micro- and nanofluidic devices and 3D high-Q microcavities in glass substrates by femtosecond laser direct writing.

  11. Application of I-structure though-glass interconnect filled with submicron gold particles to a hermetic sealing device

    NASA Astrophysics Data System (ADS)

    Nomura, Kazuya; Okada, Akiko; Shoji, Shuichi; Ogashiwa, Toshinori; Mizuno, Jun

    2016-10-01

    We propose hermetic sealing of a glass-to-glass structure with an I-structure through-glass interconnect via (TGV) filled with submicron Au particles. The top and bottom bumps and the TGV were formed by a simple filling process with a bump-patterned dry film resist. The sealing devices consisting of two glass substrates were bonded via Au interlayers. Vacuum ultraviolet irradiation in the presence of oxygen gas (VUV/O3) pretreatment was used for low-temperature Au-Au bonding at 200 °C. The bonded samples showed He leakage rates of less than 1.3  ×  10-9 Pa m3 s-1. The cross-sectional scanning electron microscope images of the fabricated I-structure TGV showed perfect adhesion between the I-structure TGV and glass substrate. These results indicate that the proposed I-structure TGV is suitable for hermetic sealing devices.

  12. Modified low-temperture direct bonding method for vacuum microelectronics application

    NASA Astrophysics Data System (ADS)

    Ju, Byeong-Kwon; Lee, Duck-Jung; Choi, Woo-Beom; Lee, Yun-Hi; Jang, Jin; Lee, Kwang-Bae; Oh, Myung-Hwan

    1997-06-01

    This paper presents the process and experimental results for the improved silicon-to-glass bonding using silicon direct bonding (SDB) followed by anodic bonding. The initial bonding between glass and silicon was caused by the hydrophilic surfaces of silicon-glass ensemble using SDB method. Then the initially bonded specimen had to be strongly bonded by anodic bonding process. The effects of the bonding process parameters on the interface energy were investigated as functions of the bonding temperature and voltage. We found that the specimen which was bonded using SDB process followed by anodic bonding process had higher interface energy than one using anodic bonding process only. The main factor contributing to the higher interface energy in the glass-to-silicon assemble bonded by SDB followed by anodic bonding was investigated by secondary ion mass spectroscopy analysis.

  13. Formation and Properties of Laser-Induced Periodic Surface Structures on Different Glasses.

    PubMed

    Gräf, Stephan; Kunz, Clemens; Müller, Frank A

    2017-08-10

    The formation and properties of laser-induced periodic surface structures (LIPSS) was investigated on different technically relevant glasses including fused silica, borosilicate glass, and soda-lime-silicate glass under irradiation of fs-laser pulses characterized by a pulse duration τ = 300 fs and a laser wavelength λ = 1025 nm. For this purpose, LIPSS were fabricated in an air environment at normal incidence with different laser peak fluence, pulse number, and repetition frequency. The generated structures were characterized by using optical microscopy, scanning electron microscopy, focused ion beam preparation and Fast-Fourier transformation. The results reveal the formation of LIPSS on all investigated glasses. LIPSS formation on soda-lime-silicate glass is determined by remarkable melt-formation as an intra-pulse effect. Differences between the different glasses concerning the appearing structures, their spatial period and their morphology were discussed based on the non-linear absorption behavior and the temperature-dependent viscosity. The findings facilitate the fabrication of tailored LIPSS-based surface structures on different technically relevant glasses that could be of particular interest for various applications.

  14. Formation and Properties of Laser-Induced Periodic Surface Structures on Different Glasses

    PubMed Central

    Kunz, Clemens; Müller, Frank A.

    2017-01-01

    The formation and properties of laser-induced periodic surface structures (LIPSS) was investigated on different technically relevant glasses including fused silica, borosilicate glass, and soda-lime-silicate glass under irradiation of fs-laser pulses characterized by a pulse duration τ = 300 fs and a laser wavelength λ = 1025 nm. For this purpose, LIPSS were fabricated in an air environment at normal incidence with different laser peak fluence, pulse number, and repetition frequency. The generated structures were characterized by using optical microscopy, scanning electron microscopy, focused ion beam preparation and Fast-Fourier transformation. The results reveal the formation of LIPSS on all investigated glasses. LIPSS formation on soda-lime-silicate glass is determined by remarkable melt-formation as an intra-pulse effect. Differences between the different glasses concerning the appearing structures, their spatial period and their morphology were discussed based on the non-linear absorption behavior and the temperature-dependent viscosity. The findings facilitate the fabrication of tailored LIPSS-based surface structures on different technically relevant glasses that could be of particular interest for various applications. PMID:28796180

  15. Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C.; Roberts, Scott; Kozachkov, Henry; Demetriou, Marios D.; Schramm, Joseph P.; Johnson, William L.

    2012-01-01

    Bulk metallic glasses (BMGs), a class of amorphous metals defined as having a thickness greater than 1 mm, are being broadly investigated by NASA for use in spacecraft hardware. Their unique properties, attained from their non-crystalline structure, motivate several game-changing aerospace applications. BMGs have low melting temperatures so they can be cheaply and repeatedly cast into complex net shapes, such as mirrors or electronic casings. They are extremely strong and wear-resistant, which motivates their use in gears and bearings. Amorphous metal coatings are hard, corrosion-resistant, and have high reflectivity. BMG composites, reinforced with soft second phases, can be fabricated into energy-absorbing cellular panels for orbital debris shielding. One limitation of BMG materials is their inability to be welded, bonded, brazed, or fastened in a convenient method to form larger structures. Cellular structures (which can be classified as trusses, foams, honeycombs, egg boxes, etc.) are useful for many NASA, commercial, and military aerospace applications, including low-density paneling and shields. Although conventional cellular structures exhibit high specific strength, their porous structures make them challenging to fabricate. In particular, metal cellular structures are extremely difficult to fabricate due to their high processing temperatures. Aluminum honeycomb sandwich panels, for example, are used widely as spacecraft shields due to their low density and ease of fabrication, but suffer from low strength. A desirable metal cellular structure is one with high strength, combined with low density and simple fabrication. The thermoplastic joining process described here allows for the fabrication of monolithic BMG truss-like structures that are 90% porous and have no heat-affected zone, weld, bond, or braze. This is accomplished by welding the nodes of stacked BMG composite panels using a localized capacitor discharge, forming a single monolithic structure. This removes many complicated and costly fabrication steps. Moreover, the cellular structures detailed in this work are among the highest- strength and most energy-absorbent materials known. This implies that a fabricated structure made from these materials would have unequaled mechanical properties compared to other metal foams or trusses. The process works by taking advantage of the electrical properties of the matrix material in the metal-matrix composite, which in this case is a metallic glass. Due to the random nanoscale arrangement of atoms (without any grain boundaries), the matrix glass exhibits a near-constant electrical resistivity as a function of temperature. By placing the composite panels between two copper electrode plates and discharging a capacitor, the entire matrix of the panel can be heated to approximately 700 C in 10 milliseconds, which is above the alloy s solidus but below the liquidus. By designing the geometry of the panels into the shape of an egg box, the electrical discharge localizes only in the tips of each pyramidal cell. By applying a forging load during discharge, the nodes of the panels can be fused together into a single piece, which then dissipates heat through radiation back into a glassy state. This means that two panels can be metallurgically fused into one panel with no heat-affected zone, creating a seamless connection between panels. During the process, the soft metal particles (dendrites) that are uniformly distributed in the glassy matrix to increase the toughness are completely unaffected by the thermoplastic joining. The novelty is that a truss (or foam-like) structure can be formed with excellent energy- absorbing capabilities without the need for machining. The technique allows for large-scale fabrication of panels, well-suited for spacecraft shields or military vehicle door panels. Crystalline metal cellular structures cannot be fabricated using the thermoplastic joining technique described here. If metal panels were te assembled into a cellular structure, they would either have to be welded, brazed, bonded, or fastened together, creating a weak spot in the structure at each connection. Welded parts require a welding material to be added to the joint and exhibit a soft and weak heat-affected zone. Brazing and bonding do not form a metallurgical joint and thus exhibit low strengths, especially when the panels are pulled apart and fasteners require high-stress-concentration holes to be drilled. No equivalent rapid heating method exists for assembling metal panels together into cellular structures, and thus, those parts must be foamed, machined, or investment cast if they are to form a monolithic structure. If the crystalline panels were to be joined using capacitive discharge, as with a spot welder, their bond would be very weak, and the panels would have to be extremely thin. In contrast, the strength of joined BMG parts has been demonstrated to have strength comparable to the parent material. This technique opens up the possibility of using large-scale BMG hardware in spacecraft, military, or commercial applications.

  16. Thin glass based packaging and photonic single-mode waveguide integration by ion-exchange technology on board and module level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Lang, Günter; Schröder, Henning

    2011-01-01

    The proposed novel packaging approach merges micro-system packaging and glass integrated optics. It provides 3D optical single-mode intra system links to bridge the gap between novel photonic integrated circuits and the glass fibers for inter system interconnects. We introduce our hybrid 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip links. Optical mirrors and lenses provide optical mode matching for photonic IC assemblies and optical fiber interconnects. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties as reviewed in the paper. That makes it perfect for micro-system packaging. The adopted planar waveguide process based on ion-exchange technology is capable for high-volume manufacturing. This ion-exchange process and the optical propagation are described in detail for thin glass substrates. An extensive characterization of all basic circuit elements like straight and curved waveguides, couplers and crosses proves the low attenuation of the optical circuit elements.

  17. Picture Wall (Glass Structures)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Photo shows a subway station in Toronto, Ontario, which is entirely glass-enclosed. The all-glass structure was made possible by a unique glazing concept developed by PPG Industries, Pittsburgh, Pennsylvania, one of the largest U.S. manufacturers of flat glass. In the TVS glazing system, transparent glass "fins" replace conventional vertical support members used to provide support for wind load resistance. For stiffening, silicone sealant bonds the fins to adjacent glass panels. At its glass research center near Pittsburgh, PPG Industries uses the NASTRAN computer program to analyze the stability of enclosures made entirely of glass. The company also uses NASTRAN to simulate stresses on large containers of molten glass and to analyze stress effects of solar heating on flat glass.

  18. Buffer for a gamma-insensitive optical sensor with gas and a buffer assembly

    DOEpatents

    Kruger, Hans W.

    1994-01-01

    A buffer assembly for a gamma-insensitive gas avalanche focal plane array operating in the ultra-violet/visible/infrared energy wavelengths and using a photocathode and an avalanche gas located in a gap between an anode and the photocathode. The buffer assembly functions to eliminate chemical compatibility between the gas composition and the materials of the photocathode. The buffer assembly in the described embodiment is composed of two sections, a first section constructed of glass honeycomb under vacuum and a second section defining a thin barrier film or membrane constructed, for example, of Al and Be, which is attached to and supported by the honeycomb. The honeycomb section, in turn, is supported by and adjacent to the photocathode.

  19. Buffer for a gamma-insensitive optical sensor with gas and a buffer assembly

    DOEpatents

    Kruger, H.W.

    1994-05-10

    A buffer assembly is disclosed for a gamma-insensitive gas avalanche focal plane array operating in the ultra-violet/visible/infrared energy wavelengths and using a photocathode and an avalanche gas located in a gap between an anode and the photocathode. The buffer assembly functions to eliminate chemical compatibility between the gas composition and the materials of the photocathode. The buffer assembly in the described embodiment is composed of two sections, a first section constructed of glass honeycomb under vacuum and a second section defining a thin barrier film or membrane constructed, for example, of Al and Be, which is attached to and supported by the honeycomb. The honeycomb section, in turn, is supported by and adjacent to the photocathode. 7 figures.

  20. Conformational assembly and biological properties of collagen mimetic peptides and their thermally responsive polymer conjugates

    NASA Astrophysics Data System (ADS)

    Krishna, Ohm Divyam

    2011-12-01

    Collagens are one of the most abundant proteins found in body tissues and organs, endowing structural integrity, mechanical strength, and multiple biological functions. Destabilized collagen inside human body leads to various degenerative diseases (ex. osteoarthritis) and ageing. This has continued to motivate the design of synthetic peptides and bio-synthetic polypeptides to closely mimic the native collagens in terms of triple helix structure and stability, potential for higher order assembly, and biological properties. However, the widespread application of de novo collagens has been limited in part by the need for hydroxylated proline in the formation of stable triple helical structures. To address this continued need, a hydroxyproline-free, thermally stable collagen-mimetic peptide (CLP-Cys) was rationally designed via the incorporation of electrostatically stabilized amino acid triplets. CLP-Cys was synthesized via solid phase peptide synthesis. The formation and stability of the triple helical structure were indicated via circular dichroism (CD) experiments and confirmed via differential scanning calorimetry (DSC) results. CLP-Cys also self-assembled into nano-rods and micro-fibrils, as evidenced via a combination of dynamic light scattering and transmission electron microscopy. Given the high thermal stability and its propensity for higher-order assembly, CLP-Cys was further functionalized at both the ends with a thermally responsive polymer, poly(diethylene glycol methyl ether methacrylate), (PDEGMEMA) to synthesize a biohybrid triblock copolymer. The CD results indicated that the triple helical form is retained, the thermal unfolding is sustained and helix to coil transition is reversible in the triblock hybrid context. The LCST of PDEGMEMA homopolymer (26 °C) is increased (to 35 °C) upon conjugation to the hydrophilic collagen peptide domain. Further, a combination of static light scattering, Cryo-SEM, TEM and confocal microscopy elucidated that the collapse of the thermo-responsive polymer upon heating (to above the LCST) leads to the assembly of these hybrid materials as micrometer sized spheres. At 75 °C a morphological transformation from spheres to fibrils were observed. These studies provided unique perspectives about the impact of stimuli-responsive polymers and the triple-helix forming peptides on each other; and how temperature as a stimulus can be employed to sequentially guide the assembly. The development of self-assembling hybrid materials with multiple sensitivities to temperature would offer useful opportunities in the design of stimuli-responsive nano-materials. The CLP-Cys peptide sequence has been designed to incorporate biologically relevant amino acid triplets (GEKGER) and its positive impact was seen via recruitment of human mesenchymal stem cells (hMSCs) for adhesion, spreading and proliferation on CLP-Cys functionalized glass and hyaluronic acid based hydrogel surfaces. Therefore, the prospects of these materials in biomedical applications including wound healing and tissue engineering are promising.

  1. Impact of Supramolecular Aggregation on the Crystallization Kinetics of Organic Compounds from the Supercooled Liquid State.

    PubMed

    Kalra, Arjun; Tishmack, Patrick; Lubach, Joseph W; Munson, Eric J; Taylor, Lynne S; Byrn, Stephen R; Li, Tonglei

    2017-06-05

    Despite numerous challenges in their theoretical description and practical implementation, amorphous drugs are of growing importance to the pharmaceutical industry. One such challenge is to gain molecular level understanding of the propensity of a molecule to form and remain as a glassy solid. In this study, a series of structurally similar diarylamine compounds was examined to elucidate the role of supramolecular aggregation on crystallization kinetics from supercooled liquid state. The structural similarity of the compounds makes it easier to isolate the molecular features that affect crystallization kinetics and glass forming ability of these compounds. To examine the role of hydrogen-bonded aggregation and motifs on crystallization kinetics, a combination of thermal and spectroscopic techniques was employed. Using variable temperature FTIR, Raman, and solid-state NMR spectroscopies, the presence of hydrogen bonding in the melt and glassy state was examined and correlated with observed phase transition behaviors. Spectroscopic results revealed that the formation of hydrogen-bonded aggregates involving carboxylic acid and pyridine nitrogen (acid-pyridine aggregates) between neighboring molecules in the melt state impedes crystallization, while the presence of carboxylic acid dimers (acid-acid dimers) in the melt favors crystallization. This study suggests that glass formation of small molecules is influenced by the type of intermolecular interactions present in the melt state and the kinetics associated with the molecules to assemble into a crystalline lattice. For the compounds that form acid-pyridine aggregates, the formation of energy degenerate chains, produced due to conformational flexibility of the molecules, presents a kinetic barrier to crystallization. The poor crystallization tendency of these aggregates stems from the highly directional hydrogen-bonding interactions needed to form the acid-pyridine chains. Conversely, for the compounds that form acid-acid dimers, the nondirectional van der Waals forces needed to construct a nucleus promote rapid assembly and crystallization.

  2. Design and Analysis of the International X-Ray Observatory Mirror Modules

    NASA Technical Reports Server (NTRS)

    McClelland, Ryan S.; Carnahan, Timothy M.; Robinson, David W.; Saha, Timo T.

    2009-01-01

    The Soft X-Ray Telescope (SXT) modules are the fundamental focusing assemblies on NASA's next major X-ray telescope mission, the International X-Ray Observatory (IXO). The preliminary design and analysis of these assemblies has been completed, addressing the major engineering challenges and leading to an understanding of the factors effecting module performance. Each of the 60 modules in the Flight Mirror Assembly (FMA) supports 200-300 densely packed 0.4 mm thick glass mirror segments in order to meet the unprecedented effective area required to achieve the scientific objectives of the mission. Detailed Finite Element Analysis (FEA), materials testing, and environmental testing have been completed to ensure the modules can be successfully launched. Resulting stress margins are positive based on detailed FEA, a large factor of safety, and a design strength determined by robust characterization of the glass properties. FEA correlates well with the results of the successful modal, vibration, and acoustic environmental tests. Deformation of the module due to on-orbit thermal conditions is also a major design driver. A preliminary thermal control system has been designed and the sensitivity of module optical performance to various thermal loads has been determined using optomechanical analysis methods developed for this unique assembly. This design and analysis furthers the goal of building a module that demonstrates the ability to meet IXO requirements, which is the current focus of the IXO FMA technology development team.

  3. Superior Tensile Ductility in Bulk Metallic Glass with Gradient Amorphous Structure

    PubMed Central

    Wang, Q.; Yang, Y.; Jiang, H.; Liu, C. T.; Ruan, H. H.; Lu, J.

    2014-01-01

    Over centuries, structural glasses have been deemed as a strong yet inherently ‘brittle’ material due to their lack of tensile ductility. However, here we report bulk metallic glasses exhibiting both a high strength of ~2 GPa and an unprecedented tensile elongation of 2–4% at room temperature. Our experiments have demonstrated that intense structural evolution can be triggered in theses glasses by the carefully controlled surface mechanical attrition treatment, leading to the formation of gradient amorphous microstructures across the sample thickness. As a result, the engineered amorphous microstructures effectively promote multiple shear banding while delay cavitation in the bulk metallic glass, thus resulting in superior tensile ductility. The outcome of our research uncovers an unusual work-hardening mechanism in monolithic bulk metallic glasses and demonstrates a promising yet low-cost strategy suitable for producing large-sized, ultra-strong and stretchable structural glasses. PMID:24755683

  4. Structural aspects of calcium iron phosphate glass containing neodymium oxide

    NASA Astrophysics Data System (ADS)

    Li, Haijian; Liang, Xiaofeng; Wang, Cuiling; Yu, Huijun; Li, Zhen; Yang, Shiyuan

    2014-06-01

    Homogeneous glasses of the xNd2O3sbnd (100 - x)(12CaOsbnd 20Fe2O3sbnd 68P2O5) system were obtained within the 0 ⩽ x ⩽ 10 mol% composition range. The density and molar volume measurements helped to understand the structural changes occurring in these glasses. Vickers-hardness results showed that addition of Nd2O3 strengthened the crosslinking of the glass network. Spectra analysis indicated that Nd2O3 enters in the structure of the phosphate glasses as a network modifier. The depolymerization of the glass network by the addition of Nd2O3 is characterized by the increase in the concentration of pyrophosphate. The decrease of the Q1 terminal oxygen with increasing Nd2O3 content indicated that Psbnd Osbnd Nd bonds participated in the pyrophosphate glass structure, determined from the Raman spectra.

  5. CFRP composite optical telescope assembly for the 1 m ULTRA project

    NASA Astrophysics Data System (ADS)

    Martin, Robert N.; Romeo, Robert C.

    2006-06-01

    The focus of the ULTRA Project is to develop and test Ultra-Lightweight Technology for Research applications in Astronomy. The ULTRA project is a collaborative effort involving the private firm Composite Mirror Applications, Inc (CMA) and 3 universities: University of Kansas, San Diego State University, and Dartmouth College. Funding for ULTRA is predominately from a NSF three year MRI program grant to CMA and KU with additional support from CMA, KU and SDSU. The goal of the ULTRA program is to demonstrate that a viable alternative exists to traditional glass mirror and steel telescope technology by designing, fabricating and testing a research telescope constructed from carbon fiber reinforced plastic (CFRP) materials. In particular, a 1m diameter, Cassegrain telescope optics set and optical tube assembly (OTA) are being designed and fabricated by CMA. The completed telescope will be deployed at SDSU's Mt Laguna Observatory in a refurbished structure (new dome and mount provided via KU and SDSU). We expect that a successful completion and testing of this project will lead to future use of CFRP technology in larger telescopes and segmented telescopes. This paper describes the OTA (optical tube assembly) that has been developed for the ULTRA project. The mirror technology is described in another paper in this conference. A poster describes the ULTRA project overview in more detail.

  6. Photocatalytic properties of PbS/graphene oxide/polyaniline electrode for hydrogen generation.

    PubMed

    Shaban, Mohamed; Rabia, Mohamed; El-Sayed, Asmaa M Abd; Ahmed, Aya; Sayed, Somaya

    2017-10-26

    In this work, roll-graphene oxide (Ro-GO), polyaniline (PANI) nano/microparticles, and PbS nanoparticles were prepared by modified Hammer, oxidative polymerization, and chemical bath deposition methods, respectively. These nano/microstructures were characterized, optimized, and designed to form PbS/Ro-GO/PANI nano/microcomposite. Also, the ratios of PbS and Ro-GO were optimized, and the optimized composition of the used composite was 0.4 g PANI, 0.125 g Ro-GO, and 0.075 g PbS. The band gap values for PANI, PbS, Ro-GO, and PbS/Ro-GO/PANI rocomposite were 3, 1.13, 2.86, (1.16, 2) eV, respectively. Two photoelectrode assemblies, Au/PbS/Ro-GO/PANI and PbS/Ro-GO/PANI/ITO/glass were used for the photoelectrochemical (PEC) hydrogen generation. In the first assembly 45 nm- Au layer was sputtered on the surface of a disk of PbS/Ro-GO/PANI composite. For the second assembly, a disk of PbS/Ro-GO/PANI composite was glued on ITO glass using Ag-THF paste. The lifetime efficiency values were 64.2 and 43.4% for the first and second electrode for 2 h, respectively. Finally, the incident photon-to-current conversion efficiency (IPCE) and photon-to-current efficiency (ABPE) were calculated under monochromatic illumination conditions. The optimum IPCE efficiency at 390 nm was 9.4% and 16.17%, whereas ABPE % efficiency was 1.01% and 1.75% for Au/PbS/Ro-GO/PANI and PbS/Ro-GO/PANI/ITO/glass, respectively.

  7. Multifunctional 3D printing of heterogeneous hydrogel structures

    NASA Astrophysics Data System (ADS)

    Nadernezhad, Ali; Khani, Navid; Skvortsov, Gözde Akdeniz; Toprakhisar, Burak; Bakirci, Ezgi; Menceloglu, Yusuf; Unal, Serkan; Koc, Bahattin

    2016-09-01

    Multimaterial additive manufacturing or three-dimensional (3D) printing of hydrogel structures provides the opportunity to engineer geometrically dependent functionalities. However, current fabrication methods are mostly limited to one type of material or only provide one type of functionality. In this paper, we report a novel method of multimaterial deposition of hydrogel structures based on an aspiration-on-demand protocol, in which the constitutive multimaterial segments of extruded filaments were first assembled in liquid state by sequential aspiration of inks into a glass capillary, followed by in situ gel formation. We printed different patterned objects with varying chemical, electrical, mechanical, and biological properties by tuning process and material related parameters, to demonstrate the abilities of this method in producing heterogeneous and multi-functional hydrogel structures. Our results show the potential of proposed method in producing heterogeneous objects with spatially controlled functionalities while preserving structural integrity at the switching interface between different segments. We anticipate that this method would introduce new opportunities in multimaterial additive manufacturing of hydrogels for diverse applications such as biosensors, flexible electronics, tissue engineering and organ printing.

  8. Multifunctional 3D printing of heterogeneous hydrogel structures

    PubMed Central

    Nadernezhad, Ali; Khani, Navid; Skvortsov, Gözde Akdeniz; Toprakhisar, Burak; Bakirci, Ezgi; Menceloglu, Yusuf; Unal, Serkan; Koc, Bahattin

    2016-01-01

    Multimaterial additive manufacturing or three-dimensional (3D) printing of hydrogel structures provides the opportunity to engineer geometrically dependent functionalities. However, current fabrication methods are mostly limited to one type of material or only provide one type of functionality. In this paper, we report a novel method of multimaterial deposition of hydrogel structures based on an aspiration-on-demand protocol, in which the constitutive multimaterial segments of extruded filaments were first assembled in liquid state by sequential aspiration of inks into a glass capillary, followed by in situ gel formation. We printed different patterned objects with varying chemical, electrical, mechanical, and biological properties by tuning process and material related parameters, to demonstrate the abilities of this method in producing heterogeneous and multi-functional hydrogel structures. Our results show the potential of proposed method in producing heterogeneous objects with spatially controlled functionalities while preserving structural integrity at the switching interface between different segments. We anticipate that this method would introduce new opportunities in multimaterial additive manufacturing of hydrogels for diverse applications such as biosensors, flexible electronics, tissue engineering and organ printing. PMID:27630079

  9. Design of refractive fore-optics with wide field of view and waveband for miniature imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Mao, Jingchao; Xu, Minyi; Liu, Qinghan; Shen, Weimin

    2016-10-01

    With the development of unmanned airborne vehicle (UAV) remote sensing technology, miniature high-resolution imaging spectrometers are greatly needed. In order to improve remote sensing efficiency and get wider coverage, it's urgent to design and develop fore-optics with wide field of view and waveband for imaging spectrometer. As the refractive system has no central obscuration and it's conducive to manufacture and assemble, so it's used for our fore-optics. The key is the correction of secondary spectrum of systems working in broad waveband and meeting the requirement of imagery telecentricity to be appropriate for linear pushbroom imaging system. Suitable glasses are selected on the Glass Map, from where each glass has an Abbe number υd and Partial Dispersion. Based on the theory of Gaussian Optics and Seidel third-order aberration theory, the paper derives apochromatic formula, and the power of individual lenses can be calculated. Then with a required value of spherical aberration and coma, this paper derives equations to calculate the initial structure of apochromatic optical systems. Finally, optimized refractive SWIR fore-optics working in 1μm-2.5μm with effective focal length (EFFL) of 11mm is reported. Its full field and F-number are respectively 40°, F/2.8. The system has many advantages such as simple and compact structure, small size, near diffraction-limited imaging quality, small secondary spectrum and imagery telecentricity. Especially it consists of spherical surfaces that can greatly reduce the difficulty and the cost of manufacture as well as test, which is applicable for SWIR imaging spectrometer with wide field of view.

  10. Investigations of glass structure using fluorescence line narrowing and moleuclar dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, M.J.; Brawer, S.A.

    1982-07-02

    The local structure at individual ion sites in simple and multicomponent glasses is simulated using methods of molecular dynamics. Computer simulations of fluoroberyllate glasses predict a range of ion separations and coordination numbers that increases with increasing complexity of the glass composition. This occurs at both glass forming and glass modifying cation sites. Laser-induced fluorescence line-narrowing techniques provide a unique probe of the local environments of selected subsets of ions and are used to measure site to site variations in the electronic energy levels and transition probabilities of rare earth ions. These and additional results from EXAFS, neutron and x-raymore » diffraction, and NMR experiments are compared with simulated glass structures.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Jincheng; Rimsza, Jessica

    Computational simulations at the atomistic level play an increasing important role in understanding the structures, behaviors, and the structure-property relationships of glass and amorphous materials. In this paper, we reviewed atomistic simulation methods ranging from first principles calculations and ab initio molecular dynamics (AIMD), to classical molecular dynamics (MD) and meso-scale kinetic Monte Carlo (KMC) simulations and their applications to glass-water interactions and glass dissolutions. Particularly, the use of these simulation methods in understanding the reaction mechanisms of water with oxide glasses, water-glass interfaces, hydrated porous silica gels formation, the structure and properties of multicomponent glasses, and microstructure evolution aremore » reviewed. Here, the advantages and disadvantageous of these methods are discussed and the current challenges and future direction of atomistic simulations in glass dissolution are presented.« less

  12. Monte Carlo simulation of a very high resolution thermal neutron detector composed of glass scintillator microfibers.

    PubMed

    Song, Yushou; Conner, Joseph; Zhang, Xiaodong; Hayward, Jason P

    2016-02-01

    In order to develop a high spatial resolution (micron level) thermal neutron detector, a detector assembly composed of cerium doped lithium glass microfibers, each with a diameter of 1 μm, is proposed, where the neutron absorption location is reconstructed from the observed charged particle products that result from neutron absorption. To suppress the cross talk of the scintillation light, each scintillating fiber is surrounded by air-filled glass capillaries with the same diameter as the fiber. This pattern is repeated to form a bulk microfiber detector. On one end, the surface of the detector is painted with a thin optical reflector to increase the light collection efficiency at the other end. Then the scintillation light emitted by any neutron interaction is transmitted to one end, magnified, and recorded by an intensified CCD camera. A simulation based on the Geant4 toolkit was developed to model this detector. All the relevant physics processes including neutron interaction, scintillation, and optical boundary behaviors are simulated. This simulation was first validated through measurements of neutron response from lithium glass cylinders. With good expected light collection, an algorithm based upon the features inherent to alpha and triton particle tracks is proposed to reconstruct the neutron reaction position in the glass fiber array. Given a 1 μm fiber diameter and 0.1mm detector thickness, the neutron spatial resolution is expected to reach σ∼1 μm with a Gaussian fit in each lateral dimension. The detection efficiency was estimated to be 3.7% for a glass fiber assembly with thickness of 0.1mm. When the detector thickness increases from 0.1mm to 1mm, the position resolution is not expected to vary much, while the detection efficiency is expected to increase by about a factor of ten. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Silane Modification of Glass and Silica Surfaces to Obtain Equally Oil-Wet Surfaces in Glass-Covered Silicon Micromodel Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Warner, Marvin G.; Pittman, Jonathan W.

    2013-08-05

    The wettability of silicon and glass surfaces can be modified by silanization. However, similar treatments of glass and silica surfaces using the same silane do not necessarily yield the same wettability as determined by the oil-water contact angle. In this technical note, surface cleaning pretreatments were investigated to determine conditions that would yield oil-wet surfaces on glass with similar wettability to silica surfaces treated with the same silane, and both air-water and oil-water contact angles were determined. Air-water contact angles were less sensitive to differences between silanized silica and glass surfaces, often yielding similar values while the oil-water contact anglesmore » were quite different. Borosilicate glass surfaces cleaned with standard cleaning solution 1 (SC1) yield intermediate-wet surfaces when silanized with hexamethyldisilazane, while the same cleaning and silanization yields oil-wet surfaces on silica. However, cleaning glass in boiling concentrated nitric acid creates a surface that can be silanized to obtain oil-wet surfaces using HDMS. Moreover, this method is effective on glass with prior thermal treatment at an elevated temperature of 400oC. In this way, silica and glass can be silanized to obtain equally oil-wet surfaces using HMDS. It is demonstrated that pretreatment and silanization is feasible in silicon-silica/glass micromodels previously assembled by anodic bonding, and that the change in wettability has a significant observable effect on immiscisble fluid displacements in the pore network.« less

  14. Atomistic Computer Simulations of Water Interactions and Dissolution of Inorganic Glasses

    DOE PAGES

    Du, Jincheng; Rimsza, Jessica

    2017-09-01

    Computational simulations at the atomistic level play an increasing important role in understanding the structures, behaviors, and the structure-property relationships of glass and amorphous materials. In this paper, we reviewed atomistic simulation methods ranging from first principles calculations and ab initio molecular dynamics (AIMD), to classical molecular dynamics (MD) and meso-scale kinetic Monte Carlo (KMC) simulations and their applications to glass-water interactions and glass dissolutions. Particularly, the use of these simulation methods in understanding the reaction mechanisms of water with oxide glasses, water-glass interfaces, hydrated porous silica gels formation, the structure and properties of multicomponent glasses, and microstructure evolution aremore » reviewed. Here, the advantages and disadvantageous of these methods are discussed and the current challenges and future direction of atomistic simulations in glass dissolution are presented.« less

  15. Iron phosphate glasses: Bulk properties and atomic scale structure

    NASA Astrophysics Data System (ADS)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.; Asuvathraman, R.; Dube, Charu L.; Gandy, Amy S.; Govindan Kutty, K. V.; Jolley, Kenny; Vasudeva Rao, P. R.; Smith, Roger

    2017-10-01

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. % of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.

  16. Development of a large area space solar cell assembly

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.

    1982-01-01

    The development of a large area high efficiency solar cell assembly is described. The assembly consists of an ion implanted silicon solar cell and glass cover. The important attributes of fabrication are the use of a back surface field which is compatible with a back surface reflector, and integration of coverglass application and cell fabrications. Cell development experiments concerned optimization of ion implantation processing of 2 ohm-cm boron-doped silicon. Process parameters were selected based on these experiments and cells with area of 34.3 sq cm wre fabricated. The average AMO efficiency of the twenty-five best cells was 13.9% and the best bell had an efficiency of 14.4%. An important innovation in cell encapsulation was also developed. In this technique, the coverglass is applied before the cell is sawed to final size. The coverglass and cell are then sawed as a unit. In this way, the cost of the coverglass is reduced, since the tolerance on glass size is relaxed, and costly coverglass/cell alignment procedures are eliminated. Adhesive investigated were EVA, FEP-Teflon sheet and DC 93-500. Details of processing and results are reported.

  17. Advanced Gas Turbine (AGT) Technology Project

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engine testing, ceramic component fabrication and evaluation, component performance rig testing, and analytical studies comprised AGT 100 activities during the 1985 year. Ten experimental assemblies (builds) were evaluated using two engines. Accrued operating time was 120 hr of burning and 170 hr total, bringing cumulative total operating time to 395 hr, all devoid of major failures. Tests identified the generator seals as the primary working fluid leakage sources. Power transfer clutch operation was demonstrated. An alpha SiC gasifier rotor engine test resulted in blade tip failures. Recurring case vibration and shaft whip have limited gasifier shaft speeds to 84%. Ceramic components successfully engine tested now include the SiC scroll assembly, Si3N3 turbine rotor, combustor assembly, regenerator disk bulkhead, turbine vanes, piston rings, and couplings. A compressor shroud design change to reduce heat recirculation back to the inlet was executed. Ceramic components activity continues to focus on the development of state-of-the-art material strength characteristics in full-scale engine hardware. Fiber reinforced glass-ceramic composite turbine (inner) backplates were fabricated by Corning Glass Works. The BMAS/III material performed well in engine testing. Backplates of MAS material have not been engine tested.

  18. Application of the Evacuated Canister System for Removing Residual Molten Glass From the West Valley Demonstration Project High-Level Waste Melter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, Joseph J.; Dombrowski, David J.; Valenti, Paul J.

    The principal mission of the West Valley Demonstration Project (WVDP) is to meet a series of objectives defined in the West Valley Demonstration Project Act (Public Law 96-368). Chief among these is the objective to solidify liquid high-level waste (HLW) at the WVDP site into a form suitable for disposal in a federal geologic repository. In 1982, the Secretary of Energy formally selected vitrification as the technology to be used to solidify HLW at the WVDP. One of the first steps in meeting the HLW solidification objective involved designing, constructing and operating the Vitrification (Vit) Facility, the WVDP facility thatmore » houses the systems and subsystems used to process HLW into stainless steel canisters of borosilicate waste-glass that satisfy waste acceptance criteria (WAC) for disposal in a federal geologic repository. HLW processing and canister production began in 1996. The final step in meeting the HLW solidification objective involved ending Vit system operations and shut ting down the Vit Facility. This was accomplished by conducting a discrete series of activities to remove as much residual material as practical from the primary process vessels, components, and associated piping used in HLW canister production before declaring a formal end to Vit system operations. Flushing was the primary method used to remove residual radioactive material from the vitrification system. The inventory of radioactivity contained within the entire primary processing system diminished by conducting the flushing activities. At the completion of flushing activities, the composition of residual molten material remaining in the melter (the primary system component used in glass production) consisted of a small quantity of radioactive material and large quantities of glass former materials needed to produce borosilicate waste-glass. A special system developed during the pre-operational and testing phase of Vit Facility operation, the Evacuated Canister System (ECS), was deployed at the West Valley Demonstration Project to remove this radioactively dilute, residual molten material from the melter before Vit system operations were brought to a formal end. The ECS consists of a stainless steel canister of the same size and dimensions as a standard HLW canister that is equipped with a special L-shaped snorkel assembly made of 304L stainless steel. Both the canister and snorkel assembly fit into a stainless steel cage that allows the entire canister assembly to be positioned over the melter as molten glass is drawn out by a vacuum applied to the canister. This paper describes the process used to prepare and apply the ECS to complete molten glass removal before declaring a formal end to Vit system operations and placing the Vit Facility into a safe standby mode awaiting potential deactivation.« less

  19. Deconvoluting the mechanism of microwave annealing of block copolymer thin films.

    PubMed

    Jin, Cong; Murphy, Jeffrey N; Harris, Kenneth D; Buriak, Jillian M

    2014-04-22

    The self-assembly of block copolymer (BCP) thin films is a versatile method for producing periodic nanoscale patterns with a variety of shapes. The key to attaining a desired pattern or structure is the annealing step undertaken to facilitate the reorganization of nanoscale phase-segregated domains of the BCP on a surface. Annealing BCPs on silicon substrates using a microwave oven has been shown to be very fast (seconds to minutes), both with and without contributions from solvent vapor. The mechanism of the microwave annealing process remains, however, unclear. This work endeavors to uncover the key steps that take place during microwave annealing, which enable the self-assembly process to proceed. Through the use of in situ temperature monitoring with a fiber optic temperature probe in direct contact with the sample, we have demonstrated that the silicon substrate on which the BCP film is cast is the dominant source of heating if the doping of the silicon wafer is sufficiently low. Surface temperatures as high as 240 °C are reached in under 1 min for lightly doped, high resistivity silicon wafers (n- or p-type). The influence of doping, sample size, and BCP composition was analyzed to rule out other possible mechanisms. In situ temperature monitoring of various polymer samples (PS, P2VP, PMMA, and the BCPs used here) showed that the polymers do not heat to any significant extent on their own with microwave irradiation of this frequency (2.45 GHz) and power (∼600 W). It was demonstrated that BCP annealing can be effectively carried out in 60 s on non-microwave-responsive substrates, such as highly doped silicon, indium tin oxide (ITO)-coated glass, glass, and Kapton, by placing a piece of high resistivity silicon wafer in contact with the sample-in this configuration, the silicon wafer is termed the heating element. Annealing and self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) BCPs into horizontal cylinder structures were shown to take place in under 1 min, using a silicon wafer heating element, in a household microwave oven. Defect densities were calculated and were shown to decrease with higher maximum obtained temperatures. Conflicting results in the literature regarding BCP annealing with microwave are explained in light of the results obtained in this study.

  20. Langmuir-Blodgett Thin Films of Diketopyrrolopyrrole-Based Amphiphiles.

    PubMed

    Lo, Chi Kin; Wang, Cheng-Yin; Oosterhout, Stefan D; Zheng, Zilong; Yi, Xueping; Fuentes-Hernandez, Canek; So, Franky; Coropceanu, Veaceslav; Brédas, Jean-Luc; Toney, Michael F; Kippelen, Bernard; Reynolds, John R

    2018-04-11

    We report on two π-conjugated donor-acceptor-donor (D-A-D) molecules of amphiphilic nature, aiming to promote intermolecular ordering and carrier mobility in organic electronic devices. Diketopyrrolopyrrole was selected as the acceptor moiety that was disubstituted with nonpolar and polar functional groups, thereby providing the amphiphilic structures. This structural design resulted in materials with a strong intermolecular order in the solid state, which was confirmed by differential scanning calorimetry and polarized optical microscopy. Langmuir-Blodgett (LB) films of ordered mono- and multilayers were transferred onto glass and silicon substrates, with layer quality, coverage, and intermolecular order controlled by layer compression pressure on the LB trough. Organic field-effect transistors and organic photovoltaics devices with active layers consisting of the amphiphilic conjugated D-A-D-type molecules were constructed to demonstrate that the LB technique is an effective layer-by-layer deposition approach to fabricate self-assembled, ordered thin films.

  1. Langmuir–Blodgett Thin Films of Diketopyrrolopyrrole-Based Amphiphiles

    DOE PAGES

    Lo, Chi Kin; Wang, Cheng -Yin; Oosterhout, Stefan D.; ...

    2018-03-30

    Here, we report on two π-conjugated donor–acceptor–donor (D–A–D) molecules of amphiphilic nature, aiming to promote intermolecular ordering and carrier mobility in organic electronic devices. Diketopyrrolopyrrole was selected as the acceptor moiety that was disubstituted with nonpolar and polar functional groups, thereby providing the amphiphilic structures. This structural design resulted in materials with a strong intermolecular order in the solid state, which was confirmed by differential scanning calorimetry and polarized optical microscopy. Langmuir–Blodgett (LB) films of ordered mono- and multilayers were transferred onto glass and silicon substrates, with layer quality, coverage, and intermolecular order controlled by layer compression pressure on themore » LB trough. Organic field-effect transistors and organic photovoltaics devices with active layers consisting of the amphiphilic conjugated D–A–D-type molecules were constructed to demonstrate that the LB technique is an effective layer-by-layer deposition approach to fabricate self-assembled, ordered thin films.« less

  2. Passive Orbital Disconnect Strut (PODS 3) structural test program

    NASA Technical Reports Server (NTRS)

    Parmley, R. T.

    1985-01-01

    A passive orbital disconnect strut (PODS-3) was analyzed structurally and thermally. Development tests on a graphite/epoxy orbit tube and S glass epoxy launch tube provided the needed data to finalize the design. A detailed assembly procedure was prepared. One strut was fabricated. Shorting loads in both the axial and lateral direction (vs. load angle and location) were measured. The strut was taken to design limit loads at both ambient and 78 K (cold end only). One million fatigue cycles were performed at predicted STS loads (half in tension, half in compression) with the cold end at 78 K. The fatigue test was repeated at design limit loads. Six struts were then fabricated and tested as a system. Axial loads, side loads, and simulated asymmetric loads due to temperature gradients around the vacuum shell were applied. Shorting loads were measured for all tests.

  3. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hao; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4; Zhong, Cheng

    2015-04-28

    We investigate Cu-Zr liquid alloys using molecular dynamics simulation and well-accepted embedded atom method potentials over a wide range of chemical composition and temperature as model metallic glass-forming (GF) liquids. As with other types of GF materials, the dynamics of these complex liquids are characterized by “dynamic heterogeneity” in the form of transient polymeric clusters of highly mobile atoms that are composed in turn of atomic clusters exhibiting string-like cooperative motion. In accordance with the string model of relaxation, an extension of the Adam-Gibbs (AG) model, changes in the activation free energy ΔG{sub a} with temperature of both the Cumore » and Zr diffusion coefficients D, and the alpha structural relaxation time τ{sub α} can be described to a good approximation by changes in the average string length, L. In particular, we confirm that the strings are a concrete realization of the abstract “cooperatively rearranging regions” of AG. We also find coexisting clusters of relatively “immobile” atoms that exhibit predominantly icosahedral local packing rather than the low symmetry packing of “mobile” atoms. These two distinct types of dynamic heterogeneity are then associated with different fluid structural states. Glass-forming liquids are thus analogous to polycrystalline materials where the icosahedrally packed regions correspond to crystal grains, and the strings reside in the relatively disordered grain boundary-like regions exterior to these locally well-ordered regions. A dynamic equilibrium between localized (“immobile”) and wandering (“mobile”) particles exists in the liquid so that the dynamic heterogeneity can be considered to be type of self-assembly process. We also characterize changes in the local atomic free volume in the course of string-like atomic motion to better understand the initiation and propagation of these fluid excitations.« less

  4. 3-Dimensional Colloidal Crystals From Hollow Spheres

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Work, William J.; Sanyal, Subrata; Lin, Keng-Hui; Yodh, A. G.

    2000-03-01

    We have succeeded in synthesizing submicron-sized, hollow PMMA spheres and self-assembling them into colloidal crystalline structures using the depletion force. The resulting structures can be used as templates to make high refractive-index contrast, porous, inorganic structures without the need to use calcination or chemical-etching. With the method of emulsion polymerization, we managed to coat a thin PMMA shell around a swellable P(MMA/MAA/EGDMA) core. After neutralization and heating above the glass transition temperature of PMMA, we obtained water-swollen hydrogel particles encapsulated in PMMA shells. These composite particles become hollow spheres after drying. We characterized the particles with both transmission electron microscopy (TEM) and dynamic light scattering (DLS). The TEM results confirmed that each sphere has a hollow core. The DLS results showed that our hollow spheres are submicron-sized, with a swelling ratio of at least 25%, and with a polydispersity less than 5%. We anticipate using this method in the near-future to encapsulate ferrofluid emulsion droplets and liquid crystal droplets.

  5. Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres

    NASA Astrophysics Data System (ADS)

    Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2018-06-01

    We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.

  6. Slumped glass option for making the XEUS mirrors: preliminary design and ongoing developments

    NASA Astrophysics Data System (ADS)

    Ghigo, M.; Canestrari, R.; Proserpio, L.; Dell'Orto, E.; Basso, S.; Citterio, O.; Pareschi, G.; Parodi, Giancarlo

    2008-07-01

    The XEUS mission (X-ray Evolving-Universe Spectroscopy Mission) of ESA, in the present configuration has a mirror collecting area in the order of 5-6 m2 @ 1 keV, 2 m2 @ 7 keV and 1 m2 @ 10 keV. These large collecting areas could be obtained with a mirror assembly composed of a large number of high quality segments each being able to deliver the angular resolution requested by the mission or better. The XEUS telescope will fit in the fairing of an Ariane 5 ECA launcher and hence its diameter is presently of about 4.5 m. The request in terms of angular resolution of the telescope has been set to 5 arcsec with a goal of 2 arcsec. Due to the large size of the optics it is impossible to create closed shells like those used for XMM or Chandra and hence it will be necessary to assemble a large number of segments (for example of ~0.6 m x ~0.3 m size) to recreate the mirror shells. These segments will form a module, an optical sub-unit of the telescope. The modules will be assembled to form the whole mirror system. As for all the space missions, the limits imposed on the payload mass budget by the launcher is the main driver that force the use of very lightweight optics and this request is of course very challenging. For example, the current design for XEUS foresees a geometric-area/mass ratio better than about 30 cm2/kg. In this article is illustrated a possible approach for the realization of large size and lightweight X-ray mirrors that derive from an experience gained from a previous work made in INAF-OAB on the thermal slumping of thin glass optics. The process foresees the use of a mould having a good optical figure but opposite shape respect to the segment to be slumped. On the mould is placed an initially flat glass sheet. With a suitable thermal cycle the glass sheet is conformed to the mould shape. Once tested for acceptance the glass sheet it is then integrated into a module by means of a robotic arm having a feedback system to confirm the correct alignment. A study on different optical geometries using the classical Wolter I and Kirkpatrick-Baez configurations has been also performed to investigate the theoretical performances obtainable with optics made using very thin glass shells.

  7. In-situ atomic force microscopy observation revealing gel-like plasticity on a metallic glass surface

    NASA Astrophysics Data System (ADS)

    Lu, Y. M.; Zeng, J. F.; Huang, J. C.; Kuan, S. Y.; Nieh, T. G.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2017-03-01

    It has been decade-long and enduring efforts to decipher the structural mechanism of plasticity in metallic glasses; however, it still remains a challenge to directly reveal the structural change, if any, that precedes; and dominant plastics flow in them. Here, by using the dynamic atomic force microscope as an "imaging" as well as a "forcing" tool, we unfold a real-time sequence of structural evolution occurring on the surface of an Au-Si thin film metallic glass. In sharp contrast to the common notion that plasticity comes along with mechanical softening in bulk metallic glasses, our experimental results directly reveal three types of nano-sized surface regions, which undergo plasticity but exhibit different characters of structural evolution following the local plasticity events, including stochastic structural rearrangement, unusual local relaxation and rejuvenation. As such, yielding on the metallic-glass surface manifests as a dynamic equilibrium between local relaxation and rejuvenation as opposed to shear instability in bulk metallic-glasses. Our finding demonstrates that plasticity on the metallic glass surface of Au-Si metallic glass bears much resemblance to that of the colloidal gels, of which nonlinear rheology rather than shear instability governs the constitutive behavior of plasticity.

  8. Interfacing 3D Engineered Neuronal Cultures to Micro-Electrode Arrays: An Innovative In Vitro Experimental Model.

    PubMed

    Tedesco, Mariateresa; Frega, Monica; Martinoia, Sergio; Pesce, Mattia; Massobrio, Paolo

    2015-10-18

    Currently, large-scale networks derived from dissociated neurons growing and developing in vitro on extracellular micro-transducer devices are the gold-standard experimental model to study basic neurophysiological mechanisms involved in the formation and maintenance of neuronal cell assemblies. However, in vitro studies have been limited to the recording of the electrophysiological activity generated by bi-dimensional (2D) neural networks. Nonetheless, given the intricate relationship between structure and dynamics, a significant improvement is necessary to investigate the formation and the developing dynamics of three-dimensional (3D) networks. In this work, a novel experimental platform in which 3D hippocampal or cortical networks are coupled to planar Micro-Electrode Arrays (MEAs) is presented. 3D networks are realized by seeding neurons in a scaffold constituted of glass microbeads (30-40 µm in diameter) on which neurons are able to grow and form complex interconnected 3D assemblies. In this way, it is possible to design engineered 3D networks made up of 5-8 layers with an expected final cell density. The increasing complexity in the morphological organization of the 3D assembly induces an enhancement of the electrophysiological patterns displayed by this type of networks. Compared with the standard 2D networks, where highly stereotyped bursting activity emerges, the 3D structure alters the bursting activity in terms of duration and frequency, as well as it allows observation of more random spiking activity. In this sense, the developed 3D model more closely resembles in vivo neural networks.

  9. Interfacing 3D Engineered Neuronal Cultures to Micro-Electrode Arrays: An Innovative In Vitro Experimental Model

    PubMed Central

    Tedesco, Mariateresa; Frega, Monica; Martinoia, Sergio; Pesce, Mattia; Massobrio, Paolo

    2015-01-01

    Currently, large-scale networks derived from dissociated neurons growing and developing in vitro on extracellular micro-transducer devices are the gold-standard experimental model to study basic neurophysiological mechanisms involved in the formation and maintenance of neuronal cell assemblies. However, in vitro studies have been limited to the recording of the electrophysiological activity generated by bi-dimensional (2D) neural networks. Nonetheless, given the intricate relationship between structure and dynamics, a significant improvement is necessary to investigate the formation and the developing dynamics of three-dimensional (3D) networks. In this work, a novel experimental platform in which 3D hippocampal or cortical networks are coupled to planar Micro-Electrode Arrays (MEAs) is presented. 3D networks are realized by seeding neurons in a scaffold constituted of glass microbeads (30-40 µm in diameter) on which neurons are able to grow and form complex interconnected 3D assemblies. In this way, it is possible to design engineered 3D networks made up of 5-8 layers with an expected final cell density. The increasing complexity in the morphological organization of the 3D assembly induces an enhancement of the electrophysiological patterns displayed by this type of networks. Compared with the standard 2D networks, where highly stereotyped bursting activity emerges, the 3D structure alters the bursting activity in terms of duration and frequency, as well as it allows observation of more random spiking activity. In this sense, the developed 3D model more closely resembles in vivo neural networks. PMID:26554533

  10. Understanding the structural drivers governing glass-water interactions in borosilicate based model bioactive glasses.

    PubMed

    Stone-Weiss, Nicholas; Pierce, Eric M; Youngman, Randall E; Gulbiten, Ozgur; Smith, Nicholas J; Du, Jincheng; Goel, Ashutosh

    2018-01-01

    The past decade has witnessed a significant upsurge in the development of borate and borosilicate based resorbable bioactive glasses owing to their faster degradation rate in comparison to their silicate counterparts. However, due to our lack of understanding about the fundamental science governing the aqueous corrosion of these glasses, most of the borate/borosilicate based bioactive glasses reported in the literature have been designed by "trial-and-error" approach. With an ever-increasing demand for their application in treating a broad spectrum of non-skeletal health problems, it is becoming increasingly difficult to design advanced glass formulations using the same conventional approach. Therefore, a paradigm shift from the "trial-and-error" approach to "materials-by-design" approach is required to develop new-generations of bioactive glasses with controlled release of functional ions tailored for specific patients and disease states, whereby material functions and properties can be predicted from first principles. Realizing this goal, however, requires a thorough understanding of the complex sequence of reactions that control the dissolution kinetics of bioactive glasses and the structural drivers that govern them. While there is a considerable amount of literature published on chemical dissolution behavior and apatite-forming ability of potentially bioactive glasses, the majority of this literature has been produced on silicate glass chemistries using different experimental and measurement protocols. It follows that inter-comparison of different datasets reveals inconsistencies between experimental groups. There are also some major experimental challenges or choices that need to be carefully navigated to unearth the mechanisms governing the chemical degradation behavior and kinetics of boron-containing bioactive glasses, and to accurately determine the composition-structure-property relationships. In order to address these challenges, a simplified borosilicate based model melt-quenched bioactive glass system has been studied to depict the impact of thermal history on its molecular structure and dissolution behavior in water. It has been shown that the methodology of quenching of the glass melt impacts the dissolution rate of the studied glasses by 1.5×-3× depending on the changes induced in their molecular structure due to variation in thermal history. Further, a recommendation has been made to study dissolution behavior of bioactive glasses using surface area of the sample - to - volume of solution (SA/V) approach instead of the currently followed mass of sample - to - volume of solution approach. The structural and chemical dissolution data obtained from bioactive glasses following the approach presented in this paper can be used to develop the structural descriptors and potential energy functions over a broad range of bioactive glass compositions. Realizing the goal of designing third generation bioactive glasses requires a thorough understanding of the complex sequence of reactions that control their rate of degradation (in physiological fluids) and the structural drivers that control them. In this article, we have highlighted some major experimental challenges and choices that need to be carefully navigated in order to unearth the mechanisms governing the chemical dissolution behavior of borosilicate based bioactive glasses. The proposed experimental approach allows us to gain a new level of conceptual understanding about the composition-structure-property relationships in these glass systems, which can be applied to attain a significant leap in designing borosilicate based bioactive glasses with controlled dissolution rates tailored for specific patient and disease states. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  11. Glass Masonry - Experimental Verification of Bed Joint under Shear

    NASA Astrophysics Data System (ADS)

    Fíla, J.; Eliášová, M.; Sokol, Z.

    2017-10-01

    Glass is considered as a traditional material for building industry but was mostly used for glazing of the windows. At present, glass is an integral part of contemporary architecture where glass structural elements such as beams, stairs, railing ribs or columns became popular in the last two decades. However, using glass as structural material started at the beginning of 20th century, when masonry from hollow glass blocks were used. Using solid glass brick is very rare and only a few structures with solid glass bricks walls have been built in the last years. Pillars and walls made from solid glass bricks are mainly loaded by compression and/or bending from the eccentricity of vertical load or wind load. Due to high compressive strength of glass, the limiting factor of the glass masonry is the joint between the glass bricks as the smooth surface requires another type of mortar / glue compared to traditional masonry. Shear resistance and failure modes of brick bed joint was determined during series of tests using various mortars, two types of surface treatment and different thickness of the mortar joint. Shear tests were completed by small scale tests for mortar - determination of flexural and compressive strength of hardened mortar.

  12. Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering

    PubMed Central

    Gerhardt, Lutz-Christian; Boccaccini, Aldo R.

    2010-01-01

    Traditionally, bioactive glasses have been used to fill and restore bone defects. More recently, this category of biomaterials has become an emerging research field for bone tissue engineering applications. Here, we review and discuss current knowledge on porous bone tissue engineering scaffolds on the basis of melt-derived bioactive silicate glass compositions and relevant composite structures. Starting with an excerpt on the history of bioactive glasses, as well as on fundamental requirements for bone tissue engineering scaffolds, a detailed overview on recent developments of bioactive glass and glass-ceramic scaffolds will be given, including a summary of common fabrication methods and a discussion on the microstructural-mechanical properties of scaffolds in relation to human bone (structure-property and structure-function relationship). In addition, ion release effects of bioactive glasses concerning osteogenic and angiogenic responses are addressed. Finally, areas of future research are highlighted in this review. PMID:28883315

  13. Manganese modified structural and optical properties of zinc soda lime silica glasses.

    PubMed

    Samsudin, Nur Farhana; Matori, Khamirul Amin; Wahab, Zaidan Abdul; Fen, Yap Wing; Liew, Josephine Ying Chi; Lim, Way Foong; Mohd Zaid, Mohd Hafiz; Omar, Nur Alia Sheh

    2016-03-20

    A series of MnO-doped zinc soda lime silica glass systems was prepared by a conventional melt and quenching technique. In this study, the x-ray diffraction analysis was applied to confirm the amorphous nature of the glasses. Fourier transform infrared spectroscopy shows the glass network consists of MnO4, SiO4, and ZnO4 units as basic structural units. The glass samples under field emission scanning electron microscopy observation demonstrated irregularity in shape and size with glassy phase-like structure. The optical absorption studies revealed that the optical bandgap (Eopt) values decrease with an increase of MnO content. Through the results of various measurements, the doping of MnO in the glass matrix had effects on the performance of the glasses and significantly improved the properties of the glass sample as a potential host for phosphor material.

  14. Local structural mechanism for frozen-in dynamics in metallic glasses

    NASA Astrophysics Data System (ADS)

    Liu, X. J.; Wang, S. D.; Wang, H.; Wu, Y.; Liu, C. T.; Li, M.; Lu, Z. P.

    2018-04-01

    The nature of the glass transition is a fundamental and long-standing intriguing issue in the condensed-matter physics and materials science community. In particular, the structural response by which a liquid is arrested dynamically to form a glass or amorphous solid upon approaching its freezing temperature [the glass transition temperature (Tg)] remains unclear. Various structural scenarios in terms of the percolation theory have been proposed recently to understand such a phenomenon; however, there is still no consensus on what the general percolation entity is and how the entity responds to the sudden slowdown dynamics during the glass transition. In this paper, we demonstrate that one-dimensional local linear ordering (LLO) is a universal structural motif associated with the glass transition for various metallic glasses. The quantitative evolution of LLO with temperature indicates that a percolating LLO network forms to serve as the backbone of the rigid glass solid when the temperature approaches the freezing point, resulting in the frozen-in dynamics accompanying the glass transition. The percolation transition occurs by pinning different LLO networks together, which only needs the introduction of a small number of "joint" atoms between them, and therefore the energy expenditure is very low.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlawat, Navneet; Aghamkar, Praveen; Ahlawat, Neetu

    Lithium lead silicate glasses with composition 30Li{sub 2}O{center_dot}(70-x)PbO{center_dot}xSiO{sub 2}(where, x = 10, 20, 30, 40, 50 mol %)(LPS glasses) were prepared by normal melt quench technique at 1373 K for half an hour in air to understand their structure. Compositional dependence of density, molar volume and glass transition temperature of these glasses indicates more compactness of the glass structure with increasing SiO{sub 2} content. Fourier transform infrared (FTIR) spectroscopic data obtained for these glasses was used to investigate the changes induced in the local structure of samples as the ratio between PbO and SiO{sub 2} content changes from 6.0 tomore » 0.4. The observed absorption band around 450-510 cm{sup -1} in IR spectra of these glasses indicates the presence of network forming PbO{sub 4} tetrahedral units in glass structure. The increase in intensity with increasing SiO{sub 2} content (upto x = 30 mol %) suggests superposition of Pb-O and Si-O bond vibrations in absorption band around 450-510 cm{sup -1}. The values of optical basicity in these glasses were found to be dependent directly on PbO/SiO{sub 2} ratio.« less

  16. Optical and Mechanical Properties of Glass Blown In Vacuo

    NASA Technical Reports Server (NTRS)

    Manning, andrew; Tucker, Dennis; Mooney, Theodore; Herren, Kenneth; Gregory, Don A.

    2006-01-01

    Theoretically, the strength of glass processed in vacuum should be higher due to outgassing of contaminants normally present in the glass, such as bulk water in the form of OH bonds that tends to weaken the glass structure. In this research, small discs of a few types of glass have been subjected to various temperatures for extended periods of time in vacuum. Their strength was then tested using a standard flexure technique, facilitated by a custom-designed test fixture, and the results were compared to glass tested in air using the same fixture. The purpose of the glass blowing investigation was to prove the basic feasibility of a high-level concept for in-space manufacture of optical elements. The central requirement was that the glass bubble had to be blown into a support structure such that the bubble could be handled by manipulation of the structure. The blown bubble attached itself to a mullite ring geometrically and mechanically, as a demonstration in the initial experiments described here, by expanding through and around it. The vacuum system used was custom made, as were most of the components of the system, such as the heating element, the glass and ring support structure, and the gas inlet system that provided the pressure needed to blow the glass.

  17. New polymeric materials for designing photoresistors and photodetective assemblies based on CdHgTe

    NASA Astrophysics Data System (ADS)

    Khitrova, L. M.; Troshkin, Y. S.; Belyaev, V. P.; Popovyan, G. E.; Kiseleva, L. V.

    1999-06-01

    In order to improve quality of photodetectors and photodetective assemblies two new cryo- and chemically resistant adhesives were developed: epoxy-silico-organic adhesive `(Phi) X-5P' and acrylic `OPHOH-2' adhesive for gluing of CdHgTe wafers to a substrate `XCK-H' vacuum-tight modified adhesive is used for attaching of inlet windows and glass holder elements. `OPUOH-65' vibration damping thixotropic composition was developed for mounting of multi- layer printed circuits.

  18. Class of cooperative stochastic models: Exact and approximate solutions, simulations, and experiments using ionic self-assembly of nanoparticles.

    PubMed

    Mazilu, I; Mazilu, D A; Melkerson, R E; Hall-Mejia, E; Beck, G J; Nshimyumukiza, S; da Fonseca, Carlos M

    2016-03-01

    We present exact and approximate results for a class of cooperative sequential adsorption models using matrix theory, mean-field theory, and computer simulations. We validate our models with two customized experiments using ionically self-assembled nanoparticles on glass slides. We also address the limitations of our models and their range of applicability. The exact results obtained using matrix theory can be applied to a variety of two-state systems with cooperative effects.

  19. Enzyme-free Detection of Hydrogen Peroxide from Cerium Oxide Nanoparticles Immobilized on Poly(4-vinylpyridine) Self-Assembled Monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaynor, James D.; Karakoti, Ajay S.; Inerbaev, Talgat

    2013-05-02

    A single layer of oxygen-deficient cerium oxide nanoparticles (CNPs) are immobilized on microscopic glass slide using poly(4-vinylpyridine) (PVP) self-assembled monolayers (SAMs). A specific colorimetric property of CNPs when reacted with hydrogen peroxide allows for the direct, single-step peroxide detection which can be used in medical diagnosis and explosives detection. Multiple PVP-CNP immobilized layers improve sensitivity of detection and the sensor can be regenerated for reuse.

  20. Using neutrons, X-rays and nuclear magnetism to determine the role of transition metal oxide inclusions on both glass structure and stability in automotive glass enamels.

    PubMed

    Bowron, Daniel T; Booth, Jonathan; Barrow, Nathan S; Sutton, Patricia; Johnson, Simon R

    2018-05-23

    Low levels of transition metal oxides in alkali borosilicate glass systems can drastically influence crystallisation and phase separation properties. We investigated the non-monotonic effect of manganese doping on suppressing crystallisation, and the influence on optical properties by iron oxide doping, in terms of local atomic structure. Structural models based on empirical potential structure refinement were generated from neutron and X-ray scattering data, and compared against multinuclear solid-state NMR. This revealed that a 2.5% manganese doping had a disruptive effect on the entire glass network, supressing crystallisation of an undesired bismuth silicate phase, and that iron species preferentially locate near borate tetrahedra. Preventing phase separation and controlling crystallisation behaviour of glass are critical to the ultimate properties of automotive glass enamels.

  1. Hybrid solar cells with outstanding short-circuit currents based on a room temperature soft-chemical strategy: the case of P3HT:Ag2S.

    PubMed

    Lei, Yan; Jia, Huimin; He, Weiwei; Zhang, Yange; Mi, Liwei; Hou, Hongwei; Zhu, Guangshan; Zheng, Zhi

    2012-10-24

    P3HT:Ag(2)S hybrid solar cells with broad absorption from the UV to NIR band were directly fabricated on ITO glass by using a room temperature, low energy consumption, and low-cost soft-chemical strategy. The resulting Ag(2)S nanosheet arrays facilitate the construction of a perfect percolation structure with organic P3HT to form ordered bulk heterojunctions (BHJ); without interface modification, the assembled P3HT:Ag(2)S device exhibits outstanding short-circuit current densities (J(sc)) around 20 mA cm(-2). At the current stage, the optimized device exhibited a power conversion efficiency of 2.04%.

  2. Network topology for the formation of solvated electrons in binary CaO–Al2O3 composition glasses

    PubMed Central

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J. K. Richard; Benmore, Chris J.

    2013-01-01

    Glass formation in the CaO–Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO–Al2O3 glasses using combined density functional theory–reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O–Ca and O–Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al–O is stronger than that of Ca–O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71–74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass. PMID:23723350

  3. Network topology for the formation of solvated electrons in binary CaO-Al2O3 composition glasses.

    PubMed

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J K Richard; Benmore, Chris J

    2013-06-18

    Glass formation in the CaO-Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO-Al2O3 glasses using combined density functional theory-reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O-Ca and O-Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al-O is stronger than that of Ca-O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71-74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass.

  4. Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass

    NASA Astrophysics Data System (ADS)

    Karakurt, G.; Abdelouas, A.; Guin, J.-P.; Nivard, M.; Sauvage, T.; Paris, M.; Bardeau, J.-F.

    2016-07-01

    Borosilicate glasses are considered for the long-term confinement of high-level nuclear wastes. External irradiations with 1 MeV He+ ions and 7 MeV Au5+ ions were performed to simulate effects produced by alpha particles and by recoil nuclei in the simulated SON68 nuclear waste glass. To better understand the structural modifications, irradiations were also carried out on a 6-oxides borosilicate glass, a simplified version of the SON68 glass (ISG glass). The mechanical and macroscopic properties of the glasses were studied as function of the deposited electronic and nuclear energies. Alpha particles and gold ions induced a volume change up to -0.7% and -2.7%, respectively, depending on the glass composition. Nano-indentations tests were used to determine the mechanical properties of the irradiated glasses. A decrease of about -22% to -38% of the hardness and a decrease of the reduced Young's modulus by -8% were measured after irradiations. The evolution of the glass structure was studied by Raman spectroscopy, and also 11B and 27Al Nuclear Magnetic Resonance (MAS-NMR) on a 20 MeV Kr irradiated ISG glass powder. A decrease of the silica network connectivity after irradiation with alpha particles and gold ions is deduced from the structural changes observations. NMR spectra revealed a partial conversion of BO4 to BO3 units but also a formation of AlO5 and AlO6 species after irradiation with Kr ions. The relationships between the mechanical and structural changes are also discussed.

  5. Magnesium phthalocyanine(MgPc) thin films as nanomaterials

    NASA Astrophysics Data System (ADS)

    Puri, Munish; Bedi, R. K.; Prakash, G. V.

    2006-05-01

    MgPc is a promising candidate for photovoltaic applications. It can be easily synthesized and is non-toxic to the envioronment. It is a self assembly molecule developed from deep-blue-green pigment. It exhibits a characteristic structural self organization which is reflected in an efficient energy migration in the form of extinction transport. MgPc relates to the similarity with chlorophyll. In the present work thin films of MgPc have been prepared on glass substrate under strict vacuum conditions(10 Â6 torr), thickness of few nanometers. Absorption spectra in Visible and IR regions have been observed which is good for fabrication of Photovoltaic cells and Nanostructures for Photodynamic Cancer Therapy. Appreciable amount of cytotoxicity can be observed while using MgPc as photosensitizers which is a promising PDT agent. The films thus prepared have been studied for their electrical and optical characterizations. Investigations have been made from different stacking positions of molecular MgPc thin films for studying their self-assembling nature that can be useful for their applications as Molecular-Recognition in Drug delivery and sensors which is one of the key features of Nanotechnology.

  6. Toughening of Epoxies: Novel Self-Assembling Block Copolymers Versus Traditional Telechelic Oligomers

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Lauren N.

    Epoxy resins are commonly utilized because of their adhesive capacity and high strength. However, epoxies are inherently brittle; so much research has been dedicated to improving their fracture toughness. This study will focus on a comparing a traditional telechelic oligomer, CTBN, and a novel self-assembling block copolymer, SBM, as it relates to improving the fracture toughness of a lightly crosslinked epoxy system. After characterizing the modified systems for fracture toughness, mechanical and thermal properties, namely yield stress and the glass transition, will be determined in order to discern the impact these modifiers have on the overall properties of the blend. TEM, SEM and TOM techniques will be utilized for characterizing morphology, fractography and subsurface damage, respectively. Once this was accomplished, it was deduced that the toughening mechanisms of CTBN and SBM-modified epoxies are very similar. The main difference between the two is that the inherent structure of SBM allows the SBM-modified epoxy to retain its compressive yield strength. This, consequently, makes SBM ideal for thin bondline applications in the industrial adhesive and/or electronics industry.

  7. Activity statistics in a colloidal glass former: Experimental evidence for a dynamical transition

    NASA Astrophysics Data System (ADS)

    Abou, Bérengère; Colin, Rémy; Lecomte, Vivien; Pitard, Estelle; van Wijland, Frédéric

    2018-04-01

    In a dense colloidal suspension at a volume fraction below the glass transition, we follow the trajectories of an assembly of tracers over a large time window. We define a local activity, which quantifies the local tendency of the system to rearrange. We determine the statistics of the time integrated activity, and we argue that it develops a low activity tail that comes together with the onset of glassy-like behavior and heterogeneous dynamics. These rare events may be interpreted as the reflection of an underlying dynamic phase transition.

  8. Thermodynamic model of natural, medieval and nuclear waste glass durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.M.; Plodinec, M.J.

    1983-01-01

    A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt frommore » the Hanford Reservation (10/sup 6/ years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table.« less

  9. Electrochemical determination of the glass transition temperature of thin polyelectrolyte brushes at solid-liquid interfaces by impedance spectroscopy.

    PubMed

    Alonso-García, Teodoro; Rodríguez-Presa, María José; Gervasi, Claudio; Moya, Sergio; Azzaroni, Omar

    2013-07-16

    Devising strategies to assess the glass transition temperature (Tg) of polyelectrolyte assemblies at solid-electrolyte interfaces is very important to understand and rationalize the temperature-dependent behavior of polyelectrolyte films in a wide range of settings. Despite the evolving perception of the importance of measuring Tg under aqueous conditions in thin film configurations, its straightforward measurement poses a challenging situation that still remains elusive in polymer and materials science. Here, we describe a new method based on electrochemical impedance spectroscopy (EIS) to estimate the glass transition temperature of planar polyelectrolyte brushes at solid-liquid interfaces. To measure Tg, the charge transfer resistance (Rct) of a redox probe diffusing through the polyelectrolyte brush was measured, and the temperature corresponding to the discontinuous change in Rct was identified as Tg. Furthermore, we demonstrate that impedance measurements not only facilitate the estimation of Tg but also enable a reliable evaluation of the transport properties of the polymeric interface, i.e., determination of diffusion coefficients, close to the thermal transition. We consider that this approach bridges the gap between electrochemistry and the traditional tools used in polymer science and offers new opportunities to characterize the thermal behavior of complex polymeric interfaces and macromolecular assemblies.

  10. Experimental facility for testing nuclear instruments for planetary landing missions

    NASA Astrophysics Data System (ADS)

    Golovin, Dmitry; Mitrofanov, Igor; Litvak, Maxim; Kozyrev, Alexander; Sanin, Anton; Vostrukhin, Andrey

    2017-04-01

    The experimental facility for testing and calibration of nuclear planetology instruments has been built in the frame of JINR and Space Research Institute (Moscow) cooperation. The Martian soil model from silicate glass with dimensions 3.82 x 3.21 m and total weight near 30 tons has been assembled in the facility. The glass material was chosen for imitation of dry Martian regolith. The heterogeneous model has been proposed and developed to achieve the most possible similarity with Martian soil in part of the average elemental composition by adding layers of necessary materials, such as iron, aluminum, and chlorine. The presence of subsurface water ice is simulated by adding layers of polyethylene at different depths inside glass model assembly. Neutron generator was used as a neutron source to induce characteristic gamma rays for testing active neutron and gamma spectrometers to define elements composition of the model. The instrumentation was able to detect gamma lines attributed to H, O, Na, Mg, Al, Si, Cl, K, Ca and Fe. The identified elements compose up to 95 wt % of total mass of the planetary soil model. This results will be used for designing scientific instruments to performing experiments of active neutron and gamma ray spectroscopy on the surface of the planets during Russian and international missions Luna-Glob, Luna-Resource and ExoMars-2020.

  11. Structural rejuvenation in bulk metallic glasses

    DOE PAGES

    Tong, Yang; Iwashita, T.; Dmowski, Wojciech; ...

    2015-01-05

    Using high-energy X-ray diffraction we study structural changes in bulk metallic glasses after uniaxial compressive homogeneous deformation at temperatures slightly below the glass transition. We observe that deformation results in structural disordering corresponding to an increase in the fictive, or effective, temperature. However, the structural disordering saturates after yielding. Lastly, examination of the experimental structure and molecular dynamics simulation suggests that local changes in the atomic connectivity network are the main driving force of the structural rejuvenation.

  12. Structural rejuvenation in bulk metallic glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Yang; Iwashita, T.; Dmowski, Wojciech

    Using high-energy X-ray diffraction we study structural changes in bulk metallic glasses after uniaxial compressive homogeneous deformation at temperatures slightly below the glass transition. We observe that deformation results in structural disordering corresponding to an increase in the fictive, or effective, temperature. However, the structural disordering saturates after yielding. Lastly, examination of the experimental structure and molecular dynamics simulation suggests that local changes in the atomic connectivity network are the main driving force of the structural rejuvenation.

  13. Hermetic fiber optic-to-metal connection technique

    DOEpatents

    Kramer, Daniel P.

    1992-09-01

    A glass-to-glass hermetic sealing technique is disclosed which can be used to splice lengths of glass fibers together. A solid glass preform is inserted into the cavity of a metal component which is then heated to melt the glass. An end of an optical fiber is then advanced into the molten glass and the entire structure cooled to solidify the glass in sealing engagement with the optical fiber end and the metal cavity. The surface of the re-solidified glass may be machined for mating engagement with another component to make a spliced fiber optic connection. The resultant structure has a helium leak rate of less than 1.times.10.sup.-8 cm.sup.3 /sec.

  14. The design, fabrication and characterization of fluidic membranes for micro-engines with the aim of frequency lowering

    NASA Astrophysics Data System (ADS)

    Chutani, R.; Formosa, F.; de Labachelerie, M.; Badel, A.; Lanzetta, F.

    2016-12-01

    This paper describes the design, microfabrication and linear dynamic characterization of low frequency thick membranes as a potential technological solution for resonant micro-engines, for which classical pistons cannot be used. The proposed structure is called a hybrid fluid-membrane and consists of two thin flexible membranes that encapsulate an incompressible fluid. Lower frequency structures, compared to geometrically equivalent single layer membranes, are thus obtained. Each flexible membrane is based on a composite structure which comprises a silicon planar logarithmic spiral spring embedded in a room temperature vulcanization silicone polymer. Thus, the stiffness and sealing features are dissociated for a better design control. The developed realization and assembly process is demonstrated at the wafer level. The process involves the anodic bonding of multiple stacks of silicon/glass structures, fluid filling and sealing. Various dimensions of hybrid fluid-membranes are successfully fabricated. Their dynamic characterization underlines the agreement between experimental and theoretical results. The results provide the opportunity for the design and fabrication of low frequency membranes to match the dynamics requirements of micro-engines.

  15. Effect of fabric structure and polymer matrix on flexural strength, interlaminar shear stress, and energy dissipation of glass fiber-reinforced polymer composites

    USDA-ARS?s Scientific Manuscript database

    We report the effect of glass fiber structure and the epoxy polymer system on the flexural strength, interlaminar shear stress (ILSS), and energy absorption properties of glass fiber-reinforced polymer (GFRP) composites. Four different GFRP composites were fabricated from two glass fiber textiles of...

  16. 16 CFR Figure 1 to Subpart A of... - Glass Impact Test Structure

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Glass Impact Test Structure 1 Figure 1 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... 1 to Subpart A of Part 1201—Glass Impact Test Structure EC03OC91.004 ...

  17. 16 CFR Figure 1 to Subpart A of... - Glass Impact Test Structure

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Glass Impact Test Structure 1 Figure 1 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... 1 to Subpart A of Part 1201—Glass Impact Test Structure EC03OC91.004 ...

  18. NMR signature of evolution of ductile-to-brittle transition in bulk metallic glasses.

    PubMed

    Yuan, C C; Xiang, J F; Xi, X K; Wang, W H

    2011-12-02

    The mechanical properties of monolithic metallic glasses depend on the structures at atomic or subnanometer scales, while a clear correlation between mechanical behavior and structures has not been well established in such amorphous materials. In this work, we find a clear correlation of (27)Al NMR isotropic shifts with a microalloying induced ductile-to-brittle transition at ambient temperature in bulk metallic glasses, which indicates that the (27)Al NMR isotropic shift can be regarded as a structural signature to characterize plasticity for this metallic glass system. The study provides a compelling approach for investigating and understanding the mechanical properties of metallic glasses from the point of view of electronic structure. © 2011 American Physical Society

  19. Short-range structure and thermal properties of barium tellurite glasses

    NASA Astrophysics Data System (ADS)

    Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando

    2017-05-01

    BaO-TeO2 glasses containing 10 to 20 BaO mol% were prepared and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density decreases with increase in BaO concentration from 10 to 20 mol%, due to replacement of heavier TeO2 by lighter BaO, however glass transition temperature (Tg) increases significantly from a value of 318°C to 327°C due to increase in average single bond enthalpy of the tellurite network. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and BaO modifies the network by producing the structural transformation: TeO4→ TeO3.

  20. Revealing the Link between Structural Relaxation and Dynamic Heterogeneity in Glass-Forming Liquids

    NASA Astrophysics Data System (ADS)

    Wang, Lijin; Xu, Ning; Wang, W. H.; Guan, Pengfei

    2018-03-01

    Despite the use of glasses for thousands of years, the nature of the glass transition is still mysterious. On approaching the glass transition, the growth of dynamic heterogeneity has long been thought to play a key role in explaining the abrupt slowdown of structural relaxation. However, it still remains elusive whether there is an underlying link between structural relaxation and dynamic heterogeneity. Here, we unravel the link by introducing a characteristic time scale hiding behind an identical dynamic heterogeneity for various model glass-forming liquids. We find that the time scale corresponds to the kinetic fragility of liquids. Moreover, it leads to scaling collapse of both the structural relaxation time and dynamic heterogeneity for all liquids studied, together with a characteristic temperature associated with the same dynamic heterogeneity. Our findings imply that studying the glass transition from the viewpoint of dynamic heterogeneity is more informative than expected.

  1. Role of thermal history in atomic dynamics of chalcogenide glass: A case study on Ge{sub 20}Te{sub 80} glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Yashika; Kalra, Geetanjali; Murugavel, Sevi, E-mail: murug@physics.du.ac.in

    The non-existence of thermodynamic equilibrium in glasses, their thermal history plays a very crucial role in explaining the relaxation behavior in various time scales and its configurational states. More importantly, the associated relaxation behavior is related mainly to the structural phenomenon of the glasses. Here, we report the dependence of quenching rate on the variation of structural units. The local structures of these glasses are monitored by recording the Raman spectroscopy and related to the different configurational states. The observed variations in structural differences are reflected in the measured density of the corresponding glasses. The quenching rate dependent of themore » relative fractions of edge-shared and corner-shared GeTe{sub 4} tetrahedral units are shown to be consistent with the corresponding variations in the measured density values.« less

  2. Elaboration and optimization of tellurite-based materials for raman gain application

    NASA Astrophysics Data System (ADS)

    Guery, Guillaume

    Tellurite-based oxide glasses have been investigated as promising materials for Raman gain applications, due to their good linear and nonlinear optical properties and their wide transparency windows in the near- and midwave infrared spectral region. Furthermore, their interesting thermal properties, i.e. low glass transition temperature and ability to be drawn into optical fibers, make tellurite-based glasses excellent candidates for optical fiber amplifiers. The estimation of the strength and spectral distribution of Raman gain in materials is commonly approximated from the spontaneous Raman scattering cross-section measurement. For development of tellurite-based glasses as Raman amplifiers, understanding the relationship between glass structure, vibrational response, and nonlinear optical properties (NLO) represents a key point. This dissertation provides an answer to the fundamental question of the PhD study: "What is the impact of the glass structure on Raman gain properties of tellurite glasses?" This dissertation summarizes findings on different tellurite-based glass families: the TeO2-TaO5/2-ZnO, TeO2-BiO 3/2-ZnO and TeO2-NbO5/2 glass networks. The influence of glass modifiers has been shown on the glass' properties. Introduction of tantalum oxide or zinc oxide has been shown to increase the glass' stability against crystallization, quantified by DeltaT, where DeltaT = Tx -Tg. Added to the variation of the glass viscosity, this attribute is critical in fabricating optical fibers and for the use of these materials in fiber-based Raman gain applications. The role of ZnO in the tellurite network and the mechanism for structural modification has been determined. This addition results in not only the largest DeltaT reported for these highly nonlinear glasses to date, but coincides with a commensurate decrease of the refractive index. A hydroxyl purification has been developed that when employed, resulted in high purity preform materials exhibiting a limited absorption in the transmission bandwidth in the near infrared (NIR). A reduction of 90 % in the OH content in candidate glasses was realized and core-only optical fiber drawn from this glass exhibited optical losses lower than 10 dB/m (either at 1.55 mum or 2.0 mum). This optical attenuation in a high Raman gain material represents a first in the design of both material attributes. The role of the glass modifiers on the glass structure has been investigated by a combination of vibrational spectroscopic methods, including IR absorption, as well as Raman and hyper-Raman scatterings. Following examination of fundamental vibrations present in the paratellurite crystal alpha-TeO2, these results were extended to interpret the structure of multi-component tellurite glasses. It has been verified that the transformation of the tellurite entities TeO4→TeO3+1→TeO3 is directly related to the percentage and type of glass modifiers present in the various tellurite glass matrix. The dramatic disruption in the continuity of Te-O linkages in the tellurite glass backbone's chains during the introduction of the modifier zinc oxide, leads to a systematic reduction in glass network connectivity. This structural change is accompanied by a significant change in the glass' normalized polarization curve (IPsiV/IHV ), a paramter which quantifies directly the depolymerization ratio (DR). This metric provides direct correlation with a reduction in the ternary glass' polarizability/hyperpolarizability and a decrease in the glass' nonlinear optical properties, specifically its Raman gain response. These results have validated and extended our understanding of the important role of Te-O-Te content and short, medium and longer-scale organization of the tellurite glass network and the corresponding impact on linear and nonlinear optical response and properties. Such fundamental knowledge of the relationship between vibrational response and structure, correlated to linear and nonlinear optical properties, allows the extension of this know-how to the development of customized optical components enabled by novel glass and glass ceramic optical materials.

  3. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Wenlong

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M 2S + (0.1 Ga 2S 3 + 0.9 GeS 2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass formingmore » range for the addition of different alkalis into the basic glass forming system 0.1 Ga 2S 3 + 0.9 GeS 2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M 2S + (0.1Ga 2S 3 + 0.9 GeS 2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na 2S + B 2S 3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction. Similar results were obtained both in neutron and synchrotron x-ray diffraction experiments. The results provide direct structural evidence that doping B 2S 3 with Na 2S creates a large fraction of tetrahedrally coordinated boron in the glass. The final section is the general conclusion of this thesis and the suggested future work that could be conducted to expand upon this research.« less

  4. Slumped glass optics for x-ray telescopes: advances in the hot slumping assisted by pressure

    NASA Astrophysics Data System (ADS)

    Salmaso, B.; Brizzolari, C.; Basso, S.; Civitani, M.; Ghigo, M.; Pareschi, G.; Spiga, D.; Tagliaferri, G.; Vecchi, G.

    2015-09-01

    Slumped Glass Optics is a viable solution to build future X-ray telescopes. In our laboratories we use a direct hot slumping approach assisted by pressure, in which the glass optical surface is in contact with the mould, and a pressure is applied to enforce the replication of the mould shape on the glass optical surface. Several prototypes have been already produced and tested in X-rays, showing a continuous improvement in our technology. In this paper, we present the advances in our technology, in terms of slumped glass foils quality and expected performances upon an ideal integration. By using Eagle XG glass foils and Zerodur K20 for the slumping mould, we have fine tuned several process parameters: we present a critical analysis correlating the changes in the process to the improvements in different spatial frequency ranges encompassing the profile and roughness measurements. The use of a re-polished K20 mould, together with the optimized process parameters, lead to the latest result of glass foils with expected performance of less than 3 arcsec in single reflection at 1 keV X-ray energy. This work presents all the relevant steps forward in the hot slumping technology assisted by pressure, aimed at reaching angular resolutions of 5 arcsec for the whole mirror assembly.

  5. Vacuum fusion bonding of glass plates

    DOEpatents

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  6. Vacuum fusion bonding of glass plates

    DOEpatents

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2000-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  7. Vacuum fusion bonded glass plates having microstructures thereon

    DOEpatents

    Swierkowski, Steve P.; Davidson, James C.; Balch, Joseph W.

    2001-01-01

    An improved apparatus and method for vacuum fusion bonding of large, patterned glass plates. One or both glass plates are patterned with etched features such as microstructure capillaries and a vacuum pumpout moat, with one plate having at least one hole therethrough for communication with a vacuum pumpout fixture. High accuracy alignment of the plates is accomplished by a temporary clamping fixture until the start of the fusion bonding heat cycle. A complete, void-free fusion bond of seamless, full-strength quality is obtained through the plates; because the glass is heated well into its softening point and because of a large, distributed force that is developed that presses the two plates together from the difference in pressure between the furnace ambient (high pressure) and the channeling and microstructures in the plates (low pressure) due to the vacuum drawn. The apparatus and method may be used to fabricate microcapillary arrays for chemical electrophoresis; for example, any apparatus using a network of microfluidic channels embedded between plates of glass or similar moderate melting point substrates with a gradual softening point curve, or for assembly of glass-based substrates onto larger substrates, such as in flat panel display systems.

  8. The role of Sr2+ on the structure and reactivity of SrO-CaO-ZnO-SiO2 ionomer glasses.

    PubMed

    Boyd, Daniel; Towler, Mark R; Watts, Sally; Hill, Robert G; Wren, Anthony W; Clarkin, Owen M

    2008-02-01

    The suitability of Glass Polyalkenoate Cements (GPCs) for use in orthopaedics is retarded by the presence in the glass phase of aluminium, a neurotoxin. Unfortunately, the aluminium ion plays an integral role in the setting process of GPCs and its absence is likely to hinder cement formation. However, the authors have previously shown that aluminium free GPCs may be formulated based on calcium zinc silicate glasses and these novel materials exhibit significant potential as hard tissue biomaterials. To further improve their potential, and given that Strontium (Sr) based drugs have had success in the treatment of osteoporosis, the authors have substituted Calcium (Ca) with Sr in the glass phase of a series of aluminium free GPCs. However to date little data exists on the effect SrO has on the structure and reactivity of SrO-CaO-ZnO-SiO(2) glasses. The objective of this work was to characterise the effect of the Ca/Sr substitution on the structure of such glasses, and evaluate the subsequent reactivity of these glasses with an aqueous solution of Polyacrylic acid (PAA). To this end (29)Si MAS-NMR, differential scanning calorimetry (DSC), X-ray diffraction, and network connectivity calculations, were used to characterize the structure of four strontium calcium zinc silicate glasses. Following glass characterization, GPCs were produced from each glass using a 40 wt% solution of PAA (powder:liquid = 2:1.5). The working times and setting times of the GPCs were recorded as per International standard ISO9917. The results acquired as part of this research indicate that the substitution of Ca for Sr in the glasses examined did not appear to significantly affect the structure of the glasses investigated. However it was noted that increasing the amount of Ca substituted for Sr did result in a concomitant increase in setting times, a feature that may be attributable to the higher basicity of SrO over CaO.

  9. Optical, Structural, and Thermal Properties of Cerium-Doped Zinc Borophosphate Glasses.

    PubMed

    Choi, Su-Yeon; Ryu, Bong-Ki

    2015-11-01

    In this study, we verify the relationship between the optical properties and structure of cerium-doped zinc borophosphate glasses that have concurrence of non-bridging oxygen (NBO) and bridging oxygen (BO), Ce3+ and Ce4+, and BO3 structure and BO4 structure. We prepared cerium-doped zinc borophosphate glass with various compositions, given by xCeO2-(100-x)[50ZnO-10B2O3 -40P2O5] (x = 1 mol% to 6 mol%), and analyzed their optical band energy, glass transition temperature, crystallization temperature, density, and molar volume. Some of the techniques used for analysis were Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). In the investigated glasses, the optical band gap energy decreased from 3.28 eV to 1.73 eV. From these results, we can deduce the changes when transitions occur from BO to NBO, from Ce3+ to Ce4+, and from the BO3 structure to the BO4 structure with increasing CeO2 content using FT-IR and XPS analysis. We also verified the changes in structural and physical properties from quantitative properties such as glass transition temperature, crystallization temperature, density, and molar volume.

  10. Structural Investigations of the MnO-Bi3O3-CdO Glass System by IR and Raman Spectroscopies

    NASA Astrophysics Data System (ADS)

    Ardelean, I.; Todor, Ioana; PǍŞCUŢǍ, P.

    Homogeneous glasses are formed in the MnO-Bi3O3-CdO system, up to 50 mol% MnO. For these glasses, IR and Raman spectral measurements are carried out in order to elucidate the local structure. We identify by IR spectroscopy both the structural units BiO3 and BiO6. The Raman investigation confirms the prevalence of BiO6 groups in the glass network for all concentrations. The number of these structural groups progressively increases with MnO content.

  11. CHEM-Based Self-Deploying Spacecraft Radar Antennas

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold; Huang, John; Ghaffarian, Reza

    2004-01-01

    A document proposes self-deploying spacecraft radar antennas based on cold hibernated elastic memory (CHEM) structures. Described in a number of prior NASA Tech Briefs articles, the CHEM concept is one of utilizing open-cell shape-memory-polymer (SMP) foams to make lightweight structures that can be compressed for storage and can later be expanded, then rigidified for use. A CHEM-based antenna according to the proposal would comprise three layers of microstrip patches and transmission lines interspersed with two flat layers of SMP foam, which would serve as both dielectric spacers and as means of deployment. The SMP foam layers would be fabricated at full size at a temperature below the SMP glass-transition temperature (Tg). The layers would be assembled into a unitary structure, which, at temperature above Tg, would be compacted to much smaller thickness, then rolled up for storage. Next, the structure would be cooled to below Tg and kept there during launch. Upon reaching the assigned position in outer space, the structure would be heated above Tg to make it rebound to its original size and shape. The structure as thus deployed would then be rigidified by natural cooling to below Tg

  12. Experimental Verification of the Structural Glass Beam-Columns Strength

    NASA Astrophysics Data System (ADS)

    Pešek, Ondřej; Melcher, Jindřich; Balázs, Ivan

    2017-10-01

    This paper deals with experimental research of axially and laterally loaded members made of structural (laminated) glass. The purpose of the research is the evaluation of buckling strength and actual behaviour of the beam-columns due to absence of standards for design of glass load-bearing structures. The experimental research follows the previous one focusing on measuring of initial geometrical imperfections of glass members, testing of glass beams and columns. Within the frame of the research 9 specimens were tested. All of them were of the same geometry (length 2000 mm, width 200 mm and thickness 16 mm) but different composition - laminated double glass made of annealed glass or fully tempered glass panes bonded together by PVB or EVASAFE foil. Specimens were at first loaded by axial force and then by constantly increasing bending moment up to failure. During testing lateral deflections, vertical deflection and normal stresses at mid-span were measured. A maximum load achieved during testing has been adopted as flexural-lateral-torsional buckling strength. The results of experiments were statistically evaluated according to the European standard for design of structures EN 1990, appendix D. There are significant differences between specimens made of annealed glass or fully tempered glass. Differences between specimens loaded by axial forces 1 kN and 2 kN are negligible. The next step was to determine the design strength by calculation procedure based on buckling curves approach intended for design of steel columns and develop interaction criterion for glass beams-columns.

  13. The use of positrons to survey alteration layers on synthetic nuclear waste glasses

    NASA Astrophysics Data System (ADS)

    Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.; Ryan, Joseph V.; McCloy, John S.; Wall, Nathalie A.

    2017-07-01

    In order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only. For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe0. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.

  14. The use of positrons to survey alteration layers on synthetic nuclear waste glasses

    DOE PAGES

    Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.; ...

    2017-07-01

    Here, in order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe 0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only.more » For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe 0. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.« less

  15. The use of positrons to survey alteration layers on synthetic nuclear waste glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiser, Joelle T.; Parruzot, Benjamin; Weber, Marc H.

    Here, in order to safeguard society and the environment, understanding radioactive waste glass alteration mechanisms in interactions with solutions and near-field materials, such as Fe, is essential to nuclear waste repository performance assessments. Alteration products are formed at the surface of glasses after reaction with solution. In this study, glass altered in the presence of Fe 0 in aqueous solution formed two alteration layers: one embedded with Fe closer to the surface and one without Fe found deeper in the sample. Both layers were found to be thinner than the alteration layer found in glass altered in aqueous solution only.more » For the first time, Doppler Broadening Positron Annihilation Spectroscopy (DB-PAS) is used to non-destructively characterize the pore structures of glass altered in the presence of Fe 0. Advantages and disadvantages of DB-PAS compared to other techniques used to analyze pore structures for altered glass samples are discussed. Ultimately, DB-PAS has shown to be an excellent choice for pore structure characterization for glasses with multiple alteration layers. Monte Carlo modeling predicted positron trajectories through the layers, and helped explain DB-PAS data, which showed that the deeper alteration layer without Fe had a similar composition and pore structure to layers on glass altered in water only.« less

  16. The effect of CaO/SiO2 molar ratio of CaO-Al2O3-SiO2 glasses on their structure and reactivity in alkali activated system

    NASA Astrophysics Data System (ADS)

    Kucharczyk, Sylwia; Sitarz, Maciej; Zajac, Maciej; Deja, Jan

    2018-04-01

    The influence of CaO/SiO2 molar ratio of calcium aluminosilicate glasses on resulting structure and reactivity was investigated. Chemical compositions of glasses were chosen to mimic the composition of the fly ash and slag amorphous phase. Understanding the reactivity of these materials is of high importance allowing further development of the composite cements to limit the environmental footprint of cement industry. Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy were employed to examine the structure of glasses. Reactivity of the glasses was analyzed on paste samples after 1, 2, 7, 28 and 90 days of curing by means of thermogravimetry (TGA), X-ray diffraction (XRD) and FTIR. Spectroscopic results emphasize dependence of the structure on the chemical composition of the glasses. The higher CaO/SiO2 the more depolymerized the glass network is, though there is no direct correlation with the reactivity. Significant differences in reactivity is observed primarily between the glasses of peraluminous (CaO/Al2O3 < 1) and percalcic region (CaO/Al2O3 > 1). Amongst the pastes made of glasses of percalcic region a higher degree of reaction at later ages is observed for the paste containing glass of lower CaO/SiO2 molar ratio. This is due to both degree of depolimerization and the nature of these glasses (pozzolanic and hydraulic materials). No difference of degree of reaction has been observed within the glasses of CaO/SiO2 lower than 1.

  17. Glass and glass-ceramic photonic systems

    NASA Astrophysics Data System (ADS)

    Zur, Lidia; Thi Ngoc Tran, Lam; Meneghetti, Marcello; Varas, Stefano; Armellini, Cristina; Ristic, Davor; Chiasera, Alessandro; Scotognella, Francesco; Pelli, Stefano; Nunzi Conti, Gualtiero; Boulard, Brigitte; Zonta, Daniele; Dorosz, Dominik; Lukowiak, Anna; Righini, Giancarlo C.; Ramponi, Roberta; Ferrari, Maurizio

    2017-02-01

    The development of optically confined structure is a major topic in both basic and applied physics not solely ICT oriented but also concerning lighting, laser, sensing, energy, environment, biological and medical sciences, and quantum optics. Glasses and glass-ceramics activated by rare earth ions are the bricks of such structures. Glass-ceramics are nanocomposite systems that exhibit specific morphologic, structural and spectroscopic properties allowing developing new physical concepts, for instance the mechanism related to the transparency, as well as novel photonic devices based on the enhancement of the luminescence. The dependence of the final product on the specific parent glass and on the fabrication protocol still remain an important task of the research in material science. Looking to application, the enhanced spectroscopic properties typical of glass ceramic in respect to those of the amorphous structures constitute an important point for the development of integrated optics devices, including optical amplifiers, monolithic waveguide laser, novel sensors, coating of spherical microresonators, and up and down converters. This paper presents some results obtained by our consortium regarding glass-based photonics systems. We will comment the energy transfer mechanism in transparent glass ceramics taking as examples the up and down conversion systems and the role of SnO2 nanocrystals as sensitizers. Coating of spherical resonators by glass ceramics, 1D-Photonic Crystals for luminescence enhancement, laser action and disordered 1-D photonic structures will be also discussed. Finally, RF-Sputtered rare earth doped P2O5- SiO2-Al2O3-Na2O-Er2O3 planar waveguides, will be presented.

  18. Effect of variation in the glass-former network structure on the relaxation properties of conductive Ag+ ions in AgI-based fast ion conducting glasses

    NASA Astrophysics Data System (ADS)

    Hanaya, Minoru; Nakayama, Michiko; Hatate, Atsuo; Oguni, Masaharu

    1995-08-01

    Heat capacities and ac conductivities of AgI-based fast ion conducting glasses of AgI-Ag2O-P2O5 and AgI-Ag2O-B2O3 systems with different P-O or B-O network structures but with the same AgI concentration of 1.55×104 mol m-3 were measured in the temperature range 14-400 K and in the temperature and frequency ranges 100-200 K and 10 Hz-1 MHz, respectively. The β-glass transition due to a freezing-in of the rearrangement of Ag+ ions was observed by adiabatic calorimetry for the glasses in the liquid-nitrogen temperature region, and the conductometry was suggested to see the same mode of Ag+-ion motion as the calorimetry. It was found that the development of the network structure of the glass former at constant AgI concentration resulted in the decrease of the β-glass transition temperature and the activation energy for the diffusional motion of Ag+ ions and in the increase of the heat-capacity jump associated with the glass transition. The results support the amorphous AgI aggregate model for the structure of the conductive region in the glasses with relatively high AgI compositions, indicating that Ag+-ion conductivity is mainly dominated by the degree of development of the AgI aggregate region dependent on the glass-former network structure as well as the AgI composition.

  19. Element speciation during nuclear glass alteration

    NASA Astrophysics Data System (ADS)

    Galoisy, L.; Calas, G.; Bergeron, B.; Jollivet, P.; Pelegrin, E.

    2011-12-01

    Assessing the long-term behavior of nuclear glasses implies the prediction of their long-term performance. An important controlling parameter is their evolution during interaction with water under conditions simulating geological repositories. After briefly recalling the major characteristics of the local and medium-range structure of borosilicate glasses of nuclear interest, we will present some structural features of this evolution. Specific structural tools used to determine the local structure of glass surfaces include synchrotron-radiation x-ray absorption spectroscopy with total electron yield detection. The evolution of the structure of glass surface has been determined at the Zr-, Fe-, Si- and Al-K edges and U-LIII edge. During alteration in near- or under-saturated conditions, some elements such as Fe change coordination, as other elements such as Zr only suffer structural modifications in under-saturated conditions. Uranium exhibits a modification of its speciation from an hexa-coordinated U(VI) in the borosilicate glass to an uranyl group in the gel. These structural modifications may explain the chemical dependence of the initial alteration rate and the transition to the residual regime. They also illustrate the molecular-scale origin of the processes at the origin of the glass-to-gel transformation. Eventually, they explain the provisional trapping of U by the alteration gel: the uranium retention factors in the gel depend on the alteration conditions, and thus on the nature of the resulting gel and on the trapping conditions.

  20. NMR Spectroscopy in Glass Science: A Review of the Elements

    PubMed Central

    2018-01-01

    The study of inorganic glass structure is critically important for basic glass science and especially the commercial development of glasses for a variety of technological uses. One of the best means by which to achieve this understanding is through application of solid-state nuclear magnetic resonance (NMR) spectroscopy, which has a long and interesting history. This technique is element specific, but highly complex, and thus, one of the many inquiries made by non-NMR specialists working in glass science is what type of information and which elements can be studied by this method. This review presents a summary of the different elements that are amenable to the study of glasses by NMR spectroscopy and provides examples of the type of atomic level structural information that can be achieved. It serves to inform the non-specialist working in glass science and technology about some of the benefits and challenges involved in the study of inorganic glass structure using modern, readily-available NMR methods. PMID:29565328

  1. A design study of mirror modules and an assembly based on the slumped glass for an Athena-like optics

    NASA Astrophysics Data System (ADS)

    Basso, Stefano; Civitani, Marta; Pareschi, Giovanni; Buratti, Enrico; Eder, Josef; Friedrich, Peter; Fürmetz, Maria

    2015-09-01

    The Athena mission was selected for the second large-class mission, due for launch in 2028, in ESA's Cosmic Vision program. The current solution for the optics is based on the Silicon Pore Optics (SPO) technology with the goal of 2m2 effective area at 1keV (aperture about 3m diameter) with a focal length of 12m. The SPO advantages are the compactness along the axial direction and the high conductivity of the Silicon. Recent development in the fabrication of mirror shells based on the Slumped Glass Optics (SGO) makes this technology an attractive solution for the mirror modules for Athena or similar telescopes. The SGO advantages are a potential high collecting area with a limited vignetting due to the lower shadowing and the aptitude to curve the glass plates up to small radius of curvature. This study shows an alternative mirror design based on SGO technology, tailored for Athena needs. The main challenges are the optimization of the manufacturing technology with respect to the required accuracy and the thermal control of the large surface in conjunction with the low conductivity of the glass. A concept has been elaborated which considers the specific benefits of the SGO technology and provides an efficient thermal control. The output of the study is a preliminary design substantiated by analyses and technological studies. The study proposes interfaces and predicts performances and budgets. It describes also how such a mirror system could be implemented as a modular assembly for X-ray telescope with a large collecting area.

  2. Chemoselective covalent coupling of oligonucleotide probes to self-assembled monolayers.

    PubMed

    Devaraj, Neal K; Miller, Gregory P; Ebina, Wataru; Kakaradov, Boyko; Collman, James P; Kool, Eric T; Chidsey, Christopher E D

    2005-06-22

    A chemoselective route to routinely and rapidly attach oligonucleotide probes to well-defined surfaces is presented. Cu(I) tris(benzyltriazolylmethyl)amine-catalyzed coupling of terminal acetylenes to azides on a self-assembled monolayer is used instead of traditional nucleophilic-electrophilic coupling reactions. The reaction proceeds well even in the presence of purposely introduced nucleophilic and electrophilic impurities. The density of oligonucleotide probes can be controlled by controlling the amount of azide functionality. Although most of our work was done on gold surfaces, this technique should be readily applicable to any surface on which an azide-containing monolayer can be assembled as we have preliminarily demonstrated by derivatizing azidotrimethoxysilane-modified glass slides with fluorescein-containing oligonucleotides.

  3. Brittle to ductile transition in densified silica glass.

    PubMed

    Yuan, Fenglin; Huang, Liping

    2014-05-22

    Current understanding of the brittleness of glass is limited by our poor understanding and control over the microscopic structure. In this study, we used a pressure quenching route to tune the structure of silica glass in a controllable manner, and observed a systematic increase in ductility in samples quenched under increasingly higher pressure. The brittle to ductile transition in densified silica glass can be attributed to the critical role of 5-fold Si coordination defects (bonded to 5 O neighbors) in facilitating shear deformation and in dissipating energy by converting back to the 4-fold coordination state during deformation. As an archetypal glass former and one of the most abundant minerals in the Earth's crest, a fundamental understanding of the microscopic structure underpinning the ductility of silica glass will not only pave the way toward rational design of strong glasses, but also advance our knowledge of the geological processes in the Earth's interior.

  4. Brittle to Ductile Transition in Densified Silica Glass

    PubMed Central

    Yuan, Fenglin; Huang, Liping

    2014-01-01

    Current understanding of the brittleness of glass is limited by our poor understanding and control over the microscopic structure. In this study, we used a pressure quenching route to tune the structure of silica glass in a controllable manner, and observed a systematic increase in ductility in samples quenched under increasingly higher pressure. The brittle to ductile transition in densified silica glass can be attributed to the critical role of 5-fold Si coordination defects (bonded to 5 O neighbors) in facilitating shear deformation and in dissipating energy by converting back to the 4-fold coordination state during deformation. As an archetypal glass former and one of the most abundant minerals in the Earth's crest, a fundamental understanding of the microscopic structure underpinning the ductility of silica glass will not only pave the way toward rational design of strong glasses, but also advance our knowledge of the geological processes in the Earth's interior. PMID:24849328

  5. Influence of strontium on structure, sintering and biodegradation behaviour of CaO-MgO-SrO-SiO2-P2O5-CaF2 glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goel, Ashutosh; Rajagopal, Raghu R.; Ferreira, Jose M.

    The present study investigates the influence of SrO on structure, apatite forming ability, physico-chemical degradation and sintering behaviour of melt-quenched bioactive glasses with composition: mol.% (36.07 – x) CaO – x SrO - 19.24 MgO – 5.61 P2O5 – 38.49 SiO2 – 0.59 CaF2, where x varies between 0 – 10. The detailed structural analysis of glasses has been made by infra red spectroscopy (FTIR) and magic angle spinning-nuclear magnetic resonance spectroscopy (MAS-NMR). Silicon was predominantly present as Q2 (Si) species while phosphorus was found in orthophosphate type environment in all the investigated glasses. The apatite forming ability of glassesmore » was investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1 h – 7 days. While increasing Sr2+/Ca2+ ratio in glasses did not affect the structure of glasses significantly, their apatite forming ability was decreased considerably. Further, physico-chemical degradation of glasses has been studied in accordance with ISO 10993-14 “Biological evaluation of medical devices – Part 14: Identification and quantification of degradation products from ceramics” in Tris HCl and citric acid buffer and the possible implications of ion release profile from glasses in different solutions has been discussed. The addition of strontium in glasses led to a 7-fold decrease in chemical degradation of glasses in Tris-HCl. The sintering of glass powders rendered glass-ceramics (GCs) with varying degree of crystallinity and good flexural strength (98-131 MPa) where the mechanical properties depend on the nature and amount of crystalline phases present in GCs.« less

  6. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses

    NASA Astrophysics Data System (ADS)

    Shaharyar, Yaqoot

    The dissolution of fluoride-containing bioactive glasses critically affects their biomedical applications. Most commercial fluoride-releasing bioactive glasses have been designed in the soda-lime-silica system. However, their relatively slow chemical dissolution and the adverse effect of fluoride on their bioactivity are stimulating the study of novel biodegradable materials with higher bioactivity, such as biodegradable phosphate-based bioactive glasses, which can be a viable alternative for applications where a fast release of active ions is sought. In order to design new biomaterials with controlled degradability and high bioactivity, it is essential to understand the connection between chemical composition, molecular structure, and solubility in physiological fluids.Accordingly, in this work we have combined the strengths of various experimental techniques with Molecular Dynamics (MD) simulations, to elucidate the impact of fluoride ions on the structure and chemical dissolution of bioactive phosphate glasses in the system: 10Na2O - (45-x) CaO - 45P2O5 - xCaF2, where x varies between 0 -- 10 mol.%. NMR and MD data reveal that the medium-range atomic-scale structure of thse glasses is dominated by Q2 phosphate units followed by Q1 units, and the MD simulations further show that fluoride tends to associate with network modifier cations to form alkali/alkaline-earth rich ionic aggregates. On a macroscopic scale, we find that incorporating fluoride in phosphate glasses does not affect the rate of apatite formation on the glass surface in simulated body fluid (SBF). However, fluoride has a marked favorable impact on the glass dissolution in deionized water. Similarly, fluoride incorporation in the glasses results in significant weight gain due to adsorption of water (in the form of OH ions). These macroscopic trends are discussed on the basis of the F effect on the atomistic structure of the glasses, such as the F-induced phosphate network re-polymerization, in a first attempt to establish composition-structure-property relationships for these biomaterials.

  7. The characterisation of atomic structure and glass-forming ability of the Zr-Cu-Co metallic glasses studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Celtek, M.; Sengul, S.

    2018-03-01

    In the present work, the glass formation process and structural properties of Zr50Cu50-xCox (0 ≤ x ≤ 50) bulk metallic glasses were investigated by a molecular dynamics simulation with the many body tight-binding potentials. The evolution of structure and glass formation process with temperature were discussed using the coordination number, the radial distribution functions, the volume-temperature curve, icosahedral short-range order, glass transition temperature, Voronoi analysis, Honeycutt-Andersen pair analysis technique and the distribution of bond-angles. Results indicate that adding Co causes similar responses on the nature of the Zr50Cu50-xCox (0 ≤ x ≤ 50) alloys except for higher glass transition temperature and ideal icosahedral type ordered local atomic environment. Also, the differences of the atomic radii play the key role in influencing the atomic structure of these alloys. Both Cu and Co atoms play a significant role in deciding the chemical and topological short-range orders of the Zr50Cu50-xCox ternary liquids and amorphous alloys. The glass-forming ability of these alloys is supported by the experimental observations reported in the literature up to now.

  8. 77 FR 28533 - Special Conditions: Boeing, Model 737-800; Large Non-Structural Glass in the Passenger Compartment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ...-0499; Notice No. 25-12-01-SC] Special Conditions: Boeing, Model 737-800; Large Non-Structural Glass in... associated with the installation of large non-structural glass items in the cabin area of an executive... standards that the Administrator considers necessary to establish a level of safety equivalent to that...

  9. Hermetic aluminum radio frequency interconnection and method for making

    DOEpatents

    Kilgo, Riley D.; Kovacic, Larry; Brow, Richard K.

    2000-01-01

    The present invention provides a light-weight, hermetic coaxial radio-frequency (RF) interconnection having an electrically conductive outer housing made of aluminum or an aluminum alloy, a central electrical conductor made of ferrous or non-ferrous material, and a cylinder of dielectric material comprising a low-melting-temperature, high-thermal-expansion aluminophosphate glass composition for hermetically sealing between the aluminum-alloy outer housing and the ferrous or non-ferrous center conductor. The entire RF interconnection assembly is made permanently hermetic by thermally fusing the center conductor, glass, and housing concurrently by bringing the glass to the melt point by way of exposure to an atmospheric temperature sufficient to melt the glass, less than 540.degree. C., but that does not melt the center conductor or the outer aluminum or aluminum alloy housing. The composition of the glass used is controlled to provide a suitable low dielectric constant so that an appropriate electrical characteristic impedance, for example 50 ohms, can be achieved for an electrical interconnection that performs well at high radio frequencies and also provides an interconnection maintaining a relatively small physical size.

  10. Fabrication of Fresnel micro lens array in borosilicate glass by F2-laser ablation for glass interposer application

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning; Fricke-Begemann, Thomas; Ihlemann, Jürgen

    2014-03-01

    The future need for more bandwidth forces the development of optical transmission solutions for rack-to-rack, boardto- board and chip-to-chip interconnects. The goals are significant reduction of power consumption, highest density and potential for bandwidth scalability to overcome the limitations of the systems today with mostly copper based interconnects. For system integration the enabling of thin glass as a substrate material for electro-optical components with integrated micro-optics for efficient light coupling to integrated optical waveguides or fibers is becoming important. Our glass based packaging approach merges micro-system packaging and glass integrated optics. This kind of packaging consists of a thin glass substrate with integrated micro lenses providing a platform for photonic component assembly and optical fiber or waveguide interconnection. Thin glass is commercially available in panel and wafer size and characterizes excellent optical and high frequency properties. That makes it perfect for microsystem packaging. A suitable micro lens approach has to be comparable with different commercial glasses and withstand post-processing like soldering. A benefit of using laser ablated Fresnel lenses is the planar integration capability in the substrate for highest integration density. In the paper we introduce our glass based packaging concept and the Fresnel lens design for different scenarios like chip-to-fiber, chip-to-optical-printed-circuit-board coupling. Based on the design the Fresnel lenses were fabricated by using a 157 nm fluorine laser ablation system.

  11. Investigating the influence of Na+ and Sr2+ on the structure and solubility of SiO2-TiO2-CaO-Na2O/SrO bioactive glass.

    PubMed

    Li, Y; Placek, L M; Coughlan, A; Laffir, F R; Pradhan, D; Mellott, N P; Wren, A W

    2015-02-01

    This study was conducted to determine the influence that network modifiers, sodium (Na+) and strontium (Sr2+), have on the solubility of a SiO2-TiO2-CaO-Na2O/SrO bioactive glass. Glass characterization determined each composition had a similar structure, i.e. bridging to non-bridging oxygen ratio determined by X-ray photoelectron spectroscopy. Magic angle spinning nuclear magnetic resonance (MAS-NMR) confirmed structural similarities as each glass presented spectral shifts between -84 and -85 ppm. Differential thermal analysis and hardness testing revealed higher glass transition temperatures (Tg 591-760 °C) and hardness values (2.4-6.1 GPa) for the Sr2+ containing glasses. Additionally the Sr2+ (~250 mg/L) containing glasses displayed much lower ion release rates than the Na+ (~1,200 mg/L) containing glass analogues. With the reduction in ion release there was an associated reduction in solution pH. Cytotoxicity and cell adhesion studies were conducted using MC3T3 Osteoblasts. Each glass did not significantly reduce cell numbers and osteoblasts were found to adhere to each glass surface.

  12. Hollow Retroreflectors Offer Solid Benefits

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A technician who lead a successful team of scientists, engineers, and other technicians in the design, fabrication, and characterization of cryogenic retroreflectors for the NASA Cassini/Composite Infrared Spectrometer (CIRS) mission to Saturn, developed a hollow retroreflector technology while working at NASA Goddard Space Flight Center. With 16 years of NASA experience, the technician teamed up with another NASA colleague and formed PROSystems, Inc., of Sharpsburg, Maryland, to provide the optics community with an alternative source for precision hollow retroreflectors. The company's hollow retroreflectors are front surface glass substrates assembled to provide many advantages over existing hollow retroreflectors and solid glass retroreflectors. Previous to this new technology, some companies chose not to use hollow retroreflectors due to large seam widths and loss of signal. The "tongue and groove" facet design of PROSystems's retroreflector allows for an extremely small seam width of .001 inches. Feedback from users is very positive regarding this characteristic. Most of PROSystems's primary customers mount the hollow retroreflectors in chrome steel balls for laser tracker targets in applications such as automobile manufacturing and spacecraft assembly.

  13. Investigations on the structure of Pb-Ge-Se glasses

    NASA Astrophysics Data System (ADS)

    Kalra, G.; Upadhyay, M.; Sharma, Y.; Abhaya, S.; Murugavel, S.; Amarendra, G.

    2016-05-01

    Chalcogenide glasses have attracted much attention because of their potential application in various solid state devices. In the present work, we report here the detailed thermal, structural, microstructural studies on PbxGe42-xSe58 with (0 ≤ x ≤ 20) glasses. The influence of Pb content on the glass transition temperature, specific heat, and non-reversing enthalphy is observed and discussed qualitatively The Raman spectroscopic studies on the all the glass compositions are carried out and deconvoluted into different structural units. The positron annihilation life-time spectroscopy (PALS) studies helped to understand the nature of defect states present in the glassy system and its variation with Pb content. The concentration of charged defect centers is found to increase, whereas the open volume defect concentration decreases with Pb content in these glasses.

  14. Joining of polymer-metal lightweight structures using self-piercing riveting (SPR) technique: Numerical approach and simulation results

    NASA Astrophysics Data System (ADS)

    Amro, Elias; Kouadri-Henni, Afia

    2018-05-01

    Restrictions in pollutant emissions dictated at the European Commission level in the past few years have urged mass production car manufacturers to engage rapidly several strategies in order to reduce significantly the energy consumption of their vehicles. One of the most relevant taken action is light-weighting of body in white (BIW) structures, concretely visible with the increased introduction of polymer-based composite materials reinforced by carbon/glass fibers. However, the design and manufacturing of such "hybrid" structures is limiting the use of conventional assembly techniques like resistance spot welding (RSW) which are not transferable as they are for polymer-metal joining. This research aims at developing a joining technique that would eventually enable the assembly of a sheet molding compound (SMC) polyester thermoset-made component on a structure composed of several high strength steel grades. The state of the art of polymer-metal joining techniques highlighted the few ones potentially able to respond to the industrial challenge, which are: structural bonding, self-piercing riveting (SPR), direct laser joining and friction spot welding (FSpW). In this study, the promising SPR technique is investigated. Modelling of SPR process in the case of polymer-metal joining was performed through the building of a 2D axisymmetric FE model using the commercial code Abaqus CAE 6.10-1. Details of the numerical approach are presented with a particular attention to the composite sheet for which Mori-Tanaka's homogenization method is used in order to estimate overall mechanical properties. Large deformations induced by the riveting process are enabled with the use of a mixed finite element formulation ALE (arbitrary Lagrangian-Eulerian). FE model predictions are compared with experimental data followed by a discussion.

  15. Structural and dynamical studies of molecular and network forming chalcogenide glasses and supercooled liquids with NMR and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gjersing, Erica Lee

    The techniques of Nuclear Magnetic Resonance (NMR) and Raman spectroscopy have been employed to study structure and dynamics in Ge-Se, Ge/As-Te, and As-S binary and complex Ge-As-Te and P-As-S ternary chalcogenide glasses. Structural studies were conducted on Ge-Se glasses and on binary Ge/As-Te and ternary Ge-As-Te systems. The structure of the GexSe100-x glass series, with 5≤x≤33, is investigated with 77Se Magic Angle Spinning (MAS) NMR and then compared with three different proposed structural models. For the binary Ge-Te and As-Te and ternary Ge-As-Te glass systems the structure is studied using Raman spectroscopy and correlated with physical properties such as molar volume, viscosity, optical band gap and thermophysical properties. Studies on glass transition dynamics were conducted on systems with a range of structural features including an As4S3 inorganic molecular glass former, an As-P-S system where molecules are bonded to the As-S network, and network glasses in the Ge-Se system. Timescales of the rotational dynamics of As4S3 cage molecules in the molecular As-sulfide glass and supercooled liquid show remarkably large decoupling from the timescales of viscous flow and shear relaxation at temperatures below and near Tg (312K). Next, the dynamic behavior of a (As 2S3)90(P2S5)10 glass, which is proposed to consist of As2P2S8 molecular structures which are connected to an As-S network, is investigated with 31P NMR. The rotational dynamics of selenium chains in network forming GexSe100-x glasses and supercooled liquids with 5≤x≤23 are investigated with variable temperature 77Se NMR spectroscopy to determine the relationship between rigidity percolation and dynamic behavior. The timescale of the motion of the Se atoms is observed to be nearly identical for x≤17 and ≤2.36. However, for the x=20 and 23 compositions where ≤2.4, above the rigidity percolation threshold, the timescale slows down abruptly. Finally, the Ge20Se 80 glass and supercooled liquid have been the focus of a variable temperature Raman spectroscopy study to investigate the vibrational mode softening behavior and the importance of vibrational entropy in glass transition.

  16. Structural investigation of MO ṡ P2O5ṡ Li2O (MO = Fe2O3 or V2O5) glass systems by FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Andronache, Constantin I.; Racolta, Dania

    2014-11-01

    Glasses from the systems xMO ṡ(100-x )[ P2O5ṡ Li2O ] (MO = Fe2O3 or V2O5) with 0 ≤ x ≤ mol % were prepared in the same conditions and characterized by IR spectroscopy. It was established the mode in which both Fe2O3 and V2O5 influences the local structure of these glasses. The iron ions generally modify in a different way the local structure of these glasses then vanadium ions. The results shown that phosphate units are the main structural units of glass system and the iron and vanadium ions are located in the network.

  17. Short-range structure and thermal properties of lead tellurite glasses

    NASA Astrophysics Data System (ADS)

    Hirdesh, Kaur, Amarjot; Khanna, Atul; Gonzàlez, Fernando

    2017-05-01

    PbO-TeO2 glasses having composition: xPbO-(100 - x)TeO2 (x = 10, 15 and 20 mol%) were prepared by melt quenching and characterized by X-ray diffraction, density measurements, differential scanning calorimetry and Raman spectroscopy. Glass density increases from 5.89 to 6.22 g cm-3 with increase in PbO concentration from 10 to 20 mol%, due to the replacement of TeO2 by heavier PbO. DSC studies found that glass transition temperature (Tg) decreases from a value of 295°C to 281°C. Raman studies found that glass short-range structure consists of TeO4 and TeO3 structural units and that PbO modifies the network by the structural transformation: TeO4 to TeO3.

  18. Bioparticles assembled using low frequency vibration immune to evacuation drifts

    NASA Astrophysics Data System (ADS)

    Shao, Fenfen; Whitehill, James David; Ng, Tuck Wah

    2012-08-01

    The use of low frequency vibration on suspensions of glass beads in a droplet has been shown to develop a strong degree of patterning (to a ring) due to the manner with which the surface waves are modified. Functionalized glass beads that serve as bioparticles permit for sensitive readings when concentrated at specific locations. However, a time controlled exposure with analytes is desirable. The replacement of the liquid medium with analyte through extraction is needed to conserve time. Nevertheless, we show here that extraction with a porous media, which is simple and useable in the field, will strongly displace the patterned beads. The liquid removal was found to be dependent on two mechanisms that affect the shape of the droplet, one of contact hysteresis due to the outer edge pinning, and the other of liquid being drawn into the porous media. From this, we developed and demonstrated a modified well structure that prevented micro-bead displacement during evacuation. An added strong advantage with this approach lies with its ability to require only analytes to be dispensed at the location of aggregated particles, which minimizes analyte usage. This was analytically established here.

  19. Singlet gradient index lens for deep in vivo multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Murray, Teresa A.; Levene, Michael J.

    2012-02-01

    Micro-optical probes, including gradient index (GRIN) lenses and microprisms, have expanded the range of in vivo multiphoton microscopy to reach previously inaccessible deep brain structures such as deep cortical layers and the underlying hippocampus in mice. Yet imaging with GRIN lenses has been fundamentally limited by large amounts of spherical aberration and the need to construct compound lenses that limit the field-of-view. Here, we demonstrate the use of 0.5-mm-diameter, 1.7-mm-long GRIN lens singlets with 0.6 numerical aperture in conjunction with a cover glass and a conventional microscope objective correction collar to balance spherical aberrations. The resulting system achieves a lateral resolution of 618 nm and an axial resolution of 5.5 μm, compared to lateral and axial resolutions of ~1 μm and ~15 μm, respectively, for compound GRIN lenses of similar diameter. Furthermore, the GRIN lens singlets display fields-of-view in excess of 150 μm, compared with a few tens of microns for compound GRIN lenses. The GRIN lens/cover glass combination presented here is easy to assemble and inexpensive enough for use as a disposable device, enabling ready adoption by the neuroscience community.

  20. Gold nanostructure-integrated silica-on-silicon waveguide for the detection of antibiotics in milk and milk products

    NASA Astrophysics Data System (ADS)

    Ozhikandathil, Jayan; Badilescu, Simona; Packirisamy, Muthukumaran

    2012-10-01

    Antibiotics are extensively used in veterinary medicine for the treatment of infectious diseases. The use of antibiotics for the treatment of animals used for food production raised the concern of the public and a rapid screening method became necessary. A novel approach of detection of antibiotics in milk is reported in this work by using an immunoassay format and the Localized Surface Plasmon Resonance property of gold. An antibiotic from the penicillin family that is, ampicillin is used for testing. Gold nanostructures deposited on a glass substrate by a novel convective assembly method were heat-treated to form a nanoisland morphology. The Au nanostructures were functionalized and the corresponding antibody was absorbed from a solution. Solutions with known concentrations of antigen (antibiotics) were subsequently added and the spectral changes were monitored step by step. The Au LSPR band corresponding to the nano-island structure was found to be suitable for the detection of the antibody antigen interaction. The detection of the ampicillin was successfully demonstrated with the gold nano-islands deposited on glass substrate. This process was subsequently adapted for the integration of gold nanostructures on the silica-on-silicon waveguide for the purpose of detecting antibiotics.

  1. Structural and Luminescent property of Holmium doped Borate Glasses

    NASA Astrophysics Data System (ADS)

    Usharani, V. L.; Eraiah, B.

    2018-02-01

    Holmium doped Lithium Lead Borate glasses of different compositions were prepared by melt quenching technique. Fourier transform infrared investigations on lithium lead borate glasses have been made to study the local order and vibrations of atoms in the glass network and it contains mainly BO3 and BO4 structural units. Photoluminescence techniques were employed to investigate the luminescent property of these glasses excited at 451nm. Blue emission have been observed from the transition 495 (5F3 → 5I8).

  2. Ion-wake field inside a glass box.

    PubMed

    Chen, Mudi; Dropmann, Michael; Zhang, Bo; Matthews, Lorin S; Hyde, Truell W

    2016-09-01

    The confinement provided by a glass box is proving ideal for the formation of vertically aligned structures and a convenient method for controlling the number of dust particles comprising these dust structures as well as their sizes and shapes. In this paper, the electronic confinement of the glass box is mapped, and the particle interactions between the particle pairs inside the glass box are measured. The ion-wake field is shown to exist within the glass box, and its vertical and horizontal extents are measured.

  3. Structure and constitution of glass and steel compound in glass-metal composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyubimova, Olga N.; Morkovin, Andrey V.; Dryuk, Sergey A.

    2014-11-14

    The research using methods of optical and scanning electronic microscopy was conducted and it discovered common factors on structures and diffusing zone forming after welding glass C49-1 and steel Ct3sp in technological process of creating new glass-metal composite. Different technological modes of steel surface preliminary oxidation welded with and without glass were investigated. The time of welding was varied from minimum encountering time to the time of stabilizing width of diffusion zone.

  4. Thermophysical and structural studies on some glass-ceramics and role of nano size crystallites

    NASA Astrophysics Data System (ADS)

    Kothiyal, G. P.; Arvind, A.; Kumar, Rakesh; Dixit, Anupam; Sharma, Kuldeep; Goswami, Madhumita

    2009-07-01

    In this paper, we present some studies on structure and thermophysical properties of glass and glass-ceramics with possible bio-medical and sealing applications. The glass-ceramics prepared for bio-medical applications include phosphate as well as silico-phosphate compositions. In vitro bio-compatibility/activity of these materials is discussed. The glass-ceramics used for the sealing application are lithium aluminium silicate (LAS) and lithium zinc silicate (LZS). The phase formation and some aspects of thermophysical properties and sealing are discussed.

  5. Synthesis of CaO-SiO2-P2O5 mesoporous bioactive glasses with high P2O5 content by evaporation induced self assembly process.

    PubMed

    Zhao, Shan; Li, Yanbao; Li, Dongxu

    2011-02-01

    Mesoporous bioactive glasses (MBGs) of the CaO-SiO(2)-P(2)O(5) system containing relatively high P(2)O(5) contents (10-30 mol%) were prepared from a sol-gel. An evaporation-induced self-assembly (EISA) technique was used with poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (EO(20)-PO(70)-EO(20), P123) acting as a template. The structural, morphological and textural properties of MBGs were investigated by small-angle X-ray diffraction (SAXRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and a N(2) sorption/desorption technique. SAXRD and TEM results display the reduced long-range ordering of mesopores with increasing P(2)O(5) content. N(2) sorption/desorption analysis shows that all three samples exhibit a type IV isotherm with type H1 hysteresis loops, characteristic of independent cylindrical slim pore channels and this material has a Barret-Joyner-Halenda (BJH) model pore size of ~4 nm and BET specific surface area ~430 m(2)/g. NMR results indicate a more condensed framework for samples with 30 mol% P(2)O(5) than samples with 10 mol% P(2)O(5). For in vitro bioactivity tests where samples were soaked in simulated body fluid (SBF), samples with 30 mol% P(2)O(5) showed higher crystallinity than those with lower P(2)O(5) contents Silicon concentration increased in SBF solution during the soaking period, which indicates MBGs can be degradable in SBF solution.

  6. Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation

    NASA Astrophysics Data System (ADS)

    Ulmeanu, M.; Zamfirescu, M.; Rusen, L.; Luculescu, C.; Moldovan, A.; Stratan, A.; Dabu, R.

    2009-12-01

    Single pulse laser ablation of glass, Ag, Au, and Co thin films was experimentally investigated with a laser pulse width of 400 ps at a wavelength of 532 nm both in the far and near fields. In the far-field regime, the electromagnetic field results from a focused laser beam, while the near-field regime is realized by a combination of the focused laser beam incident on a spherical colloidal particle. For the near-field experiments we have used polystyrene colloidal particles of 700 nm diameter self-assembled or spin coated on top of the surfaces. Laser fluences applied are in the range of 0.01-10 J/cm2. The diameter and the morphologies of the ablated holes were investigated by optical microscopy, profilometry, scanning electron microscopy, and atomic force microscopy. The dependence of the shape of the holes reflects the fluence regime and the thermophysical properties, i.e., melting temperature and thermal diffusivity of the surfaces involved in the experiments. We give quantitative data about the fluence threshold, diameter, and depth ablation dependence for the far and near fields and discuss their values with respect to the enhancement factor of the intensity of the electromagnetic field due to the use of the colloidal particles. Theoretical estimations of the intensity enhancement were done using the finite-difference time-domain method by using the RSOFT software. The application of near fields allows structuring of the surfaces with structure dimension in the order of 100 nm and even below.

  7. Kinetic Behaviour of Failure Waves in a Filled Glass

    NASA Astrophysics Data System (ADS)

    Resnyansky, A. D.; Bourne, N. K.

    2007-12-01

    Experimental stress and velocity profiles in a lead filled glass demonstrate a pronounced kinetic behaviour for failure waves in the material during shock loading. The present work summarises the experimental proofs of the kinetic behaviour obtained with stress and velocity gauges. The work describes a model for this behaviour employing a kinetic description used earlier for fracture waves in Pyrex glass. This model is part of a family of two-phase, strain-rate sensitive models describing the behaviour of damaged brittle materials. The modelling results describe well both the stress decay of the failure wave precursor in the stress profiles and main pulse attenuation in the velocity profiles. The influences of the kinetic mechanisms and wave interactions within the test assembly on the reduction of this behaviour are discussed.

  8. Cooling rate dependence of structural order in Ni 62 Nb 38 metallic glass

    DOE PAGES

    Wen, Tongqi; Sun, Yang; Ye, Beilin; ...

    2018-01-31

    In this article, molecular dynamics (MD) simulations are performed to study the structure of Ni 62Nb 38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni 62Nb 38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfectmore » icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.« less

  9. Cooling rate dependence of structural order in Ni 62 Nb 38 metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Tongqi; Sun, Yang; Ye, Beilin

    In this article, molecular dynamics (MD) simulations are performed to study the structure of Ni 62Nb 38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni 62Nb 38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfectmore » icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.« less

  10. Cooling rate dependence of structural order in Ni62Nb38 metallic glass

    NASA Astrophysics Data System (ADS)

    Wen, Tongqi; Sun, Yang; Ye, Beilin; Tang, Ling; Yang, Zejin; Ho, Kai-Ming; Wang, Cai-Zhuang; Wang, Nan

    2018-01-01

    Molecular dynamics (MD) simulations are performed to study the structure of Ni62Nb38 bulk metallic glass at the atomistic level. Structural analysis based on the cluster alignment method is carried out and a new Ni-centered distorted-icosahedra (DISICO) motif is excavated. We show that the short-range order and medium-range order in the glass are enhanced with lower cooling rate. Almost 50% of the clusters around the Ni atoms in the well-annealed Ni62Nb38 glass sample from our MD simulations can be classified as DISICO. It is revealed that the structural distortion with respect to the perfect icosahedra is driven by chemical ordering in the distorted region of the DISICO motif. The relationship between the structure, energy, and dynamics in this glass-forming alloy during the cooling and annealing processes is also established.

  11. Structural and optical study on antimony-silicate glasses doped with thulium ions.

    PubMed

    Dorosz, D; Zmojda, J; Kochanowicz, M; Miluski, P; Jelen, P; Sitarz, M

    2015-01-05

    Structural, spectroscopic and thermal properties of SiO₂-Al₂O₃-Sb₂O₃-Na₂O glass system doped with 0.2 mol% Tm₂O₃ have been presented. Synthesis of antimony-silicate glasses with relatively low phonon energy (600 cm(-1), which implicates a small non-radiative decay rate) was performed by conventional high-temperature melt-quenching methods. The effect of SiO₂/Sb₂O₃ ratio in fabricated Tm(3+) doped glass on thermal, structural and luminescence properties was investigated. On the basis of structural investigations decomposition of absorption bands in the infrared FTIR region was performed, thus determining that antimony ions are the only glass-forming ions, setting up the lattice of fabricated glasses. Luminescence band at the wavelength of 1.8 μm corresponding to (3)F₄→(3)H₆ transition in thulium ions was obtained under 795 nm laser pumping. It was observed that combination of relatively low phonon energy and greater separation of optically active centers in the fabricated glasses influenced in decreasing the luminescence intensity at 1800 nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Analysis of large space structures assembly: Man/machine assembly analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Procedures for analyzing large space structures assembly via three primary modes: manual, remote and automated are outlined. Data bases on each of the assembly modes and a general data base on the shuttle capabilities to support structures assembly are presented. Task element times and structure assembly component costs are given to provide a basis for determining the comparative economics of assembly alternatives. The lessons learned from simulations of space structures assembly are detailed.

  13. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions.

    PubMed

    Sathish, K; Thirumaran, S

    2015-08-05

    The present work describes the glass samples of composition (x% V₂O₅-(80-x)% B₂O₃-20% Na₂CO₃) VBS glass system and (x%MnO₂-(80-x)% B₂O₃-20% Na₂CO₃) in MBS glass system with mol% ranging from x=3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V₂O₅ doped glass system,(VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO₂ doped glass system (VBS glass system). The present study critically observes the doping of V₂O₅ with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO₂. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO₃ or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na₂CO₃, V₂O₅ and MnO₂ contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Spectroscopic and ultrasonic investigations on structural characterization of borate glass specimen doped with transition metal ions

    NASA Astrophysics Data System (ADS)

    Sathish, K.; Thirumaran, S.

    2015-08-01

    The present work describes the glass samples of composition (x% V2O5-(80-x)% B2O3-20% Na2CO3) VBS glass system and (x% MnO2-(80-x)% B2O3-20% Na2CO3) in MBS glass system with mol% ranging from x = 3, 6, 9, 12, 15 and 18 in steps of 3 mol% are prepared by melt quenching technique. For these prepared glass systems, sound velocity (longitudinal and shear velocities) and density have been measured. The sound velocity (longitudinal and shear) was measured by using pulse-echo technique at 5 MHz. The XRD study was carried to out to ascertain the amorphous nature of the glass specimen. Using these measured values, the elastic moduli, Poisson's ratio, Debye temperature, acoustic impedance and thermal expansion coefficient of the two glass systems were evaluated. The elastic and mechanical properties of the prepared glass systems are analyzed from ultrasonic study and the structural characterization from spectroscopic study. The effects due to the doping of transition metal ions with borate have been discussed. In the V2O5 doped glass system, (VBS glass system) the sound velocity, density and elastic moduli, steeply increases after 12 mol% comparatively with MnO2 doped glass system (VBS glass system). The present study critically observes the doping of V2O5 with borate enhances the strengthening of network linkage and hardening of the glassy network structure than MnO2. The IR spectral analysis reveals depolymerization of the borate network and conversion of BO3 or BO4 units with the formation of non-bridging oxygen. The FTIR spectral studies confirm the presence of various functional groups of the sample. FTIR spectrum of sample exhibits broad absorption bands indicating the wide distribution of borate structural units. The effect of Na2CO3, V2O5 and MnO2 contents on the structures of borate glass is evaluated from the FTIR spectra. The topological aspects of the prepared glass samples are exhaustively reported from SEM micrographs.

  15. Mixed Network Former Effect on Structure, Physical Properties, and Bioactivity of 45S5 Bioactive Glasses: An Integrated Experimental and Molecular Dynamics Simulation Study.

    PubMed

    Lu, Xiaonan; Deng, Lu; Huntley, Caitlin; Ren, Mengguo; Kuo, Po-Hsuen; Thomas, Ty; Chen, Jonathan; Du, Jincheng

    2018-03-08

    Boron-containing bioactive glasses display a strong potential in various biomedical applications lately due to their controllable dissolution rates. In this paper, we prepared a series of B 2 O 3 /SiO 2 -substituded 45S5 bioactive glasses and performed in vitro biomineralization tests with both simulated body fluid and K 2 HPO 4 solutions to evaluate the bioactivities of these glasses as a function of boron oxide to silica substitution. The samples were examined with scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectrometry after immersing them in the two solutions (simulated body fluid and K 2 HPO 4 ) up to 3 weeks. It was found that introduction of boron oxide delayed the formation of hydroxyapatite, but all the glasses were shown to be bioactive. Molecular dynamics (MD) simulations were used to complement the experimental efforts to understand the structural changes due to boron oxide to silica substitution by using newly developed partial charge composition-dependent potentials. Local structures around the glass network formers, medium-range structural information, network connectivity, and self-diffusion coefficients of ions were elucidated from MD simulation. Relationships between boron content and glass properties such as structure, density, glass transition temperature, and in vitro bioactivity were discussed in light of both experimental and simulation results.

  16. Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect.

    PubMed

    Padmaja, G; Kistaiah, P

    2009-03-19

    A lithium-potassium-borate glass system containing manganese and iron cations has been thoroughly investigated in order to obtain information about the mixed alkali effect and the structural role of both the manganese and iron in such glass hosts. Mixed alkali borate glasses of the (30 - x)Li(2)O - xK(2)O - 10CdO/ZnO - 59B(2)O(3) (x = 0, 10, 15, 20, and 30) doped with 1MnO(2)/1Fe(2)O(3) system were prepared by a melt quench technique. The amorphous phase of the prepared glass samples was confirmed from their X-ray diffraction. The spectroscopic properties of glass samples were studied using infrared (IR) and Raman spectroscopic techniques. The density of all the prepared glasses was measured using Archimedes principle. Molar volumes were estimated from the density data. IR spectra of these glasses revealed a dramatic variation of three- and four-coordinated boron structures as a function of mixed alkali concentration. The vibrations due to Li-O, K-O, and MnO(4)/FeO(4) arrangements are consistent in all the compositions and show a nonlinear variation in the intensity with alkali content. Raman spectra of different alkali combinations with CdO and ZnO present drastic changes in the intensity of various Raman bands. The observation of disappearance and reappearance of IR and Raman bands as a function of various alkali concentrations is an important result pertaining to the mixed alkali effect in borate glasses. Acting as complementary spectroscopic techniques, both types of measurements, IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO(3) and BO(4) units placed in different structural groups, the BO(3) units being dominant. The measured IR and Raman spectra of different glasses are used to clarify the optical properties of the present glasses correlating them with their structure and composition.

  17. Glass formation, properties, and structure of soda-yttria-silicate glasses

    NASA Technical Reports Server (NTRS)

    Angel, Paul W.; Hann, Raiford E.

    1991-01-01

    The glass formation region of the soda yttria silicate system was determined. The glasses within this region were measured to have a density of 2.4 to 3.1 g/cu cm, a refractive index of 1.50 to 1.60, a coefficient of thermal expansion of 7 x 10(exp -6)/C, softening temperatures between 500 and 780 C, and Vickers hardness values of 3.7 to 5.8 GPa. Aqueous chemical durability measurements were made on select glass compositions while infrared transmission spectra were used to study the glass structure and its effect on glass properties. A compositional region was identified which exhibited high thermal expansion, high softening temperatures, and good chemical durability.

  18. Mini-Brayton heat source assembly design study. Volume 2: Titan 3C mission. [minimum weight modifications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Major conclusions of the space shuttle heat source assembly study are reported that project a minimum weight design for a Titan 3 C synchronous orbit mission; requirements to recover the heat source in orbit are eliminated. This concept permits location of the heat source end enclosure supports and heat source assembly support housing in a low temperature region external to the insulation enclosure and considers titanium and beryllium alloys for these support elements. A high melting insulation blanket consisting of nickel foil coated with zirconia, or of gold foil separated with glass fiber layers, is selected to provide emergency cooling in the range 2000 to 2700 F to prevent the isotope heat source from reaching unsafe temperatures. A graphic view of the baseline heat source assembly is included.

  19. Surfaces wettability and morphology modulation in a fluorene derivative self-assembly system

    NASA Astrophysics Data System (ADS)

    Cao, Xinhua; Gao, Aiping; Zhao, Na; Yuan, Fangyuan; Liu, Chenxi; Li, Ruru

    2016-04-01

    A new organogelator based on fluorene derivative (gelator 1) was designed and synthesized. Organogels could be obtained via the self-assembly of the derivative in acetone, toluene, ethyl acetate, hexane, DMSO and petroleum ether. The self-assembly process was thoroughly characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV-vis, FT-IR and the contact angle. Surfaces with different morphologies and wetting properties were formed via the self-assembly of gelator 1 in the six different solvents. Interestingly, a superhydrophobic surface with a contact angle of 150° was obtained from organogel 1 in DMSO and exhibited the lotus-effect. The sliding angle necessary for a water droplet to move on the glass was only 15°. Hydrogen bonding and van der Waals forces were attributed as the main driving forces for gel formation.

  20. A modular assembly method of a feed and thruster system for Cubesats

    NASA Astrophysics Data System (ADS)

    Louwerse, Marcus; Jansen, Henri; Elwenspoek, Miko

    2010-11-01

    A modular assembly method for devices based on micro system technology is presented. The assembly method forms the foundation for a miniaturized feed and thruster system as part of a micro propulsion unit working as a simple blow-down system of a rocket engine. The micro rocket is designed to be used for constellation maintenance of Cubesats, which measure 10 × 10 × 10 cm and have a mass less than 1 kg. The feed and thruster system contains an active valve, control electronics, a particle filter and an axisymmetric converging-diverging nozzle, all fabricated as separate modules. A novel method is used to integrate these modules by placing them on or in a glass tube package. The assembly method is shown to be a valid method but the valve module needs to be improved considerably.

  1. Structural origin underlying poor glass forming ability of Al metallic glass

    NASA Astrophysics Data System (ADS)

    Li, F.; Liu, X. J.; Hou, H. Y.; Chen, G.; Chen, G. L.

    2011-07-01

    We performed molecular dynamics simulations to study the glass formation and local atomic structure of rapidly quenched Al. Both potential energy and structural parameters indicate that the glass transition temperature of amorphous Al is as low as 300 K, which may lead to the poor thermal stability of the amorphous Al as it is prone to crystallize even at room temperature. Voronoi polyhedra analysis reveals that the most popular polyhedron is the deformed body-centered cubic (bcc) cluster characterized by the index < 0, 3, 6, 4 > in the amorphous Al, while the icosahedron with the index < 0, 0, 12, 0 > is always predominant in bulk metallic glass formers with excellent glass forming ability (GFA). Moreover, these deformed-bcc short-range orders can make up medium-range orders via the linkage of vertex-, edge-, face-, intercrossed-shared atoms, which are believed to more easily transform into face-centered cubic (fcc) Al nanocrystal compared with the icosahedral clusters in terms of the symmetrical similarity between bcc and fcc structures. This finding could unveil the structural origin of poor GFA of Al-based alloys.

  2. Physical, structural and optical characterizations of borate modified bismuth-silicate-tellurite glasses

    NASA Astrophysics Data System (ADS)

    Berwal, Neelam; Kundu, R. S.; Nanda, Kirti; Punia, R.; Kishore, N.

    2015-10-01

    Quaternary bismuthate glasses with compositions xB2O3-(80 - x) Bi2O3-15SiO2-5TeO2 have been prepared by melt-quench technique. X-ray diffraction studies were performed to ascertain the amorphous nature of samples. The density, molar volume and crystalline volume decrease with increase in B2O3 content whereas the glass transition temperature shows the reverse trend. The Raman and FTIR spectra of the studied glasses indicate that B2O3 has been found to exist in the form of BO3 trigonal and BO4 tetrahedral structural units and vibrations corresponding to these structural units increase with increase in B2O3 content. SiO2 is present in the form of SiO4 tetrahedral structural units and TeO2 in the form of TeO3 structural units. Bismuth plays the role of network modifier [BiO6 octahedra] as well as network former [BiO3 pyramids] for all the glass compositions. The optical band gap energy has been calculated from the fitting of both Mott and Davis's model and Hydrogenic excitonic model with the experimentally observed absorption spectra. A good fitting of experimental data with HEM indicates the excitonic formation in the studies glass system. The values of optical band gap energy show nonlinear behavior due to the structural changes that take place in the present glass samples. The Urbach energy calculated using Urbach empirical formula for studied glass samples suggest the possibility of reduction in defect concentrations. The metallization criterion of the presently studied samples suggests that the prepared glasses may be potential candidates for nonlinear optical applications.

  3. Stochastic metallic-glass cellular structures exhibiting benchmark strength.

    PubMed

    Demetriou, Marios D; Veazey, Chris; Harmon, John S; Schramm, Joseph P; Johnson, William L

    2008-10-03

    By identifying the key characteristic "structural scales" that dictate the resistance of a porous metallic glass against buckling and fracture, stochastic highly porous metallic-glass structures are designed capable of yielding plastically and inheriting the high plastic yield strength of the amorphous metal. The strengths attainable by the present foams appear to equal or exceed those by highly engineered metal foams such as Ti-6Al-4V or ferrous-metal foams at comparable levels of porosity, placing the present metallic-glass foams among the strongest foams known to date.

  4. Volume and structural relaxation in compressed sodium borate glass.

    PubMed

    Svenson, Mouritz N; Youngman, Randall E; Yue, Yuanzheng; Rzoska, Sylwester J; Bockowski, Michal; Jensen, Lars R; Smedskjaer, Morten M

    2016-11-21

    The structure and properties of glass can be modified through compression near the glass transition temperature (T g ), and such modified structure and properties can be maintained at ambient temperature and pressure. However, once the compressed glass undergoes annealing near T g at ambient pressure, the modified structure and properties will relax. The challenging question is how the property relaxation is correlated with both the local and the medium-range structural relaxation. In this paper, we answer this question by studying the volume (density) and structural relaxation of a sodium borate glass that has first been pressure-quenched from its T g at 1 GPa, and then annealed at ambient pressure under different temperature-time conditions. Using 11 B MAS NMR and Raman spectroscopy, we find that the pressure-induced densification of the glass is accompanied by a conversion of six-membered rings into non-ring trigonal boron (B III ) units, i.e. a structural change in medium-range order, and an increase in the fraction of tetrahedral boron (B IV ), i.e. a structural change in short-range order. These pressure-induced structural conversions are reversible during ambient pressure annealing near T g , but exhibit a dependence on the annealing temperature, e.g. the ring/non-ring B III ratio stabilizes at different values depending on the applied annealing temperature. We find that conversions between structural units cannot account for the pressure-induced densification, and instead we suggest the packing of structural units as the main densification mechanism.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Kitheri; Stennett, Martin C.; Hyatt, Neil C.

    Bulk properties such as glass transition temperature, density and thermal expansion of iron phosphate glass compositions, with replacement of Cs by Ba, are investigated as a surrogate for the transmutation of 137Cs to 137Ba, relevant to the immobilisation of Cs in glass. These studies are required to establish the appropriate incorporation rate of 137Cs in iron phosphate glass. Density and glass transition temperature increases with the addition of BaO indicating the shrinkage and reticulation of the iron phosphate glass network. The average thermal expansion coefficient reduces from 19.8 × 10-6 K-1 to 13.4 × 10-6 K-1, when 25 wt. %more » of Cs2O was replaced by 25 wt. % of BaO in caesium loaded iron phosphate glass. In addition to the above bulk properties, the role of Ba as a network modifier in the structure of iron phosphate glass is examined using various spectroscopic techniques. The FeII content and average coordination number of iron in the glass network was estimated using Mössbauer spectroscopy. The FeII content in the un-doped iron phosphate glass and barium doped iron phosphate glasses was 20, 21 and 22 ± 1% respectively and the average Fe coordination varied from 5.3 ± 0.2 to 5.7 ± 0.2 with increasing Ba content. The atomic scale structure was further probed by Fe K-edge X-ray absorption spectroscopy. The average coordination number provided by extended X-ray absorption fine structure spectroscopy and X-ray absorption near edge structure was in good agreement with that given by the Mössbauer data.« less

  6. Using polymerization, glass structure, and quasicrystalline theory to produce high level radioactive borosilicate glass remotely: a 20+ year legacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in borosilicate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt a highly variable waste with some glass forming additives such as SiO 2 and B 2O 3 in the form of a premelted frit and pour the molten mixture into a stainless steel canister. Seal the canister before moisture can enter themore » canister (10’ tall by 2’ in diameter) so the canister does not corrode from the inside out. Glass has also become widely used for HLW is that due to the fact that the short range order (SRO) and medium range order (MRO) found in the structure of glass atomistically bonds the radionuclides and hazardous species in the waste. The SRO and MRO have also been found to govern the melt properties such as viscosity and resistivity of the melt and the crystallization potential and solubility of certain species. Furthermore, the molecular structure of the glass also controls the glass durability, i.e. the contaminant/radionuclide release, by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to HLW waste variability. Nuclear waste glasses melt between 1050-1150°C which minimizes the volatility of radioactive components such as 99Tc, 137Cs, and 129I. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models were developed based on the molecular structure of glass, polymerization theory of glass, and quasicrystalline theory of glass crystallization. These models create a glass which is durable, pourable, and processable with 95% accuracy without knowing from batch to batch what the composition of the waste coming out of the storage tanks will be. These models have operated the Savannah River Site Defense Waste Processing Facility (SRS DWPF), which is the world’s largest HLW Joule heated ceramic melter, since 1996. This unique “feed forward” process control, which qualifies the durability, pourability, and processability of the waste plus glass additive mixture before it enters the melter, has enabled ~8000 tons of HLW glass and 4242 canisters to be produced since 1996 with only one melter replacement.« less

  7. Using polymerization, glass structure, and quasicrystalline theory to produce high level radioactive borosilicate glass remotely: a 20+ year legacy

    DOE PAGES

    Jantzen, Carol M.

    2017-03-27

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in borosilicate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt a highly variable waste with some glass forming additives such as SiO 2 and B 2O 3 in the form of a premelted frit and pour the molten mixture into a stainless steel canister. Seal the canister before moisture can enter themore » canister (10’ tall by 2’ in diameter) so the canister does not corrode from the inside out. Glass has also become widely used for HLW is that due to the fact that the short range order (SRO) and medium range order (MRO) found in the structure of glass atomistically bonds the radionuclides and hazardous species in the waste. The SRO and MRO have also been found to govern the melt properties such as viscosity and resistivity of the melt and the crystallization potential and solubility of certain species. Furthermore, the molecular structure of the glass also controls the glass durability, i.e. the contaminant/radionuclide release, by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to HLW waste variability. Nuclear waste glasses melt between 1050-1150°C which minimizes the volatility of radioactive components such as 99Tc, 137Cs, and 129I. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models were developed based on the molecular structure of glass, polymerization theory of glass, and quasicrystalline theory of glass crystallization. These models create a glass which is durable, pourable, and processable with 95% accuracy without knowing from batch to batch what the composition of the waste coming out of the storage tanks will be. These models have operated the Savannah River Site Defense Waste Processing Facility (SRS DWPF), which is the world’s largest HLW Joule heated ceramic melter, since 1996. This unique “feed forward” process control, which qualifies the durability, pourability, and processability of the waste plus glass additive mixture before it enters the melter, has enabled ~8000 tons of HLW glass and 4242 canisters to be produced since 1996 with only one melter replacement.« less

  8. Review: Pressure-Induced Densification of Oxide Glasses at the Glass Transition

    NASA Astrophysics Data System (ADS)

    Kapoor, Saurabh; Wondraczek, Lothar; Smedskjaer, Morten M.

    2017-02-01

    Densification of oxide glasses at the glass transition offers a novel route to develop bulk glasses with tailored properties for emerging applications. Such densification can be achieved in the technologically relevant pressure regime of up to 1GPa. However, the present understanding of the composition-structure-property relationships governing these glasses is limited, with key questions, e.g., related to densification mechanism, remaining largely unanswered. Recent advances in structural characterization tools and high-pressure apparatuses have prompted new research efforts. Here, we review this recent progress and the insights gained in the understanding of the influence of isostatic compression at elevated temperature (so-called hot compression) on the composition-structure-property relationships of oxide glasses. We focus on compression at temperatures at or around the glass transition temperature (Tg), with relevant comparisons made to glasses prepared by pressure quenching and cold compression. We show that permanent densification at 1 GPa sets-in at temperatures above 0.7Tg and the degree of densification increases with increasing compression temperature and time, until attaining an approximately constant value for temperatures above Tg. For glasses compressed at the same temperature/pressure conditions, we demonstrate direct relations between the degree of volume densification and the pressure-induced change in micro-mechanical properties such as hardness, elastic moduli, and extent of the indentation size effect across a variety of glass families. Furthermore, we summarize the results on relaxation behavior of hot compressed glasses. All the pressure-induced changes in the structure and properties exhibit strong composition dependence. The experimental results highlight new opportunities for future investigation and identify research challenges that need to be overcome to advance the field.

  9. The effect of CaO/SiO2 molar ratio of CaO-Al2O3-SiO2 glasses on their structure and reactivity in alkali activated system.

    PubMed

    Kucharczyk, Sylwia; Sitarz, Maciej; Zajac, Maciej; Deja, Jan

    2018-04-05

    The influence of CaO/SiO 2 molar ratio of calcium aluminosilicate glasses on resulting structure and reactivity was investigated. Chemical compositions of glasses were chosen to mimic the composition of the fly ash and slag amorphous phase. Understanding the reactivity of these materials is of high importance allowing further development of the composite cements to limit the environmental footprint of cement industry. Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy were employed to examine the structure of glasses. Reactivity of the glasses was analyzed on paste samples after 1, 2, 7, 28 and 90days of curing by means of thermogravimetry (TGA), X-ray diffraction (XRD) and FTIR. Spectroscopic results emphasize dependence of the structure on the chemical composition of the glasses. The higher CaO/SiO 2 the more depolymerized the glass network is, though there is no direct correlation with the reactivity. Significant differences in reactivity is observed primarily between the glasses of peraluminous (CaO/Al 2 O 3 <1) and percalcic region (CaO/Al 2 O 3 >1). Amongst the pastes made of glasses of percalcic region a higher degree of reaction at later ages is observed for the paste containing glass of lower CaO/SiO 2 molar ratio. This is due to both degree of depolimerization and the nature of these glasses (pozzolanic and hydraulic materials). No difference of degree of reaction has been observed within the glasses of CaO/SiO 2 lower than 1. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Freestanding and Reactive Thin Films Fabricated by Covalent Layer-by-Layer Assembly and Subsequent Lift-Off of Azlactone-Containing Polymer Multilayers

    PubMed Central

    Buck, Maren E.

    2010-01-01

    We report an approach to the fabrication of freestanding and amine-reactive thin films that is based on the reactive layer-by-layer assembly and subsequent lift-off of azlactone-containing polymer multilayers. We demonstrate that covalently crosslinked multilayers fabricated using the azlactone-functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and a primary amine-containing polymer [poly(ethyleneimine) (PEI)] can be delaminated from planar glass and silicon surfaces by immersion in mildly acidic aqueous environments to yield flexible freestanding membranes. These freestanding membranes are robust and can withstand exposure to strong acid, strong base, or incubation in high ionic strength solutions that typically lead to the disruption and erosion of polymer multilayers assembled by reversible weak interactions (e.g., ‘polyelectrolyte multilayers’ assembled by electrostatic interactions or hydrogen bonding). We demonstrate further that these PEI/PVDMA assemblies contain residual reactive azlactone functionality that can be exploited to chemically modify the films (either directly after fabrication or after they have been lifted off of the substrates on which they were fabricated) using a variety of amine-functionalized small molecules. These freestanding membranes can also be transferred readily onto other objects (for example, onto the surfaces of planar substrates containing holes or pores) to fabricate suspended polymer membranes and other film-functionalized interfaces. In addition to planar, two-dimensional freestanding films, this approach can be used to fabricate and isolate three-dimensional freestanding membranes (e.g., curved films or tubes) by layer-by-layer assembly on, and subsequent lift-off from, the surfaces of topologically complex substrates (e.g., the curved ends of glass tubing, etc.). The results of this investigation, when combined, suggest the basis of methods for the fabrication of stable, chemically-reactive, and flexible polymer thin films and membranes of potential utility in a variety of fundamental and applied contexts. PMID:20857952

  11. Electrical mobility of silver ion in Ag2O-B2O3-P2O5-TeO2 glasses.

    PubMed

    Sklepić, Kristina; Vorokhta, Maryna; Mošner, Petr; Koudelka, Ladislav; Moguš-Milanković, Andrea

    2014-10-16

    The effect of adding TeO(2) into (100 - x)[0.5Ag(2)O - 0.1B(2)O(3) - 0.4P(2)O(5)] - xTeO(2), with 0-80 mol % TeO(2) glass, on the structural changes and electrical properties has been investigated. DSC and thermodilatomery were used to study their thermal behavior, structure was studied by Raman spectroscopy, and electrical properties have been studied by impedance spectroscopy over a wide temperature and frequency range. The introduction of TeO(2) as a third glass former to the glass network causes the structural transformation from TeO(3) (tp) to TeO(4) (tbp) which contributes to the changes in conductivity. The glasses with low TeO(2) content show only a slow decrease in dc conductivity with addition of TeO(2) due to the increase of the number of nonbridging oxygens, which increases the mobility of Ag(+) ions. The steep decrease in conductivity for glasses containing more than 40 mol % TeO(2) is a result of decrease of the Ag(2)O content and stronger cross-linkage in glass network through the formation of more Te-(eq)O(ax)-Te bonds in TeO(4) tbp units. The glasses obey ac conductivity scaling with respect to temperature, implying that the dynamic process is not temperature dependent. On the other hand, the scaling of the spectra for different glass compositions showed the deviations from the Summerfield scaling because of the local structural disorder which occurs as a result of the structural modifications in the tellurite glass network.

  12. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, Stephen D.; Marshall, Kenneth L.; Cerqua, Kathleen A.

    1991-01-01

    Composite optical devices using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T.sub.g) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device.

  13. Process development for automated solar cell and module production. Task 4: Automated array assembly

    NASA Technical Reports Server (NTRS)

    Hagerty, J. J.

    1981-01-01

    The Unimate robot was programmed for the final 35 cell pattern to be used in the fabrication of the deliverable modules. Mechanical construction of the Automated Lamination Station and Final Assembly Station were completed on schedule. All final wiring and interconnect cables were also completed and the first operational testing began. The final controlling program was written. A local fabricator was contracted to produce the glass reinforced concrete panels to be used for testing and deliverables. A video tape showing all three stations in operation was produced.

  14. Jump events in a 3D Edwards-Anderson spin glass

    NASA Astrophysics Data System (ADS)

    Mártin, Daniel A.; Iguain, José Luis

    2017-11-01

    The statistical properties of infrequent particle displacements, greater than a certain distance, are known as jump dynamics in the context of structural glass formers. We generalize the concept of a jump to the case of a spin glass, by dividing the system into small boxes, and considering the infrequent cooperative spin flips in each box. Jumps defined this way share similarities with jumps in structural glasses. We perform numerical simulations for the 3D Edwards-Anderson model, and study how the properties of these jumps depend on the waiting time after a quench. Similar to the results for structural glasses, we find that while jump frequency depends strongly on time, the jump duration and jump length are roughly stationary. At odds with some results reported on studies of structural glass formers, at long enough times, the rest time between jumps varies as the inverse of jump frequency. We give a possible explanation for this discrepancy. We also find that our results are qualitatively reproduced by a fully-connected trap model.

  15. Molybdenum modified phosphate glasses studied by 31P MAS NMR and Raman spectroscopy.

    PubMed

    Szumera, Magdalena

    2015-02-25

    Glasses have been synthesized in the system P2O5-SiO2-K2O-MgO-CaO modified by addition of MoO3. Glasses were prepared by conventional fusion method from 40 g batches. The influence of Mo-cations on the analysed glass structure was investigated by means of Raman and (31)P MAS-NMR techniques. It has been found that molybdate units can form Mo[MoO4/MoO6]-O-P and/or Mo[MoO4/MoO6]-O-Si bonds with non-bridging oxygens atoms of Q2 methaphosphate units, resulting in the transformation of chain methaphosphate structure into pyrophosphate and finally into orthophosphate structure. It has been also found that increasing amount of MoO3 in the structure of investigated glasses causes their gradual depolymerization and molybdenum ions in the analysed glass matrix act as modifying cations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Nematic-like stable glasses without equilibrium liquid crystal phases

    DOE Data Explorer

    Gomez, Jaritza [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Gujral, Ankit [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Huang, Chengbin [School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Bishop, Camille [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; Yu, Lian [School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Ediger, Mark [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

    2017-02-01

    We report the thermal and structural properties of glasses of posaconazole, a rod-like molecule, prepared using physical vapor deposition (PVD). PVD glasses of posaconazole can show substantial molecular orientation depending upon the choice of substrate temperature, Tsubstrate, during deposition.Ellipsometry and IR measurements indicate that glasses prepared at Tsubstrate very near the glass transition temperature (Tg) are highly ordered. For these posaconazole glasses, the orientation order parameter is similar to that observed in macroscopically aligned nematic liquid crystals, indicating that the molecules are mostly parallel to one another and perpendicular to the interface. To our knowledge, these are the most anisotropic glasses ever prepared by PVD from a molecule that does not form equilibrium liquid crystal phases. These results are consistent with a previously proposed mechanism in which molecular orientation in PVD glasses is inherited from the orientation present at the free surface of the equilibrium liquid. This mechanism suggests that molecular orientation at the surface of the equilibrium liquid of posaconazole is nematic-like. Posaconazole glasses can show very high kinetic stability; the isothermal transformation of a 400 nm glass into the supercooled liquid occurs via a propagating front that originates at the free surface and requires ~105 times the structural relaxation time of the liquid (τα). We also studied the kinetic stability of PVD glasses of itraconazole, which is a structurally similar molecule with equilibrium liquid crystal phases. While itraconazole glasses can be even more anisotropic than posaconazole glasses, they exhibit lower kinetic stability.

  17. Development of the sonic pump levitator

    NASA Technical Reports Server (NTRS)

    Dunn, S. A.

    1985-01-01

    The process and mechanism involved in producing glass microballoons (GMBs) of acceptable quality for laser triggered inertial fusion through use of glass jet levitation and manipulation are considered. The gas jet levitation device, called sonic pumps, provides positioning by timely and appropriate application of gas mementum from one or more of six sonic pumps which are arranged orthogonally in opposed pairs about the levitation region and are activated by an electrooptical, computer controlled, feedback system. The levitation device was fabricated and its associated control systems were assembled into a package and tested in reduced gravity flight regime of the NASA KC-135 aircraft.

  18. Connectivity of glass structure. Oxygen number

    NASA Astrophysics Data System (ADS)

    Medvedev, E. F.; Min'ko, N. I.

    2018-03-01

    With reference to mathematics, crystal chemistry and chemical technology of synthesis of glass structures in the solution (sol-gel technology), the paper is devoted to the study of the degree of connectivity of a silicon-oxygen backbone (fSi) and the oxygen number (R) [1]. It reveals logical contradictions and uncertainty of mathematical expressions of parameters, since fSi is not similar to the oxygen number. The connectivity of any structure is a result of various types of bonds: ion-covalent, donor-acceptor, hydrogen bonds, etc. Besides, alongside with SiO2, many glass compositions contain other glass-forming elements due to tetrahedral sites thus formed. The connectivity function of a glassy network with any set of glass-forming elements is roughly ensured by connectivity factor Y [2], which has monovalent elements loosening a glassy network. The paper considers the existence of various structural motives in hydrogen-impermeable glasses containing B2O3, Al2O3, PbO, Na2O, K2O and rare-earth elements. Hence, it also describes gradual nucleation, change of crystal forms, and structure consolidation in the process of substance intake from a matrix solution according to sol-gel technology. The crystal form varied from two-dimensional plates to three-dimensional and dendritical ones [3]. Alternative parameters, such as the oxygen number (O) and the structure connectivity factor (Y), were suggested. Functional dependence of Y=f(O) to forecast the generated structures was obtained for two- and multicomponent glass compositions.

  19. The structural origin of the hard-sphere glass transition in granular packing

    DOE PAGES

    Xia, Chengjie; Li, Jindong; Cao, Yixin; ...

    2015-09-28

    Glass transition is accompanied by a rapid growth of the structural relaxation time and a concomitant decrease of configurational entropy. It remains unclear whether the transition has a thermodynamic origin, and whether the dynamic arrest is associated with the growth of a certain static order. Using granular packing as a model hard-sphere glass, we show the glass transition as a thermodynamic phase transition with a ‘hidden’ polytetrahedral order. This polytetrahedral order is spatially correlated with the slow dynamics. It is geometrically frustrated and has a peculiar fractal dimension. Additionally, as the packing fraction increases, its growth follows an entropy-driven nucleationmore » process, similar to that of the random first-order transition theory. In conclusion, our study essentially identifies a long-sought-after structural glass order in hard-sphere glasses.« less

  20. Structural investigation and optical properties of xMnO2-25Li2O-5Na2O-15Bi2O3-(55-x)B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Kulkarni, Shilpa; Jali, V. M.

    2018-02-01

    This paper deals with the new mixed system of glass compositions Lithium sodium bismuth borate glasses doped with transition metal oxide. The technique used to prepare a sample is by melt quenching. The XRD profile pattern confirmed the amorphous phase of the present glass system. The network structure is based on BO3, BO4 units and BiO6 octahedral units. No boroxyl rings observed in the glass structure. The addition of MnO2 in small amount does not account for major structural changes. Optical band gap lies in the range 1.89 to 0.96 eV. Density, molar volume, oxygen packing density, Tg, direct optical band gap and refractive index show anomalous behavior.

  1. Fabrication of glass gas cells for the HALOE and MAPS satellite experiments

    NASA Technical Reports Server (NTRS)

    Sullivan, E. M.; Walthall, H. G.

    1984-01-01

    The Halogen Occultation Experiment (HALOE) and the Measurement of Air Pollution from Satellites (MAPS) experiment are satellite-borne experiments which measure trace constituents in the Earth's atmosphere. The instruments which obtain the data for these experiments are based on the gas filter correlation radiometer measurement technique. In this technique, small samples of the gases of interest are encapsulated in glass cylinders, called gas cells, which act as very selective optical filters. This report describes the techniques employed in the fabrication of the gas cells for the HALOE and MAPS instruments. Details of the method used to fuse the sapphire windows (required for IR transmission) to the glass cell bodies are presented along with detailed descriptions of the jigs and fixtures used during the assembly process. The techniques and equipment used for window inspection and for pairing the HALOE windows are discussed. Cell body materials and the steps involved in preparing the cell bodies for the glass-to-sapphire fusion process are given.

  2. Design optimization of sinusoidal glass honeycomb for flat plate solar collectors

    NASA Technical Reports Server (NTRS)

    Mcmurrin, J. C.; Buchberg, H.

    1980-01-01

    The design of honeycomb made of sinusoidally corrugated glass strips was optimized for use in water-cooled, single-glazed flat plate solar collectors with non-selective black absorbers. Cell diameter (d), cell height (L), and pitch/diameter ratio (P/d) maximizing solar collector performance and cost effectiveness for given cell wall thickness (t sub w) and optical properties of glass were determined from radiative and convective honeycomb characteristics and collector performance all calculated with experimentally validated algorithms. Relative lifetime values were estimated from present materials costs and postulated production methods for corrugated glass honeycomb cover assemblies. A honeycomb with P/d = 1.05, d = 17.4 mm, L = 146 mm and t sub w = 0.15 mm would provide near-optimal performance over the range delta T sub C greater than or equal to 0 C and less than or equal to 80 C and be superior in performance and cost effectiveness to a non-honeycomb collector with a 0.92/0.12 selective black absorber.

  3. Terahertz Bandpass Frequency Selective Surfaces on Glass Substrates Using a Wet Micromachining Process

    NASA Astrophysics Data System (ADS)

    Ramzan, Mehrab; Khan, Talha Masood; Bolat, Sami; Nebioglu, Mehmet Ali; Altan, Hakan; Okyay, Ali Kemal; Topalli, Kagan

    2017-08-01

    This paper presents terahertz (THz) frequency selective surfaces (FSS) implemented on glass substrate using standard microfabrication techniques. These FSS structures are designed for frequencies around 0.8 THz. A fabrication process is proposed where a 100-μm-thick glass substrate is formed through the HF etching of a standard 500-μm-thick low cost glass wafer. Using this fabrication process, three separate robust designs consisting of single-layer FSS are investigated using high-frequency structural simulator (HFSS). Based on the simulation results, the first design consists of a circular ring slot in a square metallic structure on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of approximately 0.07 THz, which remains nearly constant till 30° angle of incidence. The second design consists of a tripole structure on top of a 100-μm-thick Pyrex glass substrate with 65% transmission bandwidth of 0.035 THz, which remains nearly constant till 30° angle of incidence. The third structure consists of a triangular ring slot in a square metal on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of 0.051 THz, which remains nearly constant up to 20° angle of incidence. These designs show that the reflections from samples can be reduced compared to the conventional sample holders used in THz spectroscopy applications, by using single layer FSS structures manufactured through a relatively simple fabrication process. Practically, these structures are achieved on a fabricated 285-μm-thick glass substrate. Taking into account the losses and discrepancies in the substrate thickness, the measured results are in good agreement with the electromagnetic simulations.

  4. Proposed correlation of structure network inherited from producing techniques and deformation behavior for Ni-Ti-Mo metallic glasses via atomistic simulations

    PubMed Central

    Yang, M. H.; Li, J. H.; Liu, B. X.

    2016-01-01

    Based on the newly constructed n-body potential of Ni-Ti-Mo system, Molecular Dynamics and Monte Carlo simulations predict an energetically favored glass formation region and an optimal composition sub-region with the highest glass-forming ability. In order to compare the producing techniques between liquid melt quenching (LMQ) and solid-state amorphization (SSA), inherent hierarchical structure and its effect on mechanical property were clarified via atomistic simulations. It is revealed that both producing techniques exhibit no pronounced differences in the local atomic structure and mechanical behavior, while the LMQ method makes a relatively more ordered structure and a higher intrinsic strength. Meanwhile, it is found that the dominant short-order clusters of Ni-Ti-Mo metallic glasses obtained by LMQ and SSA are similar. By analyzing the structural evolution upon uniaxial tensile deformation, it is concluded that the gradual collapse of the spatial structure network is intimately correlated to the mechanical response of metallic glasses and acts as a structural signature of the initiation and propagation of shear bands. PMID:27418115

  5. Photonic nanojet super-resolution in immersed ordered assembly of dielectric microspheres

    NASA Astrophysics Data System (ADS)

    Geints, Y. E.; Zemlyanov, A. A.

    2017-10-01

    Specific spatially-localized optical field structure, which is often referred to as a photonic nanojet (PNJ), is formed in the near-field scattering area of non-absorbing dielectric micron-sized particle exposed to an optical radiation. By virtue of the finite-difference time-domain technique we numerically simulate the two-dimensional array of PNJs created by an ordered single-layer microassembly of glass microspheres immersed in a transparent polymer matrix. The behavior of the main PNJ parameters (length, diameter, and intensity) is analyzed subject to the immersion depth of the microparticles and cooperative interference effects of the neighboring microspheres. We show that depending on microassembly configuration, the PNJ quality can be significantly improved; in particular, the PNJ spatial resolution better than λ/5 can be achieved.

  6. Structural, optical, physical and electrical properties of V2O5.SrO.B2O3 glasses.

    PubMed

    Sindhu, S; Sanghi, S; Agarwal, A; Seth, V P; Kishore, N

    2006-05-01

    The present work aims to study the structure and variation of optical band gap, density and dc electrical conductivity in vanadium strontium borate glasses. The glass systems xV2O5.(40-x)SrO.60B2O3 and xV2O5.(60-x)B2O3.40SrO with x varying from 0 to 20 mol% were prepared by normal melt quench technique. Structural studies were made by recording IR transmission spectra. The fundamental absorption edge for all the glasses was analyzed in terms of the theory proposed by Davis and Mott. The position of absorption edge and hence the value of the optical band gap was found to depend on the semiconducting glass composition. The absorption in these glasses is believed to be associated with indirect transitions. The origin of Urbach energy is associated with the phonon-assisted indirect transitions. The change in both density and molar volume was discussed in terms of the structural modifications that take place in the glass matrix on addition of V2O5. dc conductivity of the glass systems is also reported. The change of conductivity and activation energy with composition indicates that the conduction process varies from ionic to polaronic one.

  7. The effect of micro-structure on upconversion luminescence of Nd3+/Yb3+ co-doped La2O3-TiO2-ZrO2 glass-ceramics

    NASA Astrophysics Data System (ADS)

    Zhang, Minghui; Wen, Haiqin; Pan, Xiuhong; Yu, Jianding; Jiang, Meng; Yu, Huimei; Tang, Meibo; Gai, Lijun; Ai, Fei

    2018-03-01

    Nd3+/Yb3+ co-doped La2O3-TiO2-ZrO2 glasses have been prepared by aerodynamic levitation method. The glasses show high refractive index of 2.28 and Abbe number of 18.3. Glass-ceramics heated at 880 °C for 50 min perform the strongest upconversion luminescence. X-ray diffraction patterns of glass-ceramics with different depths indicate that rare earth ions restrain crystallization. Body crystallization mechanism mixed with surface crystallization is confirmed in the heat treatment. Surface crystals achieve priority to grow, resulting in important effects on upconversion luminescence. The results of atomic force microscope and scanning electron microscope indicate that crystal particles with uniform size distribute densely and homogenously on the surface and large amount of glass matrix exists in the glass ceramics heated at 880 °C for 50 min. Crystals in the glass-ceramics present dense structure and strong boundaries, which can reduce the mutual nonradiative relaxation rate among rare earth ions and then improve upconversion luminescence effectively. Based on micro-structural study, the mechanism that upconversion luminescence can be improved by heat treatment has been revealed. The results of micro-structural analysis agree well with the spectra.

  8. Glass Forming Ability in Systems with Competing Orderings

    NASA Astrophysics Data System (ADS)

    Russo, John; Romano, Flavio; Tanaka, Hajime

    2018-04-01

    Some liquids, if cooled rapidly enough to avoid crystallization, can be frozen into a nonergodic glassy state. The tendency for a material to form a glass when quenched is called "glass-forming ability," and it is of key significance both fundamentally and for materials science applications. Here, we consider liquids with competing orderings, where an increase in the glass-forming ability is signaled by a depression of the melting temperature towards its minimum at triple or eutectic points. With simulations of two model systems where glass-forming ability can be tuned by an external parameter, we are able to interpolate between crystal-forming and glass-forming behavior. We find that the enhancement of the glass-forming ability is caused by an increase in the structural difference between liquid and crystal: stronger competition in orderings towards the melting point minimum makes a liquid structure more disordered (more complex). This increase in the liquid-crystal structure difference can be described by a single adimensional parameter, i.e., the interface energy cost scaled by the thermal energy, which we call the "thermodynamic interface penalty." Our finding may provide a general physical principle for not only controlling the glass-forming ability but also the emergence of glassy behavior of various systems with competing orderings, including orderings of structural, magnetic, electronic, charge, and dipolar origin.

  9. On the Potential of Bulk Metallic Glasses for Dental Implantology: Case Study on Ti40Zr10Cu36Pd14.

    PubMed

    Liens, Alethea; Etiemble, Aurélien; Rivory, Pascaline; Balvay, Sandra; Pelletier, Jean-Marc; Cardinal, Sandrine; Fabrègue, Damien; Kato, Hidemi; Steyer, Philippe; Munhoz, Tais; Adrien, Jerome; Courtois, Nicolas; Hartmann, Daniel J; Chevalier, Jérôme

    2018-02-06

    Ti 40 Zr 10 Cu 36 Pd 14 Bulk Metallic Glass (BMG) appears very attractive for future biomedical applications thanks to its high glass forming ability, the absence of toxic elements such as Ni, Al or Be and its good mechanical properties. For the first time, a complete and exhaustive characterization of a unique batch of this glassy alloy was performed, together with ISO standard mechanical tests on machined implant-abutment assemblies. The results were compared to the benchmark Ti-6Al-4V ELI (Extra-Low-Interstitial) to assess its potential in dental implantology. The thermal stability, corrosion and sterilization resistance, cytocompatibility and mechanical properties were measured on samples with a simple geometry, but also on implant-abutment assemblies' prototypes. Results show that the glassy alloy exhibits a quite high thermal stability, with a temperature range of 38 °C between the glass transition and crystallization, a compressive strength of 2 GPa, a certain plastic deformation (0.7%), a hardness of 5.5 GPa and a toughness of 56 MPa.√m. Moreover, the alloy shows a relatively lower Young's modulus (96 GPa) than the Ti-6Al-4V alloy (110-115 GPa), which is beneficial to limit bone stress shielding. The BMG shows a satisfactory cytocompatibility, a high resistance to sterilization and a good corrosion resistance (corrosion potential of -0.07 V/SCE and corrosion current density of 6.0 nA/cm²), which may ensure its use as a biomaterial. Tests on dental implants reveal a load to failure 1.5-times higher than that of Ti-6Al-4V and a comparable fatigue limit. Moreover, implants could be machined and sandblasted by methods usually conducted for titanium implants, without significant degradation of their amorphous nature. All these properties place this metallic glass among a promising class of materials for mechanically-challenging applications such as dental implants.

  10. Wafer-level fabrication of arrays of glass lens doublets

    NASA Astrophysics Data System (ADS)

    Passilly, Nicolas; Perrin, Stéphane; Albero, Jorge; Krauter, Johann; Gaiffe, Olivier; Gauthier-Manuel, Ludovic; Froehly, Luc; Lullin, Justine; Bargiel, Sylwester; Osten, Wolfgang; Gorecki, Christophe

    2016-04-01

    Systems for imaging require to employ high quality optical components in order to dispose of optical aberrations and thus reach sufficient resolution. However, well-known methods to get rid of optical aberrations, such as aspherical profiles or diffractive corrections are not easy to apply to micro-optics. In particular, some of these methods rely on polymers which cannot be associated when such lenses are to be used in integrated devices requiring high temperature process for their further assembly and separation. Among the different approaches, the most common is the lens splitting that consists in dividing the focusing power between two or more optical components. In here, we propose to take advantage of a wafer-level technique, devoted to the generation of glass lenses, which involves thermal reflow in silicon cavities to generate lens doublets. After the convex lens sides are generated, grinding and polishing of both stack sides allow, on the first hand, to form the planar lens backside and, on the other hand, to open the silicon cavity. Nevertheless, silicon frames are then kept and thinned down to form well-controlled and auto-aligned spacers between the lenses. Subsequent accurate vertical assembly of the glass lens arrays is performed by anodic bonding. The latter ensures a high level of alignment both laterally and axially since no additional material is required. Thanks to polishing, the generated lens doublets are then as thin as several hundreds of microns and compatible with micro-opto-electro-systems (MOEMS) technologies since they are only made of glass and silicon. The generated optical module is then robust and provide improved optical performances. Indeed, theoretically, two stacked lenses with similar features and spherical profiles can be almost diffraction limited whereas a single lens characterized by the same numerical aperture than the doublet presents five times higher wavefront error. To demonstrate such assumption, we fabricated glass lens doublets and compared them to single lenses of equivalent focusing power. For similar illumination, the optical aberrations are significantly reduced.

  11. Density controls the kinetic stability of ultrastable glasses

    NASA Astrophysics Data System (ADS)

    Fullerton, Christopher J.; Berthier, Ludovic

    2017-08-01

    We use a swap Monte Carlo algorithm to numerically prepare bulk glasses with kinetic stability comparable to that of glass films produced experimentally by physical vapor deposition. By melting these systems into the liquid state, we show that some of our glasses retain their amorphous structures longer than 105 times the equilibrium structural relaxation time. This “exceptional” kinetic stability cannot be achieved for bulk glasses produced by slow cooling. We perform simulations at both constant volume and constant pressure to demonstrate that the density mismatch between the ultrastable glass and the equilibrium liquid accounts for a major part of the observed kinetic stability.

  12. Structural characterization and compositional dependence of the optical properties of Ge-Ga-La-S chalcohalide glass system

    NASA Astrophysics Data System (ADS)

    Li, Lini; Jiao, Qing; Lin, Changgui; Dai, Shixun; Nie, Qiuhua

    2018-04-01

    In this paper, chalcogenide glasses of 80GeS2sbnd (20sbnd x)Ga2S3sbnd xLa2S3 (x = 0, 1, 3, 5 mol%) were synthesized through the traditional melt-quenching technique. The effects of La2S3 addition on the thermal, optical, and structural properties of Gesbnd Gasbnd S glasses were investigated. Results showed that the synthesized glasses possessed considerably high glass transition temperature, improved glass forming ability, high refractive index, and excellent infrared transmittance. A redshift at the visible absorbing cut-off edge lower than 500 nm was observed with increasing of La2S3 content. Direct and indirect optical band gap values were calculated. SEM result suggested that this glass system owned better glass forming ability and uniformity. Raman spectral analysis indicated that the introduction of La2S3 induced the dissociation of Gesbnd Ge metal bonds and transformed the [S3Gesbnd GeS3] structure to GeS4 tetrahedrons. Consequently, the connectivity between tetrahedrons of the vitreous network was enhanced. This work suggests that La2S3 modified Ge-Gasbnd Lasbnd S glass is a promising material for infrared optical research.

  13. Diopside-Fluorapatite-Wollastonite Based Bioactive Glasses and Glass-ceramics =

    NASA Astrophysics Data System (ADS)

    Kansal, Ishu

    Bioactive glasses and glass-ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaO-MgO-P2O5-SiO2-F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) - fluorapatite (9CaO•3P2O5•CaF2) - wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside - fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium content has been tested successfully both in vivo and in preliminary clinical trials. But this work needs to be continued and deepened. The dispersing of fine glass particles in aqueous media or in other suitable solvents, and the study of the most important factors that affect the rheology of the suspensions are essential steps to enable the manufacture of porous structures with tailor-made hierarchical pores by advanced processing techniques such as Robocasting.

  14. XRD and FTIR studies the effect of heat treatment and doping the transition metal oxide on LiNbO3 and LiNb3O8 nano-crystallite phases in lithium borate glass system.

    PubMed

    Kashif, Ismail; Soliman, Ashia A; Sakr, Elham M; Ratep, Asmaa

    2013-09-01

    Glasses of various compositions in the system 90 Li2B4O7-10 Nb2O5 mixed with T.M ions (where T.M is the transition metal) were prepared by quenching technique. Heat-treatment of the parent glasses was performed at 540, 570 and 620 °C, for 5 and 16 h. The glass structure evolution during the controlled crystallization was examined by XRD and FT-IR spectroscopy analysis. The crystalline phases present in the glass ceramics were identified via X-ray diffraction as a function of heat treatment. The FT-IR data propose for these glasses and heat-treated glass network structures mainly built by: di-, tri-, tetra-, penta-and ortho-borate groups. It was found that the quantitative evolution of these various borate species in the glass structures is influenced by the transition metal. A detailed discussion relating to the N4 evolution with the T.M content was made. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. New generation Li+ NASICON glass-ceramics for solid state Li+ ion battery applications

    NASA Astrophysics Data System (ADS)

    Sharma, Neelakshi; Dalvi, Anshuman

    2018-04-01

    Lithiumion conducting NASICON glass-ceramics have been prepared by a novel planetary ball milling assisted synthesis route. Structural, thermal and electrical investigations have been carried out on the novel composites composed of LiTi(PO4)3 (LTP) and 50[Li2SO4]-50[Li2O-P2O5] ionic glass reveal interesting results. Composites were prepared keeping the concentration of the ionic glass fixed at 20 wt%. X-ray diffraction and diffe rential thermal analysis confirm the glass-ceramic formation. Moreover, the structure of LTP remains intact during the glass -ceramic formation. Electrical conductivity of the glass-ceramic composite is found to be higher than that of the pristine glass (50LSLP) and LTP. The bulk and grain boundary conductivities of LTP exhibit improvement in composite. Owing to high ionic conductivity and thermal stability, novel glass -ceramic seems to be a promising candidate for all solid-state battery applications.

  16. Topological Optimization of Artificial Microstructure Strategies

    DTIC Science & Technology

    2015-04-02

    a 3D microstructural architecture structure made from bulk metallic glass , 3DMGS, exhibiting a combination of ceramic-like high strength (>1000 MPa...Research Triangle Park, NC 27709-2211 materials, cellular structures, metallic glass REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S...demonstrate a 3D microstructural architecture structure made from bulk metallic glass , 3DMGS, exhibiting a combination of ceramic-like high strength

  17. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading.

  18. Structural and optical properties of antimony-germanate-borate glass and glass fiber co-doped Eu3+ and Ag nanoparticles.

    PubMed

    Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Baranowska, Agata; Pisarski, Wojciech A; Pisarska, Joanna; Jadach, Renata; Sitarz, Maciej; Dorosz, Dominik

    2018-08-05

    In the paper analysis of structural and luminescent properties of antimony-germanate-borate glasses and glass fiber co-doped with 0.6AgNO 3 /0.2Eu 2 O 3 are presented. Heat treatment of the fabricated glass and optical fiber (400 °C, 12 h) enabled to obtain Ag nanoparticles (NPs) with average size 30-50 nm on their surface. It has been proofed that silver ions migrate to the glass surface, where they are reduced to Ag 0 nanoparticles. Simultaneously, FTIR analysis showed that heat treatment of the glass and optical fiber increases the local symmetry of the Eu 3+ site. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Relationship between topological order and glass forming ability in densely packed enstatite and forsterite composition glasses

    PubMed Central

    Kohara, S.; Akola, J.; Morita, H.; Suzuya, K.; Weber, J. K. R.; Wilding, M. C.; Benmore, C. J.

    2011-01-01

    The atomic structures of magnesium silicate melts are key to understanding processes related to the evolution of the Earth’s mantle and represent precursors to the formation of most igneous rocks. Magnesium silicate compositions also represent a major component of many glass ceramics, and depending on their composition can span the entire fragility range of glass formation. The silica rich enstatite (MgSiO3) composition is a good glass former, whereas the forsterite (Mg2SiO4) composition is at the limit of glass formation. Here, the structure of MgSiO3 and Mg2SiO4 composition glasses obtained from levitated liquids have been modeled using Reverse Monte Carlo fits to diffraction data and by density functional theory. A ring statistics analysis suggests that the lower glass forming ability of the Mg2SiO4 glass is associated with a topologically ordered and very narrow ring distribution. The MgOx polyhedra have a variety of irregular shapes in MgSiO3 and Mg2SiO4 glasses and a cavity analysis demonstrates that both glasses have almost no free volume due to a large contribution from edge sharing of MgOx-MgOx polyhedra. It is found that while the atomic volume of Mg cations in the glasses increases compared to that of the crystalline phases, the number of Mg-O contacts is reduced, although the effective chemical interaction of Mg2+ remains similar. This unusual structure-property relation of Mg2SiO4 glass demonstrates that by using containerless processing it may be possible to synthesize new families of dense glasses and glass ceramics with zero porosity. PMID:21873237

  20. Relationship between Eu{sup 3+} reduction and glass polymeric structure in Al{sub 2}O{sub 3}-modified borate glasses under air atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Qing; Yu, Xue; Xu, Xuhui

    2013-06-15

    The reduction of Eu{sup 3+} to Eu{sup 2+} is realized efficiently in Eu{sub 2}O{sub 3}-doped borate glasses prepared under air condition by melting-quenching method. Luminescent spectra show an increasing tendency of Eu{sup 2+} emission with increasing Al{sub 2}O{sub 3} concentration in B{sub 2}O{sub 3}–Na{sub 2}O glasses. It is interesting that significant enhancement appeared of Eu{sup 2+} luminescence in the Al{sub 2}O{sub 3}-rich sample comparing to the samples of Al{sub 2}O{sub 3} less than 6 mol%. FTIR and Raman scattering measurements indicated that some new vibration modes assigned to the low-polymerized structure groups decomposed from the slight Al{sub 2}O{sub 3} dopantmore » samples. These results demonstrated that the polymerization of the glass structure decreased with increasing incorporation of Al{sub 2}O{sub 3} into the borate glasses, linking to the efficiency of Eu{sup 3+} self-reduction in air at high temperature. - graphical abstract: A novel europium valence reduction phenomenon occurred in Al{sub 2}O{sub 3} modified borate glasses, FTIR and Raman measurements revealed that high polymeric groups were destroyed to low polymery structures with Al{sub 2}O{sub 3} addition. - Highlights: • The efficient reduction of Eu{sup 3+} to Eu{sup 2+} is observed in the B{sub 2}O{sub 3}–Na{sub 2}O glasses. • Eu{sup 2+} luminescence is significant enhanced in the Al{sub 2}O{sub 3}-rich glasses. • The introduction of Al{sub 2}O{sub 3} changed the network structure of the borate glasses. • High polymeric borate groups in the glass matrix may be destroyed to the lower ones.« less

  1. UV-transmitting step-index fluorophosphate glass fiber fabricated by the crucible technique

    NASA Astrophysics Data System (ADS)

    Galleani, Gustavo; Ledemi, Yannick; de Lima Filho, Elton Soares; Morency, Steeve; Delaizir, Gaëlle; Chenu, Sébastien; Duclere, Jean René; Messaddeq, Younes

    2017-02-01

    In this study, we report on the fabrication process of highly pure step-index fluorophosphate glass optical fibers by a modified crucible technique. High-purity fluorophosphate glasses based on 10 mol% of barium metaphosphate and 90 mol% of metal fluorides (AlF3sbnd CaF2sbnd MgF2sbnd SrF2) have been studied in order to produce step-index optical fibers transmitting in the deep-ultraviolet (DUV) region. The characteristic temperatures, viscosity around softening temperature and optical transmission in the UV-visible region of the prepared bulk glasses were characterized in a first step. The selected glass compositions were then used to prepare core-cladding optical preforms by using a modified built-in casting technique. While uncontrolled crystallization of the fiber was observed during the preform stretching by using the conventional method, we successfully obtained crystal-free fiber by using a modified crucible technique. In this alternative approach, the produced core-cladding preforms were inserted into a home-designed fused silica crucible assembly and heated at 643 °C to allow glass flowing throughout the crucible, preventing the formation of crystals. Single index fluorophosphate glass fibers were fabricated following the same process as well. The optical attenuation at 244 nm and in the interval 350-1750 nm was measured on both single index and step-index optical fibers. Their potential for using in DUV applications is discussed.

  2. W. M. Keck Observatory primary mirror segment repair project: overview and status

    NASA Astrophysics Data System (ADS)

    Meeks, Robert L.; Doyle, Steve; Higginson, Jamie; Hudek, John S.; Irace, William; McBride, Dennis; Pollard, Mike; Tai, Kuochou; Von Boeckmann, Tod; Wold, Leslie; Wold, Truman

    2016-07-01

    The W. M. Keck Observatory Segment Repair Project is repairing stress-induced fractures near the support points in the primary mirror segments. The cracks are believed to result from deficiencies in the original design and implementation of the adhesive joints connecting the Invar support components to the ZERODUR mirror. Stresses caused by temperature cycling over 20 years of service drove cracks that developed at the glass-metal interfaces. Over the last few years the extent and cause of the cracks have been studied, and new supports have been designed. Repair of the damaged glass required development of specialized tools and procedures for: (1) transport of the segments; (2) pre-repair metrology to establish the initial condition; (3) removal of support hardware assemblies; (4) removal of the original supports; (5) grinding and re-surfacing the damaged glass areas; (6) etching to remove sub-surface damage; (7) bonding new supports; (8) re-installation of support assemblies; and (9) post-repair metrology. Repair of the first segment demonstrated the new tools and processes. On-sky measurements before and after repair verified compliance with the requirements. This paper summarizes the repair process, on-sky results, and transportation system, and also provides an update on the project status and schedule for repairing all 84 mirror segments. Strategies for maintaining quality and ensuring that repairs are done consistently are also presented.

  3. Grit blasting nozzle fabricated from mild tool steel proves satisfactory

    NASA Technical Reports Server (NTRS)

    Mc Farland, J. E.; Turbitt, B.

    1966-01-01

    Dry blasting with glass beads through a nozzle assembly descales both the outside and inside surfaces of tubes of Inconel 718 used for the distribution of gaseous oxygen. The inside of the nozzle is coated with polyurethane and the deflector with a commercially available liquid urethane rubber.

  4. Optical and physical properties of samarium doped lithium diborate glasses

    NASA Astrophysics Data System (ADS)

    Hanumantharaju, N.; Sardarpasha, K. R.; Gowda, V. C. Veeranna

    2018-05-01

    Sm3+ doped lithium di-borate glasses with composition 30Li2O-60B2O3-(10-x) PbO, (where 0 < x < 2 mole. %) were prepared by melt quenching method. The addition of modifier oxide to vitreous B2O3 modifies the glass network by converting three coordinated trigonal boron units (BO3) to weaker anionic four coordinated tetrahedral borons (BO4). The decrease in density and increase in molar volume with samarium ion content indicates the openness of the glass structure. The gradual increase in average separation of boron-boron atoms with VmB clearly indicates deterioration of borate glass network, which in turn leads to decrease in the oxygen packing density. The replacements of Sm2O3 for PbO depolymerise the chain structure and that would increase the concentration of non-bridging oxygens. The marginal increase of optical band gap energy after 1.0 mol.% of Sm2O3 is explained by considering the structural modification in lead-borate. The influence of Sm3+ ion on physical and optical properties in lithium-lead-borate glasses is investigated and the results were discussed in view of the structure of borate glass network.

  5. Method for forming hermetic seals

    NASA Technical Reports Server (NTRS)

    Gallagher, Brian D.

    1987-01-01

    The firmly adherent film of bondable metal, such as silver, is applied to the surface of glass or other substrate by decomposing a layer of solution of a thermally decomposable metallo-organic deposition (MOD) compound such as silver neodecanoate in xylene. The MOD compound thermally decomposes into metal and gaseous by-products. Sealing is accomplished by depositing a layer of bonding metal, such as solder or a brazing alloy, on the metal film and then forming an assembly with another high melting point metal surface such as a layer of Kovar. When the assembly is heated above the temperature of the solder, the solder flows, wets the adjacent surfaces and forms a hermetic seal between the metal film and metal surface when the assembly cools.

  6. Petrographic and petrological studies of lunar rocks. [Apollo 15 breccias and Russian tektites

    NASA Technical Reports Server (NTRS)

    Winzer, S. R.

    1978-01-01

    Clasts, rind glass, matrix glass, and matrix minerals from five Apollo 15 glass-coated breccias (15255, 15286, 15465, 15466, and 15505) were studied optically and with the SEM/microprobe. Rind glass compositions differ from sample to sample, but are identical, or nearly so, to the local soil, suggesting their origin by fusion of that soil. Most breccia samples contain green or colorless glass spheres identical to the Apollo 15 green glasses. These glasses, along with other glass shards and fragments, indicate a large soil component is present in the breccias. Clast populations include basalts and gabbros containing phases highly enriched in iron, indicative of extreme differentiation or fractional crystallization. Impact melts, anorthosites, and minor amounts of ANT suite material are also present among the clasts. Tektite glasses, impact melts, and breccias from the Zhamanshin structure, USSR, were also studied. Basic tektite glasses were found to be identical in composition to impact melts from the structure, but no satisfactory parent material has been identified in the limited suite of samples available.

  7. Correlating the stretched-exponential and super-Arrhenius behaviors in the structural relaxation of glass-forming liquids.

    PubMed

    Wang, Lianwen; Li, Jiangong; Fecht, Hans-Jörg

    2011-04-20

    Following the report of a single-exponential activation behavior behind the super-Arrhenius structural relaxation of glass-forming liquids in our preceding paper, we find that the non-exponentiality in the structural relaxation of glass-forming liquids is straightforwardly determined by the relaxation time, and could be calculated from the measured relaxation data. Comparisons between the calculated and measured non-exponentialities for typical glass-forming liquids, from fragile to intermediate, convincingly support the present analysis. Hence the origin of the non-exponentiality and its correlation with liquid fragility become clearer.

  8. Medium range order and structural relaxation in As–Se network glasses through FSDP analysis

    DOE PAGES

    Golovchak, R.; Lucas, P.; Oelgoetz, J.; ...

    2015-01-13

    We performed synchrotron X-ray diffraction and neutron scattering studies on As-Se glasses in two states: as-prepared (rejuvenated) and aged for similar to 27 years. The first sharp diffraction peak (FSDP) obtained from the structure factor data as a function of composition and temperature indicates that the cooperative processes that are responsible for structural relaxation do not affect FSDP. The results are correlated with the composition dependence of the complex heat capacity of the glasses and concentration of different structural fragments in the glass network. Furthermore, the comparison of structural information shows that density fluctuations, which were thought previously to havemore » a significant contribution to FSDP, have much smaller effect than the cation-cation correlations, presence of ordered structural fragments or cage molecules.« less

  9. Characteristics of diffusion zone in changing glass-metal composite processing conditions

    NASA Astrophysics Data System (ADS)

    Lyubimova, O. N.; Morkovin, A. V.; Andreev, V. V.

    2018-03-01

    The influence of manufacturing technology on the characteristics of the glass and steel contact zone in manufacturing new structural material - glass-metal composite is studied theoretically and experimentally. Different types of structures in the contact zone and its dimensions affect the strength characteristics of the composite. Knowledge about changing the width of the glass and steel contact zone after changing such parameters of the technological regime as temperature, holding time and use of solders will allow one to control the structure and characteristics of the glass-metal composite. Experimental measurements of the width of the diffusion zone in the glass-metal composite for different regimes and their statistical processing according to the full factor experiment are presented in this article. The results of analysis of some mechanical characteristics of the diffusion zone are presented: microhardness and modulus of elasticity for samples, prepared according to different processing regimes.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pei; Maldonis, Jason J.; Besser, M. F.

    Fluctuation electron microscopy experiments combined with hybrid reverse Monte Carlo modeling show a correlation between medium-range structure at the nanometer scale and glass forming ability in two Zr–Cu–Al bulk metallic glass (BMG) alloys. Both Zr 50Cu 35Al 15 and Zr 50Cu 45Al 5 exhibit two nanoscale structure types, one icosahedral and the other more crystal-like. In Zr 50Cu 35Al 15, the poorer glass former, the crystal-like structure is more stable under annealing below the glass transition temperature, T g, than in Zr 50Cu 45Al 5. Variable resolution fluctuation microscopy of the MRO clusters show that in Zr 50Cu 35Al 15more » on sub-Tg annealing, the crystal-like clusters shrink even as they grow more ordered, while icosahedral-like clusters grow. Furthermore, the results suggest that achieving better glass forming ability in this alloy system may depend more on destabilizing crystal-like structures than enhancing non-crystalline structures.« less

  11. Reversible thermochromic response based on photonic crystal structure in butterfly wing

    NASA Astrophysics Data System (ADS)

    Wang, Wanlin; Wang, Guo Ping; Zhang, Wang; Zhang, Di

    2018-01-01

    Subtle responsive properties can be achieved by the photonic crystal (PC) nanostructures of butterfly based on thermal expansion effect. The studies focused on making the sample visually distinct. However, the response is restricted by limited thermal expansion coefficients. We herein report a new class of reversible thermochromic response achieved by controlling the ambient refractive index in butterfly PC structure. The photonic ethanol-filled nanoarchitecture sample is simply assembled by sealing liquid ethanol filling Papilio ulysses butterfly wing. Volatile ethanol is used to modulate the ambient refractive index. The sample is sealed with glasses to ensure reversibility. Liquid ethanol filling butterfly wing demonstrated significant allochroic response to ambient refractive index, which can be controlled by the liquefaction and vaporization of ethanol. This design is capable of converting thermal energy into visual color signals. The mechanism of this distinct response is simulated and proven by band theory. The response properties are performed with different filled chemicals and different structure parameters. Thus, the reversible thermochromic response design might have potential use in the fields such as detection, photonic switch, displays, and so forth.

  12. High Performance Materials Applications to Moon/Mars Missions and Bases

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Smith, David D.; Sibille, Laurent; Brown, Scott C.; Cronise, Raymond J.; Lehoczky, Sandor L.

    1998-01-01

    Two classes of material processing scenarios will feature prominently in future interplanetary exploration- in situ production using locally available materials in lunar or planetary landings and high performance structural materials which carve out a set of properties for uniquely hostile space environments. To be competitive, high performance materials must typically offer orders of magnitude improvements in thermal conductivity or insulation, deliver high strength-to-weight ratios, or provide superior durability (low corrosion and/or ablative character, e.g. in heat shields). The space-related environmental parameters of high radiation flux, low weight and superior reliability limits many typical aerospace materials to a short list comprising high performance alloys, nanocomposites and thin-layer metal laminates (Al-Cu, Al-Ag) with typical dimensions less than the Frank-Reed-type dislocation source. Extremely light weight carbon-carbon composites and car on aerogels will be presented as novel examples which define broadened material parameters, particularly owing to their extreme thermal insulation (R-32-64) and low densities (less than 0.01 g/cc) approaching that of air itself. Even with these low weight payload additions, rocket thrust limits and transport costs will always place a premium on assembling as much structural and life support resources upon interplanetary, lunar or asteroid arrival. As an example for in situ lunar glass manufacture, solar furnaces reaching 1700 C for pure silica glass manufacture in situ are compared with sol-gel technology and acid-leached ultrapure (less than 0.1% FeO) silica aerogel precursors.

  13. High Performance Materials Applications to Moon/Mars Missions and Bases

    NASA Technical Reports Server (NTRS)

    Noever, David A.; Smith, David D.; Sibille, Laurent; Brown, Scott C.; Cronise, Raymond J.; Lehoczky, Sandor L.

    1998-01-01

    Two classes of material processing scenarios will feature prominently in future interplanetary exploration: in situ production using locally available materials in lunar or planetary landings and high performance structural materials which carve out a set of properties for uniquely hostile space environments. To be competitive, high performance materials must typically offer orders of magnitude improvements in thermal conductivity or insulation, deliver high strength-to-weight ratios, or provide superior durability (low corrosion and/or ablative character, e.g., in heat shields). The space-related environmental parameters of high radiation flux, low weight, and superior reliability limits many typical aerospace materials to a short list comprising high performance alloys, nanocomposites and thin-layer metal laminates (Al-Cu, Al-Ag) with typical dimensions less than the Frank-Reed-type dislocation source. Extremely light weight carbon-carbon composites and carbon aerogels will be presented as novel examples which define broadened material parameters, particularly owing to their extreme thermal insulation (R-32-64) and low densities (<0.01 g/cu cm) approaching that of air itself. Even with these low-weight payload additions, rocket thrust limits and transport costs will always place a premium on assembling as much structural and life support resources upon interplanetary, lunar, or asteroid arrival. As an example, for in situ lunar glass manufacture, solar furnaces reaching 1700 C for pure silica glass manufacture in situ are compared with sol-gel technology and acid-leached ultrapure (<0.1% FeO) silica aerogel precursors.

  14. Structural investigation of MO⋅P{sub 2}O{sub 5}⋅Li{sub 2}O (MO = Fe{sub 2}O{sub 3} or V{sub 2}O{sub 5}) glass systems by FTIR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andronache, Constantin I., E-mail: androtin03@yahoo.com; Racolta, Dania, E-mail: androtin03@yahoo.com

    2014-11-24

    Glasses from the systems xMO⋅(100−x)[P{sub 2}O{sub 5}⋅Li{sub 2}O] (MO = Fe{sub 2}O{sub 3} or V{sub 2}O{sub 5}) with 0 ≤ x ≤ mol % were prepared in the same conditions and characterized by IR spectroscopy. It was established the mode in which both Fe{sub 2}O{sub 3} and V{sub 2}O{sub 5} influences the local structure of these glasses. The iron ions generally modify in a different way the local structure of these glasses then vanadium ions. The results shown that phosphate units are the main structural units of glass system and the iron and vanadium ions are located in the network.

  15. Colloidosome like structures: self-assembly of silica microrods

    DOE PAGES

    Datskos, P.; Polizos, G.; Bhandari, M.; ...

    2016-03-07

    Self-assembly of one-dimensional structures is attracting a great deal of interest because assembled structures can provide better properties compared to individual building blocks. We demonstrate silica microrod self-assembly by exploiting Pickering emulsion based strategy. Micron-sized silica rods were synthesized employing previously reported methods based on polyvinylpyrrolidone/ pentanol emulsion droplets. Moreover, rods self-assembled to make structures in the range of z10 40 mm. Smooth rods assembled better than segmented rods. Finally, the assembled structures were bonded by weak van der Waals forces.

  16. X-ray absorption studies of chlorine valence and local environments in borosilicate waste glasses

    NASA Astrophysics Data System (ADS)

    McKeown, David A.; Gan, Hao; Pegg, Ian L.; Stolte, W. C.; Demchenko, I. N.

    2011-01-01

    Chlorine (Cl) is a constituent of certain types of nuclear wastes and its presence can affect the physical and chemical properties of silicate melts and glasses developed for the immobilization of such wastes. Cl K-edge X-ray absorption spectra (XAS) were collected and analyzed to characterize the unknown Cl environments in borosilicate waste glass formulations, ranging in Cl-content from 0.23 to 0.94 wt.%. Both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data for the glasses show trends dependent on calcium (Ca) content. Near-edge data for the Ca-rich glasses are most similar to the Cl XANES of CaCl 2, where Cl - is coordinated to three Ca atoms, while the XANES for the Ca-poor glasses are more similar to the mineral davyne, where Cl is most commonly coordinated to two Ca in one site, as well as Cl and oxygen nearest-neighbors in other sites. With increasing Ca content in the glass, Cl XANES for the glasses approach that for CaCl 2, indicating more Ca nearest-neighbors around Cl. Reliable structural information obtained from the EXAFS data for the glasses is limited, however, to Cl sbnd Cl, Cl sbnd O, and Cl sbnd Na distances; Cl sbnd Ca contributions could not be fit to the glass data, due to the narrow k-space range available for analysis. Structural models that best fit the glass EXAFS data include Cl sbnd Cl, Cl sbnd O, and Cl sbnd Na correlations, where Cl sbnd O and Cl sbnd Na distances decrease by approximately 0.16 Å as glass Ca content increases. XAS for the glasses indicates Cl - is found in multiple sites where most Cl-sites have Ca neighbors, with oxygen, and possibly, Na second-nearest neighbors. EXAFS analyses suggest that Cl sbnd Cl environments may also exist in the glasses in minor amounts. These results are generally consistent with earlier findings for silicate glasses, where Cl - was associated with Ca 2+ and Na + in network modifier sites.

  17. Hierarchical structures of amorphous solids characterized by persistent homology

    PubMed Central

    Hiraoka, Yasuaki; Nakamura, Takenobu; Hirata, Akihiko; Escolar, Emerson G.; Matsue, Kaname; Nishiura, Yasumasa

    2016-01-01

    This article proposes a topological method that extracts hierarchical structures of various amorphous solids. The method is based on the persistence diagram (PD), a mathematical tool for capturing shapes of multiscale data. The input to the PDs is given by an atomic configuration and the output is expressed as 2D histograms. Then, specific distributions such as curves and islands in the PDs identify meaningful shape characteristics of the atomic configuration. Although the method can be applied to a wide variety of disordered systems, it is applied here to silica glass, the Lennard-Jones system, and Cu-Zr metallic glass as standard examples of continuous random network and random packing structures. In silica glass, the method classified the atomic rings as short-range and medium-range orders and unveiled hierarchical ring structures among them. These detailed geometric characterizations clarified a real space origin of the first sharp diffraction peak and also indicated that PDs contain information on elastic response. Even in the Lennard-Jones system and Cu-Zr metallic glass, the hierarchical structures in the atomic configurations were derived in a similar way using PDs, although the glass structures and properties substantially differ from silica glass. These results suggest that the PDs provide a unified method that extracts greater depth of geometric information in amorphous solids than conventional methods. PMID:27298351

  18. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    PubMed

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  19. Materials and structures

    NASA Astrophysics Data System (ADS)

    Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul

    1992-08-01

    Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.

  20. Effect of Bi2O3 on structural, optical, and other physical properties of semiconducting zinc vanadate glasses

    NASA Astrophysics Data System (ADS)

    Punia, R.; Kundu, R. S.; Hooda, J.; Dhankhar, S.; Dahiya, Sajjan; Kishore, N.

    2011-08-01

    Zinc bismuth vanadate glasses with compositions 50V2O5-xBi2O3-(50-x) ZnO have been prepared using a conventional melt-quenching method and the solubility limit of Bi2O3 in zinc vanadate glass system has been investigated using x-ray diffraction. Density has been measured using Archimedes' principle; molar volume (Vm) and crystalline volumes (Vc) have also been estimated. With an increase in Bi2O3 content, there is an increase in density and molar volume of the glass samples. The glass transition temperature (Tg) and Hurby coefficient (Kgl) have been determined using differential scanning calorimetry (DSC) and are observed to increase with increase in Bi2O3 content (i.e., x), up to x = 15, thereby indicating the structural modifications and increased thermal stability of zinc vanadate glasses on addition of Bi2O3. FTIR spectra have been recorded and the analysis of FTIR shows that the structure depends upon the Bi2O3 content in the glass compositions. On addition of Bi2O3 into the zinc vanadate system, the structure of V2O5 changes from VO4 tetrahedral to VO5 trigonal bi-pyramid configuration. The optical parameters have been calculated by using spectroscopic ellipsometry for bulk oxide glasses (perhaps used first time for bulk glasses) and optical bandgap energy is found to increase with increase in Bi2O3 content.

  1. Compositional threshold for Nuclear Waste Glass Durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-04-24

    Within the composition space of glasses, a distinct threshold appears to exist that separates "good" glasses, i.e., those which are sufficiently durable, from "bad" glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region.

  2. Nanostructured zinc oxide thin film for application to surface plasmon resonance based cholesterol biosensor

    NASA Astrophysics Data System (ADS)

    Kaur, Gurpreet; Tomar, Monika; Gupta, Vinay

    2015-11-01

    ZnO thin film was deposited on gold coated glass prism by RF sputtering technique in glancing angle deposition (GLAD) configuration. The structural, morphological and optical properties of the deposited film were investigated using X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and Fourier Transform Infrared (FTIR) Spectroscopy. ZnO coated Au prisms (ZnO/Au/prism) were used to excite surface plasmons in Kretschmann configuration at the Au- ZnO interface on a laboratory assembled Surface Plasmon Resonance (SPR) measurement setup. Cholesterol oxidase (ChOx) enzyme was immobilized on the ZnO/Au/prism structure by physical adsorption technique. Polydimethylsiloxane (PDMS) microchannels were fabricated over ChOx/ZnO/Au/prism system and various concentrations of cholesterol were passed over the sensor surface. The concentration of cholesterol was varied from 0.12 to 10.23 mM and the SPR reflectance curves were recorded in both static as well as dynamic modes demonstrating a high sensitivity of 0.36° mM-1.

  3. Evaluation of circularity error in drilling of syntactic foam composites

    NASA Astrophysics Data System (ADS)

    Ashrith H., S.; Doddamani, Mrityunjay; Gaitonde, Vinayak

    2018-04-01

    Syntactic foams are widely used in structural applications of automobiles, aircrafts and underwater vehicles due to their lightweight properties combined with high compression strength and low moisture absorption. Structural application requires drilling of holes for assembly purpose. In this investigation response surface methodology based mathematical models are used to analyze the effects of cutting speed, feed, drill diameter and filler content on circularity error both at entry and exit level in drilling of glass microballoon reinforced epoxy syntactic foam. Experiments are conducted based on full factorial design using solid coated tungsten carbide twist drills. The parametric analysis reveals that circularity error is highly influenced by drill diameter followed by spindle speed at the entry and exit level. Parametric analysis also reveals that increasing filler content decreases circularity error by 13.65 and 11.96% respectively at entry and exit levels. Average circularity error at the entry level is found to be 23.73% higher than at the exit level.

  4. Method and apparatus for an insulating glazing unit and compliant seal for an insulating glazing unit

    DOEpatents

    Francis, IV, William H.; Freebury, Gregg E.; Beidleman, Neal J.; Hulse, Michael

    2016-05-03

    A Vacuum Insulating Glazing Unit (VIGU) comprises two or more glass lites (panes) spaced apart from one another and hermetically bonded to an edge seal assembly therebetween. The resulting cavity between the lites is evacuated to create at least one insulating vacuum cavity within which are disposed a plurality of stand-off members to maintain separation between the lites. The edge seal assembly is preferably compliant in the longitudinal (i.e., edgewise) direction to allow longitudinal relative motion between the two lites (e.g., from thermal expansion). The longitudinal compliance may be obtained by imprinting a three-dimensional pattern into the edge seal material. The edge seal assembly is preferably bonded to the lites with a first bond portion that is hermetic and a second bond portion that is load-resistant. Methods for producing VIGUs and/or compliant edge seal assemblies and VIGU and edge seal apparatus are disclosed.

  5. Initial stage of physical ageing in network glasses

    NASA Astrophysics Data System (ADS)

    Golovchak, R.; Ingram, A.; Kozdras, A.; Vlcek, M.; Roiland, C.; Bureau, B.; Shpotyuk, O.

    2012-11-01

    An atomistic view on Johari-Goldstein secondary β-relaxation processes responsible for structural relaxation far below the glass transition temperature (Tg ) in network glasses is developed for the archetypal chalcogenide glass, As20Se80, using positron annihilation lifetime, differential scanning calorimetry, Raman scattering and nuclear magnetic resonance techniques. Increased density fluctuations are shown to be responsible for the initial stage of physical ageing in these materials at the temperatures below Tg . They are correlated with changes in thermodynamic parameters of structural relaxation through the glass-to-supercooled liquid transition interval. General shrinkage, occurred during the next stage of physical ageing, is shown to be determined by the ability of system to release these redundant open volumes from the glass bulk through the densification process of glass network.

  6. [Spectroscopic Research on Slag Nanocrystal Glass Ceramics Containing Rare Earth Elements].

    PubMed

    Ouyang, Shun-li; Li, Bao-wei; Zhang, Xue-feng; Jia, Xiao-lin; Zhao, Ming; Deng, Lei-bo

    2015-08-01

    The research group prepared the high-performance slag nanocrystal glass ceramics by utilizing the valuable elements of the wastes in the Chinese Bayan Obo which are characterized by their symbiotic or associated existence. In this paper, inductively coupled plasma emission spectroscopy (ICP), X-ray diffraction (XRD), Raman spectroscopy (Raman) and scanning electron microscopy (SEM) are all used in the depth analysis for the composition and structure of the samples. The experiment results of ICP, XRD and SEM showed that the principal crystalline phase of the slag nanocrystal glass ceramics containing rare earth elements is diopside, its grain size ranges from 45 to 100 nm, the elements showed in the SEM scan are basically in consistent with the component analysis of ICP. Raman analysis indicated that its amorphous phase is a three-dimensional network structure composed by the structural unit of silicon-oxy tetrahedron with different non-bridging oxygen bonds. According to the further analysis, we found that the rare earth microelement has significant effect on the network structure. Compared the nanocrystal slag glass ceramic with the glass ceramics of similar ingredients, we found that generally, the Raman band wavenumber for the former is lower than the later. The composition difference between the glass ceramics and the slag nanocrystal with the similar ingredients mainly lies on the rare earth elements and other trace elements. Therefore, we think that the rare earth elements and other trace elements remains in the slag nanocrystal glass ceramics have a significant effect on the network structure of amorphous phase. The research method of this study provides an approach for the relationship among the composition, structure and performance of the glass ceramics.

  7. Thermal analyses, spectral characterization and structural interpretation of Nd3+/Er3+ ions co-doped TeO2-ZnCl2 glasses system

    NASA Astrophysics Data System (ADS)

    Ahmed, Kasim F.; Ibrahim, Saeed O.; Sahar, Md. R.; Mawlud, Saman Q.; Khizir, Hersh A.

    2017-09-01

    The Nd3+/Er3+ ions co-doped in the system of zinc-tellurite with the composition of (70-2x)TeO2-30ZnCl2-xNd2O3-xEr2O3 concentration from 1.0 to 3.0 mol% (x=1, 2 and 3) glasses were prepared by using conventional melt-quenching technique. The amorphous nature of the glass been confirmed by using X-RAY Diffraction Spectroscopy. Thermal characteristic were determined using a DTA. The obtained results discussed in terms of the glass structure. The glass structure studied by means of FTIR. Seven significant vibrational peaks around 471, 687, 742, 768, 1632, 2833 and 3378 cm-1 which correspond to the structural bonding of the glass are observed in a range of 400-4000cm-1. The peaks observed are consistent with the stretching and bending vibrations of the Te-O, TeO4 trigonal bipyramids, TeO3 trigonal pyramids, Te-O-Te and OH linkages respectively.

  8. Scanning probe microscopy in mineralogical studies: about origin of the observed roughness of natural silica-rich glasses

    NASA Astrophysics Data System (ADS)

    Golubev, Ye A.; Isaenko, S. I.

    2017-10-01

    We have studied different mineralogical objects: natural glasses of impact (tektites, impactites) and volcanic (obsidians) origin, using atomic force microscopy, X-ray microanalysis, infrared and Raman spectroscopy. The spectroscopy showed the difference in the structure and chemical composition of the glasses of different origin. The analysis of the dependence of nanoscale heterogeneity of the glasses, revealed by the atomic force microscopy, on their structural and chemical features was carried out.

  9. Nano-phase separation and structural ordering in silica-rich mixed network former glasses.

    PubMed

    Liu, Hao; Youngman, Randall E; Kapoor, Saurabh; Jensen, Lars R; Smedskjaer, Morten M; Yue, Yuanzheng

    2018-06-13

    We investigate the structure, phase separation, glass transition, and crystallization in a mixed network former glass series, i.e., B2O3-Al2O3-SiO2-P2O5 glasses with varying SiO2/B2O3 molar ratio. All the studied glasses exhibit two separate glassy phases: droplet phase (G1) with the size of 50-100 nm and matrix phase (G2), corresponding to a lower calorimetric glass transition temperature (Tg1) and a higher one (Tg2), respectively. Both Tg values decrease linearly with the substitution of B2O3 for SiO2, but the magnitude of the decrease is larger for Tg1. Based on nuclear magnetic resonance and Raman spectroscopy results, we infer that the G1 phase is rich in boroxol rings, while the G2 phase mainly involves the B-O-Si network. Both phases contain BPO4- and AlPO4-like units. Ordered domains occur in G2 upon isothermal and dynamic heating, driven by the structural heterogeneity in the as-prepared glasses. The structural ordering lowers the activation energy of crystal growth, thus promoting partial crystallization of G2. These findings are useful for understanding glass formation and phase separation in mixed network former oxide systems, and for tailoring their properties.

  10. Containerless processing of glass forming melts: D-1, MEA/A-2 experiment 81F01 conducted on STS-61A flight, October 1985

    NASA Technical Reports Server (NTRS)

    Day, D. E.; Ray, C. S.

    1986-01-01

    Results of experiment 81F01, which was conducted in the Material Experiment Assembly MEA/A-2 on the D-1 Spacelab Mission (STS-61A), are presented. The general plan of the experiment was to heat, melt, and quench six spherical samples of different glass forming compositions while they were levitated in a single axis acoustic levitator furnace (SAAL). In addition, two non-melting sintered alumina samples were used to check the operational characteristics of the SAAL under reduced gravity conditions. Three of the eight samples were levitated between 1250 and 1500 C before the lack of coolant created an over-temperature condition that caused the SAAL to shut down prematurely. Two of the three samples processed were calcia-gallia-silica and soda-lime-silica glass forming compositions. Evidence of a two to three times increase in the tendency for glass formation was obtained for the calcia-gallia-silica. The final glass appeared reasonably homogeneous even though it was made from hot pressed powders containing deliberate heterogeneities. A photographic record was obtained of the microgravity sample processing sequences.

  11. Improvements on the optical properties of Ge-Sb-Se chalcogenide glasses with iodine incorporation

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Wang, Xunsi; Zhu, Qingde; Nie, Qiuhua; Zhu, Minming; Zhang, Peiquan; Dai, Shixun; Shen, Xiang; Xu, Tiefeng; Cheng, Ci; Liao, Fangxing; Liu, Zijun; Zhang, Xianghua

    2015-11-01

    Decreasing glass network defects and improving optical transmittance are essential work for material researchers. We studied the function of halogen iodine (I) acting as a glass network modifier in Ge-Sb-Se-based chalcogenide glass system. A systematic series of Ge20Sb5Se75-xIx (x = 0, 5, 10, 15, 20 at.%) infrared (IR) chalcohalide glasses were investigated to decrease the weak absorption tail (WAT) and improve the mid-IR transparency. The mechanisms of the halogen I affecting the physical, thermal, and optical properties of Se-based chalcogenide glasses were reported. The structural evolutions of these glasses were also revealed by Raman spectroscopy and camera imaging. The progressive substitution of I for Se increased the optical bandgap. The WAT and scatting loss significantly decreased corresponding to the progressive decrease in structural defects caused by dangling bands and structure defects in the original Ge20Sb5Se75 glass. The achieved maximum IR transparency of Ge-Sb-Se-I glasses can reach up to 80% with an effective transmission window between 0.94 μm and 17 μm, whereas the absorption coefficient decreased to 0.029 cm-1 at 10.16 μm. Thus, these materials are promising candidates for developing low-loss IR fibers.

  12. Investigation of gamma radiation induced changes in local structure of borosilicate glass by TDPAC and EXAFS

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Nayak, C.; Rajput, P.; Mishra, R. K.; Bhattacharyya, D.; Kaushik, C. P.; Tomar, B. S.

    2016-12-01

    Gamma radiation induced changes in local structure around the probe atom (Hafnium) were investigated in sodium barium borosilicate (NBS) glass, used for immobilization of high level liquid waste generated from the reprocessing plant at Trombay, Mumbai. The (NBS) glass was doped with 181Hf as a probe for time differential perturbed angular correlation (TDPAC) spectroscopy studies, while for studies using extended X-ray absorption fine structure (EXAFS) spectroscopy, the same was doped with 0.5 and 2 % (mole %) hafnium oxide. The irradiated as well as un-irradiated glass samples were studied by TDPAC and EXAFS techniques to obtain information about the changes (if any) around the probe atom due to gamma irradiation. TDPAC spectra of unirradiated and irradiated glasses were similar and reminescent of amorphous materials, indicating negligible effect of gamma radiation on the microstructure around Hafnium probe atom, though the quaqdrupole interaction frequency ( ω Q) and asymmetry parameter ( η) did show a marginal decrease in the irradiated glass compared to that in the unirradiated glass. EXAFS measurements showed a slight decrease in the Hf-O bond distance upon gamma irradiation of Hf doped NBS glass indicating densification of the glass matrix, while the cordination number around hafnium remains unchanged.

  13. Study of Thermal Electrical Modified Etching for Glass and Its Application in Structure Etching

    PubMed Central

    Zhan, Zhan; Li, Wei; Yu, Lingke; Wang, Lingyun; Sun, Daoheng

    2017-01-01

    In this work, an accelerating etching method for glass named thermal electrical modified etching (TEM etching) is investigated. Based on the identification of the effect in anodic bonding, a novel method for glass structure micromachining is proposed using TEM etching. To validate the method, TEM-etched glasses are prepared and their morphology is tested, revealing the feasibility of the new method for micro/nano structure micromachining. Furthermore, two kinds of edge effect in the TEM and etching processes are analyzed. Additionally, a parameter study of TEM etching involving transferred charge, applied pressure, and etching roughness is conducted to evaluate this method. The study shows that TEM etching is a promising manufacture method for glass with low process temperature, three-dimensional self-control ability, and low equipment requirement. PMID:28772521

  14. RELATIONSHIP BETWEEN STRUCTURAL AND STRENGTH CHARACTERISTICS OF FIBER-GLASS LAMINATES,

    DTIC Science & Technology

    REINFORCED PLASTICS, STRUCTURAL PROPERTIES, LAMINATES, EPOXY RESINS, GLASS TEXTILES, LOADS(FORCES), TENSILE PROPERTIES, COMPRESSIVE PROPERTIES, LIFE EXPECTANCY(SERVICE LIFE), USSR, MECHANICAL PROPERTIES.

  15. Effect of Partial Crystallization on the Structural and Luminescence Properties of Er3+-Doped Phosphate Glasses

    PubMed Central

    Lopez-Iscoa, Pablo; Salminen, Turkka; Hakkarainen, Teemu; Petit, Laeticia; Janner, Davide; Boetti, Nadia G.; Lastusaari, Mika; Pugliese, Diego; Paturi, Petriina; Milanese, Daniel

    2017-01-01

    Er-doped phosphate glass ceramics were fabricated by melt-quenching technique followed by a heat treatment. The effect of the crystallization on the structural and luminescence properties of phosphate glasses containing Al2O3, TiO2, and ZnO was investigated. The morphological and structural properties of the glass ceramics were characterized by Field Emission-Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), and micro-Raman spectroscopy. Additionally, the luminescence spectra and the lifetime values were measured in order to study the influence of the crystallization on the spectroscopic properties of the glasses. The volume ratio between the crystal and the glassy phases increased along with the duration of the heat treatment. The crystallization of the glass ceramics was confirmed by the presence of sharp peaks in the XRD patterns and different crystal phases were identified depending on the glass composition. Sr(PO3)2 crystals were found to precipitate in all the investigated glasses. As evidenced by the spectroscopic properties, the site of the Er3+ ions was not strongly affected by the heat treatment except for the fully crystallized glass ceramic which does not contain Al2O3, TiO2, and ZnO. An increase of the lifetime was also observed after the heat treatment of this glass. Therefore, we suspect that the Er3+ ions are incorporated in the precipitated crystals only in this glass ceramic. PMID:28772833

  16. Comprehensive studies of the Ag+ effect on borosilicate glass ceramics containing Ag nanoparticles and Er-doped hexagonal NaYF4 nanocrystals: morphology, structure, and 2.7 μm emission

    NASA Astrophysics Data System (ADS)

    Liu, Qunhuo; Tian, Ying; Tang, Wenhua; Jing, Xufeng; Zhang, Junjie; Xu, Shiqing

    2018-05-01

    In this work, we have performed a comprehensive investigation of the Ag+ concentration effect on the morphological, thermal, structural, and mid-infrared emission properties of novel oxyfluoride borosilicate glasses and glass ceramics containing both Ag nanoparticles and erbium-doped hexagonal NaYF4 nanocrystals. The effect of Ag+ ions on the glass forming and crystallization processes was discussed in detail by glass structural analysis. It was found that the Ag+ concentration can affect the distribution of Na+ ion and bridge oxygen in boron-rich and silicon-rich phases, which induced the transformation between BO3 triangles and BO4 tetrahedra during crystallization process. In addition, there was a turning point when the doped Ag+ ion concentration reached its solubility in the borosilicate glass. Furthermore, the enhancement of the 2.7 μm emission and the reduction of the lifetime of the 4I13/2 level were observed both in glasses and in glass ceramics, and its origin was revealed by qualitative and quantitative analyses of the Er3+-Ag nanoparticles (localized electric field enhancement) and Er3+-Er3+ (nonradiative resonance energy transfer) interactions within glasses and glass ceramics. Moreover, the high lifetime of the 4I11/2 level (2.12 ms) and the peak emission cross section in 2.7 μm (6.8×10-21 cm2) suggested that the prepared glass ceramics have promising mid-infrared laser applications.

  17. Structure, biodegradation behavior and cytotoxicity of alkali-containing alkaline-earth phosphosilicate glasses.

    PubMed

    Kansal, Ishu; Reddy, AlluAmarnath; Muñoz, Francisco; Choi, Seong-Jun; Kim, Hae-Won; Tulyaganov, Dilshat U; Ferreira, José M F

    2014-11-01

    We report on the effect of sodium on the structure, chemical degradation and bioactivity of glasses in the CaO-MgO-SiO2-P2O5-CaF2 system. The (29)Si and (31)P magic angle spinning-nuclear magnetic resonance spectroscopy of melt-quenched glasses with varying Na2O/MgO ratios exhibit a silicate glass network with the dominance of Q(2)(Si) units and phosphorus mainly forming orthophosphate species. Sodium incorporation in the glasses did not induce a significant structural change in the silicate network, while it did influence the phosphate environment due to its lower ionic field strength in comparison with that of magnesium. The apatite forming ability of glasses has been investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1h and 7 days while their chemical degradation has been studied in Tris-HCl in accordance with ISO-10993-14. Increasing Na(+)/Mg(2+) ratio caused a decrease in the chemical durability of glasses and in the apatite forming ability especially during initial steps of interaction between glass and SBF solution. The cellular responses were observed in vitro on bulk glass samples using mouse-derived pre-osteoblastic MC3T3-E1 cell line. The preliminary study suggested that the increasing alkali-concentration in glasses led to cytotoxicity in the cell culture medium. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Flexible metal patterning in glass microfluidic structures using femtosecond laser direct-write ablation followed by electroless plating

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Midorikawa, Katsumi; Sugioka, Koji

    2014-03-01

    A simple and flexible technique for integrating metal micropatterns into glass microfluidic structures based on threedimensional femtosecond laser microfabrication is presented. Femtosecond laser direct writing followed by thermal treatment and successive chemical etching allows us to fabricate three-dimensional microfluidic structures such as microchannels and microreservoirs inside photosensitive glass. Then, the femtosecond laser direct-write ablation followed by electroless metal plating enables space-selective deposition of patterned metal films on desired locations of internal walls of the fabricated microfluidic structures. The developed technique is applied to integrate a metal microheater into a glass microchannel to control the temperature of liquid samples in the channel, which can be used as a microreactor for enhancement of chemical reactions.

  19. Lattice model of linear telechelic polymer melts. II. Influence of chain stiffness on basic thermodynamic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Wen-Sheng, E-mail: wsxu@uchicago.edu; Freed, Karl F., E-mail: freed@uchicago.edu; Department of Chemistry, The University of Chicago, Chicago, Illinois 60637

    2015-07-14

    The lattice cluster theory (LCT) for semiflexible linear telechelic melts, developed in Paper I, is applied to examine the influence of chain stiffness on the average degree of self-assembly and the basic thermodynamic properties of linear telechelic polymer melts. Our calculations imply that chain stiffness promotes self-assembly of linear telechelic polymer melts that assemble on cooling when either polymer volume fraction ϕ or temperature T is high, but opposes self-assembly when both ϕ and T are sufficiently low. This allows us to identify a boundary line in the ϕ-T plane that separates two regions of qualitatively different influence of chainmore » stiffness on self-assembly. The enthalpy and entropy of self-assembly are usually treated as adjustable parameters in classical Flory-Huggins type theories for the equilibrium self-assembly of polymers, but they are demonstrated here to strongly depend on chain stiffness. Moreover, illustrative calculations for the dependence of the entropy density of linear telechelic polymer melts on chain stiffness demonstrate the importance of including semiflexibility within the LCT when exploring the nature of glass formation in models of linear telechelic polymer melts.« less

  20. A structural model for surface-enhanced stabilization in some metallic glass formers

    NASA Astrophysics Data System (ADS)

    Levchenko, Elena V.; Evteev, Alexander V.; Yavari, Alain R.; Louzguine-Luzgin, Dmitri V.; Belova, Irina V.; Murch, Graeme E.

    2013-01-01

    A structural model for surface-enhanced stabilization in some metallic glass formers is proposed. In this model, the alloy surface structure is represented by five-layer Kagomé-net-based lateral ordering. Such surface structure has intrinsic abilities to stabilize icosahedral-like short-range order in the bulk, acting as 'a cloak of liquidity'. In particular, recent experimental observations of surface-induced lateral ordering and a very high glass forming ability of the liquid alloy Au49Ag5.5Pd2.3Cu26.9Si16.3 can be united using this structural model. This model may be useful for the interpretation of surface structure of other liquid alloys with a high glass forming ability. In addition, it suggests the possibility of guiding the design of the surface coating of solid containers for the stabilization of undercooled liquids.

  1. Glass for Solid State Devices

    NASA Technical Reports Server (NTRS)

    Bailey, R. F.

    1982-01-01

    Glass film has low intrinsic compressive stress for isolating active layers of magnetic-bubble and other solid-state devices. Solid-state device structure incorporates low-stress glasses as barrier and spacer layers. Glass layers mechanically isolate substrate, conductor, and nickel/iron layers.

  2. Glassy nature and glass-to-crystal transition in the binary metallic glass CuZr

    NASA Astrophysics Data System (ADS)

    Wei, Zi-Yang; Shang, Cheng; Zhang, Xiao-Jie; Liu, Zhi-Pan

    2017-06-01

    The prediction for the stability of glassy material is a key challenge in physical science. Here, we report a theoretical framework to predict the glass stability based on stochastic surface walking global optimization and reaction pathway sampling. This is demonstrated by revealing for the first time the global potential energy surface (PES) of two systems, CuZr binary metallic glass and nonglassy pure Cu systems, and establishing the lowest energy pathways linking glassy/amorphous structures with crystalline structures. The CuZr system has a significant number of glassy structures on PES that are ˜0.045 eV /atom above the crystal structure. Two clear trends are identified from global PES in the glass-to-crystal transition of the CuZr system: (i) the local Zr-Cu coordination (nearest neighbor) increases, and (ii) the local Zr bonding environment becomes homogeneous. This allows us to introduce quantitative structural and energetics conditions to distinguish the glassy structures from the crystalline structures. Because of the local Zr-Cu exchange in the glass-to-crystal transition, a high reaction barrier (>0.048 eV /atom ) is present to separate the glassy structures and the crystals in CuZr. By contrast, the Cu system, although it does possess amorphous structures that appear at much higher energy (˜0.075 eV /atom ) with respect to the crystal structure, has very low reaction barriers for the crystallization of amorphous structures, i.e. <0.011 eV /atom . The quantitative data on PES now available from global optimization techniques deepens our understanding on the microscopic nature of glassy material and might eventually facilitate the design of stable glassy materials.

  3. Structural assembly in space

    NASA Technical Reports Server (NTRS)

    Stokes, J. W.; Pruett, E. C.

    1980-01-01

    A cost algorithm for predicting assembly costs for large space structures is given. Assembly scenarios are summarized which describe the erection, deployment, and fabrication tasks for five large space structures. The major activities that impact total costs for structure assembly from launch through deployment and assembly to scientific instrument installation and checkout are described. Individual cost elements such as assembly fixtures, handrails, or remote minipulators are also presented.

  4. Structure of shock compressed model basaltic glass: Insights from O K-edge X-ray Raman scattering and high-resolution 27Al NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Sung Keun; Park, Sun Young; Kim, Hyo-Im; Tschauner, Oliver; Asimow, Paul; Bai, Ligang; Xiao, Yuming; Chow, Paul

    2012-03-01

    The detailed atomic structures of shock compressed basaltic glasses are not well understood. Here, we explore the structures of shock compressed silicate glass with a diopside-anorthite eutectic composition (Di64An36), a common Fe-free model basaltic composition, using oxygen K-edge X-ray Raman scattering and high- resolution 27Al solid-state NMR spectroscopy and report previously unknown details of shock-induced changes in the atomic configurations. A topologically driven densification of the Di64An36 glass is indicated by the increase in oxygen K-edge energy for the glass upon shock compression. The first experimental evidence of the increase in the fraction of highly coordinated Al in shock compressed glass is found in the 27Al NMR spectra. This unambiguous evidence of shock-induced changes in Al coordination environments provides atomistic insights into shock compression in basaltic glasses and allows us to microscopically constrain the magnitude of impact events or relevant processes involving natural basalts on Earth and planetary surfaces.

  5. Composition dependent structural and optical properties of PbF₂-TeO₂-B₂O₃-Eu₂O₃ glasses.

    PubMed

    Wagh, Akshatha; Raviprakash, Y; Upadhyaya, Vyasa; Kamath, Sudha D

    2015-12-05

    Boric oxide based quaternary glasses in the system PbF2-TeO2-B2O3-Eu2O3 have been prepared by melt quenching technique. Density, molar volume, FTIR, UV-Vis techniques were used to probe the structural modifications with incorporation of europium ions in the glass network. An increase in glass density & decrease in molar volume (Vm) values proved the structural changes occurring in coordination of boron atom [conversion of BO3 units to BO4]. This resulted in the increase of the compaction of the prepared glasses with increase in Eu2O3 contents. The amorphous natures of the samples were ascertained by XRD and metallization criterion (M) studies. XPS study showed the values of core-level binding energy [O1s, Eu3d, Eu4d, Te3d, Te4d, Pd4f, Pb5d, O1s, and F1s] of (PbF2-TeO2-B2O3-Eu2O3) the glass matrix. The frequency and temperature dependence of dielectric properties of present glasses were investigated in the frequency range of 1 Hz-10 MHz and temperature range of 313-773K. The study of dielectric measurements proved good insulating and thermal stability of the prepared glasses. At room temperature, dielectric loss [tanδ] values were negligibly small for prepared glasses and increased with increase in temperature. FTIR spectroscopy results were in good agreement with optical band energy gap, density, molar volume and hardness values revealing network modifications caused by europium ions in the glass structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. X-Ray Absorption Spectroscopy Studies of the Atomic Structure of Zirconium-Doped Lithium Silicate Glasses and Glass-Ceramics, Zirconium-Doped Lithium Borate Glasses, and Vitreous Rare-Earth Phosphates

    NASA Astrophysics Data System (ADS)

    Yoo, Changhyeon

    In the first part of this work, the atomic-scale structure around rare-earth (RE = Pr, Nd, Eu, Dy, and Er) cations (RE3+) in rare-earth sodium ultraphosphate (REUP) glasses were investigated using RE LIII -edge (RE = Nd, Er, Dy, and Eu) and K-edge (RE = Pr and Dy) Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. (RE2O 3)x(Na2O)y(P2O5) 1-x-y glasses in the compositional range 0 ≤ x ≤ 0.14 and 0.3 ≤ x + y ≤ 0.4 were studied. For the nearest oxygen shell, the RE-oxygen (RE-O) coordination number decreases from 10.8 to 6.5 with increasing RE content for Pr-, Nd-, Dy-, and Er-doped sodium ultraphosphate glasses. For Eu-doped samples, the Eu-O coordination number was between 7.5 and 8.8. Also, the RE-O mean distance ranges were between 2.43-2.45 A, 2.40-2.43 A, 2.36-2.38 A, 2.30-2.35 A, and 2.28-2.30 A for Pr-, Nd-, Eu-, Dy-, and Er-doped samples, respectively. In the second part, a series of Zr-doped (3-10 mol%) lithium silicate (ZRLS) glass-ceramics and their parent glasses and a series of Zr-doped (2-6 mol% ZrO2) lithium borate (ZRLB) glasses were investigated using Zr K-edge EXAFS and X-ray Absorption Near Edge Structure (XANES) spectroscopy. Immediate coordination environments of all ZRLS glasses are remarkably similar for different compositions. For the nearest oxygen shell, the Zr-O coordination number ranges were between 6.1 and 6.3 for nucleated and crystallized samples, respectively. Also, the Zr-O mean distance remains similar around 2.10 A. For these glasses, the composition dependence of structural parameters was small. Small changes in the coordination environment were observed for ZRLS glass-ceramics after thermal treatments. In contrast, Zr coordination environment in ZRLB glasses appear to depend appreciably on the Zr concentration. For the nearest oxygen shell, the Zr-O coordination number increased from 6.1 to 6.8 and the Zr-O distance decreased from 2.18 A to 2.14 A with decreasing ZrO2 content.

  7. Methods of making composite optical devices employing polymer liquid crystal

    DOEpatents

    Jacobs, S.D.; Marshall, K.L.; Cerqua, K.A.

    1991-10-08

    Composite optical devices are disclosed using polymer liquid crystal materials both as optical and adhesive elements. The devices are made by assembling a heated polymer liquid crystal compound, while in a low viscosity form between optically transparent substrates. The molecules of the polymer are oriented, while in the liquid crystalline state and while above the glass transition temperature (T[sub g]) of the polymer, to provide the desired optical effects, such as polarization, and selective reflection. The liquid crystal polymer cements the substrates together to form an assembly providing the composite optical device. 7 figures.

  8. Lightweight Forms for Epoxy/Aramid Ducts

    NASA Technical Reports Server (NTRS)

    Mix, E. W.; Anderson, A. N.; Bedford, Donald L., Sr.

    1986-01-01

    Aluminum mandrels easy to remove. Lightweight aluminum mandrel for shaping epoxy/aramid ducts simplifies and speeds production. In new process, glass-reinforced epoxy/aramid cloth wrapped on aluminum mandrel. Stainless-steel flanges and other hardware fitted on duct and held by simple tooling. Entire assembly placed in oven to cure epoxy. After curing, assembly placed in alkaline bath dissolves aluminum mandrel in about 4 hours. Epoxy/aramid shell ready for use as duct. Aluminum mandrel used to make ducts of various inside diameters up to 6 in. Standard aluminum forms used. Conventional tube-bending equipment produces requisite curves in mandrels.

  9. Process development for automated solar cell and module production. Task 4: Automated array assembly

    NASA Technical Reports Server (NTRS)

    Hagerty, J. J.

    1981-01-01

    Progress in the development of automated solar cell and module production is reported. The unimate robot is programmed for the final 35 cell pattern to be used in the fabrication of the deliverable modules. The mechanical construction of the automated lamination station and final assembly station phases are completed and the first operational testing is underway. The final controlling program is written and optimized. The glass reinforced concrete (GRC) panels to be used for testing and deliverables are in production. Test routines are grouped together and defined to produce the final control program.

  10. TiO2 induced structural modifications in Cs containing borosilicate glasses: Raman and infrared studies

    NASA Astrophysics Data System (ADS)

    Pandey, M.; Banerjee, D.; Sudarsan, V.; Kshirsagar, R. J.

    2018-04-01

    Effect of TiO2 addition in Cs containing Sodium-borosilicate glasses is studied using Raman and infrared spectroscopic techniques. As revealed from infrared and Raman studies, TiO2 does not form segregated phase, but instead enters into the borosilicate network. It is further observed that TiO2 addition results in modifications of the borate and silicate structural units by transforming into tetraborates and metasilicate structural units. These structural modifications are responsible for Cs immobilization, leach rate and chemical durability of these glasses.

  11. Long Life, Low Power, Multi-Cell Battery

    DTIC Science & Technology

    2010-10-28

    complementary glass structures that provide for the containment walls that hold the electrolyte. B. Major task will involve the use...of an anodic bonding approach to fuse the silicon substrate containing the micro channels to the glass grid wall structures described above...Completion August 2010 Task B. completed, anodic bonding approach used on top glass and silicon layers

  12. Glass transition of anhydrous starch by fast scanning calorimetry.

    PubMed

    Monnier, Xavier; Maigret, Jean-Eudes; Lourdin, Denis; Saiter, Allisson

    2017-10-01

    By means of fast scanning calorimetry, the glass transition of anhydrous amorphous starch has been measured. With a scanning rate of 2000Ks -1 , thermal degradation of starch prior to the glass transition has been inhibited. To certify the glass transition measurement, structural relaxation of the glassy state has been investigated through physical aging as well as the concept of limiting fictive temperature. In both cases, characteristic enthalpy recovery peaks related to the structural relaxation of the glass have been observed. Thermal lag corrections based on the comparison of glass transition temperatures measured by means of differential and fast scanning calorimetry have been proposed. The complementary investigations give an anhydrous amorphous starch glass transition temperature of 312±7°C. This estimation correlates with previous extrapolation performed on hydrated starches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cooling rate dependence of structural order in Al90Sm10 metallic glass

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Zhang, Yue; Zhang, Feng; Ye, Zhuo; Ding, Zejun; Wang, Cai-Zhuang; Ho, Kai-Ming

    2016-07-01

    The atomic structure of Al90Sm10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-Tg annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that "3661" cluster is the dominating short-range order in the glass samples. The connection and arrangement of "3661" clusters, which define the medium-range order in the system, are enhanced significantly in the sub-Tg annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu64.5Zr35.5, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al90Sm10, which has only marginal glass formability.

  14. Quartz and feldspar glasses produced by natural and experimental shock.

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Hornemann, U.

    1972-01-01

    Refractive index, density, and infrared absorption studies of naturally and experimentally shocked-produced glasses formed from quartz, plagioclase, and alkali-feldspar confirm the existence of two main groups of amorphous forms of the framework silicates: solid-state and liquid-state glasses. These were apparently formed as metastable release products of high-pressure-phases above and below the glass transition temperatures. Solid-state glasses exhibit a series of structural states with increasing disorder caused by increasing shock pressures and temperatures. They gradually merge into the structural state of fused minerals similar to that of synthetic glasses quenched from a melt. Shock-fused alkali feldspars can, however, be distinguished from their laboratory-fused counterparts by infrared absorption and by higher density.

  15. Raman spectroscopy of glasses in the As-Te system

    NASA Astrophysics Data System (ADS)

    Tverjanovich, A.; Rodionov, K.; Bychkov, E.

    2012-06-01

    For the first time, the Raman spectra of AsxTe1-x glasses, 0.2≤x≤0.6, have been measured over the entire glass-forming range. The spectra exhibit three broad spectral features attributed to vibrations of structural units having Te-Te, As-Te and As-As bonds. The observed chemical disorder in the glasses is discussed on the basis of partial bond fractions derived from the integrated intensity of the Raman modes. The underlying structural model suggests a dissociation of AsTe- or As2Te3-related units in the glass melt. The spectra of glasses quenched from different temperatures, as well as those of the annealed vitreous alloys, are consistent with predictions of the model.

  16. Multidimensional Self-Assembled Structures of Alkylated Cellulose Oligomers Synthesized via in Vitro Enzymatic Reactions.

    PubMed

    Yataka, Yusuke; Sawada, Toshiki; Serizawa, Takeshi

    2016-10-04

    The self-assembly of biomolecules into highly ordered nano-to-macroscale structures is essential in the construction of biological tissues and organs. A variety of biomolecular assemblies composed of nucleic acids, peptides, and lipids have been used as molecular building units for self-assembled materials. However, crystalline polysaccharides have rarely been utilized in self-assembled materials. In this study, we describe multidimensional self-assembled structures of alkylated cellulose oligomers synthesized via in vitro enzymatic reactions. We found that the alkyl chain length drastically affected the assembled morphologies and allomorphs of cellulose moieties. The modulation of the intermolecular interactions of cellulose oligomers by alkyl substituents was highly effective at controlling their assembly into multidimensional structures. This study proposes a new potential of crystalline oligosaccharides for structural components of molecular assemblies with controlled morphologies and crystal structures.

  17. Preparation of Plasmonic Platforms of Silver Wires on Gold Mirrors and Their Application to Surface Enhanced Fluorescence

    PubMed Central

    2015-01-01

    In this report we describe a preparation of silver wires (SWs) on gold mirrors and its application to surface enhanced fluorescence (SEF) using a new methodology. Silica protected gold mirrors were drop-coated with a solution of silver triangular nanoprisms. The triangular nanoprisms were slowly air-dried to get silver wires that self-assembled on the gold mirrors. Fluorescence enhancement was studied using methyl azadioxatriangulenium chloride (Me-ADOTA·Cl) dye in PVA spin-coated on a clean glass coverslip. New Plasmonic Platforms (PPs) were assembled by placing a mirror with SWs in contact with a glass coverslip spin-coated with a uniform Me-ADOTA·Cl film. It was shown that surface enhanced fluorescence is a real phenomenon, not just an enhancement of the fluorescence signal due to an accumulation of the fluorophore on rough nanostructure surfaces. The average fluorescence enhancement was found to be about 15-fold. The lifetime of Me-ADOTA·Cl dye was significantly reduced (∼4 times) in the presence of SWs. Moreover, fluorescence enhancement and lifetime did not show any dependence on the excitation light polarization. PMID:25296293

  18. Decrease in electrical resistivity on depletion of islands of mobility during aging of a bulk metal glass

    NASA Astrophysics Data System (ADS)

    Aji, Daisman P. B.; Johari, G. P.

    2018-04-01

    The effect of structural relaxation on electrical resistivity, ρglass, of strain-free Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass was studied during isothermal aging at several temperatures, Tas. Since cooling of a liquid metal increases its resistivity ρliq, one expects ρglass to increase on aging toward ρliq at T = Ta. Instead, ρglass decreased non-exponentially with the aging time. The activation energy of aging kinetics is 189 kJ mol-1, which is higher than the activation energy of the Johari-Goldstein (JG) relaxation. After considering the sample's contraction, phase separation, and crystallization as possible causes of the decrease in ρglass, we attribute the decrease to depletion of islands of atomic mobility, soft spots, or static heterogeneity. Vibrations of the atoms in these local (loosely packed) regions and in the region's interfacial area contribute to electron scattering. As these deplete on aging, the contribution decreases and ρglass decreases, with a concomitant decrease in macroscopic volume, enthalpy, and entropy (V, H, and S). Local regions of faster mobility also decrease on cooling as V, H, and S of a liquid decrease, but structure fluctuations dominate electron scattering of a liquid metal and ρliq increases effectively according to the Ziman-Nagel theory for a homogenously disordered structure. Whether depletion of such local regions initiates the structural relaxation of a glass, or vice versa, may be resolved by finding a glass that physically ages but shows no JG relaxation.

  19. Structural characterization of ZnCl2 modified tellurite based glasses

    NASA Astrophysics Data System (ADS)

    Dhankhar, Sunil; Kundu, R. S.; Punia, R.; Sunita, Parmar, R.; Sanjay, Kishore, N.

    2016-05-01

    Glass composition 70 TeO2-(30-x) BaO - x ZnCl2; x = 5, 10, 15, 20 and 25 have been prepared by rapid melt quenching technique under controlled atmospheric conditions. Amorphous nature of the samples was confirmed by x-ray diffractogram. The glass transition temperature (Tg) has been determined using differential scanning calorimetry (DSC) and its value is observed to decrease with increase in ZnCl2 content. The peaks in the Raman and FTIR spectra have been estimated by deconvolutation of the spectra and each of deconvoluted spectra exhibits several peaks. IR and Raman spectra of the present glass system indicate that TeO2 exists as TeO3 trigonal pyramidal (tp), TeO4 trigonal bipyramidal (tbp) and TeO6 polyhedra structural units. With increase in zinc halide content, transformation of some of TeO4 structural units into TeO3 structural units is observed Increase in TeO3 structural units shows that non-bridging oxygen contribution increases which confirms the decrease in glass transition temperature.

  20. Chain-like structure elements in Ni40Ta60 metallic glasses observed by scanning tunneling microscopy

    PubMed Central

    Pawlak, Rémy; Marot, Laurent; Sadeghi, Ali; Kawai, Shigeki; Glatzel, Thilo; Reimann, Peter; Goedecker, Stefan; Güntherodt, Hans-Joachim; Meyer, Ernst

    2015-01-01

    The structure of metallic glasses is a long-standing question because the lack of long-range order makes diffraction based techniques difficult to be applied. Here, we used scanning tunneling microscopy with large tunneling resistance of 6 GΩ at low temperature in order to minimize forces between probe and sample and reduce thermal fluctuations of metastable structures. Under these extremely gentle conditions, atomic structures of Ni40Ta60 metallic glasses are revealed with unprecedented lateral resolution. In agreement with previous models and experiments, icosahedral-like clusters are observed. The clusters show a high degree of mobility, which explains the need of low temperatures for stable imaging. In addition to icosahedrons, chain-like structures are resolved and comparative density functional theory (DFT) calculations confirm that these structures are meta-stable. The co-existence of icosahedral and chain-like structures might be an key ingredient for the understanding of the mechanical properties of metallic glasses. PMID:26268430

  1. Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.

    PubMed

    Novak, Spencer; Lin, Pao Tai; Li, Cheng; Lumdee, Chatdanai; Hu, Juejun; Agarwal, Anuradha; Kik, Pieter G; Deng, Weiwei; Richardson, Kathleen

    2017-08-16

    A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge 23 Sb 7 S 70 and As 40 S 60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.

  2. Structure of alkali tellurite glasses from neutron diffraction and molecular orbital calculations

    NASA Astrophysics Data System (ADS)

    Niida, Haruki; Uchino, Takashi; Jin, Jisun; Kim, Sae-Hoon; Fukunaga, Toshiharu; Yoko, Toshinobu

    2001-01-01

    The structure of pure TeO2 and alkali tellurite glasses has been examined by neutron diffraction and ab initio molecular orbital methods. The experimental radial distribution functions along with the calculated results have demonstrated that the basic structural units in tellurite glasses change from highly strained TeO4 trigonal bipyramids to more regular TeO3 trigonal pyramids with increasing alkali content. It has also been shown that the TeO3 trigonal pyramids do not exist in the form of isolated units in the glass network but interact with each other to form intertrigonal Te⋯O linkages. The present results suggest that nonbridging oxygen (NBO) atoms in tellurite glasses do not exist in their "pure" form; that is, all the NBO atoms in TeO3 trigonal bipyramids will interact with the first- and/or second-neighbor Te atoms, resulting in the three-dimensional continuous random network even in tellurite glasses with over 30 mol % of alkali oxides.

  3. Structural and optical study of tellurite-barium glasses

    NASA Astrophysics Data System (ADS)

    Grelowska, I.; Reben, M.; Burtan, B.; Sitarz, M.; Cisowski, J.; Yousef, El Sayed; Knapik, A.; Dudek, M.

    2016-12-01

    The goal of this work was to determine the effect of barium oxide on the structural, thermal and optical properties of the TeO2-BaO-Na2O (TBN) and TeO2-BaO-WO3 (TBW) glass systems. Raman spectra allow relating the glass structure and vibration properties (i.e. vibrational frequencies and Raman intensities) with the glass composition. Raman spectra show the presence of TeO4 and TeO3+1/TeO3 units that conform with the glass matrix. Differential thermal analysis DTA, XRD measurements have been considered in term of BaO addition. The spectral dependence of ellipsometric angles of the tellurite-barium glass has been studied. The optical measurements were conducted on Woollam M2000 spectroscopic ellipsometer in spectral range of 190-1700 nm. The reflectance and transmittance measurements have been done on spectrophotometer Perkin Elmer, Lambda 900 in the range of 200-2500 nm (UV-VIS-NIR). From the transmittance spectrum, the energy gap was determined.

  4. Atomistic Model of Physical Ageing in Se-rich As-Se Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovchak,R.; Shpotyuk, O.; Kozdras, A.

    2007-01-01

    Thermal, optical, X-ray excited and magnetic methods were used to develop a microstructural model of physical ageing in Se-rich glasses. The glass composition As10Se90, possessing a typical cross-linked chain structure, was chosen as a model object for the investigations. The effect of physical ageing in this glass was revealed by differential scanning calorimetry, whereas the corresponding changes in its atomic arrangement were studied by extended X-ray absorption fine structure, Raman and solid-state 77Se nuclear magnetic resonance spectroscopy. Straightening-shrinkage processes are shown to be responsible for the physical ageing in this Se-rich As-Se glass.

  5. Enhanced emission of nile red fluorescent nanoparticles embedded in hybrid sol-gel glasses.

    PubMed

    Ferrer, Maria L; del Monte, Francisco

    2005-01-13

    Highly fluorescent Nile Red (NR) nanoparticles embedded in a hybrid sol-gel glass are reported. The crystallite growth within the confined system created by the porous hybrid matrix results in NR nanoparticles of averaged dimensions below 36 nm. The preparation process allows for the control of both the conformation adopted by single NR molecules prior to aggregation (e.g., near planar) and the configuration of the aggregates (e.g., oblique with phi < 54.7 degrees) prior to their assembly in the supramolecular architecture which ultimately forms the nanoparticles. The full preservation of the fluorescent configuration of the aggregates in the nanoparticles is confirmed through the application of the exciton theory, and it is responsible for the significant increase of the fluorescence emission intensity (e.g., up to 525- and 70-fold as compared to that obtained for single NR molecules embedded in pure and hybrid silica glasses, respectively).

  6. Grinding aspheric and freeform micro-optical molds

    NASA Astrophysics Data System (ADS)

    Tohme, Yazid E.

    2007-02-01

    Fueled by the need for better performing optics, glass optics are now replacing plastic optics in many industrial and consumer electronic devices. One of these devices is the mobile phone camera. The optical sub-assembly in a mobile phone includes several micro lenses that are spherical and/or aspherical in shape and require form tolerances in the submicron range. These micro glass lenses are mass produced by a replication process known as glass press molding. The process entails the compression of a glass gob between two precise optical quality molds at an elevated temperature, usually near the transition temperature of the glass material. The elevated forces and temperatures required in the glass molding process limits the materials of the molds to very tough materials such as tungsten carbide or silicon carbide. These materials can withstand large pressing forces at high temperatures without any significant deformation. These materials offer great mechanical properties for glass press molding but they are also a challenge to machine to submicron accuracy. The work in this paper discusses a deterministic micro grinding manufacturing process referred to as wheel normal grinding, which is utilized to produce these optical quality molds. Wheel normal grinding is more accurate and more deterministic than most other grinding techniques and can produce molds to the form and finish tolerances required for optical molding. This method relies on the ability to recognize and compensate for grinding wheel wear and machine repeatable errors. Results will be presented to illustrate the accuracy of this micro grinding technique.

  7. Atomistic investigation of the structural, transport, and mechanical properties of Cu-Zr metallic glasses

    NASA Astrophysics Data System (ADS)

    Kumar, Mohit

    The unique set of mechanical and magnetic properties possessed by metallic glasses has attracted a lot of recent scientific and technological interest. The development of new metallic glass alloys with improved manufacturability, enhanced properties and higher ductility relies on the fundamental understanding of the interconnections between their atomic structure, glass forming ability (GFA), transport properties, and elastic and plastic deformation mechanisms. This thesis is focused on finding these atomic structure-property relationships in Cu-Zr BMGs using molecular dynamics simulations. In the first study described herein, molecular dynamics simulations of the rapid solidification process over the Cu-Zr compositional domain were conducted to explore inter-dependencies of atomic transport and fragility, elasticity and structural ordering, and GFA. The second study investigated the atomic origins of serration events, which is the characteristic plastic deformation behaviour in BMGs. The combined results of this work suggest that GFA and ductility of metallic glasses could be compositionally tuned.

  8. Generic features of the primary relaxation in glass-forming materials (Review Article)

    NASA Astrophysics Data System (ADS)

    Kokshenev, Valery B.

    2017-08-01

    We discuss structural relaxation in molecular and polymeric supercooled liquids, metallic alloys and orientational glass crystals. The study stresses especially the relationships between observables raised from underlying constraints imposed on degrees of freedom of vitrification systems. A self-consistent parametrization of the α-timescale on macroscopic level results in the material-and-model independent universal equation, relating three fundamental temperatures, characteristic of the primary relaxation, that is numerically proven in all studied glass formers. During the primary relaxation, the corresponding small and large mesoscopic clusters modify their size and structure in a self-similar way, regardless of underlying microscopic realizations. We show that cluster-shape similarity, instead of cluster-size fictive divergence, gives rise to universal features observed in primary relaxation. In all glass formers with structural disorder, including orientational-glass materials (with the exception of plastic crystals), structural relaxation is shown to be driven by local random fields. Within the dynamic stochastic approach, the universal subdiffusive dynamics corresponds to random walks on small and large fractals.

  9. Structure of Se-Te glasses studied using neutron, X-ray diffraction and reverse Monte Carlo modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoh, Keiji, E-mail: itoh@okayama-u.ac.jp; Research Reactor Institute, Kyoto University, Kumatori, Osaka 590-0494

    Pulsed neutron diffraction and synchrotron X-ray diffraction measurements were performed on Se{sub 100-x}Te{sub x} bulk glasses with x=10, 20, 30 and 40. The coordination numbers obtained from the diffraction results demonstrate that Se and Te atoms are twofold coordinated and the glass structure is formed by the chain network. The three-dimensional structure model for Se{sub 60}Te{sub 40} glass obtained by using reverse Monte Carlo modelling shows that the alternating arrangements of Se and Te atoms compose the major part of the chain clusters but several other fragments such as Se{sub n} chains and Te-Te dimers are also present in largemore » numbers. The chain clusters have geometrically disordered forms and the interchain atomic order is different from those in the crystal structures of trigonal Se and trigonal Te. - Graphical abstract: Coordination environment in Se{sub 60}Te{sub 40} glass.« less

  10. Network cation coordination in aluminoborosilicate and Mg- aluminosilicate glasses: pressure effects in recovered structural changes and densification

    NASA Astrophysics Data System (ADS)

    Bista, S.; Stebbins, J. F.; Sisson, T. W.; Hankins, W. B.

    2015-12-01

    In this study, we compare the aluminum and boron coordination of glass samples recovered from piston-cylinder experiments carried out at 1 to 3 GPa and near to their ambient glass transition temperature (Tg), which we have found gives a more accurate picture of high pressure structural changes than experiments involving quenching from above the liquidus, as large pressure drops can occur in the latter. Aluminoborosilicate glasses with excess modifier (Ca, La and Y- aluminoborosilicate) quenched from melts at 1-3 GPa were studied with B-11 and Al-27 MAS NMR to assess relative effects on two different network cations. Structural changes in the Y-aluminoborosilicate are dramatic, going from mostly AlO4 at low pressure to mostly AlO5 and AlO6 at 3 GPa. Large increases in BO4 (vs. BO3) are also seen. Mg-aluminosilicate glasses, both tectosilicate (Mg2Al4Si6O20) and with excess modifier composition (Mg3Al2Si6O18) quenched from melts at 1-3 GPa pressure were studied with Al-27 MAS NMR. In contrast to our previous study (Bista et al., Am. Min., in press) of jadeite glass, where only 0.5% of fivefold aluminum was seen in glass recovered from 3 GPa, five and six fold aluminum species increase significantly with increasing pressure in both Mg aluminosilicate glass compositions studied here. We observe that the tectosilicate Mg aluminosilicate glass has more higher coordinated aluminum than the excess modifier containing composition in the pressure range in our study. In the previous study (Bista et al., in press) of jadeite and calcium aluminosilicate (Ca3Al2Si6O18) glasses, 6-8% densification was observed in glasses recovered from 3 GPa. In this study of Mg aluminosilicate glasses, we observe 12% densification in glasses recovered from 3 GPa. Both types of observation confirm that structural and density changes with pressure are enhanced by higher field strength modifier cations, and will be especially important in Mg- and Fe-rich mantle melts.

  11. Glass-mica composite: a new structural thermal-insulating material for building applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, N.M.P.

    1981-12-01

    Homogeneous, rigid glass-mica composites have been synthesized from mixtures of Canadian natural mica flakes of the phlogopite type and ground glass powders prepared from recycled soda-lime waste glasses by a simple sintering process. By means of selection of compositions and processing techniques, composites can be fabricated into products that exhibit a celular structure, a highly densified structure, and multilayer and sandwich structures. The cellular structure composite has a thermal conductivity in the range of 0.165 to 0.230 W/m /sup 0/C when measured over the temperature range 25 to 180/sup 0/C, and a compressive strength of about 0.874 MPa; the highlymore » densified composite, on the other hand, has a thermal conductivity in the range of 0.155 to 0.330 W/m /sup 0/C, a compressive strength in excess of 40 MPa, and an instantaneous coefficient of thermal expansion of 5.8 X 10/sup -6///sup 0/C at 100/sup 0/C. These glass-mica composites exhibit qualities such as insulating efficiency, safety, mechanical strength, and durability that are suitable for engineering applications in building structures or other systems.« less

  12. FTIR of binary lead borate glass: Structural investigation

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Elkholy, H. S.; Hager, I. Z.

    2016-02-01

    The glass samples were prepared according to the following formula: (100-x) B2O3 - x PbO, where x = 20-80 mol% by melt quenching method. The density of the prepared samples was measured and molar volume was calculated. IR spectra were measured for the prepared samples to investigate the glass structure. The IR spectra were deconvoluted using curves of Gaussian shape at approximately the same frequencies. The deconvoluted data were used to study the effect of PbO content on all the structural borate groups. Some structural parameters such as density, packing density, bond length and bond force constant were theoretically calculated and were compared to the obtained experimental results. Deviation between the experimental and theoretically calculated parameters reflects the dual role of PbO content on the network of borate glass.

  13. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization

    NASA Astrophysics Data System (ADS)

    Yi, Jinsoo; Schmidt, Jacob; Chien, Aichi; Montemagno, Carlo D.

    2009-02-01

    We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.

  14. Artificial synapse network on inorganic proton conductor for neuromorphic systems.

    PubMed

    Zhu, Li Qiang; Wan, Chang Jin; Guo, Li Qiang; Shi, Yi; Wan, Qing

    2014-01-01

    The basic units in our brain are neurons, and each neuron has more than 1,000 synapse connections. Synapse is the basic structure for information transfer in an ever-changing manner, and short-term plasticity allows synapses to perform critical computational functions in neural circuits. Therefore, the major challenge for the hardware implementation of neuromorphic computation is to develop artificial synapse network. Here in-plane lateral-coupled oxide-based artificial synapse network coupled by proton neurotransmitters are self-assembled on glass substrates at room-temperature. A strong lateral modulation is observed due to the proton-related electrical-double-layer effect. Short-term plasticity behaviours, including paired-pulse facilitation, dynamic filtering and spatiotemporally correlated signal processing are mimicked. Such laterally coupled oxide-based protonic/electronic hybrid artificial synapse network proposed here is interesting for building future neuromorphic systems.

  15. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization.

    PubMed

    Yi, Jinsoo; Schmidt, Jacob; Chien, Aichi; Montemagno, Carlo D

    2009-02-25

    We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.

  16. Tailoring uniform gold nanoparticle arrays and nanoporous films for next-generation optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Farid, Sidra; Kuljic, Rade; Poduri, Shripriya; Dutta, Mitra; Darling, Seth B.

    2018-06-01

    High-density arrays of gold nanodots and nanoholes on indium tin oxide (ITO)-coated glass surfaces are fabricated using a nanoporous template fabricated by the self-assembly of diblock copolymers of poly (styrene-block-methyl methacrylate) (PS-b-PMMA) structures. By balancing the interfacial interactions between the polymer blocks and the substrate using random copolymer, cylindrical block copolymer microdomains oriented perpendicular to the plane of the substrate have been obtained. Nanoporous PS films are created by selectively etching PMMA cylinders, a straightforward route to form highly ordered nanoscale porous films. Deposition of gold on the template followed by lift off and sonication leaves a highly dense array of gold nanodots. These materials can serve as templates for the vapor-liquid-solid (VLS) growth of semiconductor nanorod arrays for next generation hybrid optoelectronic applications.

  17. Determining Beta Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Kaplan, David; Cebe, Peggy

    2007-03-01

    We report a study of self-assembled beta pleated sheets in Bombyx mori silk fibroin films using thermal analysis and infrared spectroscopy. Crystallization of beta pleated sheets was effected either by heating the films above the glass transition temperature (Tg) and holding isothermally, or by exposure to methanol. The fractions of secondary structural components including random coils, alpha helices, beta pleated sheets, turns, and side chains, were evaluated using Fourier self-deconvolution (FSD) of the infrared absorbance spectra. As crystalline beta sheets form, the heat capacity increment from the TMDSC trace at Tg is systematically decreased and is linearly well correlated with beta sheet content determined from FSD. This analysis of beta sheet content can serve as an alternative to X-ray methods and may have wide applicability to other crystalline beta sheet forming proteins.

  18. Study of the structural role of gallium and aluminum in 45S5 bioactive glasses by molecular dynamics simulations.

    PubMed

    Malavasi, Gianluca; Pedone, Alfonso; Menziani, Maria Cristina

    2013-04-18

    The structural properties of phosphosilicate glasses based on the 45S5 Bioglass doped with gallium and aluminum (46.2 SiO2·24.3Na2O·26.9CaO·2.6P2O5·1.0X2O3, X = Ga or Al) are investigated by means of classical molecular dynamics simulations. Structural features of the two compositions are compared with those of the original 45S5 Bioglass in order to relate them to the different known bioactivities of these materials. Differences in the coordination environments of Ga and Al, network connectivity, and ion aggregation reveal a microscopic model of these glasses which supports the interpretation of the experimental data and provides new insight into the different biological behaviors of Ga- and Al-containing phosphosilicate glasses. Although Ga is found predominantly in a 4-fold coordination environment, small amounts of 5- and 6-fold coordinated atoms have been detected depending on the interatomic potential model employed. This suggests its possible intermediate role in phosphosilicate glasses. On the contrary, Al plays a network former role and leads to glasses with a more polymerized structure. Interestingly, the results show an increased propensity for aggregation of the Ca(2+) and PO4(3-) ions in the Al-containing phosphosilicate glasses with respect to the Ga-containing ones. This leads to insoluble calcium-phosphate-rich regions not detected in the bioactive glasses.

  19. Local structure and structural signature underlying properties in metallic glasses and supercooled liquids

    NASA Astrophysics Data System (ADS)

    Ding, Jun

    Metallic glasses (MGs), discovered five decades ago as a newcomer in the family of glasses, are of current interest because of their unique structures and properties. There are also many fundamental materials science issues that remain unresolved for metallic glasses, as well as their predecessor above glass transition temperature, the supercooled liquids. In particular, it is a major challenge to characterize the local structure and unveil the structure-property relationship for these amorphous materials. This thesis presents a systematic study of the local structure of metallic glasses as well as supercooled liquids via classical and ab initio molecular dynamics simulations. Three typical MG models are chosen as representative candidate, Cu64 Zr36, Pd82Si18 and Mg65Cu 25Y10 systems, while the former is dominant with full icosahedra short-range order and the prism-type short-range order dominate for latter two. Furthermore, we move to unravel the underlying structural signature among several properties in metallic glasses. Firstly, the temperature dependence of specific heat and liquid fragility between Cu-Zr and Mg-Cu-Y (also Pd-Si) in supercooled liquids are quite distinct: gradual versus fast evolution of specific heat and viscosity/relaxation time with undercooling. Their local structural ordering are found to relate with the temperature dependence of specific heat and relaxation time. Then elastic heterogeneity has been studied to correlate with local structure in Cu-Zr MGs. Specifically, this part covers how the degree of elastic deformation correlates with the internal structure at the atomic level, how to quantitatively evaluate the local solidity/liquidity in MGs and how the network of interpenetrating connection of icosahedra determine the corresponding shear modulus. Finally, we have illustrated the structure signature of quasi-localized low-frequency vibrational normal modes, which resides the intriguing vibrational properties in MGs. Specifically, the local atomic packing structure in a model MG strongly correlate with the corresponding participation fraction in quasi-localized soft modes, while the highest and lowest participation correspond to geometrically unfavored motifs and ISRO respectively. In addition, we clearly demonstrate that quasi-localized low-frequency vibrational modes correlate strongly with fertile sites for shear transformations in a MG.

  20. Study of Geometric Stability and Structural Integrity of Self-Healing Glass Seal System Used in Solid Oxide Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.

    A self-healing glass seal has the potential of restoring its mechanical properties upon being reheated to SOFC stack operating temperature, even when it has experienced some cooling induced damage/cracking at room temperature. Such a self-healing feature is desirable for achieving high seal reliability during thermal cycling. On the other hand, self-healing glass is also characterized by its low mechanical stiffness and high creep rate at the typical operating temperature of SOFCs. Therefore, geometry stability and structural integrity of the glass seal system becomes critical to its successful application in SOFCs. In this paper, the geometry stability of the self-healing glassmore » and the influence of various interfacial conditions of ceramic stoppers with the PEN, IC, and glass seal on the structural integrity of the glass seal during the operating and cooling down processes are studied using finite element analyses. For this purpose, the test cell used in the leakage tests for compliant glass seals conducted at PNNL is taken as the initial modeling geometry. The effect of the ceramic stopper on the geometry stability of the self-healing glass sealants is studied first. Two interfacial conditions of the ceramic stopper and glass seals, i.e., bonded (strong) or un-bonded (weak), are considered. Then the influences of interfacial strengths at various interfaces, i.e., stopper/glass, stopper/PEN, as well as stopper/IC plate, on the geometry stability and reliability of glass during the operating and cooling processes are examined.« less

  1. Preparation of orthophosphate glasses in the MgO-CaO-SiO2-Nb2O5-P2O5 system.

    PubMed

    Lee, Sungho; Ueda, Kyosuke; Narushima, Takayuki; Nakano, Takayoshi; Kasuga, Toshihiro

    2017-01-01

    Niobia/magnesia-containing orthophosphate invert glasses were successfully prepared in our earlier work. Orthophosphate groups in the glasses were cross-linked by tetrahedral niobia (NbO4) and magnesia. The aim of this work is to prepare calcium orthophosphate invert glasses containing magnesia and niobia, incorporating silica, and to evaluate their structures and releasing behaviors. The glasses were prepared by melt-quenching, and their structures and ion-releasing behaviors were evaluated. 31P solid-state nuclear magnetic resonance (NMR) and Raman spectroscopies showed the glasses consist of orthophosphate (PO4), orthosilicate (SiO4), and NbO4 tetrahedra. NbO4 and MgO in the glasses act as network formers. By incorporating SiO2 into the glasses, the chemical durability of the glasses was slightly improved. The glasses reheated at 800°C formed the orthophosphate crystalline phases, such as β-Ca3(PO4)2, Mg3(PO4)2 and Mg3Ca3(PO4)4 in the glasses. The chemical durability of the crystallized glasses was slightly improved. Orthosilicate groups and NbO4 in the glasses coordinated with each other to form Si-O-Nb bonds. The chemical durability of the glasses was slightly improved by addition of SiO2, since the field strength of Si is larger than that of Ca or Mg.

  2. Sum-frequency generation analyses of the structure of water at amphoteric SAM-liquid water interfaces.

    PubMed

    Nomura, Kouji; Nakaji-Hirabayashi, Tadashi; Gemmei-Ide, Makoto; Kitano, Hiromi; Noguchi, Hidenori; Uosaki, Kohei

    2014-09-01

    Surfaces of both a cover glass and the flat plane of a semi-cylindrical quartz prism were modified with a mixture of positively and negatively charged silane coupling reagents (3-aminopropyltriethoxysilane (APTES) and 3-(trihydroxysilyl)propylmethylphosphonate (THPMP), respectively). The glass surface modified with a self-assembled monolayer (SAM) prepared at a mixing ratio of APTES:THPMP=4:6 was electrically almost neutral and was resistant to non-specific adsorption of proteins, whereas fibroblasts gradually adhered to an amphoteric (mixed) SAM surface probably due to its stiffness, though the number of adhered cells was relatively small. Sum frequency generation (SFG) spectra indicated that total intensity of the OH stretching region (3000-3600cm(-1)) for the amphoteric SAM-modified quartz immersed in liquid water was smaller than those for the positively and negatively charged SAM-modified quartz prisms and a bare quartz prism in contact with liquid water. These results suggested that water molecules at the interface of water and an amphoteric SAM-modified quartz prism are not strongly oriented in comparison with those at the interface of a lopsidedly charged SAM-modified quartz prism and bare quartz. The importance of charge neutralization for the anti-biofouling properties of solid materials was strongly suggested. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Engineered disorder and light propagation in a planar photonic glass

    PubMed Central

    Romanov, Sergei G.; Orlov, Sergej; Ploss, Daniel; Weiss, Clemens K.; Vogel, Nicolas; Peschel, Ulf

    2016-01-01

    The interaction of light with matter strongly depends on the structure of the latter at wavelength scale. Ordered systems interact with light via collective modes, giving rise to diffraction. In contrast, completely disordered systems are dominated by Mie resonances of individual particles and random scattering. However, less clear is the transition regime in between these two extremes, where diffraction, Mie resonances and near-field interaction between individual scatterers interplay. Here, we probe this transitional regime by creating colloidal crystals with controlled disorder from two-dimensional self-assembly of bidisperse spheres. Choosing the particle size in a way that the small particles are transparent in the spectral region of interest enables us to probe in detail the effect of increasing positional disorder on the optical properties of the large spheres. With increasing disorder a transition from a collective optical response characterized by diffractive resonances to single particles scattering represented by Mie resonances occurs. In between these extremes, we identify an intermediate, hopping-like light transport regime mediated by resonant interactions between individual spheres. These results suggest that different levels of disorder, characterized not only by absence of long range order but also by differences in short-range correlation and interparticle distance, exist in colloidal glasses. PMID:27277521

  4. Osseointegration properties of titanium dental implants modified with a nanostructured coating based on ordered porous silica and bioactive glass nanoparticles

    NASA Astrophysics Data System (ADS)

    Covarrubias, Cristian; Mattmann, Matías; Von Marttens, Alfredo; Caviedes, Pablo; Arriagada, Cristián; Valenzuela, Francisco; Rodríguez, Juan Pablo; Corral, Camila

    2016-02-01

    The fabrication of a nanoporous silica coating loaded with bioactive glass nanoparticles (nBG/NSC) on titanium dental implant surface and its in vitro and in vivo evaluation is presented. The coating was produced by a combined sol-gel and evaporation induced self-assembly process. In vitro bioactivity was assessed in simulated body fluid (SBF) and investigating the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). A rat tibial model was employed to analyze the bone response to nBG/NSC-modified titanium implant surface in vivo. The nBG/NSC coating was confirmed at nano level to be constituted by a highly ordered nanoporous silica structure. The coating nanotopography in conjunction with the bioactivity of the BG particles accelerate the in vitro apatite formation and promote the osteogenic differentiation of hBMSCs in absence of osteogenic supplements. These properties accelerate the formation of bone tissue in the periphery of the implant after 3 weeks of implantation. Backscattered scanning electron microscopy images revealed the presence of gaps and soft tissue in the unmodified implant after 6 weeks, whereas the nBG/NSC-modified implant showed mature bone in intimate contact with the implant surface. The nBG/NSC coating appears promising for accelerating the osseointegration of dental implants.

  5. Formation and differentiation of three-dimensional rat marrow stromal cell culture on microcarriers in a rotating-wall vessel

    NASA Technical Reports Server (NTRS)

    Qiu, Q.; Ducheyne, P.; Gao, H.; Ayyaswamy, P.

    1998-01-01

    Using a high aspect ratio vessel (HARV), this study investigated the formation of 3-D rat marrow stromal cell culture on microcarriers and the expression of bone-related biochemical markers under conditions of simulated microgravity. In addition, it calculated the shear stresses imparted on the surface of microcarriers of different densities by the medium fluid in an HARV. Secondary rat marrow stromal cells were cultured on two types of microcarriers, Cytodex-3 beads and modified bioactive glass particles. Examination of cellular morphology by scanning electron microscopy revealed the presence of three-dimensional multicellular aggregates consisting of multiple cell-covered Cytodex-3 microcarriers bridged together. Mineralization was observed in the aggregates. Spherical cell-bead aggregates were observed in an HARV, while cell-bead assemblies were mostly loosely packed in a chain-like or branched structure in a cell bag. The expressions of alkaline phosphatase activity, collagen type I, and osteopontin were shown via the use of histochemical staining, immunolabeling, and confocal scanning electron microscopy. Using a numerical approach, it was found that at a given rotational speed and for a given culture medium, a larger density difference between the microcarrier and the culture medium (e.g., a modified bioactive glass particle) imparted a higher maximum shear stress on the microcarrier.

  6. The grindability of glass fibre reinforced polymer composite

    NASA Astrophysics Data System (ADS)

    Chockalingam, P.

    The use of glass fibre-reinforced polymer (GFRP) composite materials is extensive due to their favourable mechanical properties and near net shape production. However, almost all composite structures require post-processing operations such as grinding to meet surface finish requirements during assembly. Unlike that of conventional metal, grinding of GFRP composite needs special tools and parameters due to the abrasive nature of fibres and the delamination of the workpiece. Therefore, proper selection of the tools and parameters is important. This research aims to investigate the effects of wheel speed, feed, depth of cut, grinding wheel and coolant on the grindability of chopped strand mat (CSM) GFRP. Grinding was carried out in a precision CNC (Master-10HVA) high-speed machining centre under three conditions, namely dry, and wet conditions with synthetic coolant and emulsion coolant, using alumina wheel (OA46QV) and CBN wheel (B46QV). The grinding experiments were conducted per the central composite design of design of experiments. The grindability aspects investigated were surface area roughness (Sa) and cutting force ratio (µ). The responses were analyzed by developing fuzzy logic models. The surface area roughness and cutting force ratio values predicted by the fuzzy logic models are mostly in good agreement with experimental data, and hence conclusion was made that these models were reliable.

  7. A Molecular Dynamics Study of the Structure-Dynamics Relationships of Supercooled Liquids and Glasses

    NASA Astrophysics Data System (ADS)

    Soklaski, Ryan

    Central to the field of condensed matter physics is a decades old outstanding problem in the study of glasses -- namely explaining the extreme slowing of dynamics in a liquid as it is supercooled towards the so-called glass transition. Efforts to universally describe the stretched relaxation processes and heterogeneous dynamics that characteristically develop in supercooled liquids remain divided in both their approaches and successes. Towards this end, a consensus on the role that atomic and molecular structures play in the liquid is even more tenuous. However, mounting material science research efforts have culminated to reveal that the vast diversity of metallic glass species and their properties are rooted in an equally-broad set of structural archetypes. Herein lies the motivation of this dissertation: the detailed information available regarding the structure-property relationships of metallic glasses provides a new context in which one can study the evolution of a supercooled liquid by utilizing a structural motif that is known to dominate the glass. Cu64Zr36 is a binary alloy whose good glass-forming ability and simple composition makes it a canonical material to both empirical and numerical studies. Here, we perform classical molecular dynamics simulations and conduct a comprehensive analysis of the dynamical regimes of liquid Cu64Zr36, while focusing on the roles played by atomic icosahedral ordering -- a structural motif which ultimately percolates the glass' structure. Large data analysis techniques are leveraged to obtain uniquely detailed structural and dynamical information in this context. In doing so, we develop the first account of the origin of icosahedral order in this alloy, revealing deep connections between this incipient structural ordering, frustration-limited domain theory, and recent important empirical findings that are relevant to the nature of metallic liquids at large. Furthermore, important dynamical landmarks such as the breakdown of the Stokes-Einstein relationship, the decoupling of particle diffusivities, and the development of general "glassy" relaxation features are found to coincide with successive manifestation of icosahedral ordering that arise as the liquid is supercooled. Remarkably, we detect critical-like features in the growth of the icosahedron network, with signatures that suggest that a liquid-liquid phase transition may occur in the deeply supercooled regime to precede glass formation. Such a transition is predicted to occur in many supercooled liquids, although explicit evidence of this phenomenon in realistic systems is scarce. Ultimately this work concludes that icosahedral order characterizes all dynamical regimes of Cu64Zr 36, demonstrating the importance and utility of studying supercooled liquids in the context of locally-preferred structure. More broadly, it serves to confirm and inform recent theoretical and empirical findings that are central to understanding the physics underlying the glass transition.

  8. Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass

    DOE PAGES

    Gammer, C.; Escher, B.; Ebner, C.; ...

    2017-03-21

    Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less

  9. Influence of the Ag concentration on the medium-range order in a CuZrAlAg bulk metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gammer, C.; Escher, B.; Ebner, C.

    Fluctuation electron microscopy of bulk metallic glasses of CuZrAl(Ag) demonstrates that medium-range order is sensitive to minor compositional changes. Furthermore, by analyzing nanodiffraction patterns medium-range order is detected with crystal-like motifs based on the B2 CuZr structure and its distorted structures resembling the martensitic ones. This result thus demonstrates some structural homology between the metallic glass and its high temperature crystalline phase. The amount of medium-range order seems slightly affected with increasing Ag concentration (0, 2, 5 at.%) but the structural motifs of the medium-range ordered clusters become more diverse at the highest Ag concentration. The decrease of dominant clustersmore » is consistent with the destabilization of the B2 structure measured by calorimetry and accounts for the increased glass-forming ability.« less

  10. Solar-Array Substrate From Glass-Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Eirls, J. L.

    1985-01-01

    Design elminiates glass superstrate and associated metal framing. Panel has two trapezoidal stiffening ribs for structural support. Strategic placement of ribs with embedded support tubes (standard PVC tubing) minimizes bending moments and resulting stresses produced by installation and windloads. Glass-reinforced concrete panel has smooth flat surface suitable for solar substrate and includes structural bracing for rigidity and design adaptable to mass production.

  11. Structure of high alumina content Al2O3-SiO2 composition glasses.

    PubMed

    Weber, Richard; Sen, Sabyasachi; Youngman, Randall E; Hart, Robert T; Benmore, Chris J

    2008-12-25

    The structure of binary aluminosilicate glasses containing 60-67 mol % Al2O3 were investigated using high-resolution 27Al NMR and X-ray and neutron diffraction. The glasses were made by aerodynamic levitation of molten oxides. The 67% alumina composition required a cooling rate of approximately 1600 degrees C s(1-) to form glass from submillimeter sized samples. NMR results show that the glasses contain aluminum in 4-, 5-, and 6-fold coordination in the approximate ratio 4:5:1. The average Al coordination increases from 4.57 to 4.73 as the fraction of octahedral Al increases with alumina content. The diffraction results on the 67% composition are consistent with a disordered Al framework with Al ions in a range of coordination environments that are substantially different from those found in the equilibrium crystalline phases. Analysis of the neutron and X-ray structure factors yields an average bond angle of 125 +/- 4 degrees between an Al ion and the adjoining cation via a bridging oxygen. We propose that the structure of the glass is a "transition state" between the alumina-rich liquid and the equilibrium mullite phase that are dominated by 4- and 6-coordinated aluminum ions, respectively.

  12. Spectroscopic properties of Eu3+/Nd3+ co-doped phosphate glasses and opaque glass-ceramics

    NASA Astrophysics Data System (ADS)

    Narro-García, R.; Desirena, H.; López-Luke, T.; Guerrero-Contreras, J.; Jayasankar, C. K.; Quintero-Torres, R.; De la Rosa, E.

    2015-08-01

    This paper reports the fabrication and characterization of Eu3+/Nd3+ co-doped phosphate (PNE) glasses and glass-ceramics as a function of Eu3+ concentration. The precursor glasses were prepared by the conventional melt quenching technique and the opaque glass-ceramics were obtained by heating the precursor glasses at 450 °C for 30 h. The structural and optical properties of the glass and glass-ceramics were analyzed by means of X-ray diffraction, Raman spectroscopy, UV-VIS-IR absorption spectroscopy, photoluminescence spectra and lifetimes. The amorphous and crystalline structures of the precursor glass and opaque glass-ceramic were confirmed by X-ray diffraction respectively. The Raman spectra showed that the maximum phonon energy decreased from 1317 cm-1 to 1277 cm-1 with the thermal treatment. The luminescence spectra of the glass and glass-ceramic samples were studied under 396 nm and 806 nm excitation. The emission intensity of the bands observed in opaque glass-ceramic is stronger than that of the precursor glass. The luminescence spectra show strong dependence on the Eu3+ ion concentration in the Nd3+ ion photoluminescence (PL) intensity, which suggest the presence of energy transfer (ET) and cross-relaxation (CR) processes. The lifetimes of the 4F3/2 state of Nd3+ ion in Eu3+/Nd3+ co-doped phosphate glasses and glass-ceramics under 806 nm excitation were measured. It was observed that the lifetimes of the 4F3/2 level of Nd3+ of both glasses and glass-ceramics decrease with the increasing Eu3+ concentration. However in the case of opaque glass-ceramics the lifetimes decrease only 16%.

  13. Structure of Ancient Glass by 29 Si Magic Angle Spinning NMR Spectroscopy.

    PubMed

    Bradford, Henry; Ryder, Amy; Henderson, Julian; Titman, Jeremy J

    2018-05-23

    29 Si magic angle spinning (MAS) NMR spectroscopy has been applied for the first time to the structural analysis of ancient glass samples obtained from archaeological excavations. The results show that it is possible to establish the distribution of Si environments in ancient glass by 29 Si MAS NMR, so long as the concentrations of magnetic impurities, such as Mn and Fe oxides, are low. In general, good agreement has been obtained with compositions determined by means of electron probe microanalysis. In addition, the 29 Si MAS NMR data reveal structural differences between glasses manufactured at separate ancient sites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structural properties and glass transition in Aln clusters

    NASA Astrophysics Data System (ADS)

    Sun, D. Y.; Gong, X. G.

    1998-02-01

    We have studied the structural and dynamical properties of several Aln clusters by the molecular-dynamics method combined with simulated annealing. The well-fitted glue potential is used to describe the interatomic interaction. The obtained atomic structures for n=13, 55, and 147 are in agreement with results from ab initio calculations. Our results have demonstrated that the disordered cluster Al43 can be considered as a glass cluster. The obtained thermal properties of glass cluster Al43 are clearly different from the results for high-symmetry clusters, its melting behavior has properties similar to those of a glass solid. The present studies also show that the surface melting behavior does not exist in the studied Aln clusters.

  15. The structure of MgO-SiO2 glasses at elevated pressure.

    PubMed

    Wilding, Martin; Guthrie, Malcolm; Kohara, Shinji; Bull, Craig L; Akola, Jaakko; Tucker, Matt G

    2012-06-06

    The magnesium silicate system is an important geophysical analogue and neutron diffraction data from glasses formed in this system may also provide an initial framework for understanding the structure-dependent properties of related liquids that are important during planetary formation. Neutron diffraction data collected in situ for a single composition (38 mol% SiO(2)) magnesium silicate glass sample shows local changes in structure as pressure is increased from ambient conditions to 8.6 GPa at ambient temperature. A method for obtaining the fully corrected, total structure factor, S(Q), has been developed that allows accurate structural characterization as this weakly scattering glass sample is compressed. The measured S(Q) data indicate changes in chemical ordering with pressure and the real-space transforms show an increase in Mg-O coordination number and a distortion of the local environment around magnesium ions. We have used reverse Monte Carlo methods to compare the high pressure and ambient pressure structures and also compare the high pressure form with a more silica-poor glass (Mg(2)SiO(4)) that represents the approach to a more dense, void-free and topologically ordered structure. The Mg-O coordination number increases with pressure and we also find that the degree of continuous connectivity of Si-O bonds increases via a collapse of interstices.

  16. An application for impedance spectroscopy in the characterisation of the glass transition during the lyophilization cycle: the example of a 10% w/v maltodextrin solution.

    PubMed

    Smith, Geoff; Arshad, Muhammad Sohail; Polygalov, Eugene; Ermolina, Irina

    2013-11-01

    Impedance spectroscopy has been used for the measurement of the glass transition of a 10 % maltodextrin solution contained within a glass vial, with externally attached electrodes. Features of the pseudo-relaxation process, associated with the composite impedance of the glass vial-solution assembly, were characterised by the peak amplitude, C(peak)(″), and peak frequency, f(peak), of the capacitance spectra and the equivalent circuit elements that model the impedance spectra (i.e. the solution resistance and solution capacitance) and monitored every 3 min during re-heating of the solution. The time derivatives of all four parameters studied provided a glass transition in close agreement with DSC measurements (-17 °C) and at a precision of ± 0.5 °C. The temperature dependencies of the solution resistance and peak frequency were then characterised with the Arrhenius and Vogel-Fulcher-Tammann fit functions, at temperatures below and above Tg, respectively. The energy of activation (below Tg) was estimated at ~20 kJ mol(-1), and the fragility index (If) of the glass forming liquid (above Tg) was estimated at 0.9. The significance of the fragility index to the development, optimisation and control of the freeze-drying cycle is highlighted. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. (Re)-wiring a brain with light: Clinical and visual processing findings after application of specific coloured glasses in patients with symptoms of a visual processing disorder (CVPD): Challenge of a possible new perspective?

    PubMed

    Friederichs, Edgar; Wahl, Siegfried

    2017-08-01

    The present investigation examined whether changes of electrophysiological late event related potential pattern could be used to reflect clinical changes from therapeutic intervention with coloured glasses in a group of patients with symptoms of central visual processing disorder. Subjects consisted of 13 patients with average age 16years (range 6-51years) with attention problems and learning disability, respectively. These patients were provided with specified coloured glasses which were required to be used during day time. Results indicated that specified coloured glasses significantly improved attention performance. Furthermore electrophysiological parameters revealed a significant change in the late event related potential distribution pattern (latency, amplitudes). This reflects a synchronization of together firing wired neural assemblies responsible for visual processing, suggesting an accelerated neuromaturation process when using coloured glasses. Our results suggest that the visual event related potentials measures are sensitive to changes in clinical development of patients with deficits of visual processing wearing appropriate coloured glasses. It will be discussed whether such a device might be useful for a clinical improvement of distraction symptoms caused by visual processing deficits. A model is presented explaining these effects by inducing the respiratory chain of the mitochondria such increasing the low energy levels of ATP of our patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cooling rate dependence of structural order in Al 90Sm 10 metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yang; Zhang, Yue; Zhang, Feng

    2016-07-07

    Here, the atomic structure of Al 90Sm 10 metallic glass is studied using molecular dynamics simulations. By performing a long sub-T g annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-T g annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu 64.5Zrmore » 35.5, the clusters representing the short-range order do not form an interconnected interpenetrating network in Al 90Sm 10, which has only marginal glass formability.« less

  19. Cooling rate dependence of structural order in Al{sub 90}Sm{sub 10} metallic glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yang; Ames Laboratory, US Department of Energy, Ames, Iowa 50011; Zhang, Yue

    2016-07-07

    The atomic structure of Al{sub 90}Sm{sub 10} metallic glass is studied using molecular dynamics simulations. By performing a long sub-T{sub g} annealing, we developed a glass model closer to the experiments than the models prepared by continuous cooling. Using the cluster alignment method, we found that “3661” cluster is the dominating short-range order in the glass samples. The connection and arrangement of “3661” clusters, which define the medium-range order in the system, are enhanced significantly in the sub-T{sub g} annealed sample as compared with the fast cooled glass samples. Unlike some strong binary glass formers such as Cu{sub 64.5}Zr{sub 35.5},more » the clusters representing the short-range order do not form an interconnected interpenetrating network in Al{sub 90}Sm{sub 10,} which has only marginal glass formability.« less

  20. Investigation of bioactivity and cell effects of nano-porous sol-gel derived bioactive glass film

    NASA Astrophysics Data System (ADS)

    Ma, Zhijun; Ji, Huijiao; Hu, Xiaomeng; Teng, Yu; Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli; Chen, Weibo; Qiu, Jianrong; Zhang, Ming

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol-gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

Top