Task Integration Facilitates Multitasking.
de Oliveira, Rita F; Raab, Markus; Hegele, Mathias; Schorer, Jörg
2017-01-01
The aim of this study was to investigate multi-task integration in a continuous tracking task. We were particularly interested in how manipulating task structure in a dual-task situation affects learning of a constant segment embedded in a pursuit-tracking task. Importantly, we examined if dual-task effects could be attributed to task integration by varying the structural similarity and difficulty of the primary and secondary tasks. In Experiment 1 participants performed a pursuit tracking task while counting high-pitched tones and ignoring low-pitched tones. The tones were either presented randomly or structurally 250 ms before each tracking turn. Experiment 2 increased the motor load of the secondary tasks by asking participants to tap their feet to the tones. Experiment 3 further increased motor load of the primary task by increasing its speed and having participants tracking with their non-dominant hand. The results show that dual-task interference can be moderated by secondary task conditions that match the structure of the primary task. Therefore our results support proposals of task integration in continuous tracking paradigms. We conclude that multi-tasking is not always detrimental for motor learning but can be facilitated through task-integration.
Dynamic kirigami structures for integrated solar tracking.
Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R; Shtein, Max
2015-09-08
Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices.
Dynamic kirigami structures for integrated solar tracking
Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max
2015-01-01
Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820
Proportional plus integral MIMO controller for regulation and tracking with anti-wind-up features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puleston, P.F.; Mantz, R.J.
1993-11-01
A proportional plus integral matrix control structure for MIMO systems is proposed. Based on a standard optimal control structure with integral action, it permits a greater degree of independence of the design and tuning of the regulating and tracking features, without considerably increasing the controller complexity. Fast recovery from load disturbances is achieved, while large overshoots associated with set-point changes and reset wind-up problems can be reduced. A simple effective procedure for practical tuning is introduced.
Nanodosimetric track structure in homogeneous extended beams.
Conte, V; Moro, D; Colautti, P; Grosswendt, B
2015-09-01
Physical aspects of particle track structure are important in determining the induction of clustered damage in relevant subcellular structures like the DNA and higher-order genomic structures. The direct measurement of track-structure properties of ionising radiation is feasible today by counting the number of ionisations produced inside a small gas volume. In particular, the so-called track-nanodosimeter, installed at the TANDEM-ALPI accelerator complex of LNL, measures ionisation cluster-size distributions in a simulated subcellular structure of dimensions 20 nm, corresponding approximately to the diameter of the chromatin fibre. The target volume is irradiated by pencil beams of primary particles passing at specified impact parameter. To directly relate these measured track-structure data to radiobiological measurements performed in broad homogeneous particle beams, these data can be integrated over the impact parameter. This procedure was successfully applied to 240 MeV carbon ions and compared with Monte Carlo simulations for extended fields. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Integrated mobile robot control
NASA Technical Reports Server (NTRS)
Amidi, Omead; Thorpe, Charles
1991-01-01
This paper describes the structure, implementation, and operation of a real-time mobile robot controller which integrates capabilities such as: position estimation, path specification and tracking, human interfaces, fast communication, and multiple client support. The benefits of such high-level capabilities in a low-level controller was shown by its implementation for the Navlab autonomous vehicle. In addition, performance results from positioning and tracking systems are reported and analyzed.
ACOSS Eleven (Active Control of Space Structures)
1984-09-01
spatial integration with thresh- old level and system track threshold level reduction factor. 2.2.3 Track Acquisition In the HRAP/LRTP simulation, input ...in both row and column, however, then the track direction is determined to be diagonal. Also, as with the first * tier, multiple hits are processed...for any system track before thresholding, clustering, and centroiding can produce the next frame to be input to the two tier algorithm. As Figure 2-10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hua, E-mail: huli@radonc.wustl.edu; Chen, Hsin
Purpose: For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Methods: Considering the complex H&N structures andmore » ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28% ± 1.46%) and margin error (0.49 ± 0.12 mm) showed good agreement between the automatic and manual results. The comparison with three other deformable model-based segmentation methods illustrated the superior shape tracking performance of the proposed method. Large interpatient variations of swallowing frequency, swallowing duration, and upper airway cross-sectional area were observed from the testing cine image sequences. Conclusions: The proposed motion tracking method can provide accurate upper airway motion tracking results, and enable automatic and quantitative identification and analysis of in-treatment H&N upper airway motion. By integrating explicit and implicit linked-shape representations within a hierarchical model-fitting process, the proposed tracking method can process complex H&N structures and low-contrast/resolution cine MRI images. Future research will focus on the improvement of method reliability, patient motion pattern analysis for providing more information on patient-specific prediction of structure displacements, and motion effects on dosimetry for better H&N motion management in radiation therapy.« less
Li, Hua; Chen, Hsin-Chen; Dolly, Steven; Li, Harold; Fischer-Valuck, Benjamin; Victoria, James; Dempsey, James; Ruan, Su; Anastasio, Mark; Mazur, Thomas; Gach, Michael; Kashani, Rojano; Green, Olga; Rodriguez, Vivian; Gay, Hiram; Thorstad, Wade; Mutic, Sasa
2016-08-01
For the first time, MRI-guided radiation therapy systems can acquire cine images to dynamically monitor in-treatment internal organ motion. However, the complex head and neck (H&N) structures and low-contrast/resolution of on-board cine MRI images make automatic motion tracking a very challenging task. In this study, the authors proposed an integrated model-driven method to automatically track the in-treatment motion of the H&N upper airway, a complex and highly deformable region wherein internal motion often occurs in an either voluntary or involuntary manner, from cine MRI images for the analysis of H&N motion patterns. Considering the complex H&N structures and ensuring automatic and robust upper airway motion tracking, the authors firstly built a set of linked statistical shapes (including face, face-jaw, and face-jaw-palate) using principal component analysis from clinically approved contours delineated on a set of training data. The linked statistical shapes integrate explicit landmarks and implicit shape representation. Then, a hierarchical model-fitting algorithm was developed to align the linked shapes on the first image frame of a to-be-tracked cine sequence and to localize the upper airway region. Finally, a multifeature level set contour propagation scheme was performed to identify the upper airway shape change, frame-by-frame, on the entire image sequence. The multifeature fitting energy, including the information of intensity variations, edge saliency, curve geometry, and temporal shape continuity, was minimized to capture the details of moving airway boundaries. Sagittal cine MR image sequences acquired from three H&N cancer patients were utilized to demonstrate the performance of the proposed motion tracking method. The tracking accuracy was validated by comparing the results to the average of two manual delineations in 50 randomly selected cine image frames from each patient. The resulting average dice similarity coefficient (93.28% ± 1.46%) and margin error (0.49 ± 0.12 mm) showed good agreement between the automatic and manual results. The comparison with three other deformable model-based segmentation methods illustrated the superior shape tracking performance of the proposed method. Large interpatient variations of swallowing frequency, swallowing duration, and upper airway cross-sectional area were observed from the testing cine image sequences. The proposed motion tracking method can provide accurate upper airway motion tracking results, and enable automatic and quantitative identification and analysis of in-treatment H&N upper airway motion. By integrating explicit and implicit linked-shape representations within a hierarchical model-fitting process, the proposed tracking method can process complex H&N structures and low-contrast/resolution cine MRI images. Future research will focus on the improvement of method reliability, patient motion pattern analysis for providing more information on patient-specific prediction of structure displacements, and motion effects on dosimetry for better H&N motion management in radiation therapy.
Geometric Integration of Hybrid Correspondences for RGB-D Unidirectional Tracking
Tang, Shengjun; Chen, Wu; Wang, Weixi; Li, Xiaoming; Li, Wenbin; Huang, Zhengdong; Hu, Han; Guo, Renzhong
2018-01-01
Traditionally, visual-based RGB-D SLAM systems only use correspondences with valid depth values for camera tracking, thus ignoring the regions without 3D information. Due to the strict limitation on measurement distance and view angle, such systems adopt only short-range constraints which may introduce larger drift errors during long-distance unidirectional tracking. In this paper, we propose a novel geometric integration method that makes use of both 2D and 3D correspondences for RGB-D tracking. Our method handles the problem by exploring visual features both when depth information is available and when it is unknown. The system comprises two parts: coarse pose tracking with 3D correspondences, and geometric integration with hybrid correspondences. First, the coarse pose tracking generates the initial camera pose using 3D correspondences with frame-by-frame registration. The initial camera poses are then used as inputs for the geometric integration model, along with 3D correspondences, 2D-3D correspondences and 2D correspondences identified from frame pairs. The initial 3D location of the correspondence is determined in two ways, from depth image and by using the initial poses to triangulate. The model improves the camera poses and decreases drift error during long-distance RGB-D tracking iteratively. Experiments were conducted using data sequences collected by commercial Structure Sensors. The results verify that the geometric integration of hybrid correspondences effectively decreases the drift error and improves mapping accuracy. Furthermore, the model enables a comparative and synergistic use of datasets, including both 2D and 3D features. PMID:29723974
Geometric Integration of Hybrid Correspondences for RGB-D Unidirectional Tracking.
Tang, Shengjun; Chen, Wu; Wang, Weixi; Li, Xiaoming; Darwish, Walid; Li, Wenbin; Huang, Zhengdong; Hu, Han; Guo, Renzhong
2018-05-01
Traditionally, visual-based RGB-D SLAM systems only use correspondences with valid depth values for camera tracking, thus ignoring the regions without 3D information. Due to the strict limitation on measurement distance and view angle, such systems adopt only short-range constraints which may introduce larger drift errors during long-distance unidirectional tracking. In this paper, we propose a novel geometric integration method that makes use of both 2D and 3D correspondences for RGB-D tracking. Our method handles the problem by exploring visual features both when depth information is available and when it is unknown. The system comprises two parts: coarse pose tracking with 3D correspondences, and geometric integration with hybrid correspondences. First, the coarse pose tracking generates the initial camera pose using 3D correspondences with frame-by-frame registration. The initial camera poses are then used as inputs for the geometric integration model, along with 3D correspondences, 2D-3D correspondences and 2D correspondences identified from frame pairs. The initial 3D location of the correspondence is determined in two ways, from depth image and by using the initial poses to triangulate. The model improves the camera poses and decreases drift error during long-distance RGB-D tracking iteratively. Experiments were conducted using data sequences collected by commercial Structure Sensors. The results verify that the geometric integration of hybrid correspondences effectively decreases the drift error and improves mapping accuracy. Furthermore, the model enables a comparative and synergistic use of datasets, including both 2D and 3D features.
The Post-Dam System. Volume 5. Harvard Project Manager (HPM).
1992-10-01
cQllected and analyzed to determine structural integrity and usability. From this analysis, a repair schedule is developed. This is currently a time...information on mission-critical facility damage is collected and analyzed to determine structural integrity and usability. From this analysis, a repair...to determine repair strategies with an expert system, keep track of materials and equipment with a relational database management system, and
Automatic detection, tracking and sensor integration
NASA Astrophysics Data System (ADS)
Trunk, G. V.
1988-06-01
This report surveys the state of the art of automatic detection, tracking, and sensor integration. In the area of detection, various noncoherent integrators such as the moving window integrator, feedback integrator, two-pole filter, binary integrator, and batch processor are discussed. Next, the three techniques for controlling false alarms, adapting thresholds, nonparametric detectors, and clutter maps are presented. In the area of tracking, a general outline is given of a track-while-scan system, and then a discussion is presented of the file system, contact-entry logic, coordinate systems, tracking filters, maneuver-following logic, tracking initiating, track-drop logic, and correlation procedures. Finally, in the area of multisensor integration the problems of colocated-radar integration, multisite-radar integration, radar-IFF integration, and radar-DF bearing strobe integration are treated.
NASA Astrophysics Data System (ADS)
de la Broïse, Xavier; Le Coguie, Alain; Sauvageot, Jean-Luc; Pigot, Claude; Coppolani, Xavier; Moreau, Vincent; d'Hollosy, Samuel; Knarosovski, Timur; Engel, Andreas
2018-05-01
We have successively developed two superconducting flexible PCBs for cryogenic applications. The first one is monolayer, includes 552 tracks (10 µm wide, 20 µm spacing), and receives 24 wire-bonded integrated circuits. The second one is multilayer, with one track layer between two shielding layers interconnected by microvias, includes 37 tracks, and can be interconnected at both ends by wire bonding or by connectors. The first cold measurements have been performed and show good performances. The novelty of these products is, for the first one, the association of superconducting materials with very narrow pitch and bonded integrated circuits and, for the second one, the introduction of a superconducting multilayer structure interconnected by vias which is, to our knowledge, a world-first.
1994-08-01
721 An Improved G-Tracking Method for Large Transport Aircraft ............................ 741 iv Naval aircraft Approach and...E. B. de la Motte Swedish Defence Materiel Administration, Stockholm, Sweden Capt F. A. Opaiski WL/FIBEC 090040930 An Aircraft Structural Integrity...M. Poole Canadian Transportation Safety Board 1400-1430 The Challenges Associated with the Operation of Loads Monitoring Equipment for Efficient
Kochunov, Peter; Robin, Don A.; Royall, Don R.; Coyle, Thomas; Lancaster, Jack; Kochunov, Valeria; Schlosser, Anita E.; Fox, Peter T.
2009-01-01
We explored the relationship between structural neuroimaging-based indices of cerebral integrity and executive control function (ECF) in two groups of healthy subjects: A maturing group (33 subjects; 19–29 years) and a senescing group (38 adults; 30–90 years). ECF was assessed using the Executive Interview (EXIT) battery. Cortical indices of cerebral integrity included GM thickness, intergyral span, and sulcal span, each measured for five cortical regions per hemisphere. Subcortical indices included fractional anisotropy (FA), measured using track-based-spatial-statistics (TBSS), and the volume of T2-hyperintense WM (HWM). In the maturing group, no significant relationships between neuroanatomical changes and ECF were found; however, there were hints that late-term maturation of cerebral WM influenced variability in ECF. In the senescing group, the decline in ECF corresponded to atrophic changes in cerebral WM (sulcal and intergyral span) primarily in the superior frontal and anterior cingulate regions. A large fraction of the variability in ECF (62%) can be explained by variability in the structural indices from these two regions. PMID:19067326
Butler, Dennis J; Holloway, Richard L; Fons, Dominique
2013-01-01
This article describes the development of a Behavioral Medicine track in a family medicine residency designed to train physicians to proactively and consistently apply advanced skills in psychosocial medicine, psychiatric care, and behavioral medicine. The Behavioral Medicine track emerged from a behavioral science visioning retreat, an opportunity to restructure residency training, a comparative family medicine-psychiatry model, and qualified residents with high interest in behavioral science. Training was restructured to increase rotational opportunities in core behavioral science areas and track residents were provided an intensive longitudinal counseling seminar and received advanced training in psychopharmacology, case supervision, and mindfulness. The availability of a Behavioral Medicine track increased medical student interest in the residency program and four residents have completed the track. All track residents have presented medical Grand Rounds on behavioral science topics and have lead multiple workshops or research sessions at national meetings. Graduate responses indicate effective integration of behavioral medicine skills and abilities in practice, consistent use of brief counseling skills, and good confidence in treating common psychiatric disorders. As developed and structured, the Behavioral Medicine track has achieved the goal of producing "assertive practitioners of behavioral science in family medicine" residents with advanced behavioral science skills and abilities who globally integrate behavioral science into primary care.
Total systems design analysis of high performance structures
NASA Technical Reports Server (NTRS)
Verderaime, V.
1993-01-01
Designer-control parameters were identified at interdiscipline interfaces to optimize structural systems performance and downstream development and operations with reliability and least life-cycle cost. Interface tasks and iterations are tracked through a matrix of performance disciplines integration versus manufacturing, verification, and operations interactions for a total system design analysis. Performance integration tasks include shapes, sizes, environments, and materials. Integrity integrating tasks are reliability and recurring structural costs. Significant interface designer control parameters were noted as shapes, dimensions, probability range factors, and cost. Structural failure concept is presented, and first-order reliability and deterministic methods, benefits, and limitations are discussed. A deterministic reliability technique combining benefits of both is proposed for static structures which is also timely and economically verifiable. Though launch vehicle environments were primarily considered, the system design process is applicable to any surface system using its own unique filed environments.
NASA Space Radiation Program Integrative Risk Model Toolkit
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris
2015-01-01
NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Kessler, K. M.
1975-01-01
The selection of the structure of optimal control type models for the human gunner in an anti aircraft artillery system is considered. Several structures within the LQG framework may be formulated. Two basic types are considered: (1) kth derivative controllers; and (2) proportional integral derivative (P-I-D) controllers. It is shown that a suitable criterion for model structure determination can be based on the ensemble statistics of the tracking error. In the case when the ensemble tracking steady state error is zero, it is suggested that a P-I-D controller formulation be used in preference to the kth derivative controller.
Zhang, Xi; Miao, Lingjuan; Shao, Haijun
2016-01-01
If a Kalman Filter (KF) is applied to Global Positioning System (GPS) baseband signal preprocessing, the estimates of signal phase and frequency can have low variance, even in highly dynamic situations. This paper presents a novel preprocessing scheme based on a dual-filter structure. Compared with the traditional model utilizing a single KF, this structure avoids carrier tracking being subjected to code tracking errors. Meanwhile, as the loop filters are completely removed, state feedback values are adopted to generate local carrier and code. Although local carrier frequency has a wide fluctuation, the accuracy of Doppler shift estimation is improved. In the ultra-tight GPS/Inertial Navigation System (INS) integration, the carrier frequency derived from the external navigation information is not viewed as the local carrier frequency directly. That facilitates retaining the design principle of state feedback. However, under harsh conditions, the GPS outputs may still bear large errors which can destroy the estimation of INS errors. Thus, an innovative integrated navigation filter is constructed by modeling the non-negligible errors in the estimated Doppler shifts, to ensure INS is properly calibrated. Finally, field test and semi-physical simulation based on telemetered missile trajectory validate the effectiveness of methods proposed in this paper. PMID:27144570
Zhang, Xi; Miao, Lingjuan; Shao, Haijun
2016-05-02
If a Kalman Filter (KF) is applied to Global Positioning System (GPS) baseband signal preprocessing, the estimates of signal phase and frequency can have low variance, even in highly dynamic situations. This paper presents a novel preprocessing scheme based on a dual-filter structure. Compared with the traditional model utilizing a single KF, this structure avoids carrier tracking being subjected to code tracking errors. Meanwhile, as the loop filters are completely removed, state feedback values are adopted to generate local carrier and code. Although local carrier frequency has a wide fluctuation, the accuracy of Doppler shift estimation is improved. In the ultra-tight GPS/Inertial Navigation System (INS) integration, the carrier frequency derived from the external navigation information is not viewed as the local carrier frequency directly. That facilitates retaining the design principle of state feedback. However, under harsh conditions, the GPS outputs may still bear large errors which can destroy the estimation of INS errors. Thus, an innovative integrated navigation filter is constructed by modeling the non-negligible errors in the estimated Doppler shifts, to ensure INS is properly calibrated. Finally, field test and semi-physical simulation based on telemetered missile trajectory validate the effectiveness of methods proposed in this paper.
New Finite Element/Multibody System Algorithm for Modeling Flexible Tracked Vehicles
2011-08-01
U.S. Army RDECOM-TARDEC & 2 University of Illinois at Chicago ABSTRACT The dynamic simulation of multibody tracked vehicles offers engineers a...bodies. Then in a follow-on structural analysis, the loads from the multibody dynamic simulation are input to calculate strains and stresses within the...multibody dynamic simulation environment allowing for an integrated solution. In addition, a new formulation for the interaction between the rigid sprocket
Advanced Structural Optimization Under Consideration of Cost Tracking
NASA Astrophysics Data System (ADS)
Zell, D.; Link, T.; Bickelmaier, S.; Albinger, J.; Weikert, S.; Cremaschi, F.; Wiegand, A.
2014-06-01
In order to improve the design process of launcher configurations in the early development phase, the software Multidisciplinary Optimization (MDO) was developed. The tool combines different efficient software tools such as Optimal Design Investigations (ODIN) for structural optimizations, Aerospace Trajectory Optimization Software (ASTOS) for trajectory and vehicle design optimization for a defined payload and mission.The present paper focuses to the integration and validation of ODIN. ODIN enables the user to optimize typical axis-symmetric structures by means of sizing the stiffening designs concerning strength and stability while minimizing the structural mass. In addition a fully automatic finite element model (FEM) generator module creates ready-to-run FEM models of a complete stage or launcher assembly.Cost tracking respectively future improvements concerning cost optimization are indicated.
Multi-viewer tracking integral imaging system and its viewing zone analysis.
Park, Gilbae; Jung, Jae-Hyun; Hong, Keehoon; Kim, Yunhee; Kim, Young-Hoon; Min, Sung-Wook; Lee, Byoungho
2009-09-28
We propose a multi-viewer tracking integral imaging system for viewing angle and viewing zone improvement. In the tracking integral imaging system, the pickup angles in each elemental lens in the lens array are decided by the positions of viewers, which means the elemental image can be made for each viewer to provide wider viewing angle and larger viewing zone. Our tracking integral imaging system is implemented with an infrared camera and infrared light emitting diodes which can track the viewers' exact positions robustly. For multiple viewers to watch integrated three-dimensional images in the tracking integral imaging system, it is needed to formulate the relationship between the multiple viewers' positions and the elemental images. We analyzed the relationship and the conditions for the multiple viewers, and verified them by the implementation of two-viewer tracking integral imaging system.
Methods for Joining of Rails : Survey Report
DOT National Transportation Integrated Search
1977-07-01
The performance of track structures depends greatly on the integrity of the connections between rail sections. Because the majority of service and detected rail failures occur at joints, particularly conventional bolted joints, this survey was conduc...
NASA Technical Reports Server (NTRS)
Bachelder, Edward; Hess, Ronald; Godfroy-Cooper, Martine; Aponso, Bimal
2017-01-01
In this study, behavioral models are developed that closely reproduced pulsive control response of two pilots from the experimental pool using markedly different control techniques (styles) while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to issue and cease pulse commands. This suggests that the pilots utilized kinesthetic feedback in order to perceive and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess' pilot Structural Model. The Pulse Models used in conjunction with the pilot Structural Model closely recreated the pilot data both in the frequency and time domains during closed-loop simulation. This indicates that for the range of tasks and control styles encountered, the models captured the fundamental mechanisms governing pulsive and control processes. The pilot Pulse Models give important insight for the amount of remnant (stick output uncorrelated with the forcing function) that arises from nonlinear pilot technique, and for the remaining remnant arising from different sources unrelated to tracking control (i.e. neuromuscular tremor, reallocation of cognitive resources, etc.).
Mobile remote manipulator vehicle system
NASA Technical Reports Server (NTRS)
Bush, Harold G. (Inventor); Mikulas, Martin M., Jr. (Inventor); Wallsom, Richard E. (Inventor); Jensen, J. Kermit (Inventor)
1987-01-01
A mobile remote manipulator system is disclosed for assembly, repair and logistics transport on, around and about a space station square bay truss structure. The vehicle is supported by a square track arrangement supported by guide pins integral with the space station truss structure and located at each truss node. Propulsion is provided by a central push-pull drive mechanism that extends out from the vehicle one full structural bay over the truss and locks drive rods into the guide pins. The draw bar is now retracted and the mobile remote manipulator system is pulled onto the next adjacent structural bay. Thus, translation of the vehicle is inchworm style. The drive bar can be locked onto two guide pins while the extendable draw bar is within the vehicle and then push the vehicle away one bay providing bidirectional push-pull drive. The track switches allow the vehicle to travel in two orthogonal directions over the truss structure which coupled with the bidirectional drive, allow movement in four directions on one plane. The top layer of this trilayered vehicle is a logistics platform. This platform is capable of 369 degees of rotation and will have two astronaut foot restraint platforms and a space crane integral.
Structural and Trajectory Control of Variable Geometry Planetary Entry Systems
NASA Technical Reports Server (NTRS)
Quadrelli, Marco; Kwok, Kawai; Pellegrino, Sergio
2009-01-01
The results presented in this paper apply to a generic vehicle entering a planetary atmosphere which makes use of a variable geometry change to modulate the heat, drag, and acceleration loads. Two structural concepts for implementing the cone angle variation, namely a segmented shell and a corrugated shell, are presented. A structural analysis of these proposed structural configuration shows that the stress levels are tolerable during entry. The analytic expressions of the longitudinal aerodynamic coefficients are also derived, and guidance laws that track reference heat flux, drag, and aerodynamic acceleration loads are also proposed. These guidance laws have been tested in an integrated simulation environment, and the results indicate that use of variable geometry is feasible to track specific profiles of dynamic load conditions during reentry.
Fukushima, Makoto; Betzel, Richard F; He, Ye; van den Heuvel, Martijn P; Zuo, Xi-Nian; Sporns, Olaf
2018-04-01
Structural white matter connections are thought to facilitate integration of neural information across functionally segregated systems. Recent studies have demonstrated that changes in the balance between segregation and integration in brain networks can be tracked by time-resolved functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data and that fluctuations between segregated and integrated network states are related to human behavior. However, how these network states relate to structural connectivity is largely unknown. To obtain a better understanding of structural substrates for these network states, we investigated how the relationship between structural connectivity, derived from diffusion tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations between segregated and integrated states in the human brain. We found that the similarity of edge weights between structural and functional connectivity was greater in the integrated state, especially at edges connecting the default mode and the dorsal attention networks. We also demonstrated that the similarity of network partitions, evaluated between structural and functional connectivity, increased and the density of direct structural connections within modules in functional networks was elevated during the integrated state. These results suggest that, when functional connectivity exhibited an integrated network topology, structural connectivity and functional connectivity were more closely linked to each other and direct structural connections mediated a larger proportion of neural communication within functional modules. Our findings point out the possibility of significant contributions of structural connections to integrative neural processes underlying human behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H; Dolly, S; Anastasio, M
Purpose: In-treatment dynamic cine images, provided by the first commercially available MRI-guided radiotherapy system, allow physicians to observe intrafractional motion of head and neck (H&N) internal structures. Nevertheless, high anatomical complexity and relatively poor cine image contrast/resolution have complicated automatic intrafractional motion evaluation. We proposed an integrated model-based approach to automatically delineate and analyze moving structures from on-board cine images. Methods: The H&N upper airway, a complex and highly deformable region wherein severe internal motion often occurs, was selected as the target-to-be-tracked. To reliably capture its motion, a hierarchical structure model containing three statistical shapes (face, face-jaw, and face-jaw-palate) wasmore » first built from a set of manually delineated shapes using principal component analysis. An integrated model-fitting algorithm was then employed to align the statistical shapes to the first to-be-detected cine frame, and multi-feature level-set contour propagation was performed to identify the airway shape change in the remaining frames. Ninety sagittal cine MR image sets, acquired from three H&N cancer patients, were utilized to demonstrate this approach. Results: The tracking accuracy was validated by comparing the results to the average of two manual delineations in 20 randomly selected images from each patient. The resulting dice similarity coefficient (93.28+/−1.46 %) and margin error (0.49+/−0.12 mm) showed good agreement with the manual results. Intrafractional displacements of anterior, posterior, inferior, and superior airway boundaries were observed, with values of 2.62+/−2.92, 1.78+/−1.43, 3.51+/−3.99, and 0.68+/−0.89 mm, respectively. The H&N airway motion was found to vary across directions, fractions, and patients, and highly correlated with patients’ respiratory frequency. Conclusion: We proposed the integrated computational approach, which for the first time allows to automatically identify the H&N upper airway and quantify in-treatment H&N internal motion in real-time. This approach can be applied to track other structures’ motion, and provide guidance on patient-specific prediction of intra-/inter-fractional structure displacements.« less
NASA Astrophysics Data System (ADS)
Pansing, Craig W.; Hua, Hong; Rolland, Jannick P.
2005-08-01
Head-mounted display (HMD) technologies find a variety of applications in the field of 3D virtual and augmented environments, 3D scientific visualization, as well as wearable displays. While most of the current HMDs use head pose to approximate line of sight, we propose to investigate approaches and designs for integrating eye tracking capability into HMDs from a low-level system design perspective and to explore schemes for optimizing system performance. In this paper, we particularly propose to optimize the illumination scheme, which is a critical component in designing an eye tracking-HMD (ET-HMD) integrated system. An optimal design can improve not only eye tracking accuracy, but also robustness. Using LightTools, we present the simulation of a complete eye illumination and imaging system using an eye model along with multiple near infrared LED (IRLED) illuminators and imaging optics, showing the irradiance variation of the different eye structures. The simulation of dark pupil effects along with multiple 1st-order Purkinje images will be presented. A parametric analysis is performed to investigate the relationships between the IRLED configurations and the irradiance distribution at the eye, and a set of optimal configuration parameters is recommended. The analysis will be further refined by actual eye image acquisition and processing.
Rodríguez-Canosa, Gonzalo; Giner, Jaime del Cerro; Barrientos, Antonio
2014-01-01
The detection and tracking of mobile objects (DATMO) is progressively gaining importance for security and surveillance applications. This article proposes a set of new algorithms and procedures for detecting and tracking mobile objects by robots that work collaboratively as part of a multirobot system. These surveillance algorithms are conceived of to work with data provided by long distance range sensors and are intended for highly reliable object detection in wide outdoor environments. Contrary to most common approaches, in which detection and tracking are done by an integrated procedure, the approach proposed here relies on a modular structure, in which detection and tracking are carried out independently, and the latter might accept input data from different detection algorithms. Two movement detection algorithms have been developed for the detection of dynamic objects by using both static and/or mobile robots. The solution to the overall problem is based on the use of a Kalman filter to predict the next state of each tracked object. Additionally, new tracking algorithms capable of combining dynamic objects lists coming from either one or various sources complete the solution. The complementary performance of the separated modular structure for detection and identification is evaluated and, finally, a selection of test examples discussed. PMID:24526305
DOT National Transportation Integrated Search
2016-10-01
Railways are an important component of a multi-modal freight transport network. The structural integrity of rail substructure and problematic railway elements can be compromised leading to track instability and ultimately, train derailments. Because ...
Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI
2017-06-01
report. 10 Supporting Data None. Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI Psychological Health...Award Number: W81XWH-13-1-0095 TITLE: Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI PRINCIPAL INVESTIGATOR...COVERED 08 MAR 2016 – 07 MAR 2017 4. TITLE AND SUBTITLE Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI 5a
Inventory transparency for agricultural produce through IOT
NASA Astrophysics Data System (ADS)
Srinivasan, S. P.; Sorna Shanthi, D.; Anand, Aashish V.
2017-06-01
Re-structuring the practices of traditional inventory management is becoming more essential to optimize the supply chain transparency and accuracy of agricultural produce. A flexible and transparent inventory management system is becoming the need of any agricultural commodity. It was noticed that the major setback for the farmers who are the suppliers of the farm produce is due to poor supply chain integration. The recent advent technologies and IT explosion can bring up a greater impact in the process of storing, tracking, distributing and monitoring perishable agriculture produce of day to day life. The primary focus of this paper is to integrate IoT into inventory management and other inbound logistics management of agriculture produce. The unique features of agricultural produce like a prediction of supply, demand, the location of warehouses, distribution and tracking of inventory can be integrated through IoT. This paper proposes a conceptual framework for inventory management transparency involved in the supply chain of agriculture produce.
Proof-of-concept of a laser mounted endoscope for touch-less navigated procedures
Kral, Florian; Gueler, Oezguer; Perwoeg, Martina; Bardosi, Zoltan; Puschban, Elisabeth J; Riechelmann, Herbert; Freysinger, Wolfgang
2013-01-01
Background and Objectives During navigated procedures a tracked pointing device is used to define target structures in the patient to visualize its position in a registered radiologic data set. When working with endoscopes in minimal invasive procedures, the target region is often difficult to reach and changing instruments is disturbing in a challenging, crucial moment of the procedure. We developed a device for touch less navigation during navigated endoscopic procedures. Materials and Methods A laser beam is delivered to the tip of a tracked endoscope angled to its axis. Thereby the position of the laser spot in the video-endoscopic images changes according to the distance between the tip of the endoscope and the target structure. A mathematical function is defined by a calibration process and is used to calculate the distance between the tip of the endoscope and the target. The tracked tip of the endoscope and the calculated distance is used to visualize the laser spot in the registered radiologic data set. Results In comparison to the tracked instrument, the touch less target definition with the laser spot yielded in an over and above error of 0.12 mm. The overall application error in this experimental setup with a plastic head was 0.61 ± 0.97 mm (95% CI −1.3 to +2.5 mm). Conclusion Integrating a laser in an endoscope and then calculating the distance to a target structure by image processing of the video endoscopic images is accurate. This technology eliminates the need for tracked probes intraoperatively and therefore allows navigation to be integrated seamlessly in clinical routine. However, it is an additional chain link in the sequence of computer-assisted surgery thus influencing the application error. Lasers Surg. Med. 45:377–382, 2013. © 2013 Wiley Periodicals, Inc. PMID:23737122
Godinez, William J; Rohr, Karl
2015-02-01
Tracking subcellular structures as well as viral structures displayed as 'particles' in fluorescence microscopy images yields quantitative information on the underlying dynamical processes. We have developed an approach for tracking multiple fluorescent particles based on probabilistic data association. The approach combines a localization scheme that uses a bottom-up strategy based on the spot-enhancing filter as well as a top-down strategy based on an ellipsoidal sampling scheme that uses the Gaussian probability distributions computed by a Kalman filter. The localization scheme yields multiple measurements that are incorporated into the Kalman filter via a combined innovation, where the association probabilities are interpreted as weights calculated using an image likelihood. To track objects in close proximity, we compute the support of each image position relative to the neighboring objects of a tracked object and use this support to recalculate the weights. To cope with multiple motion models, we integrated the interacting multiple model algorithm. The approach has been successfully applied to synthetic 2-D and 3-D images as well as to real 2-D and 3-D microscopy images, and the performance has been quantified. In addition, the approach was successfully applied to the 2-D and 3-D image data of the recent Particle Tracking Challenge at the IEEE International Symposium on Biomedical Imaging (ISBI) 2012.
Pupil Tracking for Real-Time Motion Corrected Anterior Segment Optical Coherence Tomography
Carrasco-Zevallos, Oscar M.; Nankivil, Derek; Viehland, Christian; Keller, Brenton; Izatt, Joseph A.
2016-01-01
Volumetric acquisition with anterior segment optical coherence tomography (ASOCT) is necessary to obtain accurate representations of the tissue structure and to account for asymmetries of the anterior eye anatomy. Additionally, recent interest in imaging of anterior segment vasculature and aqueous humor flow resulted in application of OCT angiography techniques to generate en face and 3D micro-vasculature maps of the anterior segment. Unfortunately, ASOCT structural and vasculature imaging systems do not capture volumes instantaneously and are subject to motion artifacts due to involuntary eye motion that may hinder their accuracy and repeatability. Several groups have demonstrated real-time tracking for motion-compensated in vivo OCT retinal imaging, but these techniques are not applicable in the anterior segment. In this work, we demonstrate a simple and low-cost pupil tracking system integrated into a custom swept-source OCT system for real-time motion-compensated anterior segment volumetric imaging. Pupil oculography hardware coaxial with the swept-source OCT system enabled fast detection and tracking of the pupil centroid. The pupil tracking ASOCT system with a field of view of 15 x 15 mm achieved diffraction-limited imaging over a lateral tracking range of +/- 2.5 mm and was able to correct eye motion at up to 22 Hz. Pupil tracking ASOCT offers a novel real-time motion compensation approach that may facilitate accurate and reproducible anterior segment imaging. PMID:27574800
The aerodynamic effects of passing trains to surrounding objects and people
DOT National Transportation Integrated Search
2009-04-01
Two safety issues are raised on the aerodynamic effects of a passing train on its surroundings. First, a high-speed train passing other trains on an adjacent track exerts aerodynamic pressure that can affect the structural integrity of window mount a...
Wind turbine power tracking using an improved multimodel quadratic approach.
Khezami, Nadhira; Benhadj Braiek, Naceur; Guillaud, Xavier
2010-07-01
In this paper, an improved multimodel optimal quadratic control structure for variable speed, pitch regulated wind turbines (operating at high wind speeds) is proposed in order to integrate high levels of wind power to actively provide a primary reserve for frequency control. On the basis of the nonlinear model of the studied plant, and taking into account the wind speed fluctuations, and the electrical power variation, a multimodel linear description is derived for the wind turbine, and is used for the synthesis of an optimal control law involving a state feedback, an integral action and an output reference model. This new control structure allows a rapid transition of the wind turbine generated power between different desired set values. This electrical power tracking is ensured with a high-performance behavior for all other state variables: turbine and generator rotational speeds and mechanical shaft torque; and smooth and adequate evolution of the control variables. 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Design Of Combined Stochastic Feedforward/Feedback Control
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1989-01-01
Methodology accommodates variety of control structures and design techniques. In methodology for combined stochastic feedforward/feedback control, main objectives of feedforward and feedback control laws seen clearly. Inclusion of error-integral feedback, dynamic compensation, rate-command control structure, and like integral element of methodology. Another advantage of methodology flexibility to develop variety of techniques for design of feedback control with arbitrary structures to obtain feedback controller: includes stochastic output feedback, multiconfiguration control, decentralized control, or frequency and classical control methods. Control modes of system include capture and tracking of localizer and glideslope, crab, decrab, and flare. By use of recommended incremental implementation, control laws simulated on digital computer and connected with nonlinear digital simulation of aircraft and its systems.
CPV for the rooftop market: novel approaches to tracking integration in photovoltaic modules
NASA Astrophysics Data System (ADS)
Apostoleris, Harry; Stefancich, Marco; Alexander-Katz, Alfredo; Chiesa, Matteo
2016-03-01
Concentrated photovoltaics (CPV) has long been recognized as an effective approach to enabling the use of high cost, high-efficiency solar cells for enhanced solar energy conversion, but is excluded from the domestic rooftop market due to the requirement that solar concentrators track the sun. This market may be opened up by integrating of the tracking mechanism into the module itself. Tracking integration may take the form of a miniaturization of a conventional tracking apparatus, or optical tracking, in which tracking is achieved through variation of optical properties such as refractive index or transparency rather than mechanical movement of the receiver. We have demonstrated a simple system using a heat-responsive transparency switching material to create a moving aperture that tracks the position of a moving light spot. We use this behavior to create a concentrating light trap with a moving aperture that reactively tracks the sun. Taking the other approach, we have fabricated 3D-printed parabolic mini-concentrators which can track the sun using small motors in a low-profile geometry. We characterize the performance of the concentrators and consider the impact of tracking integration on the broader PV market.
Neuro-Analogical Gate Tuning of Trajectory Data Fusion for a Mecanum-Wheeled Special Needs Chair
ElSaharty, M. A.; zakzouk, Ezz Eldin
2017-01-01
Trajectory tracking of mobile wheeled chairs using internal shaft encoder and inertia measurement unit(IMU), exhibits several complications and accumulated errors in the tracking process due to wheel slippage, offset drift and integration approximations. These errors can be realized when comparing localization results from such sensors with a camera tracking system. In long trajectory tracking, such errors can accumulate and result in significant deviations which make data from these sensors unreliable for tracking. Meanwhile the utilization of an external camera tracking system is not always a feasible solution depending on the implementation environment. This paper presents a novel sensor fusion method that combines the measurements of internal sensors to accurately predict the location of the wheeled chair in an environment. The method introduces a new analogical OR gate structured with tuned parameters using multi-layer feedforward neural network denoted as “Neuro-Analogical Gate” (NAG). The resulting system minimize any deviation error caused by the sensors, thus accurately tracking the wheeled chair location without the requirement of an external camera tracking system. The fusion methodology has been tested with a prototype Mecanum wheel-based chair, and significant improvement over tracking response, error and performance has been observed. PMID:28045973
Integrated flight/propulsion control - Subsystem specifications for performance
NASA Technical Reports Server (NTRS)
Neighbors, W. K.; Rock, Stephen M.
1993-01-01
A procedure is presented for calculating multiple subsystem specifications given a number of performance requirements on the integrated system. This procedure applies to problems where the control design must be performed in a partitioned manner. It is based on a structured singular value analysis, and generates specifications as magnitude bounds on subsystem uncertainties. The performance requirements should be provided in the form of bounds on transfer functions of the integrated system. This form allows the expression of model following, command tracking, and disturbance rejection requirements. The procedure is demonstrated on a STOVL aircraft design.
NASA Technical Reports Server (NTRS)
Ostroff, Aaron J.
1998-01-01
This paper contains a study of two methods for use in a generic nonlinear simulation tool that could be used to determine achievable control dynamics and control power requirements while performing perfect tracking maneuvers over the entire flight envelope. The two methods are NDI (nonlinear dynamic inversion) and the SOFFT(Stochastic Optimal Feedforward and Feedback Technology) feedforward control structure. Equivalent discrete and continuous SOFFT feedforward controllers have been developed. These equivalent forms clearly show that the closed-loop plant model loop is a plant inversion and is the same as the NDI formulation. The main difference is that the NDI formulation has a closed-loop controller structure whereas SOFFT uses an open-loop command model. Continuous, discrete, and hybrid controller structures have been developed and integrated into the formulation. Linear simulation results show that seven different configurations all give essentially the same response, with the NDI hybrid being slightly different. The SOFFT controller gave better tracking performance compared to the NDI controller when a nonlinear saturation element was added. Future plans include evaluation using a nonlinear simulation.
Intraoperative virtual brain counseling
NASA Astrophysics Data System (ADS)
Jiang, Zhaowei; Grosky, William I.; Zamorano, Lucia J.; Muzik, Otto; Diaz, Fernando
1997-06-01
Our objective is to offer online real-tim e intelligent guidance to the neurosurgeon. Different from traditional image-guidance technologies that offer intra-operative visualization of medical images or atlas images, virtual brain counseling goes one step further. It can distinguish related brain structures and provide information about them intra-operatively. Virtual brain counseling is the foundation for surgical planing optimization and on-line surgical reference. It can provide a warning system that alerts the neurosurgeon if the chosen trajectory will pass through eloquent brain areas. In order to fulfill this objective, tracking techniques are involved for intra- operativity. Most importantly, a 3D virtual brian environment, different from traditional 3D digitized atlases, is an object-oriented model of the brain that stores information about different brain structures together with their elated information. An object-oriented hierarchical hyper-voxel space (HHVS) is introduced to integrate anatomical and functional structures. Spatial queries based on position of interest, line segment of interest, and volume of interest are introduced in this paper. The virtual brain environment is integrated with existing surgical pre-planning and intra-operative tracking systems to provide information for planning optimization and on-line surgical guidance. The neurosurgeon is alerted automatically if the planned treatment affects any critical structures. Architectures such as HHVS and algorithms, such as spatial querying, normalizing, and warping are presented in the paper. A prototype has shown that the virtual brain is intuitive in its hierarchical 3D appearance. It also showed that HHVS, as the key structure for virtual brain counseling, efficiently integrates multi-scale brain structures based on their spatial relationships.This is a promising development for optimization of treatment plans and online surgical intelligent guidance.
Control/structure interaction conceptual design tool
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1990-01-01
The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision spacecraft with controlled structures. One of these, the Conceptual Design Tool, will illustrate innovative new approaches to the integration of multi-disciplinary analysis and design methods. The tool will be used to demonstrate homogeneity of presentation, uniform data representation across analytical methods, and integrated systems modeling. The tool differs from current 'integrated systems' that support design teams most notably in its support for the new CSI multi-disciplinary engineer. The design tool will utilize a three dimensional solid model of the spacecraft under design as the central data organization metaphor. Various analytical methods, such as finite element structural analysis, control system analysis, and mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that supports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the tool will assist the designer in organizing, stating, and tracking system requirements.
Linking the Pilot Structural Model and Pilot Workload
NASA Technical Reports Server (NTRS)
Bachelder, Edward; Hess, Ronald; Aponso, Bimal; Godfroy-Cooper, Martine
2018-01-01
Behavioral models are developed that closely reproduced pulsive control response of two pilots using markedly different control techniques while conducting a tracking task. An intriguing find was that the pilots appeared to: 1) produce a continuous, internally-generated stick signal that they integrated in time; 2) integrate the actual stick position; and 3) compare the two integrations to either issue or cease a pulse command. This suggests that the pilots utilized kinesthetic feedback in order to sense and integrate stick position, supporting the hypothesis that pilots can access and employ the proprioceptive inner feedback loop proposed by Hess's pilot Structural Model. A Pilot Cost Index was developed, whose elements include estimated workload, performance, and the degree to which the pilot employs kinesthetic feedback. Preliminary results suggest that a pilot's operating point (parameter values) may be based on control style and index minimization.
Design and implementation of a remote UAV-based mobile health monitoring system
NASA Astrophysics Data System (ADS)
Li, Songwei; Wan, Yan; Fu, Shengli; Liu, Mushuang; Wu, H. Felix
2017-04-01
Unmanned aerial vehicles (UAVs) play increasing roles in structure health monitoring. With growing mobility in modern Internet-of-Things (IoT) applications, the health monitoring of mobile structures becomes an emerging application. In this paper, we develop a UAV-carried vision-based monitoring system that allows a UAV to continuously track and monitor a mobile infrastructure and transmit back the monitoring information in real- time from a remote location. The monitoring system uses a simple UAV-mounted camera and requires only a single feature located on the mobile infrastructure for target detection and tracking. The computation-effective vision-based tracking solution based on a single feature is an improvement over existing vision-based lead-follower tracking systems that either have poor tracking performance due to the use of a single feature, or have improved tracking performance at a cost of the usage of multiple features. In addition, a UAV-carried aerial networking infrastructure using directional antennas is used to enable robust real-time transmission of monitoring video streams over a long distance. Automatic heading control is used to self-align headings of directional antennas to enable robust communication in mobility. Compared to existing omni-communication systems, the directional communication solution significantly increases the operation range of remote monitoring systems. In this paper, we develop the integrated modeling framework of camera and mobile platforms, design the tracking algorithm, develop a testbed of UAVs and mobile platforms, and evaluate system performance through both simulation studies and field tests.
Spider-web inspired multi-resolution graphene tactile sensor.
Liu, Lu; Huang, Yu; Li, Fengyu; Ma, Ying; Li, Wenbo; Su, Meng; Qian, Xin; Ren, Wanjie; Tang, Kanglai; Song, Yanlin
2018-05-08
Multi-dimensional accurate response and smooth signal transmission are critical challenges in the advancement of multi-resolution recognition and complex environment analysis. Inspired by the structure-activity relationship between discrepant microstructures of the spiral and radial threads in a spider web, we designed and printed graphene with porous and densely-packed microstructures to integrate into a multi-resolution graphene tactile sensor. The three-dimensional (3D) porous graphene structure performs multi-dimensional deformation responses. The laminar densely-packed graphene structure contributes excellent conductivity with flexible stability. The spider-web inspired printed pattern inherits orientational and locational kinesis tracking. The multi-structure construction with homo-graphene material can integrate discrepant electronic properties with remarkable flexibility, which will attract enormous attention for electronic skin, wearable devices and human-machine interactions.
Qin, Feng; Zhan, Xingqun; Du, Gang
2013-01-01
Ultra-tight integration was first proposed by Abbott in 2003 with the purpose of integrating a global navigation satellite system (GNSS) and an inertial navigation system (INS). This technology can improve the tracking performances of a receiver by reconfiguring the tracking loops in GNSS-challenged environments. In this paper, the models of all error sources known to date in the phase lock loops (PLLs) of a standard receiver and an ultra-tightly integrated GNSS/INS receiver are built, respectively. Based on these models, the tracking performances of the two receivers are compared to verify the improvement due to the ultra-tight integration. Meanwhile, the PLL error distributions of the two receivers are also depicted to analyze the error changes of the tracking loops. These results show that the tracking error is significantly reduced in the ultra-tightly integrated GNSS/INS receiver since the receiver's dynamics are estimated and compensated by an INS. Moreover, the mathematical relationship between the tracking performances of the ultra-tightly integrated GNSS/INS receiver and the quality of the selected inertial measurement unit (IMU) is derived from the error models and proved by the error comparisons of four ultra-tightly integrated GNSS/INS receivers aided by different grade IMUs.
Brama, Elisabeth; Peddie, Christopher J; Wilkes, Gary; Gu, Yan; Collinson, Lucy M; Jones, Martin L
2016-12-13
In-resin fluorescence (IRF) protocols preserve fluorescent proteins in resin-embedded cells and tissues for correlative light and electron microscopy, aiding interpretation of macromolecular function within the complex cellular landscape. Dual-contrast IRF samples can be imaged in separate fluorescence and electron microscopes, or in dual-modality integrated microscopes for high resolution correlation of fluorophore to organelle. IRF samples also offer a unique opportunity to automate correlative imaging workflows. Here we present two new locator tools for finding and following fluorescent cells in IRF blocks, enabling future automation of correlative imaging. The ultraLM is a fluorescence microscope that integrates with an ultramicrotome, which enables 'smart collection' of ultrathin sections containing fluorescent cells or tissues for subsequent transmission electron microscopy or array tomography. The miniLM is a fluorescence microscope that integrates with serial block face scanning electron microscopes, which enables 'smart tracking' of fluorescent structures during automated serial electron image acquisition from large cell and tissue volumes.
Photonic sensor applications in transportation security
NASA Astrophysics Data System (ADS)
Krohn, David A.
2007-09-01
There is a broad range of security sensing applications in transportation that can be facilitated by using fiber optic sensors and photonic sensor integrated wireless systems. Many of these vital assets are under constant threat of being attacked. It is important to realize that the threats are not just from terrorism but an aging and often neglected infrastructure. To specifically address transportation security, photonic sensors fall into two categories: fixed point monitoring and mobile tracking. In fixed point monitoring, the sensors monitor bridge and tunnel structural health and environment problems such as toxic gases in a tunnel. Mobile tracking sensors are being designed to track cargo such as shipboard cargo containers and trucks. Mobile tracking sensor systems have multifunctional sensor requirements including intrusion (tampering), biochemical, radiation and explosives detection. This paper will review the state of the art of photonic sensor technologies and their ability to meet the challenges of transportation security.
Presson, Nora; Krishnaswamy, Deepa; Wagener, Lauren; Bird, William; Jarbo, Kevin; Pathak, Sudhir; Puccio, Ava M; Borasso, Allison; Benso, Steven; Okonkwo, David O; Schneider, Walter
2015-03-01
There is an urgent, unmet demand for definitive biological diagnosis of traumatic brain injury (TBI) to pinpoint the location and extent of damage. We have developed High-Definition Fiber Tracking, a 3 T magnetic resonance imaging-based diffusion spectrum imaging and tractography analysis protocol, to quantify axonal injury in military and civilian TBI patients. A novel analytical methodology quantified white matter integrity in patients with TBI and healthy controls. Forty-one subjects (23 TBI, 18 controls) were scanned with the High-Definition Fiber Tracking diffusion spectrum imaging protocol. After reconstruction, segmentation was used to isolate bilateral hemisphere homologues of eight major tracts. Integrity of segmented tracts was estimated by calculating homologue correlation and tract coverage. Both groups showed high correlations for all tracts. TBI patients showed reduced homologue correlation and tract spread and increased outlier count (correlations>2.32 SD below control mean). On average, 6.5% of tracts in the TBI group were outliers with substantial variability among patients. Number and summed deviation of outlying tracts correlated with initial Glasgow Coma Scale score and 6-month Glasgow Outcome Scale-Extended score. The correlation metric used here can detect heterogeneous damage affecting a low proportion of tracts, presenting a potential mechanism for advancing TBI diagnosis. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
Space Shuttle Technical Conference, Part 2
NASA Technical Reports Server (NTRS)
Chaffee, Norman (Compiler)
1985-01-01
The retrospective presentation provides technical disciplinary focus in the following technical areas: (1) integrated avionics; (2) guidance, navigation, and control; (3) aerodynamics; (4) structures; (5) life support, environmental control, and crew station; (6) ground operations; (7) propulsion and power; (8) communications and tracking; (9) mechanics and mechanical systems; and (10) thermal and contamination environments and protection systems.
Three-dimensional liver motion tracking using real-time two-dimensional MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brix, Lau, E-mail: lau.brix@stab.rm.dk; Ringgaard, Steffen; Sørensen, Thomas Sangild
2014-04-15
Purpose: Combined magnetic resonance imaging (MRI) systems and linear accelerators for radiotherapy (MR-Linacs) are currently under development. MRI is noninvasive and nonionizing and can produce images with high soft tissue contrast. However, new tracking methods are required to obtain fast real-time spatial target localization. This study develops and evaluates a method for tracking three-dimensional (3D) respiratory liver motion in two-dimensional (2D) real-time MRI image series with high temporal and spatial resolution. Methods: The proposed method for 3D tracking in 2D real-time MRI series has three steps: (1) Recording of a 3D MRI scan and selection of a blood vessel (ormore » tumor) structure to be tracked in subsequent 2D MRI series. (2) Generation of a library of 2D image templates oriented parallel to the 2D MRI image series by reslicing and resampling the 3D MRI scan. (3) 3D tracking of the selected structure in each real-time 2D image by finding the template and template position that yield the highest normalized cross correlation coefficient with the image. Since the tracked structure has a known 3D position relative to each template, the selection and 2D localization of a specific template translates into quantification of both the through-plane and in-plane position of the structure. As a proof of principle, 3D tracking of liver blood vessel structures was performed in five healthy volunteers in two 5.4 Hz axial, sagittal, and coronal real-time 2D MRI series of 30 s duration. In each 2D MRI series, the 3D localization was carried out twice, using nonoverlapping template libraries, which resulted in a total of 12 estimated 3D trajectories per volunteer. Validation tests carried out to support the tracking algorithm included quantification of the breathing induced 3D liver motion and liver motion directionality for the volunteers, and comparison of 2D MRI estimated positions of a structure in a watermelon with the actual positions. Results: Axial, sagittal, and coronal 2D MRI series yielded 3D respiratory motion curves for all volunteers. The motion directionality and amplitude were very similar when measured directly as in-plane motion or estimated indirectly as through-plane motion. The mean peak-to-peak breathing amplitude was 1.6 mm (left-right), 11.0 mm (craniocaudal), and 2.5 mm (anterior-posterior). The position of the watermelon structure was estimated in 2D MRI images with a root-mean-square error of 0.52 mm (in-plane) and 0.87 mm (through-plane). Conclusions: A method for 3D tracking in 2D MRI series was developed and demonstrated for liver tracking in volunteers. The method would allow real-time 3D localization with integrated MR-Linac systems.« less
Korayem, M H; Nekoo, S R
2015-07-01
This work studies an optimal control problem using the state-dependent Riccati equation (SDRE) in differential form to track for time-varying systems with state and control nonlinearities. The trajectory tracking structure provides two nonlinear differential equations: the state-dependent differential Riccati equation (SDDRE) and the feed-forward differential equation. The independence of the governing equations and stability of the controller are proven along the trajectory using the Lyapunov approach. Backward integration (BI) is capable of solving the equations as a numerical solution; however, the forward solution methods require the closed-form solution to fulfill the task. A closed-form solution is introduced for SDDRE, but the feed-forward differential equation has not yet been obtained. Different ways of solving the problem are expressed and analyzed. These include BI, closed-form solution with corrective assumption, approximate solution, and forward integration. Application of the tracking problem is investigated to control robotic manipulators possessing rigid or flexible joints. The intention is to release a general program for automatic implementation of an SDDRE controller for any manipulator that obeys the Denavit-Hartenberg (D-H) principle when only D-H parameters are received as input data. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Tracking quasi-stationary flow of weak fluorescent signals by adaptive multi-frame correlation.
Ji, L; Danuser, G
2005-12-01
We have developed a novel cross-correlation technique to probe quasi-stationary flow of fluorescent signals in live cells at a spatial resolution that is close to single particle tracking. By correlating image blocks between pairs of consecutive frames and integrating their correlation scores over multiple frame pairs, uncertainty in identifying a globally significant maximum in the correlation score function has been greatly reduced as compared with conventional correlation-based tracking using the signal of only two consecutive frames. This approach proves robust and very effective in analysing images with a weak, noise-perturbed signal contrast where texture characteristics cannot be matched between only a pair of frames. It can also be applied to images that lack prominent features that could be utilized for particle tracking or feature-based template matching. Furthermore, owing to the integration of correlation scores over multiple frames, the method can handle signals with substantial frame-to-frame intensity variation where conventional correlation-based tracking fails. We tested the performance of the method by tracking polymer flow in actin and microtubule cytoskeleton structures labelled at various fluorophore densities providing imagery with a broad range of signal modulation and noise. In applications to fluorescent speckle microscopy (FSM), where the fluorophore density is sufficiently low to reveal patterns of discrete fluorescent marks referred to as speckles, we combined the multi-frame correlation approach proposed above with particle tracking. This hybrid approach allowed us to follow single speckles robustly in areas of high speckle density and fast flow, where previously published FSM analysis methods were unsuccessful. Thus, we can now probe cytoskeleton polymer dynamics in living cells at an entirely new level of complexity and with unprecedented detail.
Ma, Kevin C; Fernandez, James R; Amezcua, Lilyana; Lerner, Alex; Shiroishi, Mark S; Liu, Brent J
2015-12-01
MRI has been used to identify multiple sclerosis (MS) lesions in brain and spinal cord visually. Integrating patient information into an electronic patient record system has become key for modern patient care in medicine in recent years. Clinically, it is also necessary to track patients' progress in longitudinal studies, in order to provide comprehensive understanding of disease progression and response to treatment. As the amount of required data increases, there exists a need for an efficient systematic solution to store and analyze MS patient data, disease profiles, and disease tracking for both clinical and research purposes. An imaging informatics based system, called MS eFolder, has been developed as an integrated patient record system for data storage and analysis of MS patients. The eFolder system, with a DICOM-based database, includes a module for lesion contouring by radiologists, a MS lesion quantification tool to quantify MS lesion volume in 3D, brain parenchyma fraction analysis, and provide quantitative analysis and tracking of volume changes in longitudinal studies. Patient data, including MR images, have been collected retrospectively at University of Southern California Medical Center (USC) and Los Angeles County Hospital (LAC). The MS eFolder utilizes web-based components, such as browser-based graphical user interface (GUI) and web-based database. The eFolder database stores patient clinical data (demographics, MS disease history, family history, etc.), MR imaging-related data found in DICOM headers, and lesion quantification results. Lesion quantification results are derived from radiologists' contours on brain MRI studies and quantified into 3-dimensional volumes and locations. Quantified results of white matter lesions are integrated into a structured report based on DICOM-SR protocol and templates. The user interface displays patient clinical information, original MR images, and viewing structured reports of quantified results. The GUI also includes a data mining tool to handle unique search queries for MS. System workflow and dataflow steps has been designed based on the IHE post-processing workflow profile, including workflow process tracking, MS lesion contouring and quantification of MR images at a post-processing workstation, and storage of quantitative results as DICOM-SR in DICOM-based storage system. The web-based GUI is designed to display zero-footprint DICOM web-accessible data objects (WADO) and the SR objects. The MS eFolder system has been designed and developed as an integrated data storage and mining solution in both clinical and research environments, while providing unique features, such as quantitative lesion analysis and disease tracking over a longitudinal study. A comprehensive image and clinical data integrated database provided by MS eFolder provides a platform for treatment assessment, outcomes analysis and decision-support. The proposed system serves as a platform for future quantitative analysis derived automatically from CAD algorithms that can also be integrated within the system for individual disease tracking and future MS-related research. Ultimately the eFolder provides a decision-support infrastructure that can eventually be used as add-on value to the overall electronic medical record. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ma, Kevin C.; Fernandez, James R.; Amezcua, Lilyana; Lerner, Alex; Shiroishi, Mark S.; Liu, Brent J.
2016-01-01
Purpose MRI has been used to identify multiple sclerosis (MS) lesions in brain and spinal cord visually. Integrating patient information into an electronic patient record system has become key for modern patient care in medicine in recent years. Clinically, it is also necessary to track patients' progress in longitudinal studies, in order to provide comprehensive understanding of disease progression and response to treatment. As the amount of required data increases, there exists a need for an efficient systematic solution to store and analyze MS patient data, disease profiles, and disease tracking for both clinical and research purposes. Method An imaging informatics based system, called MS eFolder, has been developed as an integrated patient record system for data storage and analysis of MS patients. The eFolder system, with a DICOM-based database, includes a module for lesion contouring by radiologists, a MS lesion quantification tool to quantify MS lesion volume in 3D, brain parenchyma fraction analysis, and provide quantitative analysis and tracking of volume changes in longitudinal studies. Patient data, including MR images, have been collected retrospectively at University of Southern California Medical Center (USC) and Los Angeles County Hospital (LAC). The MS eFolder utilizes web-based components, such as browser-based graphical user interface (GUI) and web-based database. The eFolder database stores patient clinical data (demographics, MS disease history, family history, etc.), MR imaging-related data found in DICOM headers, and lesion quantification results. Lesion quantification results are derived from radiologists' contours on brain MRI studies and quantified into 3-dimensional volumes and locations. Quantified results of white matter lesions are integrated into a structured report based on DICOM-SR protocol and templates. The user interface displays patient clinical information, original MR images, and viewing structured reports of quantified results. The GUI also includes a data mining tool to handle unique search queries for MS. System workflow and dataflow steps has been designed based on the IHE post-processing workflow profile, including workflow process tracking, MS lesion contouring and quantification of MR images at a post-processing workstation, and storage of quantitative results as DICOM-SR in DICOM-based storage system. The web-based GUI is designed to display zero-footprint DICOM web-accessible data objects (WADO) and the SR objects. Summary The MS eFolder system has been designed and developed as an integrated data storage and mining solution in both clinical and research environments, while providing unique features, such as quantitative lesion analysis and disease tracking over a longitudinal study. A comprehensive image and clinical data integrated database provided by MS eFolder provides a platform for treatment assessment, outcomes analysis and decision-support. The proposed system serves as a platform for future quantitative analysis derived automatically from CAD algorithms that can also be integrated within the system for individual disease tracking and future MS-related research. Ultimately the eFolder provides a decision-support infrastructure that can eventually be used as add-on value to the overall electronic medical record. PMID:26564667
Nonstationary EO/IR Clutter Suppression and Dim Object Tracking
NASA Astrophysics Data System (ADS)
Tartakovsky, A.; Brown, A.; Brown, J.
2010-09-01
We develop and evaluate the performance of advanced algorithms which provide significantly improved capabilities for automated detection and tracking of ballistic and flying dim objects in the presence of highly structured intense clutter. Applications include ballistic missile early warning, midcourse tracking, trajectory prediction, and resident space object detection and tracking. The set of algorithms include, in particular, adaptive spatiotemporal clutter estimation-suppression and nonlinear filtering-based multiple-object track-before-detect. These algorithms are suitable for integration into geostationary, highly elliptical, or low earth orbit scanning or staring sensor suites, and are based on data-driven processing that adapts to real-world clutter backgrounds, including celestial, earth limb, or terrestrial clutter. In many scenarios of interest, e.g., for highly elliptic and, especially, low earth orbits, the resulting clutter is highly nonstationary, providing a significant challenge for clutter suppression to or below sensor noise levels, which is essential for dim object detection and tracking. We demonstrate the success of the developed algorithms using semi-synthetic and real data. In particular, our algorithms are shown to be capable of detecting and tracking point objects with signal-to-clutter levels down to 1/1000 and signal-to-noise levels down to 1/4.
NASA Astrophysics Data System (ADS)
Panorchan, Porntula; Wirtz, Denis; Tseng, Yiider
2004-10-01
Lamin B1 filaments organize into a thin dense meshwork underlying the nucleoplasmic side of the nuclear envelope. Recent experiments in vivo suggest that lamin B1 plays a key structural role in the nuclear envelope, but the intrinsic mechanical properties of lamin B1 networks remain unknown. To assess the potential mechanical contribution of lamin B1 in maintaining the integrity and providing structural support to the nucleus, we measured the micromechanical properties and examined the ultrastructural distribution of lamin B1 networks in vitro using particle tracking methods and differential interference contrast (DIC) microscopy. We exploit various surface chemistries of the probe microspheres (carboxylated, polyethylene glycol-coated, and amine-modified) to differentiate lamin-rich from lamin-poor regions and to rigorously extract local viscoelastic moduli from the mean-squared displacements of noninteracting particles. Our results show that human lamin B1 can, even in the absence of auxiliary proteins, form stiff and yet extremely porous networks that are well suited to provide structural strength to the nuclear lamina. Combining DIC microscopy and particle tracking allows us to relate directly the local organization of a material to its local mechanical properties, a general methodology that can be extended to living cells.
Integrated track stability assessment and monitoring system (ITSAMS).
DOT National Transportation Integrated Search
2006-10-01
The overall objective of project is to continue the development of remote sensing : technologies that can be integrated and deployed in a mobile inspection vehicle i.e. Integrated : Track Stability Assessment and Monitoring System (ITSAMS).
NASA Astrophysics Data System (ADS)
Duncan, Elizabeth C.; Reddick, Wilburn E.; Glass, John O.; Hyun, Jung Won; Ji, Qing; Li, Yimei; Gajjar, Amar
2016-03-01
We applied a modified probabilistic fiber-tracking method for the extraction of fiber pathways to quantify decreased white matter integrity as a surrogate of structural loss in connectivity due to cranial radiation therapy (CRT) as treatment for pediatric medulloblastoma. Thirty subjects were examined (n=8 average-risk, n=22 high-risk) and the groups did not differ significantly in age at examination. The pathway analysis created a structural connectome focused on sub-networks within the central executive network (CEN) for comparison between baseline and post-CRT scans and for comparison between standard and high dose CRT. A paired-wise comparison of the connectivity between baseline and post-CRT scans showed the irradiation did have a significant detrimental impact on white matter integrity (decreased fractional anisotropy (FA) and decreased axial diffusivity (AX)) in most of the CEN sub-networks. Group comparisons of the change in the connectivity revealed that patients receiving high dose CRT experienced significant AX decreases in all sub-networks while the patients receiving standard dose CRT had relatively stable AX measures across time. This study on pediatric patients with medulloblastoma demonstrated the utility of this method to identify specific sub-networks within the developing brain affected by CRT.
P.S. Althoff; T.C. Todd; S.J. Thien; M.A. Callaham
2009-01-01
Soil biota drive fundamental ecosystem processes such as decomposition, nutrient cycling, and maintenance of soil structure. They are especially active in grassland ecosystems such as the tallgrass by heterotrophic soil organisms. Because both soil microbes and soil fauna display perturbation responses that integrate the physical, chemical, and biological changes to...
The Missing Manual: Using National Student Clearinghouse Data to Track Postsecondary Outcomes
ERIC Educational Resources Information Center
Dynarski, Susan M.; Hemelt, Steven W.; Hyman, Joshua M.
2015-01-01
This article explores the promises and pitfalls of using National Student Clearinghouse (NSC) data to measure a variety of postsecondary outcomes. We first describe the history of the NSC, the basic structure of its data, and recent research interest in using NSC data. Second, using information from the Integrated Postsecondary Education Data…
Zaafouri, Abderrahmen; Regaya, Chiheb Ben; Azza, Hechmi Ben; Châari, Abdelkader
2016-01-01
This paper presents a modified structure of the backstepping nonlinear control of the induction motor (IM) fitted with an adaptive backstepping speed observer. The control design is based on the backstepping technique complemented by the introduction of integral tracking errors action to improve its robustness. Unlike other research performed on backstepping control with integral action, the control law developed in this paper does not propose the increase of the number of system state so as not increase the complexity of differential equations resolution. The digital simulation and experimental results show the effectiveness of the proposed control compared to the conventional PI control. The results analysis shows the characteristic robustness of the adaptive control to disturbances of the load, the speed variation and low speed. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Using model order tests to determine sensory inputs in a motion study
NASA Technical Reports Server (NTRS)
Repperger, D. W.; Junker, A. M.
1977-01-01
In the study of motion effects on tracking performance, a problem of interest is the determination of what sensory inputs a human uses in controlling his tracking task. In the approach presented here a simple canonical model (FID or a proportional, integral, derivative structure) is used to model the human's input-output time series. A study of significant changes in reduction of the output error loss functional is conducted as different permutations of parameters are considered. Since this canonical model includes parameters which are related to inputs to the human (such as the error signal, its derivatives and integration), the study of model order is equivalent to the study of which sensory inputs are being used by the tracker. The parameters are obtained which have the greatest effect on reducing the loss function significantly. In this manner the identification procedure converts the problem of testing for model order into the problem of determining sensory inputs.
Tracking Camera Captures Flames of Space Shuttle Engines
NASA Technical Reports Server (NTRS)
2002-01-01
A tracking camera on Launch Pad 39B of the Kennedy Space Center in Florida captures the flames of Space Shuttle Atlantis' three main engines as the Orbiter hurdles into space on mission STS-112. Liftoff occurred at 3:46 pm EDT, October 7, 2002. Atlantis carried the Starboard-1 (S1) Integrated Truss Structure and the Crew and Equipment Translation Aid (CETA) Cart A. The S1 was the second truss structure installed on the International Space Station (ISS). It was attached to the S0 truss which was previously installed by the STS-110 mission. The CETA is the first of two human-powered carts that ride along the ISS railway, providing mobile work platforms for future space walking astronauts. The 11 day mission performed three space walks to attach the S1 truss.
Integration of safety engineering into a cost optimized development program.
NASA Technical Reports Server (NTRS)
Ball, L. W.
1972-01-01
A six-segment management model is presented, each segment of which represents a major area in a new product development program. The first segment of the model covers integration of specialist engineers into 'systems requirement definition' or the system engineering documentation process. The second covers preparation of five basic types of 'development program plans.' The third segment covers integration of system requirements, scheduling, and funding of specialist engineering activities into 'work breakdown structures,' 'cost accounts,' and 'work packages.' The fourth covers 'requirement communication' by line organizations. The fifth covers 'performance measurement' based on work package data. The sixth covers 'baseline requirements achievement tracking.'
Extending software repository hosting to code review and testing
NASA Astrophysics Data System (ADS)
Gonzalez Alvarez, A.; Aparicio Cotarelo, B.; Lossent, A.; Andersen, T.; Trzcinska, A.; Asbury, D.; Hłimyr, N.; Meinhard, H.
2015-12-01
We will describe how CERN's services around Issue Tracking and Version Control have evolved, and what the plans for the future are. We will describe the services main design, integration and structure, giving special attention to the new requirements from the community of users in terms of collaboration and integration tools and how we address this challenge when defining new services based on GitLab for collaboration to replace our current Gitolite service and Code Review and Jenkins for Continuous Integration. These new services complement the existing ones to create a new global "development tool stack" where each working group can place its particular development work-flow.
NASA Astrophysics Data System (ADS)
Moore, John T.; Wiles, Andrew D.; Wedlake, Chris; Bainbridge, Daniel; Kiaii, Bob; Trejos, Ana Luisa; Patel, Rajni; Peters, Terry M.
2010-02-01
Trans-esophageal echocardiography (TEE) is a standard component of patient monitoring during most cardiac surgeries. In recent years magnetic tracking systems (MTS) have become sufficiently robust to function effectively in appropriately structured operating room environments. The ability to track a conventional multiplanar 2D TEE transducer in 3D space offers incredible potential by greatly expanding the cumulative field of view of cardiac anatomy beyond the limited field of view provided by 2D and 3D TEE technology. However, there is currently no TEE probe manufactured with MTS technology embedded in the transducer, which means sensors must be attached to the outer surface of the TEE. This leads to potential safety issues for patients, as well as potential damage to the sensor during procedures. This paper presents a standard 2D TEE probe fully integrated with MTS technology. The system is evaluated in an environment free of magnetic and electromagnetic disturbances, as well as a clinical operating room in the presence of a da Vinci robotic system. Our first integrated TEE device is currently being used in animal studies for virtual reality-enhanced ultrasound guidance of intracardiac surgeries, while the "second generation" TEE is in use in a clinical operating room as part of a project to measure perioperative heart shift and optimal port placement for robotic cardiac surgery. We demonstrate excellent system accuracy for both applications.
Decentralized model reference adaptive control of large flexible structures
NASA Technical Reports Server (NTRS)
Lee, Fu-Ming; Fong, I-Kong; Lin, Yu-Hwan
1988-01-01
A decentralized model reference adaptive control (DMRAC) method is developed for large flexible structures (LFS). The development follows that of a centralized model reference adaptive control for LFS that have been shown to be feasible. The proposed method is illustrated using a simply supported beam with collocated actuators and sensors. Results show that the DMRAC can achieve either output regulation or output tracking with adequate convergence, provided the reference model inputs and their time derivatives are integrable, bounded, and approach zero as t approaches infinity.
Das, Saptarshi; Pan, Indranil; Das, Shantanu
2013-07-01
Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Chong, Kok-Keong; Wong, Chee-Woon; Siaw, Fei-Lu; Yew, Tiong-Keat; Ng, See-Seng; Liang, Meng-Suan; Lim, Yun-Seng; Lau, Sing-Liong
2009-01-01
A novel on-axis general sun-tracking formula has been integrated in the algorithm of an open-loop sun-tracking system in order to track the sun accurately and cost effectively. Sun-tracking errors due to installation defects of the 25 m2 prototype solar concentrator have been analyzed from recorded solar images with the use of a CCD camera. With the recorded data, misaligned angles from ideal azimuth-elevation axes have been determined and corrected by a straightforward changing of the parameters' values in the general formula of the tracking algorithm to improve the tracking accuracy to 2.99 mrad, which falls below the encoder resolution limit of 4.13 mrad. PMID:22408483
Implementation of an object oriented track reconstruction model into multiple LHC experiments*
NASA Astrophysics Data System (ADS)
Gaines, Irwin; Gonzalez, Saul; Qian, Sijin
2001-10-01
An Object Oriented (OO) model (Gaines et al., 1996; 1997; Gaines and Qian, 1998; 1999) for track reconstruction by the Kalman filtering method has been designed for high energy physics experiments at high luminosity hadron colliders. The model has been coded in the C++ programming language and has been successfully implemented into the OO computing environments of both the CMS (1994) and ATLAS (1994) experiments at the future Large Hadron Collider (LHC) at CERN. We shall report: how the OO model was adapted, with largely the same code, to different scenarios and serves the different reconstruction aims in different experiments (i.e. the level-2 trigger software for ATLAS and the offline software for CMS); how the OO model has been incorporated into different OO environments with a similar integration structure (demonstrating the ease of re-use of OO program); what are the OO model's performance, including execution time, memory usage, track finding efficiency and ghost rate, etc.; and additional physics performance based on use of the OO tracking model. We shall also mention the experience and lessons learned from the implementation of the OO model into the general OO software framework of the experiments. In summary, our practice shows that the OO technology really makes the software development and the integration issues straightforward and convenient; this may be particularly beneficial for the general non-computer-professional physicists.
Real-Time Visual Tracking through Fusion Features
Ruan, Yang; Wei, Zhenzhong
2016-01-01
Due to their high-speed, correlation filters for object tracking have begun to receive increasing attention. Traditional object trackers based on correlation filters typically use a single type of feature. In this paper, we attempt to integrate multiple feature types to improve the performance, and we propose a new DD-HOG fusion feature that consists of discriminative descriptors (DDs) and histograms of oriented gradients (HOG). However, fusion features as multi-vector descriptors cannot be directly used in prior correlation filters. To overcome this difficulty, we propose a multi-vector correlation filter (MVCF) that can directly convolve with a multi-vector descriptor to obtain a single-channel response that indicates the location of an object. Experiments on the CVPR2013 tracking benchmark with the evaluation of state-of-the-art trackers show the effectiveness and speed of the proposed method. Moreover, we show that our MVCF tracker, which uses the DD-HOG descriptor, outperforms the structure-preserving object tracker (SPOT) in multi-object tracking because of its high-speed and ability to address heavy occlusion. PMID:27347951
Miller, Haylie L.; Bugnariu, Nicoleta; Patterson, Rita M.; Wijayasinghe, Indika; Popa, Dan O.
2018-01-01
Visuomotor integration (VMI), the use of visual information to guide motor planning, execution, and modification, is necessary for a wide range of functional tasks. To comprehensively, quantitatively assess VMI, we developed a paradigm integrating virtual environments, motion-capture, and mobile eye-tracking. Virtual environments enable tasks to be repeatable, naturalistic, and varied in complexity. Mobile eye-tracking and minimally-restricted movement enable observation of natural strategies for interacting with the environment. This paradigm yields a rich dataset that may inform our understanding of VMI in typical and atypical development. PMID:29876370
Schmidt, Christoph; Piper, Diana; Pester, Britta; Mierau, Andreas; Witte, Herbert
2018-05-01
Identification of module structure in brain functional networks is a promising way to obtain novel insights into neural information processing, as modules correspond to delineated brain regions in which interactions are strongly increased. Tracking of network modules in time-varying brain functional networks is not yet commonly considered in neuroscience despite its potential for gaining an understanding of the time evolution of functional interaction patterns and associated changing degrees of functional segregation and integration. We introduce a general computational framework for extracting consensus partitions from defined time windows in sequences of weighted directed edge-complete networks and show how the temporal reorganization of the module structure can be tracked and visualized. Part of the framework is a new approach for computing edge weight thresholds for individual networks based on multiobjective optimization of module structure quality criteria as well as an approach for matching modules across time steps. By testing our framework using synthetic network sequences and applying it to brain functional networks computed from electroencephalographic recordings of healthy subjects that were exposed to a major balance perturbation, we demonstrate the framework's potential for gaining meaningful insights into dynamic brain function in the form of evolving network modules. The precise chronology of the neural processing inferred with our framework and its interpretation helps to improve the currently incomplete understanding of the cortical contribution for the compensation of such balance perturbations.
Tumanova, Victoria; Zebrowski, Patricia M.; Goodman, Shawn S.; Arenas, Richard M.
2015-01-01
Purpose The purpose of this study was to utilize a visuomotor tracking task, with both the jaw and hand, to add to the literature regarding non-speech motor practice and sensorimotor integration (outside of auditory-motor integration domain) in adults who do (PWS) and do not (PWNS) stutter. Method Participants were 15 PWS (14 males, mean age = 27.0) and 15 PWNS (14 males, mean age = 27.2). Participants tracked both predictable and unpredictable moving targets separately with their jaw and their dominant hand, and accuracy was assessed by calculating phase and amplitude difference between the participant and the target. Motor practice effect was examined by comparing group performance over consecutive tracking trials of predictable conditions as well as within the first trial of same conditions. Results Results showed that compared to PWNS, PWS were not significantly different in matching either the phase (timing) or the amplitude of the target in both jaw and hand tracking of predictable and unpredictable targets. Further, there were no significant between-group differences in motor practice effects for either jaw or hand tracking. Both groups showed improved tracking accuracy within and between the trials. Conclusion Our findings revealed no statistically significant differences in non-speech motor practice effects and integration of sensorimotor feedback between PWS and PWNS, at least in the context of the visuomotor tracking tasks employed in the study. In general, both talker groups exhibited practice effects (i.e., increased accuracy over time) within and between tracking trials during both jaw and hand tracking. Implications for these results are discussed. PMID:25990027
Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1997-01-01
A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.
An Adaptive INS-Aided PLL Tracking Method for GNSS Receivers in Harsh Environments.
Cong, Li; Li, Xin; Jin, Tian; Yue, Song; Xue, Rui
2016-01-23
As the weak link in global navigation satellite system (GNSS) signal processing, the phase-locked loop (PLL) is easily influenced with frequent cycle slips and loss of lock as a result of higher vehicle dynamics and lower signal-to-noise ratios. With inertial navigation system (INS) aid, PLLs' tracking performance can be improved. However, for harsh environments with high dynamics and signal attenuation, the traditional INS-aided PLL with fixed loop parameters has some limitations to improve the tracking adaptability. In this paper, an adaptive INS-aided PLL capable of adjusting its noise bandwidth and coherent integration time has been proposed. Through theoretical analysis, the relation between INS-aided PLL phase tracking error and carrier to noise density ratio (C/N₀), vehicle dynamics, aiding information update time, noise bandwidth, and coherent integration time has been built. The relation formulae are used to choose the optimal integration time and bandwidth for a given application under the minimum tracking error criterion. Software and hardware simulation results verify the correctness of the theoretical analysis, and demonstrate that the adaptive tracking method can effectively improve the PLL tracking ability and integrated GNSS/INS navigation performance. For harsh environments, the tracking sensitivity is increased by 3 to 5 dB, velocity errors are decreased by 36% to 50% and position errors are decreased by 6% to 24% when compared with other INS-aided PLL methods.
NASA Astrophysics Data System (ADS)
Yue, Fengfa; Li, Xingfei; Chen, Cheng; Tan, Wenbin
2017-12-01
In order to improve the control accuracy and stability of opto-electronic tracking system fixed on reef or airport under friction and external disturbance conditions, adaptive integral backstepping sliding mode control approach with friction compensation is developed to achieve accurate and stable tracking for fast moving target. The nonlinear observer and slide mode controller based on modified LuGre model with friction compensation can effectively reduce the influence of nonlinear friction and disturbance of this servo system. The stability of the closed-loop system is guaranteed by Lyapunov theory. The steady-state error of the system is eliminated by integral action. The adaptive integral backstepping sliding mode controller and its performance are validated by a nonlinear modified LuGre dynamic model of the opto-electronic tracking system in simulation and practical experiments. The experiment results demonstrate that the proposed controller can effectively realise the accuracy and stability control of opto-electronic tracking system.
NASA Technical Reports Server (NTRS)
Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.
1976-01-01
The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.
Chemical etching for automatic processing of integrated circuits
NASA Technical Reports Server (NTRS)
Kennedy, B. W.
1981-01-01
Chemical etching for automatic processing of integrated circuits is discussed. The wafer carrier and loading from a receiving air track into automatic furnaces and unloading onto a sending air track are included.
Accurate and efficient spin integration for particle accelerators
Abell, Dan T.; Meiser, Dominic; Ranjbar, Vahid H.; ...
2015-02-01
Accurate spin tracking is a valuable tool for understanding spin dynamics in particle accelerators and can help improve the performance of an accelerator. In this paper, we present a detailed discussion of the integrators in the spin tracking code GPUSPINTRACK. We have implemented orbital integrators based on drift-kick, bend-kick, and matrix-kick splits. On top of the orbital integrators, we have implemented various integrators for the spin motion. These integrators use quaternions and Romberg quadratures to accelerate both the computation and the convergence of spin rotations.We evaluate their performance and accuracy in quantitative detail for individual elements as well as formore » the entire RHIC lattice. We exploit the inherently data-parallel nature of spin tracking to accelerate our algorithms on graphics processing units.« less
NASA Astrophysics Data System (ADS)
Liu, Brent; Lee, Jasper; Documet, Jorge; Guo, Bing; King, Nelson; Huang, H. K.
2006-03-01
By implementing a tracking and verification system, clinical facilities can effectively monitor workflow and heighten information security in today's growing demand towards digital imaging informatics. This paper presents the technical design and implementation experiences encountered during the development of a Location Tracking and Verification System (LTVS) for a clinical environment. LTVS integrates facial biometrics with wireless tracking so that administrators can manage and monitor patient and staff through a web-based application. Implementation challenges fall into three main areas: 1) Development and Integration, 2) Calibration and Optimization of Wi-Fi Tracking System, and 3) Clinical Implementation. An initial prototype LTVS has been implemented within USC's Healthcare Consultation Center II Outpatient Facility, which currently has a fully digital imaging department environment with integrated HIS/RIS/PACS/VR (Voice Recognition).
Visualization of RNA structure models within the Integrative Genomics Viewer.
Busan, Steven; Weeks, Kevin M
2017-07-01
Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Enable Web-Based Tracking and Guiding by Integrating Location-Awareness with the World Wide Web
ERIC Educational Resources Information Center
Zhou, Rui
2008-01-01
Purpose: The aim of this research is to enable web-based tracking and guiding by integrating location-awareness with the Worldwide Web so that the users can use various location-based applications without installing extra software. Design/methodology/approach: The concept of web-based tracking and guiding is introduced and the relevant issues are…
NASA Astrophysics Data System (ADS)
Ren, Changzhi; Li, Xiaoyan; Song, Xiaoli; Niu, Yong; Li, Aihua; Zhang, Zhenchao
2012-09-01
Direct drive technology is the key to solute future 30-m and larger telescope motion system to guarantee a very high tracking accuracy, in spite of unbalanced and sudden loads such as wind gusts and in spite of a structure that, because of its size, can not be infinitely stiff. However, this requires the design and realization of unusually large torque motor that the torque slew rate must be extremely steep too. A conventional torque motor design appears inadequate. This paper explores one redundant unit permanent magnet synchronous motor and its simulation bed for 30-m class telescope. Because its drive system is one high integrated electromechanical system, one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. This paper discusses the design and control of the precise tracking simulation bed in detail.
Delaney, Kathleen R; Carlson-Sabelli, Linnea; Shephard, Rebekah; Ridge, Alison
2011-08-01
In response to sustained concerns about the capability of the mental health workforce, federal groups have urged educators to adopt a competency-based system for training students in core mental health skills. A particular emphasis is training students to work in integrated systems, intervene with evidence-based practice, and employ culturally relevant therapies. Creating such a program, particularly one delivered online, requires structures that engage students in their own learning and tools for tracking competencies. We report on our competency-based graduate psychiatric mental health nursing program and the unique methods used to track student skill development and clinical reasoning. Copyright © 2011 Elsevier Inc. All rights reserved.
Tracking-integrated systems for concentrating photovoltaics
NASA Astrophysics Data System (ADS)
Apostoleris, Harry; Stefancich, Marco; Chiesa, Matteo
2016-04-01
Concentrating photovoltaic (CPV) systems, which use optical elements to focus light onto small-area solar cells, have the potential to minimize the costs, while improving efficiency, of photovoltaic technology. However, CPV is limited by the need to track the apparent motion of the Sun. This is typically accomplished using high-precision mechanical trackers that rotate the entire module to maintain normal light incidence. These machines are large, heavy and expensive to build and maintain, deterring commercial interest and excluding CPV from the residential market. To avoid this issue, some attention has recently been devoted to the development of tracking-integrated systems, in which tracking is performed inside the CPV module itself. This creates a compact system geometry that could be less expensive and more suitable for rooftop installation than existing CPV trackers. We review the basic tracking principles and concepts exploited in these systems, describe and categorize the existing designs, and discuss the potential impact of tracking integration on CPV cost models and commercial potential.
An Improved Strong Tracking Cubature Kalman Filter for GPS/INS Integrated Navigation Systems.
Feng, Kaiqiang; Li, Jie; Zhang, Xi; Zhang, Xiaoming; Shen, Chong; Cao, Huiliang; Yang, Yanyu; Liu, Jun
2018-06-12
The cubature Kalman filter (CKF) is widely used in the application of GPS/INS integrated navigation systems. However, its performance may decline in accuracy and even diverge in the presence of process uncertainties. To solve the problem, a new algorithm named improved strong tracking seventh-degree spherical simplex-radial cubature Kalman filter (IST-7thSSRCKF) is proposed in this paper. In the proposed algorithm, the effect of process uncertainty is mitigated by using the improved strong tracking Kalman filter technique, in which the hypothesis testing method is adopted to identify the process uncertainty and the prior state estimate covariance in the CKF is further modified online according to the change in vehicle dynamics. In addition, a new seventh-degree spherical simplex-radial rule is employed to further improve the estimation accuracy of the strong tracking cubature Kalman filter. In this way, the proposed comprehensive algorithm integrates the advantage of 7thSSRCKF’s high accuracy and strong tracking filter’s strong robustness against process uncertainties. The GPS/INS integrated navigation problem with significant dynamic model errors is utilized to validate the performance of proposed IST-7thSSRCKF. Results demonstrate that the improved strong tracking cubature Kalman filter can achieve higher accuracy than the existing CKF and ST-CKF, and is more robust for the GPS/INS integrated navigation system.
NASA Astrophysics Data System (ADS)
Issaei, Ali; Szczygiel, Lukasz; Hossein-Javaheri, Nima; Young, Mei; Molday, L. L.; Molday, R. S.; Sarunic, M. V.
2011-03-01
Scanning Laser Ophthalmoscopy (SLO) and Coherence Tomography (OCT) are complimentary retinal imaging modalities. Integration of SLO and OCT allows for both fluorescent detection and depth- resolved structural imaging of the retinal cell layers to be performed in-vivo. System customization is required to image rodents used in medical research by vision scientists. We are investigating multimodal SLO/OCT imaging of a rodent model of Stargardt's Macular Dystrophy which is characterized by retinal degeneration and accumulation of toxic autofluorescent lipofuscin deposits. Our new findings demonstrate the ability to track fundus autofluorescence and retinal degeneration concurrently.
Stress tracking in thin bars by eigenstrain actuation
NASA Astrophysics Data System (ADS)
Schoeftner, J.; Irschik, H.
2016-11-01
This contribution focuses on stress tracking in slender structures. The axial stress distribution of a linear elastic bar is investigated, in particular, we seek for an answer to the following question: in which manner do we have to distribute eigenstrains, such that the axial stress in a bar is equal to a certain desired stress distribution, despite external forces or support excitations are present? In order to track a certain time- and space-dependent stress function, smart actuators, such as piezoelectric actuators, are needed to realize eigenstrains. Based on the equation of motion and the constitutive relation, which relate stress, strain, displacement and eigenstrains, an analytical solution for the stress tracking problem is derived. The starting point for the derivation of a solution for the stress tracking problem is a semi-positive definite integral depending on the error stress which is the difference between the actual stress and the desired stress. Our derived stress tracking theory is verified by two examples: first, a clamped-free bar which is harmonically excited is investigated. It is shown under which circumstances the axial stress vanishes at every location and at every time instant. The second example is a support-excited bar with end mass, where a desired stress profile is prescribed.
Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model.
Li, Pengzhi; Yan, Feng; Ge, Chuan; Zhang, Mingchao
2012-08-01
In this paper, a novel Takagi-Sugeno (T-S) fuzzy system based model is proposed for hysteresis in piezoelectric actuators. The antecedent and consequent structures of the fuzzy hysteresis model (FHM) can be, respectively, identified on-line through uniform partition approach and recursive least squares (RLS) algorithm. With respect to controller design, the inverse of FHM is used to develop a feedforward controller to cancel out the hysteresis effect. Then a hybrid controller is designed for high-performance tracking. It combines the feedforward controller with a proportional integral differential (PID) controller favourable for stabilization and disturbance compensation. To achieve nanometer-scale tracking precision, the enhanced adaptive hybrid controller is further developed. It uses real-time input and output data to update FHM, thus changing the feedforward controller to suit the on-site hysteresis character of the piezoelectric actuator. Finally, as to 3 cases of 50 Hz sinusoidal, multiple frequency sinusoidal and 50 Hz triangular trajectories tracking, experimental results demonstrate the efficiency of the proposed controllers. Especially, being only 0.35% of the maximum desired displacement, the maximum error of 50 Hz sinusoidal tracking is greatly reduced to 5.8 nm, which clearly shows the ultra-precise nanometer-scale tracking performance of the developed adaptive hybrid controller.
3D noise-resistant segmentation and tracking of unknown and occluded objects using integral imaging
NASA Astrophysics Data System (ADS)
Aloni, Doron; Jung, Jae-Hyun; Yitzhaky, Yitzhak
2017-10-01
Three dimensional (3D) object segmentation and tracking can be useful in various computer vision applications, such as: object surveillance for security uses, robot navigation, etc. We present a method for 3D multiple-object tracking using computational integral imaging, based on accurate 3D object segmentation. The method does not employ object detection by motion analysis in a video as conventionally performed (such as background subtraction or block matching). This means that the movement properties do not significantly affect the detection quality. The object detection is performed by analyzing static 3D image data obtained through computational integral imaging With regard to previous works that used integral imaging data in such a scenario, the proposed method performs the 3D tracking of objects without prior information about the objects in the scene, and it is found efficient under severe noise conditions.
MR-Compatible Integrated Eye Tracking System
2016-03-10
SECURITY CLASSIFICATION OF: This instrumentation grant was used to purchase state-of-the-art, high-resolution video eye tracker that can be used to...P.O. Box 12211 Research Triangle Park, NC 27709-2211 video eye tracking, eye movments, visual search; camouflage-breaking REPORT DOCUMENTATION PAGE...Report: MR-Compatible Integrated Eye Tracking System Report Title This instrumentation grant was used to purchase state-of-the-art, high-resolution video
Martz, D E; George, J L; Langner, G H
1991-04-01
The accuracy and precision of indoor 222Rn measurements obtained with the use of diffusion barrier charcoal canisters (DBCC) under actual field conditions were determined by comparing the integrated average of 26 successive 7-d exposures of DBCC in each of 16 occupied residences over a 6-mo period with simultaneous measurements using four types of commercially available alpha-track monitors (ATM) and one type of scintillation chamber continuous 222Rn monitor. The results suggest that properly calibrated DBCCs provide very good estimates of the integrated 222Rn concentrations in residential structures over the standard 1-wk exposure period despite the occurrence of large diurnal variations in the actual 222Rn concentrations. The results also suggest that a relatively small number of 1-wk DBCC measurements at selected times throughout the calendar year would provide estimates of the annual average indoor 222Rn concentrations that compare favorably with single long-term ATM measurements.
Birkhoff, Susan D; Smeltzer, Suzanne C
2017-07-01
This integrative review presents a synthesis of the current qualitative research addressing the motivating factors, usability, and experiences of mobile health tracking applications (apps) across various chronic disease populations. Integrative review of the literature. Databases used to conduct this integrative review included: PubMed Plus, Cumulative Index of Nursing and Allied Health Literature (CINAHL), Google Scholar, Science Direct, and EBSCO megafile. The following search terms were used in all five databases: smartphone apps, apps, mHealth, eHealth, mobile health apps, health tracking apps, user-centered apps, wireless technology, engagement, qualitative, and usability. The initial literature review yielded 689 results. Once inclusion and exclusion criteria were employed, 11 studies met the criteria set forth for this review. The reviewed studies provided insight into users' perceptions, experiences, and motivations to incorporate smartphone mobile health apps into their daily lives when living with chronic illnesses. This review indicates the growing interest in user-centered mobile health tracking apps, but with little understanding of motivating factors that foster sustained app use. Mobile health tracking apps targeted to users with chronic conditions need to have a high level of usability in order to motivate users to sustain engagement with their mobile health tracking app. User-centered mobile health tracking app technology is being used with increasing frequency to potentially provide individualized support to chronic illness populations. © 2017 Sigma Theta Tau International.
An Empirical Human Controller Model for Preview Tracking Tasks.
van der El, Kasper; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus Rene M; Mulder, Max
2016-11-01
Real-life tracking tasks often show preview information to the human controller about the future track to follow. The effect of preview on manual control behavior is still relatively unknown. This paper proposes a generic operator model for preview tracking, empirically derived from experimental measurements. Conditions included pursuit tracking, i.e., without preview information, and tracking with 1 s of preview. Controlled element dynamics varied between gain, single integrator, and double integrator. The model is derived in the frequency domain, after application of a black-box system identification method based on Fourier coefficients. Parameter estimates are obtained to assess the validity of the model in both the time domain and frequency domain. Measured behavior in all evaluated conditions can be captured with the commonly used quasi-linear operator model for compensatory tracking, extended with two viewpoints of the previewed target. The derived model provides new insights into how human operators use preview information in tracking tasks.
Mayhew, Susannah H; Warren, Charlotte E; Collumbien, Martine; Ndwiga, Charity; Mutemwa, Richard; Lut, Irina; Colombini, Manuela; Vassall, Anna
2017-01-01
Abstract Drawing on rich data from the Integra evaluation of integrated HIV and reproductive-health services, we explored the interaction of systems hardware and software factors to explain why some facilities were able to implement and sustain integrated service delivery while others were not. This article draws on detailed mixed-methods data for four case-study facilities offering reproductive-health and HIV services between 2009 and 2013 in Kenya: (i) time-series client flow, tracking service uptake for 8841 clients; (ii) structured questionnaires with 24 providers; (iii) in-depth interviews with 17 providers; (iv) workload and facility data using a periodic activity review and cost-instruments; and (v) contextual data on external activities related to integration in study sites. Overall, our findings suggested that although structural factors like stock-outs, distribution of staffing and workload, rotation of staff can affect how integrated care is provided, all these factors can be influenced by staff themselves: both frontline and management. Facilities where staff displayed agency of decision making, worked as a team to share workload and had management that supported this, showed better integration delivery and staff were able to overcome some structural deficiencies to enable integrated care. Poor-performing facilities had good structural integration, but staff were unable to utilize this because they were poorly organized, unsupported or teams were dysfunctional. Conscientious objection and moralistic attitudes were also barriers. Integra has demonstrated that structural integration is not sufficient for integrated service delivery. Rather, our case studies show that in some cases excellent leadership and peer-teamwork enabled facilities to perform well despite resource shortages. The ability to provide support for staff to work flexibly to deliver integrated services and build resilient health systems to meet changing needs is particularly relevant as health systems face challenges of changing burdens of disease, climate change, epidemic outbreaks and more. PMID:29194544
Development of Laser Propulsion and Tracking System for Laser-Driven Micro-Airplane
NASA Astrophysics Data System (ADS)
Ishikawa, Hiroyasu; Kajiwara, Itsuro; Hoshino, Kentaro; Yabe, Takashi; Uchida, Shigeaki; Shimane, Yoshichika
2004-03-01
The purposes of this paper are to improve the control performance of the developed laser tracking system and to develop an integrated laser propulsion/tracking system for realizing a continuous flight and control of the micro-airplane. The laser propulsion is significantly effective to achieve the miniaturization and lightening of the micro-airplane. The laser-driven micro-airplane has been studied with a paper-craft airplane and YAG laser, resulting in a successful glide of the airplane. In the next stage of the laser-driven micro-airplane development, the laser tracking is expected as key technologies to achieve continuous propulsion. Furthermore, the laser propulsion system should be combined with the laser tracking system to supply continuous propulsion. Experiments are carried out to evaluate the performance of the developed laser tracking system and integrated laser propulsion/tracking system.
Tracking scanning laser ophthalmoscope (TSLO)
NASA Astrophysics Data System (ADS)
Hammer, Daniel X.; Ferguson, R. Daniel; Magill, John C.; White, Michael A.; Elsner, Ann E.; Webb, Robert H.
2003-07-01
The effectiveness of image stabilization with a retinal tracker in a multi-function, compact scanning laser ophthalmoscope (TSLO) was demonstrated in initial human subject tests. The retinal tracking system uses a confocal reflectometer with a closed loop optical servo system to lock onto features in the fundus. The system is modular to allow configuration for many research and clinical applications, including hyperspectral imaging, multifocal electroretinography (MFERG), perimetry, quantification of macular and photo-pigmentation, imaging of neovascularization and other subretinal structures (drusen, hyper-, and hypo-pigmentation), and endogenous fluorescence imaging. Optical hardware features include dual wavelength imaging and detection, integrated monochromator, higher-order motion control, and a stimulus source. The system software consists of a real-time feedback control algorithm and a user interface. Software enhancements include automatic bias correction, asymmetric feature tracking, image averaging, automatic track re-lock, and acquisition and logging of uncompressed images and video files. Normal adult subjects were tested without mydriasis to optimize the tracking instrumentation and to characterize imaging performance. The retinal tracking system achieves a bandwidth of greater than 1 kHz, which permits tracking at rates that greatly exceed the maximum rate of motion of the human eye. The TSLO stabilized images in all test subjects during ordinary saccades up to 500 deg/sec with an inter-frame accuracy better than 0.05 deg. Feature lock was maintained for minutes despite subject eye blinking. Successful frame averaging allowed image acquisition with decreased noise in low-light applications. The retinal tracking system significantly enhances the imaging capabilities of the scanning laser ophthalmoscope.
Vibro-acoustic performance of newly designed tram track structures
NASA Astrophysics Data System (ADS)
Haladin, Ivo; Lakušić, Stjepan; Ahac, Maja
2017-09-01
Rail vehicles in interaction with a railway structure induce vibrations that are propagating to surrounding structures and cause noise disturbance in the surrounding areas. Since tram tracks in urban areas often share the running surface with road vehicles one of top priorities is to achieve low maintenance and long lasting structure. Research conducted in scope of this paper gives an overview of newly designed tram track structures designated for use on Zagreb tram network and their performance in terms of noise and vibration mitigation. Research has been conducted on a 150 m long test section consisted of three tram track types: standard tram track structure commonly used on tram lines in Zagreb, optimized tram structure for better noise and vibration mitigation and a slab track with double sleepers embedded in a concrete slab, which presents an entirely new approach of tram track construction in Zagreb. Track has been instrumented with acceleration sensors, strain gauges and revision shafts for inspection. Relative deformations give an insight into track structure dynamic load distribution through the exploitation period. Further the paper describes vibro-acoustic measurements conducted at the test site. To evaluate the track performance from the vibro-acoustical standpoint, detailed analysis of track decay rate has been analysed. Opposed to measurement technique using impact hammer for track decay rate measurements, newly developed measuring technique using vehicle pass by vibrations as a source of excitation has been proposed and analysed. Paper gives overview of the method, it’s benefits compared to standard method of track decay rate measurements and method evaluation based on noise measurements of the vehicle pass by.
NASA Technical Reports Server (NTRS)
Halyo, N.
1983-01-01
The design and development of a 3-D Digital Integrated Automatic Landing System (DIALS) for the Terminal Configured Vehicle (TCV) Research Aircraft, a B-737-100 is described. The system was designed using sampled data Linear Quadratic Gaussian (LOG) methods, resulting in a direct digital design with a modern control structure which consists of a Kalman filter followed by a control gain matrix, all operating at 10 Hz. DIALS uses Microwave Landing System (MLS) position, body-mounted accelerometers, as well as on-board sensors usually available on commercial aircraft, but does not use inertial platforms. The phases of the final approach considered are the localizer and glideslope capture which may be performed simultaneously, localizer and steep glideslope track or hold, crab/decrab and flare to touchdown. DIALS captures, tracks and flares from steep glideslopes ranging from 2.5 deg to 5.5 deg, selected prior to glideslope capture. Digital Integrated Automatic Landing System is the first modern control design automatic landing system successfully flight tested. The results of an initial nonlinear simulation are presented here.
NASA Astrophysics Data System (ADS)
Zhang, J.; Gao, Q.; Tan, S. J.; Zhong, W. X.
2012-10-01
A new method is proposed as a solution for the large-scale coupled vehicle-track dynamic model with nonlinear wheel-rail contact. The vehicle is simplified as a multi-rigid-body model, and the track is treated as a three-layer beam model. In the track model, the rail is assumed to be an Euler-Bernoulli beam supported by discrete sleepers. The vehicle model and the track model are coupled using Hertzian nonlinear contact theory, and the contact forces of the vehicle subsystem and the track subsystem are approximated by the Lagrange interpolation polynomial. The response of the large-scale coupled vehicle-track model is calculated using the precise integration method. A more efficient algorithm based on the periodic property of the track is applied to calculate the exponential matrix and certain matrices related to the solution of the track subsystem. Numerical examples demonstrate the computational accuracy and efficiency of the proposed method.
GOATS 2005 Integrated, Adaptive Autonomous Acoustic Sensing Systems
2008-09-30
the MOOS-Ivp autonomy software suite to support the rapidly growing application community. In addition a structure, nested repository has been...priority. Thus, track messages (when available) are sent most often, but eventually the priority of the status message will grow high enough to get a...data throughput over the old communications stack. 4 Figure 1 Real-time topside display of BTR data transmitted from Unicorn BF21
Sato, Tatsuhiko; Watanabe, Ritsuko; Sihver, Lembit; Niita, Koji
2012-01-01
Microdosimetric quantities such as lineal energy are generally considered to be better indices than linear energy transfer (LET) for expressing the relative biological effectiveness (RBE) of high charge and energy particles. To calculate their probability densities (PD) in macroscopic matter, it is necessary to integrate microdosimetric tools such as track-structure simulation codes with macroscopic particle transport simulation codes. As an integration approach, the mathematical model for calculating the PD of microdosimetric quantities developed based on track-structure simulations was incorporated into the macroscopic particle transport simulation code PHITS (Particle and Heavy Ion Transport code System). The improved PHITS enables the PD in macroscopic matter to be calculated within a reasonable computation time, while taking their stochastic nature into account. The microdosimetric function of PHITS was applied to biological dose estimation for charged-particle therapy and risk estimation for astronauts. The former application was performed in combination with the microdosimetric kinetic model, while the latter employed the radiation quality factor expressed as a function of lineal energy. Owing to the unique features of the microdosimetric function, the improved PHITS has the potential to establish more sophisticated systems for radiological protection in space as well as for the treatment planning of charged-particle therapy.
Feasibility study of an integrated optic switching center. [satellite tracking application
NASA Technical Reports Server (NTRS)
1979-01-01
The design of a high data rate switching center for a satellite tracking station is discussed. The feasibility of a switching network using an integrated switching matrix is assessed. The preferred integrated optical switching scheme was found to be an electro-optic Bragg diffraction switch. To ascertain the advantages of the integrated optics switching center, its properties are compared to those of opto-electronic and to electronics switching networks.
Integrated Monitoring of Mola mola Behaviour in Space and Time.
Sousa, Lara L; López-Castejón, Francisco; Gilabert, Javier; Relvas, Paulo; Couto, Ana; Queiroz, Nuno; Caldas, Renato; Dias, Paulo Sousa; Dias, Hugo; Faria, Margarida; Ferreira, Filipe; Ferreira, António Sérgio; Fortuna, João; Gomes, Ricardo Joel; Loureiro, Bruno; Martins, Ricardo; Madureira, Luis; Neiva, Jorge; Oliveira, Marina; Pereira, João; Pinto, José; Py, Frederic; Queirós, Hugo; Silva, Daniel; Sujit, P B; Zolich, Artur; Johansen, Tor Arne; de Sousa, João Borges; Rajan, Kanna
2016-01-01
Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of fine-scale (< 10 m) behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) video-recorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (rs = 0.184, p<0.001). The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator's fine-scale behaviour observed over a two weeks in May 2014.
Integrated Monitoring of Mola mola Behaviour in Space and Time
Sousa, Lara L.; López-Castejón, Francisco; Gilabert, Javier; Relvas, Paulo; Couto, Ana; Queiroz, Nuno; Caldas, Renato; Dias, Paulo Sousa; Dias, Hugo; Faria, Margarida; Ferreira, Filipe; Ferreira, António Sérgio; Fortuna, João; Gomes, Ricardo Joel; Loureiro, Bruno; Martins, Ricardo; Madureira, Luis; Neiva, Jorge; Oliveira, Marina; Pereira, João; Pinto, José; Py, Frederic; Queirós, Hugo; Silva, Daniel; Sujit, P. B.; Zolich, Artur; Johansen, Tor Arne; de Sousa, João Borges; Rajan, Kanna
2016-01-01
Over the last decade, ocean sunfish movements have been monitored worldwide using various satellite tracking methods. This study reports the near-real time monitoring of fine-scale (< 10 m) behaviour of sunfish. The study was conducted in southern Portugal in May 2014 and involved satellite tags and underwater and surface robotic vehicles to measure both the movements and the contextual environment of the fish. A total of four individuals were tracked using custom-made GPS satellite tags providing geolocation estimates of fine-scale resolution. These accurate positions further informed sunfish areas of restricted search (ARS), which were directly correlated to steep thermal frontal zones. Simultaneously, and for two different occasions, an Autonomous Underwater Vehicle (AUV) video-recorded the path of the tracked fish and detected buoyant particles in the water column. Importantly, the densities of these particles were also directly correlated to steep thermal gradients. Thus, both sunfish foraging behaviour (ARS) and possibly prey densities, were found to be influenced by analogous environmental conditions. In addition, the dynamic structure of the water transited by the tracked individuals was described by a Lagrangian modelling approach. The model informed the distribution of zooplankton in the region, both horizontally and in the water column, and the resultant simulated densities positively correlated with sunfish ARS behaviour estimator (rs = 0.184, p<0.001). The model also revealed that tracked fish opportunistically displace with respect to subsurface current flow. Thus, we show how physical forcing and current structure provide a rationale for a predator’s fine-scale behaviour observed over a two weeks in May 2014. PMID:27494028
20th Annual Systems Engineering Conference. Volume 1, Monday-Tuesday
2017-10-26
Environment will follow Mr. Thompson’s presentation with a presentation focusing on how ESOH Risk Management is an integral part of the RIO Management...office successes and failures in implementing the DoDI 5000.02 acquisition ESOH policy. HUMAN SYSTEMS INTEGRATION (HSI) Track Chair: Matthew...practices, process improvements, applications and approaches to program integration . INTEROPERABILITY/NET - CENTRIC OPERATIONS Track Chairs
Chemical vapor deposition for automatic processing of integrated circuits
NASA Technical Reports Server (NTRS)
Kennedy, B. W.
1980-01-01
Chemical vapor deposition for automatic processing of integrated circuits including the wafer carrier and loading from a receiving air track into automatic furnaces and unloading on to a sending air track is discussed. Passivation using electron beam deposited quartz is also considered.
Optimal Reference Strain Structure for Studying Dynamic Responses of Flexible Rockets
NASA Technical Reports Server (NTRS)
Tsushima, Natsuki; Su, Weihua; Wolf, Michael G.; Griffin, Edwin D.; Dumoulin, Marie P.
2017-01-01
In the proposed paper, the optimal design of reference strain structures (RSS) will be performed targeting for the accurate observation of the dynamic bending and torsion deformation of a flexible rocket. It will provide the detailed description of the finite-element (FE) model of a notional flexible rocket created in MSC.Patran. The RSS will be attached longitudinally along the side of the rocket and to track the deformation of the thin-walled structure under external loads. An integrated surrogate-based multi-objective optimization approach will be developed to find the optimal design of the RSS using the FE model. The Kriging method will be used to construct the surrogate model. For the data sampling and the performance evaluation, static/transient analyses will be performed with MSC.Natran/Patran. The multi-objective optimization will be solved with NSGA-II to minimize the difference between the strains of the launch vehicle and RSS. Finally, the performance of the optimal RSS will be evaluated by checking its strain-tracking capability in different numerical simulations of the flexible rocket.
Multisensor data fusion for integrated maritime surveillance
NASA Astrophysics Data System (ADS)
Premji, A.; Ponsford, A. M.
1995-01-01
A prototype Integrated Coastal Surveillance system has been developed on Canada's East Coast to provide effective surveillance out to and beyond the 200 nautical mile Exclusive Economic Zone. The system has been designed to protect Canada's natural resources, and to monitor and control the coastline for smuggling, drug trafficking, and similar illegal activity. This paper describes the Multiple Sensor - Multiple Target data fusion system that has been developed. The fusion processor has been developed around the celebrated Multiple Hypothesis Tracking algorithm which accommodates multiple targets, new targets, false alarms, and missed detections. This processor performs four major functions: plot-to-track association to form individual radar tracks; fusion of radar tracks with secondary sensor reports; track identification and tagging using secondary reports; and track level fusion to form common tracks. Radar data from coherent and non-coherent radars has been used to evaluate the performance of the processor. This paper presents preliminary results.
Zhuang, Leimeng; Beeker, Willem; Leinse, Arne; Heideman, René; van Dijk, Paulus; Roeloffzen, Chris
2013-02-11
We propose and demonstrate a novel wideband microwave photonic polarization network for dual linear-polarized antennas. The polarization network is based on a waveguide-implemented fully-reconfigurable optical interleaver using a two-ring resonator-assisted asymmetric Mach-Zehnder structure. For microwave photonic signal processing, this structure is able to serve as a wideband 2 × 2 RF coupler with reconfigurable complex coefficients, and therefore can be used as a polarization network for wideband antennas. Such a device can equip the antennas with not only the polarization rotation capability for linear-polarization signals but also the capability to operate with and tune between two opposite circular polarizations. Operating together with a particular modulation scheme, the device is also able to serve for simultaneous feeding of dual-polarization signals. These photonic-implemented RF functionalities can be applied to wideband antenna systems to perform agile polarization manipulations and tracking operations. An example of such a interleaver has been realized in TriPleX waveguide technology, which was designed with a free spectral range of 20 GHz and a mask footprint of smaller than 1 × 1 cm. Using the realized device, the reconfigurable complex coefficients of the polarization network were demonstrated with a continuous bandwidth from 2 to 8 GHz and an in-band phase ripple of smaller than 5 degree. The waveguide structure of the device allows it to be further integrated with other functional building blocks of a photonic integrated circuit to realize on-chip, complex microwave photonic processors. Of particular interest, it can be included in an optical beamformer for phased array antennas, so that simultaneous wideband beam and polarization trackings can be achieved photonically. To our knowledge, this is the first-time on-chip demonstration of an integrated microwave photonic polarization network for dual linear-polarized antennas.
Developments and Control of Biocompatible Conducting Polymer for Intracorporeal Continuum Robots.
Chikhaoui, Mohamed Taha; Benouhiba, Amine; Rougeot, Patrick; Rabenorosoa, Kanty; Ouisse, Morvan; Andreff, Nicolas
2018-04-30
Dexterity of robots is highly required when it comes to integration for medical applications. Major efforts have been conducted to increase the dexterity at the distal parts of medical robots. This paper reports on developments toward integrating biocompatible conducting polymers (CP) into inherently dexterous concentric tube robot paradigm. In the form of tri-layer thin structures, CP micro-actuators produce high strains while requiring less than 1 V for actuation. Fabrication, characterization, and first integrations of such micro-actuators are presented. The integration is validated in a preliminary telescopic soft robot prototype with qualitative and quantitative performance assessment of accurate position control for trajectory tracking scenarios. Further, CP micro-actuators are integrated to a laser steering system in a closed-loop control scheme with displacements up to 5 mm. Our first developments aim toward intracorporeal medical robotics, with miniaturized actuators to be embedded into continuum robots.
A CPV System with Static Linear Fresnel Lenses in a Greenhouse
NASA Astrophysics Data System (ADS)
Sonneveld, Piet; Zahn, Helmut; Swinkels, Gert-Jan
2010-10-01
A new CPV system with a static linear Fresnel lens, silicon PV module suitable for concentrated radiation and an innovative tracking system is integrated in a greenhouse covering. The basic idea of this horticultural application is to develop a greenhouse for pot plants (typical shadow plants) which don't like high direct radiation. Removing all direct radiation will block up to 77% of the solar energy, which will reduce the necessary cooling capacity. The solar energy focused on the Thermal Photovoltaic (PV/T) module generates electric and thermal energy. The PV/T module is tracked in the focal line and requires cooling due to the high heat load of the concentrated radiation (concentration factor of 50 times). All parts are integrated in a greenhouse with a size of about 36 m2. The electrical and thermal yield is determined for Dutch climate circumstances. Some measurements were performed with a PMMA linear Fresnel lens between double glass. Further improvement of the performance of the CPV-system is possible by using a PDMS lens directly laminated on glass and using AR-coated glass. This lens is developed with ZEMAX and the results of the Ray-tracing simulations are presented with the lens structure oriented in an upwards and downwards position. The best performance of the static linear Fresnel lens is achieved with upwards orientation of the lens structures. In practice this is only possible with the Fresnel lens placed between a double glass structure, which will keep the lens clean and free of water.
Cerebro-cerebellar connectivity is increased in primary lateral sclerosis.
Meoded, Avner; Morrissette, Arthur E; Katipally, Rohan; Schanz, Olivia; Gotts, Stephen J; Floeter, Mary Kay
2015-01-01
Increased functional connectivity in resting state networks was found in several studies of patients with motor neuron disorders, although diffusion tensor imaging studies consistently show loss of white matter integrity. To understand the relationship between structural connectivity and functional connectivity, we examined the structural connections between regions with altered functional connectivity in patients with primary lateral sclerosis (PLS), a long-lived motor neuron disease. Connectivity matrices were constructed from resting state fMRI in 16 PLS patients to identify areas of differing connectivity between patients and healthy controls. Probabilistic fiber tracking was used to examine structural connections between regions of differing connectivity. PLS patients had 12 regions with increased functional connectivity compared to controls, with a predominance of cerebro-cerebellar connections. Increased functional connectivity was strongest between the cerebellum and cortical motor areas and between the cerebellum and frontal and temporal cortex. Fiber tracking detected no difference in connections between regions with increased functional connectivity. We conclude that functional connectivity changes are not strongly based in structural connectivity. Increased functional connectivity may be caused by common inputs, or by reduced selectivity of cortical activation, which could result from loss of intracortical inhibition when cortical afferents are intact.
Neural dynamics for landmark orientation and angular path integration
Seelig, Johannes D.; Jayaraman, Vivek
2015-01-01
Summary Many animals navigate using a combination of visual landmarks and path integration. In mammalian brains, head direction cells integrate these two streams of information by representing an animal's heading relative to landmarks, yet maintaining their directional tuning in darkness based on self-motion cues. Here we use two-photon calcium imaging in head-fixed flies walking on a ball in a virtual reality arena to demonstrate that landmark-based orientation and angular path integration are combined in the population responses of neurons whose dendrites tile the ellipsoid body — a toroidal structure in the center of the fly brain. The population encodes the fly's azimuth relative to its environment, tracking visual landmarks when available and relying on self-motion cues in darkness. When both visual and self-motion cues are absent, a representation of the animal's orientation is maintained in this network through persistent activity — a potential substrate for short-term memory. Several features of the population dynamics of these neurons and their circular anatomical arrangement are suggestive of ring attractors — network structures proposed to support the function of navigational brain circuits. PMID:25971509
Investigation of system integration methods for bubble domain flight recorders
NASA Technical Reports Server (NTRS)
Chen, T. T.; Bohning, O. D.
1975-01-01
System integration methods for bubble domain flight records are investigated. Bubble memory module packaging and assembly, the control electronics design and construction, field coils, and permanent magnet bias structure design are studied. A small 60-k bit engineering model was built and tested to demonstrate the feasibility of the bubble recorder. Based on the various studies performed, a projection is made on a 50,000,000-bit prototype recorder. It is estimated that the recorder will occupy 190 cubic in., weigh 12 lb, and consume 12 w power when all of its four tracks are operated in parallel at 150 kHz data rate.
Work Flow Analysis Report Action Tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
PETERMANN, M.L.
The Work Flow Analysis Report will be used to facilitate the requirements for implementing the further deployment of the Action Tracking module of Passport. The report consists of workflow integration processes for Action Tracking.
Scale-adaptive compressive tracking with feature integration
NASA Astrophysics Data System (ADS)
Liu, Wei; Li, Jicheng; Chen, Xiao; Li, Shuxin
2016-05-01
Numerous tracking-by-detection methods have been proposed for robust visual tracking, among which compressive tracking (CT) has obtained some promising results. A scale-adaptive CT method based on multifeature integration is presented to improve the robustness and accuracy of CT. We introduce a keypoint-based model to achieve the accurate scale estimation, which can additionally give a prior location of the target. Furthermore, by the high efficiency of data-independent random projection matrix, multiple features are integrated into an effective appearance model to construct the naïve Bayes classifier. At last, an adaptive update scheme is proposed to update the classifier conservatively. Experiments on various challenging sequences demonstrate substantial improvements by our proposed tracker over CT and other state-of-the-art trackers in terms of dealing with scale variation, abrupt motion, deformation, and illumination changes.
Robust multiperson detection and tracking for mobile service and social robots.
Li, Liyuan; Yan, Shuicheng; Yu, Xinguo; Tan, Yeow Kee; Li, Haizhou
2012-10-01
This paper proposes an efficient system which integrates multiple vision models for robust multiperson detection and tracking for mobile service and social robots in public environments. The core technique is a novel maximum likelihood (ML)-based algorithm which combines the multimodel detections in mean-shift tracking. First, a likelihood probability which integrates detections and similarity to local appearance is defined. Then, an expectation-maximization (EM)-like mean-shift algorithm is derived under the ML framework. In each iteration, the E-step estimates the associations to the detections, and the M-step locates the new position according to the ML criterion. To be robust to the complex crowded scenarios for multiperson tracking, an improved sequential strategy to perform the mean-shift tracking is proposed. Under this strategy, human objects are tracked sequentially according to their priority order. To balance the efficiency and robustness for real-time performance, at each stage, the first two objects from the list of the priority order are tested, and the one with the higher score is selected. The proposed method has been successfully implemented on real-world service and social robots. The vision system integrates stereo-based and histograms-of-oriented-gradients-based human detections, occlusion reasoning, and sequential mean-shift tracking. Various examples to show the advantages and robustness of the proposed system for multiperson tracking from mobile robots are presented. Quantitative evaluations on the performance of multiperson tracking are also performed. Experimental results indicate that significant improvements have been achieved by using the proposed method.
NASA Technical Reports Server (NTRS)
Renfroe, Michael B.; Mcdonald, Edward J.; Bradshaw, Kimberly
1988-01-01
The Logistics Asset Tracking System (LATS) devised by NASA contains data on Space Shuttle LRUs that are daily updated to reflect such LRU status changes as repair due to failure or modification due to changing engineering requirements. The implementation of LATS has substantially increased personnel responsiveness, preventing costly delays in Space Shuttle processing and obviating hardware cannibalization. An evaluation is presented of LATS achievements in the direction of an integrated logistical support posture.
The Utilization of Starute Decelerators for Improved Upper Atmosphere Measurements
1974-12-01
34 ECOM-5489, May 1973. 17. Miller, Walter B., and Donald R. Veazey , "An Integrated Error Description of Active and Passive Balloon Tracking Systems," ECOM...20. Miller, Walter B., and Donald R. Veazey , "Vertical Efficiency of Active and Passive Balloon Tracking Systems from a Standpoint of Integrated Error...5542, May 1974. 60. Miller, Walter B., and Donald R. Veazey , "On Increasing Vertical Efficiency of a Passive Balloon Tracking Device by Optimal Choice
NASA Technical Reports Server (NTRS)
Coulter, Phillip; Beaton, Alexander; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hayden, Joseph E.; Hummel, Susann; Hylan, Jason E.; Lee, David; Madison, Timothy J.; Maszkiewicz, Michael;
2014-01-01
The James Webb Space Telescope science instruments are in the final stages of being integrated into the Integrated Science Instrument Module (ISIM) element. Each instrument is tied into a common coordinate system through mechanical references that are used for optical alignment and metrology within ISIM after element-level assembly. In addition, a set of ground support equipment (GSE) consisting of large, precisely calibrated, ambient, and cryogenic structures are used as alignment references and gauges during various phases of integration and test (I&T). This GSE, the flight instruments, and ISIM structure feature different types of complimentary metrology targeting. These GSE targets are used to establish and track six degrees of freedom instrument alignment during I&T in the vehicle coordinate system (VCS). This paper describes the optomechanical metrology conducted during science instrument integration and alignment in the Spacecraft Systems Development and Integration Facility (SSDIF) cleanroom at NASA Goddard Space Flight Center (GSFC). The measurement of each instrument's ambient entrance pupil location in the telescope coordinate system is discussed. The construction of the database of target locations and the development of metrology uncertainties is also discussed.
Computational simulation of progressive fracture in fiber composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1986-01-01
Computational methods for simulating and predicting progressive fracture in fiber composite structures are presented. These methods are integrated into a computer code of modular form. The modules include composite mechanics, finite element analysis, and fracture criteria. The code is used to computationally simulate progressive fracture in composite laminates with and without defects. The simulation tracks the fracture progression in terms of modes initiating fracture, damage growth, and imminent global (catastrophic) laminate fracture.
Automated identification and tracking of polar-cap plasma patches at solar minimum
NASA Astrophysics Data System (ADS)
Burston, R.; Hodges, K.; Astin, I.; Jayachandran, P. T.
2014-03-01
A method of automatically identifying and tracking polar-cap plasma patches, utilising data inversion and feature-tracking methods, is presented. A well-established and widely used 4-D ionospheric imaging algorithm, the Multi-Instrument Data Assimilation System (MIDAS), inverts slant total electron content (TEC) data from ground-based Global Navigation Satellite System (GNSS) receivers to produce images of the free electron distribution in the polar-cap ionosphere. These are integrated to form vertical TEC maps. A flexible feature-tracking algorithm, TRACK, previously used extensively in meteorological storm-tracking studies is used to identify and track maxima in the resulting 2-D data fields. Various criteria are used to discriminate between genuine patches and "false-positive" maxima such as the continuously moving day-side maximum, which results from the Earth's rotation rather than plasma motion. Results for a 12-month period at solar minimum, when extensive validation data are available, are presented. The method identifies 71 separate structures consistent with patch motion during this time. The limitations of solar minimum and the consequent small number of patches make climatological inferences difficult, but the feasibility of the method for patches larger than approximately 500 km in scale is demonstrated and a larger study incorporating other parts of the solar cycle is warranted. Possible further optimisation of discrimination criteria, particularly regarding the definition of a patch in terms of its plasma concentration enhancement over the surrounding background, may improve results.
Structuring Broadcast Audio for Information Access
NASA Astrophysics Data System (ADS)
Gauvain, Jean-Luc; Lamel, Lori
2003-12-01
One rapidly expanding application area for state-of-the-art speech recognition technology is the automatic processing of broadcast audiovisual data for information access. Since much of the linguistic information is found in the audio channel, speech recognition is a key enabling technology which, when combined with information retrieval techniques, can be used for searching large audiovisual document collections. Audio indexing must take into account the specificities of audio data such as needing to deal with the continuous data stream and an imperfect word transcription. Other important considerations are dealing with language specificities and facilitating language portability. At Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), broadcast news transcription systems have been developed for seven languages: English, French, German, Mandarin, Portuguese, Spanish, and Arabic. The transcription systems have been integrated into prototype demonstrators for several application areas such as audio data mining, structuring audiovisual archives, selective dissemination of information, and topic tracking for media monitoring. As examples, this paper addresses the spoken document retrieval and topic tracking tasks.
An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers.
Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan
2017-11-18
Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration-which are the basis of tracking error estimation-are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (-0.25 cycle, 0.25 cycle) to (-0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz.
VIPRAM_L1CMS: a 2-Tier 3D Architecture for Pattern Recognition for Track Finding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoff, J. R.; Joshi, Joshi,S.; Liu, Liu,
In HEP tracking trigger applications, flagging an individual detector hit is not important. Rather, the path of a charged particle through many detector layers is what must be found. Moreover, given the increased luminosity projected for future LHC experiments, this type of track finding will be required within the Level 1 Trigger system. This means that future LHC experiments require not just a chip capable of high-speed track finding but also one with a high-speed readout architecture. VIPRAM_L1CMS is 2-Tier Vertically Integrated chip designed to fulfill these requirements. It is a complete pipelined Pattern Recognition Associative Memory (PRAM) architecture includingmore » pattern recognition, result sparsification, and readout for Level 1 trigger applications in CMS with 15-bit wide detector addresses and eight detector layers included in the track finding. Pattern recognition is based on classic Content Addressable Memories with a Current Race Scheme to reduce timing complexity and a 4-bit Selective Precharge to minimize power consumption. VIPRAM_L1CMS uses a pipelined set of priority-encoded binary readout structures to sparsify and readout active road flags at frequencies of at least 100MHz. VIPRAM_L1CMS is designed to work directly with the Pulsar2b Architecture.« less
Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures.
Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé
2015-06-26
Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.
Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures
Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé
2015-01-01
Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency. PMID:26131668
Global navigation satellite system receiver for weak signals under all dynamic conditions
NASA Astrophysics Data System (ADS)
Ziedan, Nesreen Ibrahim
The ability of the Global Navigation Satellite System (GNSS) receiver to work under weak signal and various dynamic conditions is required in some applications. For example, to provide a positioning capability in wireless devices, or orbit determination of Geostationary and high Earth orbit satellites. This dissertation develops Global Positioning System (GPS) receiver algorithms for such applications. Fifteen algorithms are developed for the GPS C/A signal. They cover all the receiver main functions, which include acquisition, fine acquisition, bit synchronization, code and carrier tracking, and navigation message decoding. They are integrated together, and they can be used in any software GPS receiver. They also can be modified to fit any other GPS or GNSS signals. The algorithms have new capabilities. The processing and memory requirements are considered in the design to allow the algorithms to fit the limited resources of some applications; they do not require any assisting information. Weak signals can be acquired in the presence of strong interfering signals and under high dynamic conditions. The fine acquisition, bit synchronization, and tracking algorithms are based on the Viterbi algorithm and Extended Kalman filter approaches. The tracking algorithms capabilities increase the time to lose lock. They have the ability to adaptively change the integration length and the code delay separation. More than one code delay separation can be used in the same time. Large tracking errors can be detected and then corrected by a re-initialization and an acquisition-like algorithms. Detecting the navigation message is needed to increase the coherent integration; decoding it is needed to calculate the navigation solution. The decoding algorithm utilizes the message structure to enable its decoding for signals with high Bit Error Rate. The algorithms are demonstrated using simulated GPS C/A code signals, and TCXO clocks. The results have shown the algorithms ability to reliably work with 15 dB-Hz signals and acceleration over 6 g.
Micro- and nano-NDE systems for aircraft: great things in small packages
NASA Astrophysics Data System (ADS)
Malas, James C.; Kropas-Hughes, Claudia V.; Blackshire, James L.; Moran, Thomas; Peeler, Deborah; Frazier, W. G.; Parker, Danny
2003-07-01
Recent advancements in small, microscopic NDE sensor technologies will revolutionize how aircraft maintenance is done, and will significantly improve the reliability and airworthiness of current and future aircraft systems. A variety of micro/nano systems and concepts are being developed that will enable whole new capabilities for detecting and tracking structural integrity damage. For aging aircraft systems, the impact of micro-NDE sensor technologies will be felt immediately, with dramatic reductions in labor for maintenance, and extended useable life of critical components being two of the primary benefits. For the fleet management of future aircraft systems, a comprehensive evaluation and tracking of vehicle health throughout its entire life cycle will be needed. Indeed, micro/nano NDE systems will be instrumental in realizing this futuristic vision. Several major challenges will need to be addressed, however, before micro- and nano-NDE systems can effectively be implemented, and this will require interdisciplinary research approaches, and a systematic engineering integration of the new technologies into real systems. Future research will need to emphasize systems engineering approaches for designing materials and structures with in-situ inspection and prognostic capabilities. Recent advances in 1) embedded / add-on micro-sensors, 2) computer modeling of nondestructive evaluation responses, and 3) wireless communications are important steps toward this goal, and will ultimately provide previously unimagined opportunities for realizing whole new integrated vehicle health monitoring capabilities. The future use of micro/nano NDE technologies as vehicle health monitoring tools will have profound implications, and will provide a revolutionary way of doing NDE in the near and distant future.
NASA Astrophysics Data System (ADS)
Del Carpio R., Maikol; Hashemi, M. Javad; Mosqueda, Gilberto
2017-10-01
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.
How to Integrate Bilingual Education without Tracking.
ERIC Educational Resources Information Center
Glenn, Charles L.
1990-01-01
Integrated schools that stress learning among students in two languages are called two-way schools. They provide a singularly rich educational environment and avoid the negative effects of educational segregation by tracking. A Chelsea, Massachusetts, bilingual elementary school focused on team building to use existing resources more effectively.…
Information Technology: Making It All Fit. Track II: Managing Technologies Integration.
ERIC Educational Resources Information Center
CAUSE, Boulder, CO.
Nine papers from the 1988 CAUSE conference's Track II, Managing Technologies Integration, are presented. They include: "Computing in the '90s--Will We Be Ready for the Applications Needed?" (Stephen Patrick); "Glasnost, The Era of 'Openness'" (Bernard W. Gleason); "Academic and Administrative Computing: Are They Really…
Adaptive Neural Tracking Control for Switched High-Order Stochastic Nonlinear Systems.
Zhao, Xudong; Wang, Xinyong; Zong, Guangdeng; Zheng, Xiaolong
2017-10-01
This paper deals with adaptive neural tracking control design for a class of switched high-order stochastic nonlinear systems with unknown uncertainties and arbitrary deterministic switching. The considered issues are: 1) completely unknown uncertainties; 2) stochastic disturbances; and 3) high-order nonstrict-feedback system structure. The considered mathematical models can represent many practical systems in the actual engineering. By adopting the approximation ability of neural networks, common stochastic Lyapunov function method together with adding an improved power integrator technique, an adaptive state feedback controller with multiple adaptive laws is systematically designed for the systems. Subsequently, a controller with only two adaptive laws is proposed to solve the problem of over parameterization. Under the designed controllers, all the signals in the closed-loop system are bounded-input bounded-output stable in probability, and the system output can almost surely track the target trajectory within a specified bounded error. Finally, simulation results are presented to show the effectiveness of the proposed approaches.
Tracking Control and System Development for Laser-Driven Micro-Vehicles
NASA Astrophysics Data System (ADS)
Kajiwara, Itsuro; Hoshino, Kentaro; Hara, Shinji; Shiokata, Daisuke; Yabe, Takashi
The purpose of this paper is to design a control system for an integrated laser propulsion/tracking system to achieve continuous motion and control of laser-driven micro-vehicles. Laser propulsion is significant in achieving miniature and light micro-vehicles. A laser-driven micro-airplane has been studied using a paper airplane and YAG laser, resulting in successful gliding of the airplane. High-performance laser tracking control is required to achieve continuous flight. This paper presents a control design strategy based on the generalized Kalman-Yakubovic-Popov lemma to achieve this requirement. Experiments have been carried out to evaluate the performance of the integrated laser propulsion/tracking system.
Mousetrap: An integrated, open-source mouse-tracking package.
Kieslich, Pascal J; Henninger, Felix
2017-10-01
Mouse-tracking - the analysis of mouse movements in computerized experiments - is becoming increasingly popular in the cognitive sciences. Mouse movements are taken as an indicator of commitment to or conflict between choice options during the decision process. Using mouse-tracking, researchers have gained insight into the temporal development of cognitive processes across a growing number of psychological domains. In the current article, we present software that offers easy and convenient means of recording and analyzing mouse movements in computerized laboratory experiments. In particular, we introduce and demonstrate the mousetrap plugin that adds mouse-tracking to OpenSesame, a popular general-purpose graphical experiment builder. By integrating with this existing experimental software, mousetrap allows for the creation of mouse-tracking studies through a graphical interface, without requiring programming skills. Thus, researchers can benefit from the core features of a validated software package and the many extensions available for it (e.g., the integration with auxiliary hardware such as eye-tracking, or the support of interactive experiments). In addition, the recorded data can be imported directly into the statistical programming language R using the mousetrap package, which greatly facilitates analysis. Mousetrap is cross-platform, open-source and available free of charge from https://github.com/pascalkieslich/mousetrap-os .
2008-01-01
species studied in our research program, we have chosen to highlight the results of tagging studies on the bluefin tuna (Thunnus orientalis), which has...been extensively tagged and has been found to heavily rely on the CCS. Building on the tracking studies of migrating Pacific bluefin tuna along the...consistently attract large numbers of Pacific bluefin tuna during spring and summer seasons. Integrating track data from archival tags with tag
Bridging scales from satellite to grains: Structural mapping aided by tablet and photogrammetry
NASA Astrophysics Data System (ADS)
Hawemann, Friedrich; Mancktelow, Neil; Pennacchioni, Giorgio; Wex, Sebastian; Camacho, Alfredo
2016-04-01
Bridging scales from satellite to grains: Structural mapping aided by tablet and photogrammetry A fundamental problem in small-scale mapping is linking outcrop observations to the large scale deformation pattern. The evolution of handheld devices such as tablets with integrated GPS and the availability of airborne imagery allows a precise localization of outcrops. Detailed structural geometries can be analyzed through ortho-rectified photo mosaics generated by photogrammetry software. In this study, we use a cheap standard Samsung-tablet (< 300 Euro) to map individual, up to 60 m long shear zones with the tracking option offered by the program Locus Map. Even though GPS accuracy is about 3 m, the relative error from one point to another during tracking is on the order of only about 1 dm. Parts of the shear zone with excellent outcrop are photographed with a standard camera with a relatively wide angle in a mosaic array. An area of about 30 sqm needs about 50 photographs with enough overlap to be used for photogrammetry. The software PhotoScan from Agisoft matches the photographs in a fully automated manner, calculates a 3D model of the outcrop, and has the option to project this as an orthophoto onto a flat surface. This allows original orientations of grain-scale structures to be recorded over areas on a scale up to tens to hundreds of metres. The photo mosaics can then be georeferenced with the aid of the GPS-tracks of the shear zones and included in a GIS. This provides a cheap recording of the structures in high detail. The great advantages over mapping with UAVs (drones) is the resolution (<1mm to >1cm), the independence from weather and energy source, and the low cost.
Altimetric signal and three-dimensional structure of the sea in the Channel of Sicily
NASA Astrophysics Data System (ADS)
Nardelli, Bruno Buongiorno; Santoleri, Rosalia; Iudicone, Daniele; Zoffoli, Simona; Marullo, Salvatore
1999-09-01
The 1996 Altimeter/Synoptic Mesoscale Plancton Experiment (ALT/SYMPLEX) was specifically designed to perform in situ measurements simultaneous with the passage of TOPEX/POSEIDON (T/P) and ERS 2 over selected tracks in the central and eastern Sicily Channel. This experiment made it possible to have, for the first time, a validation of altimetry with in situ data over the Mediterranean, where weak dynamics results in a modest sea elevation, rarely exceeding 10 cm. Historical infrared and altimetric satellite data were first analyzed in order to study the variability of the circulation in the area. The comparative and integrative analysis of simultaneous satellite data and in situ measurements permitted investigation of the relation between the altimeter-derived surface topography and the three-dimensional structure of the sea. The Pearson correlation coefficients between altimeter data and dynamic heights along track resulted to be 0.72-0.89 (T/P) and 0.88 (ERS 2) when using conventional repeat track analysis. For T/P, a correlation value of 0.87 was found for time differences computed basing on a collinear analysis technique. This analysis also led to the identification of a strong barotropic component of the velocity field located near the Sicilian continental shelf, where it is responsible for approximately 60% of the signal.
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1987-01-01
A combined stochastic feedforward and feedback control design methodology was developed. The objective of the feedforward control law is to track the commanded trajectory, whereas the feedback control law tries to maintain the plant state near the desired trajectory in the presence of disturbances and uncertainties about the plant. The feedforward control law design is formulated as a stochastic optimization problem and is embedded into the stochastic output feedback problem where the plant contains unstable and uncontrollable modes. An algorithm to compute the optimal feedforward is developed. In this approach, the use of error integral feedback, dynamic compensation, control rate command structures are an integral part of the methodology. An incremental implementation is recommended. Results on the eigenvalues of the implemented versus designed control laws are presented. The stochastic feedforward/feedback control methodology is used to design a digital automatic landing system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft. The system control modes include localizer and glideslope capture and track, and flare to touchdown. Results of a detailed nonlinear simulation of the digital control laws, actuator systems, and aircraft aerodynamics are presented.
NASA Astrophysics Data System (ADS)
Radkowski, Rafael; Holland, Stephen; Grandin, Robert
2018-04-01
This research addresses inspection location tracking in the field of nondestructive evaluation (NDE) using a computer vision technique to determine the position and orientation of typical NDE equipment in a test setup. The objective is the tracking accuracy for typical NDE equipment to facilitate automatic NDE data integration. Since the employed tracking technique relies on surface curvatures of an object of interest, the accuracy can be only experimentally determined. We work with flash-thermography and conducted an experiment in which we tracked a specimen and a thermography flash hood, measured the spatial relation between both, and used the relation as input to map thermography data onto a 3D model of the specimen. The results indicate an appropriate accuracy, however, unveiled calibration challenges.
NASA Astrophysics Data System (ADS)
Auersch, Lutz
2015-01-01
Train-induced ground vibration can be excited by wheel and track irregularities and by two kinds of irregularities of the soil, by geometric irregularities or by the spatially varying soil stiffness. For both types of irregularities, the effective track irregularity on top of the track is calculated in wavenumber domain and with wavenumber integrals. For a general multi-beam track model, the wavenumber integrals are solved numerically. The irregularities of the soil are filtered by the track when transferred from the bottom to the top of the track. The high-wavenumber irregularities are strongly reduced due to the bending stiffness of the track and the compliance of the support. In addition, soft track elements reduce directly the stiffness variation of the support. Therefore, the mitigation effect of elastic track elements for these excitation components seems to be important. For under-sleeper pads and slab tracks, calculation and measurements are presented including additional excitation components and the dynamic vehicle-track interaction, and the relevance of the excitation mechanisms is discussed based on the dynamic forces which are acting on the ground. Due to the restricted amplitudes, the parametric excitation by the stiffness variation seems to be less important than the geometric irregularities. The calculations yield the correct trends of the measurements and many details of the measured ballast, slab, and under-sleeper-pad tracks.
Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview
NASA Technical Reports Server (NTRS)
Hughes, Stephen J.; Dillman, Robert A.; Starr, Brett R.; Stephan, Ryan A.; Lindell, Michael C.; Player, Charles J.; Cheatwood, F. McNeil
2005-01-01
Inflatable aeroshells offer several advantages over traditional rigid aeroshells for atmospheric entry. Inflatables offer increased payload volume fraction of the launch vehicle shroud and the possibility to deliver more payload mass to the surface for equivalent trajectory constraints. An inflatable s diameter is not constrained by the launch vehicle shroud. The resultant larger drag area can provide deceleration equivalent to a rigid system at higher atmospheric altitudes, thus offering access to higher landing sites. When stowed for launch and cruise, inflatable aeroshells allow access to the payload after the vehicle is integrated for launch and offer direct access to vehicle structure for structural attachment with the launch vehicle. They also offer an opportunity to eliminate system duplication between the cruise stage and entry vehicle. There are however several potential technical challenges for inflatable aeroshells. First and foremost is the fact that they are flexible structures. That flexibility could lead to unpredictable drag performance or an aerostructural dynamic instability. In addition, durability of large inflatable structures may limit their application. They are susceptible to puncture, a potentially catastrophic insult, from many possible sources. Finally, aerothermal heating during planetary entry poses a significant challenge to a thin membrane. NASA Langley Research Center and NASA's Wallops Flight Facility are jointly developing inflatable aeroshell technology for use on future NASA missions. The technology will be demonstrated in the Inflatable Re-entry Vehicle Experiment (IRVE). This paper will detail the development of the initial IRVE inflatable system to be launched on a Terrier/Orion sounding rocket in the fourth quarter of CY2005. The experiment will demonstrate achievable packaging efficiency of the inflatable aeroshell for launch, inflation, leak performance of the inflatable system throughout the flight regime, structural integrity when exposed to a relevant dynamic pressure and aerodynamic stability of the inflatable system. Structural integrity and structural response of the inflatable will be verified with photogrammetric measurements of the back side of the aeroshell in flight. Aerodynamic stability as well as drag performance will be verified with on board inertial measurements and radar tracking from multiple ground radar stations. The experiment will yield valuable information about zero-g vacuum deployment dynamics of the flexible inflatable structure with both inertial and photographic measurements. In addition to demonstrating inflatable technology, IRVE will validate structural, aerothermal, and trajectory modeling techniques for the inflatable. Structural response determined from photogrammetrics will validate structural models, skin temperature measurements and additional in-depth temperature measurements will validate material thermal performance models, and on board inertial measurements along with radar tracking from multiple ground radar stations will validate trajectory simulation models.
Mayhew, Susannah H; Sweeney, Sedona; Warren, Charlotte E; Collumbien, Martine; Ndwiga, Charity; Mutemwa, Richard; Lut, Irina; Colombini, Manuela; Vassall, Anna
2017-11-01
Drawing on rich data from the Integra evaluation of integrated HIV and reproductive-health services, we explored the interaction of systems hardware and software factors to explain why some facilities were able to implement and sustain integrated service delivery while others were not. This article draws on detailed mixed-methods data for four case-study facilities offering reproductive-health and HIV services between 2009 and 2013 in Kenya: (i) time-series client flow, tracking service uptake for 8841 clients; (ii) structured questionnaires with 24 providers; (iii) in-depth interviews with 17 providers; (iv) workload and facility data using a periodic activity review and cost-instruments; and (v) contextual data on external activities related to integration in study sites. Overall, our findings suggested that although structural factors like stock-outs, distribution of staffing and workload, rotation of staff can affect how integrated care is provided, all these factors can be influenced by staff themselves: both frontline and management. Facilities where staff displayed agency of decision making, worked as a team to share workload and had management that supported this, showed better integration delivery and staff were able to overcome some structural deficiencies to enable integrated care. Poor-performing facilities had good structural integration, but staff were unable to utilize this because they were poorly organized, unsupported or teams were dysfunctional. Conscientious objection and moralistic attitudes were also barriers.Integra has demonstrated that structural integration is not sufficient for integrated service delivery. Rather, our case studies show that in some cases excellent leadership and peer-teamwork enabled facilities to perform well despite resource shortages. The ability to provide support for staff to work flexibly to deliver integrated services and build resilient health systems to meet changing needs is particularly relevant as health systems face challenges of changing burdens of disease, climate change, epidemic outbreaks and more. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.
The PMHT: solutions for some of its problems
NASA Astrophysics Data System (ADS)
Wieneke, Monika; Koch, Wolfgang
2007-09-01
Tracking multiple targets in a cluttered environment is a challenging task. Probabilistic Multiple Hypothesis Tracking (PMHT) is an efficient approach for dealing with it. Essentially PMHT is based on the method of Expectation-Maximization for handling with association conflicts. Linearity in the number of targets and measurements is the main motivation for a further development and extension of this methodology. Unfortunately, compared with the Probabilistic Data Association Filter (PDAF), PMHT has not yet shown its superiority in terms of track-lost statistics. Furthermore, the problem of track extraction and deletion is apparently not yet satisfactorily solved within this framework. Four properties of PMHT are responsible for its problems in track maintenance: Non-Adaptivity, Hospitality, Narcissism and Local Maxima. 1, 2 In this work we present a solution for each of them and derive an improved PMHT by integrating the solutions into the PMHT formalism. The new PMHT is evaluated by Monte-Carlo simulations. A sequential Likelihood-Ratio (LR) test for track extraction has been developed and already integrated into the framework of traditional Bayesian Multiple Hypothesis Tracking. 3 As a multi-scan approach, also the PMHT methodology has the potential for track extraction. In this paper an analogous integration of a sequential LR test into the PMHT framework is proposed. We present an LR formula for track extraction and deletion using the PMHT update formulae. As PMHT provides all required ingredients for a sequential LR calculation, the LR is thus a by-product of the PMHT iteration process. Therefore the resulting update formula for the sequential LR test affords the development of Track-Before-Detect algorithms for PMHT. The approach is illustrated by a simple example.
Hyperintense White Matter Lesions in 50 High-Altitude Pilots with Neurologic Decompression Sickness
2012-12-01
Environ Med 2004 ; 75 : 969 – 72 . 4. Bartzokis G, Tishler TA, Shin IS, Lu PH, Cummings JL . Brain ferritin iron as a risk factor for...Coyle T, Lancaster J, et al. Can structural MRI indices of cerebral integrity track cognitive trends in executive control function during normal...Digital brain atlases . Trends Neurosci 1995 ; 18 : 210 – 1 . 28. Miura K, Soyama Y, Morikawa Y, Nishijo M, Nakanishi Y, et al
Evaluation of mercury in the liquid waste processing facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.
2015-08-13
This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.
Methodology for Designing Operational Banking Risks Monitoring System
NASA Astrophysics Data System (ADS)
Kostjunina, T. N.
2018-05-01
The research looks at principles of designing an information system for monitoring operational banking risks. A proposed design methodology enables one to automate processes of collecting data on information security incidents in the banking network, serving as the basis for an integrated approach to the creation of an operational risk management system. The system can operate remotely ensuring tracking and forecasting of various operational events in the bank network. A structure of a content management system is described.
Multi-scale Functional and Molecular Photoacoustic Tomography
Yao, Junjie; Xia, Jun; Wang, Lihong V.
2015-01-01
Photoacoustic tomography (PAT) combines rich optical absorption contrast with the high spatial resolution of ultrasound at depths in tissue. The high scalability of PAT has enabled anatomical imaging of biological structures ranging from organelles to organs. The inherent functional and molecular imaging capabilities of PAT have further allowed it to measure important physiological parameters and track critical cellular activities. Integration of PAT with other imaging technologies provides complementary capabilities and can potentially accelerate the clinical translation of PAT. PMID:25933617
Integration of Off-Track Sonic Boom Analysis in Conceptual Design of Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2011-01-01
A highly desired capability for the conceptual design of aircraft is the ability to rapidly and accurately evaluate new concepts to avoid adverse trade decisions that may hinder the development process in the later stages of design. Evaluating the robustness of new low-boom concepts is important for the conceptual design of supersonic aircraft. Here, robustness means that the aircraft configuration has a low-boom ground signature at both under- and off-track locations. An integrated process for off-track boom analysis is developed to facilitate the design of robust low-boom supersonic aircraft. The integrated off-track analysis can also be used to study the sonic boom impact and to plan future flight trajectories where flight conditions and ground elevation might have a significant effect on ground signatures. The key enabler for off-track sonic boom analysis is accurate computational fluid dynamics (CFD) solutions for off-body pressure distributions. To ensure the numerical accuracy of the off-body pressure distributions, a mesh study is performed with Cart3D to determine the mesh requirements for off- body CFD analysis and comparisons are made between the Cart3D and USM3D results. The variations in ground signatures that result from changes in the initial location of the near-field waveform are also examined. Finally, a complete under- and off-track sonic boom analysis is presented for two distinct supersonic concepts to demonstrate the capability of the integrated analysis process.
NASA Astrophysics Data System (ADS)
Alexander, Frauke; Villagrasa, Carmen; Rabus, Hans; Wilkens, Jan J.
2015-09-01
The BioQuaRT project within the European Metrology Research Programme aims at correlating ion track structure characteristics with the biological effects of radiation and develops measurement and simulation techniques for determining ion track structure on different length scales from about 2 nm to about 10 μm. Within this framework, we investigate methods to translate track-structure quantities derived on a nanometre scale to macroscopic dimensions. Input data sets were generated by simulations of ion tracks of protons and carbon ions in liquid water using the Geant 4 Monte Carlo toolkit with the Geant4-DNA processes. Based on the energy transfer points - recorded with nanometre resolution - we investigated parametrisations of overall properties of ion track structure. Three different track structure parametrisations have been developed using the distances to the 10 next neighbouring ionisations, the radial energy distribution and ionisation cluster size distributions. These parametrisations of nanometric track structure build a basis for deriving biologically relevant mean values which are essential in the clinical situation where each voxel is exposed to a mixed radiation field. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.
Track-structure simulations for charged particles.
Dingfelder, Michael
2012-11-01
Monte Carlo track-structure simulations provide a detailed and accurate picture of radiation transport of charged particles through condensed matter of biological interest. Liquid water serves as a surrogate for soft tissue and is used in most Monte Carlo track-structure codes. Basic theories of radiation transport and track-structure simulations are discussed and differences compared to condensed history codes highlighted. Interaction cross sections for electrons, protons, alpha particles, and light and heavy ions are required input data for track-structure simulations. Different calculation methods, including the plane-wave Born approximation, the dielectric theory, and semi-empirical approaches are presented using liquid water as a target. Low-energy electron transport and light ion transport are discussed as areas of special interest.
Modular Track System For Positioning Mobile Robots
NASA Technical Reports Server (NTRS)
Miller, Jeff
1995-01-01
Conceptual system for positioning mobile robotic manipulators on large main structure includes modular tracks and ancillary structures assembled easily along with main structure. System, called "tracked robotic location system" (TROLS), originally intended for application to platforms in outer space, but TROLS concept might also prove useful on Earth; for example, to position robots in factories and warehouses. T-cross-section rail keeps mobile robot on track. Bar codes mark locations along track. Each robot equipped with bar-code-recognizing circuitry so it quickly finds way to assigned location.
Acoustic Emission of Large PRSEUS Structures (Pultruded Rod Stitched Efficient Unitized Structure)
NASA Technical Reports Server (NTRS)
Horne, Michael R.; Juarez, Peter D.
2016-01-01
In the role of structural health monitoring (SHM), Acoustic Emission (AE) analysis is being investigated as an effective method for tracking damage development in large composite structures under load. Structures made using Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) for damage tolerant, light, and economical airframe construction are being pursued by The Boeing Company and NASA under the Environmentally Responsible Aircraft initiative (ERA). The failure tests of two PRSEUS substructures based on the Boeing Hybrid Wing Body fuselage concept were conducted during third quarter 2011 and second quarter 2015. One fundamental concern of these tests was determining the effectiveness of the stitched integral stiffeners to inhibit damage progression. By design, severe degradation of load carrying capability should not occur prior to Design Ultimate Load (DUL). While minor damage prior to DUL was anticipated, the integral stitching should not fail since this would allow a stiffener-skin delamination to progress rapidly and alter the transfer of load into the stiffeners. In addition, the stiffeners should not fracture because they are fundamental to structural integrity. Getting the best information from each AE sensor is a primary consideration because a sparse network of sensors is implemented. Sensitivity to stiffener-contiguous degradation is supported by sensors near the stiffeners, which increases the coverage per sensor via AE waveguide actions. Some sensors are located near potentially critical areas or "critical zones" as identified by numerical analyses. The approach is compared with the damage progression monitored by other techniques (e.g. ultrasonic C-scan).
Mbah, Henry; Negedu-Momoh, Olubunmi Ruth; Adedokun, Oluwasanmi; Ikani, Patrick Anibbe; Balogun, Oluseyi; Sanwo, Olusola; Ochei, Kingsley; Ekanem, Maurice; Torpey, Kwasi
2014-01-01
The surge of donor funds to fight HIV&AIDS epidemic inadvertently resulted in the setup of laboratories as parallel structures to rapidly respond to the identified need. However these parallel structures are a threat to the existing fragile laboratory systems. Laboratory service integration is critical to remedy this situation. This paper describes an approach to quantitatively measure and track integration of HIV-related laboratory services into the mainstream laboratory services and highlight some key intervention steps taken, to enhance service integration. A quantitative before-and-after study conducted in 122 Family Health International (FHI360) supported health facilities across Nigeria. A minimum service package was identified including management structure; trainings; equipment utilization and maintenance; information, commodity and quality management for laboratory integration. A check list was used to assess facilities at baseline and 3 months follow-up. Level of integration was assessed on an ordinal scale (0 = no integration, 1 = partial integration, 2 = full integration) for each service package. A composite score grading expressed as a percentage of total obtainable score of 14 was defined and used to classify facilities (≤ 80% FULL, 25% to 79% PARTIAL and <25% NO integration). Weaknesses were noted and addressed. We analyzed 9 (7.4%) primary, 104 (85.2%) secondary and 9 (7.4%) tertiary level facilities. There were statistically significant differences in integration levels between baseline and 3 months follow-up period (p<0.01). Baseline median total integration score was 4 (IQR 3 to 5) compared to 7 (IQR 4 to 9) at 3 months follow-up (p = 0.000). Partial and fully integrated laboratory systems were 64 (52.5%) and 0 (0.0%) at baseline, compared to 100 (82.0%) and 3 (2.4%) respectively at 3 months follow-up (p = 0.000). This project showcases our novel approach to measure the status of each laboratory on the integration continuum.
Fracture modes in human teeth.
Lee, J J-W; Kwon, J-Y; Chai, H; Lucas, P W; Thompson, V P; Lawn, B R
2009-03-01
The structural integrity of teeth under stress is vital to functional longevity. We tested the hypothesis that this integrity is limited by fracture of the enamel. Experiments were conducted on molar teeth, with a metal rod loaded onto individual cusps. Fracture during testing was tracked with a video camera. Two longitudinal modes of cracking were observed: median cracking from the contact zone, and margin cracking along side walls. Median cracks initiated from plastic damage at the contact site, at first growing slowly and then accelerating to the tooth margin. Margin cracks appeared to originate from the cemento-enamel junction, and traversed the tooth wall adjacent to the loaded cusp from the gingival to the occlusal surface. All cracks remained confined within the enamel shell up to about 550 N. At higher loads, additional crack modes--such as enamel chipping and delamination--began to manifest themselves, leading to more comprehensive failure of the tooth structure.
Sigmoid function based integral-derivative observer and application to autopilot design
NASA Astrophysics Data System (ADS)
Shao, Xingling; Wang, Honglun; Liu, Jun; Tang, Jun; Li, Jie; Zhang, Xiaoming; Shen, Chong
2017-02-01
To handle problems of accurate signal reconstruction and controller implementation with integral and derivative components in the presence of noisy measurement, motivated by the design principle of sigmoid function based tracking differentiator and nonlinear continuous integral-derivative observer, a novel integral-derivative observer (SIDO) using sigmoid function is developed. The key merit of the proposed SIDO is that it can simultaneously provide continuous integral and differential estimates with almost no drift phenomena and chattering effect, as well as acceptable noise-tolerance performance from output measurement, and the stability is established based on exponential stability and singular perturbation theory. In addition, the effectiveness of SIDO in suppressing drift phenomena and high frequency noises is firstly revealed using describing function and confirmed through simulation comparisons. Finally, the theoretical results on SIDO are demonstrated with application to autopilot design: 1) the integral and tracking estimates are extracted from the sensed pitch angular rate contaminated by nonwhite noises in feedback loop, 2) the PID(proportional-integral-derivative) based attitude controller is realized by adopting the error estimates offered by SIDO instead of using the ideal integral and derivative operator to achieve satisfactory tracking performance under control constraint.
Structure preserving clustering-object tracking via subgroup motion pattern segmentation
NASA Astrophysics Data System (ADS)
Fan, Zheyi; Zhu, Yixuan; Jiang, Jiao; Weng, Shuqin; Liu, Zhiwen
2018-01-01
Tracking clustering objects with similar appearances simultaneously in collective scenes is a challenging task in the field of collective motion analysis. Recent work on clustering-object tracking often suffers from poor tracking accuracy and terrible real-time performance due to the neglect or the misjudgment of the motion differences among objects. To address this problem, we propose a subgroup motion pattern segmentation framework based on a multilayer clustering structure and establish spatial constraints only among objects in the same subgroup, which entails having consistent motion direction and close spatial position. In addition, the subgroup segmentation results are updated dynamically because crowd motion patterns are changeable and affected by objects' destinations and scene structures. The spatial structure information combined with the appearance similarity information is used in the structure preserving object tracking framework to track objects. Extensive experiments conducted on several datasets containing multiple real-world crowd scenes validate the accuracy and the robustness of the presented algorithm for tracking objects in collective scenes.
Troshin, Petr V; Morris, Chris; Prince, Stephen M; Papiz, Miroslav Z
2008-12-01
Membrane Protein Structure Initiative (MPSI) exploits laboratory competencies to work collaboratively and distribute work among the different sites. This is possible as protein structure determination requires a series of steps, starting with target selection, through cloning, expression, purification, crystallization and finally structure determination. Distributed sites create a unique set of challenges for integrating and passing on information on the progress of targets. This role is played by the Protein Information Management System (PIMS), which is a laboratory information management system (LIMS), serving as a hub for MPSI, allowing collaborative structural proteomics to be carried out in a distributed fashion. It holds key information on the progress of cloning, expression, purification and crystallization of proteins. PIMS is employed to track the status of protein targets and to manage constructs, primers, experiments, protocols, sample locations and their detailed histories: thus playing a key role in MPSI data exchange. It also serves as the centre of a federation of interoperable information resources such as local laboratory information systems and international archival resources, like PDB or NCBI. During the challenging task of PIMS integration, within the MPSI, we discovered a number of prerequisites for successful PIMS integration. In this article we share our experiences and provide invaluable insights into the process of LIMS adaptation. This information should be of interest to partners who are thinking about using LIMS as a data centre for their collaborative efforts.
Abrasion resistant track shoe grouser
Fischer, Keith D; Diekevers, Mark S; Afdahl, Curt D; Steiner, Kevin L; Barnes, Christopher A
2013-04-23
A track shoe for a track-type vehicle. The track shoe includes a base plate and a grouser projecting away from the base plate. A capping surface structure of substantially horseshoe shaped cross-section is disposed across a distal portion of the grouser. The capping surface structure covers portions of a distal edge surface and adjacent lateral surfaces. The capping surface structure is formed from an material characterized by enhanced wear resistance relative to portions of the grouser underlying the capping surface structure.
Unified dead-time compensation structure for SISO processes with multiple dead times.
Normey-Rico, Julio E; Flesch, Rodolfo C C; Santos, Tito L M
2014-11-01
This paper proposes a dead-time compensation structure for processes with multiple dead times. The controller is based on the filtered Smith predictor (FSP) dead-time compensator structure and it is able to control stable, integrating, and unstable processes with multiple input/output dead times. An equivalent model of the process is first computed in order to define the predictor structure. Using this equivalent model, the primary controller and the predictor filter are tuned to obtain an internally stable closed-loop system which also attempts some closed-loop specifications in terms of set-point tracking, disturbance rejection, and robustness. Some simulation case studies are used to illustrate the good properties of the proposed approach. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bagli, Enrico; Guidi, Vincenzo
2013-08-01
A toolkit for the simulation of coherent interactions between high-energy charged particles and complex crystal structures, called DYNECHARM++ has been developed. The code has been written in C++ language taking advantage of this object-oriented programing method. The code is capable to evaluating the electrical characteristics of complex atomic structures and to simulate and track the particle trajectory within them. Calculation method of electrical characteristics based on their expansion in Fourier series has been adopted. Two different approaches to simulate the interaction have been adopted, relying on the full integration of particle trajectories under the continuum potential approximation and on the definition of cross-sections of coherent processes. Finally, the code has proved to reproduce experimental results and to simulate interaction of charged particles with complex structures.
Sight-Reading Expertise: Cross-Modality Integration Investigated Using Eye Tracking
ERIC Educational Resources Information Center
Drai-Zerbib, Veronique; Baccino, Thierry; Bigand, Emmanuel
2012-01-01
It is often said that experienced musicians are capable of hearing what they read (and vice versa). This suggests that they are able to process and to integrate multimodal information. The present study investigates this issue with an eye-tracking technique. Two groups of musicians chosen on the basis of their level of expertise (experts,…
The Integrated Waste Tracking System - A Flexible Waste Management Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Robert Stephen
2001-02-01
The US Department of Energy (DOE) Idaho National Engineering and Environmental Laboratory (INEEL) has fully embraced a flexible, computer-based tool to help increase waste management efficiency and integrate multiple operational functions from waste generation through waste disposition while reducing cost. The Integrated Waste Tracking System (IWTS)provides comprehensive information management for containerized waste during generation,storage, treatment, transport, and disposal. The IWTS provides all information necessary for facilities to properly manage and demonstrate regulatory compliance. As a platformindependent, client-server and Web-based inventory and compliance system, the IWTS has proven to be a successful tracking, characterization, compliance, and reporting tool that meets themore » needs of both operations and management while providing a high level of management flexibility.« less
Super-resolution imaging applied to moving object tracking
NASA Astrophysics Data System (ADS)
Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi
2017-10-01
Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.
Smart skin spiral antenna with chiral absorber
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Varadan, Vasundara V.
1995-05-01
Recently there has been considerable interest toward designing 'smart skins' for aircraft. The smart skin is a composite layer which may contain conformal radars, conformal microstrip antennas or spiral antennas for electromagnetic applications. These embedded antennas will give rise to very low radar cross section (RCS) or can be completely 'hidden' to tracking radar. In addition, they can be used to detect, monitor or even jam other unwanted electromagnetic field signatures. This paper is designed to address some technical advances made to reduce the size of spiral antennas using tunable dielectric materials and chiral absorbers. The purpose is to design, develop and fabricate a thin, wideband, conformal spiral antenna architecture that is structurally integrable and which uses advanced Penn State dielectric and absorber materials to achieve wideband ground planes, and together with low RCS. Traditional practice has been to design radome and antenna as separate entities and then resolve any interface problems during an integration phase. A structurally integrable conformal antenna, however, demands that the functional components be highly integrated both conceptually and in practice. Our concept is to use the lower skin of the radome as a substrate on which the radiator can be made using standard photolithography, thick film or LTCC techniques.
An image‐based method to synchronize cone‐beam CT and optical surface tracking
Schaerer, Joël; Riboldi, Marco; Sarrut, David; Baroni, Guido
2015-01-01
The integration of in‐room X‐ray imaging and optical surface tracking has gained increasing importance in the field of image guided radiotherapy (IGRT). An essential step for this integration consists of temporally synchronizing the acquisition of X‐ray projections and surface data. We present an image‐based method for the synchronization of cone‐beam computed tomography (CBCT) and optical surface systems, which does not require the use of additional hardware. The method is based on optically tracking the motion of a component of the CBCT/gantry unit, which rotates during the acquisition of the CBCT scan. A calibration procedure was implemented to relate the position of the rotating component identified by the optical system with the time elapsed since the beginning of the CBCT scan, thus obtaining the temporal correspondence between the acquisition of X‐ray projections and surface data. The accuracy of the proposed synchronization method was evaluated on a motorized moving phantom, performing eight simultaneous acquisitions with an Elekta Synergy CBCT machine and the AlignRT optical device. The median time difference between the sinusoidal peaks of phantom motion signals extracted from the synchronized CBCT and AlignRT systems ranged between ‐3.1 and 12.9 msec, with a maximum interquartile range of 14.4 msec. The method was also applied to clinical data acquired from seven lung cancer patients, demonstrating the potential of the proposed approach in estimating the individual and daily variations in respiratory parameters and motion correlation of internal and external structures. The presented synchronization method can be particularly useful for tumor tracking applications in extracranial radiation treatments, especially in the field of patient‐specific breathing models, based on the correlation between internal tumor motion and external surface surrogates. PACS number: 87
Which way and how far? Tracking of translation and rotation information for human path integration.
Chrastil, Elizabeth R; Sherrill, Katherine R; Hasselmo, Michael E; Stern, Chantal E
2016-10-01
Path integration, the constant updating of the navigator's knowledge of position and orientation during movement, requires both visuospatial knowledge and memory. This study aimed to develop a systems-level understanding of human path integration by examining the basic building blocks of path integration in humans. To achieve this goal, we used functional imaging to examine the neural mechanisms that support the tracking and memory of translational and rotational components of human path integration. Critically, and in contrast to previous studies, we examined movement in translation and rotation tasks with no defined end-point or goal. Navigators accumulated translational and rotational information during virtual self-motion. Activity in hippocampus, retrosplenial cortex (RSC), and parahippocampal cortex (PHC) increased during both translation and rotation encoding, suggesting that these regions track self-motion information during path integration. These results address current questions regarding distance coding in the human brain. By implementing a modified delayed match to sample paradigm, we also examined the encoding and maintenance of path integration signals in working memory. Hippocampus, PHC, and RSC were recruited during successful encoding and maintenance of path integration information, with RSC selective for tasks that required processing heading rotation changes. These data indicate distinct working memory mechanisms for translation and rotation, which are essential for updating neural representations of current location. The results provide evidence that hippocampus, PHC, and RSC flexibly track task-relevant translation and rotation signals for path integration and could form the hub of a more distributed network supporting spatial navigation. Hum Brain Mapp 37:3636-3655, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Dual linear structured support vector machine tracking method via scale correlation filter
NASA Astrophysics Data System (ADS)
Li, Weisheng; Chen, Yanquan; Xiao, Bin; Feng, Chen
2018-01-01
Adaptive tracking-by-detection methods based on structured support vector machine (SVM) performed well on recent visual tracking benchmarks. However, these methods did not adopt an effective strategy of object scale estimation, which limits the overall tracking performance. We present a tracking method based on a dual linear structured support vector machine (DLSSVM) with a discriminative scale correlation filter. The collaborative tracker comprised of a DLSSVM model and a scale correlation filter obtains good results in tracking target position and scale estimation. The fast Fourier transform is applied for detection. Extensive experiments show that our tracking approach outperforms many popular top-ranking trackers. On a benchmark including 100 challenging video sequences, the average precision of the proposed method is 82.8%.
Vibration and noise characteristics of an elevated box girder paved with different track structures
NASA Astrophysics Data System (ADS)
Li, Xiaozhen; Liang, Lin; Wang, Dangxiong
2018-07-01
The vibration and noise of elevated concrete box girders (ECBGs) are now among the most concerned issues in the field of urban rail transit (URT) systems. The track structure, belonging to critical load-transfer components, directly affects the characteristics of loading transmission into bridge, as well as the noise radiation from such system, which further determines the reduction of vibration and noise in ECBGs significantly. In order to investigate the influence of different track structures on the vibration and structure-borne noise of ECBGs, a frequency-domain theoretical model of vehicle-track coupled system, taking into account the effect of multiple wheels, is firstly established in the present work. The analysis of track structures focuses on embedded sleepers, trapezoidal sleepers, and steel-spring floating slabs (SSFS). Next, a vibration and noise field test was performed, with regard to a 30 m simple supported ECBG (with the embedded-sleeper track structure) of an URT system. Based on the tested results, two numerical models, involving a finite element model for the vibration analysis, as well as a statistical energy analysis (SEA) model for the prediction of the noise radiation, are established and validated. The results of the numerical simulations and the field tests are well matched, which offers opportunities to predict the vibration and structure-borne noise of ECBGs by the proposed modelling methodology. From the comparison between the different types of track structures, the spatial distribution and reduction effect of vibration and noise are lastly studied. The force applied on ECBG is substantially determined by both the wheel-rail force (external factor) and the transmission rate of track structure (internal factor). The SSFS track is the most effective for vibration and noise reduction of ECBGs, followed in descending order by the trapezoidal-sleeper and embedded-sleeper tracks. The above result provides a theoretical basis for the vibration and noise reduction design of urban rail transit systems.
Mechanisms for the elevation structure of a giant telescope
NASA Astrophysics Data System (ADS)
Hu, Shouwei; Song, Xiaoli; Zhang, Hui
2018-06-01
This paper describes an innovative mechanism based on hydrostatic pads and linear motors for the elevation structure of next-generation extremely large telescopes. Both hydrostatic pads and linear motors are integrated on the frame that includes a kinematical joint, such that the upper part is properly positioned with respect to the elevation runner tracks, while the lower part is connected to the azimuth structure. Potential deflections of the elevation runner bearings at the radial pad locations are absorbed by this flexible kinematic connection and not transmitted to the linear motors and hydrostatic pads. Extensive simulations using finite-element analysis are carried out to verify that the auxiliary whiffletree hydraulic design of the mechanism is sufficient to satisfy the assigned optical length variation errors.
Mechanisms for the elevation structure of a giant telescope
NASA Astrophysics Data System (ADS)
Hu, Shouwei; Song, Xiaoli; Zhang, Hui
2018-05-01
This paper describes an innovative mechanism based on hydrostatic pads and linear motors for the elevation structure of next-generation extremely large telescopes. Both hydrostatic pads and linear motors are integrated on the frame that includes a kinematical joint, such that the upper part is properly positioned with respect to the elevation runner tracks, while the lower part is connected to the azimuth structure. Potential deflections of the elevation runner bearings at the radial pad locations are absorbed by this flexible kinematic connection and not transmitted to the linear motors and hydrostatic pads. Extensive simulations using finite-element analysis are carried out to verify that the auxiliary whiffletree hydraulic design of the mechanism is sufficient to satisfy the assigned optical length variation errors.
Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, V.; Occhipinti, J.; Shah, H.
2015-07-01
This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.
Evaluation of mercury in liquid waste processing facilities - Phase I report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, V.; Occhipinti, J. E.; Shah, H.
2015-07-01
This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.
Integration of Irma tactical scene generator into directed-energy weapon system simulation
NASA Astrophysics Data System (ADS)
Owens, Monte A.; Cole, Madison B., III; Laine, Mark R.
2003-08-01
Integrated high-fidelity physics-based simulations that include engagement models, image generation, electro-optical hardware models and control system algorithms have previously been developed by Boeing-SVS for various tracking and pointing systems. These simulations, however, had always used images with featureless or random backgrounds and simple target geometries. With the requirement to engage tactical ground targets in the presence of cluttered backgrounds, a new type of scene generation tool was required to fully evaluate system performance in this challenging environment. To answer this need, Irma was integrated into the existing suite of Boeing-SVS simulation tools, allowing scene generation capabilities with unprecedented realism. Irma is a US Air Force research tool used for high-resolution rendering and prediction of target and background signatures. The MATLAB/Simulink-based simulation achieves closed-loop tracking by running track algorithms on the Irma-generated images, processing the track errors through optical control algorithms, and moving simulated electro-optical elements. The geometry of these elements determines the sensor orientation with respect to the Irma database containing the three-dimensional background and target models. This orientation is dynamically passed to Irma through a Simulink S-function to generate the next image. This integrated simulation provides a test-bed for development and evaluation of tracking and control algorithms against representative images including complex background environments and realistic targets calibrated using field measurements.
A Motion Tracking and Sensor Fusion Module for Medical Simulation.
Shen, Yunhe; Wu, Fan; Tseng, Kuo-Shih; Ye, Ding; Raymond, John; Konety, Badrinath; Sweet, Robert
2016-01-01
Here we introduce a motion tracking or navigation module for medical simulation systems. Our main contribution is a sensor fusion method for proximity or distance sensors integrated with inertial measurement unit (IMU). Since IMU rotation tracking has been widely studied, we focus on the position or trajectory tracking of the instrument moving freely within a given boundary. In our experiments, we have found that this module reliably tracks instrument motion.
Ground-based telescope pointing and tracking optimization using a neural controller.
Mancini, D; Brescia, M; Schipani, P
2003-01-01
Neural network models (NN) have emerged as important components for applications of adaptive control theories. Their basic generalization capability, based on acquired knowledge, together with execution rapidity and correlation ability between input stimula, are basic attributes to consider NN as an extremely powerful tool for on-line control of complex systems. By a control system point of view, not only accuracy and speed, but also, in some cases, a high level of adaptation capability is required in order to match all working phases of the whole system during its lifetime. This is particularly remarkable for a new generation ground-based telescope control system. Infact, strong changes in terms of system speed and instantaneous position error tolerance are necessary, especially in case of trajectory disturb induced by wind shake. The classical control scheme adopted in such a system is based on the proportional integral (PI) filter, already applied and implemented on a large amount of new generation telescopes, considered as a standard in this technological environment. In this paper we introduce the concept of a new approach, the neural variable structure proportional integral, (NVSPI), related to the implementation of a standard multi layer perceptron network in new generation ground-based Alt-Az telescope control systems. Its main purpose is to improve adaptive capability of the Variable structure proportional integral model, an already innovative control scheme recently introduced by authors [Proc SPIE (1997)], based on a modified version of classical PI control model, in terms of flexibility and accuracy of the dynamic response range also in presence of wind noise effects. The realization of a powerful well tested and validated telescope model simulation system allowed the possibility to directly compare performances of the two control schemes on simulated tracking trajectories, revealing extremely encouraging results in terms of NVSPI control robustness and reliability.
Tracking of Ball and Players in Beach Volleyball Videos
Gomez, Gabriel; Herrera López, Patricia; Link, Daniel; Eskofier, Bjoern
2014-01-01
This paper presents methods for the determination of players' positions and contact time points by tracking the players and the ball in beach volleyball videos. Two player tracking methods are compared, a classical particle filter and a rigid grid integral histogram tracker. Due to mutual occlusion of the players and the camera perspective, results are best for the front players, with 74,6% and 82,6% of correctly tracked frames for the particle method and the integral histogram method, respectively. Results suggest an improved robustness against player confusion between different particle sets when tracking with a rigid grid approach. Faster processing and less player confusions make this method superior to the classical particle filter. Two different ball tracking methods are used that detect ball candidates from movement difference images using a background subtraction algorithm. Ball trajectories are estimated and interpolated from parabolic flight equations. The tracking accuracy of the ball is 54,2% for the trajectory growth method and 42,1% for the Hough line detection method. Tracking results of over 90% from the literature could not be confirmed. Ball contact frames were estimated from parabolic trajectory intersection, resulting in 48,9% of correctly estimated ball contact points. PMID:25426936
Data fusion for target tracking and classification with wireless sensor network
NASA Astrophysics Data System (ADS)
Pannetier, Benjamin; Doumerc, Robin; Moras, Julien; Dezert, Jean; Canevet, Loic
2016-10-01
In this paper, we address the problem of multiple ground target tracking and classification with information obtained from a unattended wireless sensor network. A multiple target tracking (MTT) algorithm, taking into account road and vegetation information, is proposed based on a centralized architecture. One of the key issue is how to adapt classical MTT approach to satisfy embedded processing. Based on track statistics, the classification algorithm uses estimated location, velocity and acceleration to help to classify targets. The algorithms enables tracking human and vehicles driving both on and off road. We integrate road or trail width and vegetation cover, as constraints in target motion models to improve performance of tracking under constraint with classification fusion. Our algorithm also presents different dynamic models, to palliate the maneuvers of targets. The tracking and classification algorithms are integrated into an operational platform (the fusion node). In order to handle realistic ground target tracking scenarios, we use an autonomous smart computer deposited in the surveillance area. After the calibration step of the heterogeneous sensor network, our system is able to handle real data from a wireless ground sensor network. The performance of system is evaluated in a real exercise for intelligence operation ("hunter hunt" scenario).
Vertically integrated photonic multichip module architecture for vision applications
NASA Astrophysics Data System (ADS)
Tanguay, Armand R., Jr.; Jenkins, B. Keith; von der Malsburg, Christoph; Mel, Bartlett; Holt, Gary; O'Brien, John D.; Biederman, Irving; Madhukar, Anupam; Nasiatka, Patrick; Huang, Yunsong
2000-05-01
The development of a truly smart camera, with inherent capability for low latency semi-autonomous object recognition, tracking, and optimal image capture, has remained an elusive goal notwithstanding tremendous advances in the processing power afforded by VLSI technologies. These features are essential for a number of emerging multimedia- based applications, including enhanced augmented reality systems. Recent advances in understanding of the mechanisms of biological vision systems, together with similar advances in hybrid electronic/photonic packaging technology, offer the possibility of artificial biologically-inspired vision systems with significantly different, yet complementary, strengths and weaknesses. We describe herein several system implementation architectures based on spatial and temporal integration techniques within a multilayered structure, as well as the corresponding hardware implementation of these architectures based on the hybrid vertical integration of multiple silicon VLSI vision chips by means of dense 3D photonic interconnections.
NASA Technical Reports Server (NTRS)
Schmidt, Phillip; Garg, Sanjay; Holowecky, Brian
1992-01-01
A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.
NASA Technical Reports Server (NTRS)
Schmidt, Phillip H.; Garg, Sanjay; Holowecky, Brian R.
1993-01-01
A parameter optimization framework is presented to solve the problem of partitioning a centralized controller into a decentralized hierarchical structure suitable for integrated flight/propulsion control implementation. The controller partitioning problem is briefly discussed and a cost function to be minimized is formulated, such that the resulting 'optimal' partitioned subsystem controllers will closely match the performance (including robustness) properties of the closed-loop system with the centralized controller while maintaining the desired controller partitioning structure. The cost function is written in terms of parameters in a state-space representation of the partitioned sub-controllers. Analytical expressions are obtained for the gradient of this cost function with respect to parameters, and an optimization algorithm is developed using modern computer-aided control design and analysis software. The capabilities of the algorithm are demonstrated by application to partitioned integrated flight/propulsion control design for a modern fighter aircraft in the short approach to landing task. The partitioning optimization is shown to lead to reduced-order subcontrollers that match the closed-loop command tracking and decoupling performance achieved by a high-order centralized controller.
Restoring integrity--A grounded theory of coping with a fast track surgery programme.
Jørgensen, Lene Bastrup; Fridlund, Bengt
2016-01-01
The aim of this study was to generate a theory conceptualizing and explaining behavioural processes involved in coping in order to identify the predominant coping types and coping type-specific features. Patients undergoing fast track procedures do not experience a higher risk of complications, readmission, or mortality. However, such programmes presuppose an increasing degree of patient involvement, placing high educational, physical, and mental demands on the patients. There is a lack of knowledge about how patients understand and cope with fast track programmes. The study design used classical grounded theory. The study used a multimodal approach with qualitative and quantitative data sets from 14 patients. Four predominant types of coping, with distinct physiological, cognitive, affective, and psychosocial features, existed among patients going through a fast track total hip replacement programme. These patients' main concern was to restore their physical and psychosocial integrity, which had been compromised by reduced function and mobility in daily life. To restore integrity they economized their mental resources, while striving to fulfil the expectations of the fast track programme. This goal was achieved by being mentally proactive and physically active. Three out of the four predominant types of coping matched the expectations expressed in the fast track programme. The non-matching behaviour was seen among the most nervous patients, who claimed the right to diverge from the programme. In theory, four predominant types of coping with distinct physiological, cognitive, affective, and psychosocial features occur among patients going through a fast track total hip arthroplasty programme.
The Arrival and Ascendance of Black Athletes in the Southeastern Conference, 1966-1980.
ERIC Educational Resources Information Center
Paul, Joan; And Others
1984-01-01
Tracks the racial integration of Southeastern Conference (SEC) teams from the late 1950s on. Includes tables showing: date of integration, by school and sport; numbers of Blacks on SEC teams, 1967-80; percentage of Blacks on SEC football teams (1967-79), basketball teams, track and field teams, all sport teams (1967-80), and baseball teams…
Strategic Mobility 21: Integrated Tracking System Analysis and Concept Design
2007-08-31
public and foreign nationals, companies, and governments , including adversary governments , and may be exported. c. This statement may not be used on...42 ii Integrated Tracking System Analysis & Concept Design LIST OF FIGURES Figure 1: Southern California Association of Governments ...conducted under the auspices of the California State University – Long Beach Foundation, a government -industry academic collaborative enterprise
The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record.
Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D
2015-01-01
We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian-Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record.
The Origin and Early Radiation of Archosauriforms: Integrating the Skeletal and Footprint Record
Bernardi, Massimo; Klein, Hendrik; Petti, Fabio Massimo; Ezcurra, Martín D.
2015-01-01
We present a holistic approach to the study of early archosauriform evolution by integrating body and track records. The ichnological record supports a Late Permian–Early Triassic radiation of archosauriforms not well documented by skeletal material, and new footprints from the Upper Permian of the southern Alps (Italy) provide evidence for a diversity not yet sampled by body fossils. The integrative study of body fossil and footprint data supports the hypothesis that archosauriforms had already undergone substantial taxonomic diversification by the Late Permian and that by the Early Triassic archosauromorphs attained a broad geographical distribution over most parts of Pangea. Analysis of body size, as deduced from track size, suggests that archosauriform average body size did not change significantly from the Late Permian to the Early Triassic. A survey of facies yielding both skeletal and track record indicate an ecological preference for inland fluvial (lacustrine) environments for early archosauromorphs. Finally, although more data is needed, Late Permian chirotheriid imprints suggest a shift from sprawling to erect posture in archosauriforms before the end-Permian mass extinction event. We highlight the importance of approaching palaeobiological questions by using all available sources of data, specifically through integrating the body and track fossil record. PMID:26083612
Differential Flatness and Cooperative Tracking in the Lorenz System
NASA Technical Reports Server (NTRS)
Crespo, Luis G.
2002-01-01
In this paper the control of the Lorenz system for both stabilization and tracking problems is studied via feedback linearization and differential flatness. By using the Rayleigh number as the control, only variable physically tunable, a barrier in the controllability of the system is incidentally imposed. This is reflected in the appearance of a singularity in the state transformation. Composite controllers that overcome this difficulty are designed and evaluated. The transition through the manifold defined by such a singularity is achieved by inducing a chaotic response within a boundary layer that contains it. Outside this region, a conventional feedback nonlinear control is applied. In this fashion, the authority of the control is enlarged to the whole. state space and the need for high control efforts is mitigated. In addition, the differential parametrization of the problem is used to track nonlinear functions of one state variable (single tracking) as well as several state variables (cooperative tracking). Control tasks that lead to integrable and non-integrable differential equations for the nominal flat output in steady-state are considered. In particular, a novel numerical strategy to deal with the non-integrable case is proposed. Numerical results validate very well the control design.
Combined Feature Based and Shape Based Visual Tracker for Robot Navigation
NASA Technical Reports Server (NTRS)
Deans, J.; Kunz, C.; Sargent, R.; Park, E.; Pedersen, L.
2005-01-01
We have developed a combined feature based and shape based visual tracking system designed to enable a planetary rover to visually track and servo to specific points chosen by a user with centimeter precision. The feature based tracker uses invariant feature detection and matching across a stereo pair, as well as matching pairs before and after robot movement in order to compute an incremental 6-DOF motion at each tracker update. This tracking method is subject to drift over time, which can be compensated by the shape based method. The shape based tracking method consists of 3D model registration, which recovers 6-DOF motion given sufficient shape and proper initialization. By integrating complementary algorithms, the combined tracker leverages the efficiency and robustness of feature based methods with the precision and accuracy of model registration. In this paper, we present the algorithms and their integration into a combined visual tracking system.
2000-09-13
With other crew members in the back, STS-92 Mission Specialist Leroy Chiao races the M-113 along the track through the scrub. Driving the M-113 is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter’s payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program
1985-03-01
economically justified. For main lines, access tracks, heavy traffic tracks, and tracks where the de- sign train speed is greater than 40 mph, TM 5... analysis 35. The beam-on-elastic-foundation model is the key to the AREA design procedure. Kerr in "Problems and Needs in Track Structure Design and... Analysis " (Kerr 1977) presents an outline of the development of this model for analysis of track structures. The fundamental differential equation which
Model reference tracking control of an aircraft: a robust adaptive approach
NASA Astrophysics Data System (ADS)
Tanyer, Ilker; Tatlicioglu, Enver; Zergeroglu, Erkan
2017-05-01
This work presents the design and the corresponding analysis of a nonlinear robust adaptive controller for model reference tracking of an aircraft that has parametric uncertainties in its system matrices and additive state- and/or time-dependent nonlinear disturbance-like terms in its dynamics. Specifically, robust integral of the sign of the error feedback term and an adaptive term is fused with a proportional integral controller. Lyapunov-based stability analysis techniques are utilised to prove global asymptotic convergence of the output tracking error. Extensive numerical simulations are presented to illustrate the performance of the proposed robust adaptive controller.
Tracking integration in concentrating photovoltaics using laterally moving optics.
Duerr, Fabian; Meuret, Youri; Thienpont, Hugo
2011-05-09
In this work the concept of tracking-integrated concentrating photovoltaics is studied and its capabilities are quantitatively analyzed. The design strategy desists from ideal concentration performance to reduce the external mechanical solar tracking effort in favor of a compact installation, possibly resulting in lower overall cost. The proposed optical design is based on an extended Simultaneous Multiple Surface (SMS) algorithm and uses two laterally moving plano-convex lenses to achieve high concentration over a wide angular range of ±24°. It achieves 500× concentration, outperforming its conventional concentrating photovoltaic counterparts on a polar aligned single axis tracker.
NASA Technical Reports Server (NTRS)
Chie, C. M.; White, M. A.; Lindsey, W. C.; Davarian, F.; Dixon, R. C.
1984-01-01
Functional requirements and specifications are defined for an autonomous integrated receive system (AIRS) to be used as an improvement in the current tracking and data relay satellite system (TDRSS), and as a receiving system in the future tracking and data acquisition system (TDAS). The AIRS provides improved acquisition, tracking, bit error rate (BER), RFI mitigation techniques, and data operations performance compared to the current TDRSS ground segment receive system. A computer model of the AIRS is used to provide simulation results predicting the performance of AIRS. Cost and technology assessments are included.
Development of integrated optical tracking sensor by planar optics
NASA Astrophysics Data System (ADS)
Kawano, Hiroyuki; Sasagawa, Tomohiro; Nishimae, Junichi; Sato, Yukio
1999-03-01
A compact and light weight optical tracking sensor for a large capacity flexible disk drive is demonstrated. The size of the optical element is no larger than 5.4 mm in length X 3.6 mm in width X 1.2 mm in height and the weight is only 18 mg. The application of the planar optical technique makes it possible to integrate all passive optical elements onto one transparent substrate. These features are useful for high- speed access, easy optical alignment, mass production, and miniaturization. The design and optical characteristics of the optical tracking sensor are described.
Loss of pons-to-hypothalamic white matter tracks in brainstem obesity.
Purnell, J Q; Lahna, D L; Samuels, M H; Rooney, W D; Hoffman, W F
2014-12-01
Hyperphagia and obesity have been reported following damage to the hypothalamus in humans. Other brain sites are also postulated to be involved in the control of food intake and body weight regulation, such as the amygdala and brainstem. The brainstem, however, is thought to primarily integrate short-term meal-related signals but not affect long-term alterations in body weight, which is controlled by higher centers. The objective of this study was to identify structural pathways damaged in a patient with a brainstem cavernoma who experienced sudden onset of hyperphagia and >50 kg weight gain in <1 year following surgical drainage via a midline suboccipital craniotomy. Diffusion tensor imaging revealed loss of nerve fiber connections between her brainstem, hypothalamus and higher brain centers with preservation of motor tracks. Imaging and endocrine testing confirmed normal hypothalamic structure and function. Gastric bypass surgery restored normal appetite and body weight to baseline. This is the first report of 'brainstem obesity' and adds to the brain regions that can determine the long-term body weight set point in humans.
NASA Astrophysics Data System (ADS)
Lee, Hyo Geun; Kim, Sang Suk; Kim, Sung Jo; Park, Su-Jin; Yun, Chang-wuk; Im, Gil-pyeong
2015-09-01
Photovoltaic generation systems have disadvantage in that they are usually installed outdoors and are exposed to extreme environments such as wind, snow and rain loadings. The structure of a photovoltaic generation system should be designed to have sufficient stiffness and strength against such loads. Especially, electric power generation by a concentrator photovoltaic(CPV) system can produce enough power if a right angle is main fained between the solar and the CPV panel within 90° ± 1°. To make the CPV tracking system in this study, we designed the structure by calculating the variations in and the strees applied to the structure by the wind load when the CPV tracking was influenced by the wind load. In this study, a 5-kW CPV tracking structure was designed through a structural analysis and a finiteelement analysis for a wind speed of 65 m/s by using ANSYS. The simulation of the structural design showed that the, structure of the 5-kW CPV tracking system corresponded with the ISO4017/ISO4762 standard. Based on this research, we will produce a 5-kW CPV tracking system and proceed to field test.
Parametric study of track response
DOT National Transportation Integrated Search
1977-12-01
This report was prepared as part of the Improved Track Structures Research Program : managed by the Transportation Systems Center. This program is sponsored by the : Office of Rail Safety Research, Improved Track Structures Research Division, of : th...
Nonstationary EO/IR Clutter Suppression and Dim Object Tracking
2010-01-01
Brown, A., and Brown, J., Enhanced Algorithms for EO /IR Electronic Stabilization, Clutter Suppression, and Track - Before - Detect for Multiple Low...estimation-suppression and nonlinear filtering-based multiple-object track - before - detect . These algorithms are suitable for integration into...In such cases, it is imperative to develop efficient real or near-real time tracking before detection methods. This paper continues the work started
Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes
NASA Astrophysics Data System (ADS)
Bjerre, Troels; Crijns, Sjoerd; Rosenschöld, Per Munck af; Aznar, Marianne; Specht, Lena; Larsen, Rasmus; Keall, Paul
2013-07-01
The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path. For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm for a translation of 39.9 mm. We have demonstrated how interleaved acquired, orthogonal cine-MRI planes can be used for online tracking of soft-tissue target volumes.
Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes.
Bjerre, Troels; Crijns, Sjoerd; af Rosenschöld, Per Munck; Aznar, Marianne; Specht, Lena; Larsen, Rasmus; Keall, Paul
2013-07-21
The introduction of integrated MRI-radiation therapy systems will offer live intra-fraction imaging. We propose a feasible low-latency multi-plane MRI-linac guidance strategy. In this work we demonstrate how interleaved acquired, orthogonal cine-MRI planes can be used for low-latency tracking of the 3D trajectory of a soft-tissue target structure. The proposed strategy relies on acquiring a pre-treatment 3D breath-hold scan, extracting a 3D target template and performing template matching between this 3D template and pairs of orthogonal 2D cine-MRI planes intersecting the target motion path. For a 60 s free-breathing series of orthogonal cine-MRI planes, we demonstrate that the method was capable of accurately tracking the respiration related 3D motion of the left kidney. Quantitative evaluation of the method using a dataset designed for this purpose revealed a translational error of 1.15 mm for a translation of 39.9 mm. We have demonstrated how interleaved acquired, orthogonal cine-MRI planes can be used for online tracking of soft-tissue target volumes.
Engaging academia to advance the science and practice of environmental public health tracking.
Strosnider, Heather; Zhou, Ying; Balluz, Lina; Qualters, Judith
2014-10-01
Public health agencies at the federal, state, and local level are responsible for implementing actions and policies that address health problems related to environmental hazards. These actions and policies can be informed by integrating or linking data on health, exposure, hazards, and population. The mission of the Centers for Disease Control and Prevention׳s National Environmental Public Health Tracking Program (Tracking Program) is to provide information from a nationwide network of integrated health, environmental hazard, and exposure data that drives actions to improve the health of communities. The Tracking Program and federal, state, and local partners collect, integrate, analyze, and disseminate data and information to inform environmental public health actions. However, many challenges exist regarding the availability and quality of data, the application of appropriate methods and tools to link data, and the state of the science needed to link and analyze health and environmental data. The Tracking Program has collaborated with academia to address key challenges in these areas. The collaboration has improved our understanding of the uses and limitations of available data and methods, expanded the use of existing data and methods, and increased our knowledge about the connections between health and environment. Valuable working relationships have been forged in this process, and together we have identified opportunities and improvements for future collaborations to further advance the science and practice of environmental public health tracking. Published by Elsevier Inc.
The track structure in condensed matter
NASA Astrophysics Data System (ADS)
Kaplan, I. G.
1995-11-01
The physical stage of track formation in a condensed phase is discussed. For interaction of charged particles with condensed molecular media its most important specific features are: (a) the continuous oscillator strength distribution with the broak peak in the energy range 21-22 eV attributed to the collective plasmon-type state; (b) the lowering of ionization potential compared to a gas phase. These specific features must be taken into account for simulation of track structures. The great difference in mass and charge for a electron and heavy ions cause a qualitative difference in their track structures. We analyse the structure of heavy ion tracks and prove the impossibility to use the LET as a universal characteristic for the radiation action of different ions.
Integrating mechanisms of visual guidance in naturalistic language production.
Coco, Moreno I; Keller, Frank
2015-05-01
Situated language production requires the integration of visual attention and linguistic processing. Previous work has not conclusively disentangled the role of perceptual scene information and structural sentence information in guiding visual attention. In this paper, we present an eye-tracking study that demonstrates that three types of guidance, perceptual, conceptual, and structural, interact to control visual attention. In a cued language production experiment, we manipulate perceptual (scene clutter) and conceptual guidance (cue animacy) and measure structural guidance (syntactic complexity of the utterance). Analysis of the time course of language production, before and during speech, reveals that all three forms of guidance affect the complexity of visual responses, quantified in terms of the entropy of attentional landscapes and the turbulence of scan patterns, especially during speech. We find that perceptual and conceptual guidance mediate the distribution of attention in the scene, whereas structural guidance closely relates to scan pattern complexity. Furthermore, the eye-voice span of the cued object and its perceptual competitor are similar; its latency mediated by both perceptual and structural guidance. These results rule out a strict interpretation of structural guidance as the single dominant form of visual guidance in situated language production. Rather, the phase of the task and the associated demands of cross-modal cognitive processing determine the mechanisms that guide attention.
NASA Technical Reports Server (NTRS)
Hassan, M. I.; Kuwana, K.; Saito, K.
2001-01-01
In the past, we measured three-D flow structure in the liquid and gas phases that were created by a spreading flame over liquid fuels. In that effort, we employed several different techniques including our original laser sheet particle tracking (LSPT) technique, which is capable of measuring transient 2-D flow structures. Recently we obtained a state-of-the-art integrated particle image velocimetry (IPIV), whose function is similar to LSPT, but it has an integrated data recording and processing system. To evaluate the accuracy of our IPIV system, we conducted a series of flame spread tests using the same experimental apparatus that we used in our previous flame spread studies and obtained a series of 2-D flow profiles corresponding to our previous LSPT measurements. We confirmed that both LSPT and IPIV techniques produced similar data, but IPIV data contains more detailed flow structures than LSPT data. Here we present some of newly obtained IPIV flow structure data, and discuss the role of gravity in the flame-induced flow structures. Note that the application of IPIV to our flame spread problems is not straightforward, and it required several preliminary tests for its accuracy including this IPIV comparison to LSPT.
NASA Technical Reports Server (NTRS)
Carrington, Connie; Fikes, John; Gerry, Mark; Perkinson, Don
2000-01-01
New energy sources are vital for the development of emerging nations, and the growth of industry in developed economies. Also vital is the need for these energy sources to be clean and renewable. For the past several years, NASA has been taking a new look at collecting solar energy in space and transmitting it to Earth, to planetary surfaces, and to orbiting spacecraft. Several innovative concepts are being studied for the space segment component of solar power beaming. One is the Abacus/Reflector, a large sun-oriented array structure fixed to the transmitter, and a rotating RF reflector that tracks a receiving rectenna on Earth. This concept eliminates the need for power-conducting slip rings in rotating joints between the solar collectors and the transmitter. Another concept is the Integrated Symmetrical Concentrator (ISC), composed of two very large segmented reflectors which rotate to collect and reflect the incident sunlight onto two centrally-located photovoltaic arrays. Adjacent to the PV arrays is the RF transmitter, which as a unit track the receiving rectenna, again eliminating power-conducting joints, and in addition reducing the cable lengths between the arrays and transmitter. The metering structure to maintain the position of the reflectors is a long mast, oriented perpendicular to the equatorial orbit plane. This paper presents a status of ongoing systems studies and configurations for the Abacus/Reflector and the ISC concepts, and a top-level study of packaging for launch and assembly.
Watts, Jennifer; Russ, Christiana; St Clair, Nicole E; Uwemedimo, Omolara Thomas
2018-03-28
The number of pediatric Global Health (GH) tracks has more than doubled in less than 10 years. The goal of this study was to describe the characteristics of the pediatric GH tracks to identify commonalities and differences in track structure, funding, and education. In addition, we also identified demographic, institutional, and residency-related factors that were significantly associated with educational offerings and logistical challenges. A cross-sectional survey was electronically administered to pediatric residency programs with GH tracks. Statistical analyses included frequencies to describe GH track characteristics. Fisher's exact tests were used to identify bivariate associations between track structure and funding with educational offerings and logistical challenges. Leaders of 32 pediatric GH tracks (67%) completed the survey. The majority of GH tracks were completed within the 3 years of residency (94%) and identified a GH track director (100%); however, tracks varied in size, enrollment methods, domestic and international partnerships, funding, and evaluations. Dedicated faculty time and GH track budget amounts were associated with more robust infrastructure pertaining to resident international electives, including funding and mentorship. Many tracks did not meet American Academy of Pediatrics recommended standards for clinical international rotations. Despite the presence of multiple similarities among pediatric GH tracks, there are large variations in track structure, education, and funding. The results from this study support the proposal of a formal definition and minimum standards for a GH track, which may provide a framework for quality, consistency, and comparison of GH tracks. Copyright © 2018. Published by Elsevier Inc.
Integrated bronchoscopic video tracking and 3D CT registration for virtual bronchoscopy
NASA Astrophysics Data System (ADS)
Higgins, William E.; Helferty, James P.; Padfield, Dirk R.
2003-05-01
Lung cancer assessment involves an initial evaluation of 3D CT image data followed by interventional bronchoscopy. The physician, with only a mental image inferred from the 3D CT data, must guide the bronchoscope through the bronchial tree to sites of interest. Unfortunately, this procedure depends heavily on the physician's ability to mentally reconstruct the 3D position of the bronchoscope within the airways. In order to assist physicians in performing biopsies of interest, we have developed a method that integrates live bronchoscopic video tracking and 3D CT registration. The proposed method is integrated into a system we have been devising for virtual-bronchoscopic analysis and guidance for lung-cancer assessment. Previously, the system relied on a method that only used registration of the live bronchoscopic video to corresponding virtual endoluminal views derived from the 3D CT data. This procedure only performs the registration at manually selected sites; it does not draw upon the motion information inherent in the bronchoscopic video. Further, the registration procedure is slow. The proposed method has the following advantages: (1) it tracks the 3D motion of the bronchoscope using the bronchoscopic video; (2) it uses the tracked 3D trajectory of the bronchoscope to assist in locating sites in the 3D CT "virtual world" to perform the registration. In addition, the method incorporates techniques to: (1) detect and exclude corrupted video frames (to help make the video tracking more robust); (2) accelerate the computation of the many 3D virtual endoluminal renderings (thus, speeding up the registration process). We have tested the integrated tracking-registration method on a human airway-tree phantom and on real human data.
The seam visual tracking method for large structures
NASA Astrophysics Data System (ADS)
Bi, Qilin; Jiang, Xiaomin; Liu, Xiaoguang; Cheng, Taobo; Zhu, Yulong
2017-10-01
In this paper, a compact and flexible weld visual tracking method is proposed. Firstly, there was the interference between the visual device and the work-piece to be welded when visual tracking height cannot change. a kind of weld vision system with compact structure and tracking height is researched. Secondly, according to analyze the relative spatial pose between the camera, the laser and the work-piece to be welded and study with the theory of relative geometric imaging, The mathematical model between image feature parameters and three-dimensional trajectory of the assembly gap to be welded is established. Thirdly, the visual imaging parameters of line structured light are optimized by experiment of the weld structure of the weld. Fourth, the interference that line structure light will be scatters at the bright area of metal and the area of surface scratches will be bright is exited in the imaging. These disturbances seriously affect the computational efficiency. The algorithm based on the human eye visual attention mechanism is used to extract the weld characteristics efficiently and stably. Finally, in the experiment, It is verified that the compact and flexible weld tracking method has the tracking accuracy of 0.5mm in the tracking of large structural parts. It is a wide range of industrial application prospects.
Sensor4PRI: A Sensor Platform for the Protection of Railway Infrastructures
Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Rubio, Bartolomé
2015-01-01
Wireless Sensor Networks constitute pervasive and distributed computing systems and are potentially one of the most important technologies of this century. They have been specifically identified as a good candidate to become an integral part of the protection of critical infrastructures. In this paper we focus on railway infrastructure protection and we present the details of a sensor platform designed to be integrated into a slab track system in order to carry out both installation and maintenance monitoring activities. In the installation phase, the platform helps operators to install the slab tracks in the right position. In the maintenance phase, the platform collects information about the structural health and behavior of the infrastructure when a train travels along it and relays the readings to a base station. The base station uses trains as data mules to upload the information to the internet. The use of a train as a data mule is especially suitable for collecting information from remote or inaccessible places which do not have a direct connection to the internet and require less network infrastructure. The overall aim of the system is to deploy a permanent economically viable monitoring system to improve the safety of railway infrastructures. PMID:25734648
NASA Astrophysics Data System (ADS)
Dimopoulos, Thomas; Labropoulos, Tassos; Hadjimitsis, Diofantos G.
2014-08-01
This paper aims to examine how CAMA, GIS and Remote Sensing are integrated to assist property taxation. Real property tax apart from its fiscal dimension is directly linked to geographic location. The value of the land and other immovable features such as buildings and structures is determined from specific parameters. All these immovable assets are visible and have specific geographic location & coordinates, materials, occupied area, land-use & utility, ownership & occupancy status and finally a specific value (ad valorem property taxation system) according to which the property tax is levied to taxpayers. Of high importance in the tax imposing procedure is that the use of CAMA, GIS and Remote Sensing tools is capable of providing effective and efficient collection of this property value determining data. Furthermore, these tools can track changes during a property's lifecycle such parcel subdivision into plots, demolition of a building and development of a new one or track a change in the planning zone. The integration of these systems also supports a full range of business processes on revenue mobilization ranging from billing to taxpayers objections management.
Integrated cockpit design for the Army helicopter improvement program
NASA Technical Reports Server (NTRS)
Drennen, T.; Bowen, B.
1984-01-01
The main Army Helicopter Improvement Program (AHIP) mission is to navigate precisely, locate targets accurately, communicate their position to other battlefield elements, and to designate them for laser guided weapons. The onboard navigation and mast-mounted sight (MMS) avionics enable accurate tracking of current aircraft position and subsequent target location. The AHIP crewstation development was based on extensive mission/task analysis, function allocation, total system design, and test and verification. The avionics requirements to meet the mission was limited by the existing aircraft structural and performance characteristics and resultant space, weight, and power restrictions. These limitations and night operations requirement led to the use of night vision goggles. The combination of these requirements and limitations dictated an integrated control/display approach using multifunction displays and controls.
Fractional order implementation of Integral Resonant Control - A nanopositioning application.
San-Millan, Andres; Feliu-Batlle, Vicente; Aphale, Sumeet S
2017-10-04
By exploiting the co-located sensor-actuator arrangement in typical flexure-based piezoelectric stack actuated nanopositioners, the polezero interlacing exhibited by their axial frequency response can be transformed to a zero-pole interlacing by adding a constant feed-through term. The Integral Resonant Control (IRC) utilizes this unique property to add substantial damping to the dominant resonant mode by the use of a simple integrator implemented in closed loop. IRC used in conjunction with an integral tracking scheme, effectively reduces positioning errors introduced by modelling inaccuracies or parameter uncertainties. Over the past few years, successful application of the IRC control technique to nanopositioning systems has demonstrated performance robustness, easy tunability and versatility. The main drawback has been the relatively small positioning bandwidth achievable. This paper proposes a fractional order implementation of the classical integral tracking scheme employed in tandem with the IRC scheme to deliver damping and tracking. The fractional order integrator introduces an additional design parameter which allows desired pole-placement, resulting in superior closed loop bandwidth. Simulations and experimental results are presented to validate the theory. A 250% improvement in the achievable positioning bandwidth is observed with proposed fractional order scheme. Copyright © 2017. Published by Elsevier Ltd.
Atrial fibrillation driver mechanisms: Insight from the isolated human heart.
Csepe, Thomas A; Hansen, Brian J; Fedorov, Vadim V
2017-01-01
Although there have been great technological advances in the treatment of atrial fibrillation (AF), current therapies remain limited due to a narrow understanding of AF mechanisms in the human heart. This review will highlight our recent studies on explanted human hearts where we developed and employed a novel functional-structural mapping approach by integrating high-resolution simultaneous endo-epicardial and panoramic optical mapping with 3D gadolinium-enhanced MRI to define the spatiotemporal characteristics of AF drivers and their structural substrates. The results allow us to postulate that the primary mechanism of AF maintenance in human hearts is a limited number of localized intramural microanatomic reentrant AF drivers anchored to heart-specific 3D fibrotically insulated myobundle tracks, which may remain hidden to clinical single-surface electrode mapping. We suggest that ex vivo human heart studies, by using an integrated 3D functional and structural mapping approach, will help to reveal defining features of AF drivers as well as validate and improve clinical approaches to detect and target these AF drivers in patients with cardiac diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Two-degrees-of-freedom piezo-driven fast steering mirror with cross-axis decoupling capability
NASA Astrophysics Data System (ADS)
Shao, Shubao; Tian, Zheng; Song, Siyang; Xu, Minglong
2018-05-01
Because mechanical cross coupling between its axes would lead to degradation of the scanning precision of a piezo-driven fast steering mirror (PFSM), a two-degrees-of-freedom (2-DoF) PFSM with a cross-axis decoupling capability, in which 2-DoF flexure hinges are used, is proposed in this work. The overall structure of the proposed PFSM is first introduced and then both static and dynamic models are established analytically; in addition, the decoupling mechanism is described in detail and the low dynamic cross coupling ratios that occur between the two DoFs are shown. Because of the decoupling property of the PFSM, the 2-DoF motion is treated as a combination of two independent one-degree-of-freedom (1-DoF) motions and two independent proportional-integral-derivative controllers are thus used separately in the control of the two DoFs. Based on this control strategy, experiments involving both 1-DoF trajectory tracking and 2-DoF trajectory tracking are implemented. The test results show that the proposed PFSM can achieve the tilt range of ±7 mrad for both axes with the low coupling ratios that are less than 2% (-34 dB), and the bandwidths of both axes are higher than 810 Hz; in addition, the maximal tracking full scale range errors for 1-DoF trajectory tracking and 2-DoF trajectory tracking are less than 0.2% and 1%, respectively, where the larger error of 2-DoF trajectory tracking is mainly caused by the remaining cross coupling between axes.
Envisioning the Future of Aquatic Animal Tracking: Technology, Science, and Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lennox, Robert J.; Aarestrup, Kim; Cooke, Steven J.
Electronic tags have proven to be extremely useful for broadening our understanding of aquatic animals by answering diverse questions about their behaviours, physiologies, and life histories fundamental to ecology. Simultaneously, many applied conservation and management efforts are informed by animals tagged with electronic tags. In spite of the many advances in tracking software and hardware, an uncertain future in the world’s aquatic ecosystems portends great challenges for science. Aquatic animal tracking with electronic tags represents both the present and future of integrative biology and ecology in aquatic ecosystems. Here we identify what we regard as the future of aquatic animalmore » tracking in a horizon scanning exercise. We submit that the future of aquatic animal tracking will include opportunities for multi-platform tracking systems for simultaneously monitoring position, activity, physiology, and microhabitat of animals, improved data collection and accessibility with new infrastructure (e.g. tags, receivers) and cyberinfrastructure, and integrated tagging information with animal traits derived from biopsy during tagging. We discuss parallel needs and opportunities in areas related to the application of animal tracking in the future such as knowledge mobilization and governance.« less
A New Multi-Sensor Track Fusion Architecture for Multi-Sensor Information Integration
2004-09-01
NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION ...NAME(S) AND ADDRESS(ES) Lockheed Martin Aeronautical Systems Company,Marietta,GA,3063 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING...tracking process and degrades the track accuracy. ARCHITECHTURE OF MULTI-SENSOR TRACK FUSION MODEL The Alpha
Tong, Weida; Harris, Stephen C; Fang, Hong; Shi, Leming; Perkins, Roger; Goodsaid, Federico; Frueh, Felix W
2007-01-01
Pharmacogenomics (PGx) is identified in the FDA Critical Path document as a major opportunity for advancing medical product development and personalized medicine. An integrated bioinformatics infrastructure for use in FDA data review is crucial to realize the benefits of PGx for public health. We have developed an integrated bioinformatics tool, called ArrayTrack, for managing, analyzing and interpreting genomic and other biomarker data (e.g. proteomic and metabolomic data). ArrayTrack is a highly flexible and robust software platform, which allows evolving with technological advances and changing user needs. ArrayTrack is used in the routine review of genomic data submitted to the FDA; here, three hypothetical examples of its use in the Voluntary eXploratory Data Submission (VXDS) program are illustrated.: © Published by Elsevier Ltd.
Whole-rock uranium analysis by fission track activation
NASA Technical Reports Server (NTRS)
Weiss, J. R.; Haines, E. L.
1974-01-01
We report a whole-rock uranium method in which the polished sample and track detector are separated in a vacuum chamber. Irradiation with thermal neutrons induces uranium fission in the sample, and the detector records the integrated fission track density. Detection efficiency and geometric factors are calculated and compared with calibration experiments.
NASA Astrophysics Data System (ADS)
Zhu, Jing; Wang, Xingshu; Wang, Jun; Dai, Dongkai; Xiong, Hao
2016-10-01
Former studies have proved that the attitude error in a single-axis rotation INS/GPS integrated system tracks the high frequency component of the deflections of the vertical (DOV) with a fixed delay and tracking error. This paper analyses the influence of the nominal process noise covariance matrix Q on the tracking error as well as the response delay, and proposed a Q-adjusting technique to obtain the attitude error which can track the DOV better. Simulation results show that different settings of Q lead to different response delay and tracking error; there exists optimal Q which leads to a minimum tracking error and a comparatively short response delay; for systems with different accuracy, different Q-adjusting strategy should be adopted. In this way, the DOV estimation accuracy of using the attitude error as the observation can be improved. According to the simulation results, the DOV estimation accuracy after using the Q-adjusting technique is improved by approximate 23% and 33% respectively compared to that of the Earth Model EGM2008 and the direct attitude difference method.
Sensor and tracking data integration into a common operating picture
NASA Astrophysics Data System (ADS)
Bailey, Mark E.
2003-09-01
With rapid technological developments, a new innovative range of possibilities can be actualized in mainstreaming a network with checks and balances to provide sensor and tracking data integration/information to a wider Department of Defense (DoD) audience or group of agencies. As technologies are developed, methods to display the data are required. Multiple diverse tracking devices and sensors need to be displayed on a common operating picture. Sensors and tracking devices are used to monitor an area or object for movement or boundary penetration. Tracking devices in turn determine transit patterns of humans, animals and/or vehicles. In consortium these devices can have dual applications for military requirements and for other general purposes. The DoD Counterdrug Technology Development Program Office (CDTDPO) has designed a system to distribute sensor and tracking data to multiple users in separate agencies. This information can be displayed in whole or in part as to the specific needs of the user. It is with this purpose that the Data Distribution Network (DDN) was created to disseminate information to a collective group or to a select audience.
Research on infrared small-target tracking technology under complex background
NASA Astrophysics Data System (ADS)
Liu, Lei; Wang, Xin; Chen, Jilu; Pan, Tao
2012-10-01
In this paper, some basic principles and the implementing flow charts of a series of algorithms for target tracking are described. On the foundation of above works, a moving target tracking software base on the OpenCV is developed by the software developing platform MFC. Three kinds of tracking algorithms are integrated in this software. These two tracking algorithms are Kalman Filter tracking method and Camshift tracking method. In order to explain the software clearly, the framework and the function are described in this paper. At last, the implementing processes and results are analyzed, and those algorithms for tracking targets are evaluated from the two aspects of subjective and objective. This paper is very significant in the application of the infrared target tracking technology.
Performance Enhancements Under Dual-task Conditions
NASA Technical Reports Server (NTRS)
Kramer, A. F.; Wickens, C. D.; Donchin, E.
1984-01-01
Research on dual-task performance has been concerned with delineating the antecedent conditions which lead to dual-task decrements. Capacity models of attention, which propose that a hypothetical resource structure underlies performance, have been employed as predictive devices. These models predict that tasks which require different processing resources can be more successfully time shared than tasks which require common resources. The conditions under which such dual-task integrality can be fostered were assessed in a study in which three factors likely to influence the integrality between tasks were manipulated: inter-task redundancy, the physical proximity of tasks and the task relevant objects. Twelve subjects participated in three experimental sessions in which they performed both single and dual-tasks. The primary task was a pursuit step tracking task. The secondary tasks required the discrimination between different intensities or different spatial positions of a stimulus. The results are discussed in terms of a model of dual-task integrality.
NASA Technical Reports Server (NTRS)
Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)
1991-01-01
Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.
Computational tools and lattice design for the PEP-II B-Factory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Y.; Irwin, J.; Nosochkov, Y.
1997-02-01
Several accelerator codes were used to design the PEP-II lattices, ranging from matrix-based codes, such as MAD and DIMAD, to symplectic-integrator codes, such as TRACY and DESPOT. In addition to element-by-element tracking, we constructed maps to determine aberration strengths. Furthermore, we have developed a fast and reliable method (nPB tracking) to track particles with a one-turn map. This new technique allows us to evaluate performance of the lattices on the entire tune-plane. Recently, we designed and implemented an object-oriented code in C++ called LEGO which integrates and expands upon TRACY and DESPOT. {copyright} {ital 1997 American Institute of Physics.}
Computational tools and lattice design for the PEP-II B-Factory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai Yunhai; Irwin, John; Nosochkov, Yuri
1997-02-01
Several accelerator codes were used to design the PEP-II lattices, ranging from matrix-based codes, such as MAD and DIMAD, to symplectic-integrator codes, such as TRACY and DESPOT. In addition to element-by-element tracking, we constructed maps to determine aberration strengths. Furthermore, we have developed a fast and reliable method (nPB tracking) to track particles with a one-turn map. This new technique allows us to evaluate performance of the lattices on the entire tune-plane. Recently, we designed and implemented an object-oriented code in C++ called LEGO which integrates and expands upon TRACY and DESPOT.
Quadrotor trajectory tracking using PID cascade control
NASA Astrophysics Data System (ADS)
Idres, M.; Mustapha, O.; Okasha, M.
2017-12-01
Quadrotors have been applied to collect information for traffic, weather monitoring, surveillance and aerial photography. In order to accomplish their mission, quadrotors have to follow specific trajectories. This paper presents proportional-integral-derivative (PID) cascade control of a quadrotor for path tracking problem when velocity and acceleration are small. It is based on near hover controller for small attitude angles. The integral of time-weighted absolute error (ITAE) criterion is used to determine the PID gains as a function of quadrotor modeling parameters. The controller is evaluated in three-dimensional environment in Simulink. Overall, the tracking performance is found to be excellent for small velocity condition.
Luo, Yong; Wu, Wenqi; Babu, Ravindra; Tang, Kanghua; Luo, Bing
2012-01-01
COMPASS is an indigenously developed Chinese global navigation satellite system and will share many features in common with GPS (Global Positioning System). Since the ultra-tight GPS/INS (Inertial Navigation System) integration shows its advantage over independent GPS receivers in many scenarios, the federated ultra-tight COMPASS/INS integration has been investigated in this paper, particularly, by proposing a simplified prefilter model. Compared with a traditional prefilter model, the state space of this simplified system contains only carrier phase, carrier frequency and carrier frequency rate tracking errors. A two-quadrant arctangent discriminator output is used as a measurement. Since the code tracking error related parameters were excluded from the state space of traditional prefilter models, the code/carrier divergence would destroy the carrier tracking process, and therefore an adaptive Kalman filter algorithm tuning process noise covariance matrix based on state correction sequence was incorporated to compensate for the divergence. The federated ultra-tight COMPASS/INS integration was implemented with a hardware COMPASS intermediate frequency (IF), and INS's accelerometers and gyroscopes signal sampling system. Field and simulation test results showed almost similar tracking and navigation performances for both the traditional prefilter model and the proposed system; however, the latter largely decreased the computational load. PMID:23012564
Surgical tool detection and tracking in retinal microsurgery
NASA Astrophysics Data System (ADS)
Alsheakhali, Mohamed; Yigitsoy, Mehmet; Eslami, Abouzar; Navab, Nassir
2015-03-01
Visual tracking of surgical instruments is an essential part of eye surgery, and plays an important role for the surgeons as well as it is a key component of robotics assistance during the operation time. The difficulty of detecting and tracking medical instruments in-vivo images comes from its deformable shape, changes in brightness, and the presence of the instrument shadow. This paper introduces a new approach to detect the tip of surgical tool and its width regardless of its head shape and the presence of the shadows or vessels. The approach relies on integrating structural information about the strong edges from the RGB color model, and the tool location-based information from L*a*b color model. The probabilistic Hough transform was applied to get the strongest straight lines in the RGB-images, and based on information from the L* and a*, one of these candidates lines is selected as the edge of the tool shaft. Based on that line, the tool slope, the tool centerline and the tool tip could be detected. The tracking is performed by keeping track of the last detected tool tip and the tool slope, and filtering the Hough lines within a box around the last detected tool tip based on the slope differences. Experimental results demonstrate the high accuracy achieved in term of detecting the tool tip position, the tool joint point position, and the tool centerline. The approach also meets the real time requirements.
2000-10-31
KENNEDY SPACE CENTER, Fla. -- As the early morning sky lights up, Space Shuttle Endeavour inches its way to Launch Pad 39B (on the horizon) via the crawlerway that leads from the Vehicle Assembly Building. The Shuttle is atop the Mobile Launcher Platform (MLP). Visible beneath the MLP is the crawler-transporter, which moves on four double-tracked crawlers. Each shoe on the crawler track weighs a ton. Unloaded, the transporter weighs 6 million pounds and moves at 2 mph. The maximum speed of the loaded transporter is 1 mph. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2000-10-31
KENNEDY SPACE CENTER, Fla. -- As the early morning sky lights up, Space Shuttle Endeavour inches its way to Launch Pad 39B (on the horizon) via the crawlerway that leads from the Vehicle Assembly Building. The Shuttle is atop the Mobile Launcher Platform (MLP). Visible beneath the MLP is the crawler-transporter, which moves on four double-tracked crawlers. Each shoe on the crawler track weighs a ton. Unloaded, the transporter weighs 6 million pounds and moves at 2 mph. The maximum speed of the loaded transporter is 1 mph. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
Solar concentrator with integrated tracking and light delivery system with summation
Maxey, Lonnie Curt
2015-05-05
A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector redirects the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and provides light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting that uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.
Solar concentrator with integrated tracking and light delivery system with collimation
Maxey, Lonnie Curt
2015-06-09
A solar light distribution system includes a solar light concentrator that is affixed externally to a light transfer tube. Solar light waves are processed by the concentrator into a collimated beam of light, which is then transferred through a light receiving port and into the light transfer tube. A reflector directs the collimated beam of light through the tube to a light distribution port. The interior surface of the light transfer tube is highly reflective so that the light transfers through the tube with minimal losses. An interchangeable luminaire is attached to the light distribution port and distributes light inside of a structure. A sun tracking device rotates the concentrator and the light transfer tube to optimize the receiving of solar light by the concentrator throughout the day. The system provides interior lighting, uses only renewable energy sources, and releases no carbon dioxide emissions into the atmosphere.
STS-92 Mission Specialist Chiao drives the M-113
NASA Technical Reports Server (NTRS)
2000-01-01
With other crew members in the back, STS-92 Mission Specialist Leroy Chiao races the M-113 along the track through the scrub. Driving the M-113 is part of emergency egress training during Terminal Countdown Demonstration Test (TCDT) activities. The tracked vehicle could be used by the crew in the event of an emergency at the pad during which the crew must make a quick exit from the area. The TCDT also provides simulated countdown exercises and opportunities to inspect the mission payloads in the orbiter's payload bay. STS-92 is scheduled to launch Oct. 5 at 9:30 p.m. EDT on the fifth flight to the International Space Station. It will carry two elements of the Space Station, the Integrated Truss Structure Z1 and the third Pressurized Mating Adapter. The mission is also the 100th flight in the Shuttle program.
Mookherji, Sangeeta; Ski, Samantha; Huntington, Dale
2015-05-27
The Global Fund to Fight AIDS, Tuberculosis & Malaria (GF) strives for high value for money, encouraging countries to integrate synergistic services and systems strengthening to maximize investments. The GF needs to show how, and how much, its grants support more than just HIV/AIDS, TB and malaria. Sexual and Reproductive Health (SRH) has been part of HIV/AIDS grants since 2007. Previous studies showed the GF PBF system does not allow resource tracking for SRH integration within HIV/AIDS grants. We present findings from a resource tracking case study using primary data collected at country level. Ethiopia was the study site. We reviewed data from four HIV/AIDS grants from January 2009-June 2011 and categorized SDAs and activities as directly, indirectly, or not related to SRH integration. Data included: GF PBF data; financial, performance, in-depth interview and facility observation data from Ethiopia. All HIV/AIDS grants in Ethiopia support SRH integration activities (12-100%). Using activities within SDAs, expenditures directly supporting SRH integration increased from 25% to 66% for the largest HIV/AIDS grant, and from 21% to 34% for the smaller PMTCT-focused grant. Using SDAs to categorize expenditures underestimated direct investments in SRH integration; activity-based categorization is more accurate. The important finding is that primary data collection could not resolve the limitations in using GF GPR data for resource tracking. The remedy is to require existing activity-based budgets and expenditure reports as part of PBF reporting requirements, and make them available in the grant portfolio database. The GF should do this quickly, as it is a serious shortfall in the GF guiding principle of transparency. Showing high value for money is important for maximizing impact and replenishments. The Global Fund should routinely track HIV/AIDs grant expenditures to disease control, service integration, and overall health systems strengthening. The current PBF system will not allow this. Real-time expenditure analysis could be achieved by integrating existing activity-based financial data into the routine PBF system. The GF's New Funding Model and the 2012-2016 strategy present good opportunities for over-hauling the PBF system to improve transparency and allow the GF to monitor and maximize value for money.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachan, Ritesh; Zhang, Yanwen; Ou, Xin
Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd 2Ti 2O 7 and Gd 2TiZrO 7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performedmore » on the ion tracks. Finally, a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.« less
Sachan, Ritesh; Zhang, Yanwen; Ou, Xin; ...
2016-12-13
Here we demonstrate the enhanced imaging capabilities of an aberration corrected scanning transmission electron microscope to advance the understanding of ion track structure in pyrochlore structured materials (i.e., Gd 2Ti 2O 7 and Gd 2TiZrO 7). Track formation occurs due to the inelastic transfer of energy from incident ions to electrons, and atomic-level details of track morphology as a function of energy-loss are revealed in the present work. A comparison of imaging details obtained by varying collection angles of detectors is discussed in the present work. A quantitative analysis of phase identification using high-angle annular dark field imaging is performedmore » on the ion tracks. Finally, a novel 3-dimensional track reconstruction method is provided that is based on depth dependent imaging of the ion tracks. The technique is used in extracting the atomic-level details of nanoscale features, such as the disordered ion tracks, which are embedded in relatively thicker matrix. Another relevance of the method is shown by measuring the tilt of the ion tracks relative to the electron beam incidence that helps in knowing the structure and geometry of ion tracks quantitatively.« less
Topics in LIFE Target Survival: 11-SI-004 Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miles, Robin; Benett, Bill; Bond, Tiziana
The LIFE target design incorporates many considerations to generate the desired fusion gain including the physics design, the cost of manufacturing of the target, the injectability of the target, the aerodynamic flight characteristics of the target, the ability to track and engage the target and to maintain the structural and thermal integrity of the target. This document describes the effort that was made in support of issues of survivability of the target during injection which included issues massmanufactural materials and processes which could be used in the target.
1967-11-09
This photograph shows an early moment of the first test flight of the Saturn V vehicle for the Apollo 4 mission, photographed by a ground tracking camera, on the morning of November 9, 1967. This mission was the first launch of the Saturn V launch vehicle. Objectives of the unmarned Apollo 4 test flight were to obtain flight information on launch vehicle and spacecraft structural integrity and compatibility, flight loads, stage separation, and subsystems operation including testing of restart of the S-IVB stage, and to evaluate the Apollo command module heat shield.
Estimation of the linear mixed integrated Ornstein–Uhlenbeck model
Hughes, Rachael A.; Kenward, Michael G.; Sterne, Jonathan A. C.; Tilling, Kate
2017-01-01
ABSTRACT The linear mixed model with an added integrated Ornstein–Uhlenbeck (IOU) process (linear mixed IOU model) allows for serial correlation and estimation of the degree of derivative tracking. It is rarely used, partly due to the lack of available software. We implemented the linear mixed IOU model in Stata and using simulations we assessed the feasibility of fitting the model by restricted maximum likelihood when applied to balanced and unbalanced data. We compared different (1) optimization algorithms, (2) parameterizations of the IOU process, (3) data structures and (4) random-effects structures. Fitting the model was practical and feasible when applied to large and moderately sized balanced datasets (20,000 and 500 observations), and large unbalanced datasets with (non-informative) dropout and intermittent missingness. Analysis of a real dataset showed that the linear mixed IOU model was a better fit to the data than the standard linear mixed model (i.e. independent within-subject errors with constant variance). PMID:28515536
Integrated Orbit, Attitude, and Structural Control System Design for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Woods-Vedeler, Jessica (Technical Monitor); Moore, Chris (Technical Monitor); Wie, Bong; Roithmayr, Carlos
2001-01-01
The major objective of this study is to develop an integrated orbit, attitude, and structural control system architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control system architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an o.set of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.
Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites
NASA Technical Reports Server (NTRS)
Wie, Bong; Roithmayr, Carlos M.
2001-01-01
The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.
Analysis and design of on-grade reinforced concrete track support structures
NASA Technical Reports Server (NTRS)
Mclean, F. G.; Williams, R. D.; Greening, L. R.
1972-01-01
For the improvement of rail service, the Department of Transportation, Federal Rail Administration, is sponsoring a test track on the Atchison, Topeka, and Santa Fe Railway. The test track will contain nine separate rail support structures, including one conventional section for control and three reinforced concrete structures on grade, one slab and two beam sections. The analysis and design of these latter structures was accomplished by means of the finite element method, NASTRAN, and is presented.
Maturation of Structural Health Management Systems for Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Quing, Xinlin; Beard, Shawn; Zhang, Chang
2011-01-01
Concepts of an autonomous and automated space-compliant diagnostic system were developed for conditioned-based maintenance (CBM) of rocket motors for space exploration vehicles. The diagnostic system will provide real-time information on the integrity of critical structures on launch vehicles, improve their performance, and greatly increase crew safety while decreasing inspection costs. Using the SMART Layer technology as a basis, detailed procedures and calibration techniques for implementation of the diagnostic system were developed. The diagnostic system is a distributed system, which consists of a sensor network, local data loggers, and a host central processor. The system detects external impact to the structure. The major functions of the system include an estimate of impact location, estimate of impact force at impacted location, and estimate of the structure damage at impacted location. This system consists of a large-area sensor network, dedicated multiple local data loggers with signal processing and data analysis software to allow for real-time, in situ monitoring, and longterm tracking of structural integrity of solid rocket motors. Specifically, the system could provide easy installation of large sensor networks, onboard operation under harsh environments and loading, inspection of inaccessible areas without disassembly, detection of impact events and impact damage in real-time, and monitoring of a large area with local data processing to reduce wiring.
Nikolic, Dejan; Stojkovic, Nikola; Lekic, Nikola
2018-04-09
To obtain the complete operational picture of the maritime situation in the Exclusive Economic Zone (EEZ) which lies over the horizon (OTH) requires the integration of data obtained from various sensors. These sensors include: high frequency surface-wave-radar (HFSWR), satellite automatic identification system (SAIS) and land automatic identification system (LAIS). The algorithm proposed in this paper utilizes radar tracks obtained from the network of HFSWRs, which are already processed by a multi-target tracking algorithm and associates SAIS and LAIS data to the corresponding radar tracks, thus forming an integrated data pair. During the integration process, all HFSWR targets in the vicinity of AIS data are evaluated and the one which has the highest matching factor is used for data association. On the other hand, if there is multiple AIS data in the vicinity of a single HFSWR track, the algorithm still makes only one data pair which consists of AIS and HFSWR data with the highest mutual matching factor. During the design and testing, special attention is given to the latency of AIS data, which could be very high in the EEZs of developing countries. The algorithm is designed, implemented and tested in a real working environment. The testing environment is located in the Gulf of Guinea and includes a network of HFSWRs consisting of two HFSWRs, several coastal sites with LAIS receivers and SAIS data provided by provider of SAIS data.
Integrated long-range UAV/UGV collaborative target tracking
NASA Astrophysics Data System (ADS)
Moseley, Mark B.; Grocholsky, Benjamin P.; Cheung, Carol; Singh, Sanjiv
2009-05-01
Coordinated operations between unmanned air and ground assets allow leveraging of multi-domain sensing and increase opportunities for improving line of sight communications. While numerous military missions would benefit from coordinated UAV-UGV operations, foundational capabilities that integrate stove-piped tactical systems and share available sensor data are required and not yet available. iRobot, AeroVironment, and Carnegie Mellon University are working together, partially SBIR-funded through ARDEC's small unit network lethality initiative, to develop collaborative capabilities for surveillance, targeting, and improved communications based on PackBot UGV and Raven UAV platforms. We integrate newly available technologies into computational, vision, and communications payloads and develop sensing algorithms to support vision-based target tracking. We first simulated and then applied onto real tactical platforms an implementation of Decentralized Data Fusion, a novel technique for fusing track estimates from PackBot and Raven platforms for a moving target in an open environment. In addition, system integration with AeroVironment's Digital Data Link onto both air and ground platforms has extended our capabilities in communications range to operate the PackBot as well as in increased video and data throughput. The system is brought together through a unified Operator Control Unit (OCU) for the PackBot and Raven that provides simultaneous waypoint navigation and traditional teleoperation. We also present several recent capability accomplishments toward PackBot-Raven coordinated operations, including single OCU display design and operation, early target track results, and Digital Data Link integration efforts, as well as our near-term capability goals.
Target Tracking in Heavy-Tailed Clutter Using Amplitude Information
2009-07-01
to integrate the data before the detection decision is made, as done in so- called Track - Before - Detect (TBD) [5,14]. For very low SNR, when the target...Processes. McGraw-Hill, 2002. [14] M. G. Rutten, N. J. Gordon, and S. Maskell, “Recur- sive track - before - detect with target amplitude fluctua- tions,” in IEE
[A tracking function of human eye in microgravity and during readaptation to earth's gravity].
Kornilova, L N
2001-01-01
The paper summarizes results of electro-oculography of all ways of visual tracking: fixative eye movements (saccades), smooth pursuit of linearly, pendulum-like and circularly moving point stimuli, pursuit of vertically moving foveoretinal optokinetic stimuli, and presents values of thresholds and amplification coefficients of the optokinetic nystagmus during tracking of linear movement of foveoretinal optokinetic stimuli. Investigations were performed aboard the Salyut and Mir space stations with participation of 31 cosmonauts of whom 27 made long-term (76 up to 438 day) and 4 made short-term (7 to 9 day) missions. It was shown that in space flight the saccadic structure within the tracking reaction does not change; yet, corrective movements (additional microsaccades to achieve tracking) appeared in 47% of observations at the onset and in 76% of observations on months 3 to 6 of space flight. After landing, the structure of vertical saccades was found altered in half the cosmonauts. No matter in or after flight, reverse nystagmus was present along with the gaze nystagmus during static saccades in 22% (7 cosmonauts) of the observations. Amplitude of tracking vertically, diagonally or circularly moving stimuli was significantly reduced as period on mission increased. Early in flight (40% of the cosmonauts) and shortly afterwards (21% of the cosmonauts) the structure of smooth tracking reaction was totally broken up, that is eye followed stimulus with micro- or macrosaccades. The structure of smooth eye tracking recovered on flight days 6-8 and on postflight days 3-4. However, in 46% of the cosmonauts on long-term missions the structure of smooth eye tracking was noted to be disturbed periodically, i.e. smooth tracking was replaced by saccadic.
The Role of Integrated Modeling in the Design and Verification of the James Webb Space Telescope
NASA Technical Reports Server (NTRS)
Mosier, Gary E.; Howard, Joseph M.; Johnston, John D.; Parrish, Keith A.; Hyde, T. Tupper; McGinnis, Mark A.; Bluth, Marcel; Kim, Kevin; Ha, Kong Q.
2004-01-01
The James Web Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2011. System-level verification of critical optical performance requirements will rely on integrated modeling to a considerable degree. In turn, requirements for accuracy of the models are significant. The size of the lightweight observatory structure, coupled with the need to test at cryogenic temperatures, effectively precludes validation of the models and verification of optical performance with a single test in 1-g. Rather, a complex series of steps are planned by which the components of the end-to-end models are validated at various levels of subassembly, and the ultimate verification of optical performance is by analysis using the assembled models. This paper describes the critical optical performance requirements driving the integrated modeling activity, shows how the error budget is used to allocate and track contributions to total performance, and presents examples of integrated modeling methods and results that support the preliminary observatory design. Finally, the concepts for model validation and the role of integrated modeling in the ultimate verification of observatory are described.
Multi-Object Tracking with Correlation Filter for Autonomous Vehicle.
Zhao, Dawei; Fu, Hao; Xiao, Liang; Wu, Tao; Dai, Bin
2018-06-22
Multi-object tracking is a crucial problem for autonomous vehicle. Most state-of-the-art approaches adopt the tracking-by-detection strategy, which is a two-step procedure consisting of the detection module and the tracking module. In this paper, we improve both steps. We improve the detection module by incorporating the temporal information, which is beneficial for detecting small objects. For the tracking module, we propose a novel compressed deep Convolutional Neural Network (CNN) feature based Correlation Filter tracker. By carefully integrating these two modules, the proposed multi-object tracking approach has the ability of re-identification (ReID) once the tracked object gets lost. Extensive experiments were performed on the KITTI and MOT2015 tracking benchmarks. Results indicate that our approach outperforms most state-of-the-art tracking approaches.
Predicting 2D target velocity cannot help 2D motion integration for smooth pursuit initiation.
Montagnini, Anna; Spering, Miriam; Masson, Guillaume S
2006-12-01
Smooth pursuit eye movements reflect the temporal dynamics of bidimensional (2D) visual motion integration. When tracking a single, tilted line, initial pursuit direction is biased toward unidimensional (1D) edge motion signals, which are orthogonal to the line orientation. Over 200 ms, tracking direction is slowly corrected to finally match the 2D object motion during steady-state pursuit. We now show that repetition of line orientation and/or motion direction does not eliminate the transient tracking direction error nor change the time course of pursuit correction. Nonetheless, multiple successive presentations of a single orientation/direction condition elicit robust anticipatory pursuit eye movements that always go in the 2D object motion direction not the 1D edge motion direction. These results demonstrate that predictive signals about target motion cannot be used for an efficient integration of ambiguous velocity signals at pursuit initiation.
Engineering Analysis of Stresses in Railroad Rails.
DOT National Transportation Integrated Search
1981-10-01
One portion of the Federal Railroad Administration's (FRA) Track Performance Improvement Program is the development of engineering and analytic techniques required for the design and maintenance of railroad track of increased integrity and safety. Un...
Preliminary Description of Stresses in Railroad Rail
DOT National Transportation Integrated Search
1976-11-01
One portion of the Federal Railroad Administration's (FRA) Track Performance Improvement Program is the development of engineering and analytic techniques required for the design and maintenance of railroad track of increased integrity and safety. Un...
NASA Technical Reports Server (NTRS)
Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu
2014-01-01
The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.
NASA Technical Reports Server (NTRS)
Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu
2014-01-01
The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.
NASA Astrophysics Data System (ADS)
Greiner-Petter, Christoph; Sattel, Thomas
2017-12-01
For planar tubular continuum structures based on precurved shape memory alloy tubes a beam model with respect to the pseudoelastic material behaviour of NiTi is derived. Thereunto a constitutive material law respecting tension-compression asymmetry as well as hysteresis is used. The beam model is then employed to calculate equilibrium curvatures of concentric tube assemblies without clearance between the tubes. In a second step, the influence of clearance is approximated to account for non-concentric tube assemblies. These elastokinematic results are integrated into a purely kinematic model to describe the cannula path under the presence of material hysteresis and clearance. Finally a photogrammetric measurement system is used to track the path of an exemplary two-tube continuum structure to examine the accuracy of the proposed model. It is shown that material hysteresis leads to a hysteresis phenomena in the path of the tubular continuum structure.
Experimental and Theoretical Results in Output Trajectory Redesign for Flexible Structures
NASA Technical Reports Server (NTRS)
Dewey, J. S.; Leang, K.; Devasia, S.
1998-01-01
In this paper we study the optimal redesign of output trajectories for linear invertible systems. This is particularly important for tracking control of flexible structures because the input-state trajectores, that achieve tracking of the required output may cause excessive vibrations in the structure. We pose and solve this problem, in the context of linear systems, as the minimization of a quadratic cost function. The theory is developed and applied to the output tracking of a flexible structure and experimental results are presented.
Substructure method in high-speed monorail dynamic problems
NASA Astrophysics Data System (ADS)
Ivanchenko, I. I.
2008-12-01
The study of actions of high-speed moving loads on bridges and elevated tracks remains a topical problem for transport. In the present study, we propose a new method for moving load analysis of elevated tracks (monorail structures or bridges), which permits studying the interaction between two strained objects consisting of rod systems and rigid bodies with viscoelastic links; one of these objects is the moving load (monorail rolling stock), and the other is the carrying structure (monorail elevated track or bridge). The methods for moving load analysis of structures were developed in numerous papers [1-15]. At the first stage, when solving the problem about a beam under the action of the simplest moving load such as a moving weight, two fundamental methods can be used; the same methods are realized for other structures and loads. The first method is based on the use of a generalized coordinate in the expansion of the deflection in the natural shapes of the beam, and the problem is reduced to solving a system of ordinary differential equations with variable coefficients [1-3]. In the second method, after the "beam-weight" system is decomposed, just as in the problem with the weight impact on the beam [4], solving the problem is reduced to solving an integral equation for the dynamic weight reaction [6, 7]. In [1-3], an increase in the number of retained forms leads to an increase in the order of the system of equations; in [6, 7], difficulties arise when solving the integral equations related to the conditional stability of the step procedures. The method proposed in [9, 14] for beams and rod systems combines the above approaches and eliminates their drawbacks, because it permits retaining any necessary number of shapes in the deflection expansion and has a resolving system of equations with an unconditionally stable integration scheme and with a minimum number of unknowns, just as in the method of integral equations [6, 7]. This method is further developed for combined schemes modeling a strained elastic compound moving structure and a monorail elevated track. The problems of development of methods for dynamic analysis of monorails are very topical, especially because of increasing speeds of the rolling stock motion. These structures are studied in [16-18]. In the present paper, the above problem is solved by using the method for the moving load analysis and a step procedure of integration with respect to time, which were proposed in [9, 19], respectively. Further, these components are used to enlarge the possibilities of the substructure method in problems of dynamics. In the approach proposed for moving load analysis of structures, for a substructure (having the shape of a boundary element or a superelement) we choose an object moving at a constant speed (a monorail rolling stock); in this case, we use rod boundary elements of large length, which are gathered in a system modeling these objects. In particular, sets of such elements form a model of a monorail rolling stock, namely, carriage hulls, wheeled carts, elements of the wheel spring suspension, models of continuous beams of monorail ways and piers with foundations admitting emergency subsidence and unilateral links. These specialized rigid finite elements with linear and nonlinear links, included into the set of earlier proposed finite elements [14, 19], permit studying unsteady vibrations in the "monorail train-elevated track" (MTET) system taking into account various irregularities on the beam-rail, the pier emergency subsidence, and their elastic support by the basement. In this case, a high degree of the structure spatial digitization is obtained by using rods with distributed parameters in the analysis. The displacements are approximated by linear functions and trigonometric Fourier series, which, as was already noted, permits increasing the number of degrees of freedom of the system under study simultaneously preserving the order of the resolving system of equations. This approach permits studying the stress-strain state in the MTET system and determining accelerations at the desired points of the rolling stock. The proposed numerical procedure permits uniquely solving linear and nonlinear differential equations describing the operation of the model, which replaces the system by a monorail rolling stock consisting of several specialized mutually connected cars and a system of continuous beams on elastic inertial supports. This approach (based on the use of a moving substructure, which is also modeled by a system of boundary rod elements) permits maximally reducing the number of unknowns in the resolving system of equations at each step of its solution [11]. The authors of the preceding investigations of this problem, when studying the simultaneous vibrations of bridges and moving loads, considered only the case in which the rolling stock was represented by sufficiently complicated systems of rigid bodies connected by viscoelastic links [3-18] and the rolling stock motion was described by systems of ordinary differential equations. A specific characteristic of the proposed method is that it is convenient to derive the equations of motion of both the rolling stock and the bridge structure. The method [9, 14] permits obtaining the equations of interaction between the structures as two separate finite-element structures. Hence the researcher need not traditionally write out the system of equations of motion, for example, for the rolling stock (of cars) with finitely many degrees of freedom [3-18].We note several papers where simultaneous vibrations of an elastic moving load and an elastic carrying structure are considered in a rather narrow region and have a specific character. For example, the motion of an elastic rod along an elastic infinite rod on an elastic foundation is studied in [20], and the body of a car moving along a beam is considered as a rod with ten concentrated masses in [21].
NASA Astrophysics Data System (ADS)
Joa, Eunhyek; Park, Kwanwoo; Koh, Youngil; Yi, Kyongsu; Kim, Kilsoo
2018-04-01
This paper presents a tyre slip-based integrated chassis control of front/rear traction distribution and four-wheel braking for enhanced performance from moderate driving to limit handling. The proposed algorithm adopted hierarchical structure: supervisor - desired motion tracking controller - optimisation-based control allocation. In the supervisor, by considering transient cornering characteristics, desired vehicle motion is calculated. In the desired motion tracking controller, in order to track desired vehicle motion, virtual control input is determined in the manner of sliding mode control. In the control allocation, virtual control input is allocated to minimise cost function. The cost function consists of two major parts. First part is a slip-based tyre friction utilisation quantification, which does not need a tyre force estimation. Second part is an allocation guideline, which guides optimally allocated inputs to predefined solution. The proposed algorithm has been investigated via simulation from moderate driving to limit handling scenario. Compared to Base and direct yaw moment control system, the proposed algorithm can effectively reduce tyre dissipation energy in the moderate driving situation. Moreover, the proposed algorithm enhances limit handling performance compared to Base and direct yaw moment control system. In addition to comparison with Base and direct yaw moment control, comparison the proposed algorithm with the control algorithm based on the known tyre force information has been conducted. The results show that the performance of the proposed algorithm is similar with that of the control algorithm with the known tyre force information.
Mani, Karthick Raj; Upadhayay, Sagar; Das, K J Maria
2017-03-01
To Study the dosimetric advantage of the Jaw tracking technique in intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT) for Head and Neck Cancers. We retrospectively selected 10 previously treated head and neck cancer patients stage (T1/T2, N1, M0) in this study. All the patients were planned for IMRT and VMAT with simultaneous integrated boost technique. IMRT and VMAT plans were performed with jaw tracking (JT) and with static jaw (SJ) technique by keeping the same constraints and priorities for a particular patient. Target conformity, dose to the critical structures and low dose volumes were recorded and analyzed for IMRT and VMAT plans with and without JT for all the patients. The conformity index average of all patients followed by standard deviation ([Formula: see text] ± [Formula: see text]) of the JT-IMRT, SJ-IMRT, JT-VMAT, and SJ-VMAT were 1.72 ± 0.56, 1.67 ± 0.57, 1.83 ± 0.65, and 1.85 ± 0.64, and homogeneity index were 0.059 ± 0.05, 0.064 ± 0.05, 0.064 ± 0.04, and 0.064 ± 0.05. JT-IMRT shows significant mean reduction in right parotid and left parotid shows of 7.64% (p < 0.001) and 7.45% (p < 0.001) compare to SJ-IMRT. JT-IMRT plans also shows considerable dose reduction to thyroid, inferior constrictors, spinal cord and brainstem compared to the SJ-IMRT plans. Significant dose reductions were observed for critical structure in the JT-IMRT compared to SJ-IMRT technique. In JT-VMAT plans dose reduction to the critical structure were not significant compared to the SJ-IMRT due to relatively lesser monitor units.
KU-Band rendezvous radar performance computer simulation model
NASA Technical Reports Server (NTRS)
Griffin, J. W.
1980-01-01
The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.
Track structure model of cell damage in space flight
NASA Technical Reports Server (NTRS)
Katz, Robert; Cucinotta, Francis A.; Wilson, John W.; Shinn, Judy L.; Ngo, Duc M.
1992-01-01
The phenomenological track-structure model of cell damage is discussed. A description of the application of the track-structure model with the NASA Langley transport code for laboratory and space radiation is given. Comparisons to experimental results for cell survival during exposure to monoenergetic, heavy-ion beams are made. The model is also applied to predict cell damage rates and relative biological effectiveness for deep-space exposures.
Tracking coherent structures in massively-separated and turbulent flows
NASA Astrophysics Data System (ADS)
Rockwood, Matthew; Huang, Yangzi; Green, Melissa
2018-01-01
Coherent vortex structures are tracked in simulations of massively-separated and turbulent flows. Topological Lagrangian saddle points are found using intersections of the positive and negative finite-time Lyapunov exponent ridges, and these points are then followed in order to track individual coherent structure motion both in a complex interacting three-dimensional flow (turbulent channel) and during vortex formation (two-dimensional bluff body shedding). For a simulation of wall-bounded turbulence in a channel flow, tracking Lagrangian saddles shows that the average structure convection speed exhibits a similar trend as a previously published result based on velocity and pressure correlations, giving validity to the method. When this tracking method is applied in a study of a circular cylinder in cross-flow it shows that Lagrangian saddles rapidly accelerate away from the cylinder surface as the vortex sheds. This saddle behavior is compared with the time-resolved static pressure distribution on the circular cylinder, yielding locations on a cylinder surface where common sensors could detect this phenomenon, which is not available from force measurements or vortex circulation calculations. The current method of tracking coherent structures yields insight into the behavior of the coherent structures in both of the diverse flows presented, highlighting the breadth of its potential application.
NASA Technical Reports Server (NTRS)
Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.
2015-01-01
This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.
NASA Technical Reports Server (NTRS)
Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.
2015-01-01
This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.
NASA Astrophysics Data System (ADS)
Lennon, Craig; Bodt, Barry; Childers, Marshal; Dean, Robert; Oh, Jean; DiBerardino, Chip; Keegan, Terence
2015-05-01
The Army Research Laboratory's Robotics Collaborative Technology Alliance (RCTA) is a program intended to change robots from tools that soldiers use into teammates with which soldiers can work. This requires the integration of fundamental and applied research in perception, artificial intelligence, and human-robot interaction. In October of 2014, the RCTA assessed progress towards integrating this research. This assessment was designed to evaluate the robot's performance when it used new capabilities to perform selected aspects of a mission. The assessed capabilities included the ability of the robot to: navigate semantically outdoors with respect to structures and landmarks, identify doors in the facades of buildings, and identify and track persons emerging from those doors. We present details of the mission-based vignettes that constituted the assessment, and evaluations of the robot's performance in these vignettes.
Accurate object tracking system by integrating texture and depth cues
NASA Astrophysics Data System (ADS)
Chen, Ju-Chin; Lin, Yu-Hang
2016-03-01
A robust object tracking system that is invariant to object appearance variations and background clutter is proposed. Multiple instance learning with a boosting algorithm is applied to select discriminant texture information between the object and background data. Additionally, depth information, which is important to distinguish the object from a complicated background, is integrated. We propose two depth-based models that can compensate texture information to cope with both appearance variants and background clutter. Moreover, in order to reduce the risk of drifting problem increased for the textureless depth templates, an update mechanism is proposed to select more precise tracking results to avoid incorrect model updates. In the experiments, the robustness of the proposed system is evaluated and quantitative results are provided for performance analysis. Experimental results show that the proposed system can provide the best success rate and has more accurate tracking results than other well-known algorithms.
Optimal Appearance Model for Visual Tracking
Wang, Yuru; Jiang, Longkui; Liu, Qiaoyuan; Yin, Minghao
2016-01-01
Many studies argue that integrating multiple cues in an adaptive way increases tracking performance. However, what is the definition of adaptiveness and how to realize it remains an open issue. On the premise that the model with optimal discriminative ability is also optimal for tracking the target, this work realizes adaptiveness and robustness through the optimization of multi-cue integration models. Specifically, based on prior knowledge and current observation, a set of discrete samples are generated to approximate the foreground and background distribution. With the goal of optimizing the classification margin, an objective function is defined, and the appearance model is optimized by introducing optimization algorithms. The proposed optimized appearance model framework is embedded into a particle filter for a field test, and it is demonstrated to be robust against various kinds of complex tracking conditions. This model is general and can be easily extended to other parameterized multi-cue models. PMID:26789639
Tracking control of a spool displacement in a direct piezoactuator-driven servo valve system
NASA Astrophysics Data System (ADS)
Han, Chulhee; Hwang, Yong-Hoon; Choi, Seung-Bok
2017-03-01
This paper presents tracking control performances of a piezostack direct drive valve (PDDV) operated at various temperatures. As afirst step, a spool valve and valve system are designed operated by the piezoactuator. After briefly describing about operating principle, an experimental apparatus to investigate the effect of temperaturs on the performances is set up. Subsequently, the PDDV is installed in a large-size heat chamber equipped with electric circuits and sensors. A classical proportional-integral-derivative (PID) controller is designed and applied to control the spool displacement. In addition, a fuzzt algorithm is integrated with the PID controller to enhace performance of the proposed valve system. The tracking performance of a spool displacement is tested by increasing the teperature and exciting frequency up to 150°C and 200 Hz, respectively. It is shown that the tracking performance heavily depends on both the operating temperature and the excitation frequency.
A novel sandwich-type traveling wave piezoelectric tracked mobile system.
Wang, Liang; Shu, Chengyou; Zhang, Quan; Jin, Jiamei
2017-03-01
In this paper, a novel sandwich-type traveling wave piezoelectric tracked mobile system was proposed, designed, fabricated and experimentally investigated. The proposed system exhibits the advantages of simple structure, high mechanical integration, lack of electromagnetic interference, and lack of lubrication requirement, and hence shows potential application to robotic rovers for planetary exploration. The tracked mobile system is comprised of a sandwich actuating mechanism and a metal track. The actuating mechanism includes a sandwich piezoelectric transducer and two annular parts symmetrically placed at either end of the transducer, while the metal track is tensioned along the outer surfaces of the annular parts. Traveling waves with the same rotational direction are generated in the two annular parts, producing the microscopic elliptical motions of the surface particles on the annular parts. In this situation, if the pre-load is applied properly, the metal track can be driven by friction force to achieve bidirectional movement. At first, the finite element method was adopted to conduct the modal analysis and harmonic response analysis of the actuating mechanism, and the vibration characteristics were measured to confirm the operating principle. Then the optimal driving frequency of the system prototype, namely 35.1kHz, was measured by frequency sensitivity experiments. At last, the mechanical motion characteristics of the prototype were investigated experimentally. The results show that the average motion speeds of the prototype in dual directions were as 72mm/s and 61.5mm/s under the excitation voltage of 500V RMS , respectively. The optimal loading weights of the prototype in bi-directions were 0.32kg and 0.24kg with a maximum speed of 59.5mm/s and 61.67mm/s at the driving voltage of 300V RMS , respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Influence of ultrasound speckle tracking strategies for motion and strain estimation.
Curiale, Ariel H; Vegas-Sánchez-Ferrero, Gonzalo; Aja-Fernández, Santiago
2016-08-01
Speckle Tracking is one of the most prominent techniques used to estimate the regional movement of the heart based on ultrasound acquisitions. Many different approaches have been proposed, proving their suitability to obtain quantitative and qualitative information regarding myocardial deformation, motion and function assessment. New proposals to improve the basic algorithm usually focus on one of these three steps: (1) the similarity measure between images and the speckle model; (2) the transformation model, i.e. the type of motion considered between images; (3) the optimization strategies, such as the use of different optimization techniques in the transformation step or the inclusion of structural information. While many contributions have shown their good performance independently, it is not always clear how they perform when integrated in a whole pipeline. Every step will have a degree of influence over the following and hence over the final result. Thus, a Speckle Tracking pipeline must be analyzed as a whole when developing novel methods, since improvements in a particular step might be undermined by the choices taken in further steps. This work presents two main contributions: (1) We provide a complete analysis of the influence of the different steps in a Speckle Tracking pipeline over the motion and strain estimation accuracy. (2) The study proposes a methodology for the analysis of Speckle Tracking systems specifically designed to provide an easy and systematic way to include other strategies. We close the analysis with some conclusions and recommendations that can be used as an orientation of the degree of influence of the models for speckle, the transformation models, interpolation schemes and optimization strategies over the estimation of motion features. They can be further use to evaluate and design new strategy into a Speckle Tracking system. Copyright © 2016 Elsevier B.V. All rights reserved.
Insights on dramatic radial fluctuations in track formation by energetic ions
Sachan, Ritesh; Lang, Maik; Trautmann, Christina; ...
2016-06-02
We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd 2TiZrO 7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd 2Ti xZr (1-x)O 7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study showsmore » the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less
Insights on dramatic radial fluctuations in track formation by energetic ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachan, Ritesh; Lang, Maik; Trautmann, Christina
We discuss the insights on the unexpected dramatic radial variations in the ion tracks formed by energetic ion (2.3 GeV 208Pb) irradiation at a constant electronic energy-loss (~42 keV/nm) in pyrochlore structured Gd 2TiZrO 7. Though previous studies have shown track formation and average track diameter measurements, this work brings further clarity on why quantitative analysis of ion track formation in Gd 2Ti xZr (1-x)O 7 systems can be more complicated than the currently accepted behavior for ion tracks. The ion track profile is usually considered to be diametrically uniform at constant values of the electronic energy-loss. This study showsmore » the diameter variations to be as large as ~40% within an extremely short incremental track length of ~20 nm. Our molecular dynamics simulations show that these fluctuations in diameter of amorphous core and overall track diameter are attributed to (i) the stochastic nature of inelastic energy loss along the track and (ii) the random substitution of Ti atoms by Zr atoms on the B-site in the pyrochlore lattice. Furthermore, the partial substitution of Ti by Zr increases the favorability of the defect-fluorite structure formation over amorphous phase stochastically, by introducing localized inhomogeneity in atomic structure, density and strain.« less
Lewin, L O; Papp, K K; Hodder, S L; Workings, M G; Wolfe, L; Glover, P; Headrick, L A
1999-01-01
In 1994, Case Western Reserve University School of Medicine established a Primary Care Track (PCT) with an integrated curriculum as part of The Robert Wood Johnson Foundation's Generalist Physician Initiative. This study compared the performance of the first cohort of students to participate in the PCT third year with that of their classmates and determined student attitudes toward their experiences. The performances of 24 PCT and 81 traditional students on the Medical School Admissions Test (MCAT) and the United States Medical Licensure Examination (USMLE) Step 1 and 2 were compared using analysis of variance. Grades on the six core clerkships were compared using chi-square analysis. Performances of the PCT students and a subset of traditional students on the generalist school's objective structured clinical exam (OSCE) were compared using multivariate analysis. The students reported their perceptions on a questionnaire. The traditional students had significantly higher scores on the physical science section of the MCAT and on the USMLE Step 1, but at the end of year three, their USMLE Step 2 scores did not differ. Grade distributions in the core clerkships did not differ, except in psychiatry, where the PCT students received honors significantly more often. The PCT students had a lower mean score on the internal medicine National Board of Medicine Examiners shelf exam but performed better on the generalist OSCE exam. A majority of PCT students reported that they would choose the integrated third year again and recommend it to others.
Study of Computational Structures for Multiobject Tracking Algorithms
1986-12-01
MULTIOBJECT TRACKING ALGORITHMS 12. PERSONAL AUTHOR(S) i Allen, Thomas G .; Kurien, Thomas; Washburn, Robert B. Jr. 13a. TYPE OF REPORT 13b. TIME COVERED 14...mentioned possible restructurings of the tracking algorithm that increase the amount of available parallelism ’ g ~. are investigated. This step is extremely...sufficient for our needs here. In the following section we will examine the structure and computational requirements of the track- g , oriented approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krichinsky, Alan M; Miller, Paul; Pickett, Chris A
2009-01-01
Oak Ridge National Laboratory is demonstrating the integration of UF6 cylinder tracking, using RF technology, with continuous load cell monitoring (CLCM) at mock UF6 feed and withdrawal (F&W) stations. CLCM and cylinder tracking are two of several continuous-monitoring technologies that show promise in providing integrated safeguards of F&W operations at enrichment plants. Integrating different monitoring technologies allows advanced, automated event processing to screen innocuous events thereby minimizing false alerts to independent inspectors. Traditionally, international inspectors rely on batch verification of material inputs and outputs derived from operator declarations and periodic on-site inspections at uranium enrichment plants or other nuclear processingmore » facilities. Continuously monitoring F&W activities between inspections while providing filtered alerts of significant operational events will substantially increase the amount of valuable information available to inspectors thereby promising to enhance the effectiveness of safeguards and to improve efficiency in conducting on-site inspections especially at large plants for ensuring that all operations are declared.« less
SU-G-JeP3-08: Robotic System for Ultrasound Tracking in Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhlemann, I; Graduate School for Computing in Medicine and Life Sciences, University of Luebeck; Jauer, P
Purpose: For safe and accurate real-time tracking of tumors for IGRT using 4D ultrasound, it is necessary to make use of novel, high-end force-sensitive lightweight robots designed for human-machine interaction. Such a robot will be integrated into an existing robotized ultrasound system for non-invasive 4D live tracking, using a newly developed real-time control and communication framework. Methods: The new KUKA LWR iiwa robot is used for robotized ultrasound real-time tumor tracking. Besides more precise probe contact pressure detection, this robot provides an additional 7th link, enhancing the dexterity of the kinematic and the mounted transducer. Several integrated, certified safety featuresmore » create a safe environment for the patients during treatment. However, to remotely control the robot for the ultrasound application, a real-time control and communication framework has to be developed. Based on a client/server concept, client-side control commands are received and processed by a central server unit and are implemented by a client module running directly on the robot’s controller. Several special functionalities for robotized ultrasound applications are integrated and the robot can now be used for real-time control of the image quality by adjusting the transducer position, and contact pressure. The framework was evaluated looking at overall real-time capability for communication and processing of three different standard commands. Results: Due to inherent, certified safety modules, the new robot ensures a safe environment for patients during tumor tracking. Furthermore, the developed framework shows overall real-time capability with a maximum average latency of 3.6 ms (Minimum 2.5 ms; 5000 trials). Conclusion: The novel KUKA LBR iiwa robot will advance the current robotized ultrasound tracking system with important features. With the developed framework, it is now possible to remotely control this robot and use it for robotized ultrasound tracking applications, including image quality control and target tracking.« less
2007-01-01
Intelligent Robots and Systems, vol- ume 1, pp. 123–128, September 2002. [2] R. G. Brown and P. Y. Hwang . Introduction to Ran- dom Signals and Applied... Kalman Filter-based) method for calculat- ing a trajectory by tracking features at an unknown location on the Earth’s surface, provided the topography...Extended Kalman Filter (EKF) and an automatic target tracking algorithm. In the following section, the integration architecture is presented, which in
Paglieroni, David W [Pleasanton, CA; Manay, Siddharth [Livermore, CA
2011-12-20
A stochastic method and system for detecting polygon structures in images, by detecting a set of best matching corners of predetermined acuteness .alpha. of a polygon model from a set of similarity scores based on GDM features of corners, and tracking polygon boundaries as particle tracks using a sequential Monte Carlo approach. The tracking involves initializing polygon boundary tracking by selecting pairs of corners from the set of best matching corners to define a first side of a corresponding polygon boundary; tracking all intermediate sides of the polygon boundaries using a particle filter, and terminating polygon boundary tracking by determining the last side of the tracked polygon boundaries to close the polygon boundaries. The particle tracks are then blended to determine polygon matches, which may be made available, such as to a user, for ranking and inspection.
An RFID-based luggage and passenger tracking system for airport security control applications
NASA Astrophysics Data System (ADS)
Vastianos, George E.; Kyriazanos, Dimitris M.; Kountouriotis, Vassilios I.; Thomopoulos, Stelios C. A.
2014-06-01
Market analysis studies of recent years have shown a steady and significant increase in the usage of RFID technology. Key factors for this growth were the decreased costs of passive RFIDs and their improved performance compared to the other identification technologies. Besides the benefits of RFID technologies into the supply chains, warehousing, traditional inventory and asset management applications, RFID has proven itself worth exploiting on experimental, as well as on commercial level in other sectors, such as healthcare, transport and security. In security sector, airport security is one of the biggest challenges. Airports are extremely busy public places and thus prime targets for terrorism, with aircraft, passengers, crew and airport infrastructure all subject to terrorist attacks. Inside this labyrinth of security challenges, the long range detection capability of the UHF passive RFID technology can be turned into a very important tracking tool that may outperform all the limitations of the barcode tracking inside the current airport security control chain. The Integrated Systems Lab of NCSR Demokritos has developed an RFID based Luggage and Passenger tracking system within the TASS (FP7-SEC-2010-241905) EU research project. This paper describes application scenarios of the system categorized according to the structured nature of the environment, the system architecture and presents evaluation results extracted from measurements with a group of different massive production GEN2 UHF RFID tags that are widely available in the world market.
Integration of car-body flexibility into train-track coupling system dynamics analysis
NASA Astrophysics Data System (ADS)
Ling, Liang; Zhang, Qing; Xiao, Xinbiao; Wen, Zefeng; Jin, Xuesong
2018-04-01
The resonance vibration of flexible car-bodies greatly affects the dynamics performances of high-speed trains. In this paper, we report a three-dimensional train-track model to capture the flexible vibration features of high-speed train carriages based on the flexible multi-body dynamics approach. The flexible car-body is modelled using both the finite element method (FEM) and the multi-body dynamics (MBD) approach, in which the rigid motions are obtained by using the MBD theory and the structure deformation is calculated by the FEM and the modal superposition method. The proposed model is applied to investigate the influence of the flexible vibration of car-bodies on the dynamics performances of train-track systems. The dynamics performances of a high-speed train running on a slab track, including the car-body vibration behaviour, the ride comfort, and the running safety, calculated by the numerical models with rigid and flexible car-bodies are compared in detail. The results show that the car-body flexibility not only significantly affects the vibration behaviour and ride comfort of rail carriages, but also can has an important influence on the running safety of trains. The rigid car-body model underestimates the vibration level and ride comfort of rail vehicles, and ignoring carriage torsional flexibility in the curving safety evaluation of trains is conservative.
Aguiar, Paulo; Mendonça, Luís; Galhardo, Vasco
2007-10-15
Operant animal behavioral tests require the interaction of the subject with sensors and actuators distributed in the experimental environment of the arena. In order to provide user independent reliable results and versatile control of these devices it is vital to use an automated control system. Commercial systems for control of animal mazes are usually based in software implementations that restrict their application to the proprietary hardware of the vendor. In this paper we present OpenControl: an opensource Visual Basic software that permits a Windows-based computer to function as a system to run fully automated behavioral experiments. OpenControl integrates video-tracking of the animal, definition of zones from the video signal for real-time assignment of animal position in the maze, control of the maze actuators from either hardware sensors or from the online video tracking, and recording of experimental data. Bidirectional communication with the maze hardware is achieved through the parallel-port interface, without the need for expensive AD-DA cards, while video tracking is attained using an inexpensive Firewire digital camera. OpenControl Visual Basic code is structurally general and versatile allowing it to be easily modified or extended to fulfill specific experimental protocols and custom hardware configurations. The Visual Basic environment was chosen in order to allow experimenters to easily adapt the code and expand it at their own needs.
NASA Astrophysics Data System (ADS)
Zuraski, Steven M.; Fiorino, Steven T.; Beecher, Elizabeth A.; Figlewski, Nathan M.; Schmidt, Jason D.; McCrae, Jack E.
2016-10-01
The Photometry Analysis and Optical Tracking and Evaluation System (PANOPTES) Quad Axis Telescope is a unique four axis mount Ritchey-Chretien 24 inch telescope capable of tracking objects through the zenith without axes rotation delay (no Dead Zone). This paper describes enhancement components added to the quad axis mount telescope that will enable measurements supporting novel research and field testing focused on `three-dimensional' characterization of turbulent atmospheres, mitigation techniques, and new sensing modalities. These all support research and operational techniques relating to astronomical imaging and electro-optical propagation though the atmosphere, relative to sub-meter class telescopes in humid, continental environments. This effort will use custom designed and commercial off the shelf hardware; sub-system components discussed will include a wavefront sensor system, a co-aligned beam launch system, and a fiber coupled research laser. The wavefront sensing system has the ability to take measurements from a dynamic altitude adjustable laser beacon scattering spot, a key concept that enables rapid turbulence structure parameter measurements over an altitude varied integrated atmospheric volume. The sub-components are integrated with the overall goal of measuring a height-resolved volumetric profile for the atmospheric turbulence structure parameter at the site, and developing mobile techniques for such measurements. The design concept, part selection optimization, baseline component lab testing, and initial field measurements, will be discussed in the main sections of this paper. This project is a collaborative effort between the Air Force Research Labs Sensors Directorate and the Air Force Institute of Technology Center for Directed Energy.
Advanced active health monitoring system of liquid rocket engines
NASA Astrophysics Data System (ADS)
Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo
2008-11-01
An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.
Optimization of MLS receivers for multipath environments
NASA Technical Reports Server (NTRS)
Mcalpine, G. A.; Irwin, S. H.; NELSON; Roleyni, G.
1977-01-01
Optimal design studies of MLS angle-receivers and a theoretical design-study of MLS DME-receivers are reported. The angle-receiver results include an integration of the scan data processor and tracking filter components of the optimal receiver into a unified structure. An extensive simulation study comparing the performance of the optimal and threshold receivers in a wide variety of representative dynamical interference environments was made. The optimal receiver was generally superior. A simulation of the performance of the threshold and delay-and-compare receivers in various signal environments was performed. An analysis of combined errors due to lateral reflections from vertical structures with small differential path delays, specular ground reflections with neglible differential path delays, and thermal noise in the receivers is provided.
International Space Station Payload Operations Integration
NASA Technical Reports Server (NTRS)
Fanske, Elizabeth Anne
2011-01-01
The Payload Operations Integrator (POINT) plays an integral part in the Certification of Flight Readiness process for the Mission Operations Laboratory and the Payload Operations Integration Function that supports International Space Station Payload operations. The POINTs operate in support of the POIF Payload Operations Manager to bring together and integrate the Certification of Flight Readiness inputs from various MOL teams through maintaining an open work tracking log. The POINTs create monthly metrics for current and future payloads that the Payload Operations Integration Function supports. With these tools, the POINTs assemble the Certification of Flight Readiness package before a given flight, stating that the Mission Operations Laboratory is prepared to support it. I have prepared metrics for Increment 29/30, maintained the Open Work Tracking Logs for Flights ULF6 (STS-134) and ULF7 (STS-135), and submitted the Mission Operations Laboratory Certification of Flight Readiness package for Flight 44P to the Mission Operations Directorate (MOD/OZ).
ISPyB: an information management system for synchrotron macromolecular crystallography.
Delagenière, Solange; Brenchereau, Patrice; Launer, Ludovic; Ashton, Alun W; Leal, Ricardo; Veyrier, Stéphanie; Gabadinho, José; Gordon, Elspeth J; Jones, Samuel D; Levik, Karl Erik; McSweeney, Seán M; Monaco, Stéphanie; Nanao, Max; Spruce, Darren; Svensson, Olof; Walsh, Martin A; Leonard, Gordon A
2011-11-15
Individual research groups now analyze thousands of samples per year at synchrotron macromolecular crystallography (MX) resources. The efficient management of experimental data is thus essential if the best possible experiments are to be performed and the best possible data used in downstream processes in structure determination pipelines. Information System for Protein crystallography Beamlines (ISPyB), a Laboratory Information Management System (LIMS) with an underlying data model allowing for the integration of analyses down-stream of the data collection experiment was developed to facilitate such data management. ISPyB is now a multisite, generic LIMS for synchrotron-based MX experiments. Its initial functionality has been enhanced to include improved sample tracking and reporting of experimental protocols, the direct ranking of the diffraction characteristics of individual samples and the archiving of raw data and results from ancillary experiments and post-experiment data processing protocols. This latter feature paves the way for ISPyB to play a central role in future macromolecular structure solution pipelines and validates the application of the approach used in ISPyB to other experimental techniques, such as biological solution Small Angle X-ray Scattering and spectroscopy, which have similar sample tracking and data handling requirements.
Track structure in biological models.
Curtis, S B
1986-01-01
High-energy heavy ions in the galactic cosmic radiation (HZE particles) may pose a special risk during long term manned space flights outside the sheltering confines of the earth's geomagnetic field. These particles are highly ionizing, and they and their nuclear secondaries can penetrate many centimeters of body tissue. The three dimensional patterns of ionizations they create as they lose energy are referred to as their track structure. Several models of biological action on mammalian cells attempt to treat track structure or related quantities in their formulation. The methods by which they do this are reviewed. The proximity function is introduced in connection with the theory of Dual Radiation Action (DRA). The ion-gamma kill (IGK) model introduces the radial energy-density distribution, which is a smooth function characterizing both the magnitude and extension of a charged particle track. The lethal, potentially lethal (LPL) model introduces lambda, the mean distance between relevant ion clusters or biochemical species along the track. Since very localized energy depositions (within approximately 10 nm) are emphasized, the proximity function as defined in the DRA model is not of utility in characterizing track structure in the LPL formulation.
Design and Performance Evaluation of a UWB Communication and Tracking System for Mini-AERCam
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2005-01-01
NASA Johnson Space Center (JSC) is developing a low-volume, low-mass, robotic free-flying camera known as Mini-AERCam (Autonomous Extra-vehicular Robotic Camera) to assist the International Space Station (ISS) operations. Mini-AERCam is designed to provide astronauts and ground control real-time video for camera views of ISS. The system will assist ISS crewmembers and ground personnel to monitor ongoing operations and perform visual inspections of exterior ISS components without requiring extravehicular activity (EAV). Mini-AERCam consists of a great number of subsystems. Many institutions and companies have been involved in the R&D for this project. A Mini-AERCam ground control system has been studied at Texas A&M University [3]. The path planning and control algorithms that direct the motions of Mini-AERCam have been developed through the joint effort of Carnegie Mellon University and the Texas Robotics and Automation Center [5]. NASA JSC has designed a layered control architecture that integrates all functions of Mini-AERCam [8]. The research described in this report is part of a larger effort focused on the communication and tracking subsystem that is designed to perform three major tasks: 1. To transmit commands from ISS to Mini-AERCam for control of robotic camera motions (downlink); 2. To transmit real-time video from Mini-AERCam to ISS for inspections (uplink); 3. To track the position of Mini-AERCam for precise motion control. The ISS propagation environment is unique due to the nature of the ISS structure and multiple RF interference sources [9]. The ISS is composed of various truss segments, solar panels, thermal radiator panels, and modules for laboratories and crew accommodations. A tracking system supplemental to GPS is desirable both to improve accuracy and to eliminate the structural blockage due to the close proximity of the ISS which could at times limit the number of GPS satellites accessible to the Mini-AERCam. Ideally, the tracking system will be a passive component of the communication system which will need to operate in a time-varying multipath environment created as the robot camera moves over the ISS structure. In addition, due to many interference sources located on the ISS, SSO, LEO satellites and ground-based transmitters, selecting a frequency for the ISS and Mini-AERCam link which will coexist with all interferers poses a major design challenge. To meet all of these challenges, ultrawideband (UWB) radio technology is being studied for use in the Mini-AERCam communication and tracking subsystem. The research described in this report is focused on design and evaluation of passive tracking system algorithms based on UWB radio transmissions from mini-AERCam.
Experimental and Theoretical Results in Output-Trajectory Redesign for Flexible Structures
NASA Technical Reports Server (NTRS)
Dewey, J. S.; Devasia, Santosh
1996-01-01
In this paper we study the optimal redesign of output trajectory for linear invertible systems. This is particularly important for tracking control of flexible structures because the input-state trajectories that achieve the required output may cause excessive vibrations in the structure. A trade-off is then required between tracking and vibrations reduction. We pose and solve this problem as the minimization of a quadratic cost function. The theory is developed and applied to the output tracking of a flexible structure and experimental results are presented.
B1 field-insensitive transformers for RF-safe transmission lines.
Krafft, Axel; Müller, Sven; Umathum, Reiner; Semmler, Wolfhard; Bock, Michael
2006-11-01
Integration of transformers into transmission lines suppresses radiofrequency (RF)-induced heating. New figure-of-eight-shaped transformer coils are compared to conventional loop transformer coils to assess their signal transmission properties and safety profile. The transmission properties of figure-of-eight-shaped transformers were measured and compared to transformers with loop coils. Experiments to quantify the effect of decoupling from the B1 field of the MR system were conducted. Temperature measurements were performed to demonstrate the effective reduction of RF-induced heating. The transformers were investigated during active tracking experiments. Coupling to the B1 field was reduced by 18 dB over conventional loop-shaped transformer coils. MR images showed a significantly reduced artifact for the figure-of-eight- shaped coils generated by local flip-angle amplification. Comparable transmission properties were seen for both transformer types. Temperature measurements showed a maximal temperature increase of 30 K/3.5 K for an unsegmented/segmented cable. With a segmented transmission line a robotic assistance system could be successfully localized using active tracking. The figure-of-eight-shaped transformer design reduces both RF field coupling with the MR system and artifact sizes. Anatomical structure close to the figure-of-eight-shaped transformer may be less obscured as with loop-shaped transformers if these transformers are integrated into e.g. intravascular catheters.
NASA Astrophysics Data System (ADS)
Sumantri, Bambang; Uchiyama, Naoki; Sano, Shigenori
2016-01-01
In this paper, a new control structure for a quad-rotor helicopter that employs the least squares method is introduced. This proposed algorithm solves the overdetermined problem of the control input for the translational motion of a quad-rotor helicopter. The algorithm allows all six degrees of freedom to be considered to calculate the control input. The sliding mode controller is applied to achieve robust tracking and stabilization. A saturation function is designed around a boundary layer to reduce the chattering phenomenon that is a common problem in sliding mode control. In order to improve the tracking performance, an integral sliding surface is designed. An energy saving effect because of chattering reduction is also evaluated. First, the dynamics of the quad-rotor helicopter is derived by the Newton-Euler formulation for a rigid body. Second, a constant plus proportional reaching law is introduced to increase the reaching rate of the sliding mode controller. Global stability of the proposed control strategy is guaranteed based on the Lyapunov's stability theory. Finally, the robustness and effectiveness of the proposed control system are demonstrated experimentally under wind gusts, and are compared with a regular sliding mode controller, a proportional-differential controller, and a proportional-integral-differential controller.
Luckie, Douglas B.; Hoskinson, Anne-Marie; Griffin, Caleigh E.; Hess, Andrea L.; Price, Katrina J.; Tawa, Alex; Thacker, Samantha M.
2017-01-01
The purpose of this study was to examine the educational impact of an intervention, the inquiry-focused textbook Integrating Concepts in Biology (ICB), when used in a yearlong introductory biology course sequence. Student learning was evaluated using three published instruments: 1) The Biology Concept Inventory probed depth of student mastery of fundamental concepts in organismal and cellular topics when confronting misconceptions as distractors. ICB students had higher gains in all six topic categories (+43% vs. peers overall, p < 0.01). 2) The Biology Card Sorting Task assessed whether students organized biological ideas more superficially, as novices do, or based on deeper concepts, like experts. The frequency with which ICB students connected deep-concept pairs, or triplets, was similar to peers; but deep understanding of structure/function was much higher (for pairs: 77% vs. 25%, p < 0.01). 3) A content-focused Medical College Admission Test (MCAT) posttest compared ICB student content knowledge with that of peers from 15 prior years. Historically, MCAT performance for each semester ranged from 53% to 64%; the ICB cohort scored 62%, in the top quintile. Longitudinal tracking in five upper-level science courses the following year found ICB students outperformed peers in physiology (85% vs. 80%, p < 0.01). PMID:28389429
Robust multiperson tracking from a mobile platform.
Ess, Andreas; Leibe, Bastian; Schindler, Konrad; van Gool, Luc
2009-10-01
In this paper, we address the problem of multiperson tracking in busy pedestrian zones using a stereo rig mounted on a mobile platform. The complexity of the problem calls for an integrated solution that extracts as much visual information as possible and combines it through cognitive feedback cycles. We propose such an approach, which jointly estimates camera position, stereo depth, object detection, and tracking. The interplay between those components is represented by a graphical model. Since the model has to incorporate object-object interactions and temporal links to past frames, direct inference is intractable. We, therefore, propose a two-stage procedure: for each frame, we first solve a simplified version of the model (disregarding interactions and temporal continuity) to estimate the scene geometry and an overcomplete set of object detections. Conditioned on these results, we then address object interactions, tracking, and prediction in a second step. The approach is experimentally evaluated on several long and difficult video sequences from busy inner-city locations. Our results show that the proposed integration makes it possible to deliver robust tracking performance in scenes of realistic complexity.
Zhao, Ximei; Ren, Chengyi; Liu, Hao; Li, Haogyi
2014-12-01
Robotic catheter minimally invasive operation requires that the driver control system has the advantages of quick response, strong anti-jamming and real-time tracking of target trajectory. Since the catheter parameters of itself and movement environment and other factors continuously change, when the driver is controlled using traditional proportional-integral-derivative (PID), the controller gain becomes fixed once the PID parameters are set. It can not change with the change of the parameters of the object and environmental disturbance so that its change affects the position tracking accuracy, and may bring a large overshoot endangering patients' vessel. Therefore, this paper adopts fuzzy PID control method to adjust PID gain parameters in the tracking process in order to improve the system anti-interference ability, dynamic performance and tracking accuracy. The simulation results showed that the fuzzy PID control method had a fast tracking performance and a strong robustness. Compared with those of traditional PID control, the feasibility and practicability of fuzzy PID control are verified in a robotic catheter minimally invasive operation.
An Adaptive 6-DOF Tracking Method by Hybrid Sensing for Ultrasonic Endoscopes
Du, Chengyang; Chen, Xiaodong; Wang, Yi; Li, Junwei; Yu, Daoyin
2014-01-01
In this paper, a novel hybrid sensing method for tracking an ultrasonic endoscope within the gastrointestinal (GI) track is presented, and the prototype of the tracking system is also developed. We implement 6-DOF localization by sensing integration and information fusion. On the hardware level, a tri-axis gyroscope and accelerometer, and a magnetic angular rate and gravity (MARG) sensor array are attached at the end of endoscopes, and three symmetric cylindrical coils are placed around patients' abdomens. On the algorithm level, an adaptive fast quaternion convergence (AFQC) algorithm is introduced to determine the orientation by fusing inertial/magnetic measurements, in which the effects of magnetic disturbance and acceleration are estimated to gain an adaptive convergence output. A simplified electro-magnetic tracking (SEMT) algorithm for dimensional position is also implemented, which can easily integrate the AFQC's results and magnetic measurements. Subsequently, the average position error is under 0.3 cm by reasonable setting, and the average orientation error is 1° without noise. If magnetic disturbance or acceleration exists, the average orientation error can be controlled to less than 3.5°. PMID:24915179
ERIC Educational Resources Information Center
Ruiz, Elsa Cantu; Machado-Casas, Margarita
2013-01-01
Research studies have found that an integral part of being a tenure-track faculty member is the relationship between the higher education institution and individual faculty members (Mawdsley, 1999). Tenure-track positions are competitive spaces that demand and expect assistant professors to excel in publishing, teaching, and scholarly activity.…
Multi-Sensor Information Integration and Automatic Understanding
2008-11-01
also produced a real-time implementation of the tracking and anomalous behavior detection system that runs on real- world data – either using real-time...surveillance and airborne IED detection . 15. SUBJECT TERMS Multi-hypothesis tracking , particle filters, anomalous behavior detection , Bayesian...analyst to support decision making with large data sets. A key feature of the real-time tracking and behavior detection system developed is that the
A digital repository with an extensible data model for biobanking and genomic analysis management.
Izzo, Massimiliano; Mortola, Francesco; Arnulfo, Gabriele; Fato, Marco M; Varesio, Luigi
2014-01-01
Molecular biology laboratories require extensive metadata to improve data collection and analysis. The heterogeneity of the collected metadata grows as research is evolving in to international multi-disciplinary collaborations and increasing data sharing among institutions. Single standardization is not feasible and it becomes crucial to develop digital repositories with flexible and extensible data models, as in the case of modern integrated biobanks management. We developed a novel data model in JSON format to describe heterogeneous data in a generic biomedical science scenario. The model is built on two hierarchical entities: processes and events, roughly corresponding to research studies and analysis steps within a single study. A number of sequential events can be grouped in a process building up a hierarchical structure to track patient and sample history. Each event can produce new data. Data is described by a set of user-defined metadata, and may have one or more associated files. We integrated the model in a web based digital repository with a data grid storage to manage large data sets located in geographically distinct areas. We built a graphical interface that allows authorized users to define new data types dynamically, according to their requirements. Operators compose queries on metadata fields using a flexible search interface and run them on the database and on the grid. We applied the digital repository to the integrated management of samples, patients and medical history in the BIT-Gaslini biobank. The platform currently manages 1800 samples of over 900 patients. Microarray data from 150 analyses are stored on the grid storage and replicated on two physical resources for preservation. The system is equipped with data integration capabilities with other biobanks for worldwide information sharing. Our data model enables users to continuously define flexible, ad hoc, and loosely structured metadata, for information sharing in specific research projects and purposes. This approach can improve sensitively interdisciplinary research collaboration and allows to track patients' clinical records, sample management information, and genomic data. The web interface allows the operators to easily manage, query, and annotate the files, without dealing with the technicalities of the data grid.
A digital repository with an extensible data model for biobanking and genomic analysis management
2014-01-01
Motivation Molecular biology laboratories require extensive metadata to improve data collection and analysis. The heterogeneity of the collected metadata grows as research is evolving in to international multi-disciplinary collaborations and increasing data sharing among institutions. Single standardization is not feasible and it becomes crucial to develop digital repositories with flexible and extensible data models, as in the case of modern integrated biobanks management. Results We developed a novel data model in JSON format to describe heterogeneous data in a generic biomedical science scenario. The model is built on two hierarchical entities: processes and events, roughly corresponding to research studies and analysis steps within a single study. A number of sequential events can be grouped in a process building up a hierarchical structure to track patient and sample history. Each event can produce new data. Data is described by a set of user-defined metadata, and may have one or more associated files. We integrated the model in a web based digital repository with a data grid storage to manage large data sets located in geographically distinct areas. We built a graphical interface that allows authorized users to define new data types dynamically, according to their requirements. Operators compose queries on metadata fields using a flexible search interface and run them on the database and on the grid. We applied the digital repository to the integrated management of samples, patients and medical history in the BIT-Gaslini biobank. The platform currently manages 1800 samples of over 900 patients. Microarray data from 150 analyses are stored on the grid storage and replicated on two physical resources for preservation. The system is equipped with data integration capabilities with other biobanks for worldwide information sharing. Conclusions Our data model enables users to continuously define flexible, ad hoc, and loosely structured metadata, for information sharing in specific research projects and purposes. This approach can improve sensitively interdisciplinary research collaboration and allows to track patients' clinical records, sample management information, and genomic data. The web interface allows the operators to easily manage, query, and annotate the files, without dealing with the technicalities of the data grid. PMID:25077808
Johnston, Iain G; Rickett, Benjamin C; Jones, Nick S
2014-12-02
Back-of-the-envelope or rule-of-thumb calculations involving rough estimates of quantities play a central scientific role in developing intuition about the structure and behavior of physical systems, for example in so-called Fermi problems in the physical sciences. Such calculations can be used to powerfully and quantitatively reason about biological systems, particularly at the interface between physics and biology. However, substantial uncertainties are often associated with values in cell biology, and performing calculations without taking this uncertainty into account may limit the extent to which results can be interpreted for a given problem. We present a means to facilitate such calculations where uncertainties are explicitly tracked through the line of reasoning, and introduce a probabilistic calculator called CALADIS, a free web tool, designed to perform this tracking. This approach allows users to perform more statistically robust calculations in cell biology despite having uncertain values, and to identify which quantities need to be measured more precisely to make confident statements, facilitating efficient experimental design. We illustrate the use of our tool for tracking uncertainty in several example biological calculations, showing that the results yield powerful and interpretable statistics on the quantities of interest. We also demonstrate that the outcomes of calculations may differ from point estimates when uncertainty is accurately tracked. An integral link between CALADIS and the BioNumbers repository of biological quantities further facilitates the straightforward location, selection, and use of a wealth of experimental data in cell biological calculations. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Lei; Wang, Dai-Hua; Fu, Qiang; Yuan, Gang; Hu, Lei-Zi
2016-11-01
In this paper, the principle and structure of the four-bar linkage prosthetic knee based on the magnetorheological effect (FLPKME) are proposed and realized by individually integrating the upper and lower link rods of the four-bar linkage with the piston rod and the outer cylinder of the magnetorheological (MR) damper. The integrated MR damper, in which the MR fluid is operated in the shear mode, has a double-ended structure. The prototype of the FLPKME is designed and fabricated. Utilizing the developed FLPKME, the lower limb prosthesis is developed, modeled, and simulated. On these bases, the control algorithm for the FLPKME is developed. A test platform for the FLPKME is developed and the performance of the FLPKME with seven constant currents and controlled currents by the control algorithm developed in this paper are experimentally tested. The results show that the FLPKME with a constant current of 1.6 A possesses the basic stable gait, and the FLPKME with the controlled currents by the control algorithm developed in this paper is able to track the motions well and to imitate the natural motions of a healthy human knee joint.
Leveraging Information Technology. Track VI: Hardware/Software Strategies.
ERIC Educational Resources Information Center
CAUSE, Boulder, CO.
Seven papers from the 1987 CAUSE conference's Track VI, Hardware/Software Strategies, are presented. They include: "Integrated Systems--The Next Steps" (Morris A. Hicks); "Administrative Microcomputing--Roads Traveled, Lessons Learned" (David L. Smallen); "Murphy's First Law and Its Application to Administrative…
Youth Attitude Tracking Study: Spring 1980.
1980-08-01
integral part of service adver- tising, especially for the Marine Corps. Slogans always have been an effective means of generating and sustaining brand ... awareness . Tracking the recognition of service advertising slogans, therefore, is another means of assessing the effective- ness of service advertising
On-Field Demonstration Results of Medium Concentration System HSun®
NASA Astrophysics Data System (ADS)
Mendes-Lopes, J.; Pina, L.; Reis, F.; Coelho, S.; Wemans, J.; Sorasio, G.; Pereira, N.
2011-12-01
The paper presents the HSUN®, a new medium concentration photovoltaic (CPV) system, developed and produced by WS Energia S.A. The low cost manufacturing and standard components used by HSUN® technology increases the potential of the system to reach grid parity. The system was designed to have stable performance and low cost manufacturing, with a total active collector area of 1.68 m2 and 6.3 kg/m2 of weight. Based on a 20X integrated parabolic trough with coupled reflective secondary optics, the system uses high efficiency silicon cells, a passive cooling integrated system and is integrated in 1-axis horizontal tracking structure, the WS CPV HORIZON®. The open-chain configuration ensures that the wind drag is greatly reduced, increasing the reliability of the tracker, while the optimized optics design enables a high acceptance angle and uniform distribution of radiation throughout the PV receiver, using low-cost and low-weight components. Ray tracing simulations and experimental imaging acquisitions of the radiation profile were performed and compared, finite element models were used to perform thermal and structural analysis, and a specifically developed model was used to predict the electrical parameters of the receiver as a function of the concentration. All the components that integrate HSUN® technology are produced with machines used in mature industrial sectors thus guarantying mass production and benefiting from economies of scale. The on-field results are presented and discussed.
Xie, Hao-ran; Li, Fang-chun; Zhang, Wei-bo
2009-06-01
In the present paper the authors analyze the anatomical structure of the meridian running track by using the dialectical thought and comprehensive analysis of the integrated Chinese and western medicine. It has been observed that the "Qi-passages" of the 14 meridians of Chinese medicine are located in the connective tissue among the interspace of the muscles, etc. distributing longitudinally. The "Qi-passages" of the 15 Luomai (collaterals of the meridians) are located in the connective tissue among the interspace of the muscles, etc. distributing transversally, while those of the small branches of the meridian collaterals are located in the interspace mesenchyme of the muscle bundles distributing in the whole body. The "Qi-passages" of the tiny branches of the meridian collaterals are located in the mesenchyme of the intracellular space, such as the muscle fibers in the whole body. The authors hold that the so-called "Mai Qi" of the meridian-collaterals is the liquid-Qi flowing in the vertical and horizontal tissue interspaces. The "Qi-passage" of the meridian-collaterals of Chinese medicine is the pathway of the liquid-Qi of the tissue interspaces. The structure of the meridian-collaterals is the tissue interspace. The meridian-collateral system is a regulation-control system in the human body where the Qi-passages communicate with each other, and is, in fact, the protoplasm, the liquid-Qi circulating in the tissue interspaces.
Yu, Jia; Russell, J. Eric
2001-01-01
Human globins are encoded by mRNAs exhibiting high stabilities in transcriptionally silenced erythrocyte progenitors. Unlike α-globin mRNA, whose stability is enhanced by assembly of a specific messenger RNP (mRNP) α complex on its 3′ untranslated region (UTR), neither the structure(s) nor the mechanism(s) that effects the high-level stability of human β-globin mRNA has been identified. The present work describes an mRNP complex assembling on the 3′ UTR of the β-globin mRNA that exhibits many of the properties of the stability-enhancing α complex. The β-globin mRNP complex is shown to contain one or more factors homologous to αCP, a 39-kDa RNA-binding protein that is integral to α-complex assembly. Sequence analysis implicates a specific 14-nucleotide pyrimidine-rich track within its 3′ UTR as the site of β-globin mRNP assembly. The importance of this track to mRNA stability is subsequently verified in vivo using mice expressing human β-globin transgenes that contain informative mutations in this region. In combination, the in vitro and in vivo analyses indicate that the high stabilities of the α- and β-globin mRNAs are maintained through related mRNP complexes that may share a common regulatory pathway. PMID:11486027
Structural Analysis and Testing of the Inflatable Re-entry Vehicle Experiment (IRVE)
NASA Technical Reports Server (NTRS)
Lindell, Michael C.; Hughes, Stephen J.; Dixon, Megan; Wiley, Cliff E.
2006-01-01
The Inflatable Re-entry Vehicle Experiment (IRVE) is a 3.0 meter, 60 degree half-angle sphere cone, inflatable aeroshell experiment designed to demonstrate various aspects of inflatable technology during Earth re-entry. IRVE will be launched on a Terrier-Improved Orion sounding rocket from NASA s Wallops Flight Facility in the fall of 2006 to an altitude of approximately 164 kilometers and re-enter the Earth s atmosphere. The experiment will demonstrate exo-atmospheric inflation, inflatable structure leak performance throughout the flight regime, structural integrity under aerodynamic pressure and associated deceleration loads, thermal protection system performance, and aerodynamic stability. Structural integrity and dynamic response of the inflatable will be monitored with photogrammetric measurements of the leeward side of the aeroshell during flight. Aerodynamic stability and drag performance will be verified with on-board inertial measurements and radar tracking from multiple ground radar stations. In addition to demonstrating inflatable technology, IRVE will help validate structural, aerothermal, and trajectory modeling and analysis techniques for the inflatable aeroshell system. This paper discusses the structural analysis and testing of the IRVE inflatable structure. Equations are presented for calculating fabric loads in sphere cone aeroshells, and finite element results are presented which validate the equations. Fabric material properties and testing are discussed along with aeroshell fabrication techniques. Stiffness and dynamics tests conducted on a small-scale development unit and a full-scale prototype unit are presented along with correlated finite element models to predict the in-flight fundamental mod
Veselka, Walter; Rentch, James S; Grafton, William N; Kordek, Walter S; Anderson, James T
2010-11-01
Bioassessment methods for wetlands, and other bodies of water, have been developed worldwide to measure and quantify changes in "biological integrity." These assessments are based on a classification system, meant to ensure appropriate comparisons between wetland types. Using a local site-specific disturbance gradient, we built vegetation indices of biological integrity (Veg-IBIs) based on two commonly used wetland classification systems in the USA: One based on vegetative structure and the other based on a wetland's position in a landscape and sources of water. The resulting class-specific Veg-IBIs were comprised of 1-5 metrics that varied in their sensitivity to the disturbance gradient (R2=0.14-0.65). Moreover, the sensitivity to the disturbance gradient increased as metrics from each of the two classification schemes were combined (added). Using this information to monitor natural and created wetlands will help natural resource managers track changes in biological integrity of wetlands in response to anthropogenic disturbance and allows the use of vegetative communities to set ecological performance standards for mitigation banks.
DOT National Transportation Integrated Search
2010-11-01
The University of Denvers Intermodal Transportation Institute and System Planning : Corporations GlobalTrak system have successfully demonstrated the integration of GPS : tracking and active RFID monitoring of simulated cargo of pallet and cart...
COMPLIANCE AND ENFORCEMENT REGIONAL TRACKING SYSTEM (CERTS)
The Compliance and Enforcement Regional Tracking System (CERTS) is a system that allows Region 10 employees integrated access to information in EPA national media data bases through the LAN system. CERTS will allow you to identify regulated facilities in a given location such as...
Leveraging Information Technology. Track IV: Support Services.
ERIC Educational Resources Information Center
CAUSE, Boulder, CO.
Seven papers from the 1987 CAUSE conference's Track IV, Support Services, are presented. They include: "Application Development Center" (John F. Leydon); "College Information Management System: The Design and Implementation of a Completely Integrated Office Automation and Student Information System" (Karen L. Miselis);…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noll, Daniel; Stancari, Giulio
2015-11-17
An electron lens is planned for the Fermilab Integrable Optics Test Accelerator as a nonlinear element for integrable dynamics, as an electron cooler, and as an electron trap to study space-charge compensation in rings. We present the main design principles and constraints for nonlinear integrable optics. A magnetic configuration of the solenoids and of the toroidal section is laid out. Singleparticle tracking is used to optimize the electron path. Electron beam dynamics at high intensity is calculated with a particle-in-cell code to estimate current limits, profile distortions, and the effects on the circulating beam. In the conclusions, we summarize themore » main findings and list directions for further work.« less
Reading in healthy ageing: the influence of information structuring in sentences.
Price, Jessica M; Sanford, Anthony J
2012-06-01
In three experiments, we investigated the cognitive effects of linguistic prominence to establish whether focus plays a similar or different role in modulating language processing in healthy ageing. Information structuring through the use of cleft sentences is known to increase the processing efficiency of anaphoric references to elements contained with a marked focus structure. It also protects these elements from becoming suppressed in the wake of subsequent information, suggesting selective mechanisms of enhancement and suppression. In Experiment 1 (using self-paced reading), we found that focus enhanced (faster) integration for anaphors referring to words contained within the scope of focus; but suppressed (slower) integration for anaphors to words contained outside of the scope of focus; and in some cases, the effects were larger in older adults. In Experiment 2 (using change detection), we showed that older adults relied more on the linguistic structure to enhance change detection when the changed word was in focus. In Experiment 3 (using delayed probe recognition and eye-tracking), we found that older adults recognized probes more accurately when they were made to elements within the scope of focus than when they were outside the scope of focus. These results indicate that older adults' ability to selectively attend or suppress concepts in a marked focus structure is preserved. PsycINFO Database Record (c) 2012 APA, all rights reserved
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, H.; Chen, K.; Jusko, M.
The Packaging Certification Program (PCP) of the U.S. Department of Energy (DOE) Environmental Management (EM), Office of Packaging and Transportation (EM-14), has developed a radio frequency identification (RFID) tracking and monitoring system for the management of nuclear materials during storage and transportation. The system, developed by the PCP team at Argonne National Laboratory, consists of hardware (Mk-series sensor tags, fixed and handheld readers, form factor for multiple drum types, seal integrity sensors, and enhanced battery management), software (application programming interface, ARG-US software for local and remote/web applications, secure server and database management), and cellular/satellite communication interfaces for vehicle tracking andmore » item monitoring during transport. The ability of the above system to provide accurate, real-time tracking and monitoring of the status of multiple, certified containers of nuclear materials has been successfully demonstrated in a week-long, 1,700-mile DEMO performed in April 2008. While the feedback from the approximately fifty (50) stakeholders who participated in and/or observed the DEMO progression were very positive and encouraging, two major areas of further improvements - system integration and web application enhancement - were identified in the post-DEMO evaluation. The principal purpose of the MiniDemo described in this report was to verify these two specific improvements. The MiniDemo was conducted on August 28, 2009. In terms of system integration, a hybrid communication interface - combining the RFID item-monitoring features and a commercial vehicle tracking system by Qualcomm - was developed and implemented. In the MiniDemo, the new integrated system worked well in reporting tag status and vehicle location accurately and promptly. There was no incompatibility of components. The robust commercial communication gear, as expected, helped improve system reliability. The MiniDemo confirmed that system integration is technically feasible and reliable with the existing RFID and Qualcomm satellite equipment. In terms of web application, improvements in mapping, tracking, data presentation, and post-incident spatial query reporting were implemented in ARG-US, the application software that manages the dataflow among the RFID tags, readers, and servers. These features were tested in the MiniDemo and found to be satisfactory. The resulting web application is both informative and user-friendly. A joint developmental project is being planned between the PCP and the DOE TRANSCOM that uses the Qualcomm gear in vehicles for tracking and communication of radioactive material shipments across the country. Adding an RFID interface to TRANSCOM is a significant enhancement to the DOE infrastructure for tracking and monitoring shipments of radioactive materials.« less
Activity Tracking for Pilot Error Detection from Flight Data
NASA Technical Reports Server (NTRS)
Callantine, Todd J.; Ashford, Rose (Technical Monitor)
2002-01-01
This report presents an application of activity tracking for pilot error detection from flight data, and describes issues surrounding such an application. It first describes the Crew Activity Tracking System (CATS), in-flight data collected from the NASA Langley Boeing 757 Airborne Research Integrated Experiment System aircraft, and a model of B757 flight crew activities. It then presents an example of CATS detecting actual in-flight crew errors.
NASA Technical Reports Server (NTRS)
Radomski, M. S.; Doll, C. E.
1995-01-01
The Differenced Range (DR) Versus Integrated Doppler (ID) (DRVID) method exploits the opposition of high-frequency signal versus phase retardation by plasma media to obtain information about the plasma's corruption of simultaneous range and Doppler spacecraft tracking measurements. Thus, DR Plus ID (DRPID) is an observable independent of plasma refraction, while actual DRVID (DR minus ID) measures the time variation of the path electron content independently of spacecraft motion. The DRVID principle has been known since 1961. It has been used to observe interplanetary plasmas, is implemented in Deep Space Network tracking hardware, and has recently been applied to single-frequency Global Positioning System user navigation This paper discusses exploration at the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) of DRVID synthesized from simultaneous two-way range and Doppler tracking for low Earth-orbiting missions supported by the Tracking and Data Relay Satellite System (TDRSS) The paper presents comparisons of actual DR and ID residuals and relates those comparisons to predictions of the Bent model. The complications due to the pilot tone influence on relayed Doppler measurements are considered. Further use of DRVID to evaluate ionospheric models is discussed, as is use of DRPID in reducing dependence on ionospheric modeling in orbit determination.
Branstetter, M Laurie; Smith, Lynette S; Brooks, Andrea F
2014-07-01
Over the past decade, the federal government has mandated healthcare providers to incorporate electronic health records into practice by 2015. This technological update in healthcare documentation has generated a need for advanced practice RN programs to incorporate information technology into education. The National Organization of Nurse Practitioner Faculties created core competencies to guide program standards for advanced practice RN education. One core competency is Technology and Information Literacy. Educational programs are moving toward the utilization of electronic clinical tracking systems to capture students' clinical encounter data. The purpose of this integrative review was to evaluate current research on advanced practice RN students' documentation of clinical encounters utilizing electronic clinical tracking systems to meet advanced practice RN curriculum outcome goals in information technology as defined by the National Organization of Nurse Practitioner Faculties. The state of the science depicts student' and faculty attitudes, preferences, opinions, and data collections of students' clinical encounters. Although electronic clinical tracking systems were utilized to track students' clinical encounters, these systems have not been evaluated for meeting information technology core competency standards. Educational programs are utilizing electronic clinical tracking systems with limited evidence-based literature evaluating the ability of these systems to meet the core competencies in advanced practice RN programs.
Track structure in radiation biology: theory and applications.
Nikjoo, H; Uehara, S; Wilson, W E; Hoshi, M; Goodhead, D T
1998-04-01
A brief review is presented of the basic concepts in track structure and the relative merit of various theoretical approaches adopted in Monte-Carlo track-structure codes are examined. In the second part of the paper, a formal cluster analysis is introduced to calculate cluster-distance distributions. Total experimental ionization cross-sections were least-square fitted and compared with the calculation by various theoretical methods. Monte-Carlo track-structure code Kurbuc was used to examine and compare the spectrum of the secondary electrons generated by using functions given by Born-Bethe, Jain-Khare, Gryzinsky, Kim-Rudd, Mott and Vriens' theories. The cluster analysis in track structure was carried out using the k-means method and Hartigan algorithm. Data are presented on experimental and calculated total ionization cross-sections: inverse mean free path (IMFP) as a function of electron energy used in Monte-Carlo track-structure codes; the spectrum of secondary electrons generated by different functions for 500 eV primary electrons; cluster analysis for 4 MeV and 20 MeV alpha-particles in terms of the frequency of total cluster energy to the root-mean-square (rms) radius of the cluster and differential distance distributions for a pair of clusters; and finally relative frequency distribution for energy deposited in DNA, single-strand break and double-strand breaks for 10MeV/u protons, alpha-particles and carbon ions. There are a number of Monte-Carlo track-structure codes that have been developed independently and the bench-marking presented in this paper allows a better choice of the theoretical method adopted in a track-structure code to be made. A systematic bench-marking of cross-sections and spectra of the secondary electrons shows differences between the codes at atomic level, but such differences are not significant in biophysical modelling at the macromolecular level. Clustered-damage evaluation shows: that a substantial proportion of dose ( 30%) is deposited by low-energy electrons; the majority of DNA damage lesions are of simple type; the complexity of damage increases with increased LET, while the total yield of strand breaks remains constant; and at high LET values nearly 70% of all double-strand breaks are of complex type.
The NEAR laser ranging investigation
NASA Astrophysics Data System (ADS)
Zuber, M. T.; Smith, D. E.; Cheng, A. F.; Cole, T. D.
1997-10-01
The objective of the NEAR-Earth Asteriod Rendezvous (NEAR) laser ranging investigation is to obtain high integrity profiles and grids of topography for use in geophysical, geodetic and geological studies of asteroid 433 Eros. The NEAR laser rangefinder (NLR) will determine the slant range of the NEAR spacecraft to the asteroid surface by measuring precisely the round trip time of flight of individual laser pulses. Ranges will be converted to planetary radii measured with respect to the asteroid center of mass by subtracting the spacecraft orbit determined from X band Doppler tracking. The principal components of the NLR include a 1064 nm Cr:Nd:YAG laser, a gold-coated aluminum Dall-Kirkham Cassegrain telescope, an enhanced silicon avalanche photodiode hybrid detector, a 480-MHz crystal oscillator, and a digital processing unit. The instrument has a continuous in-flight calibration capability using a fiber-optic delay assembly. The single shot vertical resolution of the NLR is <6m, and the absolute accuracy of the global grid will be ~10m with respect to the asteroid center of mass. For the current mission orbital scenario, the laser spot size on the surface of Eros will vary from ~4-11m, and the along-track resolution for the nominal pulse repetition rate of 1 Hz will be approximately comparable to the spot size, resulting in contiguous along-track profiles. The across-track resolution will depend on the orbital mapping scenario, but will likely be <500m, which will define the spatial resolution of the global topographic model. Planned science investigations include global-scale analyses related to collisional and impact history and internal density distribution that utilize topographic grids as well as spherical harmonic topographic models that will be analyzed jointly with gravity at commensurate resolution. Attempts will be made to detect possible subtle time variations in internal structure that may be present if Eros is not a single coherent body, by analysis of low degree and order spherical harmonic coefficients. Local- to regional-scale analyses will utilize high-resolution three-dimensional topographic maps of specific surface structures to address surface geologic processes. Results from the NLR investigation will contribute significantly to understanding the origin, structure, and evolution of Eros and other asteroidal bodies.
DangerTrack: A scoring system to detect difficult-to-assess regions.
Dolgalev, Igor; Sedlazeck, Fritz; Busby, Ben
2017-01-01
Over recent years, multiple groups have shown that a large number of structural variants, repeats, or problems with the underlying genome assembly have dramatic effects on the mapping, calling, and overall reliability of single nucleotide polymorphism calls. This project endeavored to develop an easy-to-use track for looking at structural variant and repeat regions. This track, DangerTrack, can be displayed alongside the existing Genome Reference Consortium assembly tracks to warn clinicians and biologists when variants of interest may be incorrectly called, of dubious quality, or on an insertion or copy number expansion. While mapping and variant calling can be automated, it is our opinion that when these regions are of interest to a particular clinical or research group, they warrant a careful examination, potentially involving localized reassembly. DangerTrack is available at https://github.com/DCGenomics/DangerTrack.
GenomeGraphs: integrated genomic data visualization with R.
Durinck, Steffen; Bullard, James; Spellman, Paul T; Dudoit, Sandrine
2009-01-06
Biological studies involve a growing number of distinct high-throughput experiments to characterize samples of interest. There is a lack of methods to visualize these different genomic datasets in a versatile manner. In addition, genomic data analysis requires integrated visualization of experimental data along with constantly changing genomic annotation and statistical analyses. We developed GenomeGraphs, as an add-on software package for the statistical programming environment R, to facilitate integrated visualization of genomic datasets. GenomeGraphs uses the biomaRt package to perform on-line annotation queries to Ensembl and translates these to gene/transcript structures in viewports of the grid graphics package. This allows genomic annotation to be plotted together with experimental data. GenomeGraphs can also be used to plot custom annotation tracks in combination with different experimental data types together in one plot using the same genomic coordinate system. GenomeGraphs is a flexible and extensible software package which can be used to visualize a multitude of genomic datasets within the statistical programming environment R.
Waspe, Adam C; McErlain, David D; Pitelka, Vasek; Holdsworth, David W; Lacefield, James C; Fenster, Aaron
2010-04-01
Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting a barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 microm tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 microm, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154 +/- 113 microm. The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.
Silicon pixel-detector R&D for CLIC
NASA Astrophysics Data System (ADS)
Nürnberg, A.
2016-11-01
The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (~ 0.2%X0 per layer for the vertex region and ~ 1%X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer tracking region, both hybrid concepts and fully integrated CMOS sensors are under consideration. The feasibility of ultra-thin sensor layers is validated with Timepix3 readout ASICs bump bonded to active edge planar sensors with 50 μm to 150 μm thickness. Prototypes of CLICpix readout ASICs implemented in 6525 nm CMOS technology with 25 μm pixel pitch have been produced. Hybridisation concepts have been developed for interconnecting these chips either through capacitive coupling to active HV-CMOS sensors or through bump-bonding to planar sensors. Recent R&D achievements include results from beam tests with all types of hybrid assemblies. Simulations based on Geant4 and TCAD are used to validate the experimental results and to assess and optimise the performance of various detector designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waspe, Adam C.; McErlain, David D.; Pitelka, Vasek
Purpose: Preclinical research protocols often require insertion of needles to specific targets within small animal brains. To target biologically relevant locations in rodent brains more effectively, a robotic device has been developed that is capable of positioning a needle along oblique trajectories through a single burr hole in the skull under volumetric microcomputed tomography (micro-CT) guidance. Methods: An x-ray compatible stereotactic frame secures the head throughout the procedure using a bite bar, nose clamp, and ear bars. CT-to-robot registration enables structures identified in the image to be mapped to physical coordinates in the brain. Registration is accomplished by injecting amore » barium sulfate contrast agent as the robot withdraws the needle from predefined points in a phantom. Registration accuracy is affected by the robot-positioning error and is assessed by measuring the surface registration error for the fiducial and target needle tracks (FRE and TRE). This system was demonstrated in situ by injecting 200 {mu}m tungsten beads into rat brains along oblique trajectories through a single burr hole on the top of the skull under micro-CT image guidance. Postintervention micro-CT images of each skull were registered with preintervention high-field magnetic resonance images of the brain to infer the anatomical locations of the beads. Results: Registration using four fiducial needle tracks and one target track produced a FRE and a TRE of 96 and 210 {mu}m, respectively. Evaluation with tissue-mimicking gelatin phantoms showed that locations could be targeted with a mean error of 154{+-}113 {mu}m. Conclusions: The integration of a robotic needle-positioning device with volumetric micro-CT image guidance should increase the accuracy and reduce the invasiveness of stereotactic needle interventions in small animals.« less
Web-based Three-dimensional Virtual Body Structures: W3D-VBS
Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex
2002-01-01
Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user’s progress through evaluation tools helps customize lesson plans. A self-guided “virtual tour” of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it. PMID:12223495
Control-structure interaction study for the Space Station solar dynamic power module
NASA Technical Reports Server (NTRS)
Cheng, J.; Ianculescu, G.; Ly, J.; Kim, M.
1991-01-01
The authors investigate the feasibility of using a conventional PID (proportional plus integral plus derivative) controller design to perform the pointing and tracking functions for the Space Station Freedom solar dynamic power module. Using this simple controller design, the control/structure interaction effects were also studied without assuming frequency bandwidth separation. From the results, the feasibility of a simple solar dynamic control solution with a reduced-order model, which satisfies the basic system pointing and stability requirements, is suggested. However, the conventional control design approach is shown to be very much influenced by the order of reduction of the plant model, i.e., the number of the retained elastic modes from the full-order model. This suggests that, for complex large space structures, such as the Space Station Freedom solar dynamic, the conventional control system design methods may not be adequate.
Web-based three-dimensional Virtual Body Structures: W3D-VBS.
Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex
2002-01-01
Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user's progress through evaluation tools helps customize lesson plans. A self-guided "virtual tour" of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it.
NASA Astrophysics Data System (ADS)
Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Cailliau, Joël; Gueguen, Ivan; Dumoulin, Jean
2015-04-01
While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. Firstly, they are built quickly since the slabs can be cast in place in an automated fashion by a slipform paver. Secondly, with its service life of at least 60 years, they requires little maintenance and hence they offers great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. In the framework of a FUI project (n° 072906053), a new ballastless track structure based on concrete slabs was designed and its thermal-mechanical behavior in fatigue under selected mechanical and thermal conditions was tested on a real scale mockup in our laboratory [1,2]. By applying to the slabs both together mechanical stresses and thermal gradients, finite elements simulation and experimental results show that the weather conditions influence significantly the concrete slabs curvatures and by the way, the contact conditions with the underlaying layers. So it is absolutely necessary to take into account this effect in the design of the ballastless track structures in order to guarantee a long target life of at least of 50 years. After design and experimental tests in laboratory, a real ballastless track structure of 1km was built in France at the beginning of year 2013. This structure has 2 tracks on which several trains circulate every day since the beginning of year 2014. Before the construction, it was decided to monitor this structure to verify that the mechanical behavior is conform to the simulations. One part of the instrumentation is dedicated to monitor quasi-continuously the evolution of the curvature of a concrete slab. For this, 2 accelerometers were fixed on the slab under the track. One was placed on the edge and the other in the middle of the slab. The acquisition of the signals by a nano computer (called Pegase and developed at Ifsttar for data acquisition [3]) were performed automatically every time that a threshold is exceeded due to the passage of a train. These data are then send to a web server via a 3G Wireless Network. Many data was thus stored daily for several months. Moreover, several thermocouples were embedded at different depths in order to measure thermal gradients into the track slab. From the accelerometers signals, the deflection of the track slab are then obtained and compared to the measurements of thermal gradients. This comparison show clearly the daily evolution of the curvature with the thermal gradient changes as estimated by the simulation. This result was confirmed indirectly by strain profile measurements obtained by the Rayleigh fiber optic sensing technique. Two fiber optics embedded in the upper and lower part of the foundation slab show that contact conditions between the foundation slab and the track slab change with thermal gradient. 1 - X. Chapeleau, T. Sedran, L.-M. Cottineau, J. Cailliau, F. Taillade, I. Gueguen, J.-M. Henault. Study of ballastless track structure monitoring by distributed optical fiber sensors on a real-scale mockup in laboratory. Engineering Structures, 2013, 56, pp. 1751-1757. 2 - X. Chapeleau, L.-M. Cottineau, T. Sedran, J. Cailliau, I. Gueguen. Instrumentation by distributed optical fiber sensors of a new ballastless track structure. EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-8946 3 - V. Le Cam, L. Lemarchand, L-M. Cottineau and F. Bourquin. Design of a generic smart and wireless sensors network - benefits of emerging technologies. Structural Health Monitoring 2008, 1(1), pp. 598-605.
Networking. New Opportunities for Partnering, CAUSE94. Track IV.
ERIC Educational Resources Information Center
CAUSE, Boulder, CO.
Seven papers are presented from the 1994 CAUSE conference track on networking and information sharing among higher education institutions. The papers include: (1) "Integrated Statewide Infrastructure of Learning Technologies," focusing on the University of Wisconsin System (Lee Alley); (2) "Designing and Implementing a Network…
NASA Astrophysics Data System (ADS)
Neher, Peter F.; Stieltjes, Bram; Reisert, Marco; Reicht, Ignaz; Meinzer, Hans-Peter; Fritzsche, Klaus H.
2012-02-01
Fiber tracking algorithms yield valuable information for neurosurgery as well as automated diagnostic approaches. However, they have not yet arrived in the daily clinical practice. In this paper we present an open source integration of the global tractography algorithm proposed by Reisert et.al.1 into the open source Medical Imaging Interaction Toolkit (MITK) developed and maintained by the Division of Medical and Biological Informatics at the German Cancer Research Center (DKFZ). The integration of this algorithm into a standardized and open development environment like MITK enriches accessibility of tractography algorithms for the science community and is an important step towards bringing neuronal tractography closer to a clinical application. The MITK diffusion imaging application, downloadable from www.mitk.org, combines all the steps necessary for a successful tractography: preprocessing, reconstruction of the images, the actual tracking, live monitoring of intermediate results, postprocessing and visualization of the final tracking results. This paper presents typical tracking results and demonstrates the steps for pre- and post-processing of the images.
Maeba, Satoru; Taguchi, Takahiro; Midorikawa, Hirofumi; Kanno, Megumu; Sueda, Taijiro
2013-01-01
OBJECTIVES Functional tricuspid regurgitation (FTR) is generally caused by the dilation of the tricuspid annulus (TA) and the tethering of tricuspid leaflets; however, it also occurs in patients without dilatation of the TA. The aim of this study was to develop and to use a four-dimensional tracking system, utilizing cardiac magnetic resonance imaging (MRI), and to assess TA flexibility in patients with early FTR without right ventricle dilation as a preliminary investigation for the mechanism of early FTR. METHODS The structure and movement of the TA were examined in 20 healthy subjects and 19 FTR patients whose right ventricle was not dilated. We analysed the short axis and longitudinal movement of a mid-septal point (S), a mid-lateral point (L), a mid-anterior point (A) and a mid-posterior point (P) on the TA throughout the cardiac cycle. The tethering distance of the tricuspid leaflets and the integrated orbiting volume of the TA were also measured. RESULTS The TA area (mm2) and AP and LS distances (mm) did not differ significantly between the two groups, but the longitudinally moving distances (mm) of the four points were significantly shorter in patients with FTR than in healthy subjects. Also, the mean tethering distance (mm) was significantly longer in patients with FTR than in healthy subjects (9.0 ± 1.5 vs 4.0 ± 1.3, respectively; P < 0.001), and the integrated volume (mm3) of the annular moving track, throughout the cardiac cycle, was significantly larger in healthy subjects than in patients with FTR (40 428 ± 10 951 vs 22 967 ± 6079, P < 0.001). CONCLUSIONS The longitudinal flexibility of the TA in FTR patients was significantly less than that in the healthy subjects, and the tethering of the tricuspid leaflets occurred in FTR patients despite the absence of TA and RV dilation, which can be one triggering factor of early FTR. Four-dimensional geometric assessment, using cardiac MRI and the tracking program that we have developed, is capable of determining TA structure and flexibility. PMID:23466952
Maeba, Satoru; Taguchi, Takahiro; Midorikawa, Hirofumi; Kanno, Megumu; Sueda, Taijiro
2013-06-01
Functional tricuspid regurgitation (FTR) is generally caused by the dilation of the tricuspid annulus (TA) and the tethering of tricuspid leaflets; however, it also occurs in patients without dilatation of the TA. The aim of this study was to develop and to use a four-dimensional tracking system, utilizing cardiac magnetic resonance imaging (MRI), and to assess TA flexibility in patients with early FTR without right ventricle dilation as a preliminary investigation for the mechanism of early FTR. The structure and movement of the TA were examined in 20 healthy subjects and 19 FTR patients whose right ventricle was not dilated. We analysed the short axis and longitudinal movement of a mid-septal point (S), a mid-lateral point (L), a mid-anterior point (A) and a mid-posterior point (P) on the TA throughout the cardiac cycle. The tethering distance of the tricuspid leaflets and the integrated orbiting volume of the TA were also measured. The TA area (mm(2)) and AP and LS distances (mm) did not differ significantly between the two groups, but the longitudinally moving distances (mm) of the four points were significantly shorter in patients with FTR than in healthy subjects. Also, the mean tethering distance (mm) was significantly longer in patients with FTR than in healthy subjects (9.0 ± 1.5 vs 4.0 ± 1.3, respectively; P < 0.001), and the integrated volume (mm(3)) of the annular moving track, throughout the cardiac cycle, was significantly larger in healthy subjects than in patients with FTR (40 428 ± 10 951 vs 22 967 ± 6079, P < 0.001). The longitudinal flexibility of the TA in FTR patients was significantly less than that in the healthy subjects, and the tethering of the tricuspid leaflets occurred in FTR patients despite the absence of TA and RV dilation, which can be one triggering factor of early FTR. Four-dimensional geometric assessment, using cardiac MRI and the tracking program that we have developed, is capable of determining TA structure and flexibility.
Healy, R.W.; Russell, T.F.
1993-01-01
A new mass-conservative method for solution of the one-dimensional advection-dispersion equation is derived and discussed. Test results demonstrate that the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) outperforms standard finite-difference methods, in terms of accuracy and efficiency, for solute transport problems that are dominated by advection. For dispersion-dominated problems, the performance of the method is similar to that of standard methods. Like previous ELLAM formulations, FVELLAM systematically conserves mass globally with all types of boundary conditions. FVELLAM differs from other ELLAM approaches in that integrated finite differences, instead of finite elements, are used to approximate the governing equation. This approach, in conjunction with a forward tracking scheme, greatly facilitates mass conservation. The mass storage integral is numerically evaluated at the current time level, and quadrature points are then tracked forward in time to the next level. Forward tracking permits straightforward treatment of inflow boundaries, thus avoiding the inherent problem in backtracking, as used by most characteristic methods, of characteristic lines intersecting inflow boundaries. FVELLAM extends previous ELLAM results by obtaining mass conservation locally on Lagrangian space-time elements. Details of the integration, tracking, and boundary algorithms are presented. Test results are given for problems in Cartesian and radial coordinates.
Extreme storm activity in North Atlantic and European region
NASA Astrophysics Data System (ADS)
Vyazilova, N.
2010-09-01
The extreme storm activity study over North Atlantic and Europe includes the analyses of extreme cyclone (track number, integral cyclonic intensity) and extreme storm (track number) during winter and summer seasons in the regions: 1) 55°N-80N, 50°W-70°E; 2) 30°N-55°N, 50°W-70°E. Extreme cyclones were selected based on cyclone centre pressure (P<=970 mbar). Extreme storms were selected from extreme cyclones based on wind velocity on 925 mbar. The Bofort scala was used for this goal. Integral cyclonic intensity (for region) includes the calculation cyclone centers number and sum of MSLP anomalies in cyclone centers. The analyses based on automated cyclone tracking algorithm, 6-hourly MSLP and wind data (u and v on 925 gPa) from the NCEP/NCAR reanalyses from January 1948 to March 2010. The comparision of mean, calculated for every ten years, had shown, that in polar region extreme cyclone and storm track number, and integral cyclonic intensity gradually increases and have maximum during last years (as for summer, as for winter season). Every ten years means for summer season are more then for winter season, as for polar, as for tropical region. Means (ten years) for tropical region are significance less then for polar region.
Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.
2014-01-01
This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N. PMID:25126446
Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S
2013-01-01
This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N.
Representing annotation compositionality and provenance for the Semantic Web
2013-01-01
Background Though the annotation of digital artifacts with metadata has a long history, the bulk of that work focuses on the association of single terms or concepts to single targets. As annotation efforts expand to capture more complex information, annotations will need to be able to refer to knowledge structures formally defined in terms of more atomic knowledge structures. Existing provenance efforts in the Semantic Web domain primarily focus on tracking provenance at the level of whole triples and do not provide enough detail to track how individual triple elements of annotations were derived from triple elements of other annotations. Results We present a task- and domain-independent ontological model for capturing annotations and their linkage to their denoted knowledge representations, which can be singular concepts or more complex sets of assertions. We have implemented this model as an extension of the Information Artifact Ontology in OWL and made it freely available, and we show how it can be integrated with several prominent annotation and provenance models. We present several application areas for the model, ranging from linguistic annotation of text to the annotation of disease-associations in genome sequences. Conclusions With this model, progressively more complex annotations can be composed from other annotations, and the provenance of compositional annotations can be represented at the annotation level or at the level of individual elements of the RDF triples composing the annotations. This in turn allows for progressively richer annotations to be constructed from previous annotation efforts, the precise provenance recording of which facilitates evidence-based inference and error tracking. PMID:24268021
EEG and Eye Tracking Demonstrate Vigilance Enhancement with Challenge Integration
Bodala, Indu P.; Li, Junhua; Thakor, Nitish V.; Al-Nashash, Hasan
2016-01-01
Maintaining vigilance is possibly the first requirement for surveillance tasks where personnel are faced with monotonous yet intensive monitoring tasks. Decrement in vigilance in such situations could result in dangerous consequences such as accidents, loss of life and system failure. In this paper, we investigate the possibility to enhance vigilance or sustained attention using “challenge integration,” a strategy that integrates a primary task with challenging stimuli. A primary surveillance task (identifying an intruder in a simulated factory environment) and a challenge stimulus (periods of rain obscuring the surveillance scene) were employed to test the changes in vigilance levels. The effect of integrating challenging events (resulting from artificially simulated rain) into the task were compared to the initial monotonous phase. EEG and eye tracking data is collected and analyzed for n = 12 subjects. Frontal midline theta power and frontal theta to parietal alpha power ratio which are used as measures of engagement and attention allocation show an increase due to challenge integration (p < 0.05 in each case). Relative delta band power of EEG also shows statistically significant suppression on the frontoparietal and occipital cortices due to challenge integration (p < 0.05). Saccade amplitude, saccade velocity and blink rate obtained from eye tracking data exhibit statistically significant changes during the challenge phase of the experiment (p < 0.05 in each case). From the correlation analysis between the statistically significant measures of eye tracking and EEG, we infer that saccade amplitude and saccade velocity decrease with vigilance decrement along with frontal midline theta and frontal theta to parietal alpha ratio. Conversely, blink rate and relative delta power increase with vigilance decrement. However, these measures exhibit a reverse trend when challenge stimulus appears in the task suggesting vigilance enhancement. Moreover, the mean reaction time is lower for the challenge integrated phase (RTmean = 3.65 ± 1.4s) compared to initial monotonous phase without challenge (RTmean = 4.6 ± 2.7s). Our work shows that vigilance level, as assessed by response of these vital signs, is enhanced by challenge integration. PMID:27375464
2000-10-31
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour and the Mobile Launcher Platform (MLP) start backing through the gate to Launch Pad 39B after a cracked cleat was discovered on the crawler-transporter. Workers near the pad (behind the crawler track) look at the cleats. The vehicle, which moves the MLP and Shuttle at about 1 mph, has a leveling system designed to keep the top of the Space Shuttle vertical while negotiating the 5 percent grade leading to the top of the pad. When the Shuttle-MLP are back on level ground, the crawler tracks will be inspected and the broken cleat repaired. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2000-10-31
KENNEDY SPACE CENTER, FLA. -- Space Shuttle Endeavour and the Mobile Launcher Platform (MLP) start backing through the gate to Launch Pad 39B after a cracked cleat was discovered on the crawler-transporter. Workers near the pad (behind the crawler track) look at the cleats. The vehicle, which moves the MLP and Shuttle at about 1 mph, has a leveling system designed to keep the top of the Space Shuttle vertical while negotiating the 5 percent grade leading to the top of the pad. When the Shuttle-MLP are back on level ground, the crawler tracks will be inspected and the broken cleat repaired. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
Serag, Maged F.; Abadi, Maram; Habuchi, Satoshi
2014-01-01
Single-molecule localization and tracking has been used to translate spatiotemporal information of individual molecules to map their diffusion behaviours. However, accurate analysis of diffusion behaviours and including other parameters, such as the conformation and size of molecules, remain as limitations to the method. Here, we report a method that addresses the limitations of existing single-molecular localization methods. The method is based on temporal tracking of the cumulative area occupied by molecules. These temporal fluctuations are tied to molecular size, rates of diffusion and conformational changes. By analysing fluorescent nanospheres and double-stranded DNA molecules of different lengths and topological forms, we demonstrate that our cumulative-area method surpasses the conventional single-molecule localization method in terms of the accuracy of determined diffusion coefficients. Furthermore, the cumulative-area method provides conformational relaxation times of structurally flexible chains along with diffusion coefficients, which together are relevant to work in a wide spectrum of scientific fields. PMID:25283876
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossier, Olivier; Giannone, Grégory; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux
Cells adjust their adhesive and cytoskeletal organizations according to changes in the biochemical and physical nature of their surroundings. In return, by adhering and generating forces on the extracellular matrix (ECM) cells organize their microenvironment. Integrin-dependent focal adhesions (FAs) are the converging zones integrating biochemical and biomechanical signals arising from the ECM and the actin cytoskeleton. Thus, integrin-mediated adhesion and mechanotransduction, the conversion of mechanical forces into biochemical signals, are involved in critical cellular functions such as migration, proliferation and differentiation, and their deregulation contributes to pathologies including cancer. A challenging problem is to decipher how stochastic protein movements andmore » interactions lead to formation of dynamic architecture such as integrin-dependent adhesive structures. In this review, we will describe recent advances made possible by super-resolution microscopies and single molecule tracking approaches that provided new understanding on the organization and the dynamics of integrins and intracellular regulators at the nanoscale in living cells.« less
GENERALISATION OF RADIATOR DESIGN TECHNIQUES FOR PERSONAL NEUTRON DOSEMETERS BY UNFOLDING METHOD.
Oda, K; Nakayama, T; Umetani, K; Kajihara, M; Yamauchi, T
2016-09-01
A novel technique for designing a radiator suitable for personal neutron dosemeter based on plastic track detector was discussed. A multi-layer structure has been proposed in the previous report, where the thicknesses of plural polyethylene (PE) layers and insensitive ones were determined by iterative calculations of double integral. In order to arrange this procedure and make it more systematic, unfolding calculation has been employed to estimate an ideal radiator containing an arbitrary hydrogen concentration. In the second step, realistic materials replaced it with consideration of minimisation of the layer number and commercial availability. A radiator consisting of three layers of PE, Upilex and Kapton sheets was finally designed, for which a deviation in the energy dependence between 0.1 and 20 MeV could be controlled within 18 %. An applicability of fluorescent nuclear track detector element has also been discussed. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rossier, Olivier; Giannone, Grégory
2016-04-10
Cells adjust their adhesive and cytoskeletal organizations according to changes in the biochemical and physical nature of their surroundings. In return, by adhering and generating forces on the extracellular matrix (ECM) cells organize their microenvironment. Integrin-dependent focal adhesions (FAs) are the converging zones integrating biochemical and biomechanical signals arising from the ECM and the actin cytoskeleton. Thus, integrin-mediated adhesion and mechanotransduction, the conversion of mechanical forces into biochemical signals, are involved in critical cellular functions such as migration, proliferation and differentiation, and their deregulation contributes to pathologies including cancer. A challenging problem is to decipher how stochastic protein movements and interactions lead to formation of dynamic architecture such as integrin-dependent adhesive structures. In this review, we will describe recent advances made possible by super-resolution microscopies and single molecule tracking approaches that provided new understanding on the organization and the dynamics of integrins and intracellular regulators at the nanoscale in living cells. Copyright © 2015. Published by Elsevier Inc.
Utilization of a CRT display light pen in the design of feedback control systems
NASA Technical Reports Server (NTRS)
Thompson, J. G.; Young, K. R.
1972-01-01
A hierarchical structure of the interlinked programs was developed to provide a flexible computer-aided design tool. A graphical input technique and a data structure are considered which provide the capability of entering the control system model description into the computer in block diagram form. An information storage and retrieval system was developed to keep track of the system description, and analysis and simulation results, and to provide them to the correct routines for further manipulation or display. Error analysis and diagnostic capabilities are discussed, and a technique was developed to reduce a transfer function to a set of nested integrals suitable for digital simulation. A general, automated block diagram reduction procedure was set up to prepare the system description for the analysis routines.
2000-10-31
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Endeavour appears dwarfed by the structures inside the Vehicle Assembly Building as it begins rollout to Launch Pad 39B. The Shuttle rests on top of the Mobile Launcher Platform (MLP). Underneath (bottom of photo) is the crawler-transporter that will move the Shuttle and MLP to the pad on four double-tracked crawlers. The maximum speed of the loaded transporter is 1 mph. Endeavour is scheduled to be launched Nov. 30 at 10:01 p.m. EST on mission STS-97, the sixth construction flight to the International Space Station. Its payload includes the P6 Integrated Truss Structure and a photovoltaic (PV) module, with giant solar arrays that will provide power to the Station. The mission includes two spacewalks to complete the solar array connections
2011-01-01
Background Laparoscopy-assisted surgery, fast-track perioperative treatment are both increasingly used in colorectal cancer treatment, for their short-time benefits of enhanced recovery and short hospital stays. However, the benefits of the integration of the Laparoscopy-assisted surgery, fast-track perioperative treatment, and even with the Xelox chemotherapy, are still unknown. In this study, the three treatments integration is defined as "Fast Track Multi-Discipline Treatment Model" for colorectal cancer and this model extends the benefits to the whole treatment process of colorectal cancer. The main purpose of the study is to explore the feasibility of "Fast Track Multi-Discipline Treatment" model in treatment of colorectal cancer. Methods The trial is a prospective randomized controlled study with 2 × 2 balanced factorial design. Patients eligible for the study will be randomized to 4 groups: (I) Laparoscopic surgery with fast track perioperative treatment and Xelox chemotherapy; (II) Open surgery with fast track perioperative treatment and Xelox chemotherapy; (III) Laparoscopic surgery with conventional perioperative treatment and mFolfox6 chemotherapy; (IV) Open surgery with conventional perioperative treatment and mFolfox6 chemotherapy. The primary endpoint of this study is the hospital stays. The secondary endpoints are the quality of life, chemotherapy related adverse events, surgical complications and hospitalization costs. Totally, 340 patients will be enrolled with 85 patients in each group. Conclusions The study initiates a new treatment model "Fast Track Multi-Discipline Treatment" for colorectal cancer, and will provide feasibility evidence on the new model "Fast Track Multi-Discipline Treatment" for patients with colorectal cancer. Trial registration ClinicalTrials.gov: NCT01080547 PMID:22111914
Rauber, Markus; Alber, Ina; Müller, Sven; Neumann, Reinhard; Picht, Oliver; Roth, Christina; Schökel, Alexander; Toimil-Molares, Maria Eugenia; Ensinger, Wolfgang
2011-06-08
The fabrication of three-dimensional assemblies consisting of large quantities of nanowires is of great technological importance for various applications including (electro-)catalysis, sensitive sensing, and improvement of electronic devices. Because the spatial distribution of the nanostructured material can strongly influence the properties, architectural design is required in order to use assembled nanowires to their full potential. In addition, special effort has to be dedicated to the development of efficient methods that allow precise control over structural parameters of the nanoscale building blocks as a means of tuning their characteristics. This paper reports the direct synthesis of highly ordered large-area nanowire networks by a method based on hard templates using electrodeposition within nanochannels of ion track-etched polymer membranes. Control over the complexity of the networks and the dimensions of the integrated nanostructures are achieved by a modified template fabrication. The networks possess high surface area and excellent transport properties, turning them into a promising electrocatalyst material as demonstrated by cyclic voltammetry studies on platinum nanowire networks catalyzing methanol oxidation. Our method opens up a new general route for interconnecting nanowires to stable macroscopic network structures of very high integration level that allow easy handling of nanowires while maintaining their connectivity.
Empty tracks optimization based on Z-Map model
NASA Astrophysics Data System (ADS)
Liu, Le; Yan, Guangrong; Wang, Zaijun; Zang, Genao
2017-12-01
For parts with many features, there are more empty tracks during machining. If these tracks are not optimized, the machining efficiency will be seriously affected. In this paper, the characteristics of the empty tracks are studied in detail. Combining with the existing optimization algorithm, a new tracks optimization method based on Z-Map model is proposed. In this method, the tool tracks are divided into the unit processing section, and then the Z-Map model simulation technique is used to analyze the order constraint between the unit segments. The empty stroke optimization problem is transformed into the TSP with sequential constraints, and then through the genetic algorithm solves the established TSP problem. This kind of optimization method can not only optimize the simple structural parts, but also optimize the complex structural parts, so as to effectively plan the empty tracks and greatly improve the processing efficiency.
A hybrid mobile-based patient location tracking system for personal healthcare applications.
Chew, S H; Chong, P A; Gunawan, E; Goh, K W; Kim, Y; Soh, C B
2006-01-01
In the next generation of Infocommunications, mobile Internet-enabled devices and third generation mobile communication networks have become reality, location based services (LBS) are expected to be a major area of growth. Providing information, content and services through positioning technologies forms the platform for new services for users and developers, as well as creating new revenue channels for service providers. These crucial advances in location based services have opened up new opportunities in real time patient tracking for personal healthcare applications. In this paper, a hybrid mobile-based location technique using the global positioning system (GPS) and cellular mobile network infrastructure is employed to provide the location tracking capability. This function will be integrated into the patient location tracking system (PLTS) to assist caregivers or family members in locating patients such as elderly or dependents when required, especially in emergencies. The capability of this PLTS is demonstrated through a series of location detection tests conducted over different operating conditions. Although the model is at its initial stage of development, it has shown relatively good accuracy for position tracking and potential of using integrated wireless technology to enhance the existing personal healthcare communication system through location based services.
Information Technology: Making It All Fit. Track VI: Outstanding Applications.
ERIC Educational Resources Information Center
CAUSE, Boulder, CO.
Seven papers from the 1988 CAUSE conference's Track VI, Outstanding Applications, are presented. They include: "Designing DB2 Data Bases Using Entity-Relationship Modeling: A Case Study--The LSU System Worker's Compensation Project" (Cynthia M. Hadden and Sara G. Zimmerman); "Integrating Information Technology: Prerequisites for…
Tracking the deployment of the integrated metropolitan ITS infrastructure in the USA : FY99 results
DOT National Transportation Integrated Search
2000-05-01
This report describes the results of a major data gathering effort aimed at tracking deployment of nine infrastructure components of the metropolitan ITS infrastructure in 78 of the largest metropolitan areas in the nation. The nine components are: F...
Ambulatory position and orientation tracking fusing magnetic and inertial sensing.
Roetenberg, Daniel; Slycke, Per J; Veltink, Peter H
2007-05-01
This paper presents the design and testing of a portable magnetic system combined with miniature inertial sensors for ambulatory 6 degrees of freedom (DOF) human motion tracking. The magnetic system consists of three orthogonal coils, the source, fixed to the body and 3-D magnetic sensors, fixed to remote body segments, which measure the fields generated by the source. Based on the measured signals, a processor calculates the relative positions and orientations between source and sensor. Magnetic actuation requires a substantial amount of energy which limits the update rate with a set of batteries. Moreover, the magnetic field can easily be disturbed by ferromagnetic materials or other sources. Inertial sensors can be sampled at high rates, require only little energy and do not suffer from magnetic interferences. However, accelerometers and gyroscopes can only measure changes in position and orientation and suffer from integration drift. By combing measurements from both systems in a complementary Kalman filter structure, an optimal solution for position and orientation estimates is obtained. The magnetic system provides 6 DOF measurements at a relatively low update rate while the inertial sensors track the changes position and orientation in between the magnetic updates. The implemented system is tested against a lab-bound camera tracking system for several functional body movements. The accuracy was about 5 mm for position and 3 degrees for orientation measurements. Errors were higher during movements with high velocities due to relative movement between source and sensor within one cycle of magnetic actuation.
355 nm UV laser patterning and post-processing of FR4 PCB for fine pitch components integration
NASA Astrophysics Data System (ADS)
Dupont, F.; Stoukatch, S.; Laurent, P.; Dricot, S.; Kraft, M.
2018-01-01
Laser direct patterning of fine pitch features on standard PCB (Printed Circuit Board) was investigated. As a feasibility study, eight parameter sets were selected and the smallest achievable grooves and tracks were determined. Three regular FR4 (Flame Resistant 4) PCB substrates have been experimented with. The first two have respectively 18 μm and 35 μm bare copper conductive layer without finish while the third one has a 18 μm copper layer with ENIG (Electroless Nickel Immersion Gold) finish. Laser patterning of PCB conductive structure is a single step, maskless and purely dry operation expected to allow reaching fine pitch features, even on thick copper layers (≥ 18 μm) for which the traditional chemical wet processes encounter underetch problems. Aside PCB complete structuring, a second objective is to evaluate laser post-processing of standard patterned PCB as an economically viable technique to integrate a few fine pitch components on low cost PCBs. This process is suitable for prototyping and for small and medium series. The widths of the smallest grooves and tracks that we achieved were measured about 11 μm and 19 μm on 18 μm thick cooper layer, 13 μm and 39 μm on 35 μm thick cooper layer, and 11 μm and 38 μm on 18 μm cooper layer with ENIG finish. These values are well below what can be achieved with a wet process. Etching results are presented at high magnification both from the top and from a cross-sectioning perspective. The latter allows observation of the TAZ (Thermal Affected Zone) in the conductive layer and the damages in the FR4.
NASA Astrophysics Data System (ADS)
Yang, Xiaochen; Clements, Logan W.; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C.; Dawant, Benoit M.; Miga, Michael I.
2017-03-01
Intra-operative soft tissue deformation, referred to as brain shift, compromises the application of current imageguided surgery (IGS) navigation systems in neurosurgery. A computational model driven by sparse data has been used as a cost effective method to compensate for cortical surface and volumetric displacements. Stereoscopic microscopes and laser range scanners (LRS) are the two most investigated sparse intra-operative imaging modalities for driving these systems. However, integrating these devices in the clinical workflow to facilitate development and evaluation requires developing systems that easily permit data acquisition and processing. In this work we present a mock environment developed to acquire stereo images from a tracked operating microscope and to reconstruct 3D point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space in order to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. Our experimental results report approximately 2mm average displacement error compared with the optical tracking system. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to LRS to collect sufficient intraoperative information for brain shift correction.
Radio Tracking Fish with Small Unmanned Aircraft Systems (sUAS).
NASA Astrophysics Data System (ADS)
Dahlgren, R. P.; Anderson, K. R.; Hanson, L.; Pinsker, E. A.; Jonsson, J.; Chapman, D. C.; Witten, D. M.; O'Connor, K. A.
2017-12-01
Tracking radio tagged fish by boat or on foot in riverine systems is difficult and time consuming, particularly in large braided island complexes, shallow wetlands, and rocky reaches. Invasive Asian carp are commonly found in these hard to reach areas, but their near-surface feeding behavior makes radio tracking possible. To identify new methods of fish tracking that could same time and money, this study tested the feasibility of tracking Asian carp with Small Unmanned Aerial Systems (sUAS) in areas generally inaccessible to traditional tracking equipment. The U.S. Geological Survey worked with NanoElectromagnetics LLC and WWR Development to create and integrate a lightweight custom radio receiver, directional antenna, and accompanying software into a sUAS platform. The receiver includes independent GPS, software defined radio, and compass. The NASA Ames Research Center (ARC) completed payload integration, electromagnetic-interference and airworthiness testing, and provided a DJI Matrice 600 sUAS for this study. Additionally, ARC provided subject matter experts, airworthiness and flight readiness evaluation, and flight test facilities during preparation; and a pilot, range safety officer, and aircraft engineer during field deployment. Results demonstrate that this custom sUAS and sensor combination can detect radio tags at 100m above ground level and at horizontal ranges of 100m and 300m, with operators in either onshore or offshore locations. With this combination of sUAS and radio receiver, fish can be tracked in areas previously inaccessible and during flooding, providing new insights into riverine fish movement and habitat utilization.
One-Dimensional Hybrid Satellite Track Model for the Dynamics Explorer 2 (DE 2) Satellite
NASA Technical Reports Server (NTRS)
Deng, Wei; Killeen, T. L.; Burns, A. G.; Johnson, R. M.; Emery, B. A.; Roble, R. G.; Winningham, J. D.; Gary, J. B.
1995-01-01
A one-dimensional hybrid satellite track model has been developed to calculate the high-latitude thermospheric/ionospheric structure below the satellite altitude using Dynamics Explorer 2 (DE 2) satellite measurements and theory. This model is based on Emery et al. satellite track code but also includes elements of Roble et al. global mean thermosphere/ionosphere model. A number of parameterizations and data handling techniques are used to input satellite data from several DE 2 instruments into this model. Profiles of neutral atmospheric densities are determined from the MSIS-90 model and measured neutral temperatures. Measured electron precipitation spectra are used in an auroral model to calculate particle impact ionization rates below the satellite. These rates are combined with a solar ionization rate profile and used to solve the O(+) diffusion equation, with the measured electron density as an upper boundary condition. The calculated O(+) density distribution, as well as the ionization profiles, are then used in a photochemical equilibrium model to calculate the electron and molecular ion densities. The electron temperature is also calculated by solving the electron energy equation with an upper boundary condition determined by the DE 2 measurement. The model enables calculations of altitude profiles of conductivity and Joule beating rate along and below the satellite track. In a first application of the new model, a study is made of thermospheric and ionospheric structure below the DE 2 satellite for a single orbit which occurred on October 25, 1981. The field-aligned Poynting flux, which is independently obtained for this orbit, is compared with the model predictions of the height-integrated energy conversion rate. Good quantitative agreement between these two estimates has been reached. In addition, measurements taken at the incoherent scatter radar site at Chatanika (65.1 deg N, 147.4 deg W) during a DE 2 overflight are compared with the model calculations. A good agreement was found in lower thermospheric conductivities and Joule heating rate.
Airborne target tracking algorithm against oppressive decoys in infrared imagery
NASA Astrophysics Data System (ADS)
Sun, Xiechang; Zhang, Tianxu
2009-10-01
This paper presents an approach for tracking airborne target against oppressive infrared decoys. Oppressive decoy lures infrared guided missile by its high infrared radiation. Traditional tracking algorithms have degraded stability even come to tracking failure when airborne target continuously throw out many decoys. The proposed approach first determines an adaptive tracking window. The center of the tracking window is set at a predicted target position which is computed based on uniform motion model. Different strategies are applied for determination of tracking window size according to target state. The image within tracking window is segmented and multi features of candidate targets are extracted. The most similar candidate target is associated to the tracking target by using a decision function, which calculates a weighted sum of normalized feature differences between two comparable targets. Integrated intensity ratio of association target and tracking target, and target centroid are examined to estimate target state in the presence of decoys. The tracking ability and robustness of proposed approach has been validated by processing available real-world and simulated infrared image sequences containing airborne targets and oppressive decoys.
Audiovocal Integration in Adults Who Stutter
ERIC Educational Resources Information Center
Loucks, Torrey; Chon, HeeCheong; Han, Woojae
2012-01-01
Background: Altered auditory feedback can facilitate speech fluency in adults who stutter. However, other findings suggest that adults who stutter show anomalies in "audiovocal integration", such as longer phonation reaction times to auditory stimuli and less effective pitch tracking. Aims: To study audiovocal integration in adults who stutter…
Luo, Xiongbiao; Mori, Kensaku
2014-06-01
Endoscope 3-D motion tracking, which seeks to synchronize pre- and intra-operative images in endoscopic interventions, is usually performed as video-volume registration that optimizes the similarity between endoscopic video and pre-operative images. The tracking performance, in turn, depends significantly on whether a similarity measure can successfully characterize the difference between video sequences and volume rendering images driven by pre-operative images. The paper proposes a discriminative structural similarity measure, which uses the degradation of structural information and takes image correlation or structure, luminance, and contrast into consideration, to boost video-volume registration. By applying the proposed similarity measure to endoscope tracking, it was demonstrated to be more accurate and robust than several available similarity measures, e.g., local normalized cross correlation, normalized mutual information, modified mean square error, or normalized sum squared difference. Based on clinical data evaluation, the tracking error was reduced significantly from at least 14.6 mm to 4.5 mm. The processing time was accelerated more than 30 frames per second using graphics processing unit.
Li, Mingze; Zhuang, Xiaoli; Liu, Wenxing; Zhang, Pengcheng
2017-01-01
This study aims to explore the influence of co-author network on team knowledge creation. Integrating the two traditional perspectives of network relationship and network structure, we examine the direct and interactive effects of tie stability and structural holes on team knowledge creation. Tracking scientific articles published by 111 scholars in the research field of human resource management from the top 8 American universities, we analyze scholars’ scientific co-author networks. The result indicates that tie stability changes the teams’ information processing modes and, when graphed, results in an inverted U-shape relationship between tie stability and team knowledge creation. Moreover, structural holes in co-author network are proved to be harmful to team knowledge sharing and diffusion, thereby impeding team knowledge creation. Also, tie stability and structural hole interactively influence team knowledge creation. When the number of structural hole is low in the co-author network, the graphical representation of the relationship between tie stability and team knowledge creation tends to be a more distinct U-shape. PMID:28993744
Li, Mingze; Zhuang, Xiaoli; Liu, Wenxing; Zhang, Pengcheng
2017-01-01
This study aims to explore the influence of co-author network on team knowledge creation. Integrating the two traditional perspectives of network relationship and network structure, we examine the direct and interactive effects of tie stability and structural holes on team knowledge creation. Tracking scientific articles published by 111 scholars in the research field of human resource management from the top 8 American universities, we analyze scholars' scientific co-author networks. The result indicates that tie stability changes the teams' information processing modes and, when graphed, results in an inverted U-shape relationship between tie stability and team knowledge creation. Moreover, structural holes in co-author network are proved to be harmful to team knowledge sharing and diffusion, thereby impeding team knowledge creation. Also, tie stability and structural hole interactively influence team knowledge creation. When the number of structural hole is low in the co-author network, the graphical representation of the relationship between tie stability and team knowledge creation tends to be a more distinct U-shape.
NASA Astrophysics Data System (ADS)
Choudhury, Devanil; Das, Someshwar
2017-06-01
The Advanced Research WRF (ARW) model is used to simulate Very Severe Cyclonic Storms (VSCS) Hudhud (7-13 October, 2014), Phailin (8-14 October, 2013) and Lehar (24-29 November, 2013) to investigate the sensitivity to microphysical schemes on the skill of forecasting track and intensity of the tropical cyclones for high-resolution (9 and 3 km) 120-hr model integration. For cloud resolving grid scale (<5 km) cloud microphysics plays an important role. The performance of the Goddard, Thompson, LIN and NSSL schemes are evaluated and compared with observations and a CONTROL forecast. This study is aimed to investigate the sensitivity to microphysics on the track and intensity with explicitly resolved convection scheme. It shows that the Goddard one-moment bulk liquid-ice microphysical scheme provided the highest skill on the track whereas for intensity both Thompson and Goddard microphysical schemes perform better. The Thompson scheme indicates the highest skill in intensity at 48, 96 and 120 hr, whereas at 24 and 72 hr, the Goddard scheme provides the highest skill in intensity. It is known that higher resolution domain produces better intensity and structure of the cyclones and it is desirable to resolve the convection with sufficiently high resolution and with the use of explicit cloud physics. This study suggests that the Goddard cumulus ensemble microphysical scheme is suitable for high resolution ARW simulation for TC's track and intensity over the BoB. Although the present study is based on only three cyclones, it could be useful for planning real-time predictions using ARW modelling system.
NASA Astrophysics Data System (ADS)
Linte, Cristian A.; Rettmann, Maryam E.; Dilger, Ben; Gunawan, Mia S.; Arunachalam, Shivaram P.; Holmes, David R., III; Packer, Douglas L.; Robb, Richard A.
2012-02-01
The novel prototype system for advanced visualization for image-guided left atrial ablation therapy developed in our laboratory permits ready integration of multiple imaging modalities, surgical instrument tracking, interventional devices and electro-physiologic data. This technology allows subject-specific procedure planning and guidance using 3D dynamic, patient-specific models of the patient's heart, augmented with real-time intracardiac echocardiography (ICE). In order for the 2D ICE images to provide intuitive visualization for accurate catheter to surgical target navigation, the transducer must be tracked, so that the acquired images can be appropriately presented with respect to the patient-specific anatomy. Here we present the implementation of a previously developed ultrasound calibration technique for a magnetically tracked ICE transducer, along with a series of evaluation methods to ensure accurate imaging and faithful representation of the imaged structures. Using an engineering-designed phantom, target localization accuracy is assessed by comparing known target locations with their transformed locations inferred from the tracked US images. In addition, the 3D volume reconstruction accuracy is also estimated by comparing a truth volume to that reconstructed from sequential 2D US images. Clinically emulating validation studies are conducted using a patient-specific left atrial phantom. Target localization error of clinically-relevant surgical targets represented by nylon fiducials implanted within the endocardial wall of the phantom was assessed. Our studies have demonstrated 2.4 +/- 0.8 mm target localization error in the engineering-designed evaluation phantoms, 94.8 +/- 4.6 % volume reconstruction accuracy, and 3.1 +/- 1.2 mm target localization error in the left atrial-mimicking phantom. These results are consistent with those disseminated in the literature and also with the accuracy constraints imposed by the employed technology and the clinical application.
Automatic Intra-Operative Stitching of Non-Overlapping Cone-Beam CT Acquisitions
Fotouhi, Javad; Fuerst, Bernhard; Unberath, Mathias; Reichenstein, Stefan; Lee, Sing Chun; Johnson, Alex A.; Osgood, Greg M.; Armand, Mehran; Navab, Nassir
2018-01-01
Purpose Cone-Beam Computed Tomography (CBCT) is one of the primary imaging modalities in radiation therapy, dentistry, and orthopedic interventions. While CBCT provides crucial intraoperative information, it is bounded by a limited imaging volume, resulting in reduced effectiveness. This paper introduces an approach allowing real-time intraoperative stitching of overlapping and non-overlapping CBCT volumes to enable 3D measurements on large anatomical structures. Methods A CBCT-capable mobile C-arm is augmented with a Red-Green-Blue-Depth (RGBD) camera. An off-line co-calibration of the two imaging modalities results in co-registered video, infrared, and X-ray views of the surgical scene. Then, automatic stitching of multiple small, non-overlapping CBCT volumes is possible by recovering the relative motion of the C-arm with respect to the patient based on the camera observations. We propose three methods to recover the relative pose: RGB-based tracking of visual markers that are placed near the surgical site, RGBD-based simultaneous localization and mapping (SLAM) of the surgical scene which incorporates both color and depth information for pose estimation, and surface tracking of the patient using only depth data provided by the RGBD sensor. Results On an animal cadaver, we show stitching errors as low as 0.33 mm, 0.91 mm, and 1.72mm when the visual marker, RGBD SLAM, and surface data are used for tracking, respectively. Conclusions The proposed method overcomes one of the major limitations of CBCT C-arm systems by integrating vision-based tracking and expanding the imaging volume without any intraoperative use of calibration grids or external tracking systems. We believe this solution to be most appropriate for 3D intraoperative verification of several orthopedic procedures. PMID:29569728
Online Simulation of Radiation Track Structure Project
NASA Technical Reports Server (NTRS)
Plante, Ianik
2015-01-01
Space radiation comprises protons, helium and high charged and energy (HZE) particles. High-energy particles are a concern for human space flight, because they are no known options for shielding astronauts from them. When these ions interact with matter, they damage molecules and create radiolytic species. The pattern of energy deposition and positions of the radiolytic species, called radiation track structure, is highly dependent on the charge and energy of the ion. The radiolytic species damage biological molecules, which may lead to several long-term health effects such as cancer. Because of the importance of heavy ions, the radiation community is very interested in the interaction of HZE particles with DNA, notably with regards to the track structure. A desktop program named RITRACKS was developed to simulate radiation track structure. The goal of this project is to create a web interface to allow registered internal users to use RITRACKS remotely.
Guided filter and convolutional network based tracking for infrared dim moving target
NASA Astrophysics Data System (ADS)
Qian, Kun; Zhou, Huixin; Qin, Hanlin; Rong, Shenghui; Zhao, Dong; Du, Juan
2017-09-01
The dim moving target usually submerges in strong noise, and its motion observability is debased by numerous false alarms for low signal-to-noise ratio. A tracking algorithm that integrates the Guided Image Filter (GIF) and the Convolutional neural network (CNN) into the particle filter framework is presented to cope with the uncertainty of dim targets. First, the initial target template is treated as a guidance to filter incoming templates depending on similarities between the guidance and candidate templates. The GIF algorithm utilizes the structure in the guidance and performs as an edge-preserving smoothing operator. Therefore, the guidance helps to preserve the detail of valuable templates and makes inaccurate ones blurry, alleviating the tracking deviation effectively. Besides, the two-layer CNN method is adopted to obtain a powerful appearance representation. Subsequently, a Bayesian classifier is trained with these discriminative yet strong features. Moreover, an adaptive learning factor is introduced to prevent the update of classifier's parameters when a target undergoes sever background. At last, classifier responses of particles are utilized to generate particle importance weights and a re-sample procedure preserves samples according to the weight. In the predication stage, a 2-order transition model considers the target velocity to estimate current position. Experimental results demonstrate that the presented algorithm outperforms several relative algorithms in the accuracy.
Spectral Analysis of Vector Magnetic Field Profiles
NASA Technical Reports Server (NTRS)
Parker, Robert L.; OBrien, Michael S.
1997-01-01
We investigate the power spectra and cross spectra derived from the three components of the vector magnetic field measured on a straight horizontal path above a statistically stationary source. All of these spectra, which can be estimated from the recorded time series, are related to a single two-dimensional power spectral density via integrals that run in the across-track direction in the wavenumber domain. Thus the measured spectra must obey a number of strong constraints: for example, the sum of the two power spectral densities of the two horizontal field components equals the power spectral density of the vertical component at every wavenumber and the phase spectrum between the vertical and along-track components is always pi/2. These constraints provide powerful checks on the quality of the measured data; if they are violated, measurement or environmental noise should be suspected. The noise due to errors of orientation has a clear characteristic; both the power and phase spectra of the components differ from those of crustal signals, which makes orientation noise easy to detect and to quantify. The spectra of the crustal signals can be inverted to obtain information about the cross-track structure of the field. We illustrate these ideas using a high-altitude Project Magnet profile flown in the southeastern Pacific Ocean.
From chart tracking to workflow management.
Srinivasan, P.; Vignes, G.; Venable, C.; Hazelwood, A.; Cade, T.
1994-01-01
The current interest in system-wide integration appears to be based on the assumption that an organization, by digitizing information and accepting a common standard for the exchange of such information, will improve the accessibility of this information and automatically experience benefits resulting from its more productive use. We do not dispute this reasoning, but assert that an organization's capacity for effective change is proportional to the understanding of the current structure among its personnel. Our workflow manager is based on the use of a Parameterized Petri Net (PPN) model which can be configured to represent an arbitrarily detailed picture of an organization. The PPN model can be animated to observe the model organization in action, and the results of the animation analyzed. This simulation is a dynamic ongoing process which changes with the system and allows members of the organization to pose "what if" questions as a means of exploring opportunities for change. We present, the "workflow management system" as the natural successor to the tracking program, incorporating modeling, scheduling, reactive planning, performance evaluation, and simulation. This workflow management system is more than adequate for meeting the needs of a paper chart tracking system, and, as the patient record is computerized, will serve as a planning and evaluation tool in converting the paper-based health information system into a computer-based system. PMID:7950051
Effect of GNSS receiver carrier phase tracking loops on earthquake monitoring performance
NASA Astrophysics Data System (ADS)
Clare, Adam; Lin, Tao; Lachapelle, Gérard
2017-06-01
This research focuses on the performance of GNSS receiver carrier phase tracking loops for early earthquake monitoring systems. An earthquake was simulated using a hardware simulator and position, velocity and acceleration displacements were obtained to recreate the dynamics of the 2011 Tohoku earthquake. Using a software defined receiver, GSNRx, tracking bandwidths of 5, 10, 15, 20, 30, 40 and 50 Hz along with integration times of 1, 5 and 10 ms were tested. Using the phase lock indicator, an adaptive tracking loop was designed and tested to maximize performance for this application.
Feature point based 3D tracking of multiple fish from multi-view images
Qian, Zhi-Ming
2017-01-01
A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly. PMID:28665966
Feature point based 3D tracking of multiple fish from multi-view images.
Qian, Zhi-Ming; Chen, Yan Qiu
2017-01-01
A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly.
This chapter identifies the role environmental tracking plays in identifying public health water hazard and water quality issues. It outlines public health issues to be examined and provides an integrated overview of water and diseases by combining knowledge of the hydrological ...
Tracking the Integration of Library Skills in the Curriculum.
ERIC Educational Resources Information Center
Gill, Suzanne L.
2003-01-01
Describes the use of IMSeries software, a relational database capable of implementing curriculum design, in an elementary school. Topics include Big6 research skills; tracking the scope and sequence of curriculum; tying library skills to curricular disciplines; information literacy; and examples of a lesson unit and assessment strategy. (LRW)
Generation of Plausible Hurricane Tracks for Preparedness Exercises
2017-04-25
wind extents are simulated by Poisson regression and temporal filtering . The un-optimized MATLAB code runs in less than a minute and is integrated into...of real hurricanes. After wind radii have been simulated for the entire track, median filtering , attenuation over land, and smoothing clean up the wind
A Deep-Structured Conditional Random Field Model for Object Silhouette Tracking
Shafiee, Mohammad Javad; Azimifar, Zohreh; Wong, Alexander
2015-01-01
In this work, we introduce a deep-structured conditional random field (DS-CRF) model for the purpose of state-based object silhouette tracking. The proposed DS-CRF model consists of a series of state layers, where each state layer spatially characterizes the object silhouette at a particular point in time. The interactions between adjacent state layers are established by inter-layer connectivity dynamically determined based on inter-frame optical flow. By incorporate both spatial and temporal context in a dynamic fashion within such a deep-structured probabilistic graphical model, the proposed DS-CRF model allows us to develop a framework that can accurately and efficiently track object silhouettes that can change greatly over time, as well as under different situations such as occlusion and multiple targets within the scene. Experiment results using video surveillance datasets containing different scenarios such as occlusion and multiple targets showed that the proposed DS-CRF approach provides strong object silhouette tracking performance when compared to baseline methods such as mean-shift tracking, as well as state-of-the-art methods such as context tracking and boosted particle filtering. PMID:26313943
Design and control of the precise tracking bed based on complex electromechanical design theory
NASA Astrophysics Data System (ADS)
Ren, Changzhi; Liu, Zhao; Wu, Liao; Chen, Ken
2010-05-01
The precise tracking technology is wide used in astronomical instruments, satellite tracking and aeronautic test bed. However, the precise ultra low speed tracking drive system is one high integrated electromechanical system, which one complexly electromechanical design method is adopted to improve the efficiency, reliability and quality of the system during the design and manufacture circle. The precise Tracking Bed is one ultra-exact, ultra-low speed, high precision and huge inertial instrument, which some kind of mechanism and environment of the ultra low speed is different from general technology. This paper explores the design process based on complex electromechanical optimizing design theory, one non-PID with a CMAC forward feedback control method is used in the servo system of the precise tracking bed and some simulation results are discussed.
Fusion of navigational data in River Information Services
NASA Astrophysics Data System (ADS)
Kazimierski, W.
2009-04-01
River Information Services (RIS) is the complex system of solutions and services for inland shipping. It has been the scope of works carried out in most of European countries for last several years. There were also a few major pan-European projects like INDRIS or COMPRIS launched for these purposes. The main idea of RIS is to harmonize the activities of various companies, authorities and other users of inland waterways in Europe. In the last time growing activity in this area in Poland can be also noticed. The leading example can be the works carried out in Chair of Geoinformatics in Maritime University of Szczecin regarding RIS for the needs of Odra River. The Directive 2005/44/EC of European Parliament and Europe Council, followed by European Commission regulations, give precise guidelines on implementing RIS in Europe, stating the services that should be provided. Among them Traffic Information and Traffic Management services can be found. As per guidelines they should be based on tracking and tracing of ships in the inland waters. The results of tracking and tracing are Tactical Traffic Image and Strategic Traffic Image. The guidelines stated that, tracking and tracing system in RIS shall consist of various type sensors. The most important of them is thought to be Automatic Information System (AIS), and particularly its river version - Inland AIS. It is based on determining the position of ships by satellite positioning systems (mainly DGPS) and transmitting it to other users on radio VHF frequences. This guarantees usually high accuracy of data related to movement of ships (assuming proper functioning of system and ship's sensors), and gives the possibility of transmitting additional information about ship, like dimensions, port of destination, cargo, etc. However the other sensors that can be used for tracking shall not be forgotten. The most important of them are radar (traditionally used for tracking purposes in Vessel Traffic Systems) and video camera. Their main advantage over AIS is total independence from tracked target's facilities. For example, wrong indications of ship's GPS would affect AIS accuracy, but wouldn't have any impact on values estimated by radar. In addition to this in many times update rate for AIS data is longer than for radar. Thus, it can be noticed, that efficient tracking system introduced in RIS shall use both AIS receivers (based on satellite derived positions), and independent radar and camera sensors. This will however cause determining at least two different set of information about positions and movement parameters of targets. Doubled or multiplied vectors for single target are unacceptable, due to safety of navigation and traffic management. Hence the need of data fusion in RIS is obvious. The main goal is to develop unambiguous, clear and reliable information about ships' position and movement for all users in the system. Data fusion itself is not a new problem in maritime navigation. There are systems of Integrated Bridge on sea-going ships, which use information coming out from different sources. However the possibilities of integration of navigational information in the aspect of inland navigation, especially in River Information Services, still needs to be thoroughly surveyed. It is quite useful for simplifying the deduction, to introduce two data fusion levels. First of them is being done on board of the vessel. Its aim is to integrate all information coming from different sensors in the so called Integrated Navigational System. The other task of this fusion is to estimate reliable information about other objects based on AIS and radar. The second level is the integration of AIS, radar and closed-circuit television (CCTV) carried out in coastal station in order to determine Tactical and Strategic Traffic Image. The navigational information in RIS itself can be divided into two main groups. The first one is called static data and contains al basic information related to ship itself and the voyage, like dimensions, destination, etc. The second group is called dynamic data and contains all the information, which variability is important for creating Tactical Traffic Image. Both groups require different fusion algorithms, which take into consideration sources, update rate and method, accuracy and reliability. The article contains different issues related to navigational information fusion in River Information Services. It includes short description of structures and sources of navigational information and also the most popular integration methods. More detailed analysis was made for fusion of position derived from satellite systems (GPS) and from radar. The concept of tracking system, combining Inland AIS, radar and CCTV for the needs of RIS is introduced.
A novel traveling wave piezoelectric actuated tracked mobile robot utilizing friction effect
NASA Astrophysics Data System (ADS)
Wang, Liang; Shu, Chengyou; Jin, Jiamei; Zhang, Jianhui
2017-03-01
A novel traveling wave piezoelectric-actuated tracked mobile robot with potential application to robotic rovers was proposed and investigated in this study. The proposed tracked mobile robot is composed of a parallelogram-frame-structure piezoelectric transducer with four rings and a metal track. Utilizing the converse piezoelectric and friction effects, traveling waves were propagated in the rings and then the metal track was actuated by the piezoelectric transducer. Compared with traditional tracked mechanisms, the proposed tracked mobile robot has a simpler and more compact structure without lubricant, which eliminates the problem of lubricant volatilization and deflation, thus, it could be operated in the vacuum environment. Dynamic characteristics were simulated and measured to reveal the mechanism of actuating track of the piezoelectric transducer. Experimental investigations of the traveling wave piezoelectric-actuated tracked mobile robot were then carried out, and the results indicated that the robot prototype with a pair of exciting voltages of 460 Vpp is able to achieve a maximum velocity of 57 mm s-1 moving on the foam plate and possesses the obstacle crossing capability with a maximum height of 27 mm. The proposed tracked mobile robot exhibits potential to be the driving system of robotic rovers.
Role of TDRSS in tracking and data acquisition
NASA Technical Reports Server (NTRS)
Spearing, R. E.
1980-01-01
The integration and operation of the Tracking Data Relay Satellite System (TDRSS) into the NASA Communications Network (NASCOM) equipment and services is described. The system concept employs spacecraft in geosynchronous orbit, operating as communications front-ends, and a single ground terminal, which provides primary tracking and data acquisition services for earth-orbiting user satellites and for the Space Shuttle. The TDRSS system is further characterized by real-time throughput of user data and a high degree of automation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martyn, Rose; Fitzgerald, Peter; Stehle, Nicholas D
An operational field test of a Radio-Frequency Identification (RFID) system for tracking and accounting UF6 cylinders was conducted at the Global Nuclear Fuel Americas (GNF) fuel fabrication plant in 2009. The Cylinder Accountability and Tracking System (CATS) was designed and deployed by Oak Ridge National Laboratory (ORNL) and evaluated in cooperation with GNF. The system required that passive RFID be attached to several UF6 30B cylinders as they were received at the site; then the cylinders were tracked as they proceeded to interim storage, to processing in an autoclave, and eventually to disposition from the site. This CATS deployment alsomore » provided a direct integration of scale data from the site accountability scales. The integration of this information into the tracking data provided an attribute for additional safeguards for evaluation. The field test provided insight into the advantages and challenges of using RFID at an operating nuclear facility. The RFID system allowed operators to interact with the technology and demonstrated the survivability of the tags and reader equipment in the process environment. This paper will provide the operator perspective on utilizing RFID technology for locating cylinders within the facility, thereby tracking the cylinders for process and for Material Control & Accounting functions. The paper also will present the operator viewpoint on RFID implemented as an independent safeguards system.« less
NASA Astrophysics Data System (ADS)
Wu, Ting-Chi
This dissertation research explores the influence of assimilating satellite-derived observations on mesoscale numerical analyses and forecasts of tropical cyclones (TC). The ultimate goal is to provide more accurate mesoscale analyses of TC and its surrounding environment for superior TC track and intensity forecasts. High spatial and temporal resolution satellite-derived observations are prepared for two TC cases, Typhoon Sinlaku and Hurricane Ike (both 2008). The Advanced Research version of the Weather and Research Forecasting Model (ARW-WRF) is employed and data is assimilated using the Ensemble Adjustment Kalman Filter (EAKF) implemented in the Data Assimilation Research Testbed. In the first part of this research, the influence of assimilating enhanced atmospheric motion vectors (AMVs) derived from geostationary satellites is examined by comparing three parallel WRF/EnKF experiments. The control experiment assimilates the same AMV dataset assimilated in NCEP operational analysis along with conventional observations from radiosondes, aircraft, and advisory TC position data. During Sinlaku and Ike, the Cooperative Institute for Meteorological Satellite Studies (CIMSS) generates hourly AMVs along with Rapid-Scan (RS) AMVs when the satellite RS mode is activated. With an order of magnitude more AMV data assimilated, the assimilation of hourly CIMSS AMV dataset exhibit superior initial TC position, intensity and structure estimates to the control analyses and the subsequent short-range forecasts. When RS AMVs are processed and assimilated, the addition of RS AMVs offers additional modification to the TC and its environment and leads to Sinlaku's recurvature toward Japan, albeit prematurely. The results demonstrate the promise of assimilating enhanced AMV data into regional TC models. The second part of this research continues the work in the first part and further explores the influence of assimilating enhanced AMV datasets by conducting parallel data-denial WRF/EnKF experiments that assimilate AMVs subsetted horizontally by their distances to the TC center (interior and exterior) and vertically by their assigned heights (upper, middle, and lower layers). For both Sinlaku and Ike, it is found: 1) interior AMVs are important for accurate TC intensity, 2) excluding upper-layer AMVs generally results in larger track errors and ensemble spread, 3) exclusion of interior AMVs has the largest impact on the forecast of TC size than exclusively removing AMVs in particular tropospheric layers, 4) the largest ensemble spreads are found in track, intensity, and size forecasts when interior and upper-layer AMVs are not included, 5) withholding the middle-layer AMVs can improve the track forecasts. Findings from this study could influence future scenarios that involve the targeted acquisition and assimilation of high-density AMV observations in TC events. The last part of the research focuses on the assimilation of hyperspectral temperature and moisture soundings and microwave based vertically-integrated total precipitable water (TPW) products derived from polar-orbiting satellites. A comparison is made between the assimilation of soundings retrieved from the combined use of Advanced Microwave Scanning Radiometer and Atmospheric Infrared Sounder (AMSU-AIRS) and sounding products provided by CIMSS (CIMSS-AIRS). AMSU-AIRS soundings provide broad spatial coverage albeit coarse resolution, whilst CIMSS-AIRS is geared towards mesoscale applications and thus provide higher spatial resolution but restricted coverage due to the use of radiance in clear sky. The assimilation of bias-corrected CIMSS-AIRS soundings provides slightly more accurate TC structure than the control case. The assimilation of AMSU-AIRS improves the track forecasts but produces weaker and smaller storm. Preliminary results of assimilating TPW product derived from the Advanced Microwave Scanning Radiometer-EOS indicate improved TC structure over the control case. However, the short-range forecasts exhibit the largest TC track errors. In all, this study demonstrates the influence of assimilating high-resolution satellite data on mesoscale analyses and forecasts of TC track and structure. The results suggest the inclusion and assimilation of observations with high temporal resolution, broad spatial coverage, and greater proximity to TCs does indeed improve TC track and structure forecasts. Such findings are beneficial for future decisions on data collecting and retrievals that are essential for TC forecasts.
Integrating Academic and Vocational Education: A Model for Secondary Schools.
ERIC Educational Resources Information Center
Penn, Alexandra; Williams, Dennis
The two-track system that divides academic education from vocational education no longer supports students' interests. This book describes a practical approach to integrating academic and vocational education, focusing on achieving a seamlessly integrated curriculum. Chapter 1 describes the rationale of a high school program--the Cocoa Academy for…
Fragmentation and Interrogation as an Approach to Integration
ERIC Educational Resources Information Center
Wallick, Karl; Zaretsky, Michael
2010-01-01
This article tracks the generative role of research and fragmentation as a means for integrating technology and form within an architecture technology lecture class and a co-requisite design studio. The complexity of teaching building systems integration within a design studio context is achieved by removing any expectation of building design…
NASA Astrophysics Data System (ADS)
Sutrisno; Widowati; Heru Tjahjana, R.
2017-01-01
In this paper, we propose a mathematical model in the form of dynamic/multi-stage optimization to solve an integrated supplier selection problem and tracking control problem of single product inventory system with product discount. The product discount will be stated as a piece-wise linear function. We use dynamic programming to solve this proposed optimization to determine the optimal supplier and the optimal product volume that will be purchased from the optimal supplier for each time period so that the inventory level tracks a reference trajectory given by decision maker with minimal total cost. We give a numerical experiment to evaluate the proposed model. From the result, the optimal supplier was determined for each time period and the inventory level follows the given reference well.
De Monte, Silvia; Cotté, Cedric; d'Ovidio, Francesco; Lévy, Marina; Le Corre, Matthieu; Weimerskirch, Henri
2012-12-07
Marine top predators such as seabirds are useful indicators of the integrated response of the marine ecosystem to environmental variability at different scales. Large-scale physical gradients constrain seabird habitat. Birds however respond behaviourally to physical heterogeneity at much smaller scales. Here, we use, for the first time, three-dimensional GPS tracking of a seabird, the great frigatebird (Fregata minor), in the Mozambique Channel. These data, which provide at the same time high-resolution vertical and horizontal positions, allow us to relate the behaviour of frigatebirds to the physical environment at the (sub-)mesoscale (10-100 km, days-weeks). Behavioural patterns are classified based on the birds' vertical displacement (e.g. fast/slow ascents and descents), and are overlaid on maps of physical properties of the ocean-atmosphere interface, obtained by a nonlinear analysis of multi-satellite data. We find that frigatebirds modify their behaviours concurrently to transport and thermal fronts. Our results suggest that the birds' co-occurrence with these structures is a consequence of their search not only for food (preferentially searched over thermal fronts) but also for upward vertical wind. This is also supported by their relationship with mesoscale patterns of wind divergence. Our multi-disciplinary method can be applied to forthcoming high-resolution animal tracking data, and aims to provide a mechanistic understanding of animals' habitat choice and of marine ecosystem responses to environmental change.
SimTrack: A compact c++ code for particle orbit and spin tracking in accelerators
Luo, Yun
2015-08-29
SimTrack is a compact c++ code of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam–beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam–beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam–beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more » physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less
SimTrack: A compact c++ library for particle orbit and spin tracking in accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yun
2015-06-24
SimTrack is a compact c++ library of 6-d symplectic element-by-element particle tracking in accelerators originally designed for head-on beam-beam compensation simulation studies in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. It provides a 6-d symplectic orbit tracking with the 4th order symplectic integration for magnet elements and the 6-d symplectic synchro-beam map for beam-beam interaction. Since its inception in 2009, SimTrack has been intensively used for dynamic aperture calculations with beam-beam interaction for RHIC. Recently, proton spin tracking and electron energy loss due to synchrotron radiation were added. In this article, I will present the code architecture,more » physics models, and some selected examples of its applications to RHIC and a future electron-ion collider design eRHIC.« less
NASA Astrophysics Data System (ADS)
Liu, Chun; Jiang, Bin; Zhang, Ke
2018-03-01
This paper investigates the attitude and position tracking control problem for Lead-Wing close formation systems in the presence of loss of effectiveness and lock-in-place or hardover failure. In close formation flight, Wing unmanned aerial vehicle movements are influenced by vortex effects of the neighbouring Lead unmanned aerial vehicle. This situation allows modelling of aerodynamic coupling vortex-effects and linearisation based on optimal close formation geometry. Linearised Lead-Wing close formation model is transformed into nominal robust H-infinity models with respect to Mach hold, Heading hold, and Altitude hold autopilots; static feedback H-infinity controller is designed to guarantee effective tracking of attitude and position while manoeuvring Lead unmanned aerial vehicle. Based on H-infinity control design, an integrated multiple-model adaptive fault identification and reconfigurable fault-tolerant control scheme is developed to guarantee asymptotic stability of close-loop systems, error signal boundedness, and attitude and position tracking properties. Simulation results for Lead-Wing close formation systems validate the efficiency of the proposed integrated multiple-model adaptive control algorithm.
Fully three-dimensional analysis of high-speed train-track-soil-structure dynamic interaction
NASA Astrophysics Data System (ADS)
Galvín, P.; Romero, A.; Domínguez, J.
2010-11-01
In this paper, a general and fully three dimensional multi-body-finite element-boundary element model, formulated in the time domain to predict vibrations due to train passage at the vehicle, the track and the free field, is presented. The vehicle is modelled as a multi-body system and, therefore, the quasi-static and the dynamic excitation mechanisms due to train passage can be considered. The track is modelled using finite elements. The soil is considered as a homogeneous half-space by the boundary element method. This methodology could be used to take into account local soil discontinuities, underground constructions such as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the track line. The nonlinear behaviour of the structures could be also considered. In the present paper, in order to test the model, vibrations induced by high-speed train passage are evaluated for a ballasted track. The quasi-static and dynamic load components are studied and the influence of the suspended mass on the vertical loads is analyzed. The numerical model is validated by comparison with experimental records from two HST lines. Finally, the dynamic behaviour of a transition zone between a ballast track and a slab track is analyzed and the obtained results from the proposed model are compared with those obtained from a model with invariant geometry with respect to the track direction.
Data base architecture for instrument characteristics critical to spacecraft conceptual design
NASA Technical Reports Server (NTRS)
Rowell, Lawrence F.; Allen, Cheryl L.
1990-01-01
Spacecraft designs are driven by the payloads and mission requirements that they support. Many of the payload characteristics, such as mass, power requirements, communication requirements, moving parts, and so forth directly affect the choices for the spacecraft structural configuration and its subsystem design and component selection. The conceptual design process, which translates mission requirements into early spacecraft concepts, must be tolerant of frequent changes in the payload complement and resource requirements. A computer data base was designed and implemented for the purposes of containing the payload characteristics pertinent for spacecraft conceptual design, tracking the evolution of these payloads over time, and enabling the integration of the payload data with engineering analysis programs for improving the efficiency in producing spacecraft designs. In-house tools were used for constructing the data base and for performing the actual integration with an existing program for optimizing payload mass locations on the spacecraft.
Integrated learning through student goal development.
Price, Deborah; Tschannen, Dana; Caylor, Shandra
2013-09-01
New strategies are emerging to promote structure and increase learning in the clinical setting. Nursing faculty designed a mechanism by which integrative learning and situated coaching could occur more readily in the clinical setting. The Clinical Goals Initiative was implemented for sophomore-, junior-, and senior-level students in their clinical practicums. Students developed weekly goals reflecting three domains of professional nursing practice. Goals were shared with faculty and staff nurse mentors at the beginning of the clinical day to help guide students and mentors with planning for learning experiences. After 6 weeks, faculty and students were surveyed to evaluate project effectiveness. Faculty indicated that goal development facilitated clinical learning by providing more student engagement, direction, and focus. Students reported that goal development allowed them to optimize clinical learning opportunities and track their growth and progress. Faculty and students indicated the goals promoted student self-learning, autonomy, and student communication with nurse mentors and faculty. Copyright 2013, SLACK Incorporated.
Luo, Jake; Apperson-Hansen, Carolyn; Pelfrey, Clara M; Zhang, Guo-Qiang
2014-11-30
Cross-institutional cross-disciplinary collaboration has become a trend as researchers move toward building more productive and innovative teams for scientific research. Research collaboration is significantly changing the organizational structure and strategies used in the clinical and translational science domain. However, due to the obstacles of diverse administrative structures, differences in area of expertise, and communication barriers, establishing and managing a cross-institutional research project is still a challenging task. We address these challenges by creating an integrated informatics platform to reduce the barriers to biomedical research collaboration. The Request Management System (RMS) is an informatics infrastructure designed to transform a patchwork of expertise and resources into an integrated support network. The RMS facilitates investigators' initiation of new collaborative projects and supports the management of the collaboration process. In RMS, experts and their knowledge areas are categorized and managed structurally to provide consistent service. A role-based collaborative workflow is tightly integrated with domain experts and services to streamline and monitor the life-cycle of a research project. The RMS has so far tracked over 1,500 investigators with over 4,800 tasks. The research network based on the data collected in RMS illustrated that the investigators' collaborative projects increased close to 3 times from 2009 to 2012. Our experience with RMS indicates that the platform reduces barriers for cross-institutional collaboration of biomedical research projects. Building a new generation of infrastructure to enhance cross-disciplinary and multi-institutional collaboration has become an important yet challenging task. In this paper, we share the experience of developing and utilizing a collaborative project management system. The results of this study demonstrate that a web-based integrated informatics platform can facilitate and increase research interactions among investigators.
Structural Measures to Track the Evolution of SNOMED CT Hierarchies
Wei, Duo; Gu, Huanying (Helen); Perl, Yehoshua; Halper, Michael; Ochs, Christopher; Elhanan, Gai; Chen, Yan
2015-01-01
The Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is an extensive reference terminology with an attendant amount of complexity. It has been updated continuously and revisions have been released semi-annually to meet users’ needs and to reflect the results of quality assurance (QA) activities. Two measures based on structural features are proposed to track the effects of both natural terminology growth and QA activities based on aspects of the complexity of SNOMED CT. These two measures, called the structural density measure and accumulated structural measure, are derived based on two abstraction networks, the area taxonomy and the partial-area taxonomy. The measures derive from attribute relationship distributions and various concept groupings that are associated with the abstraction networks. They are used to track the trends in the complexity of structures as SNOMED CT changes over time. The measures were calculated for consecutive releases of five SNOMED CT hierarchies, including the Specimen hierarchy. The structural density measure shows that natural growth tends to move a hierarchy’s structure toward a more complex state, whereas the accumulated structural measure shows that QA processes tend to move a hierarchy’s structure toward a less complex state. It is also observed that both the structural density and accumulated structural measures are useful tools to track the evolution of an entire SNOMED CT hierarchy and reveal internal concept migration within it. PMID:26260003
NASA Astrophysics Data System (ADS)
Lefebvre, Eric; Helleur, Christopher; Kashyap, Nathan
2008-03-01
Maritime surveillance of coastal regions requires operational staff to integrate a large amount of information from a variety of military and civilian sources. The diverse nature of the information sources makes complete automation difficult. The volume of vessels tracked and the number of sources makes it difficult for the limited operation centre staff to fuse all the information manually within a reasonable timeframe. In this paper, a conceptual decision space is proposed to provide a framework for automating the process of operators integrating the sources needed to maintain Maritime Domain Awareness. The decision space contains all potential pairs of ship tracks that are candidates for fusion. The location of the candidate pairs in this defined space depends on the value of the parameters used to make a decision. In the application presented, three independent parameters are used: the source detection efficiency, the geo-feasibility, and the track quality. One of three decisions is applied to each candidate track pair based on these three parameters: 1. to accept the fusion, in which case tracks are fused in one track, 2. to reject the fusion, in which case the candidate track pair is removed from the list of potential fusion, and 3. to defer the fusion, in which case no fusion occurs but the candidate track pair remains in the list of potential fusion until sufficient information is provided. This paper demonstrates in an operational setting how a proposed conceptual space is used to optimize the different thresholds for automatic fusion decision while minimizing the list of unresolved cases when the decision is left to the operator.
Joint Transform Correlation for face tracking: elderly fall detection application
NASA Astrophysics Data System (ADS)
Katz, Philippe; Aron, Michael; Alfalou, Ayman
2013-03-01
In this paper, an iterative tracking algorithm based on a non-linear JTC (Joint Transform Correlator) architecture and enhanced by a digital image processing method is proposed and validated. This algorithm is based on the computation of a correlation plane where the reference image is updated at each frame. For that purpose, we use the JTC technique in real time to track a patient (target image) in a room fitted with a video camera. The correlation plane is used to localize the target image in the current video frame (frame i). Then, the reference image to be exploited in the next frame (frame i+1) is updated according to the previous one (frame i). In an effort to validate our algorithm, our work is divided into two parts: (i) a large study based on different sequences with several situations and different JTC parameters is achieved in order to quantify their effects on the tracking performances (decimation, non-linearity coefficient, size of the correlation plane, size of the region of interest...). (ii) the tracking algorithm is integrated into an application of elderly fall detection. The first reference image is a face detected by means of Haar descriptors, and then localized into the new video image thanks to our tracking method. In order to avoid a bad update of the reference frame, a method based on a comparison of image intensity histograms is proposed and integrated in our algorithm. This step ensures a robust tracking of the reference frame. This article focuses on face tracking step optimisation and evalutation. A supplementary step of fall detection, based on vertical acceleration and position, will be added and studied in further work.
Analysis of Orientations of Collagen Fibers by Novel Fiber-Tracking Software
NASA Astrophysics Data System (ADS)
Wu, Jun; Rajwa, Bartlomiej; Filmer, David L.; Hoffmann, Christoph M.; Yuan, Bo; Chiang, Ching-Shoei; Sturgis, Jennie; Robinson, J. Paul
2003-12-01
Recent evidence supports the notion that biological functions of extracellular matrix (ECM) are highly correlated to not only its composition but also its structure. This article integrates confocal microscopy imaging and image-processing techniques to analyze the microstructural properties of ECM. This report describes a two- and three-dimensional fiber middle-line tracing algorithm that may be used to quantify collagen fibril organization. We utilized computer simulation and statistical analysis to validate the developed algorithm. These algorithms were applied to confocal images of collagen gels made with reconstituted bovine collagen type I, to demonstrate the computation of orientations of individual fibers.
Estimating Track Capacity Based on Rail Stresses and Metal Fatigue.
DOT National Transportation Integrated Search
2011-09-21
This paper describes a framework to evaluate the structural capacity of railroad track to train-induced loads. The framework is applied to estimate structural performance in terms of allowable limits for crosstie spacing. Evaluation of the load-carry...
Zhang, Bitao; Pi, YouGuo
2013-07-01
The traditional integer order proportional-integral-differential (IO-PID) controller is sensitive to the parameter variation or/and external load disturbance of permanent magnet synchronous motor (PMSM). And the fractional order proportional-integral-differential (FO-PID) control scheme based on robustness tuning method is proposed to enhance the robustness. But the robustness focuses on the open-loop gain variation of controlled plant. In this paper, an enhanced robust fractional order proportional-plus-integral (ERFOPI) controller based on neural network is proposed. The control law of the ERFOPI controller is acted on a fractional order implement function (FOIF) of tracking error but not tracking error directly, which, according to theory analysis, can enhance the robust performance of system. Tuning rules and approaches, based on phase margin, crossover frequency specification and robustness rejecting gain variation, are introduced to obtain the parameters of ERFOPI controller. And the neural network algorithm is used to adjust the parameter of FOIF. Simulation and experimental results show that the method proposed in this paper not only achieve favorable tracking performance, but also is robust with regard to external load disturbance and parameter variation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
A model that integrates eye velocity commands to keep track of smooth eye displacements.
Blohm, Gunnar; Optican, Lance M; Lefèvre, Philippe
2006-08-01
Past results have reported conflicting findings on the oculomotor system's ability to keep track of smooth eye movements in darkness. Whereas some results indicate that saccades cannot compensate for smooth eye displacements, others report that memory-guided saccades during smooth pursuit are spatially correct. Recently, it was shown that the amount of time before the saccade made a difference: short-latency saccades were retinotopically coded, whereas long-latency saccades were spatially coded. Here, we propose a model of the saccadic system that can explain the available experimental data. The novel part of this model consists of a delayed integration of efferent smooth eye velocity commands. Two alternative physiologically realistic neural mechanisms for this integration stage are proposed. Model simulations accurately reproduced prior findings. Thus, this model reconciles the earlier contradictory reports from the literature about compensation for smooth eye movements before saccades because it involves a slow integration process.
Fan, Qigao; Wu, Yaheng; Hui, Jing; Wu, Lei; Yu, Zhenzhong; Zhou, Lijuan
2014-01-01
In some GPS failure conditions, positioning for mobile target is difficult. This paper proposed a new method based on INS/UWB for attitude angle and position synchronous tracking of indoor carrier. Firstly, error model of INS/UWB integrated system is built, including error equation of INS and UWB. And combined filtering model of INS/UWB is researched. Simulation results show that the two subsystems are complementary. Secondly, integrated navigation data fusion strategy of INS/UWB based on Kalman filtering theory is proposed. Simulation results show that FAKF method is better than the conventional Kalman filtering. Finally, an indoor experiment platform is established to verify the integrated navigation theory of INS/UWB, which is geared to the needs of coal mine working environment. Static and dynamic positioning results show that the INS/UWB integrated navigation system is stable and real-time, positioning precision meets the requirements of working condition and is better than any independent subsystem.
Low energy electrons and swift ion track structure in PADC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.
The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particularmore » incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.« less
Low energy electrons and swift ion track structure in PADC
Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; ...
2015-05-27
The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particularmore » incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.« less
High Z particle Apollo astronaut dosimetry with plastics
NASA Technical Reports Server (NTRS)
Benton, E. V.; Henke, R. P.
1972-01-01
On Apollo missions, the individual astronauts' high Z particle exposure is measured by means of Lexan polycarbonate plastic. These layers form one component of the passive dosimetry packets worn in the constant wear garment. They serve as threshold type, high Z, charged particle track detectors, recording only the very highly ionizing particles. The detectors yield information on the particles' charge, energy, and direction of travel. This data, in turn, is used to obtain the track fluence, the stopping particle density as an integral Z distribution, and the particles' integral LET spectrum. Some of the data gathered on Apollo missions 8-13 is presented.
Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI
2016-04-01
and we anticipate the initiation of the neuroimaging portion of the study early in Year 3. The fMRI task has been completed and is in beta testing...neurocognitive test battery, and self-report measures of cognitive efficacy. We will also include functional magnetic resonance imagining ( fMRI ) and... fMRI and DTI will provide an objective basis for cross-validating the EEG and eye tracking system. Both the EEG and eye tracking data will be
Tracking and disturbance rejection of MIMO nonlinear systems with PI controller
NASA Technical Reports Server (NTRS)
Desoer, C. A.; Lin, C. A.
1985-01-01
The tracking and disturbance rejection of a class of MIMO nonlinear systems with a linear proportional plus integral (PI) compensator is studied. Roughly speaking, it is shown that if the given nonlinear plant is exponentially stable and has a strictly increasing dc steady-state I/O map, then a simple PI compensator can be used to yield a stable unity-feedback closed-loop system which asymptotically tracks reference inputs that tend to constant vectors and asymptotically rejects disturbances that tend to constant vectors.
Tracking and disturbance rejection of MIMO nonlinear systems with PI controller
NASA Technical Reports Server (NTRS)
Desoer, C. A.; Lin, C.-A.
1985-01-01
The tracking and disturbance rejection of a class of MIMO nonlinear systems with linear proportional plus integral (PI) compensator is studied. Roughly speaking, it is shown that if the given nonlinear plant is exponentially stable and has a strictly increasing dc steady-state I/O map, then a simple PI compensator can be used to yield a stable unity-feedback closed-loop system which asymptotically tracks reference inputs that tend to constant vectors and asymptotically rejects disturbances that tend to constant vectors.
Tracking Hazard Analysis Data in a Jungle of Changing Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Robin S.; Young, Jonathan
2006-05-16
Tracking hazard analysis data during the 'life cycle' of a project can be an extremely complicated task. However, a few simple rules, used consistently, can give you the edge that will save countless headaches and provide the information that will help integrate the hazard analysis and design activities even if performed in parallel.
2008-03-01
journalistic, descriptive in nature rather than integrative or comparative with similar companies” and “ little elucidation of the variations in activities...for military troops is routinely tracked and reported, the data suggests there is little to no formal tracking of these incidents for PMC personnel...
A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints
NASA Astrophysics Data System (ADS)
Rakow, Alexi Schroder
Fatigue cracks initiating at fastener hole locations in metallic components are among the most common form of airframe damage. The fastener hole site has been surveyed as the second leading initiation site for fatigue related accidents of fixed wing aircraft. Current methods for inspecting airframes for these cracks are manual, whereby inspectors rely on non-destructive inspection equipment or hand-held probes to scan over areas of a structure. Use of this equipment often demands disassembly of the vehicle to search appropriate hole locations for cracks, which elevates the complexity and cost of these maintenance inspections. Improved reliability, safety, and reduced cost of such maintenance can be realized by the permanent integration of sensors with a structure to detect this damage. Such an integrated system of sensors would form a structural health monitoring (SHM) system. In this study, an Additive, Interleaved, Multi-layer Electromagnetic (AIME) sensor was developed and integrated with the shank of a fastener to form a SHM Fastener, a new SHM technology targeted at detection of fastener hole cracks. The major advantages of the SHM Fastener are its installation, which does not require joint layer disassembly, its capability to detect inner layer cracks, and its capability to operate in a continuous autonomous mode. Two methods for fabricating the proposed SHM Fastener were studied. The first option consisted of a thin flexible printed circuit film that was bonded around a thin metallic sleeve placed around the fastener shank. The second option consisted of coating sensor materials directly to the shank of a part in an effort to increase the durability of the sensor under severe loading conditions. Both analytical and numerical models were developed to characterize the capability of the sensors and provide a design tool for the sensor layout. A diagnostic technique for crack growth monitoring was developed to complete the SHM system, which consists of the sensor, data acquisition hardware, algorithm, and diagnostic display. The AIME sensor design, SHM Fastener, and complete SHM system are presented along with experimental results from a series of single-layer and bolted double lap joint aluminum laboratory specimens to validate the capability of these sensors to monitor metallic joints for fastener hole cracks. Fatigue cracks were successfully tracked to over 0.7 inches from the fastener hole in these tests. Sensor output obtained from single-layer fatigue specimens was compared with analytical predictions for fatigue crack growth versus cycle number showing a good correlation in trend between sensor output and predicted crack size.
Restoring integrity—A grounded theory of coping with a fast track surgery programme
Jørgensen, Lene Bastrup; Fridlund, Bengt
2016-01-01
Aims and objectives The aim of this study was to generate a theory conceptualizing and explaining behavioural processes involved in coping in order to identify the predominant coping types and coping type-specific features. Background Patients undergoing fast track procedures do not experience a higher risk of complications, readmission, or mortality. However, such programmes presuppose an increasing degree of patient involvement, placing high educational, physical, and mental demands on the patients. There is a lack of knowledge about how patients understand and cope with fast track programmes. Design The study design used classical grounded theory. Methods The study used a multimodal approach with qualitative and quantitative data sets from 14 patients. Results Four predominant types of coping, with distinct physiological, cognitive, affective, and psychosocial features, existed among patients going through a fast track total hip replacement programme. These patients’ main concern was to restore their physical and psychosocial integrity, which had been compromised by reduced function and mobility in daily life. To restore integrity they economized their mental resources, while striving to fulfil the expectations of the fast track programme. This goal was achieved by being mentally proactive and physically active. Three out of the four predominant types of coping matched the expectations expressed in the fast track programme. The non-matching behaviour was seen among the most nervous patients, who claimed the right to diverge from the programme. Conclusion In theory, four predominant types of coping with distinct physiological, cognitive, affective, and psychosocial features occur among patients going through a fast track total hip arthroplasty programme. PMID:26751199
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovesdi, C.; Spielman, Z.; LeBlanc, K.
An important element of human factors engineering (HFE) pertains to measurement and evaluation (M&E). The role of HFE-M&E should be integrated throughout the entire control room modernization (CRM) process and be used for human-system performance evaluation and diagnostic purposes with resolving potential human engineering deficiencies (HEDs) and other human machine interface (HMI) design issues. NUREG-0711 describes how HFE in CRM should employ a hierarchical set of measures, particularly during integrated system validation (ISV), including plant performance, personnel task performance, situation awareness, cognitive workload, and anthropometric/ physiological factors. Historically, subjective measures have been primarily used since they are easier to collectmore » and do not require specialized equipment. However, there are pitfalls with relying solely on subjective measures in M&E such that negatively impact reliability, sensitivity, and objectivity. As part of comprehensively capturing a diverse set of measures that strengthen findings and inferences made of the benefits from emerging technologies like advanced displays, this paper discusses the value of using eye tracking as an objective method that can be used in M&E. A brief description of eye tracking technology and relevant eye tracking measures is provided. Additionally, technical considerations and the unique challenges with using eye tracking in full-scaled simulations are addressed. Finally, this paper shares preliminary findings regarding the use of a wearable eye tracking system in a full-scale simulator study. These findings should help guide future full-scale simulator studies using eye tracking as a methodology to evaluate human-system performance.« less
Visible/near-infrared subdiffraction imaging reveals the stochastic nature of DNA walkers.
Pan, Jing; Cha, Tae-Gon; Li, Feiran; Chen, Haorong; Bragg, Nina A; Choi, Jong Hyun
2017-01-01
DNA walkers are designed with the structural specificity and functional diversity of oligonucleotides to actively convert chemical energy into mechanical translocation. Compared to natural protein motors, DNA walkers' small translocation distance (mostly <100 nm) and slow reaction rate (<0.1 nm s -1 ) make single-molecule characterization of their kinetics elusive. An important indication of single-walker kinetics is the rate-limiting reactions that a particular walker design bears. We introduce an integrated super-resolved fluorescence microscopy approach that is capable of long-term imaging to investigate the stochastic behavior of DNA walkers. Subdiffraction tracking and imaging in the visible and second near-infrared spectra resolve walker structure and reaction rates. The distributions of walker kinetics are analyzed using a stochastic model to reveal reaction randomness and the rate-limiting biochemical reaction steps.
A Biomimetic Structural Health Monitoring Approach Using Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi
2012-07-01
A self-sensing nanocomposite material has been developed to track the presence of damage in complex composite structures. Multiwalled carbon nanotubes are integrated with polymer matrix to develop a novel bonding material with sensing capabilities. The changes of the piezoresistance in the presence of damage are used to monitor the condition of bonded joints, where the usual bonding material is replaced by the self-sensing nanocomposite. The feasibility of this concept is investigated through experiments conducted on single-lap joints subject to monotonic tensile loading conditions. The results show that the self-sensing nanocomposite is sensitive to crack propagation within the matrix material. An acoustic emission-based sensing technique has been used to validate these results and shows good correlation with damage growth. A digital image correlation system is used to measure the shear strain field in the joint area.
NASA Astrophysics Data System (ADS)
Holm, D. D.; Ivanov, R. I.
2010-12-01
The Lax pair formulation of the two-component Camassa-Holm equation (CH2) is generalized to produce an integrable multi-component family, CH(n, k), of equations with n components and 1 <= |k| <= n velocities. All of the members of the CH(n, k) family show fluid-dynamics properties with coherent solitons following particle characteristics. We determine their Lie-Poisson Hamiltonian structures and give numerical examples of their soliton solution behaviour. We concentrate on the CH(2, k) family with one or two velocities, including the CH(2, -1) equation in the Dym position of the CH2 hierarchy. A brief discussion of the CH(3, 1) system reveals the underlying graded Lie-algebraic structure of the Hamiltonian formulation for CH(n, k) when n >= 3. Fondly recalling our late friend Jerry Marsden.
Visible/near-infrared subdiffraction imaging reveals the stochastic nature of DNA walkers
Pan, Jing; Cha, Tae-Gon; Li, Feiran; Chen, Haorong; Bragg, Nina A.; Choi, Jong Hyun
2017-01-01
DNA walkers are designed with the structural specificity and functional diversity of oligonucleotides to actively convert chemical energy into mechanical translocation. Compared to natural protein motors, DNA walkers’ small translocation distance (mostly <100 nm) and slow reaction rate (<0.1 nm s−1) make single-molecule characterization of their kinetics elusive. An important indication of single-walker kinetics is the rate-limiting reactions that a particular walker design bears. We introduce an integrated super-resolved fluorescence microscopy approach that is capable of long-term imaging to investigate the stochastic behavior of DNA walkers. Subdiffraction tracking and imaging in the visible and second near-infrared spectra resolve walker structure and reaction rates. The distributions of walker kinetics are analyzed using a stochastic model to reveal reaction randomness and the rate-limiting biochemical reaction steps. PMID:28116353
Multipurpose active pixel sensor (APS)-based microtracker
NASA Astrophysics Data System (ADS)
Eisenman, Allan R.; Liebe, Carl C.; Zhu, David Q.
1998-12-01
A new, photon-sensitive, imaging array, the active pixel sensor (APS) has emerged as a competitor to the CCD imager for use in star and target trackers. The Jet Propulsion Laboratory (JPL) has undertaken a program to develop a new generation, highly integrated, APS-based, multipurpose tracker: the Programmable Intelligent Microtracker (PIM). The supporting hardware used in the PIM has been carefully selected to enhance the inherent advantages of the APS. Adequate computation power is included to perform star identification, star tracking, attitude determination, space docking, feature tracking, descent imaging for landing control, and target tracking capabilities. Its first version uses a JPL developed 256 X 256-pixel APS and an advanced 32-bit RISC microcontroller. By taking advantage of the unique features of the APS/microcontroller combination, the microtracker will achieve about an order-of-magnitude reduction in mass and power consumption compared to present state-of-the-art star trackers. It will also add the advantage of programmability to enable it to perform a variety of star, other celestial body, and target tracking tasks. The PIM is already proving the usefulness of its design concept for space applications. It is demonstrating the effectiveness of taking such an integrated approach in building a new generation of high performance, general purpose, tracking instruments to be applied to a large variety of future space missions.
Efficient integration of spectral features for vehicle tracking utilizing an adaptive sensor
NASA Astrophysics Data System (ADS)
Uzkent, Burak; Hoffman, Matthew J.; Vodacek, Anthony
2015-03-01
Object tracking in urban environments is an important and challenging problem that is traditionally tackled using visible and near infrared wavelengths. By inserting extended data such as spectral features of the objects one can improve the reliability of the identification process. However, huge increase in data created by hyperspectral imaging is usually prohibitive. To overcome the complexity problem, we propose a persistent air-to-ground target tracking system inspired by a state-of-the-art, adaptive, multi-modal sensor. The adaptive sensor is capable of providing panchromatic images as well as the spectra of desired pixels. This addresses the data challenge of hyperspectral tracking by only recording spectral data as needed. Spectral likelihoods are integrated into a data association algorithm in a Bayesian fashion to minimize the likelihood of misidentification. A framework for controlling spectral data collection is developed by incorporating motion segmentation information and prior information from a Gaussian Sum filter (GSF) movement predictions from a multi-model forecasting set. An intersection mask of the surveillance area is extracted from OpenStreetMap source and incorporated into the tracking algorithm to perform online refinement of multiple model set. The proposed system is tested using challenging and realistic scenarios generated in an adverse environment.
Real-Time 3D Tracking and Reconstruction on Mobile Phones.
Prisacariu, Victor Adrian; Kähler, Olaf; Murray, David W; Reid, Ian D
2015-05-01
We present a novel framework for jointly tracking a camera in 3D and reconstructing the 3D model of an observed object. Due to the region based approach, our formulation can handle untextured objects, partial occlusions, motion blur, dynamic backgrounds and imperfect lighting. Our formulation also allows for a very efficient implementation which achieves real-time performance on a mobile phone, by running the pose estimation and the shape optimisation in parallel. We use a level set based pose estimation but completely avoid the, typically required, explicit computation of a global distance. This leads to tracking rates of more than 100 Hz on a desktop PC and 30 Hz on a mobile phone. Further, we incorporate additional orientation information from the phone's inertial sensor which helps us resolve the tracking ambiguities inherent to region based formulations. The reconstruction step first probabilistically integrates 2D image statistics from selected keyframes into a 3D volume, and then imposes coherency and compactness using a total variational regularisation term. The global optimum of the overall energy function is found using a continuous max-flow algorithm and we show that, similar to tracking, the integration of per voxel posteriors instead of likelihoods improves the precision and accuracy of the reconstruction.
Dosso, Stan E; Wilmut, Michael J; Nielsen, Peter L
2010-07-01
This paper applies Bayesian source tracking in an uncertain environment to Mediterranean Sea data, and investigates the resulting tracks and track uncertainties as a function of data information content (number of data time-segments, number of frequencies, and signal-to-noise ratio) and of prior information (environmental uncertainties and source-velocity constraints). To track low-level sources, acoustic data recorded for multiple time segments (corresponding to multiple source positions along the track) are inverted simultaneously. Environmental uncertainty is addressed by including unknown water-column and seabed properties as nuisance parameters in an augmented inversion. Two approaches are considered: Focalization-tracking maximizes the posterior probability density (PPD) over the unknown source and environmental parameters. Marginalization-tracking integrates the PPD over environmental parameters to obtain a sequence of joint marginal probability distributions over source coordinates, from which the most-probable track and track uncertainties can be extracted. Both approaches apply track constraints on the maximum allowable vertical and radial source velocity. The two approaches are applied for towed-source acoustic data recorded at a vertical line array at a shallow-water test site in the Mediterranean Sea where previous geoacoustic studies have been carried out.
Integrated Budget Office Toolbox
NASA Technical Reports Server (NTRS)
Rushing, Douglas A.; Blakeley, Chris; Chapman, Gerry; Robertson, Bill; Horton, Allison; Besser, Thomas; McCarthy, Debbie
2010-01-01
The Integrated Budget Office Toolbox (IBOT) combines budgeting, resource allocation, organizational funding, and reporting features in an automated, integrated tool that provides data from a single source for Johnson Space Center (JSC) personnel. Using a common interface, concurrent users can utilize the data without compromising its integrity. IBOT tracks planning changes and updates throughout the year using both phasing and POP-related (program-operating-plan-related) budget information for the current year, and up to six years out. Separating lump-sum funds received from HQ (Headquarters) into separate labor, travel, procurement, Center G&A (general & administrative), and servicepool categories, IBOT creates a script that significantly reduces manual input time. IBOT also manages the movement of travel and procurement funds down to the organizational level and, using its integrated funds management feature, helps better track funding at lower levels. Third-party software is used to create integrated reports in IBOT that can be generated for plans, actuals, funds received, and other combinations of data that are currently maintained in the centralized format. Based on Microsoft SQL, IBOT incorporates generic budget processes, is transportable, and is economical to deploy and support.
Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System.
Xie, Ruihong; Zhang, Tao; Li, Jiaquan; Dai, Ming
2017-05-09
This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight) motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration) control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square) error is 1.253 mrad when tracking 10° 0.2 Hz signal.
Value-based choice: An integrative, neuroscience-informed model of health goals.
Berkman, Elliot T
2018-01-01
Traditional models of health behaviour focus on the roles of cognitive, personality and social-cognitive constructs (e.g. executive function, grit, self-efficacy), and give less attention to the process by which these constructs interact in the moment that a health-relevant choice is made. Health psychology needs a process-focused account of how various factors are integrated to produce the decisions that determine health behaviour. I present an integrative value-based choice model of health behaviour, which characterises the mechanism by which a variety of factors come together to determine behaviour. This model imports knowledge from research on behavioural economics and neuroscience about how choices are made to the study of health behaviour, and uses that knowledge to generate novel predictions about how to change health behaviour. I describe anomalies in value-based choice that can be exploited for health promotion, and review neuroimaging evidence about the involvement of midline dopamine structures in tracking and integrating value-related information during choice. I highlight how this knowledge can bring insights to health psychology using illustrative case of healthy eating. Value-based choice is a viable model for health behaviour and opens new avenues for mechanism-focused intervention.
A Network Flow Analysis of the Nitrogen Metabolism in Beijing, China.
Zhang, Yan; Lu, Hanjing; Fath, Brian D; Zheng, Hongmei; Sun, Xiaoxi; Li, Yanxian
2016-08-16
Rapid urbanization results in high nitrogen flows and subsequent environmental consequences. In this study, we identified the main metabolic components (nitrogen inputs, flows, and outputs) and used ecological network analysis to track the direct and integral (direct + indirect) metabolic flows of nitrogen in Beijing, China, from 1996 to 2012 and to quantify the structure of Beijing's nitrogen metabolic processes. We found that Beijing's input of new reactive nitrogen (Q, which represents nitrogen obtained from the atmosphere or nitrogen-containing materials used in production and consumption to support human activities) increased from 431 Gg in 1996 to 507 Gg in 2012. Flows to the industry, atmosphere, and household, and components of the system were clearly largest, with total integrated inputs plus outputs from these nodes accounting for 31, 29, and 15%, respectively, of the total integral flows for all paths. The flows through the sewage treatment and transportation components showed marked growth, with total integrated inputs plus outputs increasing to 3.7 and 5.2 times their 1996 values, respectively. Our results can help policymakers to locate the key nodes and pathways in an urban nitrogen metabolic system so they can monitor and manage these components of the system.
The Trans-Visible Navigator: A See-Through Neuronavigation System Using Augmented Reality.
Watanabe, Eiju; Satoh, Makoto; Konno, Takehiko; Hirai, Masahiro; Yamaguchi, Takashi
2016-03-01
The neuronavigator has become indispensable for brain surgery and works in the manner of point-to-point navigation. Because the positional information is indicated on a personal computer (PC) monitor, surgeons are required to rotate the dimension of the magnetic resonance imaging/computed tomography scans to match the surgical field. In addition, they must frequently alternate their gaze between the surgical field and the PC monitor. To overcome these difficulties, we developed an augmented reality-based navigation system with whole-operation-room tracking. A tablet PC is used for visualization. The patient's head is captured by the back-face camera of the tablet. Three-dimensional images of intracranial structures are extracted from magnetic resonance imaging/computed tomography and are superimposed on the video image of the head. When viewed from various directions around the head, intracranial structures are displayed with corresponding angles as viewed from the camera direction, thus giving the surgeon the sensation of seeing through the head. Whole-operation-room tracking is realized using a VICON tracking system with 6 cameras. A phantom study showed a spatial resolution of about 1 mm. The present system was evaluated in 6 patients who underwent tumor resection surgery, and we showed that the system is useful for planning skin incisions as well as craniotomy and the localization of superficial tumors. The main advantage of the present system is that it achieves volumetric navigation in contrast to conventional point-to-point navigation. It extends augmented reality images directly onto real surgical images, thus helping the surgeon to integrate these 2 dimensions intuitively. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Instrumentation by distributed optical fiber sensors of a new ballastless track structure
NASA Astrophysics Data System (ADS)
Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Gueguen, Ivan; Cailliau, Joël
2013-04-01
While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. With its service life of at least 60 years, they require little maintenance and hence they offer great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. A new ballastless track structure has been designed to be circulated up to 300km/h, with a target life of 100 years. It is an interoperable way on concrete slabs that are cast-in-place and slip formed. This structure has been built and tested at the scale one in our laboratory. Indeed, ten millions cyclic loads were applied at 2.5Hz to evaluate the fatigue behaviour under selected mechanical and thermal conditions. To monitor the thermo-mechanical behavior of this new structure and to verify the numerical simulations used for its design, a lot of sensors have been embedded. In particularly, we have tested an optical fiber as distributed sensors to measure strain distribution in the railway model. This sensor can also be used to detect, localize and monitor cracks in concrete slabs. The optical fiber sensing technique ("Rayleigh technique") used in this experimentation has a centimetric spatial resolution which allows to measure complex strain profiles unlike electrical strain gauges which only give local information. Firstly, optical cables used as sensors have been successfully embedded and attached to the reinforcing steel bars in the structure. We have noted that they are resistant enough to resist concrete pouring and working activities. Secondly, strains measured by conventional strain gauges has confirmed the quality of the strain profiles measurements obtained by optical fiber sensors. Moreover, we have found a good agreement between experimental profiles measurements and those obtained by numerical simulations. Early during the fatigue test, some cracks have been observed. It is a current phenomenon in concrete slab which is due to drying shrinkage, load action, environmental factors and creep of concrete. Cracks can reduce the durability of the tract structure. So, it is important to be able to monitor them during the service of ballastless track line. We have demonstrated that cracks can detect, localized and monitor by a judicious placement of optical fibers. A crack corresponds to the appearance of a narrow peak on the strain profile. This peak can be detected and localized thanks to the very high spatial resolution of the optical Rayleigh sensing technique. Thus, we have noted that the cracks remain localized in slab edge without affecting the mechanical performances of the ballastless track structure. In conclusion, distributed sensing based on optical fiber sensor is a promising technique to monitor ballastless track structures and more generally, civil engineering structures. Some tests on a portion of a ballastless track line (still under construction) are planned in the next month.
Satellite Observations for Detecting and Tracking Changes in Atmospheric Composition
The international scientific community's Integrated Global Atmosphere Chemistry Observation System report outlined a plan for ground-based, airborne and satellite Measurements, and models to integrate the observations into a 4-dimensional representation of the atmosphere (space a...
A novel optical investigation technique for railroad track inspection and assessment
NASA Astrophysics Data System (ADS)
Sabato, Alessandro; Beale, Christopher H.; Niezrecki, Christopher
2017-04-01
Track failures due to cross tie degradation or loss in ballast support may result in a number of problems ranging from simple service interruptions to derailments. Structural Health Monitoring (SHM) of railway track is important for safety reasons and to reduce downtime and maintenance costs. For this reason, novel and cost-effective track inspection technologies for assessing tracks' health are currently insufficient and needed. Advancements achieved in recent years in cameras technology, optical sensors, and image-processing algorithms have made machine vision, Structure from Motion (SfM), and three-dimensional (3D) Digital Image Correlation (DIC) systems extremely appealing techniques for extracting structural deformations and geometry profiles. Therefore, optically based, non-contact measurement techniques may be used for assessing surface defects, rail and tie deflection profiles, and ballast condition. In this study, the design of two camera-based measurement systems is proposed for crossties-ballast condition assessment and track examination purposes. The first one consists of four pairs of cameras installed on the underside of a rail car to detect the induced deformation and displacement on the whole length of the track's cross tie using 3D DIC measurement techniques. The second consists of another set of cameras using SfM techniques for obtaining a 3D rendering of the infrastructure from a series of two-dimensional (2D) images to evaluate the state of the track qualitatively. The feasibility of the proposed optical systems is evaluated through extensive laboratory tests, demonstrating their ability to measure parameters of interest (e.g. crosstie's full-field displacement, vertical deflection, shape, etc.) for assessment and SHM of railroad track.
Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen
2017-01-01
An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.
Microdosimetry and Katz's track structure theory. I. One-hit detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaider, M.
1990-10-01
A microdosimetric treatment of the response of one-hit detectors to radiation is formulated and compared with the model proposed by R. Katz, S. C. Sharma, and M. Homayoonfar within the framework of their track-structure theory. It is shown that radial dose distributions (on which the track structure theory is based) are generally poor substitutes for the exact microdosimetric distributions except when (a) the target is much larger than the radial extent of the track or (b) the effective specific energy in the target (alpha z) is negligibly small. Since neither one of these conditions is generally satisfied, it is suggestedmore » that a meaningful search for one-hit detectors be based on a microdosimetric description of the stochastics of energy deposition. An analysis of the phi x-174 bacteriophage inactivation data is presented.« less
Hacker, Kathryn P; Seto, Karen C; Costa, Federico; Corburn, Jason; Reis, Mitermayer G; Ko, Albert I; Diuk-Wasser, Maria A
2013-10-20
The expansion of urban slums is a key challenge for public and social policy in the 21st century. The heterogeneous and dynamic nature of slum communities limits the use of rigid slum definitions. A systematic and flexible approach to characterize, delineate and model urban slum structure at an operational resolution is essential to plan, deploy, and monitor interventions at the local and national level. We modeled the multi-dimensional structure of urban slums in the city of Salvador, a city of 3 million inhabitants in Brazil, by integrating census-derived socioeconomic variables and remotely-sensed land cover variables. We assessed the correlation between the two sets of variables using canonical correlation analysis, identified land cover proxies for the socioeconomic variables, and produced an integrated map of deprivation in Salvador at 30 m × 30 m resolution. The canonical analysis identified three significant ordination axes that described the structure of Salvador census tracts according to land cover and socioeconomic features. The first canonical axis captured a gradient from crowded, low-income communities with corrugated roof housing to higher-income communities. The second canonical axis discriminated among socioeconomic variables characterizing the most marginalized census tracts, those without access to sanitation or piped water. The third canonical axis accounted for the least amount of variation, but discriminated between high-income areas with white-painted or tiled roofs from lower-income areas. Our approach captures the socioeconomic and land cover heterogeneity within and between slum settlements and identifies the most marginalized communities in a large, complex urban setting. These findings indicate that changes in the canonical scores for slum areas can be used to track their evolution and to monitor the impact of development programs such as slum upgrading.
2013-01-01
Background The expansion of urban slums is a key challenge for public and social policy in the 21st century. The heterogeneous and dynamic nature of slum communities limits the use of rigid slum definitions. A systematic and flexible approach to characterize, delineate and model urban slum structure at an operational resolution is essential to plan, deploy, and monitor interventions at the local and national level. Methods We modeled the multi-dimensional structure of urban slums in the city of Salvador, a city of 3 million inhabitants in Brazil, by integrating census-derived socioeconomic variables and remotely-sensed land cover variables. We assessed the correlation between the two sets of variables using canonical correlation analysis, identified land cover proxies for the socioeconomic variables, and produced an integrated map of deprivation in Salvador at 30 m × 30 m resolution. Results The canonical analysis identified three significant ordination axes that described the structure of Salvador census tracts according to land cover and socioeconomic features. The first canonical axis captured a gradient from crowded, low-income communities with corrugated roof housing to higher-income communities. The second canonical axis discriminated among socioeconomic variables characterizing the most marginalized census tracts, those without access to sanitation or piped water. The third canonical axis accounted for the least amount of variation, but discriminated between high-income areas with white-painted or tiled roofs from lower-income areas. Conclusions Our approach captures the socioeconomic and land cover heterogeneity within and between slum settlements and identifies the most marginalized communities in a large, complex urban setting. These findings indicate that changes in the canonical scores for slum areas can be used to track their evolution and to monitor the impact of development programs such as slum upgrading. PMID:24138776
Effect of cross-correlation on track-to-track fusion
NASA Astrophysics Data System (ADS)
Saha, Rajat K.
1994-07-01
Since the advent of target tracking systems employing a diverse mixture of sensors, there has been increasing recognition by air defense system planners and other military system analysts of the need to integrate these tracks so that a clear air picture can be obtained in a command center. A popular methodology to achieve this goal is to perform track-to-track fusion, which performs track-to-track association as well as kinematic state vector fusion. This paper seeks to answer analytically the extent of improvement achievable by means of kinetic state vector fusion when the tracks are obtained from dissimilar sensors (e.g., Radar/ESM/IRST/IFF). It is well known that evaluation of the performance of state vector fusion algorithms at steady state must take into account the effects of cross-correlation between eligible tracks introduced by the input noise which, unfortunately, is often neglected because of added computational complexity. In this paper, an expression for the steady-state cross-covariance matrix for a 2D state vector track-to-track fusion is obtained. This matrix is shown to be a function of the parameters of the Kalman filters associated with the candidate tracks being fused. Conditions for positive definiteness of the cross-covariance matrix have been derived and the effect of positive definiteness on performance of track-to-track fusion is also discussed.
Xing, Junliang; Ai, Haizhou; Liu, Liwei; Lao, Shihong
2011-06-01
Multiple object tracking (MOT) is a very challenging task yet of fundamental importance for many practical applications. In this paper, we focus on the problem of tracking multiple players in sports video which is even more difficult due to the abrupt movements of players and their complex interactions. To handle the difficulties in this problem, we present a new MOT algorithm which contributes both in the observation modeling level and in the tracking strategy level. For the observation modeling, we develop a progressive observation modeling process that is able to provide strong tracking observations and greatly facilitate the tracking task. For the tracking strategy, we propose a dual-mode two-way Bayesian inference approach which dynamically switches between an offline general model and an online dedicated model to deal with single isolated object tracking and multiple occluded object tracking integrally by forward filtering and backward smoothing. Extensive experiments on different kinds of sports videos, including football, basketball, as well as hockey, demonstrate the effectiveness and efficiency of the proposed method.
NucliTrack: an integrated nuclei tracking application.
Cooper, Sam; Barr, Alexis R; Glen, Robert; Bakal, Chris
2017-10-15
Live imaging studies give unparalleled insight into dynamic single cell behaviours and fate decisions. However, the challenge of reliably tracking single cells over long periods of time limits both the throughput and ease with which such studies can be performed. Here, we present NucliTrack, a cross platform solution for automatically segmenting, tracking and extracting features from fluorescently labelled nuclei. NucliTrack performs similarly to other state-of-the-art cell tracking algorithms, but NucliTrack's interactive, graphical interface makes it significantly more user friendly. NucliTrack is available as a free, cross platform application and open source Python package. Installation details and documentation are at: http://nuclitrack.readthedocs.io/en/latest/ A video guide can be viewed online: https://www.youtube.com/watch?v=J6e0D9F-qSU Source code is available through Github: https://github.com/samocooper/nuclitrack. A Matlab toolbox is also available at: https://uk.mathworks.com/matlabcentral/fileexchange/61479-samocooper-nuclitrack-matlab. sam@socooper.com. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Development of a railway wagon-track interaction model: Case studies on excited tracks
NASA Astrophysics Data System (ADS)
Xu, Lei; Chen, Xianmai; Li, Xuwei; He, Xianglin
2018-02-01
In this paper, a theoretical framework for modeling the railway wagon-ballast track interactions is presented, in which the dynamic equations of motion of wagon-track systems are constructed by effectively coupling the linear and nonlinear dynamic characteristics of system components. For the linear components, the energy-variational principle is directly used to derive their dynamic matrices, while for the nonlinear components, the dynamic equilibrium method is implemented to deduce the load vectors, based on which a novel railway wagon-ballast track interaction model is developed, and being validated by comparing with the experimental data measured from a heavy haul railway and another advanced model. With this study, extensive contributions in figuring out the critical speed of instability, limits and localizations of track irregularities over derailment accidents are presented by effectively integrating the dynamic simulation model, the track irregularity probabilistic model and time-frequency analysis method. The proposed approaches can provide crucial information to guarantee the running safety and stability of the wagon-track system when considering track geometries and various running speeds.
NASA Astrophysics Data System (ADS)
Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe
2012-04-01
We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking with x-ray imaging in the in-line geometry and demonstrated highly accurate respiratory motion tracking.
NASA Astrophysics Data System (ADS)
Zhu, D.; Henaut, J.; Beeby, S. P.
2014-11-01
This paper reports the design and testing of a power conditioning circuit for a solar powered in-car wireless tag for asset tracking and parking application. Existing long range asset tracking is based on the GSM/GPRS network, which requires expensive subscriptions. The EU FP7 project CEWITT aims at developing a credit card sized autonomous wireless tag with GNSS geo-positioning capabilities to ensure the integrity and cost effectiveness for parking applications. It was found in previous research that solar cells are the most suitable energy sources for this application. This study focused on the power electronics design for the wireless tag. A suitable solar cell was chosen for its high power density. Charging circuit, hysteresis control circuit and LDO were designed and integrated to meet the system requirement. Test results showed that charging efficiency of 80 % had been achieved.
Impaired force control in writer's cramp showing a bilateral deficit in sensorimotor integration.
Bleton, Jean-Pierre; Teremetz, Maxime; Vidailhet, Marie; Mesure, Serge; Maier, Marc A; Lindberg, Påvel G
2014-01-01
Abnormal cortical processing of sensory inputs has been found bilaterally in writer's cramp (WC). This study tested the hypothesis that patients with WC have an impaired ability to adjust grip forces according to visual and somatosensory cues in both hands. A unimanual visuomotor force-tracking task and a bimanual sense of effort force-matching task were performed by WC patients and healthy controls. In visuomotor tracking, WC patients showed increased error, greater variability, and longer release duration than controls. In the force-matching task, patients underestimated, whereas controls overestimated, the force applied in the other hand. Visuomotor tracking and force matching were equally impaired in both the symptomatic and nonsymptomatic hand in WC patients. This study provides evidence of bilaterally impaired grip-force control in WC, when using visual or sense of effort cues. This suggests a generalized subclinical deficit in sensorimotor integration in WC. Copyright © 2013 Movement Disorder Society.
A Magnetic Tracking System based on Highly Sensitive Integrated Hall Sensors
NASA Astrophysics Data System (ADS)
Schlageter, Vincent; Drljaca, Predrag; Popovic, Radivoje S.; KuČERA, Pavel
A tracking system with five degrees of freedom based on a 2D-array of 16 Hall sensors and a permanent magnet is presented in this paper. The sensitivity of the Hall sensors is increased by integrated micro- and external macro-flux-concentrators. Detection distance larger than 20cm (during one hour without calibration) is achieved using a magnet of 0.2cm3. This corresponds to a resolution of the sensors of 0.05µTrms. The position and orientation of the marker is displayed in real time at least 20 times per second. The sensing system is small enough to be hand-held and can be used in a normal environment. This presented tracking system has been successfully applied to follow a small swallowed magnet through the entire human digestive tube. This approach is extremely promising as a new non-invasive diagnostic technique in gastro-enterology.
Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa
2013-04-09
Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.
NASA Astrophysics Data System (ADS)
Huang, Wei; Yang, Xiao-xu; Han, Jun-feng; Wei, Yu; Zhang, Jing; Xie, Mei-lin; Yue, Peng
2016-01-01
High precision tracking platform of celestial navigation with control mirror servo structure form, to solve the disadvantages of big volume and rotational inertia, slow response speed, and so on. It improved the stability and tracking accuracy of platform. Due to optical sensor and mirror are installed on the middle-gimbal, stiffness and resonant frequency requirement for high. Based on the application of finite element modality analysis theory, doing Research on dynamic characteristics of the middle-gimbal, and ANSYS was used for the finite element dynamic emulator analysis. According to the result of the computer to find out the weak links of the structure, and Put forward improvement suggestions and reanalysis. The lowest resonant frequency of optimization middle-gimbal avoid the bandwidth of the platform servo mechanism, and much higher than the disturbance frequency of carrier aircraft, and reduces mechanical resonance of the framework. Reaching provides a theoretical basis for the whole machine structure optimization design of high-precision of autonomous Celestial navigation tracking mirror system.
An Enhanced Non-Coherent Pre-Filter Design for Tracking Error Estimation in GNSS Receivers
Luo, Zhibin; Ding, Jicheng; Zhao, Lin; Wu, Mouyan
2017-01-01
Tracking error estimation is of great importance in global navigation satellite system (GNSS) receivers. Any inaccurate estimation for tracking error will decrease the signal tracking ability of signal tracking loops and the accuracies of position fixing, velocity determination, and timing. Tracking error estimation can be done by traditional discriminator, or Kalman filter-based pre-filter. The pre-filter can be divided into two categories: coherent and non-coherent. This paper focuses on the performance improvements of non-coherent pre-filter. Firstly, the signal characteristics of coherent and non-coherent integration—which are the basis of tracking error estimation—are analyzed in detail. After that, the probability distribution of estimation noise of four-quadrant arctangent (ATAN2) discriminator is derived according to the mathematical model of coherent integration. Secondly, the statistical property of observation noise of non-coherent pre-filter is studied through Monte Carlo simulation to set the observation noise variance matrix correctly. Thirdly, a simple fault detection and exclusion (FDE) structure is introduced to the non-coherent pre-filter design, and thus its effective working range for carrier phase error estimation extends from (−0.25 cycle, 0.25 cycle) to (−0.5 cycle, 0.5 cycle). Finally, the estimation accuracies of discriminator, coherent pre-filter, and the enhanced non-coherent pre-filter are evaluated comprehensively through the carefully designed experiment scenario. The pre-filter outperforms traditional discriminator in estimation accuracy. In a highly dynamic scenario, the enhanced non-coherent pre-filter provides accuracy improvements of 41.6%, 46.4%, and 50.36% for carrier phase error, carrier frequency error, and code phase error estimation, respectively, when compared with coherent pre-filter. The enhanced non-coherent pre-filter outperforms the coherent pre-filter in code phase error estimation when carrier-to-noise density ratio is less than 28.8 dB-Hz, in carrier frequency error estimation when carrier-to-noise density ratio is less than 20 dB-Hz, and in carrier phase error estimation when carrier-to-noise density belongs to (15, 23) dB-Hz ∪ (26, 50) dB-Hz. PMID:29156581
CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API
NASA Astrophysics Data System (ADS)
Boctor, Emad M.; Viswanathan, Anand; Pieper, Steve; Choti, Michael A.; Taylor, Russell H.; Kikinis, Ron; Fichtinger, Gabor
2004-05-01
Ultrasound has become popular in clinical/surgical applications, both as the primary image guidance modality and also in conjunction with other modalities like CT or MRI. Three dimensional ultrasound (3DUS) systems have also demonstrated usefulness in image-guided therapy (IGT). At the same time, however, current lack of open-source and open-architecture multi-modal medical visualization systems prevents 3DUS from fulfilling its potential. Several stand-alone 3DUS systems, like Stradx or In-Vivo exist today. Although these systems have been found to be useful in real clinical setting, it is difficult to augment their functionality and integrate them in versatile IGT systems. To address these limitations, a robotic/freehand 3DUS open environment (CISUS) is being integrated into the 3D Slicer, an open-source research tool developed for medical image analysis and surgical planning. In addition, the system capitalizes on generic application programming interfaces (APIs) for tracking devices and robotic control. The resulting platform-independent open-source system may serve as a valuable tool to the image guided surgery community. Other researchers could straightforwardly integrate the generic CISUS system along with other functionalities (i.e. dual view visualization, registration, real-time tracking, segmentation, etc) to rapidly create their medical/surgical applications. Our current driving clinical application is robotically assisted and freehand 3DUS-guided liver ablation, which is fully being integrated under the CISUS-3D Slicer. Initial functionality and pre-clinical feasibility are demonstrated on phantom and ex-vivo animal models.
Wahn, Basil; König, Peter
2015-01-01
Humans continuously receive and integrate information from several sensory modalities. However, attentional resources limit the amount of information that can be processed. It is not yet clear how attentional resources and multisensory processing are interrelated. Specifically, the following questions arise: (1) Are there distinct spatial attentional resources for each sensory modality? and (2) Does attentional load affect multisensory integration? We investigated these questions using a dual task paradigm: participants performed two spatial tasks (a multiple object tracking task and a localization task), either separately (single task condition) or simultaneously (dual task condition). In the multiple object tracking task, participants visually tracked a small subset of several randomly moving objects. In the localization task, participants received either visual, auditory, or redundant visual and auditory location cues. In the dual task condition, we found a substantial decrease in participants' performance relative to the results of the single task condition. Importantly, participants performed equally well in the dual task condition regardless of the location cues' modality. This result suggests that having spatial information coming from different modalities does not facilitate performance, thereby indicating shared spatial attentional resources for the auditory and visual modality. Furthermore, we found that participants integrated redundant multisensory information similarly even when they experienced additional attentional load in the dual task condition. Overall, findings suggest that (1) visual and auditory spatial attentional resources are shared and that (2) audiovisual integration of spatial information occurs in an pre-attentive processing stage.
NASA Technical Reports Server (NTRS)
Ni, Jianjun (David); Hafermalz, David; Dusl, John; Barton, Rick; Wagner, Ray; Ngo, Phong
2015-01-01
A three-dimensional (3D) Ultra-Wideband (UWB) Time-of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide (CO2) and felt upset. Recent findings indicate that frequent, short-term crew exposure to elevated CO2 levels combined with other physiological impacts of microgravity may lead to a number of detrimental effects, including loss of vision. To evaluate the risks associated with transient elevated CO2 levels and design effective countermeasures, doctors must have access to frequent CO2 measurements in the immediate vicinity of individual crew members along with simultaneous measurements of their location in the space environment. To achieve this goal, a small, low-power, wearable system that integrates an accurate CO2 sensor with an ultra-wideband (UWB) radio capable of real-time location estimation and data communication is proposed. This system would be worn by crew members or mounted on a free-flyer and would automatically gather and transmit sampled sensor data tagged with real-time, high-resolution location information. Under the current proposed effort, a breadboard prototype of such a system has been developed. Although the initial effort is targeted to CO2 monitoring, the concept is applicable to other types of sensors. For the initial effort, a micro-controller is leveraged to integrate a low-power CO2 sensor with a commercially available UWB radio system with ranging capability. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. This report describes the research and development effort for this prototype integrated UWB tracking and CO2 sensing system. The remainder of the report is organized as follows. In Section II, the TOA tracking methodology is introduced and the 3D tracking algorithm is derived. The simulation results are discussed in Section III. In Section VI, prototype system design and field tests are discussed. Some concluding remarks and future works are presented in Section V.
NASA Astrophysics Data System (ADS)
Kirkpatrick, B. A.; Currier, R. D.; Simoniello, C.
2016-02-01
The tagging and tracking of aquatic animals using acoustic telemetry hardware has traditionally been the purview of individual researchers that specialize in single species. Concerns over data privacy and unauthorized use of receiver arrays have prevented the construction of large-scale, multi-species, multi-institution, multi-researcher collaborative acoustic arrays. We have developed a toolset to build the new portal using the Flask microframework, Python language, and Twitter bootstrap. Initial feedback has been overwhelmingly positive. The privacy policy has been praised for its granularity: principal investigators can choose between three levels of privacy for all data and hardware: Completely private - viewable only by the PI Visible to iTAG members Visible to the general public At the time of this writing iTAG is still in the beta stage, but the feedback received to date indicates that with the proper design and security features, and an iterative cycle of feedback from potential members, constructing a collaborative acoustic tracking network system is possible. Initial usage will be limited to the entry and searching for `orphan/mystery' tags, with the integration of historical array deployments and data following shortly thereafter. We have also been working with staff from the Ocean Tracking Network to allow for integration of the two systems. The database schema of iTAG is based on the marine metadata convention for acoustic telemetry. This should permit machine-to-machine data exchange between iTAG and OTN. The integration of animal telemetry data into the GCOOS portal will allow researchers to easily access the physiochemical oceanography data, thus allowing for a more in depth understanding of animal response and usage patterns.
NASA Astrophysics Data System (ADS)
Zhao, Xin; Li, Zili; Dollevoet, Rolf
2013-12-01
The squat, a kind of rolling contact fatigue occurring on the rail top, can excite the high-frequency vehicle-track interaction effectively due to its geometric deviations with a typical wavelength of 20-40 mm, leading to the accelerated deterioration of a track. In this work, a validated 3D transient finite element model is employed to calculate in the time domain the vertical and the longitudinal dynamic contact forces between the wheel and the rail caused by squats. The vehicle-track structure and the wheel-rail continua are both considered in order to include all the important eigencharacteristics of the system related to squats. By introducing the rotational and translational movements of the wheel, the transient wheel-rail rolling contact is solved in detail by a 3D frictional contact model integrated. The contact filter effect is considered automatically in the simulations by the finite size of the contact patch. The present work focuses on the influences of the length, width and depth of a light squat on the resulted dynamic contact forces, for which idealised defect models are used. The growth of a squat is also modelled to a certain extent by a series of defects with different dimensions. The results show that the system is mainly excited at two frequencies separately in the vertical and the longitudinal dynamics. Their superposition explains the typical appearance of mature squats. As a squat grows up, the magnitude of the excited vibration at the lower frequency increases faster than the one at the higher frequency.
NASA Astrophysics Data System (ADS)
Wang, Chang; Wu, Hong-lin; Song, Yun-fei; He, Xing; Yang, Yan-qiang; Tan, Duo-wang
2015-11-01
A modified CARS technique with an intense nonresonant femtosecond laser is presented to drive the structural deformation of liquid nitromethane molecules and track their structural relaxation process. The CARS spectra reveal that the internal rotation of the molecule can couple with the CN symmetric stretching vibration and the molecules undergo ultrafast structural deformation of the CH3 groups from 'opened umbrella' to 'closed umbrella' shape, and then experience a structural recovery process within 720 fs.
The network and transmission of based on the principle of laser multipoint communication
NASA Astrophysics Data System (ADS)
Fu, Qiang; Liu, Xianzhu; Jiang, Huilin; Hu, Yuan; Jiang, Lun
2014-11-01
Space laser communication is the perfectly choose to the earth integrated information backbone network in the future. This paper introduces the structure of the earth integrated information network that is a large capacity integrated high-speed broadband information network, a variety of communications platforms were densely interconnected together, such as the land, sea, air and deep air users or aircraft, the technologies of the intelligent high-speed processing, switching and routing were adopt. According to the principle of maximum effective comprehensive utilization of information resources, get accurately information, fast processing and efficient transmission through inter-satellite, satellite earth, sky and ground station and other links. Namely it will be a space-based, air-based and ground-based integrated information network. It will be started from the trends of laser communication. The current situation of laser multi-point communications were expounded, the transmission scheme of the dynamic multi-point between wireless laser communication n network has been carefully studied, a variety of laser communication network transmission schemes the corresponding characteristics and scope described in detail , described the optical multiplexer machine that based on the multiport form of communication is applied to relay backbone link; the optical multiplexer-based on the form of the segmentation receiver field of view is applied to small angle link, the optical multiplexer-based form of three concentric spheres structure is applied to short distances, motorized occasions, and the multi-point stitching structure based on the rotation paraboloid is applied to inter-satellite communications in detail. The multi-point laser communication terminal apparatus consist of the transmitting and receiving antenna, a relay optical system, the spectroscopic system, communication system and communication receiver transmitter system. The communication forms of optical multiplexer more than four goals or more, the ratio of received power and volume weight will be Obvious advantages, and can track multiple moving targets in flexible.It would to provide reference for the construction of earth integrated information networks.
Relative Displacement Method for Track-Structure Interaction
Ramos, Óscar Ramón; Pantaleón, Marcos J.
2014-01-01
The track-structure interaction effects are usually analysed with conventional FEM programs, where it is difficult to implement the complex track-structure connection behaviour, which is nonlinear, elastic-plastic and depends on the vertical load. The authors developed an alternative analysis method, which they call the relative displacement method. It is based on the calculation of deformation states in single DOF element models that satisfy the boundary conditions. For its solution, an iterative optimisation algorithm is used. This method can be implemented in any programming language or analysis software. A comparison with ABAQUS calculations shows a very good result correlation and compliance with the standard's specifications. PMID:24634610
Pilot Study for Definition of Track Component Load Environments
DOT National Transportation Integrated Search
1981-02-01
This report describes the results of an experimental and analytical effort to define the vehicle induced load environment in an at-grade, concrete tie/ballast transit track structure. The experiment was performed on the UMTA transit track oval at the...
Economics of Concrete and Wood Tie Track Structures
DOT National Transportation Integrated Search
1978-08-01
This report presents results from an evaluation of the economic benefits of concrete- versus wood-tie track. The analysis includes the life-cycle capital, maintenance, and renewal costs for concrete- and wood-tie track for four specific test cases an...
Thermal management and mechanical structures for silicon detector systems
NASA Astrophysics Data System (ADS)
Viehhauser, G.
2015-09-01
Due to the size of current silicon tracking systems system aspects have become a major design driver. This article discusses requirements for the engineering of the mechanical structures and thermal management of such systems and reviews solutions developed to satisfy them. Modern materials and fabrication techniques have been instrumental in constructing these devices and will be discussed here. Finally, this paper will describe current and potential future developments in the engineering of silicon tracking systems which will shape the silicon tracking systems of the future.
1. EXISTING TRASH RAKE STRUCTURE AND STEEL IBEAM TRACK, LOOKING ...
1. EXISTING TRASH RAKE STRUCTURE AND STEEL I-BEAM TRACK, LOOKING EAST/NORTHEAST. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA
Measuring Contours of Coal-Seam Cuts
NASA Technical Reports Server (NTRS)
1983-01-01
Angle transducers measure angle between track sections as longwall shearer proceeds along coal face. Distance transducer functions in conjunction with angle transducers to obtain relative angles at known positions. When cut is complete, accumulated data are stored on cassette tape, and track profile is computed and displayed. Micro-processor-based instrument integrates small changes in angle and distance.
ERIC Educational Resources Information Center
Jian, Yu-Cin; Wu, Chao-Jung
2015-01-01
We investigated strategies used by readers when reading a science article with a diagram and assessed whether semantic and spatial representations were constructed while reading the diagram. Seventy-one undergraduate participants read a scientific article while tracking their eye movements and then completed a reading comprehension test. Our…
User Identification and Tracking in an Educational Web Environment.
ERIC Educational Resources Information Center
Marzo-Lazaro, J. L.; Verdu-Carbo, T.; Fabregat-Gesa, R.
This paper describes a solution to the user identification and tracking problem within an educational World Wide Web environment. The paper begins with an overview of the Teaching Support System project at the University of Girona (Spain); the main objective of the project is to create an integrated set of tools for teachers to use to create and…
ERIC Educational Resources Information Center
Gordon, Peter C.; Hendrick, Randall; Johnson, Marcus; Lee, Yoonhyoung
2006-01-01
The nature of working memory operation during complex sentence comprehension was studied by means of eye-tracking methodology. Readers had difficulty when the syntax of a sentence required them to hold 2 similar noun phrases (NPs) in working memory before syntactically and semantically integrating either of the NPs with a verb. In sentence …
ERIC Educational Resources Information Center
van Hooft, Edwin A. J.; Born, Marise Ph.
2012-01-01
Intentional response distortion or faking among job applicants completing measures such as personality and integrity tests is a concern in personnel selection. The present study aimed to investigate whether eye-tracking technology can improve our understanding of the response process when faking. In an experimental within-participants design, a…
NASA Astrophysics Data System (ADS)
Wachowicz, K.; Murray, B.; Fallone, B. G.
2018-06-01
The recent interest in the integration of external beam radiotherapy with a magnetic resonance (MR) imaging unit offers the potential for real-time adaptive tumour tracking during radiation treatment. The tracking of large tumours which follow a rapid trajectory may best be served by the generation of a projection image from the perspective of the beam source, or ‘beam’s eye view’ (BEV). This type of image projection represents the path of the radiation beam, thus enabling rapid compensations for target translations, rotations and deformations, as well time-dependent critical structure avoidance. MR units have been traditionally incapable of this type of imaging except through lengthy 3D acquisitions and ray tracing procedures. This work investigates some changes to the traditional MR scanner architecture that would permit the direct acquisition of a BEV image suitable for integration with external beam radiotherapy. Based on the theory presented in this work, a phantom was imaged with nonlinear encoding-gradient field patterns to demonstrate the technique. The phantom was constructed with agarose gel tubes spaced two cm apart at their base and oriented to converge towards an imaginary beam source 100 cm away. A corresponding virtual phantom was also created and subjected to the same encoding technique as in the physical demonstration, allowing the method to be tested without hardware limitations. The experimentally acquired and simulated images indicate the feasibility of the technique, showing a substantial amount of blur reduction in a diverging phantom compared to the conventional imaging geometry, particularly with the nonlinear gradients ideally implemented. The theory is developed to demonstrate that the method can be adapted in a number of different configurations to accommodate all proposed integration schemes for MR units and radiotherapy sources. Depending on the configuration, the implementation of this technique will require between two and four additional nonlinear encoding coils.
Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons
Cemgil, Ali Taylan
2017-01-01
We introduce a high precision localization and tracking method that makes use of cheap Bluetooth low-energy (BLE) beacons only. We track the position of a moving sensor by integrating highly unreliable and noisy BLE observations streaming from multiple locations. A novel aspect of our approach is the development of an observation model, specifically tailored for received signal strength indicator (RSSI) fingerprints: a combination based on the optimal transport model of Wasserstein distance. The tracking results of the entire system are compared with alternative baseline estimation methods, such as nearest neighboring fingerprints and an artificial neural network. Our results show that highly accurate estimation from noisy Bluetooth data is practically feasible with an observation model based on Wasserstein distance interpolation combined with the sequential Monte Carlo (SMC) method for tracking. PMID:29109375
Model-Based Localization and Tracking Using Bluetooth Low-Energy Beacons.
Daniş, F Serhan; Cemgil, Ali Taylan
2017-10-29
We introduce a high precision localization and tracking method that makes use of cheap Bluetooth low-energy (BLE) beacons only. We track the position of a moving sensor by integrating highly unreliable and noisy BLE observations streaming from multiple locations. A novel aspect of our approach is the development of an observation model, specifically tailored for received signal strength indicator (RSSI) fingerprints: a combination based on the optimal transport model of Wasserstein distance. The tracking results of the entire system are compared with alternative baseline estimation methods, such as nearest neighboring fingerprints and an artificial neural network. Our results show that highly accurate estimation from noisy Bluetooth data is practically feasible with an observation model based on Wasserstein distance interpolation combined with the sequential Monte Carlo (SMC) method for tracking.
Robust adaptive uniform exact tracking control for uncertain Euler-Lagrange system
NASA Astrophysics Data System (ADS)
Yang, Yana; Hua, Changchun; Li, Junpeng; Guan, Xinping
2017-12-01
This paper offers a solution to the robust adaptive uniform exact tracking control for uncertain nonlinear Euler-Lagrange (EL) system. An adaptive finite-time tracking control algorithm is designed by proposing a novel nonsingular integral terminal sliding-mode surface. Moreover, a new adaptive parameter tuning law is also developed by making good use of the system tracking errors and the adaptive parameter estimation errors. Thus, both the trajectory tracking and the parameter estimation can be achieved in a guaranteed time adjusted arbitrarily based on practical demands, simultaneously. Additionally, the control result for the EL system proposed in this paper can be extended to high-order nonlinear systems easily. Finally, a test-bed 2-DOF robot arm is set-up to demonstrate the performance of the new control algorithm.
Integrity monitoring of IGS products
NASA Technical Reports Server (NTRS)
Zumberge, James F.; Plag, H. -P.
2005-01-01
The IGS has successfully produced precise GPS and GLONASS transmitter parameters, coordinates of IGS tracking stations, Earth rotation parameters, and atmospheric parameters. In this paper we discuss the concepts of integrity monitoring, system monitoring, and performance assessment, all in the context of IGS products. We report on a recent survey of IGS product users, and propose an integrity strategy for the IGS.
Partial Automated Alignment and Integration System
NASA Technical Reports Server (NTRS)
Kelley, Gary Wayne (Inventor)
2014-01-01
The present invention is a Partial Automated Alignment and Integration System (PAAIS) used to automate the alignment and integration of space vehicle components. A PAAIS includes ground support apparatuses, a track assembly with a plurality of energy-emitting components and an energy-receiving component containing a plurality of energy-receiving surfaces. Communication components and processors allow communication and feedback through PAAIS.
NASA Astrophysics Data System (ADS)
Norton, Andrew S.
An integral component of managing game species is an understanding of population dynamics and relative abundance. Harvest data are frequently used to estimate abundance of white-tailed deer. Unless harvest age-structure is representative of the population age-structure and harvest vulnerability remains constant from year to year, these data alone are of limited value. Additional model structure and auxiliary information has accommodated this shortcoming. Specifically, integrated age-at-harvest (AAH) state-space population models can formally combine multiple sources of data, and regularization via hierarchical model structure can increase flexibility of model parameters. I collected known fates data, which I evaluated and used to inform trends in survival parameters for an integrated AAH model. I used temperature and snow depth covariates to predict survival outside of the hunting season, and opening weekend temperature and percent of corn harvest covariates to predict hunting season survival. When auxiliary empirical data were unavailable for the AAH model, moderately informative priors provided sufficient information for convergence and parameter estimates. The AAH model was most sensitive to errors in initial abundance, but this error was calibrated after 3 years. Among vital rates, the AAH model was most sensitive to reporting rates (percentage of mortality during the hunting season related to harvest). The AAH model, using only harvest data, was able to track changing abundance trends due to changes in survival rates even when prior models did not inform these changes (i.e. prior models were constant when truth varied). I also compared AAH model results with estimates from the Wisconsin Department of Natural Resources (WIDNR). Trends in abundance estimates from both models were similar, although AAH model predictions were systematically higher than WIDNR estimates in the East study area. When I incorporated auxiliary information (i.e. integrated AAH model) about survival outside the hunting season from known fates data, predicted trends appeared more closely related to what was expected. Disagreements between the AAH model and WIDNR estimates in the East were likely related to biased predictions for reporting and survival rates from the AAH model.
Learning Collaborative Sparse Representation for Grayscale-Thermal Tracking.
Li, Chenglong; Cheng, Hui; Hu, Shiyi; Liu, Xiaobai; Tang, Jin; Lin, Liang
2016-09-27
Integrating multiple different yet complementary feature representations has been proved to be an effective way for boosting tracking performance. This paper investigates how to perform robust object tracking in challenging scenarios by adaptively incorporating information from grayscale and thermal videos, and proposes a novel collaborative algorithm for online tracking. In particular, an adaptive fusion scheme is proposed based on collaborative sparse representation in Bayesian filtering framework. We jointly optimize sparse codes and the reliable weights of different modalities in an online way. In addition, this work contributes a comprehensive video benchmark, which includes 50 grayscale-thermal sequences and their ground truth annotations for tracking purpose. The videos are with high diversity and the annotations were finished by one single person to guarantee consistency. Extensive experiments against other stateof- the-art trackers with both grayscale and grayscale-thermal inputs demonstrate the effectiveness of the proposed tracking approach. Through analyzing quantitative results, we also provide basic insights and potential future research directions in grayscale-thermal tracking.
A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking
Wang, Xuedong; Sun, Shudong; Corchado, Juan M.
2017-01-01
We review some advances of the particle filtering (PF) algorithm that have been achieved in the last decade in the context of target tracking, with regard to either a single target or multiple targets in the presence of false or missing data. The first part of our review is on remarkable achievements that have been made for the single-target PF from several aspects including importance proposal, computing efficiency, particle degeneracy/impoverishment and constrained/multi-modal systems. The second part of our review is on analyzing the intractable challenges raised within the general multitarget (multi-sensor) tracking due to random target birth and termination, false alarm, misdetection, measurement-to-track (M2T) uncertainty and track uncertainty. The mainstream multitarget PF approaches consist of two main classes, one based on M2T association approaches and the other not such as the finite set statistics-based PF. In either case, significant challenges remain due to unknown tracking scenarios and integrated tracking management. PMID:29168772
Highway-railway at-grade crossing structures : long term settlement measurements and assessments.
DOT National Transportation Integrated Search
2016-03-22
A common maintenance technique to correct track geometry at bridge transitions is hand tamping. The first section presents a non-invasive track monitoring system involving high-speed video cameras that evaluates the change in track behavior before an...
Predictive processing of novel compounds: evidence from Japanese.
Hirose, Yuki; Mazuka, Reiko
2015-03-01
Our study argues that pre-head anticipatory processing operates at a level below the level of the sentence. A visual-world eye-tracking study demonstrated that, in processing of Japanese novel compounds, the compound structure can be constructed prior to the head if the prosodic information on the preceding modifier constituent signals that the Compound Accent Rule (CAR) is being applied. This prosodic cue rules out the single head analysis of the modifier noun, which would otherwise be a natural and economical choice. Once the structural representation for the head is computed in advance, the parser becomes faster in identifying the compound meaning. This poses a challenge to models maintaining that structural integration and word recognition are separate processes. At the same time, our results, together with previous findings, suggest the possibility that there is some degree of staging during the processing of different sources of information during the comprehension of compound nouns. Copyright © 2014 Elsevier B.V. All rights reserved.
Mahoney, J. Matthew; Titiz, Ali S.; Hernan, Amanda E.; Scott, Rod C.
2016-01-01
Hippocampal neural systems consolidate multiple complex behaviors into memory. However, the temporal structure of neural firing supporting complex memory consolidation is unknown. Replay of hippocampal place cells during sleep supports the view that a simple repetitive behavior modifies sleep firing dynamics, but does not explain how multiple episodes could be integrated into associative networks for recollection during future cognition. Here we decode sequential firing structure within spike avalanches of all pyramidal cells recorded in sleeping rats after running in a circular track. We find that short sequences that combine into multiple long sequences capture the majority of the sequential structure during sleep, including replay of hippocampal place cells. The ensemble, however, is not optimized for maximally producing the behavior-enriched episode. Thus behavioral programming of sequential correlations occurs at the level of short-range interactions, not whole behavioral sequences and these short sequences are assembled into a large and complex milieu that could support complex memory consolidation. PMID:26866597
Advances in Monitoring Cell-Based Therapies with Magnetic Resonance Imaging: Future Perspectives
Ngen, Ethel J.; Artemov, Dmitri
2017-01-01
Cell-based therapies are currently being developed for applications in both regenerative medicine and in oncology. Preclinical, translational, and clinical research on cell-based therapies will benefit tremendously from novel imaging approaches that enable the effective monitoring of the delivery, survival, migration, biodistribution, and integration of transplanted cells. Magnetic resonance imaging (MRI) offers several advantages over other imaging modalities for elucidating the fate of transplanted cells both preclinically and clinically. These advantages include the ability to image transplanted cells longitudinally at high spatial resolution without exposure to ionizing radiation, and the possibility to co-register anatomical structures with molecular processes and functional changes. However, since cellular MRI is still in its infancy, it currently faces a number of challenges, which provide avenues for future research and development. In this review, we describe the basic principle of cell-tracking with MRI; explain the different approaches currently used to monitor cell-based therapies; describe currently available MRI contrast generation mechanisms and strategies for monitoring transplanted cells; discuss some of the challenges in tracking transplanted cells; and suggest future research directions. PMID:28106829
Human Centered Hardware Modeling and Collaboration
NASA Technical Reports Server (NTRS)
Stambolian Damon; Lawrence, Brad; Stelges, Katrine; Henderson, Gena
2013-01-01
In order to collaborate engineering designs among NASA Centers and customers, to in clude hardware and human activities from multiple remote locations, live human-centered modeling and collaboration across several sites has been successfully facilitated by Kennedy Space Center. The focus of this paper includes innovative a pproaches to engineering design analyses and training, along with research being conducted to apply new technologies for tracking, immersing, and evaluating humans as well as rocket, vehic le, component, or faci lity hardware utilizing high resolution cameras, motion tracking, ergonomic analysis, biomedical monitoring, wor k instruction integration, head-mounted displays, and other innovative human-system integration modeling, simulation, and collaboration applications.
Receding horizon online optimization for torque control of gasoline engines.
Kang, Mingxin; Shen, Tielong
2016-11-01
This paper proposes a model-based nonlinear receding horizon optimal control scheme for the engine torque tracking problem. The controller design directly employs the nonlinear model exploited based on mean-value modeling principle of engine systems without any linearizing reformation, and the online optimization is achieved by applying the Continuation/GMRES (generalized minimum residual) approach. Several receding horizon control schemes are designed to investigate the effects of the integral action and integral gain selection. Simulation analyses and experimental validations are implemented to demonstrate the real-time optimization performance and control effects of the proposed torque tracking controllers. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Hueschen, R. M.
1984-01-01
The Digital Integrated Automatic Landing System (DIALS) is discussed. The DIALS is a modern control theory design performing all the maneuver modes associated with current autoland systems: localizer capture and track, glideslope capture and track, decrab, and flare. The DIALS is an integrated full-state feedback system which was designed using direct-digital methods. The DIALS uses standard aircraft sensors and the digital Microwave Landing System (MLS) signals as measurements. It consists of separately designed longitudinal and lateral channels although some cross-coupling variables are fed between channels for improved state estimates and trajectory commands. The DIALS was implemented within the 16-bit fixed-point flight computers of the ATOPS research aircraft, a small twin jet commercial transport outfitted with a second research cockpit and a fly-by-wire system. The DIALS became the first modern control theory design to be successfully flight tested on a commercial-type aircraft. Flight tests were conducted in late 1981 using a wide coverage MLS on Runway 22 at Wallops Flight Center. All the modes were exercised including the capture and track of steep glidescopes up to 5 degrees.
Micro-miniature radio frequency transmitter for communication and tracking applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crutcher, R.I.; Emery, M.S.; Falter, K.G.
1996-12-31
A micro-miniature radio frequency (rf) transmitter has been developed and demonstrated by the Oak Ridge National Laboratory. The objective of the rf transmitter development was to maximize the transmission distance while drastically shrinking the overall transmitter size, including antenna. Based on analysis and testing, an application-specific integrated circuit (ASIC) with a 16-GHz gallium arsenide (GaAs) oscillator and integrated on-chip antenna was designed and fabricated using microwave monolithic integrated circuit (MMIC) technology. Details of the development and the results of various field tests will be discussed. The rf transmitter is applicable to covert surveillance and tracking scenarios due to its smallmore » size of 2.2 x 2.2 mm, including the antenna. Additionally, the 16-GHz frequency is well above the operational range of consumer-grade radio scanners, providing a degree of protection from unauthorized interception. Variations of the transmitter design have been demonstrated for tracking and tagging beacons, transmission of digital data, and transmission of real-time analog video from a surveillance camera. Preliminary laboratory measurements indicate adaptability to direct-sequence spread-spectrum transmission, providing a low probability of intercept and/or detection. Concepts related to law enforcement applications will be presented.« less
Simultaneous measurement of sleep and feeding in individual Drosophila
Murphy, Keith R.; Park, Jin Hong; Huber, Robert; Ja, William W.
2018-01-01
Drosophila is widely used for the dissection of genetic and neuronal mechanisms of behavior. Recently, flies have emerged as a model for investigating the regulation of feeding and sleep. Although typically studied in isolation, increasing evidence points to a fundamental connection between these behaviors. Thus, a system for measuring sleep and feeding simultaneously in a single integrated system is important for interpreting behavioral shifts of either state. Here, we describe the construction and use of the Activity Recording CAFE (ARC), a machine-vision based system for the integrated measurement of sleep and feeding in individual Drosophila. Flies feed on liquid food in a microcapillary and consumption is measured by automated tracking of the liquid meniscus over time. Sleep measurements are obtained from positional tracking of the animals and arousal threshold can be determined by vibrational stimulus response. Using this system, a single computer and experimenter can track diverse behaviors from up to 60 individual flies in a single integrated system. The ARC is efficiently assembled with minimal training and each experiment can be run for up to ~7 days, with a total setup and breakdown time of about 2 hours. PMID:29022943
NASA Astrophysics Data System (ADS)
Miranda, Alan; Staelens, Steven; Stroobants, Sigrid; Verhaeghe, Jeroen
2017-03-01
Preclinical positron emission tomography (PET) imaging in small animals is generally performed under anesthesia to immobilize the animal during scanning. More recently, for rat brain PET studies, methods to perform scans of unrestrained awake rats are being developed in order to avoid the unwanted effects of anesthesia on the brain response. Here, we investigate the use of a projected structure stereo camera to track the motion of the rat head during the PET scan. The motion information is then used to correct the PET data. The stereo camera calculates a 3D point cloud representation of the scene and the tracking is performed by point cloud matching using the iterative closest point algorithm. The main advantage of the proposed motion tracking is that no intervention, e.g. for marker attachment, is needed. A manually moved microDerenzo phantom experiment and 3 awake rat [18F]FDG experiments were performed to evaluate the proposed tracking method. The tracking accuracy was 0.33 mm rms. After motion correction image reconstruction, the microDerenzo phantom was recovered albeit with some loss of resolution. The reconstructed FWHM of the 2.5 and 3 mm rods increased with 0.94 and 0.51 mm respectively in comparison with the motion-free case. In the rat experiments, the average tracking success rate was 64.7%. The correlation of relative brain regional [18F]FDG uptake between the anesthesia and awake scan reconstructions was increased from on average 0.291 (not significant) before correction to 0.909 (p < 0.0001) after motion correction. Markerless motion tracking using structured light can be successfully used for tracking of the rat head for motion correction in awake rat PET scans.
Developing an electronic system to manage and track emergency medications.
Hamm, Mark W; Calabrese, Samuel V; Knoer, Scott J; Duty, Ashley M
2018-03-01
The development of a Web-based program to track and manage emergency medications with radio frequency identification (RFID) is described. At the Cleveland Clinic, medication kit restocking records and dispense locations were historically documented using a paper record-keeping system. The Cleveland Clinic investigated options to replace the paper-based tracking logs with a Web-based program that could track the real-time location and inventory of emergency medication kits. Vendor collaboration with a board of pharmacy (BOP) compliance inspector and pharmacy personnel resulted in the creation of a dual barcoding system using medication and pocket labels. The Web-based program was integrated with a Cleveland Clinic-developed asset tracking system using active RFID tags to give the real-time location of the medication kit. The Web-based program and the asset tracking system allowed identification of kits nearing expiration or containing recalled medications. Conversion from a paper-based system to a Web-based program began in October 2013. After 119 days, data were evaluated to assess the success of the conversion. Pharmacists spent an average of 27 minutes per day approving medication kits during the postimplementation period versus 102 minutes daily using the paper-based system, representing a 74% decrease in pharmacist time spent on this task. Prospective reports are generated monthly to allow the manager to assess the expected workload and adjust staffing for the next month. Implementation of a BOP-approved Web-based system for managing and tracking emergency medications with RFID integration decreased pharmacist review time, minimized compliance risk, and increased access to real-time data. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Tracking the deployment of the integrated metropolitan ITS infrastructure in Columbus : FY99 results
DOT National Transportation Integrated Search
2000-01-01
In January 1996, Secretary Pea set a goal of deploying the integrated metropolitan Intelligent Transportation System (ITS) infrastructure in 75 of the nations largest metropolitan areas by 2006. In 1997, the U.S. Department of Transportation ini...
Tracking the deployment of the integrated metropolitan ITS infrastructure in Fresno : FY99 results
DOT National Transportation Integrated Search
2000-01-01
In January 1996, Secretary Pea set a goal of deploying the integrated metropolitan Intelligent Transportation System (ITS) infrastructure in 75 of the nations largest metropolitan areas by 2006. In 1997, the U.S. Department of Transportation ini...
DOT National Transportation Integrated Search
2000-01-01
In January 1996, Secretary Pea set a goal of deploying the integrated metropolitan Intelligent Transportation System (ITS) infrastructure in 75 of the nations largest metropolitan areas by 2006. In 1997, the U.S. Department of Transportation ini...
DOT National Transportation Integrated Search
2000-01-01
In January 1996, Secretary Pea set a goal of deploying the integrated metropolitan Intelligent Transportation System (ITS) infrastructure in 75 of the nations largest metropolitan areas by 2006. In 1997, the U.S. Department of Transportation ini...
DOT National Transportation Integrated Search
2000-01-01
In January 1996, Secretary Pea set a goal of deploying the integrated metropolitan Intelligent Transportation System (ITS) infrastructure in 75 of the nations largest metropolitan areas by 2006. In 1997, the U.S. Department of Transportation ini...
DOT National Transportation Integrated Search
2000-01-01
In January 1996, Secretary Pea set a goal of deploying the integrated metropolitan Intelligent Transportation System (ITS) infrastructure in 75 of the nations largest metropolitan areas by 2006. In 1997, the U.S. Department of Transportation ini...
DOT National Transportation Integrated Search
2000-01-01
In January 1996, Secretary Pea set a goal of deploying the integrated metropolitan Intelligent Transportation System (ITS) infrastructure in 75 of the nations largest metropolitan areas by 2006. In 1997, the U.S. Department of Transportation ini...
Tracking the deployment of the integrated metropolitan ITS infrastructure in Wichita : FY99 results
DOT National Transportation Integrated Search
2000-01-01
In January 1996, Secretary Pea set a goal of deploying the integrated metropolitan Intelligent Transportation System (ITS) infrastructure in 75 of the nations largest metropolitan areas by 2006. In 1997, the U.S. Department of Transportation ini...
Tracking the deployment of the integrated metropolitan ITS infrastructure in Phoenix : FY99 results
DOT National Transportation Integrated Search
2000-01-01
In January 1996, Secretary Pea set a goal of deploying the integrated metropolitan Intelligent Transportation System (ITS) infrastructure in 75 of the nations largest metropolitan areas by 2006. In 1997, the U.S. Department of Transportation ini...
DOT National Transportation Integrated Search
2000-01-01
In January 1996, Secretary Pea set a goal of deploying the integrated metropolitan Intelligent Transportation System (ITS) infrastructure in 75 of the nations largest metropolitan areas by 2006. In 1997, the U.S. Department of Transportation ini...
Tracking the deployment of the integrated metropolitan ITS infrastructure in Orlando : FY99 results
DOT National Transportation Integrated Search
2000-01-01
In January 1996, Secretary Pea set a goal of deploying the integrated metropolitan Intelligent Transportation System (ITS) infrastructure in 75 of the nations largest metropolitan areas by 2006. In 1997, the U.S. Department of Transportation ini...