Seki, Eiko; Matsushita, Isao; Sugiyama, Eiji; Taki, Hirohumi; Shinoda, Koichiro; Hounoki, Hiroyuki; Motomura, Hiraku; Kimura, Tomoatsu
2009-04-01
The aim of the present study was to assess the influence of tumor necrosis factor (TNF)-blocking therapies on weight-bearing joints in patients with rheumatoid arthritis. Changes in clinical variables and radiological findings in 213 weight-bearing joints (69 hip joints, 63 knee joints, and 81 ankle joints) of 42 consecutive patients were investigated at baseline and at 1 year of TNF-blocking therapies. Structural damage to the weight-bearing joints was assessed using the Larsen scoring method. Detailed comparisons of the sizes and locations of erosions were performed for each set of radiographs of the respective joints. Assessment of radiographs of the 213 weight-bearing joints indicated progression of the Larsen grade in eight joints. Another five joints without Larsen grade progression showed apparent radiographic progression of joint damage based on increases in bony erosions. Overall, 13 joints (6%) of eight patients (19%) showed progression of joint damage after 1 year of TNF-blocking therapies. Analysis of each baseline grade indicated that radiographic progression of joint damage was inhibited in most grade 0-II joints. On the other hand, all hip and knee joints with pre-existing damage of grade III/IV showed apparent progression even in patients with good response. The results further suggested that radiographic progression may occur in less damaged joints when the patients were non-responders to the therapy. Among the weight-bearing joints, ankle joints showed different radiographic behavior and four ankle joints displayed improvement of radiographic damage. Early initiation of anti-TNF therapy should be necessary especially when the patients are starting to show early structural damage in weight-bearing joints.
Axelsen, Mette Bjørndal; Eshed, Iris; Duer-Jensen, Anne; Møller, Jakob M; Pedersen, Susanne Juhl; Østergaard, Mikkel
2014-05-01
The aim of this study was to investigate the ability of whole-body MRI (WBMRI) to visualize inflammation [synovitis, bone marrow oedema (BME) and enthesitis] and structural damage in patients with RA. The 3T WBMR images were acquired in a head-to-toe scan in 20 patients with RA and at least one swollen or tender joint. Short Tau Inversion Recovery and pre- and post-contrast T1-weighted images were evaluated for readability and the presence/absence of inflammation (synovitis, BME and enthesitis) and structural damage (erosions and fat infiltrations) in 76 peripheral joints, 30 entheseal sites and in the spine. The readability was >70% for all individual joints, except for the most peripheral joints of the hands and feet. Synovitis was most frequent in the wrist, first tarsometatarsal, first CMC joints and glenohumeral joints (67-61%); BME in the wrist, CMC, acromioclavicular and glenohumeral joints (45-35%) and erosions in the wrist, MTP and CMC joints (19-16%). Enthesitis at ≥ 1 site was registered in 16 patients. BME was frequently seen in the cervical (20%) but not the thoracic and lumbar spine, while fat infiltrations and erosions were rare. The intrareader agreement was high (85-100%) for all pathologies. The agreement between WBMRI and clinical findings was low. Peripheral and axial inflammation and structural damage at joints and entheses was frequently identified by WBMRI, and more frequently than by clinical examination. WBMRI is a promising tool for evaluation of the total inflammatory load of inflammation (an MRI joint count) and structural damage in RA patients.
Progressive Damage Analysis of Bonded Composite Joints
NASA Technical Reports Server (NTRS)
Leone, Frank A., Jr.; Girolamo, Donato; Davila, Carlos G.
2012-01-01
The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented durable redundant joint. Both designs involve honeycomb sandwich structures with carbon/epoxy facesheets joined using adhesively bonded doublers.Progressive damage modeling allows for the prediction of the initiation and evolution of damage within a structure. For structures that include multiple material systems, such as the joint designs under consideration, the number of potential failure mechanisms that must be accounted for drastically increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, intraply matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The bonded joints were modeled using highly parametric, explicitly solved finite element models, with damage modeling implemented via custom user-written subroutines. Each ply was discretely meshed using three-dimensional solid elements. Layers of cohesive elements were included between each ply to account for the possibility of delaminations and were used to model the adhesive layers forming the joint. Good correlation with experimental results was achieved both in terms of load-displacement history and the predicted failure mechanism(s).
Progressive Damage Modeling of Durable Bonded Joint Technology
NASA Technical Reports Server (NTRS)
Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.
2013-01-01
The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.
Fatigue Damage Monitoring of a Composite Step Lap Joint Using Distributed Optical Fibre Sensors
Wong, Leslie; Chowdhury, Nabil; Wang, John; Chiu, Wing Kong; Kodikara, Jayantha
2016-01-01
Over the past few decades, there has been a considerable interest in the use of distributed optical fibre sensors (DOFS) for structural health monitoring of composite structures. In aerospace-related work, health monitoring of the adhesive joints of composites has become more significant, as they can suffer from cracking and delamination, which can have a significant impact on the integrity of the joint. In this paper, a swept-wavelength interferometry (SWI) based DOFS technique is used to monitor the fatigue in a flush step lap joint composite structure. The presented results will show the potential application of distributed optical fibre sensor for damage detection, as well as monitoring the fatigue crack growth along the bondline of a step lap joint composite structure. The results confirmed that a distributed optical fibre sensor is able to enhance the detection of localised damage in a structure. PMID:28773496
Recent Advances in Tissue Engineering Strategies for the Treatment of Joint Damage.
Stephenson, Makeda K; Farris, Ashley L; Grayson, Warren L
2017-08-01
While the clinical potential of tissue engineering for treating joint damage has yet to be realized, research and commercialization efforts in the field are geared towards overcoming major obstacles to clinical translation, as well as towards achieving engineered grafts that recapitulate the unique structures, function, and physiology of the joint. In this review, we describe recent advances in technologies aimed at obtaining biomaterials, stem cells, and bioreactors that will enable the development of effective tissue-engineered treatments for repairing joint damage. 3D printing of scaffolds is aimed at improving the mechanical structure and microenvironment necessary for bone regeneration within a damaged joint. Advances in our understanding of stem cell biology and cell manufacturing processes are informing translational strategies for the therapeutic use of allogeneic and autologous cells. Finally, bioreactors used in combination with cells and biomaterials are promising strategies for generating large tissue grafts for repairing damaged tissues in pre-clinical models. Together, these advances along with ongoing research directions are making tissue engineering increasingly viable for the treatment of joint damage.
Experimental investigation on frequency shifting of imperfect adhesively bonded pipe joints
NASA Astrophysics Data System (ADS)
Haiyam, F. N.; Hilmy, I.; Sulaeman, E.; Firdaus, T.; Adesta, E. Y. T.
2018-01-01
Inspection tests for any manufactured structure are compulsory in order to detect the existence of damage.It is to ensure the product integrity, reliability and to avoid further catastrophic failure. In this research, modal analysis was utilized to detect structural damage as one of the Non Destructive Testing (NDT) methods. Comparing the vibration signal of a healthy structure with a non-healthy signal was performed. A modal analysis of an adhesively bonded pipe joint was investigated with a healthy joint as a reference. The damage joint was engineered by inserting a nylon fiber, which act as an impurity at adhesive region. The impact test using hammer was utilized in this research. Identification of shifting frequency of a free supported and clamped pipe joint was performed.It was found that shifting frequency occurred to the lower side by 5%.
Lamb wave propagation in Z-pin reinforced co-cured composite pi-joints
NASA Astrophysics Data System (ADS)
Swenson, Eric D.; Soni, Som R.; Kapoor, Hitesh
2010-04-01
This paper presents an initial study on Lamb wave propagation characteristics in z-pin reinforced, co-cured composite pi-joints for the purposes of structural health monitoring (SHM). Pi-joint test articles were designed and created to replicate a co-cured, all composite skin-spar joint found within a typical aircraft wing structure. Because pi-joints exhibit various complex damage modes, formal studies are required if SHM systems are to be developed to monitor these types of joints for potential damage. Experiments were conducted on a undamaged (healthy) and damaged test articles where Lamb waves were excited using one lead zirconate titanate (PZT) transducer. A three-dimensional (3D) scanning laser Doppler vibrometer (LDV) was used to collect high-density scans of both the in-plane and out-of-plane velocity measurements. In the damaged test article, where delamination, matrix cracking, and fiber breakage can clearly be seen, changes in both the fundamental antisymmetric A0 and symmetric S0 Lamb wave modes are apparent. In both test articles, the effects of narrow geometry, discontinuity due to the attachment of the web, and thickness has detectable effects on Lamb wave propagation. From the comparisons between Lamb waves propagating through the undamaged and damaged test articles, it is clear that damage can be detected using Lamb waves in z-pin reinforced, co-cured composite pi-joints for this case of extensive damage.
Stefanik, J J; Niu, J; Gross, K D; Roemer, F W; Guermazi, A; Felson, D T
2013-05-01
To describe the prevalence of magnetic resonance imaging (MRI) detected structural damage in the patellofemoral joint (PFJ) and tibiofemoral joint (TFJ) in a population-based cohort. A secondary aim was to evaluate the patterns of compartmental involvement in knees with pain, between men and women, and in different age and body mass index (BMI) categories. We studied 970 knees, one knee per subject, from the Framingham Osteoarthritis Study, a population-based cohort study of persons 51-92 years old. Cartilage damage and bone marrow lesions (BMLs) were assessed using the Whole Organ Magnetic Resonance Imaging Score (WORMS). The prevalence of isolated PFJ, isolated TFJ, and mixed structural damage was determined using the following definitions: any cartilage damage, full thickness cartilage loss, any BML, and the combination of full thickness cartilage loss with any BML. The mean age and BMI was 63.4 years and 28.6 m/kg(2), respectively; 57% were female. Isolated PFJ damage occurred in 15-20% of knees and isolated TFJ damage occurred in 8-17% of knees depending on the definition used. The prevalence of isolated PFJ damage was greater than isolated TFJ damage using all definitions except the any BML definition. This pattern was similar between genders and among age and BMI categories. In those with knee pain, isolated PFJ was at least as common as TFJ damage depending on the definition used. Using MRI to assess knee joint structural damage, isolated PFJ damage was at least as common as, if not more common than, isolated TFJ damage. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Lin, Shih-Yung; Splinter, Scott C.; Tarkenton, Chris; Paddock, David A.; Smeltzer, Stanley S.; Ghose, Sayata; Guzman, Juan C.; Stukus, Donald J.; McCarville, Douglas A.
2013-01-01
The development of durable bonded joint technology for assembling composite structures is an essential component of future space technologies. While NASA is working toward providing an entirely new capability for human space exploration beyond low Earth orbit, the objective of this project is to design, fabricate, analyze, and test a NASA patented durable redundant joint (DRJ) and a NASA/Boeing co-designed fluted-core joint (FCJ). The potential applications include a wide range of sandwich structures for NASA's future launch vehicles. Three types of joints were studied -- splice joint (SJ, as baseline), DRJ, and FCJ. Tests included tension, after-impact tension, and compression. Teflon strips were used at the joint area to increase failure strength by shifting stress concentration to a less sensitive area. Test results were compared to those of pristine coupons fabricated utilizing the same methods. Tensile test results indicated that the DRJ design was stiffer, stronger, and more impact resistant than other designs. The drawbacks of the DRJ design were extra mass and complex fabrication processes. The FCJ was lighter than the DRJ but less impact resistant. With barely visible but detectable impact damages, all three joints showed no sign of tensile strength reduction. No compression test was conducted on any impact-damaged sample due to limited scope and resource. Failure modes and damage propagation were also studied to support progressive damage modeling of the SJ and the DRJ.
Adhesive Characterization and Progressive Damage Analysis of Bonded Composite Joints
NASA Technical Reports Server (NTRS)
Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung
2014-01-01
The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.
In situ damage detection in frame structures through coupled response measurements
NASA Astrophysics Data System (ADS)
Liu, D.; Gurgenci, H.; Veidt, M.
2004-05-01
Due to the existence of global modes and local modes of the neighbouring members, damage detection on a structure is more challenging than damage on isolated beams. Detection of an artificial circumferential crack on a joint in a frame-like welded structure is studied in this paper using coupled response measurements. Similarity to real engineering structures is maintained in the fabrication of the test frame. Both the chords and the branch members have hollow sections and the branch members have smaller sizes. The crack is created by a hacksaw on a joint where a branch meets the chord. The methodology is first demonstrated on a single hollow section beam. The test results are then presented for the damaged and undamaged frame. The existence of the damage is clearly observable from the experimental results. It is suggested that this approach offers the potential to detect damage in welded structures such as cranes, mining equipment, steel-frame bridges, naval and offshore structures.
Damage detection of an in-service condensation pipeline joint
NASA Astrophysics Data System (ADS)
Briand, Julie; Rezaei, Davood; Taheri, Farid
2010-04-01
The early detection of damage in structural or mechanical systems is of vital importance. With early detection, the damage may be repaired before the integrity of the system is jeopardized, resulting in monetary losses, loss of life or limb, and environmental impacts. Among the various types of structural health monitoring techniques, vibration-based methods are of significant interest since the damage location does not need to be known beforehand, making it a more versatile approach. The non-destructive damage detection method used for the experiments herein is a novel vibration-based method which uses an index called the EMD Energy Damage Index, developed with the aim of providing improved qualitative results compared to those methods currently available. As part of an effort to establish the integrity and limitation of this novel damage detection method, field testing was completed on a mechanical pipe joint on a condensation line, located in the physical plant of Dalhousie University. Piezoceramic sensors, placed at various locations around the joint were used to monitor the free vibration of the pipe imposed through the use of an impulse hammer. Multiple damage progression scenarios were completed, each having a healthy state and multiple damage cases. Subsequently, the recorded signals from the healthy and damaged joint were processed through the EMD Energy Damage Index developed in-house in an effort to detect the inflicted damage. The proposed methodology successfully detected the inflicted damages. In this paper, the effects of impact location, sensor location, frequency bandwidth, intrinsic mode functions, and boundary conditions are discussed.
Structural health management of aerospace hotspots under fatigue loading
NASA Astrophysics Data System (ADS)
Soni, Sunilkumar
Sustainability and life-cycle assessments of aerospace systems, such as aircraft structures and propulsion systems, represent growing challenges in engineering. Hence, there has been an increasing demand in using structural health monitoring (SHM) techniques for continuous monitoring of these systems in an effort to improve safety and reduce maintenance costs. The current research is part of an ongoing multidisciplinary effort to develop a robust SHM framework resulting in improved models for damage-state awareness and life prediction, and enhancing capability of future aircraft systems. Lug joints, a typical structural hotspot, were chosen as the test article for the current study. The thesis focuses on integrated SHM techniques for damage detection and characterization in lug joints. Piezoelectric wafer sensors (PZTs) are used to generate guided Lamb waves as they can be easily used for onboard applications. Sensor placement in certain regions of a structural component is not feasible due to the inaccessibility of the area to be monitored. Therefore, a virtual sensing concept is introduced to acquire sensor data from finite element (FE) models. A full three dimensional FE analysis of lug joints with piezoelectric transducers, accounting for piezoelectrical-mechanical coupling, was performed in Abaqus and the sensor signals were simulated. These modeled sensors are called virtual sensors. A combination of real data from PZTs and virtual sensing data from FE analysis is used to monitor and detect fatigue damage in aluminum lug joints. Experiments were conducted on lug joints under fatigue loads and sensor signals collected were used to validate the simulated sensor response. An optimal sensor placement methodology for lug joints is developed based on a detection theory framework to maximize the detection rate and minimize the false alarm rate. The placement technique is such that the sensor features can be directly correlated to damage. The technique accounts for a number of factors, such as actuation frequency and strength, minimum damage size, damage detection scheme, material damping, signal to noise ratio and sensing radius. Advanced information processing methodologies are discussed for damage diagnosis. A new, instantaneous approach for damage detection, localization and quantification is proposed for applications to practical problems associated with changes in reference states under different environmental and operational conditions. Such an approach improves feature extraction for state awareness, resulting in robust life prediction capabilities.
NASA Technical Reports Server (NTRS)
Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung
2015-01-01
The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations, in agreement with experimental tests, indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.
Numerical damage models using a structural approach: application in bones and ligaments
NASA Astrophysics Data System (ADS)
Arnoux, P. J.; Bonnoit, J.; Chabrand, P.; Jean, M.; Pithioux, M.
2002-01-01
The purpose of the present study was to apply knowledge of structural properties to perform numerical simulations with models of bones and knee ligaments exposed to dynamic tensile loading leading to tissue damage. Compact bones and knee ligaments exhibit the same geometrical pattern in their different levels of structural hierarchy from the tropocollagen molecule to the fibre. Nevertheless, their mechanical behaviours differ considerably at the fibril level. These differences are due to the contribution of the joints in the microfibril-fibril-fibre assembly and to the mechanical properties of the structural components. Two finite element models of the fibrous bone and ligament structure were used to describe damage in terms of elastoplastic laws or joint decohesion processes.
A Fiber Optic Doppler Sensor and Its Application in Debonding Detection for Composite Structures
Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro
2010-01-01
Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation. PMID:22219698
A fiber optic Doppler sensor and its application in debonding detection for composite structures.
Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro
2010-01-01
Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Charles R; Gobbato, Maurizio; Conte, Joel
2009-01-01
The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current statemore » of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.« less
Detection of damage in welded structure using experimental modal data
NASA Astrophysics Data System (ADS)
Abu Husain, N.; Ouyang, H.
2011-07-01
A typical automotive structure could contain thousands of spot weld joints that contribute significantly to the vehicle's structural stiffness and dynamic characteristics. However, some of these joints may be imperfect or even absent during the manufacturing process and they are also highly susceptible to damage due to operational and environmental conditions during the vehicle lifetime. Therefore, early detection and estimation of damage are important so necessary actions can be taken to avoid further problems. Changes in physical parameters due to existence of damage in a structure often leads to alteration of vibration modes; thus demonstrating the dependency between the vibration characteristics and the physical properties of structures. A sensitivity-based model updating method, performed using a combination of MATLAB and NASTRAN, has been selected for the purpose of this work. The updating procedure is regarded as parameter identification which aims to bring the numerical prediction to be as closely as possible to the measured natural frequencies and mode shapes data of the damaged structure in order to identify the damage parameters (characterised by the reductions in the Young's modulus of the weld patches to indicate the loss of material/stiffness at the damage region).
Acoustic emissions (AE) monitoring of large-scale composite bridge components
NASA Astrophysics Data System (ADS)
Velazquez, E.; Klein, D. J.; Robinson, M. J.; Kosmatka, J. B.
2008-03-01
Acoustic Emissions (AE) has been successfully used with composite structures to both locate and give a measure of damage accumulation. The current experimental study uses AE to monitor large-scale composite modular bridge components. The components consist of a carbon/epoxy beam structure as well as a composite to metallic bonded/bolted joint. The bonded joints consist of double lap aluminum splice plates bonded and bolted to carbon/epoxy laminates representing the tension rail of a beam. The AE system is used to monitor the bridge component during failure loading to assess the failure progression and using time of arrival to give insight into the origins of the failures. Also, a feature in the AE data called Cumulative Acoustic Emission counts (CAE) is used to give an estimate of the severity and rate of damage accumulation. For the bolted/bonded joints, the AE data is used to interpret the source and location of damage that induced failure in the joint. These results are used to investigate the use of bolts in conjunction with the bonded joint. A description of each of the components (beam and joint) is given with AE results. A summary of lessons learned for AE testing of large composite structures as well as insight into failure progression and location is presented.
Three-Dimensional Geometric Nonlinear Contact Stress Analysis of Riveted Joints
NASA Technical Reports Server (NTRS)
Shivakumar, Kunigal N.; Ramanujapuram, Vivek
1998-01-01
The problems associated with fatigue were brought into the forefront of research by the explosive decompression and structural failure of the Aloha Airlines Flight 243 in 1988. The structural failure of this airplane has been attributed to debonding and multiple cracking along the longitudinal lap splice riveted joint in the fuselage. This crash created what may be termed as a minor "Structural Integrity Revolution" in the commercial transport industry. Major steps have been taken by the manufacturers, operators and authorities to improve the structural airworthiness of the aging fleet of airplanes. Notwithstanding, this considerable effort there are still outstanding issues and concerns related to the formulation of Widespread Fatigue Damage which is believed to have been a contributing factor in the probable cause of the Aloha accident. The lesson from this accident was that Multiple-Site Damage (MSD) in "aging" aircraft can lead to extensive aircraft damage. A strong candidate in which MSD is highly probable to occur is the riveted lap joint.
NASA Astrophysics Data System (ADS)
Okafor, A. C.; Natarajan, S.
2007-03-01
Aging aircraft are prone to corrosion damage and fatigue cracks in riveted lap joints of fuselage skin panels. This can cause catastrophic failure if not detected and repaired. Hence detection of corrosion damage and monitoring its effect on structural integrity are essential. This paper presents multifrequency eddy current (EC) inspection of corrosion damage and machined material loss defect in clad A1 2024-T3 riveted lap joints and its effect on fatigue life. Results of eddy current inspection, corrosion product removal and fatigue testing are presented.
Davatzes, N.C.; Aydin, A.
2005-01-01
We examined the distribution of fault rock and damage zone structures in sandstone and shale along the Moab fault, a basin-scale normal fault with nearly 1 km (0.62 mi) of throw, in southeast Utah. We find that fault rock and damage zone structures vary along strike and dip. Variations are related to changes in fault geometry, faulted slip, lithology, and the mechanism of faulting. In sandstone, we differentiated two structural assemblages: (1) deformation bands, zones of deformation bands, and polished slip surfaces and (2) joints, sheared joints, and breccia. These structural assemblages result from the deformation band-based mechanism and the joint-based mechanism, respectively. Along the Moab fault, where both types of structures are present, joint-based deformation is always younger. Where shale is juxtaposed against the fault, a third faulting mechanism, smearing of shale by ductile deformation and associated shale fault rocks, occurs. Based on the knowledge of these three mechanisms, we projected the distribution of their structural products in three dimensions along idealized fault surfaces and evaluated the potential effect on fluid and hydrocarbon flow. We contend that these mechanisms could be used to facilitate predictions of fault and damage zone structures and their permeability from limited data sets. Copyright ?? 2005 by The American Association of Petroleum Geologists.
Detection of fastener loosening in simple lap joint based on ultrasonic wavefield imaging
NASA Astrophysics Data System (ADS)
Gooda Sahib, M. I.; Leong, S. J.; Chia, C. C.; Mustapha, F.
2017-12-01
Joints in aero-mechanical structures are critical elements that ensure the structural integrity but they are prone to damages. Inspection of such joints that have no prior baseline data is really challenging but it can be possibly done using the Ultrasonic Propagation Imager (UPI). The feasibility of applying UPI for detection of loosened fastener is investigated in this study. A simple lap joint specimen made by connecting two pieces of 2.5mm thick SAE304 stainless steel plates using five M6 screws and nuts has been used in this study. All fasteners are tightened to 10Nm but one of them is completely loosened to simulate the damage. The wavefield data is processed into ultrasonic wavefield propagation video and a series of spectral amplitude images. The spectral images showed noticeable amplitude difference at the loosened fastener, hence confirmed the feasibility of using UPI for structural joints inspection. A simple contrast maximization method is also introduced to improve the result.
A Biomimetic Structural Health Monitoring Approach Using Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Liu, Yingtao; Rajadas, Abhishek; Chattopadhyay, Aditi
2012-07-01
A self-sensing nanocomposite material has been developed to track the presence of damage in complex composite structures. Multiwalled carbon nanotubes are integrated with polymer matrix to develop a novel bonding material with sensing capabilities. The changes of the piezoresistance in the presence of damage are used to monitor the condition of bonded joints, where the usual bonding material is replaced by the self-sensing nanocomposite. The feasibility of this concept is investigated through experiments conducted on single-lap joints subject to monotonic tensile loading conditions. The results show that the self-sensing nanocomposite is sensitive to crack propagation within the matrix material. An acoustic emission-based sensing technique has been used to validate these results and shows good correlation with damage growth. A digital image correlation system is used to measure the shear strain field in the joint area.
Structural Damage Detection Using Changes in Natural Frequencies: Theory and Applications
NASA Astrophysics Data System (ADS)
He, K.; Zhu, W. D.
2011-07-01
A vibration-based method that uses changes in natural frequencies of a structure to detect damage has advantages over conventional nondestructive tests in detecting various types of damage, including loosening of bolted joints, using minimum measurement data. Two major challenges associated with applications of the vibration-based damage detection method to engineering structures are addressed: accurate modeling of structures and the development of a robust inverse algorithm to detect damage, which are defined as the forward and inverse problems, respectively. To resolve the forward problem, new physics-based finite element modeling techniques are developed for fillets in thin-walled beams and for bolted joints, so that complex structures can be accurately modeled with a reasonable model size. To resolve the inverse problem, a logistical function transformation is introduced to convert the constrained optimization problem to an unconstrained one, and a robust iterative algorithm using a trust-region method, called the Levenberg-Marquardt method, is developed to accurately detect the locations and extent of damage. The new methodology can ensure global convergence of the iterative algorithm in solving under-determined system equations and deal with damage detection problems with relatively large modeling error and measurement noise. The vibration-based damage detection method is applied to various structures including lightning masts, a space frame structure and one of its components, and a pipeline. The exact locations and extent of damage can be detected in the numerical simulation where there is no modeling error and measurement noise. The locations and extent of damage can be successfully detected in experimental damage detection.
Prinold, Joe A I; Mazzà, Claudia; Di Marco, Roberto; Hannah, Iain; Malattia, Clara; Magni-Manzoni, Silvia; Petrarca, Maurizio; Ronchetti, Anna B; Tanturri de Horatio, Laura; van Dijkhuizen, E H Pieter; Wesarg, Stefan; Viceconti, Marco
2016-01-01
Juvenile idiopathic arthritis (JIA) is the leading cause of childhood disability from a musculoskeletal disorder. It generally affects large joints such as the knee and the ankle, often causing structural damage. Different factors contribute to the damage onset, including altered joint loading and other mechanical factors, associated with pain and inflammation. The prediction of patients' joint loading can hence be a valuable tool in understanding the disease mechanisms involved in structural damage progression. A number of lower-limb musculoskeletal models have been proposed to analyse the hip and knee joints, but juvenile models of the foot are still lacking. This paper presents a modelling pipeline that allows the creation of juvenile patient-specific models starting from lower limb kinematics and foot and ankle MRI data. This pipeline has been applied to data from three children with JIA and the importance of patient-specific parameters and modelling assumptions has been tested in a sensitivity analysis focused on the variation of the joint reaction forces. This analysis highlighted the criticality of patient-specific definition of the ankle joint axes and location of the Achilles tendon insertions. Patient-specific detection of the Tibialis Anterior, Tibialis Posterior, and Peroneus Longus origins and insertions were also shown to be important.
Probabilistic Simulation of Progressive Fracture in Bolted-Joint Composite Laminates
NASA Technical Reports Server (NTRS)
Minnetyan, L.; Singhal, S. N.; Chamis, C. C.
1996-01-01
This report describes computational methods to probabilistically simulate fracture in bolted composite structures. An innovative approach that is independent of stress intensity factors and fracture toughness was used to simulate progressive fracture. The effect of design variable uncertainties on structural damage was also quantified. A fast probability integrator assessed the scatter in the composite structure response before and after damage. Then the sensitivity of the response to design variables was computed. General-purpose methods, which are applicable to bolted joints in all types of structures and in all fracture processes-from damage initiation to unstable propagation and global structure collapse-were used. These methods were demonstrated for a bolted joint of a polymer matrix composite panel under edge loads. The effects of the fabrication process were included in the simulation of damage in the bolted panel. Results showed that the most effective way to reduce end displacement at fracture is to control both the load and the ply thickness. The cumulative probability for longitudinal stress in all plies was most sensitive to the load; in the 0 deg. plies it was very sensitive to ply thickness. The cumulative probability for transverse stress was most sensitive to the matrix coefficient of thermal expansion. In addition, fiber volume ratio and fiber transverse modulus both contributed significantly to the cumulative probability for the transverse stresses in all the plies.
Robust control of multi-jointed arm with a decentralized autonomous control mechanism
NASA Technical Reports Server (NTRS)
Kimura, Shinichi; Miyazaki, Ken; Suzuki, Yoshiaki
1994-01-01
A decentralized autonomous control mechanism applied to the control of three dimensional manipulators and its robustness to partial damage was assessed by computer simulation. Decentralized control structures are believed to be quite robust to time delay between the operator and the target system. A 10-jointed manipulator based on our control mechanism was able to continue its positioning task in three-dimensional space without revision of the control program, even after some of its joints were damaged. These results suggest that this control mechanism can be effectively applied to space telerobots, which are associated with serious time delay between the operator and the target system, and which cannot be easily repaired after being partially damaged.
The Characteristics of Fatigue Damage in the Fuselage Riveted Lap Splice Joint
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.
1997-01-01
An extensive data base has been developed to form the physical basis for new analytical methodology to predict the onset of widespread fatigue damage in the fuselage lap splice joint. The results of detailed destructive examinations have been cataloged to describe the physical nature of MSD in the lap splice joint. ne catalog includes a detailed description, e.g., crack initiation, growth rates, size, location, and fracture morphology, of fatigue damage in the fuselage lap splice joint structure. Detailed examinations were conducted on a lap splice joint panel removed from a full scale fuselage test article after completing a 60,000 cycle pressure test. The panel contained a four bay region that exhibited visible outer skin cracks and regions of crack link-up along the upper rivet row. Destructive examinations revealed undetected fatigue damage in the outer skin, inner skin, and tear strap regions. Outer skin fatigue cracks were found to initiate by fretting damage along the faying surface. The cracks grew along the faying surface to a length equivalent to two to three skin thicknesses before penetrating the outboard surface of the outer skin. Analysis of fracture surface marker bands produced during full scale testing revealed that all upper rivet row fatigue cracks contained in a dim bay region grow at similar rates; this important result suggests that fracture mechanics based methods can be used to predict the growth of outer skin fatigue cracks in lap splice structure. Results are presented showing the affects of MSD and out-of-plane pressure loads on outer skin crack link-up.
Giancane, Gabriella; Pederzoli, Silvia; Norambuena, Ximena; Ioseliani, Maka; Sato, Juliana; Gallo, Maria Chiara; Negro, Giorgia; Pistorio, Angela; Ruperto, Nicolino; Martini, Alberto; Ravelli, Angelo
2014-01-01
To evaluate the presence and progression of radiographic joint damage, as assessed with the adapted Sharp/van der Heijde score (SHS), in individual joints in the hand and wrist in patients with juvenile idiopathic arthritis (JIA) and to compare progression of damage among different JIA categories. A total of 372 radiographs of both wrists and hands obtained at first observation and at last followup visit (after 1-10 years) in 186 children with polyarticular-course JIA were evaluated. All radiographs were scored using the adapted SHS by 2 independent readers. Radiographic assessment included evaluation of joint space narrowing (JSN) and erosions on baseline and last followup radiographs and of progression of radiographic changes from baseline to last followup radiographs. Both JSN and erosions occurred in all adapted SHS areas. Overall, radiographic damage and progression were more common in the wrist and less common in metacarpophalangeal (MCP) joints. The hamate and capitate areas appeared particularly vulnerable to cartilage loss. Erosions were identified most frequently in the hamate and capitate bones as well as in the second and third metacarpal bases. Patients with extended oligoarthritis were distinctly less susceptible to JSN in hand joints, whereas patients with polyarthritis showed a greater tendency to developing erosions in hand joints. Radiographic joint damage and progression in our patients with JIA were seen most commonly in the wrist and less commonly in MCP joints. The frequency and localization of structural abnormalities differed markedly across disease categories. Copyright © 2014 by the American College of Rheumatology.
Sreerangaiah, Dee; Grayer, Michael; Fisher, Benjamin A; Ho, Meilien; Abraham, Sonya; Taylor, Peter C
2016-01-01
To assess the value of quantitative vascular imaging by power Doppler US (PDUS) as a tool that can be used to stratify patient risk of joint damage in early seropositive RA while still biologic naive but on synthetic DMARD treatment. Eighty-five patients with seropositive RA of <3 years duration had clinical, laboratory and imaging assessments at 0 and 12 months. Imaging assessments consisted of radiographs of the hands and feet, two-dimensional (2D) high-frequency and PDUS imaging of 10 MCP joints that were scored for erosions and vascularity and three-dimensional (3D) PDUS of MCP joints and wrists that were scored for vascularity. Severe deterioration on radiographs and ultrasonography was seen in 45 and 28% of patients, respectively. The 3D power Doppler volume and 2D vascularity scores were the most useful US predictors of deterioration. These variables were modelled in two equations that estimate structural damage over 12 months. The equations had a sensitivity of 63.2% and specificity of 80.9% for predicting radiographic structural damage and a sensitivity of 54.2% and specificity of 96.7% for predicting structural damage on ultrasonography. In seropositive early RA, quantitative vascular imaging by PDUS has clinical utility in predicting which patients will derive benefit from early use of biologic therapy. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Evidence of cartilage repair by joint distraction in a canine model of osteoarthritis.
Wiegant, Karen; Intema, Femke; van Roermund, Peter M; Barten-van Rijbroek, Angelique D; Doornebal, Arie; Hazewinkel, Herman A W; Lafeber, Floris P J G; Mastbergen, Simon C
2015-02-01
Knee osteoarthritis (OA) is a degenerative joint disorder characterized by cartilage, bone, and synovial tissue changes that lead to pain and functional impairment. Joint distraction is a treatment that provides long-term improvement in pain and function accompanied by cartilage repair, as evaluated indirectly by imaging studies and measurement of biochemical markers. The purpose of this study was to evaluate cartilage tissue repair directly by histologic and biochemical assessments after joint distraction treatment. In 27 dogs, OA was induced in the right knee joint (groove model; surgical damage to the femoral cartilage). After 10 weeks of OA development, the animals were randomized to 1 of 3 groups. Two groups were fitted with an external fixator, which they wore for a subsequent 10 weeks (one group with and one without joint distraction), and the third group had no external fixation (OA control group). Pain/function was studied by force plate analysis. Cartilage integrity and chondrocyte activity of the surgically untouched tibial plateaus were analyzed 25 weeks after removal of the fixator. Changes in force plate analysis values between the different treatment groups were not conclusive. Features of OA were present in the OA control group, in contrast to the generally less severe damage after joint distraction. Those treated with joint distraction had lower macroscopic and histologic damage scores, higher proteoglycan content, better retention of newly formed proteoglycans, and less collagen damage. In the fixator group without distraction, similarly diminished joint damage was found, although it was less pronounced. Joint distraction as a treatment of experimentally induced OA results in cartilage repair activity, which corroborates the structural observations of cartilage repair indicated by surrogate markers in humans. Copyright © 2015 by the American College of Rheumatology.
Devesa, V; Rovesti, G L; Urrutia, P G; Sanroman, F; Rodriguez-Quiros, J
2015-06-01
The objective of this study was to evaluate technical feasibility and efficacy of a joint distraction technique by traction stirrup to facilitate shoulder arthroscopy and assess potential soft tissue damage. Twenty shoulders were evaluated radiographically before distraction. Distraction was applied with loads from 40 N up to 200 N, in 40 N increments, and the joint space was recorded at each step by radiographic images. The effects of joint flexion and intra-articular air injection at maximum load were evaluated. Radiographic evaluation was performed after distraction to evaluate ensuing joint laxity. Joint distraction by traction stirrup technique produces a significant increase in the joint space; an increase in joint laxity could not be inferred by standard and stress radiographs. However, further clinical studies are required to evaluate potential neurovascular complications. A wider joint space may be useful to facilitate arthroscopy, reducing the likelihood for iatrogenic damage to intra-articular structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
ACEE composite structures technology
NASA Technical Reports Server (NTRS)
Klotzsche, M. (Compiler)
1984-01-01
The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.
Physiotherapy in Rheumatoid Arthritis
Kavuncu, Vural; Evcik, Deniz
2004-01-01
Rheumatoid arthritis (RA) is a chronic and painful clinical condition that leads to progressive joint damage, disability, deterioration in quality of life, and shortened life expectancy. Even mild inflammation may result in irreversible damage and permanent disability. The clinical course according to symptoms may be either intermittent or progressive in patients with RA. In most patients, the clinical course is progressive, and structural damage develops in the first 2 years. The aim of RA management is to achieve pain relief and prevent joint damage and functional loss. Physiotherapy and rehabilitation applications significantly augment medical therapy by improving the management of RA and reducing handicaps in daily living for patients with RA. In this review, the application of physiotherapy modalities is examined, including the use of cold/heat applications, electrical stimulation, and hydrotherapy. Rehabilitation treatment techniques for patients with RA such as joint protection strategies, massage, exercise, and patient education are also presented. PMID:15266230
Joint Instability and Osteoarthritis
Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi
2015-01-01
Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184
Joint instability and osteoarthritis.
Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi
2015-01-01
Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng
2018-01-01
Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.
Damage Progression in Bolted Composites
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C.; Gotsis, Pascal K.
1998-01-01
Structural durability, damage tolerance, and progressive fracture characteristics of bolted graphite/epoxy composite laminates are evaluated via computational simulation. Constituent material properties and stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for bolted composites. Single and double bolted composite specimens with various widths and bolt spacings are evaluated. The effect of bolt spacing is investigated with regard to the structural durability of a bolted joint. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Results show the damage progression sequence and structural fracture resistance during different degradation stages. A procedure is outlined for the use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of experimental results with insight for design decisions.
Damage Progression in Bolted Composites
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos; Gotsis, Pascal K.
1998-01-01
Structural durability,damage tolerance,and progressive fracture characteristics of bolted graphite/epoxy composite laminates are evaluated via computational simulation. Constituent material properties and stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for bolted composites. Single and double bolted composite specimens with various widths and bolt spacings are evaluated. The effect of bolt spacing is investigated with regard to the structural durability of a bolted joint. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Results show the damage progression sequence and structural fracture resistance during different degradation stages. A procedure is outlined for the use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of experimental results with insight for design decisions.
Evaluation of subsurface damage in concrete deck joints using impact echo method
Rickard, Larry; Choi, Wonchang
2016-01-01
Many factors can affect the overall performance and longevity of highway bridges, including the integrity of their deck joints. This study focuses on the evaluation of subsurface damage in deteriorated concrete deck joints, which includes the delamination and corrosion of the reinforcement. Impact echo and surface wave technology, mainly a portable seismic property analyzer (PSPA), were employed to evaluate the structural deficiency of concrete joints. Laboratory tests of core samples were conducted to verify the nondestructive test results. As a result, the primary advantage of the PSPA as a bridge assessment tool lies in its ability to assess the concrete’smore » modulus and to detect subsurface defects at a particular point simultaneously.« less
Osteoarthritis screening using Raman spectroscopy of dried human synovial fluid drops
NASA Astrophysics Data System (ADS)
Esmonde-White, Karen A.; Mandair, Gurjit S.; Esmonde-White, Francis W. L.; Raaii, Farhang; Roessler, Blake J.; Morris, Michael D.
2009-02-01
We describe the use of Raman spectroscopy to investigate synovial fluid drops deposited onto fused silica microscope slides. This spectral information can be used to identify chemical changes in synovial fluid associated with osteoarthritis (OA) damage to knee joints. The chemical composition of synovial fluid is predominately proteins (enzymes, cytokines, or collagen fragments), glycosaminoglycans, and a mixture of minor components such as inorganic phosphate crystals. During osteoarthritis, the chemical, viscoelastic and biological properties of synovial fluid are altered. A pilot study was conducted to determine if Raman spectra of synovial fluid correlated with radiological scoring of knee joint damage. After informed consent, synovial fluid was drawn and x-rays were collected from the knee joints of 40 patients. Raman spectra and microscope images were obtained from the dried synovial fluid drops using a Raman microprobe and indicate a coarse separation of synovial fluid components. Individual protein signatures could not be identified; Raman spectra were useful as a general marker of overall protein content and secondary structure. Band intensity ratios used to describe protein and glycosaminoglycan structure were used in synovial fluid spectra. Band intensity ratios of Raman spectra indicate that there is less ordered protein secondary structure in synovial fluid from the damage group. Combination of drop deposition with Raman spectroscopy is a powerful approach to examining synovial fluid for the purposes of assessing osteoarthritis damage.
Lamb Wave-Based Structural Health Monitoring on Composite Bolted Joints under Tensile Load
Yang, Bin; Xuan, Fu-Zhen; Xiang, Yanxun; Li, Dan; Zhu, Wujun; Tang, Xiaojun; Xu, Jichao; Yang, Kang; Luo, Chengqiang
2017-01-01
Online and offline monitoring of composite bolted joints under tensile load were investigated using piezoelectric transducers. The relationships between Lamb wave signals, pre-tightening force, the applied tensile load, as well as the failure modes were investigated. Results indicated that S0/A0 wave amplitudes decrease with the increasing of load. Relationships between damage features and S0/A0 mode were built based on the finite element (FE) simulation and experimental results. The possibility of application of Lamb wave-based structure health monitoring in bolted joint-like composite structures was thus achieved. PMID:28773014
The Growth of Multi-Site Fatigue Damage in Fuselage Lap Joints
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.
1999-01-01
Destructive examinations were performed to document the progression of multi-site damage (MSD) in three lap joint panels that were removed from a full scale fuselage test article that was tested to 60,000 full pressurization cycles. Similar fatigue crack growth characteristics were observed for small cracks (50 microns to 10 mm) emanating from counter bore rivets, straight shank rivets, and 100 deg counter sink rivets. Good correlation of the fatigue crack growth data base obtained in this study and FASTRAN Code predictions show that the growth of MSD in the fuselage lap joint structure can be predicted by fracture mechanics based methods.
Failure analysis of single-bolted joint for lightweight composite laminates and metal plate
NASA Astrophysics Data System (ADS)
Li, Linjie; Qu, Junli; Liu, Xiangdong
2018-01-01
A three-dimensional progressive damage model was developed in ANSYS to predict the damage accumulation of single bolted joint in composite laminates under in-plane tensile loading. First, we describe the formulation and algorithm of this model. Second, we calculate the failure loads of the joint in fibre reinforced epoxy laminated composite plates and compare it with the experiment results, which validates that our model can appropriately simulate the ultimate tensile strength of the joints and the whole process of failure of structure. Finally, this model is applied to study the failure process of the light-weight composite material (USN125). The study also has a great potential to provide a strong basis for bolted joints design in composite Laminates as well as a simple tool for comparing different laminate geometries and bolt arrangements.
The characterization of widespread fatigue damage in fuselage structure
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.; Miller, Matthew
1994-01-01
The characteristics of widespread fatigue damage (WSFD) in fuselage riveted structure were established by detailed nondestructive and destructive examinations of fatigue damage contained in a full size fuselage test article. The objectives of this were to establish an experimental data base for validating emerging WSFD analytical prediction methodology and to identify first order effects that contribute to fatigue crack initiation and growth. Detailed examinations were performed on a test panel containing four bays of a riveted lap splice joint. The panel was removed from a full scale fuselage test article after receiving 60,000 full pressurization cycles. The results of in situ examinations document the progression of fuselage skin fatigue crack growth through crack linkup. Detailed tear down examinations and fractography of the lap splice joint region revealed fatigue crack initiation sites, crack morphology, and crack linkup geometry. From this large data base, distributions of crack size and locations are presented and discussions of operative damage mechanisms are offered.
The characterization of widespread fatigue damage in fuselage structure
NASA Technical Reports Server (NTRS)
Piascik, Robert S.; Willard, Scott A.; Miller, Matthew
1994-01-01
The characteristics of widespread fatigue damage (WSFD) in fuselage riveted structure were established by detailed nondestructive and destructive examinations of fatigue damage contained in a full size fuselage test article. The objectives of this work were to establish an experimental data base for validating emerging WSFD analytical prediction methodology and to identify first order effects that contribute to fatigue crack initiation and growth. Detailed examinations were performed on a test panel containing four bays of a riveted lap splice joint. The panel was removed from a full scale fuselage test article after receiving 60,000 full pressurization cycles. The results of in situ examinations document the progression of fuselage skin fatigue crack growth through crack linkup. Detailed tear down examinations and fractography of the lap splice joint region revealed fatigue crack initiation sites, crack morphology and crack linkup geometry. From this large data base, distributions of crack size and locations are presented and discussions of operative damage mechanisms are offered.
Zhu, Junqing; Li, Aiwu; Jia, Ertao; Zhou, Yi; Xu, Juan; Chen, Shixian; Huang, Yinger; Xiao, Xiang; Li, Juan
2017-05-02
Previous studies have revealed that ankylosing spondylitis (AS), as the progenitor of axial spondyloarthritis (AxSpA), has been characterized by the insidiously progressive nature of sacroiliitis and spondylitis. Dual-energy computed tomography (DECT) has recently been used to analyse the deposition of monosodium urate (MSU) crystals with higher sensitivity and specificity. However, it remains unclear whether the existence of the MSU crystal deposition detected by DECT at the sacroiliac joint in patients with AxSpA also is associated with the existing structural damage. Here, we performed this study to show the DECT MSU crystal deposits in AxSpA patients without coexisting gout and to ascertain the relationship between the MSU crystal deposition and the structural joint damage of sacroiliac joints. One hundred and eighty-six AxSpA patients without coexisting gout were recruited. The plain radiographs of the sacroiliac joint were obtained, along with the DECT scans at the pelvis and the clinical variables. All statistics based on the left or right sacroiliac joint damage grading (0-4) were calculated independently. Bivariate analysis and ordinal logistic regression was performed between the clinical features and radiographic grades at the sacroiliac joint. At the pelvis, large quantities of MSU crystal deposition were found in patients with AxSpA. The average MSU crystal volume at the left sacroiliac joint, the right sacroiliac joint, and the pelvis were 0.902 ± 1.345, 1.074 ± 1.878, and 5.272 ± 9.044 cm 3 , values which were correlated with serum uric acid concentrations (r = 0.727, 0.740, 0.896; p < 0.001). In bivariate analysis, wide clinical variables were associated with the changes in sacroiliac joint damage. Further, the AxSpA duration, BASFI score, and the volume of MSU crystal at both sides of sacroiliac joint were associated with the progress of radiographic grade at the sacroiliac joints in the ordinal logistic models (left AOR = 1.180, 3.800, 1.920; right AOR = 1.190, 3.034, 1.418; p < 0.01). Large quantities of MSU crystal deposition detected by DECT were found at the pelvis in AxSpA patients without coexisting gout. In addition to AxSpA duration and BASFI score, the MSU crystal deposition at the sacroiliac joint is associated with the progress of radiographic grade at sacroiliac joints in those patients.
Pate, Kathryn M; Sherk, Vanessa D; Carpenter, R Dana; Weaver, Michael; Crapo, Silvia; Gally, Fabienne; Chatham, Lillian S; Goldstrohm, David A; Crapo, James D; Kohrt, Wendy M; Bowler, Russell P; Oberley-Deegan, Rebecca E; Regan, Elizabeth A
2015-03-15
Osteoarthritis (OA) is associated with increased mechanical damage to joint cartilage. We have previously found that extracellular superoxide dismutase (ECSOD) is decreased in OA joint fluid and cartilage, suggesting oxidant damage may play a role in OA. We explored the effect of forced running as a surrogate for mechanical damage in a transgenic mouse with reduced ECSOD tissue binding. Transgenic mice heterozygous (Het) for the human ECSOD R213G polymorphism and 129-SvEv (wild-type, WT) mice were exposed to forced running on a treadmill for 45 min/day, 5 days/wk, over 8 wk. At the end of the running protocol, knee joint tissue was obtained for histology, immunohistochemistry, and protein analysis. Sedentary Het and WT mice were maintained for comparison. Whole tibias were studied for bone morphometry, finite element analysis, and mechanical testing. Forced running improved joint histology in WT mice. However, when ECSOD levels were reduced, this beneficial effect with running was lost. Het ECSOD runner mice had significantly worse histology scores compared with WT runner mice. Runner mice for both strains had increased bone strength in response to the running protocol, while Het mice showed evidence of a less robust bone structure in both runners and untrained mice. Reduced levels of ECSOD in cartilage produced joint damage when joints were stressed by forced running. The bone tissues responded to increased loading with hypertrophy, regardless of mouse strain. We conclude that ECSOD plays an important role in protecting cartilage from damage caused by mechanical loading. Copyright © 2015 the American Physiological Society.
Basic radiological assessment of synovial diseases: a pictorial essay
Turan, Aynur; Çeltikçi, Pınar; Tufan, Abdurrahman; Öztürk, Mehmet Akif
2017-01-01
The synovium is a specialized tissue lining the synovial joints, bursae, and tendon sheaths of the body. It is affected by various localized or systemic disorders. Synovial diseases can be classified as inflammatory, infectious, degenerative, traumatic, hemorrhagic, and neoplastic. Damage in other intraarticular structures, particularly cartilages, generally occurs as a part of pathologic processes involving the synovium, leading to irreversible joint destruction. Imaging has an essential role in the early detection of synovial diseases prior to irreversible joint damage. Obtaining and understanding characteristic imaging findings of synovial diseases enables a proper diagnosis for early treatment. This article focuses on the recent literature that is related with the role of imaging in synovial disease. PMID:28638696
van Galen, K P M; Sanders, Y V; Vojinovic, U; Eikenboom, J; Cnossen, M H; Schutgens, R E G; van der Bom, J G; Fijnvandraat, K; Laros-Van Gorkom, B A P; Meijer, K; Leebeek, F W G; Mauser-Bunschoten, E P
2015-05-01
Joint bleeds (JB) are reported in a minority of patients with von Willebrand disease (VWD) but may lead to structural joint damage. Prevalence, severity and impact of JB in VWD are largely unknown. The aim of this study was to assess JB prevalence, onset, treatment and impact on health-related quality of life (HR-QoL) and joint integrity in moderate and severe VWD. In the Willebrand in the Netherlands study 804 moderate and severe VWD patients [von Willebrand factor (VWF) activity ≤30U dL(-1)] completed a questionnaire on occurrence, sites and consequences of JB. To analyse JB number, onset, treatment and impact on joint integrity we additionally performed a patient-control study on medical file data comparing patients with JB to age, gender, factor VIII (FVIII)- and VWF activity matched VWD patients without JB. Of all VWD patients 23% (184/804) self-reported JB. These 184 patients reported joint damage more often (54% vs. 18%, P < 0.001) and had lower HR-QoL (SF36, P < 0.05) compared to VWD patients not reporting JB. Of 55 patients with available JB data, 65% had the first JB before age 16. These 55 patients used more clotting factor concentrate (CFC; median dose 43 vs. 0 IE FVIII kg(-1) year(-1) , P < 0.001), more often had X-ray joint damage (44% vs. 11%, P = 0.001] and chronic joint pain (44% vs. 18%, P = 0.008) compared to 55 control VWD patients without JB. In conclusion, joint bleeds are reported by 23% of moderate and severe VWD patients, mostly start in childhood, are associated with more CFC use, joint pain, lower HR-QoL and significantly more radiological and self-reported joint damage. © 2015 John Wiley & Sons Ltd.
Intema, Femke; Van Roermund, Peter M; Marijnissen, Anne C A; Cotofana, Sebastian; Eckstein, Felix; Castelein, Rene M; Bijlsma, Johannes W J; Mastbergen, Simon C; Lafeber, Floris P J G
2011-01-01
Background Modification of joint tissue damage is challenging in late-stage osteoarthritis (OA). Few options are available for treating end-stage knee OA other than joint replacement. Objectives To examine whether joint distraction can effectively modify knee joint tissue damage and has the potential to delay prosthesis surgery. Methods 20 patients (<60 years) with tibiofemoral OA were treated surgically using joint distraction. Distraction (∼5 mm) was applied for 2 months using an external fixation frame. Tissue structure modification at 1 year of follow-up was evaluated radiographically (joint space width (JSW)), by MRI (segmentation of cartilage morphology) and by biochemical markers of collagen type II turnover, with operators blinded to time points. Clinical improvement was evaluated by Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Visual Analogue Scale (VAS) pain score. Results Radiography demonstrated an increase in mean and minimum JSW (2.7 to 3.6 mm and 1.0 to 1.9 mm; p<0.05 and <0.01). MRI revealed an increase in cartilage thickness (2.4 to 3.0 mm; p<0.001) and a decrease of denuded bone areas (22% to 5%; p<0.001). Collagen type II levels showed a trend towards increased synthesis (+103%; p<0.06) and decreased breakdown (−11%; p<0.08). The WOMAC index increased from 45 to 77 points, and VAS pain decreased from 73 to 31 mm (both p<0.001). Conclusions Joint distraction can induce tissue structure modification in knee OA and could result in clinical benefit. No current treatment is able to induce such changes. Larger, longer and randomised studies on joint distraction are warranted. PMID:21565898
Micro-Energy Rates for Damage Tolerance and Durability of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2006-01-01
In this paper, the adhesive bond strength of lap-jointed graphite/aluminum composites is examined by computational simulation. Computed micro-stress level energy release rates are used to identify the damage mechanisms associated with the corresponding acoustic emission (AE) signals. Computed damage regions are similarly correlated with ultrasonically scanned damage regions. Results show that computational simulation can be used with suitable NDE methods for credible in-service monitoring of composites.
Treatment of TMJDS with helium-neon laser beam irradiation on the acupoints
NASA Astrophysics Data System (ADS)
Li, Ping
1993-03-01
Through He-NE laser stimulation of acupuncture points, we treated and observed 50 cases of Temporomandibular Joint Dysfunction Syndrome (TMJDS). The results proved that this treatment was very effective for relieving the patient's pain. In cases which had structural disturbances and organic damage such as limitation of mouth-opening and joint clink, there was less improvement of symptoms and no relief for joint clink.
NASA Astrophysics Data System (ADS)
Mahin Shirazi, Sam
Accelerated thermal cycling (ATC) tests are the most commonly used tests for the thermo-mechanical performance assessment of microelectronics assemblies. Currently used reliability models have failed to incorporate the microstructural dependency of lead free solder joint behavior and its microstructure evolution during cycling. Thus, it is essential to have a mechanistic understanding of the effect of cycling parameters on damage evolution and failure of lead free solder joints in ATC. Recrystallization has been identified as the damage rate controlling mechanism in ATC. Usually it takes 1/3 of life for completion of recrystallization regardless of cycling parameters. Thus, the life of the solder joints can be predicted by estimating global recrystallization. The objective of the first part of the study was to examine whether the damage scenario applies in service is the same as the harsh thermal cycling tests (i.e. 0/100 °C and -40/125 °C) commonly used in industry. Microstructure analysis results on a variety of lead free solder SnAgCu assemblies subjected to the both harsh (0/100 °C) and mild (20/80 °C) ATC confirmed similar failure mechanism under the both testing conditions. Sn grain morphology (interlaced versus beach ball) has a significant effect on the thermo-mechanical performance (and thus the model) of the lead free solder joints. The longer thermal cycling lifetime observed in the interlaced solder joints subjected to the ATC compared to the beach ball structure was correlated to the different initial microstructure and the microstructure evolution during cycling. For the modeling proposes, the present study was focused on Sn-Ag-Cu solder joints with either a single Sn grain or beach ball structure. Microstructural analysis results of the simulated thermal cycling experiment revealed that, the life can be approximated as determined by the accumulation of a certain amount of work during the high temperature dwells. Finally the effect of precipitates spacing on acceleration factor was investigated. Results indicated that a smaller initial precipitate spacing would tend to result in a longer life in mild thermal cycling/service (where there is lower stresses). Accordingly, it is essential to incorporate the dependence of damage rate (i.e. recrystallization) on precipitate coarsening in any predictions.
Yiu, Sean; Farewell, Vernon T; Tom, Brian D M
2018-02-01
In psoriatic arthritis, it is important to understand the joint activity (represented by swelling and pain) and damage processes because both are related to severe physical disability. The paper aims to provide a comprehensive investigation into both processes occurring over time, in particular their relationship, by specifying a joint multistate model at the individual hand joint level, which also accounts for many of their important features. As there are multiple hand joints, such an analysis will be based on the use of clustered multistate models. Here we consider an observation level random-effects structure with dynamic covariates and allow for the possibility that a subpopulation of patients is at minimal risk of damage. Such an analysis is found to provide further understanding of the activity-damage relationship beyond that provided by previous analyses. Consideration is also given to the modelling of mean sojourn times and jump probabilities. In particular, a novel model parameterization which allows easily interpretable covariate effects to act on these quantities is proposed.
Fatigue damage assessment of high-usage in-service aircraft fuselage structure
NASA Astrophysics Data System (ADS)
Mosinyi, Bao Rasebolai
As the commercial and military aircraft fleets continue to age, there is a growing concern that multiple-site damage (MSD) can compromise structural integrity. Multiple site damage is the simultaneous occurrence of many small cracks at independent structural locations, and is the natural result of fatigue, corrosion, fretting and other possible damage mechanisms. These MSD cracks may linkup and form a fatigue lead crack of critical length. The presence of MSD also reduces the structure's ability to withstand longer cracks. The objective of the current study is to assess, both experimentally and analytically, MSD formation and growth in the lap joint of curved panels removed from a retired aircraft. A Boeing 727-232 airplane owned and operated by Delta Air Lines, and retired at its design service goal, was selected for the study. Two panels removed from the left-hand side of the fuselage crown, near stringer 4L, were subjected to extended fatigue testing using the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration (FAA) William J. Hughes Technical Center. The state of MSD was continuously assessed using several nondestructive inspection (NDI) methods. Damage to the load attachment points of the first panel resulted in termination of the fatigue test at 43,500 fatigue cycles, before cracks had developed in the lap joint. The fatigue test for the second panel was initially conducted under simulated in-service loading conditions for 120,000 cycles, and no cracks were detected in the skin of the panel test section. Artificial damage was then introduced into the panel at selected rivets in the critical (lower) rivet row, and the fatigue loads were increased. Visually detectable crack growth from the artificial notches was first seen after 133,000 cycles. The resulting lead crack grew along the lower rivet row, eventually forming an 11.8" long unstable crack after 141,771 cycles, at which point the test was terminated. Posttest fractograpic examinations of the crack surfaces were conducted, revealing the presence of subsurface MSD at the critical rivet row of the lap joint. Special attention was also given to the stringer clips that attach the fuselage frames to the stringers, since they also experienced cracking during the fatigue tests. The performance of the different conventional and emerging NDI methods was also assessed, and some of the emerging NDI methods were quite effective in detecting and measuring the length of subsurface cracks. Delta Air Lines conducted a separate destructive investigation on the state of damage along the right-hand side of the fuselage, near stringer 4R. A comparison of these two studies showed that the lap joint on the left hand-side of the aircraft, along stringer 4L, had better fatigue life than the one on the opposite side, along stringer 4R. The cause of the difference in fatigue life was investigated by close examination of the rivet installation qualities, and was found to be a result of better rivet installation along the lap joint at stringer 4L. Finite element models for both the skin and substructures of the panels were developed and geometrically nonlinear finite element analyses were conducted to verify the loading conditions and to determine near-field parameters governing MSD initiation and growth. Fatigue crack growth predictions based on the NASGRO equation were in good agreement with the experimental crack growth data for through-the-thickness cracks. For subsurface cracks, simulation of crack growth was found to correlate better with fractography data when an empirical crack growth model was used. The results of the study contribute to the understanding of the initiation and growth of MSD in the inner skin layer of a lap joint, and provide valuable data for the evaluation and validation of analytical methodologies to predict MSD initiation and growth and a better understanding on the effect of manufacturing quality on damage accumulation along the lap joint.
Autonomous sensing of composites with carbon nanotubes for structural health monitoring
NASA Astrophysics Data System (ADS)
Liu, Yingtao; Yekani Fard, Masoud; Rajadas, Abhishek; Chattopadhyay, Aditi
2012-04-01
The development of structural health monitoring techniques leads to the integration of sensing capability within engineering structures. This study investigates the application of multi walled carbon nanotubes in polymer matrix composites for autonomous damage detection through changes in electrical resistance. The autonomous sensing capabilities of fiber reinforced nanocomposites are studied under multiple loading conditions including tension loads. Single-lap joints with different joint lengths are tested. Acoustic emission sensing is used to validate the matrix crack propagation. A digital image correlation system is used to measure the shear strain field of the joint area. The joints with 1.5 inch length have better autonomous sensing capabilities than those with 0.5 inch length. The autonomous sensing capabilities of nanocomposites are found to be sensitive to crack propagation and can revolutionize the research on composite structural health management in the near future.
NASA Astrophysics Data System (ADS)
Nguyen Van Do, Vuong
2018-04-01
In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.
The International Space Station Solar Alpha Rotary Joint Anomaly Investigation
NASA Technical Reports Server (NTRS)
Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.
2010-01-01
The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case-hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A farreaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that the anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage, astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.
The International Space Station Solar Alpha Rotary Joint Anomaly Investigation
NASA Technical Reports Server (NTRS)
Harik, Elliot P.; McFatter, Justin; Sweeney, Daniel J.; Enriquez, Carlos F.; Taylor, Deneen M.; McCann, David S.
2010-01-01
The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high drive motor current draw. Increased structural vibrations near the joint were also observed. Subsequent inspections via Extravehicular Activity (EVA) discovered that the nitrided case hardened steel bearing race on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A far-reaching investigation of the anomaly was undertaken. The investigation included metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The results of the investigation showed that anomaly had most probably been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors. To mitigate the impact of the damage astronauts cleaned and lubricated the race ring surface with grease. This corrective action led to significantly improved performance of the mechanism both in terms of drive motor current and induced structural vibration.
Güler-Yüksel, Melek; Klarenbeek, Naomi B; Goekoop-Ruiterman, Yvonne P M; de Vries-Bouwstra, Jeska K; van der Kooij, Sjoerd M; Gerards, Andreas H; Ronday, H Karel; Huizinga, Tom W J; Dijkmans, Ben A C; Allaart, Cornelia F; Lems, Willem F
2010-01-01
To investigate whether accelerated hand bone mineral density (BMD) loss is associated with progressive joint damage in hands and feet in the first year of rheumatoid arthritis (RA) and whether it is an independent predictor of subsequent progressive total joint damage after 4 years. In 256 recent-onset RA patients, baseline and 1-year hand BMD was measured in metacarpals 2-4 by digital X-ray radiogrammetry. Joint damage in hands and feet were scored in random order according to the Sharp-van der Heijde method at baseline and yearly up to 4 years. 68% of the patients had accelerated hand BMD loss (>-0.003 g/cm2) in the first year of RA. Hand BMD loss was associated with progressive joint damage after 1 year both in hands and feet with odds ratios (OR) (95% confidence intervals [CI]) of 5.3 (1.3-20.9) and 3.1 (1.0-9.7). In univariate analysis, hand BMD loss in the first year was a predictor of subsequent progressive total joint damage after 4 years with an OR (95% CI) of 3.1 (1.3-7.6). Multivariate analysis showed that only progressive joint damage in the first year and anti-citrullinated protein antibody positivity were independent predictors of long-term progressive joint damage. In the first year of RA, accelerated hand BMD loss is associated with progressive joint damage in both hands and feet. Hand BMD loss in the first year of recent-onset RA predicts subsequent progressive total joint damage, however not independent of progressive joint damage in the first year.
Nakajima, Arata; Aoki, Yasuchika; Sonobe, Masato; Takahashi, Hiroshi; Saito, Masahiko; Terayama, Keiichiro; Nakagawa, Koichi
2016-07-01
Radiographic progression of damage to the small joints in patients with rheumatoid arthritis (RA) is well known; however, it has not been studied fully in the large joints. In this study, we looked at the prevalence of radiographic progression of large joint damage in patients with RA treated with biological disease-modifying anti-rheumatic drugs (bDMARDs). A total of 273 large joints in the upper and lower extremities of 67 patients with RA treated with bDMARDs were investigated. Radiographs for tender and/or swollen large joints were taken at least twice during the study period (mean 18.6 months), and the progression of damage was evaluated. Progressive damage was found in 20.9% of patients and 6.2% of joints. A multivariate analysis revealed that the Larsen grade (LG) alone was a risk factor for progressive damage. The LG cutoff value was determined to be 2.5 (sensitivity: 0.529, specificity: 0.805). The only factor to predict progressive damage was the LG of the joints with symptoms, and the damage must be stopped within LG II. Regular radiographic examinations for large joints should be performed in addition to routine examinations for small joints, such as the hand and foot.
Haj-Mirzaian, Arya; Guermazi, Ali; Hakky, Michael; Sereni, Christopher; Zikria, Bashir; Roemer, Frank W; Tanaka, Miho J; Cosgarea, Andrew J; Demehri, Shadpour
2018-04-30
To determine whether the tibial tuberosity-to-trochlear groove (TT-TG) distance is associated with concurrent patellofemoral joint osteoarthritis (OA)-related structural damage and its worsening on 24-month follow-up magnetic resonance imaging (MRI) in participants in the Osteoarthritis Initiative (OAI). Six hundred subjects (one index knee per participant) were assessed. To evaluate patellofemoral OA-related structural damage, baseline and 24-month semiquantitative MRI Osteoarthritis Knee Score (MOAKS) variables for cartilage defects, bone marrow lesions (BMLs), osteophytes, effusion, and synovitis were extracted from available readings. The TT-TG distance was measured in all subjects using baseline MRIs by two musculoskeletal radiologists. The associations between baseline TT-TG distance and concurrent baseline MOAKS variables and their worsening in follow-up MRI were investigated using regression analysis adjusted for variables associated with tibiofemoral and patellofemoral OA. At baseline, increased TT-TG distance was associated with concurrent lateral patellar and trochlear cartilage damages, BML, osteophytes, and knee joint effusion [cross-sectional evaluations; overall odds ratio 95% confidence interval (OR 95% CI): 1.098 (1.045-1.154), p < 0.001]. In the longitudinal analysis, increased TT-TG distance was significantly related to lateral patellar and trochlear cartilage, BML, and joint effusion worsening (overall OR 95% CI: 1.111 (1.056-1.170), p < 0.001). TT-TG distance was associated with simultaneous lateral patellofemoral OA-related structural damage and its worsening over 24 months. Abnormally lateralized tibial tuberosity may be considered as a risk factor for future patellofemoral OA worsening. • Excessive TT-TG distance on MRI is an indicator/predictor of lateral-patellofemoral-OA. • TT-TG is associated with simultaneous lateral-patellofemoral-OA (6-17% chance-increase for each millimeter increase). • TT-TG is associated with longitudinal (24-months) lateral-patellofemoral-OA (5-15% chance-increase for each millimeter).
Quantification of Energy Release in Composite Structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
2003-01-01
Energy release rate is usually suggested as a quantifier for assessing structural damage tolerance. Computational prediction of energy release rate is based on composite mechanics with micro-stress level damage assessment, finite element structural analysis and damage progression tracking modules. This report examines several issues associated with energy release rates in composite structures as follows: Chapter I demonstrates computational simulation of an adhesively bonded composite joint and validates the computed energy release rates by comparison with acoustic emission signals in the overall sense. Chapter II investigates the effect of crack plane orientation with respect to fiber direction on the energy release rates. Chapter III quantifies the effects of contiguous constraint plies on the residual stiffness of a 90 ply subjected to transverse tensile fractures. Chapter IV compares ICAN and ICAN/JAVA solutions of composites. Chapter V examines the effects of composite structural geometry and boundary conditions on damage progression characteristics.
Quantification of Energy Release in Composite Structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2003-01-01
Energy release rate is usually suggested as a quantifier for assessing structural damage tolerance. Computational prediction of energy release rate is based on composite mechanics with micro-stress level damage assessment, finite element structural analysis and damage progression tracking modules. This report examines several issues associated with energy release rates in composite structures as follows: Chapter I demonstrates computational simulation of an adhesively bonded composite joint and validates the computed energy release rates by comparison with acoustic emission signals in the overall sense. Chapter II investigates the effect of crack plane orientation with respect to fiber direction on the energy release rates. Chapter III quantifies the effects of contiguous constraint plies on the residual stiffness of a 90 deg ply subjected to transverse tensile fractures. Chapter IV compares ICAN and ICAN/JAVA solutions of composites. Chapter V examines the effects of composite structural geometry and boundary conditions on damage progression characteristics.
Ito, Yukiko; Hozumi, Kaori; Okada, Yukiko; Kurimoto, Sarina
2017-06-01
The objective of this study was to evaluate the real-world safety and effectiveness of adalimumab with methotrexate (MTX) in disease-modifying antirheumatic drug (DMARD)- and biologic-naïve Japanese patients with rheumatoid arthritis (RA) at risk of progressive structural joint damage. This multicenter, prospective, observational, postmarketing surveillance study was conducted between February 2013 and April 2015 at 84 centers in Japan. Patients with RA at risk of progressive structural joint damage were enrolled and initiated treatment with adalimumab and MTX. Adverse events were recorded up to week 28. Effectiveness/disease activity was assessed using the Disease Activity Score based on a 28-joint count with erythrocyte sedimentation rate and C-reactive protein (DAS28-4ESR and DAS28-4CRP), Clinical Disease Activity Index, and Simplified Disease Activity Index at 0, 4, 12, and 24 weeks. DAS28-4CRP response was evaluated in the low-dose (<8 mg/week) and high-dose (≥8 mg to ≤16 mg/week) MTX groups at week 24. One hundred fifty-seven of 163 patients comprised the safety cohort: mean (SD) age, 56.5 (13.9) years; females, 65.6%; rheumatoid factor positive, 73.2%; anti-cyclic citrullinated peptide antibody positive, 66.9%; bone erosions, 51.6%; mean disease duration, 9.5 months. The majority of patients (≥80%) had moderate or high disease activity at baseline, and ≥50% with available data achieved remission or low disease activity at week 24 (DAS28-4CRP <3.2). Five serious adverse drug reactions occurred in four patients, including pyelonephritis, Pneumocystis jiroveci pneumonia, interstitial lung disease, pleurisy, and pericarditis; the outcomes were either recovered or recovering. Significant improvements/reductions in disease activity over 24 weeks were noted in all effectiveness measures (P < 0.0001). Most of the population achieved DAS28-4CRP remission (<2.6) at week 24 regardless of the MTX dose. Adalimumab in combination with MTX could be a beneficial treatment option for DMARD- and biologic-naïve Japanese patients with RA at risk of progressive structural joint damage. AbbVie GK and Eisai. ClinicalTrials.gov identifier, NCT01783730.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
.... This AD results from a structural review of affected skin lap joints for widespread fatigue damage. We are issuing this AD to prevent fatigue cracking in certain lap joints, which could result in rapid... operation beyond 15,000 total flight cycles after doing the proposed modification. Boeing stated that...
Finite Element Modeling of Viscoelastic Behavior and Interface Damage in Adhesively Bonded Joints
2012-01-01
eccentricity of the axis of a lap joint gives rise to transverse or peel stresses at the Report Documentation Page Form ApprovedOMB No. 0704-0188...Computers and Structures 29, 1011 (1988). 21 S. Roy and J. N. Reddy, Tire Sci. Technol. 16, 146 (1988). 22 S. Roy and J. N. Reddy, Intl. J. Numer
Reuther, Katherine E.; Thomas, Stephen J.; Evans, Elisabeth F.; Tucker, Jennica J.; Sarver, Joseph J.; Ilkhani-Pour, Sarah; Gray, Chancellor F.; Voleti, Pramod; Glaser, David L.; Soslowsky, Louis J.
2013-01-01
Large rotator cuff tears (supraspinatus and infraspinatus) are common in patients that perform overhead activities (laborers, athletes). In addition, following large cuff tears, these patients commonly attempt to return to pre-injury activity levels. However, there is a limited understanding of the damaging effects on the uninjured joint tissues when doing so. Therefore, the objective of this study was to investigate the effect of returning to overuse activity following a supraspinatus and infraspinatus tear on shoulder function and the structural and biological properties of the intact tendons and glenoid cartilage. Forty rats underwent four weeks of overuse followed by detachment of the supraspinatus and infraspinatus tendons and were then randomized into two groups: return to overuse or cage activity. Ambulatory measurements were performed over time and structural and biologic properties of the adjacent tendons and cartilage were evaluated. Results demonstrated that animals returning to overuse activity did not have altered shoulder function but despite this, did have altered cartilage and tendon properties. These mechanical changes corresponded to altered transcriptional regulation of chondrogenic genes within cartilage and tendon. This study helps define the mechanical and biologic mechanisms leading to joint damage and provides a framework for treating active cuff tear patients. PMID:23764174
Matsushita, Isao; Motomura, Hiraku; Seki, Eiko; Kimura, Tomoatsu
2017-07-01
The long-term effects of tumor necrosis factor (TNF)-blocking therapies on weight-bearing joints in patients with rheumatoid arthritis (RA) have not been fully characterized. The purpose of this study was to assess the radiographic changes of weight-bearing joints in patients with RA during 3-year of TNF-blocking therapies and to identify factors related to the progression of joint damage. Changes in clinical variables and radiological findings in 243 weight-bearing joints (63 hips, 54 knees, 71 ankles, and 55 subtalar joints) in 38 consecutive patients were investigated during three years of treatment with TNF-blocking agents. Multivariate logistic regression analysis was used to identify risk factors for the progression of weight-bearing joint damage. Seventeen (14.5%) of proximal weight-bearing joints (hips and knees) showed apparent radiographic progression during three years of treatment, whereas none of the proximal weight-bearing joints showed radiographic evidence of improvement or repair. In contrast, distal weight-bearing joints (ankle and subtalar joints) displayed radiographic progression and improvement in 20 (15.9%) and 8 (6.3%) joints, respectively. Multivariate logistic analysis for proximal weight-bearing joints identified the baseline Larsen grade (p < 0.001, OR:24.85, 95%CI: 5.07-121.79) and disease activity at one year after treatment (p = 0.003, OR:3.34, 95%CI:1.50-7.46) as independent factors associated with the progression of joint damage. On the other hand, multivariate analysis for distal weight-bearing joints identified disease activity at one year after treatment (p < 0.001, OR:2.13, 95%CI:1.43-3.18) as an independent factor related to the progression of damage. Baseline Larsen grade was strongly associated with the progression of damage in the proximal weight-bearing joints. Disease activity after treatment was an independent factor for progression of damage in proximal and distal weight-bearing joints. Early treatment with TNF-blocking agents and tight control of disease activity are necessary to prevent the progression of damage of the weight-bearing joints.
Infliximab in active early rheumatoid arthritis
Breedveld, F; Emery, P; Keystone, E; Patel, K; Furst, D; Kalden, J; St, C; Weisman, M; Smolen, J; Lipsky, P; Maini, R
2004-01-01
Objective: To examine the impact of the combination of infliximab plus methotrexate (MTX) on the progression of structural damage in patients with early rheumatoid arthritis (RA). Methods: Subanalyses were carried out on data for patients with early RA in the Anti-TNF Therapy in RA with Concomitant Therapy (ATTRACT) study, in which 428 patients with active RA despite MTX therapy received placebo with MTX (MTX-only) or infliximab 3 mg/kg or 10 mg/kg every (q) 4 or 8 weeks with MTX (infliximab plus MTX) for 102 weeks. Early RA was defined as disease duration of 3 years or less; 82 of the 428 patients (19%) met this definition. Structural damage was assessed with the modified van der Heijde-Sharp score. The changes from baseline to week 102 in total modified van der Heijde-Sharp score were compared between the infliximab plus MTX groups and the MTX-only group. Results: The erosion and joint space narrowing scores from baseline to week 102 in the cohort of patients with early RA decreased significantly in each infliximab dose regimen compared with the MTX-only regimen. Consistent benefit was seen in the joints of both hands and feet. Conclusions: Infliximab combined with MTX inhibited the progression of structural damage in patients with early RA during the 2 year period of treatment. Early intervention with infliximab in patients with active RA despite MTX therapy may provide long term benefits by preventing radiographic progression and preserving joint integrity. PMID:14722203
Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities
NASA Astrophysics Data System (ADS)
Katnam, K. B.; Da Silva, L. F. M.; Young, T. M.
2013-08-01
Advanced composite materials have gained popularity in high-performance structural designs such as aerospace applications that require lightweight components with superior mechanical properties in order to perform in demanding service conditions as well as provide energy efficiency. However, one of the major challenges that the aerospace industry faces with advanced composites - because of their inherent complex damage behaviour - is structural repair. Composite materials are primarily damaged by mechanical loads and/or environmental conditions. If material damage is not extensive, structural repair is the only feasible solution as replacing the entire component is not cost-effective in many cases. Bonded composite repairs (e.g. scarf patches) are generally preferred as they provide enhanced stress transfer mechanisms, joint efficiencies and aerodynamic performance. With an increased usage of advanced composites in primary and secondary aerospace structural components, it is thus essential to have robust, reliable and repeatable structural bonded repair procedures to restore damaged composite components. But structural bonded repairs, especially with primary structures, pose several scientific challenges with the current existing repair technologies. In this regard, the area of structural bonded repair of composites is broadly reviewed - starting from damage assessment to automation - to identify current scientific challenges and future opportunities.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-18
.... This proposed AD results from a structural review of affected skin lap joints for widespread fatigue damage. We are proposing this AD to prevent fatigue cracking in certain lap joints, which could result in...., Washington, DC 20590, between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays. For service...
Multi-damage identification based on joint approximate diagonalisation and robust distance measure
NASA Astrophysics Data System (ADS)
Cao, S.; Ouyang, H.
2017-05-01
Mode shapes or operational deflection shapes are highly sensitive to damage and can be used for multi-damage identification. Nevertheless, one drawback of this kind of methods is that the extracted spatial shape features tend to be compromised by noise, which degrades their damage identification accuracy, especially for incipient damage. To overcome this, joint approximate diagonalisation (JAD) also known as simultaneous diagonalisation is investigated to estimate mode shapes (MS’s) statistically. The major advantage of JAD method is that it efficiently provides the common Eigen-structure of a set of power spectral density matrices. In this paper, a new criterion in terms of coefficient of variation (CV) is utilised to numerically demonstrate the better noise robustness and accuracy of JAD method over traditional frequency domain decomposition method (FDD). Another original contribution is that a new robust damage index (DI) is proposed, which is comprised of local MS distortions of several modes weighted by their associated vibration participation factors. The advantage of doing this is to include fair contributions from changes of all modes concerned. Moreover, the proposed DI provides a measure of damage-induced changes in ‘modal vibration energy’ in terms of the selected mode shapes. Finally, an experimental study is presented to verify the efficiency and noise robustness of JAD method and the proposed DI. The results show that the proposed DI is effective and robust under random vibration situations, which indicates that it has the potential to be applied to practical engineering structures with ambient excitations.
Numerical and Experimental Evaluation on the Residual Stresses of Welded Joints
NASA Astrophysics Data System (ADS)
Huh, Sun Chul; Park, Wonjo; Yang, Haesug; Jung, Haeyoung; Kim, Chuyoung
Wings for the defense industry such as fighters, missiles, and rockets should show no deformation or damage on the structure. The structures of existing wings had holes for weight reduction. The plates and frames were fixed with rivets or screws, which limited the weight reduction possible. In this study, an improvement was made in jointing methods through EB welding and laser welding. Welding strength was measured through tension testing. In addition, finite element analysis was performed for the welding process so as to deduce the optimum welding condition.
Kleyer, Arnd; Beyer, Laura; Simon, Christoph; Stemmler, Fabian; Englbrecht, Matthias; Beyer, Christian; Rech, Jürgen; Manger, Bernhard; Krönke, Gerhard; Schett, Georg; Hueber, Axel J
2017-02-10
Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) result in severe joint destruction and functional disability if left untreated. We aim to develop tools that help patients with RA and PsA to understand and experience the impact of inflammatory joint disease on the integrity of their (juxta-articular) bone and increase adherence to medical treatment. In this study, we used high-resolution peripheral quantitative computed tomography (HR-pQCT) to develop 3D prototypes of patients' finger joints. HR-pQCT (XtremeCT, Scanco) measurements were performed in healthy individuals and patients with inflammatory joint disease, followed by a 3D print using the objet30 printer. Healthy participants (n = 10), and patients (n = 15 with RA and 15 with PsA) underwent a detailed, standardized interview with demonstration of printed joints. Utilizing HR-pQCT images of metacarpophalangeal (MCP) heads, high quality and exact 3D prints as prototypes were created. Erosions in different sizes and the trabecular network printed in detail were visualized, demonstrating structural reduction in arthritic vs. healthy bone. After demonstration of 3D prints (healthy vs. erosive joint, visual and haptic) 26/39 (66%) participants (including healthy volunteers) were deeply affected, often quoting "shock". Of the patients with RA and PsA, 13/15 (86%) and 11/15 (73%), respectively, stated that they would rethink their attitude to medication adherence. More importantly, 21/24 patients with RA or PsA (87.5%) expressed that they would have wished to see such 3D prints during their first disease-specific conversations. Using arthro-haptic 3D printed prototypes of joints may help to better understand the impact of inflammatory arthritides on bone integrity and long-term damage.
King, Lauren K.; March, Lyn; Anandacoomarasamy, Ananthila
2013-01-01
The most significant impact of obesity on the musculoskeletal system is associated with osteoarthritis (OA), a disabling degenerative joint disorder characterized by pain, decreased mobility and negative impact on quality of life. OA pathogenesis relates to both excessive joint loading and altered biomechanical patterns together with hormonal and cytokine dysregulation. Obesity is associated with the incidence and progression of OA of both weight-bearing and non weight-bearing joints, to rate of joint replacements as well as operative complications. Weight loss in OA can impart clinically significant improvements in pain and delay progression of joint structural damage. Further work is required to determine the relative contributions of mechanical and metabolic factors in the pathogenesis of OA. PMID:24056594
Giant Cells Osseous Tumor in the Tarsal Canal after Lateral Ankle Sprain
Lughi, Marcello
2018-01-01
Ankle sprain can cause injuries to the anatomic structures surrounding the tibiotarsal joint. A possible extra-articular pathology is to be hypothesized and diagnosed as early as possible. The subtalar joint, for anatomical and functional reasons, is one of the most damaged joints following an ankle sprain. In spite of this, its involvement is often underestimated. The clinical case presented in the present article is referred to a giant cells osseous tumor in the tarsal canal that was diagnosed 2 months after an inversion ankle sprain. PMID:29675509
Concept for a fast analysis method of the energy dissipation at mechanical joints
NASA Astrophysics Data System (ADS)
Wolf, Alexander; Brosius, Alexander
2017-10-01
When designing hybrid parts and structures one major challenge is the design, production and quality assessment of the joining points. While the polymeric composites themselves have excellent material properties, the necessary joints are often the weak link in assembled structures. This paper presents a method of measuring and analysing the energy dissipation at mechanical joining points of hybrid parts. A simplified model is applied based on the characteristic response to different excitation frequencies and amplitudes. The dissipation from damage is the result of relative moments between joining partners und damaged fibres within the composite, whereas the visco-elastic material behaviour causes the intrinsic dissipation. The ambition is to transfer these research findings to the characterisation of mechanical joints in order to quickly assess the general quality of the joint with this non-destructive testing method. The inherent challenge for realising this method is the correct interpretation of the measured energy dissipation and its attribution to either a bad joining point or intrinsic material properties. In this paper the authors present the concept for energy dissipation measurements at different joining points. By inverse analysis a simplified fast semi-analytical model will be developed that allows for a quick basic quality assessment of a given joining point.
Structural health monitoring of compression connectors for overhead transmission lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Wang, Jy-An John; Swindeman, Joseph P
Two-stage aluminum conductor steel-reinforced (ACSR) compression connectors are extensively used in US overhead transmission lines. The connectors are made by crimping a steel sleeve onto a steel core and an aluminum sleeve over aluminum conductive strands. The connectors are designed to operate at temperatures up to 125 C, but their performance is increasingly degrading because of overloading of lines. Currently, electric utilities conduct routine line inspections using thermal and electrical measurements. However, information about the structural integrity of connectors cannot be obtained. In this work, structural health monitoring (SHM) of compression connectors was studied using electromechanical impedance (EMI) analysis. Leadmore » zirconate titanate (PZT)-5A was identified as a smart material for SHM. A flexible high-temperature bonding layer was used to address challenges in PZT integration due to a significant difference in the coefficients of thermal expansion of PZT and the aluminum substrate. The steel joint on the steel core was investigated because it is responsible for the ultimate tensile strength of the connector. Tensile testing was used to create structural damage to the joint, or steel core pullout, and thermal cycling introduced additional structural perturbations. EMI measurements were conducted between the tests. The root mean square deviation (RMSD) of EMI was identified as a damage index. The use of steel joints has been shown to enable SHM under simulated conditions. The EMI signature is sensitive to variations in structural conditions. RMSD can be correlated to the structural health of a connector and has potential for use in the SHM and structural integrity evaluation.« less
Structural health monitoring of compression connectors for overhead transmission lines
NASA Astrophysics Data System (ADS)
Wang, Hong; Wang, Jy-An John; Swindeman, Joseph P.; Ren, Fei; Chan, John
2017-04-01
Two-stage aluminum conductor steel-reinforced (ACSR) compression connectors are extensively used in US overhead transmission lines. The connectors are made by crimping a steel sleeve onto a steel core and an aluminum sleeve over electrical conducting aluminum strands. The connectors are designed to operate at temperatures up to 125°C, but their performance is increasingly degrading because of overloading of lines. Currently, electric utilities conduct routine line inspections using thermal and electrical measurements, but these methods do not provide information about the structural integrity of connectors. In this work, structural health monitoring (SHM) of compression connectors was studied using electromechanical impedance (EMI) analysis. Lead zirconate titanate (PZT)-5A was identified as a smart material for SHM. A flexible high-temperature bonding layer was used to address challenges in PZT integration due to a significant difference in the coefficients of thermal expansion of PZT and the aluminum substrate. The steel joint on the steel core was investigated because it is responsible for the ultimate tensile strength of the connector. Tensile testing was used to induce structural damage to the joint, or steel core pullout, and thermal cycling introduced additional structural perturbations. EMI measurements were conducted between the tests. The root mean square deviation (RMSD) of EMI was identified as a damage index. The use of steel joints has been shown to enable SHM under simulated conditions. The EMI signature is sensitive to variations in structural conditions. RMSD can be correlated to the structural health of a connector and has potential for use in the SHM and structural integrity evaluation.
In-field implementation of impedance-based structural health monitoring for insulated rail joints
NASA Astrophysics Data System (ADS)
Albakri, Mohammad I.; Malladi, V. V. N. Sriram; Woolard, Americo G.; Tarazaga, Pablo A.
2017-04-01
Track defects are a major safety concern for the railroad industry. Among different track components, insulated rail joints, which are widely used for signaling purposes, are considered a weak link in the railroad track. Several joint-related defects have been identified by the railroad community, including rail wear, torque loss, and joint bar breakage. Current track inspection techniques rely on manual and visual inspection or on specially equipped testing carts, which are costly, timeconsuming, traffic disturbing, and prone to human error. To overcome the aforementioned limitations, the feasibility of utilizing impedance-based structural health monitoring for insulated rail joints is investigated in this work. For this purpose, an insulated joint, provided by Koppers Inc., is instrumented with piezoelectric transducers and assembled with 136 AREA rail plugs. The instrumented joint is then installed and tested at the Facility for Accelerated Service Testing, Transportation Technology Center Inc. The effects of environmental and operating conditions on the measured impedance signatures are investigated through a set of experiments conducted at different temperatures and loading conditions. The capabilities of impedance-based SHM to detect several joint-related damage types are also studied by introducing reversible mechanical defects to different joint components.
NASA Astrophysics Data System (ADS)
Walton, G.; Alejano, L. R.; Arzua, J.; Markley, T.
2018-06-01
A database of post-peak triaxial test results was created for artificially jointed planes introduced in cylindrical compression samples of a Blanco Mera granite. Aside from examining the artificial jointing effect on major rock and rock mass parameters such as stiffness, peak strength and residual strength, other strength parameters related to brittle cracking and post-yield dilatancy were analyzed. Crack initiation and crack damage values for both the intact and artificially jointed samples were determined, and these damage envelopes were found to be notably impacted by the presence of jointing. The data suggest that with increased density of jointing, the samples transition from a combined matrix damage and joint slip yielding mechanism to yield dominated by joint slip. Additionally, post-yield dilation data were analyzed in the context of a mobilized dilation angle model, and the peak dilation angle was found to decrease significantly when there were joints in the samples. These dilatancy results are consistent with hypotheses in the literature on rock mass dilatancy.
NASA Astrophysics Data System (ADS)
Jeevan Kumar, N.; Ramesh Babu, P.
2018-02-01
In recent years carbon fibre-reinforced polymers (CFRP) emerged its increasing demand in aerospace engineering. Due to their high specific strength to weight ratio, these composites offer more characteristics and considerable advantages compared to metals. Metals, unlike composites, offer plasticity effects to evade high stress concentrations during postbuckling. Under compressive load, composite structures show a wide range of damage mechanisms where a set of damage modes combined together might lead to the eventual structural collapse. Crack is one of the most critical damages in fiber composites, which are being employed in primary aircraft structures. A parametric study is conducted to investigate the arrest mechanism of the delamination or crack growth with installation of multiple fasteners when the delamination is embedded in between the skin and stiffener interface.
Lightning Protection and Structural Bonding for the B2 Test Stand
NASA Technical Reports Server (NTRS)
Kinard, Brandon
2015-01-01
With the privatization of the space industry, NASA has entered a new era. To explore deeper parts of the solar system, NASA is developing a new spacecraft, the Space Launch System (SLS), capable of reaching these destinations, such as an asteroid or Mars. However, the test stand that is capable of testing the stage has been unused for many years. In addition to the updating/repair of the stand, more steel is being added to fully support the SLS. With all these modifications, the lightning protection system must be brought up to code to assure the protection of all personnel and assets. Structural bonding is a part of the lightning protection system. The focus of this project was to assure proper structural bonding. To begin, all relevant technical standards and the construction specifications were reviewed. This included both the specifications for the lightning protection and for general construction. The drawings were reviewed as well. From the drawings, bolted structural joints were reviewed to determine whether bonding was necessary. Several bolted joints were determined to need bonding according to the notes in the drawings. This exceeds the industry standards. The bolted joints are an electrically continuous joint. During tests, the stand experiences heavy vibration that may weaken the continuity of the bolted joint. Therefore, the secondary bonding is implemented to ensure that the structural joint has low resistance. If the structural joint has a high resistance because of corrosion, a potential gradient can occur that can cause a side flash. Damage, injury, or death can occur from a side flash so they are to be prevented. A list of the identified structural joints was compiled and sent to the contractor to be bonded. That covers the scope of this project.
Further Simplification of the Simple Erosion Narrowing Score With Item Response Theory Methodology.
Oude Voshaar, Martijn A H; Schenk, Olga; Ten Klooster, Peter M; Vonkeman, Harald E; Bernelot Moens, Hein J; Boers, Maarten; van de Laar, Mart A F J
2016-08-01
To further simplify the simple erosion narrowing score (SENS) by removing scored areas that contribute the least to its measurement precision according to analysis based on item response theory (IRT) and to compare the measurement performance of the simplified version to the original. Baseline and 18-month data of the Combinatietherapie Bij Reumatoide Artritis (COBRA) trial were modeled using longitudinal IRT methodology. Measurement precision was evaluated across different levels of structural damage. SENS was further simplified by omitting the least reliably scored areas. Discriminant validity of SENS and its simplification were studied by comparing their ability to differentiate between the COBRA and sulfasalazine arms. Responsiveness was studied by comparing standardized change scores between versions. SENS data showed good fit to the IRT model. Carpal and feet joints contributed the least statistical information to both erosion and joint space narrowing scores. Omitting the joints of the foot reduced measurement precision for the erosion score in cases with below-average levels of structural damage (relative efficiency compared with the original version ranged 35-59%). Omitting the carpal joints had minimal effect on precision (relative efficiency range 77-88%). Responsiveness of a simplified SENS without carpal joints closely approximated the original version (i.e., all Δ standardized change scores were ≤0.06). Discriminant validity was also similar between versions for both the erosion score (relative efficiency = 97%) and the SENS total score (relative efficiency = 84%). Our results show that the carpal joints may be omitted from the SENS without notable repercussion for its measurement performance. © 2016, American College of Rheumatology.
NASA Astrophysics Data System (ADS)
Gao, Xiao-Long; Zhang, Lin-Jie; Liu, Jing; Zhang, Jian-Xun
2014-12-01
The present paper studied the evolution of tensile damage in joints welded using laser beam welding (LBW) and gas tungsten arc welding (TIG) under a uniaxial tensile load. The damage evolution in the LBW joints and TIG-welded joints was studied by using digital image correlation (DIC) technology and monitoring changes in Young's modulus during tensile testing. To study the mechanism of void nucleation and growth in the LBW joints and TIG-welded joints, test specimens with various amounts of plastic deformation were analyzed using a scanning electron microscope (SEM). Compared with TIG-welded joints, LBW-welded joints have a finer microstructure and higher microhardness in the fusion zone. The SEM analysis and DIC test results indicated that the critical strain of void nucleation was greater in the LBW-welded joints than in the TIG-welded joints, while the growth rate of voids was lower in the LBW-welded joints than in the TIG-welded joints. Thus, the damage ratio in the LBW joints was lower than that in the TIG-welded joints during tensile testing. This can be due to the coarser martensitic α' and the application of TC-1 welding rods in the TIG-welded joint.
Flaw Tolerance In Lap Shear Brazed Joints. Part 2
NASA Technical Reports Server (NTRS)
Wang, Len; Flom, Yury
2003-01-01
This paper presents results of the second part of an on-going effort to gain better understanding of defect tolerance in braze joints. In the first part of this three-part series, we mechanically tested and modeled the strength of the lap joints as a function of the overlap distance. A failure criterion was established based on the zone damage theory, which predicts the dependence of the lap joint shear strength on the overlap distance, based on the critical size of a finite damage zone or an overloaded region in the joint. In this second part of the study, we experimentally verified the applicability of the damage zone criterion on prediction of the shear strength of the lap joint and introduced controlled flaws into the lap joints. The purpose of the study was to evaluate the lap joint strength as a function of flaw size and its location through mechanical testing and nonlinear finite element analysis (FEA) employing damage zone criterion for definition of failure. The results obtained from the second part of the investigation confirmed that the failure of the ductile lap shear brazed joints occurs when the damage zone reaches approximately 10% of the overlap width. The same failure criterion was applicable to the lap joints containing flaws.
Spider Silk Spun and Integrated into Composites
2009-02-20
and elongation of sericin is lower than those of fibroin and, finally, (0 local shear damage is dominant in damaged sericin between fibres, while the... sericin at fibre-joint often shows microflow. These analytical studies are presently being expanded to include synthetic composites made of both...with sericin . Such a cocoon consists of three main parts: an outermost loose mesh structure, the middle shell layers and the innermost tetelette; all
Modeling thermal and irradiation-induced swelling effects on the integrity of Ti3SiC2/SiC joints
NASA Astrophysics Data System (ADS)
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
2017-11-01
Previously, results for CVD-SiC joined by a solid state displacement reaction to form a dual-phase SiC/MAX phase joint subsequently irradiated at 800 °C to 5 dpa indicated some cracking in the joint. This paper elucidates the cracking origin by developing a model that accounts for differential thermal expansion and irradiation-induced swelling between the substrate and joint materials by using a continuum damage mechanics approach with support from micromechanical modeling. Damage accumulation in joined specimens irradiated at four temperatures (300 °C, 400 °C, 500 °C and 800 °C) is analyzed. We assume the experimental irradiation dose is sufficient to cause saturation swelling in SiC. The analyses indicate that the SiC/MAX joint survives irradiation-induced swelling at all the irradiation temperatures considered. The joint experiences only minor damage when heated to and irradiated at 800 °C as well as cooling to room temperature. The prediction agrees with the experimental findings available for this case. However, the joint heated to 300 °C suffers severe damage during irradiation-induced swelling at this temperature, and additional damage after cooling to room temperature. Irradiation at 400 °C and subsequent cooling to room temperature produced similar damage to the irradiation 300 °C case, but to a lesser extent. The joint heated to 500 °C and irradiated at this temperature suffered only very minor damage, but further moderate damage occurred after cooling to room temperature.
Modeling thermal and irradiation-induced swelling effects on the integrity of Ti 3SiC 2/SiC joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
Previously, results for CVD-SiC joined by a solid state displacement reaction to form a dual-phase SiC/MAX phase joint subsequently irradiated at 800 °C to 5 dpa indicated some cracking in the joint. Here, this paper elucidates the cracking origin by developing a model that accounts for differential thermal expansion and irradiation-induced swelling between the substrate and joint materials by using a continuum damage mechanics approach with support from micromechanical modeling. Damage accumulation in joined specimens irradiated at four temperatures (300 °C, 400 °C, 500 °C and 800 °C) is analyzed. We assume the experimental irradiation dose is sufficient to causemore » saturation swelling in SiC. The analyses indicate that the SiC/MAX joint survives irradiation-induced swelling at all the irradiation temperatures considered. The joint experiences only minor damage when heated to and irradiated at 800 °C as well as cooling to room temperature. The prediction agrees with the experimental findings available for this case. However, the joint heated to 300 °C suffers severe damage during irradiation-induced swelling at this temperature, and additional damage after cooling to room temperature. Irradiation at 400 °C and subsequent cooling to room temperature produced similar damage to the irradiation 300 °C case, but to a lesser extent. Finally, the joint heated to 500 °C and irradiated at this temperature suffered only very minor damage, but further moderate damage occurred after cooling to room temperature.« less
Modeling thermal and irradiation-induced swelling effects on the integrity of Ti 3SiC 2/SiC joints
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
2017-09-08
Previously, results for CVD-SiC joined by a solid state displacement reaction to form a dual-phase SiC/MAX phase joint subsequently irradiated at 800 °C to 5 dpa indicated some cracking in the joint. Here, this paper elucidates the cracking origin by developing a model that accounts for differential thermal expansion and irradiation-induced swelling between the substrate and joint materials by using a continuum damage mechanics approach with support from micromechanical modeling. Damage accumulation in joined specimens irradiated at four temperatures (300 °C, 400 °C, 500 °C and 800 °C) is analyzed. We assume the experimental irradiation dose is sufficient to causemore » saturation swelling in SiC. The analyses indicate that the SiC/MAX joint survives irradiation-induced swelling at all the irradiation temperatures considered. The joint experiences only minor damage when heated to and irradiated at 800 °C as well as cooling to room temperature. The prediction agrees with the experimental findings available for this case. However, the joint heated to 300 °C suffers severe damage during irradiation-induced swelling at this temperature, and additional damage after cooling to room temperature. Irradiation at 400 °C and subsequent cooling to room temperature produced similar damage to the irradiation 300 °C case, but to a lesser extent. Finally, the joint heated to 500 °C and irradiated at this temperature suffered only very minor damage, but further moderate damage occurred after cooling to room temperature.« less
NASA Technical Reports Server (NTRS)
Howell, W. E.
1974-01-01
The structural performance of a boron-epoxy reinforced titanium drag strut, which contains a bonded scarf joint and was designed to the criteria of the Boeing 747 transport, was evaluated. An experimental and analytical investigation was conducted. The strut was exposed to two lifetimes of spectrum loading and was statically loaded to the tensile and compressive design ultimate loads. Throughout the test program no evidence of any damage in the drag strut was detected by strain gage measurements, ultrasonic inspection, or visual observation. An analytical study of the bonded joint was made using the NASA structural analysis computer program NASTRAN. A comparison of the strains predicted by the NASTRAN computer program with the experimentally determined values shows excellent agreement. The NASTRAN computer program is a viable tool for studying, in detail, the stresses and strains induced in a bonded joint.
Lamb wave propagation in a restricted geometry composite pi-joint specimen
NASA Astrophysics Data System (ADS)
Blackshire, James L.; Soni, Som
2012-05-01
The propagation of elastic waves in a material can involve a number of complex physical phenomena, resulting in both subtle and dramatic effects on detected signal content. In recent years, the use of advanced methods for characterizing and imaging elastic wave propagation and scattering processes has increased, where for example the use of scanning laser vibrometry and advanced computational models have been used very effectively to identify propagating modes, scattering phenomena, and damage feature interactions. In the present effort, the propagation of Lamb waves within a narrow, constrained geometry composite pi-joint structure are studied using 3D finite element models and scanning laser vibrometry measurements, where the effects of varying sample thickness, complex joint curvatures, and restricted structure geometries are highlighted, and a direct comparison of computational and experimental results are provided for simulated and realistic geometry composite pi-joint samples.
Monitoring of fatigue damage in composite lap-joints using guided waves and FBG sensors
NASA Astrophysics Data System (ADS)
Karpenko, Oleksii; Khomenko, Anton; Koricho, Ermias; Haq, Mahmoodul; Udpa, Lalita
2016-02-01
Adhesive bonding is being increasingly employed in many applications as it offers possibility of light-weighting and efficient multi-material joining along with reduction in time and cost of manufacturing. However, failure initiation and progression in critical components like joints, specifically in fatigue loading is not well understood, which necessitates reliable NDE and SHM techniques to ensure structural integrity. In this work, concurrent guided wave (GW) and fiber Bragg grating (FBG) sensor measurements were used to monitor fatigue damage in adhesively bonded composite lap-joints. In the present set-up, one FBG sensor was strategically embedded in the adhesive bond-line of a lap-joint, while two other FBGs were bonded on the surface of the adherends. Full spectral responses of FBG sensors were collected and compared at specific intervals of fatigue loading. In parallel, guided waves were actuated and sensed using PZT wafers mounted on the composite adherends. Experimental results demonstrated that time-of-flight (ToF) of the fundamental modes transmitted through the bond-line and spectral response of FBG sensors were sensitive to fatigue loading and damage. Combination of guided wave and FBG measurements provided the desired redundancy and synergy in the data to evaluate the degradation in bond-line properties. Measurements taken in the presence of continuously applied load replicated the in-situ/service conditions. The approach shows promise in understanding the behavior of bonded joints subjected to complex loading.
Total-Body Irradiation Produces Late Degenerative Joint Damage in Rats
Hutchinson, Ian D.; Olson, John; Lindburg, Carl A.; Payne, Valerie; Collins, Boyce; Smith, Thomas L.; Munley, Michael T.; Wheeler, Kenneth T.; Willey, Jeffrey S.
2014-01-01
Purpose Premature musculoskeletal joint failure is a major source of morbidity among childhood cancer survivors. Radiation effects on synovial joint tissues of the skeleton are poorly understood. Our goal was to assess long-term changes in the knee joint from skeletally mature rats that received total-body irradiation while skeletal growth was ongoing. Materials and Methods 14 week-old rats were irradiated with 1, 3 or 7 Gy total-body doses of 18 MV x-rays. At 53 weeks of age, structural and compositional changes in knee joint tissues (articular cartilage, subchondral bone, and trabecular bone) were characterized using 7T MRI, nanocomputed tomography (nanoCT), microcomputed tomography (microCT), and histology. Results T2 relaxation times of the articular cartilage were lower after exposure to all doses. Likewise, calcifications were observed in the articular cartilage. Trabecular bone microarchitecture was compromised in the tibial metaphysis at 7 Gy. Mild to moderate cartilage erosion was scored in the 3 and 7 Gy rats. Conclusions Late degenerative changes in articular cartilage and bone were observed after total body irradiation in adult rats exposed prior to skeletal maturity. 7T MRI, microCT, nanoCT, and histology identified potential prognostic indicators of late radiation-induced joint damage. PMID:24885745
Roman-Blas, Jorge A; Mediero, Aránzazu; Tardío, Lidia; Portal-Nuñez, Sergio; Gratal, Paula; Herrero-Beaumont, Gabriel; Largo, Raquel
2017-01-05
Osteoarthritis is the most common chronic joint disorder especially during aging. Although with controversies, glucosamine, both in its forms of sulfate and hydrochloride, and chondroitin sulfate are commonly employed to treat osteoarthritis. Due to the modest improve in the symptoms observed in patients treated with these drugs alone, a formulation combining both agents has been considered. The discrepant results achieved for pain control or structural improvement in osteoarthritis patients has been attributed to the quality of chemical formulations or different bias in clinical studies. The current study has been designed to test the effects of two different combined formulations with adequate pharmaceutical grade of these drugs in osteoarthritic joints, and to explore the underlying mechanisms modulated by both formulations in different osteoarthritis target tissues. Knee osteoarthritis was surgically induced in experimental rabbits. Some animals received the combined therapy (CT)1, (chondroitin sulfate 1200mg/day + glucosamine sulfate 1500mg/day), or the CT2 ((chondroitin sulfate 1200mg/day + glucosamine hydrochloride 1500mg/day). Neither CT1 nor CT2 significantly modified the cartilage damage or the synovial inflammation observed in osteoarthritic animals. Treatments were also unable to modify the presence of pro-inflammatory mediators, and the synthesis of metalloproteinases in the cartilage or in the synovium of osteoarthritic animals. Combined therapies did not modify the decrease in the subchondral bone mineral density observed in osteoarthritic rabbits. Therapies of chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride failed to improve structural damage or to ameliorate the inflammatory profile of joint tissues during experimental osteoarthritis. Published by Elsevier B.V.
Arthroscopic Management of Scaphoid-Trapezium-Trapezoid Joint Arthritis.
Pegoli, Loris; Pozzi, Alessandro
2017-11-01
Scaphoid-trapezium-trapezoid (STT) joint arthritis is a common condition consisting of pain on the radial side of the wrist and base of the thumb, swelling, and tenderness over the STT joint. Common symptoms are loss of grip strength and thumb function. There are several treatments, from symptomatic conservative treatment to surgical solutions, such as arthrodesis, arthroplasties, and prosthesis implant. The role of arthroscopy has grown and is probably the best treatment of this condition. Advantages of arthroscopic management of STT arthritis are faster recovery, better view of the joint during surgery, and possibility of creating less damage to the capsular and ligamentous structures. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tiwari, Nivedan; Chabra, Sanjay; Mehdi, Sheherbano; Sweet, Paula; Krasieva, Tatiana B.; Pool, Roy; Andrews, Brian; Peavy, George M.
2010-09-01
An estimated 1.3 million people in the United States suffer from rheumatoid arthritis (RA). RA causes profound changes in the synovial membrane of joints, and without early diagnosis and intervention, progresses to permanent alterations in joint structure and function. The purpose of this study is to determine if nonlinear optical microscopy (NLOM) can utilize the natural intrinsic fluorescence properties of tissue to generate images that would allow visualization of the structural and cellular composition of fresh, unfixed normal and pathologic synovial tissue. NLOM is performed on rabbit knee joint synovial samples using 730- and 800-nm excitation wavelengths. Less than 30 mW of excitation power delivered with a 40×, 0.8-NA water immersion objective is sufficient for the visualization of synovial structures to a maximum depth of 70 μm without tissue damage. NLOM imaging of normal and pathologic synovial tissue reveals the cellular structure, synoviocytes, adipocytes, collagen, vascular structures, and differential characteristics of inflammatory infiltrates without requiring tissue processing or staining. Further study to evaluate the ability of NLOM to assess the characteristics of pathologic synovial tissue and its potential role for the management of disease is warranted.
Aircraft Fatigue - with Particular Emphasis on Australian Operations and Research.
1983-04-01
its research on the fatigue behaviour of full-scale alluminium -alloy structures by undertaking a major investigation using surplus wings from North...on the corrosion fatigue of Taper-Lok bolted joints in D6AC steel. In March 1973 the RAAF finally took delivery of its first F-IliC, and among the...development of multiple defects, corrosion /stress corrosion , detvrirrat- ion of bonded joints, undetected cracks or damage, inadquate repairs 2r untested
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-09
... damage to adjacent beachfront structures, including the heavily used rail line that runs along the beach... miles (100 kilometers) south of Los Angeles at the southern end of Orange County near the border of San...
[Cytokines in bone diseases. Anti-cytokine therapies for bone and joint diseases].
Tanaka, Yoshiya
2010-10-01
The efficacy of biologics targeting inflammatory cytokines such as TNF and IL-6 for bone and joint diseases has been emerging. Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic synovitis and bone damage. By the use of TNF-inhibitors, clinical remission, structural remission and functional remission have become possible during the treatment of RA. Especially, the progress of joint and bone destruction is completely suppressed by TNF-inhibitors in the vast majority of RA patients. On the other hand, anti-RANKL antibody inhibits joint destruction as well as systemic osteoporosis, though no effects on synovitis of RA. Thus, differential efficacy of different therapies in bone destruction and osteoporosis would warrant further study to clarify the mechanisms of bone and joints diseases.
Flaw Tolerance in Lap Shear Brazed Joints. Part 1
NASA Technical Reports Server (NTRS)
Flom, Yury; Wang, Li-Qin
2003-01-01
Furnace brazing is a joining process used in the aerospace and other industries to produce strong permanent and hermetic structural joints. As in any joining process, brazed joints have various imperfections and defects. At the present time, our understanding of the influence of the internal defects on the strength of the brazed joints is not adequate. The goal of this 3-part investigation is to better understand the properties and failure mechanisms of the brazed joints containing defects. This study focuses on the behavior of the brazed lap shear joints because of their importance in manufacturing aerospace structures. In Part 1, an average shear strength capability and failure modes of the single lap joints are explored. Stainless steel specimens brazed with pure silver are tested in accordance with the AWS C3.2 standard. Comparison of the failure loads and the ultimate shear strength with the Finite Element Analysis (FEA) of the same specimens as a function of the overlap widths shows excellent correlation between the experimental and calculated values for the defect-free lap joints. A damage zone criterion is shown to work quite well in understanding the failure of the braze joints. In Part 2, the findings of the Part 1 will be verified on the larger test specimens. Also, various flaws will be introduced in the test specimens to simulate lack of braze coverage in the lap joints. Mechanical testing and FEA will be performed on these joints to verify that behavior of the flawed ductile lap joints is similar to joints with a reduced braze area. Finally, in Part 3, the results obtained in Parts 1 and 2 will be applied to the actual brazed structure to evaluate the load-carrying capability of a structural lap joint containing discontinuities. In addition, a simplified engineering procedure will be offered for the laboratory testing of the lap shear specimens.
NASA Technical Reports Server (NTRS)
Krantz, Timothy L.; Elchert, Justin P.; DellaCorte, Christopher; Dube, Michael J.
2016-01-01
The International Space Station's starboard Solar Alpha Rotary Joint (SARJ) experienced a breakdown of the joint's race ring surface. The starboard SARJ mechanism was cleaned and lubricated with grease. To provide some guidance on the expected behavior of the damaged SARJ ring with continued operations, experiments were conducted using rollers and a vacuum roller test rig. The approach of the experimental work involved three main steps: (1) initiate damage using conditions representative of the SARJ with inadequate lubrication; (2) propagate the damage by operating the test rollers without lubrication; and (3) assess the durability of the roller by testing to simulate the equivalent of 15 years of SARJ operation on the damaged surface assuming adequate grease lubrication. During the rig testing, additional and/or replacement grease was introduced at regular intervals to maintain good lubrication in the rig. The damage to the nitride layer continued even after application of grease. The grease lubrication proved to be effective for limiting the value of the axial force that can be developed. Limiting the axial force on the SARJ mechanism is important since the larger the axial force the more concentrated the load pressure becomes on the blend-radius location on the SARJ roller. After the testing simulating 15 years of SARJ operations, the wear depths were the order of 0.2 mm for the nitrided 15-5 roller and the order of 0.06 mm for the mating 440C roller. Metallographic inspections were done to search for indications of impending fatigue or other fracture indications that might eventually propagate and cause structural failure. There were no indications or features found that could eventually compromise structural integrity.
Stefanik, J.J.; Zhu, Y.; Zumwalt, A.C.; Gross, K.D.; Clancy, M.; Lynch, J. A.; Frey Law, L.A.; Lewis, C.E.; Roemer, F.W.; Powers, C.M.; Guermazi, A.; Felson, D.T.
2010-01-01
Objective To examine the relationship between patella alta and the prevalence and worsening at follow-up of structural features of patellofemoral joint (PFJ) osteoarthritis (OA) on MRI. Methods The Multicenter Osteoarthritis (MOST) Study is a cohort study of persons aged 50-79 years with or at risk for knee OA. Patella alta was measured using the Insall-Salvati ratio (ISR) on the baseline lateral radiograph and cartilage damage, bone marrow lesions (BMLs), and subchondral bone attrition (SBA) were graded on MRI at baseline and at 30 months follow-up in the PFJ. We examined the association of the ISR with the prevalence and worsening of cartilage damage, BMLs, and SBA in the PFJ using logistic regression. Results 907 knees were studied (mean age 62, BMI 30, ISR 1.10), 63% from female subjects. Compared with knees in the lowest ISR quartile at baseline, those in the highest had 2.4 (95% CI 1.7, 3.3), 2.9 (2.0, 4.3), and 3.5 (2.3, 5.5) times the odds of having lateral PFJ cartilage damage, BMLs, and SBA respectively, and 1.5 (95% CI 1.1, 2.0), 1.3 (0.9, 1.8), and 2.2 (1.4, 3.4) times the odds of having medial PFJ cartilage damage, BMLs, and SBA respectively. Similarly, those with high ISRs were also at risk for worsening of cartilage damage and BMLs over time than those with low ISRs. Conclusion A high ISR, indicative of patella alta, is associated with structural features of OA in the PFJ. Additionally, the same knees have increased risk of worsening of these same features over time. PMID:20506169
Influence of the bond-slip relationship on the flexural capacity of R.C. joints damaged by corrosion
NASA Astrophysics Data System (ADS)
Imperatore, Stefania
2016-06-01
In moderate and aggressive environmental condition, old reinforced concrete structures are often subjected to corrosive phenomena. Corrosion causes cracking, loss of diameter in reinforcement and variation of the bond behavior between steel and concrete. Then, in presence of cyclic actions like the seismic ones, old R.C. elements vary their ultimate drift, ductility, plastic rotation capacity and energy dissipation with the corrosion level. The problem is of current interest: the issue has been introduced in some paragraph of the Model Code 2010 and a committee is now drafting a new document on assessment strategies on existing concrete structures also damaged by corrosion. In this work, a first step on the analysis of the impact of the corrosion on the seismic behavior of R.C. elements is assessed: by mean FEM analyses, of a poor detailed column/foundation joint is analyzed in a parametric way in order to evaluate the influence of the bond-slip degradation by corrosion on the element flexural capacity.
Optimal sensor placement for active guided wave interrogation of complex metallic components
NASA Astrophysics Data System (ADS)
Coelho, Clyde K.; Kim, Seung Bum; Chattopadhyay, Aditi
2011-04-01
With research in structural health monitoring (SHM) moving towards increasingly complex structures for damage interrogation, the placement of sensors is becoming a key issue in the performance of the damage detection methodologies. For ultrasonic wave based approaches, this is especially important because of the sensitivity of the travelling Lamb waves to material properties, geometry and boundary conditions that may obscure the presence of damage if they are not taken into account during sensor placement. The framework proposed in this paper defines a sensing region for a pair of piezoelectric transducers in a pitch-catch damage detection approach by taking into account the material attenuation and probability of false alarm. Using information about the region interrogated by a sensoractuator pair, a simulated annealing optimization framework was implemented in order to place sensors on complex metallic geometries such that a selected minimum damage type and size could be detected with an acceptable probability of false alarm anywhere on the structure. This approach was demonstrated on a lug joint to detect a crack and on a large Naval SHM test bed and resulted in a placement of sensors that was able to interrogate all parts of the structure using the minimum number of transducers.
NASA Technical Reports Server (NTRS)
Taylor, Deneen; Enriquez, Carlos; McCann, David; McFatter, Justin
2010-01-01
The Solar Alpha Rotary Joint (SARJ) is a single-axis pointing mechanism used to orient the solar power generating arrays relative to the sun for the International Space Station (ISS). Approximately 83 days after its on-orbit installation, one of the two SARJ mechanisms aboard the ISS began to exhibit high current draw. Later inspections via Extravehicular Activity (EVA) discovered that the case hardened steel race ring on the outboard side of the joint had extensive damage to one of its three rolling surfaces. A far-reaching investigation of the anomaly was undertaken, comprising metallurgical inspections, coupon tests, traction kinematics tests, detailed bearing measurements, and thermal and structural analyses. The investigation found that the race ring damage had been caused by high bearing edge stresses that resulted from inadequate lubrication of the rolling contact. The profile of the roller bearings and the metallurgical properties of the race ring were also found to be significant contributing factors.
Fatigue damage behavior of a surface-mount electronic package under different cyclic applied loads
NASA Astrophysics Data System (ADS)
Ren, Huai-Hui; Wang, Xi-Shu
2014-04-01
This paper studies and compares the effects of pull-pull and 3-point bending cyclic loadings on the mechanical fatigue damage behaviors of a solder joint in a surface-mount electronic package. The comparisons are based on experimental investigations using scanning electron microscopy (SEM) in-situ technology and nonlinear finite element modeling, respectively. The compared results indicate that there are different threshold levels of plastic strain for the initial damage of solder joints under two cyclic applied loads; meanwhile, fatigue crack initiation occurs at different locations, and the accumulation of equivalent plastic strain determines the trend and direction of fatigue crack propagation. In addition, simulation results of the fatigue damage process of solder joints considering a constitutive model of damage initiation criteria for ductile materials and damage evolution based on accumulating inelastic hysteresis energy are identical to the experimental results. The actual fatigue life of the solder joint is almost the same and demonstrates that the FE modeling used in this study can provide an accurate prediction of solder joint fatigue failure.
Pushover analysis of reinforced concrete frames considering shear failure at beam-column joints
NASA Astrophysics Data System (ADS)
Sung, Y. C.; Lin, T. K.; Hsiao, C. C.; Lai, M. C.
2013-09-01
Since most current seismic capacity evaluations of reinforced concrete (RC) frame structures are implemented by either static pushover analysis (PA) or dynamic time history analysis, with diverse settings of the plastic hinges (PHs) on such main structural components as columns, beams and walls, the complex behavior of shear failure at beam-column joints (BCJs) during major earthquakes is commonly neglected. This study proposes new nonlinear PA procedures that consider shear failure at BCJs and seek to assess the actual damage to RC structures. Based on the specifications of FEMA-356, a simplified joint model composed of two nonlinear cross struts placed diagonally over the location of the plastic hinge is established, allowing a sophisticated PA to be performed. To verify the validity of this method, the analytical results for the capacity curves and the failure mechanism derived from three different full-size RC frames are compared with the experimental measurements. By considering shear failure at BCJs, the proposed nonlinear analytical procedures can be used to estimate the structural behavior of RC frames, including seismic capacity and the progressive failure sequence of joints, in a precise and effective manner.
Derivation and test of elevated temperature thermal-stress-free fastener concept
NASA Technical Reports Server (NTRS)
Sawyer, J. W.; Blosser, M. L.; Mcwithey, R. R.
1985-01-01
Future aerospace vehicles must withstand high temperatures and be able to function over a wide temperature range. New composite materials are being developed for use in designing high-temperature lightweight structures. Due to the difference between coefficients of thermal expansion for the new composite materials and conventional high-temperature metallic fasteners, innovative joining techniques are needed to produce tight joints at all temperatures without excessive thermal stresses. A thermal-stress-free fastening technique is presented that can be used to provide structurally tight joints at all temperatures even when the fastener and joined materials have different coefficients of thermal expansion. The derivation of thermal-stress-free fasteners and joint shapes is presented for a wide variety of fastener materials and materials being joined together. Approximations to the thermal-stress-free shapes that result in joints with low-thermal-stresses and that simplify the fastener/joint shape are discussed. The low-thermal-stress fastener concept is verified by thermal and shear tests in joints using oxide-dispersion-strengthened alloy fasteners in carbon-carbon material. The test results show no evidence of thermal stress damage for temperatures up to 2000 F and the resulting joints carried shear loads at room temperature typical of those for conventional joints.
A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Piascik, Robert S.; Newman, James C., Jr.
1999-01-01
An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.
A Practical Engineering Approach to Predicting Fatigue Crack Growth in Riveted Lap Joints
NASA Technical Reports Server (NTRS)
Harris, C. E.; Piascik, R. S.; Newman, J. C., Jr.
2000-01-01
An extensive experimental database has been assembled from very detailed teardown examinations of fatigue cracks found in rivet holes of fuselage structural components. Based on this experimental database, a comprehensive analysis methodology was developed to predict the onset of widespread fatigue damage in lap joints of fuselage structure. Several computer codes were developed with specialized capabilities to conduct the various analyses that make up the comprehensive methodology. Over the past several years, the authors have interrogated various aspects of the analysis methods to determine the degree of computational rigor required to produce numerical predictions with acceptable engineering accuracy. This study led to the formulation of a practical engineering approach to predicting fatigue crack growth in riveted lap joints. This paper describes the practical engineering approach and compares predictions with the results from several experimental studies.
Simplified Radiographic Damage Index for Affected Joints in Chronic Gouty Arthritis
2016-01-01
The aim of this study was to develop and validate a new radiographic damage scoring method (DAmagE index of GoUt; DAEGU) in chronic gout using plain radiography. Two independent observers scored foot x-rays from 15 patients with chronic gout according to the DAEGU method and the modified Sharp/van der Heijde (SvdH) method. The 10 metatarsophalangeal (MTP) and 2 interphalangeal (IP) joints of the first toes of both feet were scored to assess the degrees of erosion and joint space narrowing (JSN). The intraobserver and interobserver reliabilities were analyzed by calculating the intraclass correlation coefficient (ICC) and minimal detectable change (MDC). The correlation between the DAEGU and SvdH methods was analyzed by calculating the Spearman's rho correlation coefficients and Kappa coefficients. The DAEGU method was found to be highly reproducible (0.945–0.987 for the intraobserver and 0.993–0.996 for the interobserver ICC values). The erosion, JSN, and total scores exhibited strong positive correlations between the DAEGU and SvdH methods and also within each method (r = 0.860–0.969, P < 0.001 for all parameters). The DAEGU and SvdH methods were in very good agreement as determined by Kappa coefficient analysis [0.732 (0.387–1.000) for erosion and 1.000 (1.000–1.000) for JSN]. In conclusion, this study revealed that DAEGU method was a reliable and feasible tool in the assessment of radiographic damage in chronic gout. The DAEGU method may provide a more easy assessment of structural damage in chronic gout in the real clinical practice. PMID:26955246
38 CFR 4.40 - Functional loss.
Code of Federal Regulations, 2011 CFR
2011-07-01
... DISABILITIES Disability Ratings The Musculoskeletal System § 4.40 Functional loss. Disability of the musculoskeletal system is primarily the inability, due to damage or infection in parts of the system, to perform... absence of part, or all, of the necessary bones, joints and muscles, or associated structures, or to...
38 CFR 4.40 - Functional loss.
Code of Federal Regulations, 2014 CFR
2014-07-01
... DISABILITIES Disability Ratings The Musculoskeletal System § 4.40 Functional loss. Disability of the musculoskeletal system is primarily the inability, due to damage or infection in parts of the system, to perform... absence of part, or all, of the necessary bones, joints and muscles, or associated structures, or to...
38 CFR 4.40 - Functional loss.
Code of Federal Regulations, 2013 CFR
2013-07-01
... DISABILITIES Disability Ratings The Musculoskeletal System § 4.40 Functional loss. Disability of the musculoskeletal system is primarily the inability, due to damage or infection in parts of the system, to perform... absence of part, or all, of the necessary bones, joints and muscles, or associated structures, or to...
38 CFR 4.40 - Functional loss.
Code of Federal Regulations, 2012 CFR
2012-07-01
... DISABILITIES Disability Ratings The Musculoskeletal System § 4.40 Functional loss. Disability of the musculoskeletal system is primarily the inability, due to damage or infection in parts of the system, to perform... absence of part, or all, of the necessary bones, joints and muscles, or associated structures, or to...
A dual-phase microstructural approach to damage and fracture of Ti3SiC2/SiC joints
NASA Astrophysics Data System (ADS)
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
2018-02-01
The microcracking mechanisms responsible for Ti3SiC2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments are investigated in detail. A dual-phase microstructural approach to damage and fracture of Ti3SiC2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti3SiC2 and SiC phases. The behaviors of SiC and Ti3SiC2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504-515. This CDM model describes microcracking damage in brittle ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti3SiC2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti3SiC2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti3SiC2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. These predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.
Experimental studies of glued Aluminum-glass joints
NASA Astrophysics Data System (ADS)
Ligaj, B.; Wirwicki, M.; Karolewska, K.; Jasińska, A.
2018-04-01
Glued steel-glass or aluminum-glass joints are to be found, among other things, in vehicles (cars, buses, trains, trams) as windscreen assembly pieces for the supporting structure. For the purposes of the experiments, samples were made in which the top beam was made of the AW-2017A aluminum alloy and the bottom beam was made of thermally reinforced soda-lime glass whereas the glued joints were made of one-component polyurethane glue Körapur 175. The tests were performed under four-point bending conditions at monotonic incremental bending moment values on the Instron 5965 durability machine. The experimental study of the durability of glued joints under four-point bending conditions with the monotonic incremental bending moment allows to determine the values of stresses, whose value is related to initiation of damage of the tested joint.
Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage
Beddoes, Charlotte M.; Whitehouse, Michael R.; Briscoe, Wuge H.; Su, Bo
2016-01-01
Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN) hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour. PMID:28773566
Hydrogels as a Replacement Material for Damaged Articular Hyaline Cartilage.
Beddoes, Charlotte M; Whitehouse, Michael R; Briscoe, Wuge H; Su, Bo
2016-06-03
Hyaline cartilage is a strong durable material that lubricates joint movement. Due to its avascular structure, cartilage has a poor self-healing ability, thus, a challenge in joint recovery. When severely damaged, cartilage may need to be replaced. However, currently we are unable to replicate the hyaline cartilage, and as such, alternative materials with considerably different properties are used. This results in undesirable side effects, including inadequate lubrication, wear debris, wear of the opposing articular cartilage, and weakening of the surrounding tissue. With the number of surgeries for cartilage repair increasing, a need for materials that can better mimic cartilage, and support the surrounding material in its typical function, is becoming evident. Here, we present a brief overview of the structure and properties of the hyaline cartilage and the current methods for cartilage repair. We then highlight some of the alternative materials under development as potential methods of repair; this is followed by an overview of the development of tough hydrogels. In particular, double network (DN) hydrogels are a promising replacement material, with continually improving physical properties. These hydrogels are coming closer to replicating the strength and toughness of the hyaline cartilage, while offering excellent lubrication. We conclude by highlighting several different methods of integrating replacement materials with the native joint to ensure stability and optimal behaviour.
Wang, Huan; Wang, Qingguo; Yang, Meijuan; Yang, Lili; Wang, Weili; Ding, Haobin; Zhang, Dong; Xu, Jing; Tang, Xuezhang; Ding, Haitao; Wang, Qingfu
2018-02-01
Osteoarthritis (OA) is a common chronic degenerative disease that affects all joints. At present, the pathological processes and mechanisms of OA are still unclear. Innate immunity, a key player in damage to the structure of the joint and the mechanism by which the host attempts to repair OA, affects all pathological stages of the disease. In the present study, our aim was to assess changes in innate immunity during the pathological processes of OA in articular cartilage (AC) and the synovial membrane (SM), which are the major structures in joints, and to systematically examine the histological changes in AC and SM in mild, moderate and severe cases of OA, in order to further speculate about the manner in which the interactions of AC and SM are facilitated by innate immunity. Histological methods (including HE and Safranin O-fast green staining), immunofluorescent double staining, TUNEL stain, and Western blots were used to assess the morphological changes within AC and SM tissues in healthy and mild, moderate, or severe OA rats. Our results showed that the damage to AC and SM within the joints progressively worsened in different degrees during the course of the disease, and that the innate immune system was closely involved in the AC and SM during each stage of OA. These findings also confirmed that SM may affect the pathological changes in AC through the innate immune system, and therefore affect the progress of OA. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Fakih, Mohammad Ali; Mustapha, Samir; Tarraf, Jaafar; Ayoub, Georges; Hamade, Ramsey
2018-02-01
Ultrasonic guided waves (GWs), e.g. Lamb waves, have been proven effective in the detection of defects such as corrosion, cracking, delamination, and debonding in both composite and metallic structures. They are a significant tool employed in structural health monitoring. In this study, the ability of ultrasonic GWs to assess the quality of friction stir welding (FSW) was investigated. Four friction stir welded AZ31B magnesium plates processed with different welding parameters and a non-welded plate were used. The fundamental symmetric (S0) Lamb wave mode was excited using piezoelectric wafers (PZTs). Further, the S0 mode was separated using the "Improved complete ensemble empirical mode decomposition with adaptive noise (Improved CEEMDAN)" technique. A damage index (DI) was defined based on the variation in the amplitude of the captured wave signals in order to detect the presence and asses the severity of damage resulting from the welding process. As well, computed tomography (CT) scanning was used as a non-destructive testing (NDT) technique to assess the actual weld quality and validate predictions based on the GW approach. The findings were further confirmed using finite element analysis (FEA). To model the actual damage profile in the welds, "Mimics" software was used for the 3D reconstruction of the CT scans. The built 3D models were later used for evaluation of damage volume and for FEA. The damage volumes were correlated to the damage indices computed from both experimental and numerical data. The proposed approach showed high sensitivity of the S0 mode to internal flaws within the friction stir welded joints. This methodology has great potential as a future classification method of FSW quality.
Fischenich, Kristine M.; Pauly, Hannah M.; Button, Keith D.; Fajardo, Ryan S.; DeCamp, Charles E.; Haut, Roger C.; Haut Donahue, Tammy L.
2016-01-01
Objective The objective of this study was to monitor the progression of joint damage in two animal models of knee joint trauma using two non-invasive, clinically available imaging modalities. Methods A 3-T clinical magnet and micro-computed tomography (mCT) was used to document changes immediately following injury (acute) and post-injury (chronic) at time points of 4, 8, or 12 weeks. Joint damage was recorded at dissection and compared to the chronic magnetic resonance imaging (MRI) record. Fifteen Flemish Giant rabbits were subjected to a single tibiofemoral compressive impact (ACLF), and 18 underwent a combination of anterior cruciate ligament (ACL) and meniscal transection (mACLT). Results All ACLF animals experienced ACL rupture, and 13 also experienced acute meniscal damage. All ACLF and mACLT animals showed meniscal and articular cartilage damages at dissection. Meniscal damage was documented as early as 4 weeks and worsened in 87% of the ACLF animals and 71% of the mACLT animals. Acute cartilage damage also developed further and increased in occurrence with time in both models. A progressive decrease in bone quantity and quality was documented in both models. The MRI data closely aligned with dissection notes suggesting this clinical tool may be a non-invasive method for documenting joint damage in lapine models of knee joint trauma. Conclusions The study investigates the acute to chronic progression of meniscal and cartilage damage at various time points, and chronic changes to the underlying bone in two models of posttraumatic osteoarthritis (PTOA), and highlights the dependency of the model on the location, type, and progression of damage over time. PMID:27756698
SEABEE Pretest Results of the Joint Logistics-over-the-Shore (LOTS) Test and Evaluation Program.
1977-12-07
in the harbor. None of the equipment required extensive shoring. Some chocks and * wedges were placed on the equipment to increase its stability. P...incident. A subsequent examination revealed considerable structural damage to *the Peck & Hale tie-downs. Evidently one of the latching devices
A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
We investigate the microcracking mechanisms responsible for Ti 3SiC 2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments in detail. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti 3SiC 2 and SiC phases. The behaviors of SiC and Ti 3SiC 2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504–515. This CDM model describes microcracking damage in brittlemore » ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti 3SiC 2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti 3SiC 2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti 3SiC 2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. Our predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.« less
Simon, P; Pfoehler, C; Bergner, R; Schreiber, M; Pfreundschuh, M; Assmann, G
2012-01-01
Psoriatic arthritis (PsA) may progress to joint damage. Determining clinical predictors of joint damage assessed by radiography is important. The aim of this study was to determine clinical factors as possible predictors for radiological damage in hands and feet of PsA patients with a 12-month follow-up. We conducted a retrospective study on 53 PsA patients who were taking disease-modifying anti-rheumatic drugs (DMARDs) and/or tumour necrosis factor (TNF)-alpha-blockers at a fixed dosage. The patients were observed in 118 follow-up visits (intervals of 12 months ± 3 months), according to a clinical and radiological protocol which included the documentation of the number of swollen and tender joints in hands and feet, the applied therapy, psoriasis, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and global health assessment. Outcome was defined as radiographic damage of hands and feet (Ratingen score). For the statistical analysis the Chi-Square test for 2x2 crosstables (with Fisher's correction, as required) was used. Progressive radiological damage was more frequent among patients with an increasing swollen joint count (8 of 26 visits; 30.8%) than among those with a stable or decreased number of swollen joints (5 of 89 visits; 5.6%; p=0.001). The analysis of the patients stratified into the different treatment modalities resulted in a significant higher rate of radiological progress (20.8%) in patients on DMARD therapy compared with TNF-alpha blocking agents (0%) (p=0.009). During a 12-month follow-up of PsA patients, an increasing number of swollen joints heralds progression of radiological damage. TNF-alpha-blocker therapy appears to be superior to DMARDs in the protection from radiological progress.
A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
2017-12-05
We investigate the microcracking mechanisms responsible for Ti 3SiC 2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments in detail. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti 3SiC 2 and SiC phases. The behaviors of SiC and Ti 3SiC 2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504–515. This CDM model describes microcracking damage in brittlemore » ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti 3SiC 2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti 3SiC 2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti 3SiC 2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. Our predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.« less
Klarenbeek, N B; Güler-Yüksel, M; van der Heijde, D M F M; Hulsmans, H M J; Kerstens, P J S M; Molenaar, T H E; de Sonnaville, P B J; Huizinga, T W J; Dijkmans, B A C; Allaart, C F
2010-12-01
To assess the relationship between joint tenderness, swelling and joint damage progression in individual joints and to evaluate the influence of treatment on these relationships. First-year data of the Behandel Strategieën (BeSt) study were used, in which patients recently diagnosed as having rheumatoid arthritis (RA) were randomly assigned into four different treatment strategies. Baseline and 1-year x-rays of the hands and feet were assessed using the Sharp-van der Heijde score (SHS). With generalised estimating equations, 3-monthly assessments of tender and swollen joints of year 1 were related to erosion progression, joint space narrowing (JSN) progression and total SHS progression at the individual joint level (definition > 0.5 SHS units) in year 1, corrected for potential confounders and within-patient correlation for multiple joints per patient. During year 1, 59% of all 13 959 joints analysed were ever tender and 45% ever swollen, 2.1% showed erosion progression, 1.9% JSN progression and 3.6% SHS progression. Swelling and tenderness were both independently associated with erosion and JSN progression with comparable OR, although with higher OR in the hands than in the feet. Local swelling and tenderness were not associated with local damage progression in patients initially treated with infliximab. Clinical signs of synovitis are associated with erosion and JSN progression in individual joints after 1 year in RA. A disconnect between synovitis and joint damage progression was observed at joint level in patients who were treated with methotrexate and infliximab as initial treatment, confirming the disconnect between synovitis and the development of joint damage in tumour necrosis factor blockers seen at patient level.
Effect of Heat Input on the Tensile Damage Evolution in Pulsed Laser Welded Ti6Al4V Titanium Sheets
NASA Astrophysics Data System (ADS)
Liu, Jing; Gao, Xiaolong; Zhang, Jianxun
2016-11-01
The present paper is focused on studying the effect of heat input on the tensile damage evolution of pulsed Nd:YAG laser welding of Ti6Al4V alloy under monotonic loading. To analyze the reasons that the tensile fracture site of the pulsed-laser-welded Ti6Al4V sheet joints changes with the heat input under monotonic loading, the microstructure of the sample with different nominal strain values was investigated by in situ observation. Experiment results show that the tensile ductility and fatigue life of welded joints with low heat input are higher than that of welded joints with high heat input. Under tensile loads, the critical engineering strain for crack initiation is much lower in the welded joint with high heat input than in the welded joints with low and medium heat input. And the microstructural damage accumulation is much faster in the fusion zone than in the base metal for the welded joints with high input, whereas the microstructural damage accumulation is much faster in the base metal than in the fusion zone for the welded joints with low input. Consequently, the welded joints fractured in the fusion zone for the welds with high heat input, whereas the welded joints ruptured in the base metal for the welds with low heat input. It is proved that the fine grain microstructure produced by low heat input can improve the critical nominal strain for crack initiation and the resistance ability of microstructural damage.
NASA Astrophysics Data System (ADS)
Johnston, Patrick H.; Parker, F. Raymond
2014-02-01
As an approach to light-weight, cost-effective and manufacturable structures required to enable the hybrid wing body aircraft, The Boeing Company, Inc. and NASA have developed the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. A PRSEUS pressure cube was developed as a risk reduction test article to examine a new integral cap joint concept as part of a building block approach for technology development of the PRSEUS concept. The overall specimen strength exceeded the 18.4 psi load requirement as testing resulted in the cube reaching a final pressure load of around 48 psi prior to catastrophic failure. The cube pressure test verified that the joints and structure were capable of sustaining the required loads, and represented the first testing of joined PRSEUS structure. This paper will address the damage arrestment performance of the stitched PRSEUS structure. Following catastrophic failure of the cube, ultrasonic pulse-echo inspection found that the localized damage, surrounding a barely-visible impact damage site, did not change noticeably between just after impact and catastrophic failure of the cube, and did not play a role in the catastrophic failure event. Ultrasonic inspection of the remaining intact cube panels presented three basic types of indications: delaminations between laminae parallel to the face sheets, lying between face sheet and tear strap layers, or between tear strap and flange layers; delaminations above the noodles of stringers, frames or integral caps, lying within face sheet or tear strap layers; and delaminations between the laminae in the inner fillets of the integral caps, where pulloff stresses were expected to be highest. Delaminations of all three types were predominantly contained by the first row of stitches encountered. For the small fraction of delaminations extending beyond the first row of stitches, all were contained by the second stitch row.
NASA Technical Reports Server (NTRS)
Johnston, Patrick H.; Parker, F. Raymond
2013-01-01
As an approach to light-weight, cost-effective and manufacturable structures required to enable the hybrid wing body aircraft, The Boeing Company, Inc. and NASA have developed the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. A PRSEUS pressure cube was developed as a risk reduction test article to examine a new integral cap joint concept as part of a building block approach for technology development of the PRSEUS concept. The overall specimen strength exceeded the 18.4 psi load requirement as testing resulted in the cube reaching a final pressure load of around 48 psi prior to catastrophic failure. The cube pressure test verified that the joints and structure were capable of sustaining the required loads, and represented the first testing of joined PRSEUS structure. This paper will address the damage arrestment performance of the stitched PRSEUS structure. Following catastrophic failure of the cube, ultrasonic pulse-echo inspection found that the localized damage, surrounding a barely-visible impact damage site, did not change noticeably between just after impact and catastrophic failure of the cube, and did not play a role in the catastrophic failure event. Ultrasonic inspection of the remaining intact cube panels presented three basic types of indications: delaminations between laminae parallel to the face sheets, lying between face sheet and tear strap layers, or between tear strap and flange layers; delaminations above the noodles of stringers, frames or integral caps, lying within face sheet or tear strap layers; and delaminations between the laminae in the inner fillets of the integral caps, where pulloff stresses were expected to be highest. Delaminations of all three types were predominantly contained by the first row of stitches encountered. For the small fraction of delaminations extending beyond the first row of stitches, all were contained by the second stitch row.
Amanatullah, D F; Masini, M A; Roger, D J; Pagnano, M W
2016-08-01
We wished to quantify the extent of soft-tissue damage sustained during minimally invasive total hip arthroplasty through the direct anterior (DA) and direct superior (DS) approaches. In eight cadavers, the DA approach was performed on one side, and the DS approach on the other, a single brand of uncemented hip prosthesis was implanted by two surgeons, considered expert in their surgical approaches. Subsequent reflection of the gluteus maximus allowed the extent of muscle and tendon damage to be measured and the percentage damage to each anatomical structure to be calculated. The DA approach caused substantially greater damage to the gluteus minimus muscle and tendon when compared with the DS approach (t-test, p = 0.049 and 0.003, respectively). The tensor fascia lata and rectus femoris muscles were damaged only in the DA approach. There was no difference in the amount of damage to the gluteus medius muscle and tendon, piriformis tendon, obturator internus tendon, obturator externus tendon or quadratus femoris muscle between approaches. The posterior soft-tissue releases of the DA approach damaged the gluteus minimus muscle and tendon, piriformis tendon and obturator internus tendon. The DS approach caused less soft-tissue damage than the DA approach. However the clinical relevance is unknown. Further clinical outcome studies, radiographic evaluation of component position, gait analyses and serum biomarker levels are necessary to evaluate and corroborate the safety and efficacy of the DS approach. Cite this article: Bone Joint J 2016;98-B1036-42. ©2016 The British Editorial Society of Bone & Joint Surgery.
Nano-material aspects of shock absorption in bone joints.
Tributsch, H; Copf, F; Copf, P; Hindenlang, U; Niethard, F U; Schneider, R
2010-01-01
This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three-dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones.
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.; Bakuckas, John G., Jr.; Lovejoy, Andrew E.; Jegley, Dawn C.; Awerbuch, Jonathan; Tan, Tein-Min
2012-01-01
An area that shows promise in enhancing structural integrity of aircraft and aerospace structures is the integrally stitched composite technology. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept developed by Boeing Research and Technology and the National Aeronautics and Space Administration. A joint test program on the assessment of damage containment capabilities of the PRSEUS concept for curved fuselage structures was conducted recently at the Federal Aviation Administration William J. Hughes Technical Center. The panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure load conditions up to fracture, with a through-the-thickness, two-bay notch severing the central stiffener. For the purpose of future progressive failure analysis development and verification, extensive post failure nondestructive and teardown inspections were conducted. Detailed inspections were performed directly ahead of the notch tip where stable damage progression was observed. These examinations showed: 1) extensive delaminations developed ahead of the notch tip, 2) the extent and location of damage, 3) the typical damage mechanisms observed in composites, and 4) the role of stitching and warp-knitting in the failure mechanisms. The objective of this paper is to provide a summary of results from these posttest inspections.
Characteristics of Asperity Damage and Its Influence on the Shear Behavior of Granite Joints
NASA Astrophysics Data System (ADS)
Meng, Fanzhen; Zhou, Hui; Wang, Zaiquan; Zhang, Chuanqing; Li, Shaojun; Zhang, Liming; Kong, Liang
2018-02-01
Surface roughness significantly affects the shear behavior of rock joints; thus, studies on the asperity damage characteristics and its influence on the shear behavior of joints are extremely important. In this paper, shear tests were conducted on tensile granite joints; asperity damage was evaluated based on acoustic emission (AE) events; and the influence of asperity damage on joint shear behavior was analyzed. The results indicated that the total AE events tended to increase with normal stress. In addition, the asperity damage initiation shear stress, which is defined as the transition point from slow growth to rapid growth in the cumulative events curve, was approximately 0.485 of the peak shear strength regardless of the normal stress. Moreover, 63-85% of the AE events were generated after the peak shear stress, indicating that most of the damage occurred in this stage. Both the dilation and the total AE events decreased with shear cycles because of the damage inflicted on asperities during the previous shear cycle. Two stages were observed in the normal displacement curves under low normal stress, whereas three stages (compression, dilation and compression again) were observed at a higher normal stress; the second compression stage may be caused by tensile failure outside the shear plane. The magnitude of the normal stress and the state of asperity are two important factors controlling the post-peak stress drop and stick-slip of granite joints. Serious deterioration of asperities will stop stick-slip from recurring under the same normal stress because the ability to accumulate energy is decreased. The AE b-value increases with the number of shear cycles, indicating that the stress concentration inside the fault plane is reduced because of asperity damage; thus, the potential for dynamic disasters, such as fault-slip rockbursts, will be decreased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
2016-09-30
Finite element (FE) continuum damage mechanics (CDM) models have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including preliminary thermomechanical analyses of cracked joints and implementation of dual-phase damage models.
van Vulpen, Lize F D; Schutgens, Roger E G; Coeleveld, Katja; Alsema, Els C; Roosendaal, Goris; Mastbergen, Simon C; Lafeber, Floris P J G
2015-11-05
Joint bleeding after (sports) trauma, after major joint surgery, or as seen in hemophilia in general leads to arthropathy. Joint degeneration is considered to result from the direct effects of blood components on cartilage and indirectly from synovial inflammation. Blood-provided proinflammatory cytokines trigger chondrocytes and induce the production of cartilage-degrading proteases. In the presence of erythrocyte-derived iron, cytokines stimulate radical formation in the vicinity of chondrocytes inducing apoptosis. To unravel the role of interleukin (IL) 1β and tumor necrosis factor (TNF) α in the pathogenesis of this blood-induced cartilage damage, the effect of antagonizing these cytokines was examined in human in vitro cultures. Addition of recombinant human IL-1β monoclonal antibody or IL-1 receptor antagonist resulted in a dose- and time-dependent protection of cartilage from blood-induced damage. In higher concentrations, almost complete normalization of cartilage matrix proteoglycan turnover was achieved. This was accompanied by a reduction in IL-1β and IL-6 production in whole blood cultures, whereas TNFα production remained unaffected. Interestingly, addition of a TNFα monoclonal antibody, although demonstrated to inhibit the direct (transient) effects of TNFα on cartilage, exhibited no effect on blood-induced (prolonged) cartilage damage. It is demonstrated that IL-1β is crucial in the development of blood-induced joint damage, whereas TNFα is not. This hierarchical position of IL-1β in blood-induced joint damage warrants studies on targeting IL-1β to potentially prevent joint degeneration after a joint bleed. © 2015 by The American Society of Hematology.
O'Keeffe, Aidan G; Tom, Brian D M; Farewell, Vernon T
2011-01-01
In psoriatic arthritis, permanent joint damage characterizes disease progression and represents a major debilitating aspect of the disease. Understanding the process of joint damage will assist in the treatment and disease management of patients. Multistate models provide a means to examine patterns of disease, such as symmetric joint damage. Additionally, the link between damage and the dynamic course of disease activity (represented by joint swelling and stress pain) at both the individual joint level and otherwise can be represented within a correlated multistate model framework. Correlation is reflected through the use of random effects for progressive models and robust variance estimation for non-progressive models. Such analyses, undertaken with data from a large psoriatic arthritis cohort, are discussed and the extent to which they permit causal reasoning is considered. For this, emphasis is given to the use of the Bradford Hill criteria for causation in observational studies and the concept of local (in)dependence to capture the dynamic nature of the relationships. PMID:22163372
NASA Astrophysics Data System (ADS)
Astroza, Rodrigo; Ebrahimian, Hamed; Li, Yong; Conte, Joel P.
2017-09-01
A methodology is proposed to update mechanics-based nonlinear finite element (FE) models of civil structures subjected to unknown input excitation. The approach allows to jointly estimate unknown time-invariant model parameters of a nonlinear FE model of the structure and the unknown time histories of input excitations using spatially-sparse output response measurements recorded during an earthquake event. The unscented Kalman filter, which circumvents the computation of FE response sensitivities with respect to the unknown model parameters and unknown input excitations by using a deterministic sampling approach, is employed as the estimation tool. The use of measurement data obtained from arrays of heterogeneous sensors, including accelerometers, displacement sensors, and strain gauges is investigated. Based on the estimated FE model parameters and input excitations, the updated nonlinear FE model can be interrogated to detect, localize, classify, and assess damage in the structure. Numerically simulated response data of a three-dimensional 4-story 2-by-1 bay steel frame structure with six unknown model parameters subjected to unknown bi-directional horizontal seismic excitation, and a three-dimensional 5-story 2-by-1 bay reinforced concrete frame structure with nine unknown model parameters subjected to unknown bi-directional horizontal seismic excitation are used to illustrate and validate the proposed methodology. The results of the validation studies show the excellent performance and robustness of the proposed algorithm to jointly estimate unknown FE model parameters and unknown input excitations.
Seismic damage analysis of the outlet piers of arch dams using the finite element sub-model method
NASA Astrophysics Data System (ADS)
Song, Liangfeng; Wu, Mingxin; Wang, Jinting; Xu, Yanjie
2016-09-01
This study aims to analyze seismic damage of reinforced outlet piers of arch dams by the nonlinear finite element (FE) sub-model method. First, the dam-foundation system is modeled and analyzed, in which the effects of infinite foundation, contraction joints, and nonlinear concrete are taken into account. The detailed structures of the outlet pier are then simulated with a refined FE model in the sub-model analysis. In this way the damage mechanism of the plain (unreinforced) outlet pier is analyzed, and the effects of two reinforcement measures (i.e., post-tensioned anchor cables and reinforcing bar) on the dynamic damage to the outlet pier are investigated comprehensively. Results show that the plain pier is damaged severely by strong earthquakes while implementation of post-tensioned anchor cables strengthens the pier effectively. In addition, radiation damping strongly alleviates seismic damage to the piers.
Study on Fatigue Performance of Composite Bolted Joints with Bolt-Hole Delamination
NASA Astrophysics Data System (ADS)
Liu, M. J.; Yu, S.; Zhao, Q. Y.
2018-03-01
Fatigue performance of composite structure with imperfections is a challenging subject at present. Based on cohesive zone method and multi-continuum theory, delamination evolution response and fatigue life prediction of a 3D composite single-lap joint with a bolt-hole have been investigated through computer codes Abaqus and Fe-safe. Results from the comparison of a perfect composite bolted joint with another defect one indicates that a relatively small delamination damage around the bolt hole brings about significant degradation of local material performance. More notably, fatigue life of stress concentration region of composite bolted joints is highly sensitive to external loads, as an increase of 67% cyclic load amplitude leads to an decrease of 99.5% local fatigue life in this study. However, the numerical strategy for solving composite fatigue problems is meaningful to engineering works.
Tanaka, Yoshiya
Rheumatoid arthritis is a systemic autoimmune disease characterized by inflammation and joint damage that causes significant morbidity and mortality. Rapid and appropriate intervention using disease-modifying anti-rheumatic drugs(DMARDs)is prerequisite to halt joint destruction and long-term functional disabilities. Recent progress in the treatment strategy has brought about paradigm shift for the management of the disease, namely, the combined use of methotrexate, a synthetic DMARD, and a biologic DMARD targeting TNF, IL-6 and T cells has revolutionized treatment of rheumatoid arthritis. Clinical remission is now realistic targets for the treatment, achieved by a large proportion of rheumatoid arthritis patients, which leads to structural remission without damage in bone and cartilage as well as functional remission. Furthermore, orally available small but strong molecules targeting Janus kinase(JAK)are emerging. When DMARDs are prescribed, appropriate selection of DMARDs, adequate screening, regular monitoring and systemic management are required.
Zelensky, Alex N.; Sanchez, Humberto; Ristic, Dejan; Vidic, Iztok; van Rossum-Fikkert, Sari E.; Essers, Jeroen; Wyman, Claire; Kanaar, Roland
2013-01-01
Caffeine is a widely used inhibitor of the protein kinases that play a central role in the DNA damage response. We used chemical inhibitors and genetically deficient mouse embryonic stem cell lines to study the role of DNA damage response in stable integration of the transfected DNA and found that caffeine rapidly, efficiently and reversibly inhibited homologous integration of the transfected DNA as measured by several homologous recombination-mediated gene-targeting assays. Biochemical and structural biology experiments revealed that caffeine interfered with a pivotal step in homologous recombination, homologous joint molecule formation, through increasing interactions of the RAD51 nucleoprotein filament with non-homologous DNA. Our results suggest that recombination pathways dependent on extensive homology search are caffeine-sensitive and stress the importance of considering direct checkpoint-independent mechanisms in the interpretation of the effects of caffeine on DNA repair. PMID:23666627
McCann, M R; Yeung, C; Pest, M A; Ratneswaran, A; Pollmann, S I; Holdsworth, D W; Beier, F; Dixon, S J; Séguin, C A
2017-05-01
Low-amplitude, high-frequency whole-body vibration (WBV) has been adopted for the treatment of musculoskeletal diseases including osteoarthritis (OA); however, there is limited knowledge of the direct effects of vibration on joint tissues. Our recent studies revealed striking damage to the knee joint following exposure of mice to WBV. The current study examined the effects of WBV on specific compartments of the murine tibiofemoral joint over 8 weeks, including microarchitecture of the tibia, to understand the mechanisms associated with WBV-induced joint damage. Ten-week-old male CD-1 mice were exposed to WBV (45 Hz, 0.3 g peak acceleration; 30 min/day, 5 days/week) for 4 weeks, 8 weeks, or 4 weeks WBV followed by 4 weeks recovery. The knee joint was evaluated histologically for tissue damage. Architecture of the subchondral bone plate, subchondral trabecular bone, primary and secondary spongiosa of the tibia was assessed using micro-CT. Meniscal tears and focal articular cartilage damage were induced by WBV; the extent of damage increased between 4 and 8-week exposures to WBV. WBV did not alter the subchondral bone plate, or trabecular bone of the tibial spongiosa; however, a transient increase was detected in the subchondral trabecular bone volume and density. The lack of WBV-induced changes in the underlying subchondral bone suggests that damage to the articular cartilage may be secondary to the meniscal injury we detected. Our findings underscore the need for further studies to assess the safety of WBV in the human population to avoid long-term joint damage. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
78 FR 6251 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... airplanes. This proposed AD was prompted by reports of cracks and heat damage on pivot joint components... proposing this AD to detect and correct heat damage and cracks in the pivot pin, truck beam lugs, and inner... joint components have been found with cracks or heat damage. There have been 11 such findings on Model...
Finite element analysis of a structural silicone shear bead used in skylight applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travis, H.S.; Carbary, L.D.
1998-12-31
Finite element analysis (FEA) was used to predict stresses and strains in a 6 mm x 6 mm structural silicone joint on the edge of an overhead piece of glass. The project was undertaken because of a marketplace report that this particular type of joint was showing field leaks after 5--10 years of service. FEA was used to show the stresses and strains in the nominal joint design under negative wind uplifts. After a three dimensional FEA model of the skylight system was completed, the deformations in the model were used to load a series of two dimensional FEA modelsmore » of the silicone bead. The two dimensional bead models were completed at repeated intervals down the span, providing a finer mesh for recovering stresses and strains. All stresses and strains in this model were shown to be well within the working range of the silicone sealant properties. It was concluded that the field leaks were not due to excessive strains and could possibly be due to installation issues, mechanical damage or improper joints resulting from construction tolerances.« less
NASA Astrophysics Data System (ADS)
Hsu, Ting-Yu; Shiao, Shen-Yuan; Liao, Wen-I.
2018-01-01
Wind turbines are a cost-effective alternative energy source; however, their blades are susceptible to damage. Therefore, damage detection of wind turbine blades is of great importance for condition monitoring of wind turbines. Many vibration-based structural damage detection techniques have been proposed in the last two decades. The local flexibility method, which can determine local stiffness variations of beam-like structures by using measured modal parameters, is one of the most promising vibration-based approaches. The local flexibility method does not require a finite element model of the structure. A few structural modal parameters identified from the ambient vibration signals both before and after damage are required for this method. In this study, we propose a damage detection approach for rotating wind turbine blades using the local flexibility method based on the dynamic macro-strain signals measured by long-gauge fiber Bragg grating (FBG)-based sensors. A small wind turbine structure was constructed and excited using a shaking table to generate vibration signals. The structure was designed to have natural frequencies as close as possible to those of a typical 1.5 MW wind turbine in real scale. The optical fiber signal of the rotating blades was transmitted to the data acquisition system through a rotary joint fixed inside the hollow shaft of the wind turbine. Reversible damage was simulated by aluminum plates attached to some sections of the wind turbine blades. The damaged locations of the rotating blades were successfully detected using the proposed approach, with the extent of damage somewhat over-estimated. Nevertheless, although the specimen of wind turbine blades cannot represent a real one, the results still manifest that FBG-based macro-strain measurement has potential to be employed to obtain the modal parameters of the rotating wind turbines and then locations of wind turbine segments with a change of rigidity can be estimated effectively by utilizing these identified parameters.
A Mechanistic Thermal Fatigue Model for SnAgCu Solder Joints
NASA Astrophysics Data System (ADS)
Borgesen, Peter; Wentlent, Luke; Hamasha, Sa'd.; Khasawneh, Saif; Shirazi, Sam; Schmitz, Debora; Alghoul, Thaer; Greene, Chris; Yin, Liang
2018-02-01
The present work offers both a complete, quantitative model and a conservative acceleration factor expression for the life span of SnAgCu solder joints in thermal cycling. A broad range of thermal cycling experiments, conducted over many years, has revealed a series of systematic trends that are not compatible with common damage functions or constitutive relations. Complementary mechanical testing and systematic studies of the evolution of the microstructure and damage have led to a fundamental understanding of the progression of thermal fatigue and failure. A special experiment was developed to allow the effective deconstruction of conventional thermal cycling experiments and the finalization of our model. According to this model, the evolution of damage and failure in thermal cycling is controlled by a continuous recrystallization process which is dominated by the coalescence and rotation of dislocation cell structures continuously added to during the high-temperature dwell. The dominance of this dynamic recrystallization contribution is not consistent with the common assumption of a correlation between the number of cycles to failure and the total work done on the solder joint in question in each cycle. It is, however, consistent with an apparent dependence on the work done during the high-temperature dwell. Importantly, the onset of this recrystallization is delayed by pinning on the Ag3Sn precipitates until these have coarsened sufficiently, leading to a model with two terms where one tends to dominate in service and the other in accelerated thermal cycling tests. Accumulation of damage under realistic service conditions with varying dwell temperatures and times is also addressed.
2014-01-01
Introduction Radiography is an unreliable and insensitive tool for the assessment of structural lesions in the sacroiliac joints (SIJ). Magnetic resonance imaging (MRI) detects a wider spectrum of structural lesions but has undergone minimal validation in prospective studies. The Spondyloarthritis Research Consortium of Canada (SPARCC) MRI Sacroiliac Joint (SIJ) Structural Score (SSS) assesses a spectrum of structural lesions (erosion, fat metaplasia, backfill, ankylosis) and its potential to discriminate between therapies requires evaluation. Methods The SSS score assesses five consecutive coronal slices through the cartilaginous portion of the joint on T1-weighted sequences starting from the transitional slice between cartilaginous and ligamentous portions of the joint. Lesions are scored dichotomously (present/absent) in SIJ quadrants (fat metaplasia, erosion) or halves (backfill, ankylosis). Two readers independently scored 147 pairs (baseline, 2 years) of scans from a prospective cohort of patients with SpA who received either standard (n = 69) or tumor necrosis factor alpha (TNFα) inhibitor (n = 78) therapy. Smallest detectable change (SDC) was calculated using analysis of variance (ANOVA), discrimination was assessed using Guyatt’s effect size, and treatment group differences were assessed using t-tests and the Mann–Whitney test. We identified baseline demographic and structural damage variables associated with change in SSS score by univariate analysis and analyzed the effect of treatment by multivariate stepwise regression adjusted for severity of baseline structural damage and demographic variables. Results A significant increase in mean SSS score for fat metaplasia (P = 0.017) and decrease in mean SSS score for erosion (P = 0.017) was noted in anti-TNFα treated patients compared to those on standard therapy. Effect size for this change in SSS fat metaplasia and erosion score was moderate (0.5 and 0.6, respectively). Treatment and baseline SSS score for erosion were independently associated with change in SSS erosion score (β = 1.75, P = 0.003 and β = 0.40, P < 0.0001, respectively). Change in ASDAS (β = −0.46, P = 0.006), SPARCC MRI SIJ inflammation (β = −0.077, P = 0.019), and baseline SSS score for fat metaplasia (β = 0.085, P = 0.034) were independently associated with new fat metaplasia. Conclusion The SPARCC SSS method for assessment of structural lesions has discriminative capacity in demonstrating significantly greater reduction in erosion and new fat metaplasia in patients receiving anti-TNFα therapy. PMID:24755322
Capellari, Giovanni; Eftekhar Azam, Saeed; Mariani, Stefano
2015-01-01
Health monitoring of lightweight structures, like thin flexible plates, is of interest in several engineering fields. In this paper, a recursive Bayesian procedure is proposed to monitor the health of such structures through data collected by a network of optimally placed inertial sensors. As a main drawback of standard monitoring procedures is linked to the computational costs, two remedies are jointly considered: first, an order-reduction of the numerical model used to track the structural dynamics, enforced with proper orthogonal decomposition; and, second, an improved particle filter, which features an extended Kalman updating of each evolving particle before the resampling stage. The former remedy can reduce the number of effective degrees-of-freedom of the structural model to a few only (depending on the excitation), whereas the latter one allows to track the evolution of damage and to locate it thanks to an intricate formulation. To assess the effectiveness of the proposed procedure, the case of a plate subject to bending is investigated; it is shown that, when the procedure is appropriately fed by measurements, damage is efficiently and accurately estimated. PMID:26703615
2014-01-01
Background Early appearance of antibodies specific for native human type II collagen (anti-CII) characterizes an early inflammatory and destructive phenotype in adults with rheumatoid arthritis (RA). The objective of this study was to investigate the occurrence of anti-CII, IgM RF, IgA RF and anti-CCP in serum samples obtained early after diagnosis, and to relate the occurrence of autoantibodies to outcome after eight years of disease in children with juvenile idiopathic arthritis (JIA). Methods The Nordic JIA database prospectively included JIA patients followed for eight years with data on remission and joint damage. From this database, serum samples collected from 192 patients, at a median of four months after disease onset, were analysed for IgG anti-CII, IgM RF, IgA RF and IgG anti-CCP. Joint damage was assessed based on Juvenile Arthritis Damage Index for Articular damage (JADI-A), a validated clinical instrument for joint damage. Results Elevated serum levels of anti-CII occurred in 3.1%, IgM RF in 3.6%, IgA RF in 3.1% and anti-CCP in 2.6% of the patients. Occurrence of RF and anti-CCP did to some extent overlap, but rarely with anti-CII. The polyarticular and oligoarticular extended categories were overrepresented in patients with two or more autoantibodies. Anti-CII occurred in younger children, usually without overlap with the other autoantibodies and was associated with high levels of C-reactive protein (CRP) early in the disease course. All four autoantibodies were significantly associated with joint damage, but not with active disease at the eight-year follow up. Conclusions Anti-CII, anti-CCP, IgA RF and IgM RF detected early in the disease course predicted joint damage when assessed after eight years of disease. The role of anti-CII in JIA should be further studied. PMID:24944545
De la Corte-Rodriguez, Hortensia; Rodriguez-Merchan, E Carlos; Alvarez-Roman, M Teresa; Martin-Salces, Mónica; Martinoli, Carlo; Jimenez-Yuste, Víctor
2018-03-01
Prevention of hemarthrosis is the key factor in the adequate management of people with hemophilia (PWH). If hemarthrosis occurs, early diagnosis of joint damage is essential to make personalized treatments. This study is aimed at gaining an understanding of the ability of point-of-care ultrasound (US) using the `Hemophilia Early Arthropathy Detection with Ultrasound´ (HEAD-US) protocol to detect abnormalities in joints without history of hemarthrosis and clinically asymptomatic joints of PWH. The sample included 976 joints from 167 PWH (mean age 24.86 years). Data were collected from routine practice over a 3-year period and analyzed based on history of hemarthrosis and results of clinical (HJHS 2.1) and HEAD-US examinations. In our series, 14% of patients exhibited HEAD-US signs of incipient arthropathy in joints with no history of bleeding and with a HJHS 2.1 score of 0. The most severely involved joint was the right ankle. Synovitis, articular cartilage and subchondral bone damage scores in joints with subclinical findings were slower than in joints with previous hemarthroses or HJHS 2.1 > 1 Conclusions: Our study demonstrates that HEAD-US is better than hemarthrosis records and the HJHS 2.1 scale in detecting the early signs of joint damage in PWH.
Nano-Material Aspects of Shock Absorption in Bone Joints
Tributsch, H; Copf, F; Copf, p; Hindenlang, U; Niethard, F.U; Schneider, R
2010-01-01
This theoretical study is based on a nano-technological evaluation of the effect of pressure on the composite bone fine structure. It turned out, that the well known macroscopic mechano-elastic performance of bones in combination with muscles and tendons is just one functional aspect which is critically supported by additional micro- and nano- shock damping technology aimed at minimising local bone material damage within the joints and supporting spongy bone material. The identified mechanisms comprise essentially three phenomena localised within the three–dimensional spongy structure with channels and so called perforated flexible tensulae membranes of different dimensions intersecting and linking them. Kinetic energy of a mechanical shock may be dissipated within the solid-liquid composite bone structure into heat via the generation of quasi-chaotic hydromechanic micro-turbulence. It may generate electro-kinetic energy in terms of electric currents and potentials. And the resulting specific structural and surface electrochemical changes may induce the compressible intra-osseal liquid to build up pressure dependent free chemical energy. Innovative bone joint prostheses will have to consider and to be adapted to the nano-material aspects of shock absorption in the operated bones. PMID:21625375
NASA Astrophysics Data System (ADS)
Keren, Tucker T.; Kirkpatrick, James D.
2016-05-01
Fault damage zones record the integrated deformation caused by repeated slip on faults and reflect the conditions that control slip behavior. To investigate the Japan Trench décollement, we characterized the damage zone close to the fault from drill core recovered during Integrated Ocean Drilling Program Expedition 343 (Japan Trench Fast Drilling Project (JFAST)). Core-scale and microscale structures include phyllosilicate bands, shear fractures, and joints. They are most abundant near the décollement and decrease in density sharply above and below the fault. Power law fits describing the change in structure density with distance from the fault result in decay exponents (n) of 1.57 in the footwall and 0.73 in the hanging wall. Microstructure decay exponents are 1.09 in the footwall and 0.50 in the hanging wall. Observed damage zone thickness is on the order of a few tens of meters. Core-scale structures dip between ~10° and ~70° and are mutually crosscutting. Compared to similar offset faults, the décollement has large decay exponents and a relatively narrow damage zone. Motivated by independent constraints demonstrating that the plate boundary is weak, we tested if the observed damage zone characteristics could be consistent with low-friction fault. Quasi-static models of off-fault stresses and deformation due to slip on a wavy, frictional fault under conditions similar to the JFAST site predict that low-friction fault produces narrow damage zones with no preferred orientations of structures. These results are consistent with long-term frictional weakness on the décollement at the JFAST site.
Image Registration-Based Bolt Loosening Detection of Steel Joints
2018-01-01
Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts. PMID:29597264
Image Registration-Based Bolt Loosening Detection of Steel Joints.
Kong, Xiangxiong; Li, Jian
2018-03-28
Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts.
Rosenberg, John H; Rai, Vikrant; Dilisio, Matthew F; Sekundiak, Todd D; Agrawal, Devendra K
2017-12-01
Osteoarthritis (OA) is a degenerative disease characterized by the destruction of cartilage. The greatest risk factors for the development of OA include age and obesity. Recent studies suggest the role of inflammation in the pathogenesis of OA. The two most common locations for OA to occur are in the knee and hip joints. The knee joint experiences more mechanical stress, cartilage degeneration, and inflammation than the hip joint. This could contribute to the increased incidence of OA in the knee joint. Damage-associated molecular patterns (DAMPs), including high-mobility group box-1, receptor for advanced glycation end products, and alarmins (S100A8 and S100A9), are released in the joint in response to stress-mediated chondrocyte and cartilage damage. This facilitates increased cartilage degradation and inflammation in the joint. Studies have documented the role of DAMPs in the pathogenesis of OA; however, the comparison of DAMPs and its influence on OA has not been discussed. In this study, we compared the DAMPs between OA knee and hip joints and found a significant difference in the levels of DAMPs expressed in the knee joint compared to the hip joint. The increased levels of DAMPs suggest a difference in the underlying pathogenesis of OA in the knee and the hip and highlights DAMPs as potential therapeutic targets for OA in the future.
NASA Astrophysics Data System (ADS)
Ochôa, Pedro; Fernandez Villegas, Irene; Groves, Roger M.; Benedictus, Rinze
2018-01-01
One of the advantages of thermoplastic composites relative to their thermoset counterparts is the possibility of assembling components through welding. Ultrasonic welding in particular is very promising for industrialization. However, uncertainty in the fatigue and fracture behaviour of composites is still an obstacle to the full utilisation of these materials. Health monitoring is then of vital importance, and Lamb wave techniques have been widely recognised as some of the most promising approaches for that end. This paper presents the first experimental study about the influence of welding travel on the transmission of Lamb waves across ultrasonically welded thermoplastic composite joints in single-lap configuration. The main aim of this research is to start to understand how guided waves interact with the internal structure of ultrasonic welds, so that benign, manufacturing-related structural features can be distinguished from damaging ones in signal interpretation. The power transmission coefficient and the correlation coefficient proved to be suitable for analysing the wave propagation phenomena, allowing quantitative identification of small variations of weld-line thickness and intermolecular diffusion at the weld interface. The conclusions are used to develop a tentative damage detection criterion which can later on assist the design of a Lamb wave based structural health monitoring system for thermoplastic composite structures. The Lamb wave test results are backed up by phased-array inspections, which also provide some extra insight on the internal structure of ultrasonic welds.
Multiple damage identification on a wind turbine blade using a structural neural system
NASA Astrophysics Data System (ADS)
Kirikera, Goutham R.; Schulz, Mark J.; Sundaresan, Mannur J.
2007-04-01
A large number of sensors are required to perform real-time structural health monitoring (SHM) to detect acoustic emissions (AE) produced by damage growth on large complicated structures. This requires a large number of high sampling rate data acquisition channels to analyze high frequency signals. To overcome the cost and complexity of having such a large data acquisition system, a structural neural system (SNS) was developed. The SNS reduces the required number of data acquisition channels and predicts the location of damage within a sensor grid. The sensor grid uses interconnected sensor nodes to form continuous sensors. The combination of continuous sensors and the biomimetic parallel processing of the SNS tremendously reduce the complexity of SHM. A wave simulation algorithm (WSA) was developed to understand the flexural wave propagation in composite structures and to utilize the code for developing the SNS. Simulation of AE responses in a plate and comparison with experimental results are shown in the paper. The SNS was recently tested by a team of researchers from University of Cincinnati and North Carolina A&T State University during a quasi-static proof test of a 9 meter long wind turbine blade at the National Renewable Energy Laboratory (NREL) test facility in Golden, Colorado. Twelve piezoelectric sensor nodes were used to form four continuous sensors to monitor the condition of the blade during the test. The four continuous sensors are used as inputs to the SNS. There are only two analog output channels of the SNS, and these signals are digitized and analyzed in a computer to detect damage. In the test of the wind turbine blade, multiple damages were identified and later verified by sectioning of the blade. The results of damage identification using the SNS during this proof test will be shown in this paper. Overall, the SNS is very sensitive and can detect damage on complex structures with ribs, joints, and different materials, and the system relatively inexpensive and simple to implement on large structures.
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Zhao, Tao; Xu, Nu-wen
2017-01-01
Intermittent jointed rocks, which exist in a myriad of engineering projects, are extraordinarily susceptible to cyclic loadings. Understanding the dynamic fatigue properties of jointed rocks is necessary for evaluating the stability of rock engineering structures. This study numerically investigated the influences of cyclic loading conditions (i.e., frequency, maximum stress and amplitude) and joint geometric configurations (i.e., dip angle, persistency and interspace) on the dynamic fatigue mechanisms of jointed rock models. A reduction model of stiffness and strength was first proposed, and then, sixteen cyclic uniaxial loading tests with distinct loading parameters and joint geometries were simulated. Our results indicate that the reduction model can effectively reproduce the hysteresis loops and the accumulative plastic deformation of jointed rocks in the cyclic process. Both the loading parameters and the joint geometries significantly affect the dynamic properties, including the irreversible strain, damage evolution, dynamic residual strength and fatigue life. Three failure modes of jointed rocks, which are principally controlled by joint geometries, occur in the simulations: splitting failure through the entire rock sample, sliding failure along joint planes and mixed failure, which are principally controlled by joint geometries. Furthermore, the progressive failure processes of the jointed rock samples are numerically observed, and the different loading stages can be distinguished by the relationship between the number of broken bonds and the axial stress.
Quasi-static elastography comparison of hyaline cartilage structures
NASA Astrophysics Data System (ADS)
McCredie, A. J.; Stride, E.; Saffari, N.
2009-11-01
Joint cartilage, a load bearing structure in mammals, has only limited ability for regeneration after damage. For tissue engineers to design functional constructs, better understanding of the properties of healthy tissue is required. Joint cartilage is a specialised structure of hyaline cartilage; a poroviscoelastic solid containing fibril matrix reinforcements. Healthy joint cartilage is layered, which is thought to be important for correct tissue function. However, the behaviour of each layer during loading is poorly understood. Ultrasound elastography provides access to depth-dependent information in real-time for a sample during loading. A 15 MHz focussed transducer provided details from scatterers within a small fixed region in each sample. Quasi-static loading was applied to cartilage samples while ultrasonic signals before and during compressions were recorded. Ultrasonic signals were processed to provide time-shift profiles using a sum-squared difference method and cross-correlation. Two structures of hyaline cartilage have been tested ultrasonically and mechanically to determine method suitability for monitoring internal deformation differences under load and the effect of the layers on the global mechanical material behaviour. Results show differences in both the global mechanical properties and the ultrasonically tested strain distributions between the two structures tested. It was concluded that these differences are caused primarily by the fibril orientations.
NASA Astrophysics Data System (ADS)
Hoell, Simon; Omenzetter, Piotr
2017-07-01
Considering jointly damage sensitive features (DSFs) of signals recorded by multiple sensors, applying advanced transformations to these DSFs and assessing systematically their contribution to damage detectability and localisation can significantly enhance the performance of structural health monitoring systems. This philosophy is explored here for partial autocorrelation coefficients (PACCs) of acceleration responses. They are interrogated with the help of the linear discriminant analysis based on the Fukunaga-Koontz transformation using datasets of the healthy and selected reference damage states. Then, a simple but efficient fast forward selection procedure is applied to rank the DSF components with respect to statistical distance measures specialised for either damage detection or localisation. For the damage detection task, the optimal feature subsets are identified based on the statistical hypothesis testing. For damage localisation, a hierarchical neuro-fuzzy tool is developed that uses the DSF ranking to establish its own optimal architecture. The proposed approaches are evaluated experimentally on data from non-destructively simulated damage in a laboratory scale wind turbine blade. The results support our claim of being able to enhance damage detectability and localisation performance by transforming and optimally selecting DSFs. It is demonstrated that the optimally selected PACCs from multiple sensors or their Fukunaga-Koontz transformed versions can not only improve the detectability of damage via statistical hypothesis testing but also increase the accuracy of damage localisation when used as inputs into a hierarchical neuro-fuzzy network. Furthermore, the computational effort of employing these advanced soft computing models for damage localisation can be significantly reduced by using transformed DSFs.
NASA Astrophysics Data System (ADS)
Zhou, Bing; Cui, Hao; Liu, Haibo; Li, Yang; Liu, Gaofeng; Li, Shujun; Zhang, Shangzhou
2018-03-01
The fatigue behavior of single-lap four-riveted aluminum alloy 7050 joints was investigated by using high-frequency fatigue test and scanning electron microscope (SEM). Stress distributions obtained by finite element (FE) analysis help explain the fatigue performance. The fatigue test results showed that the fatigue lives of the joints depend on cold expansion and applied cyclic loads. FE analysis and fractography indicated that the improved fatigue lives can be attributed to the reduction in maximum stress and evolution of fatigue damage at the critical location. The beneficial effects of strengthening techniques result in tearing ridges or lamellar structure on fracture surface, decrease in fatigue striations spacing, delay of fatigue crack initiation, crack deflection in fatigue crack propagation and plasticity-induced crack closure.
Characterization of the surface and interfacial properties of the lamina splendens
NASA Astrophysics Data System (ADS)
Rexwinkle, Joe T.; Hunt, Heather K.; Pfeiffer, Ferris M.
2017-06-01
Joint disease affects approximately 52.5 million patients in the United States alone, costing 80.8 billion USD in direct healthcare costs. The development of treatment programs for joint disease and trauma requires accurate assessment of articular cartilage degradation. The articular cartilage is the interfacial tissue between articulating surfaces, such as bones, and acts as low-friction interfaces. Damage to the lamina splendens, which is the articular cartilage's topmost layer, is an early indicator of joint degradation caused by injury or disease. By gaining comprehensive knowledge on the lamina splendens, particularly its structure and interfacial properties, researchers could enhance the accuracy of human and animal biomechanical models, as well as develop appropriate biomimetic materials for replacing damaged articular cartilage, thereby leading to rational treatment programs for joint disease and injury. Previous studies that utilize light, electron, and force microscopy techniques have found that the lamina splendens is composed of collagen fibers oriented parallel to the cartilage surface and encased in a proteoglycan matrix. Such orientation maximizes wear resistance and proteoglycan retention while promoting the passage of nutrients and synovial fluid. Although the structure of the lamina splendens has been explored in the literature, the low-friction interface of this tissue remains only partially characterized. Various functional models are currently available for the interface, such as pure boundary lubrication, thin films exuded under pressure, and sheets of trapped proteins. Recent studies suggest that each of these lubrication models has certain advantages over one another. Further research is needed to fully model the interface of this tissue. In this review, we summarize the methods for characterizing the lamina splendens and the results of each method. This paper aims to serve as a resource for existing studies to date and a roadmap of the investigations needed to gain further insight into the lamina splendens and the progression of joint disease.
1987-12-01
with increasing frequency of oscillation, while Reed and Batter (Ref. 25) reported a decrease in fretting damage in 4140 steel when the frequency was...fatigue with reference to aircraft structures. SAE Tech. Pap. no. 790612, 1979. 15. Suresh, S. and Ritchie, R.O. Propagation of short ’atigue cracks...Library British Library, Document Supply Centre CAARC Co-ordinator, Structures Welding Institute, Library British Aerospace Kingston-upon-Thames
Full-Scale Test and Analysis of a PRSEUS Fuselage Panel to Assess Damage-Containment Features
NASA Technical Reports Server (NTRS)
Bergan, Andrew; Bakuckas, John G.; Lovejoy, Andrew E.; Jegley, Dawn C.; Linton, Kim A.; Korkosz, Gregory; Awerbuch, Jonathan; Tan, Tein-Min
2011-01-01
Stitched composite technology has the potential to substantially decrease structural weight through enhanced damage containment capabilities. The most recent generation of stitched composite technology, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept, has been shown to successfully arrest damage at the sub-component level through tension testing of a three stringer panel with damage in the form of a two-bay notch. In a joint effort undertaken by the National Aeronautics and Space Administration (NASA), the Federal Aviation Administration (FAA), and the Boeing Company, further studies are being conducted to characterize the damage containment features of the PRSEUS concept. A full-scale residual strength test will be performed on a fuselage panel to determine if the load capacity will meet strength, deformation, and damage tolerance requirements. A curved panel was designed, fabricated, and prepared for residual strength testing. A pre-test Finite Element Model (FEM) was developed using design allowables from previous test programs to predict test panel deformation characteristics and margins of safety. Three phases of testing with increasing damage severity include: (1) as manufactured; (2) barely visible impact damage (BVID) and visible impact damage (VID); and (3) discrete source damage (DSD) where the panel will be loaded to catastrophic failure. This paper presents the background information, test plan, and experimental procedure. This paper is the first of several future articles reporting the test preparations, results, and analysis conducted in the test program.
NASA Astrophysics Data System (ADS)
Liu, Yi; Dai, Feng; Fan, Pengxian; Xu, Nuwen; Dong, Lu
2017-06-01
Intermittent joints in rock mass are quite sensitive to cyclic loading conditions. Understanding the fatigue mechanical properties of jointed rocks is beneficial for rational design and stability analysis of rock engineering projects. This study experimentally investigated the influences of joint geometry (i.e., dip angle, persistency, density and spacing) on the fatigue mechanism of synthetic jointed rock models. Our results revealed that the stress-strain curve of jointed rock under cyclic loadings is dominated by its curve under monotonic uniaxial loadings; the terminal strain in fatigue curve is equal to the post-peak strain corresponding to the maximum cyclic stress in the monotonic stress-strain curve. The four joint geometrical parameters studied significantly affect the fatigue properties of jointed rocks, including the irreversible strains, the fatigue deformation modulus, the energy evolution, the damage variable and the crack coalescence patterns. The higher the values of the geometrical parameters, the lower the elastic energy stores in this jointed rock, the higher the fatigue damage accumulates in the first few cycles, and the lower the fatigue life. The elastic energy has certain storage limitation, at which the fatigue failure occurs. Two basic micro-cracks, i.e., tensile wing crack and shear crack, are observed in cyclic loading and unloading tests, which are controlled principally by joint dip angle and persistency. In general, shear cracks only occur in the jointed rock with higher dip angle or higher persistency, and the jointed rock is characterized by lower fatigue strength, larger damage variable and lower fatigue life.
Preliminary clinical report of flexible videoarthroscopy in diagnostic knee and hip arthroscopy.
Bouaicha, Samy; Dora, Claudio; Puskas, Gabor J; Koch, Peter P; Wirth, Stephan H; Meyer, Dominik C
2012-01-01
Compared to rigid arthroscopic optics, a flexible camera system offers theoretically significant advantages: It has the potential to adapt to the naturally curved surface of joints, to move within the joint without stress to the cartilage or capsule and thereby to reduce the number of portals needed. Former studies evaluated flexible fiberoptic systems which were insufficient regarding image resolution. This is the first report on a new flexible videoendoscope with the so called "chip-on-the-tip" technology used in human joints. With a plasma sterilized 3.9 diameter flexible video endoscopy system (Visera ENF V, OLYMPUS) commonly used in diagnostic rhino-laryngoscopy, we performed preliminary testing in cadaveric knee joints. After successful feasibility testing we utilized the tool in two qualitative diagnostic knee and five hip arthroscopies in combination with conventional rigid 30° and 70° arthroscopes (STORZ). Qualitative evaluation showed superior visualisation of the posterior aspects of the knee joint as insertion of the posterior medial and lateral meniscal horn, tibial insertion of the posterior cruciate ligament and the posterolateral capsulo-ligamentous corner with acceptable image resolution and clarity compared to the rigid arthroscope. In the hip, it was possible to pass around the femoral neck, avoiding additional portals. There seemed to be virtually no risk for cartilage damage at all. Difficulties of the system were scope handling, navigation and orientation within the joint as well as potential damage to the tool itself. This is to our knowledge the first report on flexible videoarthroscopy. Some of the expectations were met, such as to reach virtually every corner the joint with minimal risk for the cartilage or other joint structures and with acceptable image quality. However, there are many significant disadvantages which question the routine use of such a videoendoscopic system with its present technical features. © 2012 – IOS Press and the authors. All rights reserved
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakharov, B.V.
1963-08-01
Clinical aspects and the course of treatment of open infected fractures in the knee joint region against a background of moderate and severe radiation sickness are discussed. The experiment involved 35 healthy dogs of both sexes. In all, three experiments were involved: on open infected fractures in the knee joint region in conjunction with radiation sickness; open infected fractures in the knee joint region without radiation sickness; radiation sickness without trauma. Infected open injury to the knee joint against a radiation sickness background is a severe affection. The use of delayed surgical and drug treatment (antibiotics, vitamins, antihistamine preparations) affordedmore » survival of at least one-half of the animals. Oral use of phenoxymethyl-penicillin in large doses established in the blood and synovial fluid of the damaged knee joint a therapeutic concentration of antibiotic of long duration (not less than a day). In radiation damage to knee joint accompanied by fracture of the bone fragment, the best method of surgical treatment is osteosynthesis using metal parts. In open infection of a damaged knee joint against a radiation sickness background, even with proper treatment a tendency toward formation of deforming arthrosis was observed. (OTS)« less
The KnowRISK project: Tools and strategies to reduce non-structural damage
NASA Astrophysics Data System (ADS)
Sousa Oliveira, Carlos; Lopes, Mário; Mota de Sá, Francisco; Amaral Ferreia, Mónica; Candeias, Paulo; Campos Costa, Alfredo; Rupakhety, Rajesh; Meroni, Fabrizio; Azzaro, Raffaele; D'Amico, Salvatore; Langer, Horst; Musacchio, Gemma; Sousa Silva, Delta; Falsaperla, Susanna; Scarfì, Luciano; Tusa, Giuseppina; Tuvé, Tiziana
2016-04-01
The project KnowRISK (Know your city, Reduce seISmic risK through non-structural elements) is financed by the European Commission to develop prevention measures that may reduce non-structural damage in urban areas. Pilot areas of the project are within the three European participating countries, namely Portugal, Iceland and Italy. Non-structural components of a building include all those components that are not part of the structural system, more specifically the architectural, mechanical, electrical, and plumbing systems, as well as furniture, fixtures, equipment, and contents. Windows, partitions, granite veneer, piping, ceilings, air conditioning ducts and equipment, elevators, computer and hospital equipment, file cabinets, and retail merchandise are all examples of non-structural components that are vulnerable to earthquake damage. We will use the experience gained during past earthquakes, which struck in particular Iceland, Italy and Portugal (Azores). Securing the non-structural elements improves the safety during an earthquake and saves lives. This paper aims at identifying non-structural seismic protection measures in the pilot areas and to develop a portfolio of good practices for the most common and serious non-structural vulnerabilities. This systematic identification and the portfolio will be achieved through a "cross-knowledge" strategy based on previous researches, evidence of non-structural damage in past earthquakes. Shake table tests of a group of non-structural elements will be performed. These tests will be filmed and, jointly with portfolio, will serve as didactic supporting tools to be used in workshops with building construction stakeholders and in risk communication activities. A Practical Guide for non-structural risk reduction will be specifically prepared for citizens on the basis of the outputs of the project, taking into account the local culture and needs of each participating country.
NDE scanning and imaging of aircraft structure
NASA Astrophysics Data System (ADS)
Bailey, Donald; Kepler, Carl; Le, Cuong
1995-07-01
The Science and Engineering Lab at McClellan Air Force Base, Sacramento, Calif. has been involved in the development and use of computer-based scanning systems for NDE (nondestructive evaluation) since 1985. This paper describes the history leading up to our current applications which employ eddy current and ultrasonic scanning of aircraft structures that contain both metallics and advanced composites. The scanning is performed using industrialized computers interfaced to proprietary acquisition equipment and software. Examples are shown that image several types of damage such as exfoliation and fuselage lap joint corrosion in aluminum, impact damage, embedded foreign material, and porosity in Kevlar and graphite epoxy composites. Image analysis techniques are reported that are performed using consumer oriented computer hardware and software that are not NDE specific and not expensive
Hyperspectral imaging for detection of arthritis: feasibility and prospects
NASA Astrophysics Data System (ADS)
Milanic, Matija; Paluchowski, Lukasz A.; Randeberg, Lise L.
2015-09-01
Rheumatoid arthritis (RA) is a disease that frequently leads to joint destruction. It has a high incidence rate worldwide, and the disease significantly reduces patients' quality of life. Detecting and treating inflammatory arthritis before structural damage to the joint has occurred is known to be essential for preventing patient disability and pain. Existing diagnostic technologies are expensive, time consuming, and require trained personnel to collect and interpret data. Optical techniques might be a fast, noninvasive alternative. Hyperspectral imaging (HSI) is a noncontact optical technique which provides both spectral and spatial information in one measurement. In this study, the feasibility of HSI in arthritis diagnostics was explored by numerical simulations and optimal imaging parameters were identified. Hyperspectral reflectance and transmission images of RA and normal human joint models were simulated using the Monte Carlo method. The spectral range was 600 to 1100 nm. Characteristic spatial patterns for RA joints and two spectral windows with transmission were identified. The study demonstrated that transmittance images of human joints could be used as one parameter for discrimination between arthritic and unaffected joints. The presented work shows that HSI is a promising imaging modality for the diagnostics and follow-up monitoring of arthritis in small joints.
Das, Devashish; Faridounnia, Maryam; Kovacic, Lidija; Kaptein, Robert; Boelens, Rolf; Folkers, Gert E.
2017-01-01
The nucleotide excision repair protein complex ERCC1-XPF is required for incision of DNA upstream of DNA damage. Functional studies have provided insights into the binding of ERCC1-XPF to various DNA substrates. However, because no structure for the ERCC1-XPF-DNA complex has been determined, the mechanism of substrate recognition remains elusive. Here we biochemically characterize the substrate preferences of the helix-hairpin-helix (HhH) domains of XPF and ERCC-XPF and show that the binding to single-stranded DNA (ssDNA)/dsDNA junctions is dependent on joint binding to the DNA binding domain of ERCC1 and XPF. We reveal that the homodimeric XPF is able to bind various ssDNA sequences but with a clear preference for guanine-containing substrates. NMR titration experiments and in vitro DNA binding assays also show that, within the heterodimeric ERCC1-XPF complex, XPF specifically recognizes ssDNA. On the other hand, the HhH domain of ERCC1 preferentially binds dsDNA through the hairpin region. The two separate non-overlapping DNA binding domains in the ERCC1-XPF heterodimer jointly bind to an ssDNA/dsDNA substrate and, thereby, at least partially dictate the incision position during damage removal. Based on structural models, NMR titrations, DNA-binding studies, site-directed mutagenesis, charge distribution, and sequence conservation, we propose that the HhH domain of ERCC1 binds to dsDNA upstream of the damage, and XPF binds to the non-damaged strand within a repair bubble. PMID:28028171
NASA Astrophysics Data System (ADS)
Sun, Guo-Qin; Sun, Feng-Yang; Cao, Fang-Li; Chen, Shu-Jun; Barkey, Mark E.
2015-11-01
The numerical simulation of tensile fracture behavior on Al-Cu alloy friction stir-welded joint was performed with the Gurson-Tvergaard-Needleman (GTN) damage model. The parameters of the GTN model were studied in each region of the friction stir-welded joint by means of inverse identification. Based on the obtained parameters, the finite element model of the welded joint was built to predict the fracture behavior and tension properties. Good agreement can be found between the numerical and experimental results in the location of the tensile fracture and the mechanical properties.
Imaging tools to measure treatment response in gout.
Dalbeth, Nicola; Doyle, Anthony J
2018-01-01
Imaging tests are in clinical use for diagnosis, assessment of disease severity and as a marker of treatment response in people with gout. Various imaging tests have differing properties for assessing the three key disease domains in gout: urate deposition (including tophus burden), joint inflammation and structural joint damage. Dual-energy CT allows measurement of urate deposition and bone damage, and ultrasonography allows assessment of all three domains. Scoring systems have been described that allow radiological quantification of disease severity and these scoring systems may play a role in assessing the response to treatment in gout. This article reviews the properties of imaging tests, describes the available scoring systems for quantification of disease severity and discusses the challenges and controversies regarding the use of imaging tools to measure treatment response in gout. © The Author 2018. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Engineering tendon and ligament tissues: present developments towards successful clinical products.
Rodrigues, Márcia T; Reis, Rui L; Gomes, Manuela E
2013-09-01
Musculoskeletal diseases are one of the leading causes of disability worldwide. Among them, tendon and ligament injuries represent an important aspect to consider in both athletes and active working people. Tendon and ligament damage is an important cause of joint instability, and progresses into early onset of osteoarthritis, pain, disability and eventually the need for joint replacement surgery. The social and economical burden associated with these medical conditions presents a compelling argument for greater understanding and expanding research on this issue. The particular physiology of tendons and ligaments (avascular, hypocellular and overall structural mechanical features) makes it difficult for currently available treatments to reach a complete and long-term functional repair of the damaged tissue, especially when complete tear occurs. Despite the effort, the treatment modalities for tendon and ligament are suboptimal, which have led to the development of alternative therapies, such as the delivery of growth factors, development of engineered scaffolds or the application of stem cells, which have been approached in this review. Copyright © 2012 John Wiley & Sons, Ltd.
van Ochten, John M; Mos, Marinka C E; van Putte-Katier, Nienke; Oei, Edwin H G; Bindels, Patrick J E; Bierma-Zeinstra, Sita M A; van Middelkoop, Marienke
2014-09-01
Persistent complaints are very common after a lateral ankle sprain. To investigate possible associations between structural abnormalities on radiography and MRI, and persistent complaints after a lateral ankle sprain. Observational case control study on primary care patients in general practice. Patients were selected who had visited their GP with an ankle sprain 6-12 months before the study; all received a standardised questionnaire, underwent a physical examination, and radiography and MRI of the ankle. Patients with and without persistent complaints were compared regarding structural abnormalities found on radiography and MRI; analyses were adjusted for age, sex, and body mass index. Of the 206 included patients, 98 had persistent complaints and 108 did not. No significant differences were found in structural abnormalities between patients with and without persistent complaints. In both groups, however, many structural abnormalities were found on radiography in the talocrural joint (47.2% osteophytes and 45.1% osteoarthritis) and the talonavicular joint (36.5% sclerosis). On MRI, a high prevalence was found of bone oedema (33.8%) and osteophytes (39.5) in the talocrural joint; osteophytes (54.4%), sclerosis (47.2%), and osteoarthritis (55.4%, Kellgren and Lawrence grade >1) in the talonavicular joint, as well as ligament damage (16.4%) in the anterior talofibular ligament. The prevalence of structural abnormalities is high on radiography and MRI in patients presenting in general practice with a previous ankle sprain. There is no difference in structural abnormalities, however, between patients with and without persistent complaints. Using imaging only will not lead to diagnosis of the explicit reason for the persistent complaint. © British Journal of General Practice 2014.
van Ochten, John M; Mos, Marinka CE; van Putte-Katier, Nienke; Oei, Edwin HG; Bindels, Patrick JE; Bierma-Zeinstra, Sita MA; van Middelkoop, Marienke
2014-01-01
Background Persistent complaints are very common after a lateral ankle sprain. Aim To investigate possible associations between structural abnormalities on radiography and MRI, and persistent complaints after a lateral ankle sprain. Design and setting Observational case control study on primary care patients in general practice. Method Patients were selected who had visited their GP with an ankle sprain 6–12 months before the study; all received a standardised questionnaire, underwent a physical examination, and radiography and MRI of the ankle. Patients with and without persistent complaints were compared regarding structural abnormalities found on radiography and MRI; analyses were adjusted for age, sex, and body mass index. Results Of the 206 included patients, 98 had persistent complaints and 108 did not. No significant differences were found in structural abnormalities between patients with and without persistent complaints. In both groups, however, many structural abnormalities were found on radiography in the talocrural joint (47.2% osteophytes and 45.1% osteoarthritis) and the talonavicular joint (36.5% sclerosis). On MRI, a high prevalence was found of bone oedema (33.8%) and osteophytes (39.5) in the talocrural joint; osteophytes (54.4%), sclerosis (47.2%), and osteoarthritis (55.4%, Kellgren and Lawrence grade >1) in the talonavicular joint, as well as ligament damage (16.4%) in the anterior talofibular ligament. Conclusion The prevalence of structural abnormalities is high on radiography and MRI in patients presenting in general practice with a previous ankle sprain. There is no difference in structural abnormalities, however, between patients with and without persistent complaints. Using imaging only will not lead to diagnosis of the explicit reason for the persistent complaint. PMID:25179068
Wing walls for enhancing the seismic performance of reinforced concrete frame structures
NASA Astrophysics Data System (ADS)
Yang, Weisong; Guo, Xun; Xu, Weixiao; Yuan, Xin
2016-06-01
A building retrofitted with wing walls in the bottom story, which was damaged during the 2008 M8.0 Wenchuan earthquake in China, is introduced and a corresponding 1/4 scale wing wall-frame model was subjected to shake table motions to study the seismic behavior of this retrofitted structural system. The results show that wing walls can effectively protect columns from damage by moving areas that bear reciprocating tension and compression to the sections of the wing walls, thus achieving an extra measure of seismic fortification. A `strong column-weak beam' mechanism was realized, the flexural rigidity of the vertical member was strengthened, and a more uniform distribution of deformation among all the stories was measured. In addition, the joint between the wing walls and the beams suffered severe damage during the tests, due to an area of local stress concentration. A longer area of intensive stirrup is suggested in the end of the beams.
Thermomechanical fatigue life prediction for several solders
NASA Astrophysics Data System (ADS)
Wen, Shengmin
Since solder connections operate at high homologous temperature, solders are high temperature materials. This feature makes their mechanical behavior and fatigue phenomena unique. Based on experimental findings, a physical damage mechanism is introduced for solders. The mechanism views the damage process as a series of independent local damage events characterized by the failure of individual grains, while the structural damage is the eventual percolation result of such local events. Fine's dislocation energy density concept and Mura's microcrack initiation theory are adopted to derive the fatigue formula for an individual grain. A physical damage metric is introduced to describe the material with damage. A unified creep and plasticity constitutive model is adopted to simulate the mechanical behavior of solders. The model is cast into a continuum damage mechanics framework to simulate material with damage. The model gives good agreement with the experimental results of 96.5Pb-3.5Sn and 96.5Sn-3.5Ag solders under uniaxial strain-controlled cyclic loading. The model is convenient for implementation into commercial computational packages. Also presented is a fatigue theory with its failure criterion for solders based on physical damage mechanism. By introducing grain orientation into the fatigue formula, an m-N curve (m is Schmid factor) at constant loading condition is suggested for fatigue of grains with different orientations. A solder structure is defined as fatigued when the damage metric reaches a critical threshold, since at this threshold the failed grains may form a cluster and percolate through the structure according to percolation theory. Fatigue data of 96.5Pb-3.5Sn solder bulk specimens under various uniaxial tension tests were analyzed. Results show that the theory gives consistent predictions under broad conditions, while inelastic strain theory does not. The theory is anisotropic with no size limitation to its application, which could be suitable for anisotropic small-scale (micron or nano scale) solder joints. More importantly, the theory is materials science based so that the parameters of the fatigue formula can be worked out by testing of bulk specimens while the formula can be applicable to small-scale structures. The theory suggests metallurgical control in the manufacturing process to optimize the fatigue life of solder structures.
Zavaleta-Muñiz, S A; Gonzalez-Lopez, L; Murillo-Vazquez, J D; Saldaña-Cruz, A M; Vazquez-Villegas, M L; Martín-Márquez, B T; Vasquez-Jimenez, J C; Sandoval-Garcia, F; Ruiz-Padilla, A J; Fajardo-Robledo, N S; Ponce-Guarneros, J M; Rocha-Muñoz, A D; Alcaraz-Lopez, M F; Cardona-Müller, D; Totsuka-Sutto, S E; Rubio-Arellano, E D; Gamez-Nava, J I
2016-12-19
Several interleukin 6 gene (IL6) polymorphisms are implicated in susceptibility to rheumatoid arthritis (RA). It has not yet been established with certainty if these polymorphisms are associated with the severe radiographic damage observed in some RA patients, particularly those with the development of joint bone ankylosis (JBA). The objective of the present study was to evaluate the association between severe radiographic damage in hands and the -174G/C and -572G/C IL6 polymorphisms in Mexican Mestizo people with RA. Mestizo adults with RA and long disease duration (>5 years) were classified into two groups according to the radiographic damage in their hands: a) severe radiographic damage (JBA and/or joint bone subluxations) and b) mild or moderate radiographic damage. We compared the differences in genotype and allele frequencies of -174G/C and -572G/C IL6 polymorphisms (genotyped using polymerase chain reaction-restriction fragment length polymorphism) between these two groups. Our findings indicated that the -174G/C polymorphism of IL6 is associated with severe joint radiographic damage [maximum likelihood odds ratios (MLE_OR): 8.03; 95%CI 1.22-187.06; P = 0.03], whereas the -572G/C polymorphism of IL6 exhibited no such association (MLE_OR: 1.5; 95%CI 0.52-4.5; P = 0.44). Higher anti-cyclic citrullinated peptide antibody levels were associated with more severe joint radiographic damage (P = 0.04). We conclude that there is a relevant association between the -174G/C IL6 polymorphism and severe radiographic damage. Future studies in other populations are required to confirm our findings.
Geven, Edwin J W; van den Bosch, Martijn H J; Di Ceglie, Irene; Ascone, Giuliana; Abdollahi-Roodsaz, Shahla; Sloetjes, Annet W; Hermann, Sven; Schäfers, Michael; van de Loo, Fons A J; van der Kraan, Peter M; Koenders, Marije I; Foell, Dirk; Roth, Johannes; Vogl, Thomas; van Lent, Peter L E M
2016-10-24
Seronegative joint diseases are characterized by a lack of well-defined biomarkers since autoantibodies are not elevated. Calprotectin (S100A8/A9) is a damage-associated molecular pattern (DAMP) which is released by activated phagocytes, and high levels are found in seronegative arthritides. In this study, we investigated the biomarker potential of systemic and local levels of these S100 proteins to assess joint inflammation and joint destruction in an experimental model for seronegative arthritis. Serum levels of S100A8/A9 and various cytokines were monitored during disease development in interleukin-1 receptor antagonist (IL-1Ra) -/- mice using ELISA and multiplex bead-based immunoassay, and were correlated to macroscopic and microscopic parameters for joint inflammation, bone erosion, and cartilage damage. Local expression of S100A8 and S100A9 and matrix metalloproteinase (MMP)-mediated cartilage damage in the ankle joints were investigated by immunohistochemistry. In addition, local S100A8 and activated MMPs were monitored in vivo by optical imaging using anti-S100A8-Cy7 and AF489-Cy5.5, a specific tracer for activated MMPs. Serum levels of S100A8/A9 were significantly increased in IL-1Ra -/- mice and correlated with macroscopic joint swelling and histological inflammation, while serum levels of pro-inflammatory cytokines did not correlate with joint swelling. In addition, early serum S100A8/A9 levels were prognostic for disease outcome at a later stage. The increased serum S100A8/A9 levels were reflected by an increased expression of S100A8 and S100A9 within the ankle joint, as visualized by molecular imaging. Next to inflammatory processes, serum S100A8/A9 also correlated with histological parameters for bone erosion and cartilage damage. In addition, arthritic IL-1Ra -/- mice with increased synovial S100A8 and S100A9 expression showed increased cartilage damage that coincided with MMP-mediated neoepitope expression and in vivo imaging of activated MMPs. Expression of S100A8 and S100A9 in IL-1Ra -/- mice strongly correlates with synovial inflammation, bone erosion, and cartilage damage, underlining the potential of S100A8/A9 as a systemic and local biomarker in seronegative arthritis not only for assessing inflammation but also for assessing severity of inflammatory joint destruction.
Damage tolerance of bonded composite aircraft repairs for metallic structures
NASA Astrophysics Data System (ADS)
Clark, Randal John
This thesis describes the development and validation of methods for damage tolerance substantiation of bonded composite repairs applied to cracked plates. This technology is used to repair metal aircraft structures, offering improvements in fatigue life, cost, manufacturability, and inspectability when compared to riveted repairs. The work focuses on the effects of plate thickness and bending on repair life, and covers fundamental aspects of fracture and fatigue of cracked plates and bonded joints. This project falls under the UBC Bonded Composite Repair Program, which has the goal of certification and widespread use of bonded repairs in civilian air transportation. This thesis analyses the plate thickness and transverse stress effects on fracture of repaired plates and the related problem of induced geometrically nonlinear bending in unbalanced (single-sided) repairs. The author begins by developing a classification scheme for assigning repair damage tolerance substantiation requirements based upon stress-based adhesive fracture/fatigue criteria and the residual strength of the original structure. The governing equations for bending of cracked plates are then reformulated and line-spring models are developed for linear and nonlinear coupled bending and extension of reinforced cracks. The line-spring models were used to correct the Wang and Rose energy method for the determination of the long-crack limit stress intensity, and to develop a new interpolation model for repaired cracks of arbitrary length. The analysis was validated using finite element models and data from mechanical tests performed on hybrid bonded joints and repair specimens that are representative of an in-service repair. This work will allow designers to evaluate the damage tolerance of the repaired plate, the adhesive, and the composite patch, which is an airworthiness requirement under FAR (Federal Aviation Regulations) 25.571. The thesis concludes by assessing the remaining barriers to certification of bonded repairs, discussing the results of the analysis, and making suggestions for future work. The developed techniques should also prove to be useful for the analysis of fibre-reinforced metal laminates and other layered structures. Some concepts are general and should be useful in the analysis of any plate with large in-plane stress gradients that lead to significant transverse stresses.
Laragione, Teresina; Cheng, Kai F; Tanner, Mark R; He, Mingzhu; Beeton, Christine; Al-Abed, Yousef; Gulko, Pércio S
2015-06-01
Little is known about the regulation of arthritis severity and joint damage in rheumatoid arthritis (RA). Fibroblast-like synoviocytes (FLS) have a central role in joint damage and express increased levels of the cation channel Trpv2. We aimed at determining the role of Trpv2 in arthritis. Treatment with Trpv2-specific agonists decreased the in vitro invasiveness of FLS from RA patients and arthritic rats and mice. Trpv2 stimulation suppressed IL-1β-induced expression of MMP-2 and MMP-3. Trpv2 agonists, including the new and more potent LER13, significantly reduced disease severity in KRN serum- and collagen-induced arthritis, and reduced histologic joint damage, synovial inflammation, and synovial blood vessel numbers suggesting anti-angiogenic activity. In this first in vivo use of Trpv2 agonists we discovered a new central role for Trpv2 in arthritis. These new compounds have the potential to become new therapies for RA and other diseases associated with inflammation, invasion, and angiogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.
Laragione, Teresina; Cheng, Kai F.; Tanner, Mark R.; He, Mingzhu; Beeton, Christine; Al-Abed, Yousef; Gulko, Pércio S.
2015-01-01
Little is known about the regulation of arthritis severity and joint damage in rheumatoid arthritis (RA). Fibroblast-like synoviocytes (FLS) have a central role in joint damage and express increased levels of the cation channel Trpv2. We aimed at determining the role of Trpv2 in arthritis. Treatment with Trpv2-specific agonists decreased the in vitro invasiveness of FLS from RA patients and arthritic rats and mice. Trpv2 stimulation suppressed IL-1β-induced expression of MMP-2 and MMP-3. Trpv2 agonists, including the new and more potent LER13, significantly reduced disease severity in KRN serum- and collagen-induced arthritis, and reduced histologic joint damage, synovial inflammation, and synovial blood vessel numbers suggesting anti-angiogenic activity. In this first in vivo use of Trpv2 agonists we discovered a new central role for Trpv2 in arthritis. These new compounds have the potential to become new therapies for RA and other diseases associated with inflammation, invasion and angiogenesis. PMID:25869297
Systematic arthroscopic investigation of the bovine stifle joint.
Hagag, U; Tawfiek, M G; Brehm, W
2015-12-01
The objective of the present study was to establish a protocol for arthroscopic exploration of the bovine stifle joint using craniomedial, caudolateral and caudomedial approaches. An anatomic and arthroscopic study using 26 cadaveric limbs from 13 non-lame adult dairy cows was performed. The craniomedial approach was created between the middle and medial patellar ligaments to investigate the cranial pouches of the stifle joint. The inter-condylar eminence, the proximal aspect of the medial femoral trochlear ridge and the lateral aspect of the lateral femoral condyle were used as starting points for systematic examination of the medial femorotibial, the femoropatellar and the lateral femorotibial joints, respectively. The observed structures were: the suprapatellar pouch, articular surfaces of the patella, femoral trochlear ridges, cruciate ligaments, menisci, and the meniscotibial ligaments. The arthroscopic portal for the caudomedial femorotibial pouch was about 6-8 cm caudal to the medial collateral ligament. The proximal and distal caudolateral femorotibial pouches were explored 3 cm and 1.5 cm caudal to the ipsilateral collateral ligament, respectively. The observed structures were the caudal aspect of femoral condyles, menisci, caudal cruciate ligament, popliteal tendon and the meniscofemoral ligament. Restricted joint size and risk of common peroneal nerve damage were the major limitations for exploration of the caudal femorotibial compartments. The study described the arthroscopic portals and normal intra-articular anatomy of the bovine stifle joint but further investigations are warranted to validate these techniques in clinical cases. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tak, Paul P; Rigby, William; Rubbert-Roth, Andrea; Peterfy, Charles; van Vollenhoven, Ronald F; Stohl, William; Healy, Emma; Hessey, Eva; Reynard, Mark; Shaw, Tim
2012-03-01
In the IMAGEstudy, rituximab plus methotrexate (MTX) inhibited joint damage and improved clinical outcomes at 1 year in MTX-naïve patients with early active rheumatoid arthritis. The aim of this study was to assess joint damage progression and clinical outcomes over 2 years. Patients (n=755) were randomised to receive rituximab 2×500 mg+MTX, 2×1000 mg+MTX or placebo+MTX. The placebo-controlled period continued to week 104. Two-year end points were defined as secondary or exploratory and included change in total Genant-modified Sharp score (mTSS), total erosion score and joint space narrowing score from baseline to week 104. Clinical efficacy and physical function end points were also assessed. At 2 years, rituximab 2×1000 mg+MTX maintained inhibition of progressive joint damage versus MTX alone (mTSS change 0.41 vs 1.95; p<0.0001 (79% inhibition)), and a higher proportion of patients receiving rituximab 2×1000 mg+MTX had no radiographic progression over 2 years compared with those receiving MTX alone (57% vs 37%; p<0.0001). Contrary to 1-year results, exploratory analysis of rituximab 2×500 mg+MTX at 2 years showed that progressive joint damage was slowed by ∼61% versus placebo+MTX (mTSS, exploratory p=0.0041). Improvements in clinical signs and symptoms and physical function seen after 1 year in rituximab-treated patients versus those receiving placebo were maintained at year 2. Safety profiles were similar between groups. Treatment with rituximab 2×1000 mg+MTX was associated with sustained improvements in radiographic, clinical and functional outcomes over 2 years. Clinical trials.gov identifier NCT00299104.
... or have trouble moving around, you might have arthritis. Most kinds of arthritis cause pain and swelling in your joints. Joints ... joint can become severely damaged. Some kinds of arthritis can also cause problems in your organs, such ...
Tam, Lai-Shan
2016-10-01
Since 2011, members of the SPECTRA Collaboration (Study grouP for xtrEme-Computed Tomography in Rheumatoid Arthritis) have investigated the validity, reliability, and responsiveness of high-resolution peripheral quantitative computed tomography (HR-pQCT) as a biomarker for joint damage in inflammatory arthritis. Presented in this series of articles are a systematic review of HR-pQCT-related findings to date, a review of selected images of cortical and subchondral trabecular bone of metacarpophalangeal (MCP) joints, results of a consensus process to standardize the definition of erosions and their quantification, as well as an examination of the effect of joint flexion on width and volume assessment of the joint space.
Structural Damage Detection with Piezoelectric Wafer Active Sensors
NASA Astrophysics Data System (ADS)
Giurgiutiu, Victor
2011-07-01
Piezoelectric wafer active sensors (PWAS) are lightweight and inexpensive enablers for a large class of damage detection and structural health monitoring (SHM) applications. This paper starts with a brief review of PWAS physical principles and basic modelling and continues by considering the various ways in which PWAS can be used for damage detection: (a) embedded guided-wave ultrasonics, i.e., pitch-catch, pulse-echo, phased arrays, thickness mode; (b) high-frequency modal sensing, i.e., the electro-mechanical (E/M) impedance method; (c) passive detection, i.e., acoustic emission and impact detection. An example of crack-like damage detection and localization with PWAS phased arrays on a small metallic plate is given. The modelling of PWAS detection of disbond damage in adhesive joints is achieved with the analytical transfer matrix method (TMM). The analytical methods offer the advantage of fast computation which enables parameter studies and carpet plots. A parametric study of the effect of crack size and PWAS location on disbond detection is presented. The power and energy transduction between PWAS and structure is studied analytically with a wave propagation method. Special attention is given to the mechatronics modeling of the complete transduction cycle from electrical excitation into ultrasonic acoustic waves by the piezoelectric effect, the transfer through the structure, and finally reverse piezoelectric transduction to generate the received electric signal. It is found that the combination of PWAS size and wave frequency/wavelength play an important role in identifying transduction maxima and minima that could be exploited to achieve an optimum power-efficient design. The multi-physics finite element method (MP-FEM), which permits fine discretization of damaged regions and complicated structural geometries, is used to study the generation of guided waves in a plate from an electrically excited transmitter PWAS and the capture of these waves as electric signals at a receiver PWAS. Wave diffraction from a hole damage is illustrated through time-frame snapshots. The paper ends with conclusions and suggestions for further work.
Modeling thermal and irradiation-induced swelling effects on the integrity of Ti 3 SiC 2 /SiC joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
Previously, results for CVD-SiC joints created using solid state displacement reactions to form a dual-phase SiC/MAX phase irradiated at 800°C and 5 dpa indicated some extent of cracking in the joint and along the CVD-SiC/joint interface. This paper elucidates the origin of cracking by thermomechanical modeling combined with irradiation-induced swelling effects using a continuum damage approach with support of micromechanical modeling. Three irradiation temperatures (400°C, 500°C and 800°C) are considered assuming experimental irradiation doses in a range leading to saturation swelling in SiC. The analyses indicate that a SiC/MAX joint heated to 400°C fails during irradiation-induced swelling at this temperaturemore » while it experiences some damage after being heated to 500°C and irradiated at the same temperature. However, it fails during cooling from 500°C to room temperature. The joint experiences minor damage when heated to and irradiated at 800°C but does not fail after cooling. The prediction agrees with the experimental findings available for this case.« less
Spahn, Gunter; Lipfert, Jens Uwe; Maurer, Constance; Hartmann, Bernd; Schiele, Rainer; Klemm, Holm-Torsten; Grifka, Joachim; Hofmann, Gunther O
2017-04-01
This case-control study compares patients with healthy elbows to a group of symptomatic patients with cartilage damage/osteoarthritis. The control group (n = 126) was recruited during routine medical examinations of patients (general medical offices). Included in the case group were a total of 92 patients who were undergoing arthroscopy as a result of chronic elbow discomfort. All patients were questioned with regard to occupational stress and athletic stress. A significantly increased risk of cartilage damage/osteoarthritis was found with subjectively perceived increased stress in occupational settings: OR = 3.8 (95% CI 2.1-6.7); p < 0.001; for the individual stresses of the elbow joint in occupational settings, the following severities in effects were found: Exposure to heavy work OR = 3.9 (95% CI 2.2-6.8); Force OR = 3.7 (95% CI 2.1-6.5); Vibration OR = 4.6 (95% CI 2.5-8.5); Repetition OR = 9.2 (95% CI 3.6-23.3); p < 0.001. Elbow-stressing sport types represent a potential risk factor for the development of cartilage damage/osteoarthritis of the elbow joint: OR = 2.5 (95% CI 1.3-4.7); p = 0.003. Cartilage damage/radiographic osteoarthritis of the elbow joint are rare with respect to the overall prevalence of osteoarthritis. In the large number of patients with cartilage damage/radiographic osteoarthritis of the elbow joint, occupational or athletic stress factors and injuries sustained, in addition to other causes (rheumatism, gout), can prove as possible causes of these as secondary to symptomatic forms of osteoarthritis.
Seismic response and damage detection analyses of an instrumented steel moment-framed building
Rodgers, J.E.; Celebi, M.
2006-01-01
The seismic performance of steel moment-framed buildings has been of particular interest since brittle fractures were discovered at the beam-column connections in a number of buildings following the M 6.7 Northridge earthquake of January 17, 1994. A case study of the seismic behavior of an extensively instrumented 13-story steel moment frame building located in the greater Los Angeles area of California is described herein. Response studies using frequency domain, joint time-frequency, system identification, and simple damage detection analyses are performed using an extensive strong motion dataset dating from 1971 to the present, supported by engineering drawings and results of postearthquake inspections. These studies show that the building's response is more complex than would be expected from its highly symmetrical geometry. The response is characterized by low damping in the fundamental mode, larger accelerations in the middle and lower stories than at the roof and base, extended periods of vibration after the cessation of strong input shaking, beating in the response, elliptical particle motion, and significant torsion during strong shaking at the top of the concrete piers which extend from the basement to the second floor. The analyses conducted indicate that the response of the structure was elastic in all recorded earthquakes to date, including Northridge. Also, several simple damage detection methods employed did not indicate any structural damage or connection fractures. The combination of a large, real structure and low instrumentation density precluded the application of many recently proposed advanced damage detection methods in this case study. Overall, however, the findings of this study are consistent with the limited code-compliant postearthquake intrusive inspections conducted after the Northridge earthquake, which found no connection fractures or other structural damage. ?? ASCE.
Epidemiology of osteoarthritis: state of the evidence
Allen, Kelli D.; Golightly, Yvonne M.
2015-01-01
Purpose of review This review focuses on recent studies of osteoarthritis epidemiology, including research on prevalence, incidence, and a broad array of potential risk factors at the person level and joint level. Recent findings Studies continue to illustrate the high impact of osteoarthritis worldwide, with increasing incidence. Person-level risk factors with strong evidence regarding osteoarthritis incidence and/or progression include age, sex, socioeconomic status, family history, and obesity. Joint-level risk factors with strong evidence for incident osteoarthritis risk include injury and occupational joint loading; the associations of injury and joint alignment with osteoarthritis progression are compelling. Moderate levels of physical activity have not been linked to increased osteoarthritis risk. Some topics of high recent interest or emerging evidence for association with osteoarthritis include metabolic pathways, vitamins, joint shape, bone density, limb length inequality, muscle strength and mass, and early structural damage. Summary Osteoarthritis is a complex, multifactorial disease, and there is still much to learn regarding mechanisms underlying incidence and progression. However, there are several known modifiable and preventable risk factors, including obesity and joint injury; efforts to mitigate these risks can help to lessen the impact of osteoarthritis. PMID:25775186
Embedded Ultrasonics for SHM of Space Applications
2012-07-30
information on material properties and other forms of damage such as cracks, structural fatigue and/or impact events. This synergistic aspect of the embedded...larger the phase shift. However, high excitation levels could contribute to sensor fatigue and levels in a range 15 to 20 (110 to 130 volts) are...joints each featuring three bolts. Piezoelectric wafers ( PZT ) with UNF electrodes were bonded to the isogrid panels using 3M 2216 epoxy
NASA Astrophysics Data System (ADS)
Ugryumova, Nadya; Attenburrow, Don P.; Winlove, C. Peter; Matcher, Stephen J.
2005-08-01
Optical coherence tomography and polarization-sensitive optical coherence tomography images of equine articular cartilage are presented. Measurements were made on intact joint surfaces. Significant (e.g. × 2) variations in the intrinsic birefringence were found over spatial scales of a few millimetres, even on samples taken from young (18 month) animals that appeared visually homogeneous. A comparison of data obtained on a control tissue (equine flexor tendon) further suggests that significant variations in the orientation of the collagen fibres relative to the plane of the joint surface exist. Images of visually damaged cartilage tissue show characteristic features both in terms of the distribution of optical scatterers and of the birefringent components.
NASA Technical Reports Server (NTRS)
Brinson, H. F.
1985-01-01
The utilization of adhesive bonding for composite structures is briefly assessed. The need for a method to determine damage initiation and propagation for such joints is outlined. Methods currently in use to analyze both adhesive joints and fiber reinforced plastics is mentioned and it is indicated that all methods require the input of the mechanical properties of the polymeric adhesive and composite matrix material. The mechanical properties of polymers are indicated to be viscoelastic and sensitive to environmental effects. A method to analytically characterize environmentally dependent linear and nonlinear viscoelastic properties is given. It is indicated that the methodology can be used to extrapolate short term data to long term design lifetimes. That is, the method can be used for long term durability predictions. Experimental results for near adhesive resins, polymers used as composite matrices and unidirectional composite laminates is given. The data is fitted well with the analytical durability methodology. Finally, suggestions are outlined for the development of an analytical methodology for the durability predictions of adhesively bonded composite structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanislavskii, L.Ya.
Large turbogenerators with built-up rotor designs operating in U.S.S.R. power plants were studied to obtain data on reliability, failures, and performance characteristics for normal and abnormal operating conditions. Data for 23 turbogenerators manufactured by domestic and foreign firms were analyzed. The studies showed that the reliability factor of the joints of built-up rotors should be equal to approximately 6 to provide a monolithic built-up rotor. At lower built-up rotor joint reliability factors, weakening of the joints occurred during their operation, leading to extreme generator vibration, damage to the insulating sockets at the joint, burning of the joints and sometimes breakagemore » of the screws holding the joints. When it is necessary to restore the monolithic nature of the joints of a rotor its design should permit replacement of the tightening devices (tie rods, screws). If this is not possible the built-up rotor becomes unsuitable for operation. During abnormal conditions there are maximum temperatures in the joint of a built-up rotor about 50 percent greater than in the end part of the rotor. Thus special structural measures are necessary to improve the electrical contact in the joints of the built-up parts of the rotors of large turbogenerators. In all cases where they are not dictated by construction requirements (supercooled turbogenerators), the use of built-up rotors is unfavorable. (LCL)« less
NASA Astrophysics Data System (ADS)
Wentlent, Luke; Alghoul, Thaer M.; Greene, Christopher M.; Borgesen, Peter
2018-02-01
Although apparently simpler than in thermal cycling, the behavior of SnAgCu (SAC) solder joints in cyclic bending or vibration is not currently well understood. The rate of damage has been shown to scale with the inelastic work per cycle, and excursions to higher amplitudes lead to an apparent softening, some of which remains so that damage accumulation is faster in subsequent cycling at lower amplitudes. This frequently leads to a dramatic breakdown of current damage accumulation rules. An empirical damage accumulation rule has been proposed to account for this, but any applicability to the extrapolation of accelerated test results to life under realistic long-term service conditions remains to be validated. This will require a better understanding of the underlying mechanisms. The present work provides experimental evidence to support recent suggestions that the observed behavior is a result of cycling-induced dislocation structures providing for increased diffusion creep. It is argued that this means that the measured work is an indicator of the instantaneous dislocation density, rather than necessarily reflecting the actual work involved in the creation of the damage.
The revised HSE fatigue guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stacey, A.; Sharp, J.V.
1995-12-31
Fatigue cracking has been a principal cause of damage to North Sea structures and consequently considerable attention has been given to the development of guidance for the prediction of fatigue performance. The fatigue guidance of the Offshore Safety Division of the Health and Safety Executive (HSE) was recently revised and published, following a significant offshore industry review in the period 1987 to 1990, and is based on the results of a considerable amount of research and development work on the fatigue behavior of welded tubular and plated joints. As a result of this review, the revised fatigue guidance incorporates severalmore » new clauses and recommendations. The revised recommendations apply to joint classification, basic design S-N curves for welded joints and cast or forged steel components, the thickness effect, the effects of environment and the treatment of low and high stress ranges. Additionally, a new appendix on the derivation of stress concentration factors is included. The new clauses cover high strength steels, bolts and threaded connectors, moorings, repaired joints and the use of fracture mechanics analysis. This paper presents an overview of the revisions to the fatigue guidance, the associated background technical information and aspects of the fatigue behavior of offshore structures which are considered to require further investigation. 67 refs., 7 figs., 8 tabs.« less
Raman spectroscopy of synovial fluid as a tool for diagnosing osteoarthritis
NASA Astrophysics Data System (ADS)
Esmonde-White, Karen A.; Mandair, Gurjit S.; Raaii, Farhang; Jacobson, Jon A.; Miller, Bruce S.; Urquhart, Andrew G.; Roessler, Blake J.; Morris, Michael D.
2009-05-01
For many years, viscosity has been the primary method used by researchers in rheumatology to assess the physiochemical properties of synovial fluid in both normal and osteoarthritic patients. However, progress has been limited by the lack of methods that provide multiple layers of information, use small sample volumes, and are rapid. Raman spectroscopy was used to assess the biochemical composition of synovial fluid collected from 40 patients with clinical evidence of knee osteoarthritis (OA) at the time of elective surgical treatment. Severity of knee osteoarthritis was assessed by a radiologist using Kellgren/Lawrence (K/L) scores from knee joint x rays, while light microscopy and Raman spectroscopy were used to examine synovial fluid (SF) aspirates (2 to 10 μL), deposited on fused silica slides. We show that Raman bands used to describe protein secondary structure and content can be used to detect changes in synovial fluid from osteoarthritic patients. Several Raman band intensity ratios increased significantly in spectra collected from synovial fluid in patients with radiological evidence of moderate-to-severe osteoarthritis damage. These ratios can be used to provide a ``yes/no'' damage assessment. These studies provide evidence that Raman spectroscopy would be a suitable candidate in the evaluation of joint damage in knee osteoarthritis patients.
Distinguishing erosive osteoarthritis and calcium pyrophosphate deposition disease.
Rothschild, Bruce M
2013-04-18
Erosive osteoarthritis is a term utilized to describe a specific inflammatory condition of the interphalangeal and first carpal metacarpal joints of the hands. The term has become a part of medical philosophical semantics and paradigms, but the issue is actually more complicated. Even the term osteoarthritis (non-erosive) has been controversial, with some suggesting osteoarthrosis to be more appropriate in view of the perspective that it is a non-inflammatory process undeserving of the "itis" suffix. The term "erosion" has also been a source of confusion in osteoarthritis, as it has been used to describe cartilage, not bone lesions. Inflammation in individuals with osteoarthritis actually appears to be related to complicating phenomena, such as calcium pyrophosphate and hydroxyapatite crystal deposition producing arthritis. Erosive osteoarthritis is the contentious term. It is used to describe a specific form of joint damage to specific joints. The damage has been termed erosions and the distribution of the damage is to the interphalangeal joints of the hand and first carpal metacarpal joint. Inflammation is recognized by joint redness and warmth, while X-rays reveal alteration of the articular surfaces, producing a smudged appearance. This ill-defined, joint damage has a crumbling appearance and is quite distinct from the sharply defined erosions of rheumatoid arthritis and spondyloarthropathy. The appearance is identical to those found with calcium pyrophosphate deposition disease, both in character and their unique responsiveness to hydroxychloroquine treatment. Low doses of the latter often resolve symptoms within weeks, in contrast to higher doses and the months required for response in other forms of inflammatory arthritis. Reconsidering erosive osteoarthritis as a form of calcium pyrophosphate deposition disease guides physicians to more effective therapeutic intervention.
Distinguishing erosive osteoarthritis and calcium pyrophosphate deposition disease
Rothschild, Bruce M
2013-01-01
Erosive osteoarthritis is a term utilized to describe a specific inflammatory condition of the interphalangeal and first carpal metacarpal joints of the hands. The term has become a part of medical philosophical semantics and paradigms, but the issue is actually more complicated. Even the term osteoarthritis (non-erosive) has been controversial, with some suggesting osteoarthrosis to be more appropriate in view of the perspective that it is a non-inflammatory process undeserving of the “itis” suffix. The term “erosion” has also been a source of confusion in osteoarthritis, as it has been used to describe cartilage, not bone lesions. Inflammation in individuals with osteoarthritis actually appears to be related to complicating phenomena, such as calcium pyrophosphate and hydroxyapatite crystal deposition producing arthritis. Erosive osteoarthritis is the contentious term. It is used to describe a specific form of joint damage to specific joints. The damage has been termed erosions and the distribution of the damage is to the interphalangeal joints of the hand and first carpal metacarpal joint. Inflammation is recognized by joint redness and warmth, while X-rays reveal alteration of the articular surfaces, producing a smudged appearance. This ill-defined, joint damage has a crumbling appearance and is quite distinct from the sharply defined erosions of rheumatoid arthritis and spondyloarthropathy. The appearance is identical to those found with calcium pyrophosphate deposition disease, both in character and their unique responsiveness to hydroxychloroquine treatment. Low doses of the latter often resolve symptoms within weeks, in contrast to higher doses and the months required for response in other forms of inflammatory arthritis. Reconsidering erosive osteoarthritis as a form of calcium pyrophosphate deposition disease guides physicians to more effective therapeutic intervention. PMID:23610748
NASA Astrophysics Data System (ADS)
Stockdale, G.; Milani, G.
2017-11-01
In seismic regions, the retrofitting of masonry structures subjected to differential foundation settlements is of the upmost importance. This practice however poses significant challenges, most notably in the consideration of historical monuments where the integrity of the original structure must be weighted alongside public safety. Fiber reinforced polymers (FRPs), when appropriately applied, provide the potential to balance this duality of heritage preservation and modern safety. Using an advanced FE point of view, this work studies the seismic response of a progressive reinforcement strategy aimed at strengthening and controlling the failure mechanism for masonry arches that exist in a damaged state induced through a differential abutment settlement. A heterogeneous FE approach of a semi-circular block and mortar arch on continuously spreading supports is examined. In this model hinge formation is obtained by assigning a damage plasticity behavior to the mortar joints. Strategically placed FRPs, designed through the utilization of the Italian CNR recommendations for externally bonded FRP systems, are applied through the Abaqus birth and death approach and introduced to the spreading support model after settlement. Finally, the structural behavior of the reinforced and unreinforced models are examined for a seismic response.
Tak, P P; Rigby, W F; Rubbert-Roth, A; Peterfy, C G; van Vollenhoven, R F; Stohl, W; Hessey, E; Chen, A; Tyrrell, H; Shaw, T M
2011-01-01
Rituximab is an effective treatment in patients with established rheumatoid arthritis (RA). The objective of the IMAGE study was to determine the efficacy of rituximab in the prevention of joint damage and its safety in combination with methotrexate (MTX) in patients initiating treatment with MTX. In this double-blind randomised controlled phase III study, 755 MTX-naïve patients with active RA were randomly assigned to MTX alone, rituximab 2×500 mg + MTX or rituximab 2×1000 mg + MTX. The primary end point at week 52 was the change in joint damage measured using a Genant-modified Sharp score. 249, 249 and 250 patients were randomly assigned to MTX alone, rituximab 2×500 mg + MTX or rituximab 2×1000 mg + MTX, respectively. At week 52, treatment with rituximab 2×1000 mg + MTX compared with MTX alone was associated with a reduction in progression of joint damage (mean change in total modified Sharp score 0.359 vs 1.079; p=0.0004) and an improvement in clinical outcomes (ACR50 65% vs 42%; p<0.0001); rituximab 2×500 mg + MTX improved clinical outcomes (ACR50 59% vs 42%; p<0.0001) compared with MTX alone but did not significantly reduce the progression of joint damage. Safety outcomes were similar between treatment groups. Treatment with rituximab 2×1000 mg in combination with MTX is an effective therapy for the treatment of patients with MTX-naïve RA. ClinicalTrials.gov identifier NCT00299104.
Evaluation of Longitudinal Joints of HMA Pavements in Tennessee
DOT National Transportation Integrated Search
2010-05-01
Longitudinal joints between lanes of hot-mix asphalt (HMA) pavements are commonly susceptible to moisture damage and other failures. In 2006, the Tennessee Department of Transportation (TDOT) identified longitudinal joint failure as one of the major ...
Early osteoarthritis of the patellofemoral joint.
Arendt, Elizabeth A; Berruto, Massimo; Filardo, Giuseppe; Ronga, Mario; Zaffagnini, Stefano; Farr, Jack; Ferrua, Paolo; Grassi, Alberto; Condello, Vincenzo
2016-06-01
Patellofemoral joint cartilage lesions are associated with a variety of clinical situations including blunt trauma, lateral patella dislocations, or as a secondary development in the setting of abnormal joint loading. There is a need for more clarity on how to best address these lesions. Most specifically, when is it necessary to surgically treat these lesions of the patella and trochlea and which technique to use? This review will focus on the spectrum of patellofemoral disease/injury and their treatment strategies, with special emphasis on cartilage damage and early osteoarthritis. Chapter sections will review the most common scenarios of cartilage damage in the patellofemoral joint, with an attempt to summarize current treatment, their outcomes, remaining challenges and unanswered questions.
An accurate fatigue damage model for welded joints subjected to variable amplitude loading
NASA Astrophysics Data System (ADS)
Aeran, A.; Siriwardane, S. C.; Mikkelsen, O.; Langen, I.
2017-12-01
Researchers in the past have proposed several fatigue damage models to overcome the shortcomings of the commonly used Miner’s rule. However, requirements of material parameters or S-N curve modifications restricts their practical applications. Also, application of most of these models under variable amplitude loading conditions have not been found. To overcome these restrictions, a new fatigue damage model is proposed in this paper. The proposed model can be applied by practicing engineers using only the S-N curve given in the standard codes of practice. The model is verified with experimentally derived damage evolution curves for C 45 and 16 Mn and gives better agreement compared to previous models. The model predicted fatigue lives are also in better correlation with experimental results compared to previous models as shown in earlier published work by the authors. The proposed model is applied to welded joints subjected to variable amplitude loadings in this paper. The model given around 8% shorter fatigue lives compared to Eurocode given Miner’s rule. This shows the importance of applying accurate fatigue damage models for welded joints.
NASA Astrophysics Data System (ADS)
Yu, Xudong; Fan, Zheng; Puliyakote, Sreedhar; Castaings, Michel
2018-03-01
Structural health monitoring (SHM) using ultrasonic guided waves has proven to be attractive for the identification of damage in composite plate-like structures, due to its realization of both significant propagation distances and reasonable sensitivity to defects. However, topographical features such as bends, lap joints, and bonded stiffeners are often encountered in these structures, and they are susceptible to various types of defects as a consequence of stress concentration and cyclic loading during the service life. Therefore, the health condition of such features has to be assessed effectively to ensure the safe operation of the entire structure. This paper proposes a novel feature guided wave (FGW) based SHM strategy, in which proper FGWs are exploited as a screening tool to rapidly interrogate the representative stiffener-adhesive bond-composite skin assembly. An array of sensors permanently attached to the vicinity of the feature is used to capture scattered waves from the localized damage occurring in the bond line. This technique is combined with an imaging approach, and the damage reconstruction is achieved by the synthetic focusing algorithm using these scattered signals. The proposed SHM scheme is implemented in both the 3D finite element simulation and the experiment, and the results are in good agreement, demonstrating the feasibility of such SHM strategy.
Fault fluid evolution at the outermost edges of the southern Apennines fold-and-thrust belt, Italy
NASA Astrophysics Data System (ADS)
Agosta, Fabrizio; Belviso, Claudia; Cavalcante, Francesco; Vita Petrullo, Angela
2017-04-01
This work focuses on the structural architecture and mineralization of a high-angle, extensional fault zone that crosscuts the Middle Pleistocene tuffs and pyroclastites of the Vulture Volcano, southern Italy. This fault zone is topped by a few m-thick travertine deposit formed by precipitation, in a typical lacustrine depositional environment, from a fault fluid that included a mixed, biogenic- and mantle-derived CO2. The detailed analysis of its different mineralization can shed new lights into the shallow crustal fluid flow that took place during deformation of the outer edge of the southern Apennines fold-and-thrust belt. In fact, the study fault zone is interpreted as a shallow-seated, tear fault associated with a shallow thrust fault displacing the most inner portion of the Bradano foredeep basin infill, and was thus active during the latest stages of contractional deformation. Far from the fault zone, the fracture network is made up of three high-angle joint sets striking N-S, E-W and NW-SE, respectively. The former two sets can be interpreted as the older structural elements that pre-dated the latter one, which is likely due to the current stress state that affects the whole Italian peninsula. In the vicinity of the fault zone, a fourth joint high-angle set striking NE-SW is also present, which becomes the most dominant fracture set within the study footwall fault damage zone. Detailed X-ray diffraction analysis of the powder obtained from hand specimens representative of the multiple mineralization present within the fault zone, and in the surrounding volcanites, are consistent with circulation of a fault fluid that modified its composition with time during the latest stages of volcanic activity and contractional deformation. Specifically, veins infilled with and slickenside coated by jarosite, Opal A and/or goethite are found in the footwall fault damage zone. Based upon the relative timing of formation of the aforementioned joint sets, deciphered after an accurate analysis of their abutting and crosscutting relationships, we envision that the fault fluid was first likely derived from a deep-seated, acid fluid, which interacted with either Triassic or Messinian in age evaporitic rocks during its ascendance from depth. From such a fluid, jarosite precipitated within N-S and NE-SW joints and sheared joints located both away and within the fault damage zone. Then, very warm fluids similar to the lahars that were channeled along the eastern flank of the Vulture Volcano caused the precipitation of Opal A within the dense fracture network of the footwall damage zone, likely causing its hydraulic fracturing, and in the N-S striking veins present in the vicinity of the fault zone. Finally, gotheite coated the major slickensides and sealed the NE-SW fractures, postdating all previous mineralization. Gothetite precipitate from a fault fluid, meteoric in origin, which interacted with the volcanic aquifer causing oxidation of the iron-rich minerals.
Evaluation of the fuselage lap joint fatigue and terminating action repair
NASA Technical Reports Server (NTRS)
Samavedam, Gopal; Thomson, Douglas; Jeong, David Y.
1994-01-01
Terminating action is a remedial repair which entails the replacement of shear head countersunk rivets with universal head rivets which have a larger shank diameter. The procedure was developed to eliminate the risk of widespread fatigue damage (WFD) in the upper rivet row of a fuselage lap joint. A test and evaluation program has been conducted by Foster-Miller, Inc. (FMI) to evaluate the terminating action repair of the upper rivet row of a commercial aircraft fuselage lap splice. Two full scale fatigue tests were conducted on fuselage panels using the growth of fatigue cracks in the lap joint. The second test was performed to evaluate the effectiveness of the terminating action repair. In both tests, cyclic pressurization loading was applied to the panels while crack propagation was recorded at all rivet locations at regular intervals to generate detailed data on conditions of fatigue crack initiation, ligament link-up, and fuselage fracture. This program demonstrated that the terminating action repair substantially increases the fatigue life of a fuselage panel structure and effectively eliminates the occurrence of cracking in the upper rivet row of the lap joint. While high cycle crack growth was recorded in the middle rivet row during the second test, failure was not imminent when the test was terminated after cycling to well beyond the service life. The program also demonstrated that the initiation, propagation, and linkup of WFD in full-scale fuselage structures can be simulated and quantitatively studied in the laboratory. This paper presents an overview of the testing program and provides a detailed discussion of the data analysis and results. Crack distribution and propagation rates and directions as well as frequency of cracking are presented for both tests. The progression of damage to linkup of adjacent cracks and to eventual overall panel failure is discussed. In addition, an assessment of the effectiveness of the terminating action repair and the occurrence of cracking in the middle rivet row is provided, and conclusions of practical interest are drawn.
NASA Technical Reports Server (NTRS)
Farrokh, Babak; Segal, Kenneth N.; Akkerman, Michael; Glenn, Ronald L.; Rodini, Benjamin T.; Fan, Wei-Ming; Kellas, Sortiris; Pineda, Evan J.
2014-01-01
In this work, an all-bonded out-of-autoclave (OoA) curved longitudinal composite joint concept, intended for use in the next generation of composite heavy lift launch vehicles, was evaluated and verified through finite element (FE) analysis, fabrication, testing, and post-test inspection. The joint was used to connect two curved, segmented, honeycomb sandwich panels representative of a Space Launch System (SLS) fairing design. The overall size of the resultant panel was 1.37 m by 0.74 m (54 in by 29 in), of which the joint comprised a 10.2 cm (4 in) wide longitudinal strip at the center. NASTRAN and ABAQUS were used to perform linear and non-linear analyses of the buckling and strength performance of the jointed panel. Geometric non-uniformities (i.e., surface contour imperfections) were measured and incorporated into the FE model and analysis. In addition, a sensitivity study of the specimens end condition showed that bonding face-sheet doublers to the panel's end, coupled with some stress relief features at corner-edges, can significantly reduce the stress concentrations near the load application points. Ultimately, the jointed panel was subjected to a compressive load. Load application was interrupted at the onset of buckling (at 356 kN 80 kips). A post-test non-destructive evaluation (NDE) showed that, as designed, buckling occurred without introducing any damage into the panel or the joint. The jointed panel was further capable of tolerating an impact damage to the same buckling load with no evidence of damage propagation. The OoA cured all-composite joint shows promise as a low mass factory joint for segmented barrels.
NASA Astrophysics Data System (ADS)
Ahmed, Abubaker Ali
As part of the structural integrity research of the National Aging Aircraft Research Program, a comprehensive study on multiple-site damage (MSD) initiation and growth in a pristine lap-joint fuselage panel has been conducted. The curved stiffened fuselage panel was tested at the Full-Scale Aircraft Structural Test Evaluation and Research (FASTER) facility located at the Federal Aviation Administration William J. Hughes Technical Center. A strain survey test was conducted to verify proper load application. The panel was then subjected to a fatigue test with constant-amplitude cyclic loading. The applied loading spectrum included underload marker cycles so that crack growth history could be reconstructed from post-test fractographic examinations. Crack formation and growth were monitored via nondestructive and high-magnification visual inspections. Strain gage measurements recorded during the strain survey tests indicated that the inner surface of the skin along the upper rivet row of the lap joint experienced high tensile stresses due to local bending. During the fatigue loading, cracks were detected by eddy-current inspections at multiple rivet holes along the upper rivet row. Through-thickness cracks were detected visually after about 80% of the fatigue life. Once MSD cracks from two adjacent rivet holes linked up, there was a quick deterioration in the structural integrity of the lap joint. The linkup resulted in a 2.87" (72.9-mm) lead fatigue crack that rapidly propagated across 12 rivet holes and crossed over into the next skin bay, at which stage the fatigue test was terminated. A post-fatigue residual strength test was then conducted by loading the panel quasi-statically up to final failure. The panel failed catastrophically when the crack extended instantaneously across three additional bays. Post-test fractographic examinations of the fracture surfaces in the lap joint of the fuselage panel were conducted to characterize subsurface crack initiation and growth. Results showed evidence of fretting damage and crack initiation at multiple locations near the rivet holes along the faying surface of the skin. The subsurface cracks grew significantly along the faying surface before reaching the outer surface of the skin, forming elliptical crack fronts. A finite element model (FE) of the panel was constructed and geometrically-nonlinear analyses conducted to determine strain distribution under the applied loads. The FE model was validated by comparing the analysis results with the strain gage measurements recorded during the strain survey test. The validated FE model was then used to determine stress-intensity factors at the crack tips. Stress-intensity factor results indicated that crack growth in the lap joint was under mixed-mode; however, the opening-mode stress intensity factor was dominant. The stress-intensity factors computed from the FE analysis were used to conduct cycle-by-cycle integration of fatigue crack growth. In the cycle-by-cycle integration, the NASGRO crack growth model was used with its parameters selected to account for the effects of plasticity-induced crack closure and the test environment on crack growth rate. Fatigue crack growth predictions from cycle-by-cycle computation were in good agreement with the experimental measured crack growth data. The results of the study provide key insights into the natural development and growth of MSD cracks in the pristine lap joint. The data provided by the study represent a valuable source for the evaluation and validation of analytical methodologies used for predicting MSD crack initiation and growth.
Computational Methods for Failure Analysis and Life Prediction
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Harris, Charles E. (Compiler); Housner, Jerrold M. (Compiler); Hopkins, Dale A. (Compiler)
1993-01-01
This conference publication contains the presentations and discussions from the joint UVA/NASA Workshop on Computational Methods for Failure Analysis and Life Prediction held at NASA Langley Research Center 14-15 Oct. 1992. The presentations focused on damage failure and life predictions of polymer-matrix composite structures. They covered some of the research activities at NASA Langley, NASA Lewis, Southwest Research Institute, industry, and universities. Both airframes and propulsion systems were considered.
Wavelet Spectral Finite Elements for Wave Propagation in Composite Plates
2012-02-21
aerospace structures is increasing rapidly due to several advantages such as lighter weight, fewer joints, improved fatigue life, and higher...breakage, and matrix cracking. These damages often occur below the surface due to fatigue , foreign object impact, etc., and may not be visible. The...ply [0/90]2s. A piezoelectric ( PZT ) actuator (diameter 13.5 mm and thickness 0.22 mm) is affixed onto the composite plate using epoxy. A National
Lamb Wave Polarization Techniques for Structural Damage Localization and Quantification
2011-11-01
11 Figure 11. Images showing (a) fatigued aluminum dog bone specimen with 53-mm crack and (b) 3-D SLDV test...Abaqus* and a 3-D model of a plate girder. Experimental measurements using piezoelectric ( PZT ) sensors were located on the web in pulse-echo mode, and...analyzed mode conversion of T- joint with collocated PZT sensors before and after the stiffener using a 2-D simulation under plane strain assumptions
Determination of the Corrosive Conditions Present within Aircraft Lap-Splice Joints
NASA Technical Reports Server (NTRS)
Lewis, Karen S.; Kelly, Robert G.; Piascik, Robert S.
1999-01-01
The complexity of airframe structure lends itself to damage resulting from crevice corrosion. Fuselage lap-splice joints are a particularly important structural detail in this regard because of the difficulty associated with detection and measurement of corrosion in these occluded regions. The objective of this work is to develop a laboratory corrosion test protocol to identify the chemistry to which lap joints are exposed and to develop a model of the corrosion within the joints. A protocol for collecting and identifying the chemistry of airframe crevice corrosion has been developed. Capillary electrophoresis (CE) is used to identify the ionic species contained in corrosion product samples removed from fuselage lap splice joints. CE analysis has been performed on over sixty corrosion product samples removed from both civilian and military aircraft. Over twenty different ions have been detected. Measurements of pH of wetted corroded surfaces indicated an alkaline occluded solution. After determining the species present and their relative concentrations, the resultant solution was reproduced in bulk and electrochemical tests were performed to determine the corrosion rate. Electrochemical analyses of the behavior of AA2024-T3 in these solutions gave corrosion rates of up to 250 microns per year (10 mpy). Additional tests have determined the relative importance of each of the detected ions in model solutions used for future predictive tests. The statistically significant ions have been used to create a second generation solution. Laboratory studies have also included exposure tests involving artificial lap joints exposed to various simulated bulk and crevice environments. The extent and morphology of the attack in artificial lap joints has been compared to studies of corroded samples from actual aircraft. Other effects, such as temperature and potential, as well as the impact of the environment on fatigue crack growth have also been studied.
Mancarella, Luana; Addimanda, Olga; Cavallari, Carlotta; Meliconi, Riccardo
2017-01-01
Ultrasound is one of the most promising candidates for the detection of inflammation and structural damage in hand osteoarthritis. To evaluate new advances of US as a diagnostic and prognostic tool in hand osteoarthritis assessment. We conducted a Medline on PubMed search for articles about "ultrasonography" and "hand OA" published between January 2012 and 15th April 2016, limiting our search to articles on human adults in English, excluding those involving systemic inflammatory diseases, visualization of joints other than hands, ultrasound guided injections and surgical procedures. Reviews, case reports, letters, position statements and ex vivo studies were excluded. Concordance between ultrasound and conventional radiography and magnetic resonance imaging was evaluated. Total 46 records were identified, and 16 articles were selected: four showed only ultrasound structural damage (osteophytes, cartilage pathology), six only ultrasound inflammatory variables (synovial thickness, effusion and power Doppler signal), six should considered both ultrasound structural and inflammatory features as well as erosions and two were epidemiological studies. Ultrasound synovitis and power Doppler signal were more frequent in erosive hand osteoarthritis. Followup studies found that ultrasound inflammatory features at baseline are independently associated with radiographic progression; power Doppler signal was the strongest predictor of structural damage. Ultrasound is a reliable tool for cartilage and osteophyte assessment (when performed with static images) and shows a good concordance with magnetic resonance imaging for osteophytes, erosions and synovitis. Ultrasound detected inflammation may predict radiographic progression and may be used in prospective clinical trials of hand osteoarthritis and in everyday clinical practice. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Architectural design of diamond-like carbon coatings for long-lasting joint replacements.
Liu, Yujing; Zhao, Xiaoli; Zhang, Lai-Chang; Habibi, Daryoush; Xie, Zonghan
2013-07-01
Surface engineering through the application of super-hard, low-friction coatings as a potential approach for increasing the durability of metal-on-metal replacements is attracting significant attention. In this study innovative design strategies are proposed for the development of diamond-like-carbon (DLC) coatings against the damage caused by wear particles on the joint replacements. Finite element modeling is used to analyze stress distributions induced by wear particles of different sizes in the newly-designed coating in comparison to its conventional monolithic counterpart. The critical roles of architectural design in regulating stress concentrations and suppressing crack initiation within the coatings is elucidated. Notably, the introduction of multilayer structure with graded modulus is effective in modifying the stress field and reducing the magnitude and size of stress concentrations in the DLC diamond-like-carbon coatings. The new design is expected to greatly improve the load-carrying ability of surface coatings on prosthetic implants, in addition to the provision of damage tolerance through crack arrest. Copyright © 2013 Elsevier B.V. All rights reserved.
Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy
NASA Technical Reports Server (NTRS)
McGill, Preston; Burkholder, Jonathan
2012-01-01
Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.
A Fatigue Crack Size Evaluation Method Based on Lamb Wave Simulation and Limited Experimental Data
He, Jingjing; Ran, Yunmeng; Liu, Bin; Yang, Jinsong; Guan, Xuefei
2017-01-01
This paper presents a systematic and general method for Lamb wave-based crack size quantification using finite element simulations and Bayesian updating. The method consists of construction of a baseline quantification model using finite element simulation data and Bayesian updating with limited Lamb wave data from target structure. The baseline model correlates two proposed damage sensitive features, namely the normalized amplitude and phase change, with the crack length through a response surface model. The two damage sensitive features are extracted from the first received S0 mode wave package. The model parameters of the baseline model are estimated using finite element simulation data. To account for uncertainties from numerical modeling, geometry, material and manufacturing between the baseline model and the target model, Bayesian method is employed to update the baseline model with a few measurements acquired from the actual target structure. A rigorous validation is made using in-situ fatigue testing and Lamb wave data from coupon specimens and realistic lap-joint components. The effectiveness and accuracy of the proposed method is demonstrated under different loading and damage conditions. PMID:28902148
Razawy, Wida; van Driel, Marjolein
2018-01-01
Abstract The IL‐23/Th17 axis has been implicated in the development of autoimmune diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heterogeneous diseases with substantial burden on patients. Increasing evidence suggests that the IL‐23 signaling pathway may be involved in the development of autoimmunity and erosive joint damage. IL‐23 can act either directly or indirectly on bone forming osteoblasts as well as on bone resorbing osteoclasts. As IL‐23 regulates the activity of cells of the bone, it is conceivable that in addition to inflammation‐mediated joint erosion, IL‐23 may play a role in physiological bone remodeling. In this review, we focus on the role of IL‐23 in autoimmune arthritis in patients and murine models, and provide an overview of IL‐23 producing and responding cells in autoimmune arthritic joints. In addition, we discuss the role of IL‐23 on bone forming osteoblasts and bone resorbing osteoclasts regarding inflammation‐mediated joint damage and bone remodeling. At last, we briefly discuss the clinical implications of targeting this pathway for joint damage and systemic bone loss in autoimmune arthritis. PMID:29148561
NASA Astrophysics Data System (ADS)
Khalili, Ashkan
Wave propagation analysis in 1-D and 2-D composite structures is performed efficiently and accurately through the formulation of a User-Defined Element (UEL) based on the wavelet spectral finite element (WSFE) method. The WSFE method is based on the first order shear deformation theory which yields accurate results for wave motion at high frequencies. The wave equations are reduced to ordinary differential equations using Daubechies compactly supported, orthonormal, wavelet scaling functions for approximations in time and one spatial dimension. The 1-D and 2-D WSFE models are highly efficient computationally and provide a direct relationship between system input and output in the frequency domain. The UEL is formulated and implemented in Abaqus for wave propagation analysis in composite structures with complexities. Frequency domain formulation of WSFE leads to complex valued parameters, which are decoupled into real and imaginary parts and presented to Abaqus as real values. The final solution is obtained by forming a complex value using the real number solutions given by Abaqus. Several numerical examples are presented here for 1-D and 2-D composite waveguides. Wave motions predicted by the developed UEL correlate very well with Abaqus simulations using shear flexible elements. The results also show that the UEL largely retains computational efficiency of the WSFE method and extends its ability to model complex features. An enhanced cross-correlation method (ECCM) is developed in order to accurately predict damage location in plates. Three major modifications are proposed to the widely used cross-correlation method (CCM) to improve damage localization capabilities, namely actuator-sensor configuration, signal pre-processing method, and signal post-processing method. The ECCM is investigated numerically (FEM simulation) and experimentally. Experimental investigations for damage detection employ a PZT transducer as actuator and laser Doppler vibrometer as sensor. Both numerical and experimental results show that the developed method is capable of damage localization with high precision. Further, ECCM is used to detect and localize debonding in a composite material skin-stiffener joint. The UEL is used to represent the healthy case whereas the damaged case is simulated using Abaqus. It is shown that the ECCM successfully detects the location of the debond in the skin-stiffener joint.
Monitoring of bolted joints using piezoelectric active-sensing for aerospace applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Gyuhae; Farrar, Charles R; Park, Chan - Yik
2010-01-01
This paper is a report of an initial investigation into tracking and monitoring the integrity of bolted joints using piezoelectric active-sensors. The target application of this study is a fitting lug assembly of unmanned aerial vehicles (UAVs), where a composite wing is mounted to a UAV fuselage. The SHM methods deployed in this study are impedance-based SHM techniques, time-series analysis, and high-frequency response functions measured by piezoelectric active-sensors. Different types of simulated damage are introduced into the structure, and the capability of each technique is examined and compared. Additional considerations encountered in this initial investigation are made to guide furthermore » thorough research required for the successful field deployment of this technology.« less
Re-assessment of offshore structures using the revised HSE fatigue guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stacey, A.; Sharp, J.V.
1995-12-31
The re-assessment of existing North Sea structures is an increasingly important issue as the age of platforms increases. Over 50 from a total of approximately 180 fixed installations in the UK sector are now over 15 years old. Fatigue damage has been the main reason for repairs to North Sea structures and the risk of this continues. The fatigue guidance of the Offshore Safety Division of the Health and Safety Executive (HSE) has recently been revised and published. Fundamental changes have been made to this guidance with several new recommendations including joint classification, basic design S-N curves for welded joints,more » the thickness effect, the effects of environment and the treatment of low and high stress ranges. To quantify the effects of the new guidance on the fatigue life assessment of offshore strictures, the HSE commissioned a study which included a deep water and a shallow water fixed steel structure and a twin-pontoon semi-submersible. These structures are typical of those operating in the North Sea. These were re-assessed with respect to fatigue lives and the results compared with predictions based on the 1990 guidance. The results and general conclusions are presented in this paper.« less
A comparative MRI study of cartilage damage in gout versus rheumatoid arthritis.
Popovich, Ivor; Lee, Arier C L; Doyle, Anthony; McHaffie, Alexandra; Clarke, Andrew; Reeves, Quentin; Dalbeth, Nicola; McQueen, Fiona M
2015-08-01
Magnetic resonance imaging (MRI) is useful for detecting joint inflammation and damage in the inflammatory arthropathies. This study aimed to investigate MRI cartilage damage and its associations with joint inflammation in patients with gout compared with a group with rheumatoid arthritis (RA). Forty patients with gout and 38 with seropositive RA underwent 3T-MRI of the wrist with assessment of cartilage damage at six carpal sites, using established scoring systems. Synovitis and bone oedema (BME) were graded according to Rheumatoid Arthritis MRI Scoring System criteria. Cartilage damage was compared between the groups adjusting for synovitis and disease duration using logistic regression analysis. Compared with RA, there were fewer sites of cartilage damage and lower total damage scores in the gout group (P = 0.02 and 0.003), adjusting for their longer disease duration and lesser degree of synovitis. Cartilage damage was strongly associated with synovitis in both conditions (R = 0.59, P < 0.0001 and R = 0.52, P = 0.0045 respectively) and highly correlated with BME in RA (R = 0.69, P < 0.0001) but not in gout (R = 0.095, P = 0.56). Cartilage damage is less severe in gout than in RA, with fewer sites affected and lower overall scores. It is associated with synovitis in both diseases, likely indicating an effect of pro-inflammatory cytokine production on cartilage integrity. However, the strong association between cartilage damage and BME observed in RA was not identified in gout. This emphasizes differences in the underlying pathophysiology of joint damage in these two conditions. © 2015 The Royal Australian and New Zealand College of Radiologists.
The effect of fatigue cracks on fastener flexibility, load distribution, and fatigue crack growth
NASA Astrophysics Data System (ADS)
Whitman, Zachary Layne
Fatigue cracks typically occur at stress risers such as geometry changes and holes. This type of failure has serious safety and economic repercussions affecting structures such as aircraft. The need to prevent catastrophic failure due to fatigue cracks and other discontinuities has led to durability and damage tolerant methodologies influencing the design of aircraft structures. Holes in a plate or sheet filled with a fastener are common fatigue critical locations in aircraft structure requiring damage tolerance analysis (DTA). Often, the fastener is transferring load which leads to a loading condition involving both far-field stresses such as tension and bending, and localized bearing at the hole. The difference between the bearing stress and the tensile field at the hole is known as load transfer. The ratio of load transfer as well as the magnitude of the stresses plays a significant part in how quickly a crack will progress to failure. Unfortunately, the determination of load transfer in a complex joint is far from trivial. Many methods exist in the open literature regarding the analysis of splices, doublers and attachment joints to determine individual fastener loads. These methods work well for static analyses but greater refinement is needed for crack growth analysis. The first fastener in a splice or joint is typically the most critical but different fastener flexibility equations will all give different results. The constraint of the fastener head and shop end, along with the type of fastener, affects the stiffness or flexibility of the fastener. This in turn will determine the load that the fastener will transfer within a given fastener pattern. However, current methods do not account for the change in flexibility at a fastener as the crack develops. It is put forth that a crack does indeed reduce the stiffness of a fastener by changing its constraint, thus lessening the load transfer. A crack growth analysis utilizing reduced load transfer will result in a slower growing crack versus an analysis that ignores the effect.
Fractional calculus model of articular cartilage based on experimental stress-relaxation
NASA Astrophysics Data System (ADS)
Smyth, P. A.; Green, I.
2015-05-01
Articular cartilage is a unique substance that protects joints from damage and wear. Many decades of research have led to detailed biphasic and triphasic models for the intricate structure and behavior of cartilage. However, the models contain many assumptions on boundary conditions, permeability, viscosity, model size, loading, etc., that complicate the description of cartilage. For impact studies or biomimetic applications, cartilage can be studied phenomenologically to reduce modeling complexity. This work reports experimental results on the stress-relaxation of equine articular cartilage in unconfined loading. The response is described by a fractional calculus viscoelastic model, which gives storage and loss moduli as functions of frequency, rendering multiple advantages: (1) the fractional calculus model is robust, meaning that fewer constants are needed to accurately capture a wide spectrum of viscoelastic behavior compared to other viscoelastic models (e.g., Prony series), (2) in the special case where the fractional derivative is 1/2, it is shown that there is a straightforward time-domain representation, (3) the eigenvalue problem is simplified in subsequent dynamic studies, and (4) cartilage stress-relaxation can be described with as few as three constants, giving an advantage for large-scale dynamic studies that account for joint motion or impact. Moreover, the resulting storage and loss moduli can quantify healthy, damaged, or cultured cartilage, as well as artificial joints. The proposed characterization is suited for high-level analysis of multiphase materials, where the separate contribution of each phase is not desired. Potential uses of this analysis include biomimetic dampers and bearings, or artificial joints where the effective stiffness and damping are fundamental parameters.
Detecting severity of delamination in a lap joint using S-parameters
NASA Astrophysics Data System (ADS)
Islam, M. M.; Huang, H.
2018-03-01
The scattering parameters (S-parameters) represent the frequency response of a two-port linear time-invariant network. Treating a lap joint structure instrumented with two piezoelectric wafer active transducers (PWaTs) as such a network, this paper investigates the application of the S-parameters for detecting the severity of delamination in the lap joint. The pulse-echo signal calculated from the reflection coefficients, namely the S 11 and S 22-parameters, can be divided into three signals, i.e. the excitation, resonant, and echo signals, based on their respective time spans. Analyzing the effects of the delamination on the resonant signal enables us to identify the resonance at which the resonant characteristics of the PWaTs are least sensitive to the delamination. Only at this resonance, we found that the reflection coefficients and the amplitude of the first arrival echo signal changed monotonously with the increase of the delamination length. This discovery is further validated by the time-domain pitch-catch signal calculated from the transmission coefficient (i.e. the S 21-parameter). In addition, comparing the pulse-echo signals obtained from both PWaTs enables us to determine the side of the lap joint that the delamination is located at. This work establishes the S-parameters as an effective tool to evaluate the effects of damage on the PWaT resonant characteristics, based on which the PWaT resonance can be selected judiciously for damage severity detection. Correlating the reflection and transmission coefficients also provide addition validations that increase the detection confidence.
Unloading joints to treat osteoarthritis, including joint distraction.
Lafeber, Floris P J G; Intema, Femke; Van Roermund, Peter M; Marijnissen, Anne C A
2006-09-01
Patients are increasingly becoming interested in nonpharmacologic approaches to manage their osteoarthritis. This review examines the recent literature on the potential beneficial effects of unloading joints in the treatment of osteoarthritis, with a focus on joint distraction. Mechanical factors are involved in the development and progression of osteoarthritis. If "loading" is a major cause in development and progression of osteoarthritis, then "unloading" may be able to prevent progression. There is evidence that unloading may be effective in reducing pain and slowing down structural damage. This review describes unloading by footwear and bracing (nonsurgical), unloading by osteotomy (surgical), and has a focus on unloading by joint distraction. Excellent reviews in all these three fields have been published over the past few years. Recent studies argue for the usefulness of a biomechanical approach to improve function and possibly reduce disease progression in osteoarthritis. To improve patient function and possibly reduce disease progression, a biomechanical approach should be considered in treating patients with osteoarthritis. Further research (appropriate high-quality clinical trials) and analysis (clinical as well as preclinical and fundamental) are still necessary, however, to understand, validate, and refine the different approaches of unloading to treat osteoarthritis.
Residual Strength Analyses of Riveted Lap-Splice Joints
NASA Technical Reports Server (NTRS)
Seshadri, B. R.; Newman, J. C., Jr.
2000-01-01
The objective of this paper was to analyze the crack-linkup behavior in riveted-stiffened lap-splice joint panels with small multiple-site damage (MSD) cracks at several adjacent rivet holes. Analyses are based on the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. To account for high constraint around a crack front, the "plane strain core" option in STAGS was used. The importance of modeling rivet flexibility with fastener elements that accurately model load transfer across the joint is discussed. Fastener holes are not modeled but rivet connectivity is accounted for by attaching rivets to the sheet on one side of the cracks that simulated both the rivet diameter and MSD cracks. Residual strength analyses made on 2024-T3 alloy (1.6-mm thick) riveted-lap-splice joints with a lead crack and various size MSD cracks were compared with test data from Boeing Airplane Company. Analyses were conducted for both restrained and unrestrained buckling conditions. Comparison of results from these analyses and results from lap-splice-joint test panels, which were partially restrained against buckling indicate that the test results were bounded by the failure loads predicted by the analyses with restrained and unrestrained conditions.
Influence of interface ply orientation on fatigue damage of adhesively bonded composite joints
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Mall, S.
1985-01-01
An experimental study of cracked-lap-shear specimens was conducted to determine the influence of adherend stacking sequence on debond initiation and damage growth in a composite-to-composite bonded joint. Specimens consisted of quasi-isotropic graphite/epoxy adherends bonded together with either FM-300 or EC 3445 adhesives. The stacking sequence of the adherends was varied such that 0 deg, 45 deg, or 90 deg plies were present at the adherend-adhesive interfaces. Fatigue damage initiated in the adhesive layer in those specimens with 0 deg nd 45 deg interface plies. Damage initiated in the form of ply cracking in the strap adherend for the specimens with 90 deg interface plies. The fatigue-damage growth was in the form of delamination within the composite adherends for specimens with the 90 deg and 45 deg plies next to the adhesive, while debonding in the adhesive resulted for the specimens with 0 deg plies next to the adhesive. Those joints with the 0 deg and 45 deg plies next to either adhesive has essentially the same fatigue-damage-initiation stress levels. These stress levels were 13 and 71 percent higher, respectively, than those for specimens with 90 deg plies next to the EC 3445 and FM-300 adhesives.
Fully automated joint space width measurement and digital X-ray radiogrammetry in early RA.
Platten, Michael; Kisten, Yogan; Kälvesten, Johan; Arnaud, Laurent; Forslind, Kristina; van Vollenhoven, Ronald
2017-01-01
To study fully automated digital joint space width (JSW) and bone mineral density (BMD) in relation to a conventional radiographic scoring method in early rheumatoid arthritis (eRA). Radiographs scored by the modified Sharp van der Heijde score (SHS) in patients with eRA were acquired from the SWEdish FarmacOTherapy study. Fully automated JSW measurements of bilateral metacarpals 2, 3 and 4 were compared with the joint space narrowing (JSN) score in SHS. Multilevel mixed model statistics were applied to calculate the significance of the association between ΔJSW and ΔBMD over 1 year, and the JSW differences between damaged and undamaged joints as evaluated by the JSN. Based on 576 joints of 96 patients with eRA, a significant reduction from baseline to 1 year was observed in the JSW from 1.69 (±0.19) mm to 1.66 (±0.19) mm (p<0.01), and BMD from 0.583 (±0.068) g/cm 2 to 0.566 (±0.074) g/cm 2 (p<0.01). A significant positive association was observed between ΔJSW and ΔBMD over 1 year (p<0.0001). On an individual joint level, JSWs of undamaged (JSN=0) joints were wider than damaged (JSN>0) joints: 1.68 mm (95% CI 1.70 to 1.67) vs 1.54 mm (95% CI 1.63 to 1.46). Similarly the unadjusted multilevel model showed significant differences in JSW between undamaged (1.68 mm (95% CI 1.72 to 1.64)) and damaged joints (1.63 mm (95% CI 1.68 to 1.58)) (p=0.0048). This difference remained significant in the adjusted model: 1.66 mm (95% CI 1.70 to 1.61) vs 1.62 mm (95% CI 1.68 to 1.56) (p=0.042). To measure the JSW with this fully automated digital tool may be useful as a quick and observer-independent application for evaluating cartilage damage in eRA. NCT00764725.
Chan, Deva D.; Xiao, Wenfeng; Li, Jun; de la Motte, Carol A.; Sandy, John D.; Plaas, Anna
2015-01-01
Objective Articular cartilage defects commonly result from traumatic injury and predispose to degenerative joint diseases. To test the hypothesis that aberrant healing responses and chronic inflammation lead to osteoarthritis, we examined spatiotemporal changes in joint tissues after cartilage injury in murine knees. Since intra-articular injection of hyaluronan (HA) can attenuate injury-induced osteoarthritis in wild-type (WT) mice, we investigated a role for HA in the response to cartilage injury in mice lacking HA synthase 1 (Has1−/−). Design Femoral groove cartilage of WT and Has1−/− mice was debrided to generate a non-bleeding wound. Macroscopic imaging, histology, and gene expression were used to evaluate naïve, sham-operated, and injured joints. Results Acute responses (1–2 weeks) in injured joints from WT mice included synovial hyperplasia with HA deposition and joint-wide increases in expression of genes associated with inflammation, fibrosis, and extracellular matrix (ECM) production. By 4 weeks, some resurfacing of damaged cartilage occurred, and early cell responses were normalized. Cartilage damage in Has1−/− mice also induced early responses; however, at 4 weeks, inflammation and fibrosis genes remained elevated with widespread cartilage degeneration and fibrotic scarring in the synovium and joint capsule. Conclusions We conclude that the ineffective repair of injured cartilage in Has1−/− joints can be at least partly explained by the markedly enhanced expression of particular genes in pathways linked to ECM turnover, IL-17/IL-6 cytokine signaling, and apoptosis. Notably, Has1 ablation does not alter gross HA content in the ECM, suggesting that HAS1 has a unique function in the metabolism of inflammatory HA matrices. PMID:26521733
Observations of Building Performance under Combined Wind and Surge Loading from Hurricane Harvey
NASA Astrophysics Data System (ADS)
Lombardo, F.; Roueche, D. B.; Krupar, R. J.; Smith, D. J.; Soto, M. G.
2017-12-01
Hurricane Harvey struck the Texas coastline on August 25, 2017, as a Category 4 hurricane - the first major hurricane to reach the US in twelve years. Wind gusts over 130 mph and storm surge as high as 12.5 ft caused widespread damage to buildings and critical infrastructure in coastal communities including Rockport, Fulton, Port Aransas and Aransas Pass. This study presents the methodology and preliminary observations of a coordinated response effort to document residential building performance under wind and storm surge loading. Over a twelve day survey period the study team assessed the performance of more than 1,000 individual, geo-located residential buildings. Assessments were logged via a smartphone application to facilitate rapid collection and collation of geotagged photographs, building attributes and structural details, and structural damage observations. Detailed assessments were also made of hazard intensity, specifically storm surge heights and both wind speed and direction indicators. Preliminary observations and findings will be presented, showing strong gradients in damage between inland and coastal regions of the affected areas that may be due in part to enhanced individual loading effects of wind and storm surge and potentially joint-hazard loading effects. Contributing factors to the many cases of disproportionate damage observed in close proximity will also be discussed. Ongoing efforts to relate building damage to near-surface hazard measurements (e.g., radar, anemometry) in close proximity will also be described.
NASA Astrophysics Data System (ADS)
Petchsang, S.; Phung-on, I.; Poopat, B.
2016-12-01
Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.
GRAPPA 2015 Research and Education Project Reports.
Mease, Philip J; Helliwell, Philip S; Boehncke, Wolf-Henning; Coates, Laura C; FitzGerald, Oliver; Gladman, Dafna D; Deodhar, Atul A; Callis Duffin, Kristina
2016-05-01
At the 2015 annual meeting of the Group for Research and Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA), attendees were presented with brief updates on several ongoing initiatives, including educational projects. Updates were presented on the treatment recommendations project, the development of simple criteria to identify inflammatory musculoskeletal disease, new patient/physician Delphi exercises, and BIODAM (identifying biomarkers that predict progressive structural joint damage). The publication committee also gave a report. Herein we summarize those project updates.
The research and development of damage tolerant carbon fiber composites
NASA Astrophysics Data System (ADS)
Miranda, John Armando
This record of study takes a first hand look at corporate research and development efforts to improve the damage tolerance of two unique composite materials used in high performance aerospace applications. The professional internship with The Dow Chemical Company---Dow/United Technologies joint venture describes the intern's involvement in developing patentable process technologies for interleave toughening of high temperature resins and their composites. The subsequent internship with Hexcel Corporation describes the intern's involvement in developing the damage tolerance of novel and existing honeycomb sandwich structure technologies. Through the Doctor of Engineering professional internship experience this student exercised fundamental academic understanding and methods toward accomplishing the corporate objectives of the internship sponsors in a resource efficient and cost-effective manner. Also, the student gained tremendous autonomy through exceptional training in working in focused team environments with highly trained engineers and scientists in achieving important corporate objectives.
Martin, Richard W; Brower, Matthew E; Geralds, Alexander; Gallagher, Patience J; Tellinghuisen, Donald J
2012-03-01
To explore how effectively information presentation formats used in a patient decision aid communicated the ability of a disease modifying anti-rheumatic drug to slow the rate of progression of rheumatoid arthritis related structural joint damage (SJD). 91 first year psychology students and 91 RA patients participated in a prospective randomized, single blind, factorial experimental design evaluating the effect of four information formats on: satisfaction with risk communication, verbatim and gist recall of a hypothetical anti-rheumatic drug's ability to slow the rate of progression of SJD. Both groups underestimated the hypothetical drug's ability to slow SJD. Formats that supported the narrative statement with a reinforcing graphic element resulted in recall closer to the true value. Comparison of the results from testing of RA patients and college students were remarkably similar across formats. Rate of progression as communicated by narrative statement plus a graphic element (i.e. speedometer metaphor or pictograph) aided recall better than a narrative statement alone. Our results suggest that testing decision aid components with non-patients may provide data generalizable to patient populations. Graphics must be used carefully in patient decision aids as they can enhance recall, but may also introduce unintended recall bias. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Yasuda, Tomohiro; Obara, Shu; Hayashi, Junji; Arai, Masayuki; Sato, Kaoru
2017-06-01
Intramedullary nail fixation is a common treatment for tibial-shaft fractures, and it offers a better functional prognosis than other conservative treatments. Currently, the primary approach employed during intramedullary nail insertion is the semiextended position is the suprapatellar approach, which involves a vertical incision of the quadriceps tendon Damage to the patellofemoral joint cartilage has been highlighted as a drawback associated with this approach. To avoid this issue, we perform surgery using the patellar eversion technique and a soft sleeve. This method allows the articular surface to be monitored during intramedullary nail insertion. We arthroscopically assessed the effect of this technique on patellofemoral joint cartilage. The patellar eversion technique allows a direct view and protection of the patellofemoral joint without affecting the patella. Thus, damage to the patellofemoral joint cartilage can be avoided. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.
The international fusion community has designed a miniature torsion specimen for neutron irradiation studies of joined SiC and SiC/SiC composite materials. Miniature torsion joints based on this specimen design were fabricated using displacement reactions between Si and TiC to produce Ti3SiC2 + SiC joints with CVD-SiC and tested in torsion-shear prior to and after neutron irradiation. However, many of these miniature torsion specimens fail out-of-plane within the CVD-SiC specimen body, which makes it problematic to assign a shear strength value to the joints and makes it difficult to compare unirradiated and irradiated joint strengths to determine the effects of themore » irradiation. Finite element elastic damage and elastic-plastic damage models of miniature torsion joints are developed that indicate shear fracture is likely to occur within the body of the joined sample and cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model results are compared and discussed with regard to unirradiated and irradiated joint test data for a variety of joint materials. The unirradiated data includes Ti3SiC2 + SiC/CVD-SiC joints with tailored joint moduli, and includes steel/epoxy and CVD-SiC/epoxy joints. The implications for joint data based on this sample design are discussed.« less
NASA Astrophysics Data System (ADS)
Zhang, H.; Thurber, C. H.; Maceira, M.; Roux, P.
2013-12-01
The crust around the San Andreas Fault Observatory at depth (SAFOD) has been the subject of many geophysical studies aimed at characterizing in detail the fault zone structure and elucidating the lithologies and physical properties of the surrounding rocks. Seismic methods in particular have revealed the complex two-dimensional (2D) and three-dimensional (3D) structure of the crustal volume around SAFOD and the strong velocity reduction in the fault damage zone. In this study we conduct a joint inversion using body-wave arrival times and surface-wave dispersion data to image the P-and S-wave velocity structure of the upper crust surrounding SAFOD. The two data types have complementary strengths - the body-wave data have good resolution at depth, albeit only where there are crossing rays between sources and receivers, whereas the surface waves have very good near-surface resolution and are not dependent on the earthquake source distribution because they are derived from ambient noise. The body-wave data are from local earthquakes and explosions, comprising the dataset analyzed by Zhang et al. (2009). The surface-wave data are for Love waves from ambient noise correlations, and are from Roux et al. (2011). The joint inversion code is based on the regional-scale version of the double-difference (DD) tomography algorithm tomoDD. The surface-wave inversion code that is integrated into the joint inversion algorithm is from Maceira and Ammon (2009). The propagator matrix solver in the algorithm DISPER80 (Saito, 1988) is used for the forward calculation of dispersion curves from layered velocity models. We examined how the structural models vary as we vary the relative weighting of the fit to the two data sets and in comparison to the previous separate inversion results. The joint inversion with the 'optimal' weighting shows more clearly the U-shaped local structure from the Buzzard Canyon Fault on the west side of SAF to the Gold Hill Fault on the east side.
Imaging the Glenoid Labrum and Labral Tears.
De Coninck, Tineke; Ngai, Steven S; Tafur, Monica; Chung, Christine B
2016-10-01
The shoulder joint is the most unstable articulation in the entire human body. While this certainly introduces vulnerability to injury, it also confers the advantage of broad range of motion. There are many elements that work in combination to offset the inherent instability of the glenohumeral joint, but the glenoid labrum is perhaps related most often. Broadly, clinical unidirectional instability can be subdivided into anterior and posterior instability, which usually raise concern for anteroinferior and posteroinferior labral lesions, respectively. In the special case of superior labral damage, potential dislocation is blocked by structures that include the acromion; hence, while damage elsewhere commonly manifests as clinical instability, damage to the superior labrum is often described by the term microinstability. In this particular case, one of the radiologist's main concerns should be classic superior labral anteroposterior lesions. The glenoid labrum is also subject to a wide range of normal variants that can mimic labral tears. Knowledge of these variants is central to interpreting an imaging study of the labrum because misdiagnosis of labral variants as tears can lead to superfluous surgical procedures and decreased shoulder mobility. This article reviews labral anatomy and normal labral variants, describes their imaging features, and discusses how to discriminate normal variants from labral tears. Specific labral pathologic lesions are described per labral quadrant (anteroinferior, posteroinferior, and superior), and imaging features are described in detail. Online supplemental material is available for this article. © RSNA, 2016.
Popovich, I; Dalbeth, N; Doyle, A; Reeves, Q; McQueen, F M
2014-07-01
Few imaging studies have investigated cartilage in gout. Magnetic resonance imaging (MRI) can image cartilage damage and also reveals other features of gouty arthropathy. The objective was to develop and validate a system for quantifying cartilage damage in gout. 3-T MRI scans of the wrist were obtained in 40 gout patients. MRI cartilage damage was quantified using an adaptation of the radiographic Sharp van der Heijde score. Two readers scored cartilage loss at 7 wrist joints: 0 (normal), 1 (partial narrowing), 2 (complete narrowing) and concomitant osteoarthritis was recorded. Bone erosion, bone oedema and synovitis were scored (RAMRIS) and tophi were assessed. Correlations between radiographic and MRI cartilage scores were investigated, as was the reliability of the MRI cartilage score and its associations. The GOut MRI Cartilage Score (GOMRICS) was highly correlated with the total Sharp van der Heijde (SvdH) score and the joint space narrowing component (R = 0.8 and 0.71 respectively, p < 0.001). Reliability was high (intraobserver, interobserver ICCs = 0.87 [0.57-0.97], 0.64 [0.41-0.79] respectively), and improved on unenhanced scans; interobserver ICC = 0.82 [0.49-0.95]. Cartilage damage was predominantly focal (82% of lesions) and identified in 40 out of 280 (14%) of joints. Cartilage scores correlated with bone erosion (R = 0.57), tophus size (R = 0.52), and synovitis (R = 0.55), but not bone oedema scores. Magnetic resonance imaging can be used to investigate cartilage in gout. Cartilage damage was relatively uncommon, focal, and associated with bone erosions, tophi and synovitis, but not bone oedema. This emphasises the unique pathophysiology of gout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.
2016-03-31
Finite element continuum damage models (FE-CDM) have been developed to simulate and model dual-phase joints and cracked joints for improved analysis of SiC materials in nuclear environments. This report extends the analysis from the last reporting cycle by including results from dual-phase models and from cracked joint models.
Talar Fractures in Children: A Possible Injury After Go-Karting Accidents.
Kamphuis, Saskia J M; Meijs, Claartje M E M; Kleinveld, Sanne; Diekerhof, Carel H; van der Heijden, Frank H W M
2015-01-01
Go-karting is an increasingly popular high-energy sport enjoyed by both children and adults. Because of the speeds involved, accidents involving go-karts can lead to serious injury. We describe 6 talar fractures in 4 patients that resulted from go-karting accidents. Talar fractures can cause severe damage to the tibiotalar joint, talocalcaneal or subtalar joint, and the talonavicular joint. This damage can, in turn, lead to complications such as avascular necrosis, arthritis, nonunion, delayed union, and neuropraxia, which have the potential to cause long-term disability in a child. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures
NASA Technical Reports Server (NTRS)
Jones, Justin S.; Polis, Daniel L.; Rowles, Russell R.; Segal, Kenneth N.
2011-01-01
The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to segmented barrel structures needed for autoclave cured barrel segments due to autoclave size constraints. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (Z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the Z-fiber weave to a fully interlocked weave with comparable fiber bias, the Z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study.
Hirabayashi, Yasuhiko; Munakata, Yasuhiko; Miyata, Masayuki; Urata, Yukitomo; Saito, Koichi; Okuno, Hiroshi; Yoshida, Masaaki; Kodera, Takao; Watanabe, Ryu; Miyamoto, Seiya; Ishii, Tomonori; Nakazawa, Shigeshi; Takemori, Hiromitsu; Ando, Takanobu; Kanno, Takashi; Komagamine, Masataka; Kato, Ichiro; Takahashi, Yuichi; Komatsuda, Atsushi; Endo, Kojiro; Murai, Chihiro; Takakubo, Yuya; Miura, Takao; Sato, Yukio; Ichikawa, Kazunobu; Konta, Tsuneo; Chiba, Noriyuki; Muryoi, Tai; Kobayashi, Hiroko; Fujii, Hiroshi; Sekiguchi, Yukio; Hatakeyama, Akira; Ogura, Ken; Sakuraba, Hirotake; Asano, Tomoyuki; Kanazawa, Hiroshi; Suzuki, Eiji; Takasaki, Satoshi; Asakura, Kenichi; Sugisaki, Kota; Suzuki, Yoko; Takagi, Michiaki; Nakayama, Takahiro; Watanabe, Hiroshi; Miura, Keiki; Mori, Yu
2016-11-01
To evaluate the clinical and structural efficacy of tocilizumab (TCZ) during its long-term administration in patients with rheumatoid arthritis (RA). In total, 693 patients with RA who started TCZ therapy were followed for 3 years. Clinical efficacy was evaluated by DAS28-ESR and Boolean remission rates in 544 patients. Joint damage was assessed by calculating the modified total Sharp score (mTSS) in 50 patients. When the reason for discontinuation was limited to inadequate response or adverse events, the 1-, 2-, and 3-year continuation rates were 84.0%, 76.8%, and 72.2%, respectively. The mean DAS28-ESR was initially 5.1 and decreased to 2.5 at 6 months and to 2.2 at 36 months. The Boolean remission rate was initially 0.9% and increased to 21.7% at 6 months and to 32.2% at 36 months. The structural remission rates (ΔmTSS/year ≤ 0.5) were 68.8%, 78.6%, and 88.9% within the first, second, and third years, respectively. The structural remission rate at 3 years (ΔmTSS ≤ 1.5) was 66.0%, and earlier achievement of swollen joint count (SJC) of 1 or less resulted in better outcomes. TCZ was highly efficacious, and bone destruction was strongly prevented. SJC was an easy-to-use indicator of joint destruction.
Razawy, Wida; van Driel, Marjolein; Lubberts, Erik
2018-02-01
The IL-23/Th17 axis has been implicated in the development of autoimmune diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heterogeneous diseases with substantial burden on patients. Increasing evidence suggests that the IL-23 signaling pathway may be involved in the development of autoimmunity and erosive joint damage. IL-23 can act either directly or indirectly on bone forming osteoblasts as well as on bone resorbing osteoclasts. As IL-23 regulates the activity of cells of the bone, it is conceivable that in addition to inflammation-mediated joint erosion, IL-23 may play a role in physiological bone remodeling. In this review, we focus on the role of IL-23 in autoimmune arthritis in patients and murine models, and provide an overview of IL-23 producing and responding cells in autoimmune arthritic joints. In addition, we discuss the role of IL-23 on bone forming osteoblasts and bone resorbing osteoclasts regarding inflammation-mediated joint damage and bone remodeling. At last, we briefly discuss the clinical implications of targeting this pathway for joint damage and systemic bone loss in autoimmune arthritis. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Arthroscopy-guided fracture management. Ankle joint and calcaneus].
Schoepp, C; Rixen, D
2013-04-01
Arthroscopic fracture management of the ankle and calcaneus requires a differentiated approach. The aim is to minimize surgical soft tissue damage and to visualize anatomical fracture reduction arthroscopically. Moreover, additional cartilage damage can be detected and treated. The arthroscopic approach is limited by deep impressions of the joint surface needing cancellous bone grafting, by multiple fracture lines on the articular side and by high-grade soft tissue damage. An alternative to the minimally invasive arthroscopic approach is open arthroscopic reduction in conventional osteosynthesis. This facilitates correct assessment of surgical reduction of complex calcaneal fractures, otherwise remaining non-anatomical reduction might not be fluoroscopically detected during surgery.
Genetic epidemiology of hip and knee osteoarthritis.
Valdes, Ana M; Spector, Tim D
2011-01-01
Osteoarthritis (OA) is the most common cause of arthritis and represents an enormous healthcare burden in industrialized societies. Current therapeutic approaches for OA are limited and are insufficient to prevent the initiation and progression of the disease. Genetic studies of patients with OA can help to unravel the molecular mechanisms responsible for specific disease manifestations, including joint damage, nociception and chronic pain. Indeed, these studies have identified molecules, such as growth/differentiation factor 5, involved in signaling cascades that are important for the pathology of joint components. Genome-wide association studies have uncovered a likely role in OA for the genes encoding structural extracellular matrix components (such as DVWA) and molecules involved in prostaglandin metabolism (such as DQB1 and BTNL2). A ∼300 kilobase region in chromosome 7q22 is also associated with OA susceptibility. Finally, the identification of individuals at a high risk of OA and of total joint arthroplasty failure might be facilitated by the use of combinations of genetic markers, allowing for the application of preventive and disease-management strategies.
Damage Threshold Characterization in Structural Composite Materials and Composite Joints
2010-02-28
process parameters representative of manufacturing by resin infusion. The approach used in this program has been to develop a test coupon which is... manufactured using vacuum bag resin infusion as summarized in Figure 2. The vacuum bag components are given in Table 1. The aluminum mold was coated... Manufacturer and Designation Fiber Areal Weight, g/m² Total 0° 90° -45° +45° mat stitch Unidir. 0/90 (Fabric D) Vectorply E-LT-5500 1875 1728 114 0
Ultrasound Burst Phase Thermography (UBP) for Applications in the Automotive Industry
NASA Astrophysics Data System (ADS)
Zweschper, T.; Riegert, G.; Dillenz, A.; Busse, G.
2003-03-01
The use of elastic waves in combination with thermal waves allows to separate structural information about investigated components from defect specific thermal signatures. Ultrasound Burst Phase thermography (UBP) is an defect-selective and fast imaging tool for damage detection. This contribution presents results obtained on various kinds of problems related to modern automobile production (crack detection in grey cast iron and aluminum, characterization of adhesive-bonded joints etc.). Advances resulting from frequency modulated ultrasound excitation will be presented.
Radiobiological research at JINR's accelerators
NASA Astrophysics Data System (ADS)
Krasavin, E. A.
2016-04-01
The half-a-century development of radiobiological studies at the Joint Institute for Nuclear Research (JINR) is reviewed on a stage-by-stage basis. With the use of the institute's accelerators, some key aspects of radiation biology have been settled, including the relative biological effectiveness (RBE) of various types of ionizing radiation with different physical characteristics; radiation-induced mutagenesis mechanisms, and the formation and repair of genetic structure damage. Practical space radiobiology problems that can be solved using high-energy charged particles are discussed.
Patterned CoCrMo and Al2 O3 surfaces for reduced free wear debris in artificial joint arthroplasty.
Tarabolsi, Mohamad; Klassen, Thomas; Mantwill, Frank; Gärtner, Frank; Siegel, Frank; Schulz, Arndt-Peter
2013-12-01
Surface wear of corresponding tribological pairings is still a major problem in the application of artificial joint surgery. This study aims at developing wear reduced surfaces to utilize them in total joint arthroplasty. Using a pico-second laser, samples of medical CoCrMo metal alloy and Al2 O3 ceramic were patterned by laser material removal. The subsequent tribological investigations employed a ring-on-disc method. The results showed that those samples with modified surfaces show less mass or volume loss than those with a regular, smooth surface. Using calf serum as lubricating medium, the volume loss of the structured CoCrMo samples was eight times lower than that of regular samples. By structuring Al2 O3 surfaces, the wear volume could be reduced by 4.5 times. The results demonstrate that defined surface channels or pits enable the local sedimentation of wear debris. Thus, the amount of free debris could be reduced. Fewer abrasives in the lubricated so-called three-body-wear between the contact surfaces should result in less surface damage. Apart from direct influences on the wear behavior, less amounts of free debris of artificial joints should also be beneficial for avoiding undesired reactions with the surrounding soft tissues. The results from this study are very promising. Future investigations should involve the use of simulators meeting the natural conditions in the joint and in vivo studies with living organisms. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.
Weichman, B M; Chau, T T; Rona, G
1987-04-01
Histopathologic evaluation of hindpaws from control rats with established adjuvant arthritis showed severe alterations in soft tissue and bone, as well as progressive, moderate-to-severe articular changes. Following treatment with etodolac for 28 days, soft tissue and articular changes were rated mild, and bone changes were rated moderate, but with remodeling. These findings indicate that etodolac partially reversed the joint damage in these rats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Jr., C. H.; Nguyen, Ba N.; Kurtz, Richard J.
The international fusion community has designed a miniature torsion specimen for neutron irradiation studies of joined SiC and SiC/SiC composite materials. For this research, miniature torsion joints based on this specimen design were fabricated using displacement reactions between Si and TiC to produce Ti 3SiC 2 + SiC joints with SiC and tested in torsion-shear prior to and after neutron irradiation. However, many miniature torsion specimens fail out-of-plane within the SiC specimen body, which makes it problematic to assign a shear strength value to the joints and makes it difficult to compare unirradiated and irradiated strengths to determine irradiation effects.more » Finite element elastic damage and elastic–plastic damage models of miniature torsion joints are developed that indicate shear fracture is more likely to occur within the body of the joined sample and cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model results are compared and discussed with regard to unirradiated and irradiated test data for a variety of joint materials. The unirradiated data includes Ti 3SiC 2 + SiC/CVD-SiC joints with tailored joint moduli, and includes steel/epoxy and CVD-SiC/epoxy joints. Finally, the implications for joint data based on this sample design are discussed.« less
Influence of interface ply orientation on fatigue damage of adhesively bonded composite joints
NASA Technical Reports Server (NTRS)
Johnson, W. S.; Mall, S.
1986-01-01
An experimental study of cracked-lap-shear specimens was conducted to determine the influence of adherend stacking sequence on debond initiation and damage growth in a composite-to-composite bonded joint. Specimens consisted of quasi-isotropic graphite/epoxy adherends bonded together with either FM-300 or EC 3445 adhesives. The stacking sequence of the adherends was varied such that 0 deg, 45 deg, or 90 deg plies were present at the adherend-adhesive interfaces. Fatigue damage initiated in the adhesive layer in those specimens with 0 deg and 45 deg interface plies. Damaage initiated in the form of ply cracking in the strap adherend for the specimens with 90 deg interface plies. The fatigue-damage growth was in the form of delamination within the composite adherends for specimens with the 90 deg and 45 deg plies next to the adhesive, while debonding in the adhesive resulted for the specimens with 0 deg plies next to the adhesive. Those joints with the 0 deg and 45 deg plies next to either adhesive has essentially the same fatigue-damage-initiation stress levels. These stress levels were 13 and 71 percent higher, respectively, than those for specimens with 90 deg plies next to the EC 3445 and FM-300 adhesives.
NASA Astrophysics Data System (ADS)
Bricola, Julien
In Quebec, the majority of the road network was built in the 60's - 70's and show obvious signs of ageing. Moreover, the increase of road traffic and the rigorous weather conditions, render the maintenance and the exploitation of roads in this Northern American part quite difficult. Indeed, these environmental conditions cause severe damages for roads, especially in winter. The degradation factor of the jointed rigid pavement is intensified by the highway salt. So, the phenomena of deteriorations appears mainly by the corrosion of the steel at the joints (structural elements) guaranteeing the durability of roads. The jointed rigid pavements or "short jointed pavements" are still mainly sized with steel dowels placed at the lining of joints. One of the main functions of these structures is to control the formation of cracking due to the thermal and environmental conditions. In order to reduce these , disorders, the Ministry of Transport of Quebec (MTQ) turned towards new techniques and innovative materials to ensure the longevity of roads. With the rapid evolution of specific methods and knowledge in roads design, joined with technologies and new products, the MTQ emphasizes the research and development. That way, advanced techniques and diverse technologies in the Quebecois context are settled. As a matter of fact, one of the axes of these development researches concerns the composite materials which have recently been given good results in the civil engineering area. That is why Glass Fibre-Reinforced Polymer (GFRP) dowels bars appear as a solution to the steel corrosion. In fact, they provide better durability with lower costs: the increase of service life as well as the decrease of maintenance persons and traffics impac. Thus, this project proposes an optimization of structural design of GFRP dowels for transverse jointed highway pavement slabs, also keeping in mind their use in new projects. The GFRP dowels which are given in this essay are made by the Pultrall Inc. Company from Thetford Mines (Quebec, Canada). The resin used for the polymer materials is only vinylester resin and the dowels have diameters going from 28.6 mm to 34.9 mm. Finally, only a stiff base is used for the road, its particularity is the modulus of subgrade reaction. Keywords: concrete pavement, dowelled slab, jointed concrete pavement, GFRP dowels, optimization, structural, design .
Residual Strength Prediction of Fuselage Structures with Multiple Site Damage
NASA Technical Reports Server (NTRS)
Chen, Chuin-Shan; Wawrzynek, Paul A.; Ingraffea, Anthony R.
1999-01-01
This paper summarizes recent results on simulating full-scale pressure tests of wide body, lap-jointed fuselage panels with multiple site damage (MSD). The crack tip opening angle (CTOA) fracture criterion and the FRANC3D/STAGS software program were used to analyze stable crack growth under conditions of general yielding. The link-up of multiple cracks and residual strength of damaged structures were predicted. Elastic-plastic finite element analysis based on the von Mises yield criterion and incremental flow theory with small strain assumption was used. A global-local modeling procedure was employed in the numerical analyses. Stress distributions from the numerical simulations are compared with strain gage measurements. Analysis results show that accurate representation of the load transfer through the rivets is crucial for the model to predict the stress distribution accurately. Predicted crack growth and residual strength are compared with test data. Observed and predicted results both indicate that the occurrence of small MSD cracks substantially reduces the residual strength. Modeling fatigue closure is essential to capture the fracture behavior during the early stable crack growth. Breakage of a tear strap can have a major influence on residual strength prediction.
A structural health monitoring fastener for tracking fatigue crack growth in bolted metallic joints
NASA Astrophysics Data System (ADS)
Rakow, Alexi Schroder
Fatigue cracks initiating at fastener hole locations in metallic components are among the most common form of airframe damage. The fastener hole site has been surveyed as the second leading initiation site for fatigue related accidents of fixed wing aircraft. Current methods for inspecting airframes for these cracks are manual, whereby inspectors rely on non-destructive inspection equipment or hand-held probes to scan over areas of a structure. Use of this equipment often demands disassembly of the vehicle to search appropriate hole locations for cracks, which elevates the complexity and cost of these maintenance inspections. Improved reliability, safety, and reduced cost of such maintenance can be realized by the permanent integration of sensors with a structure to detect this damage. Such an integrated system of sensors would form a structural health monitoring (SHM) system. In this study, an Additive, Interleaved, Multi-layer Electromagnetic (AIME) sensor was developed and integrated with the shank of a fastener to form a SHM Fastener, a new SHM technology targeted at detection of fastener hole cracks. The major advantages of the SHM Fastener are its installation, which does not require joint layer disassembly, its capability to detect inner layer cracks, and its capability to operate in a continuous autonomous mode. Two methods for fabricating the proposed SHM Fastener were studied. The first option consisted of a thin flexible printed circuit film that was bonded around a thin metallic sleeve placed around the fastener shank. The second option consisted of coating sensor materials directly to the shank of a part in an effort to increase the durability of the sensor under severe loading conditions. Both analytical and numerical models were developed to characterize the capability of the sensors and provide a design tool for the sensor layout. A diagnostic technique for crack growth monitoring was developed to complete the SHM system, which consists of the sensor, data acquisition hardware, algorithm, and diagnostic display. The AIME sensor design, SHM Fastener, and complete SHM system are presented along with experimental results from a series of single-layer and bolted double lap joint aluminum laboratory specimens to validate the capability of these sensors to monitor metallic joints for fastener hole cracks. Fatigue cracks were successfully tracked to over 0.7 inches from the fastener hole in these tests. Sensor output obtained from single-layer fatigue specimens was compared with analytical predictions for fatigue crack growth versus cycle number showing a good correlation in trend between sensor output and predicted crack size.
Design, Analysis and Testing of a PRSEUS Pressure Cube to Investigate Assembly Joints
NASA Technical Reports Server (NTRS)
Yovanof, Nicolette; Lovejoy, Andrew E.; Baraja, Jaime; Gould, Kevin
2012-01-01
Due to its potential to significantly increase fuel efficiency, the current focus of NASA's Environmentally Responsible Aviation Program is the hybrid wing body (HWB) aircraft. Due to the complex load condition that exists in HWB structure, as compared to traditional aircraft configurations, light-weight, cost-effective and manufacturable structural concepts are required to enable the HWB. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is one such structural concept. A building block approach for technology development of the PRSEUS concept is being conducted. As part of this approach, a PRSEUS pressure cube was developed as a risk reduction test article to examine a new integral cap joint concept. This paper describes the design, analysis and testing of the PRSEUS pressure cube test article. The pressure cube was required to withstand a 2P, 18.4 psi, overpressure load requirement. The pristine pressure cube was tested to 2.2P with no catastrophic failure. After the addition of barely visible impact damage, the cube was pressure loaded to 48 psi where catastrophic failure occurred, meeting the scale-up requirement. Comparison of pretest and posttest analyses with the cube test response agree well, and indicate that current analysis methods can be used to accurately analyze PRSEUS structure for initial failure response.
DOT National Transportation Integrated Search
2010-09-01
Most of the damage to concrete pavement results from poor drainage, which can lead to increased freeze-thaw damage, and when combined with heavy loading can contribute to cracking, spalling and surface damage that causes driver discomfort from increa...
Fatigue crack damage detection using subharmonic component with nonlinear boundary condition
NASA Astrophysics Data System (ADS)
Wu, Weiliang; Shen, Yanfeng; Qu, Wenzhong; Xiao, Li; Giurgiutiu, Victor
2015-03-01
In recent years, researchers have focused on structural health monitoring (SHM) and damage detection techniques using nonlinear vibration and nonlinear ultrasonic methods. Fatigue cracks may exhibit contact acoustic nonlinearity (CAN) with distinctive features such as superharmonics and subharmonics in the power spectrum of the sensing signals. However, challenges have been noticed in the practical applications of the harmonic methods. For instance, superharmonics can also be generated by the piezoelectric transducers and the electronic equipment; super/subharmonics may also stem from the nonlinear boundary conditions such as structural fixtures and joints. It is hard to tell whether the nonlinear features come from the structural damage or the intrinsic nonlinear boundary conditions. The objective of this paper is to demonstrate the application of nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as a single-degree-of-freedom (SDOF) system with non-classical hysteretic nonlinear interface forces at both sides of the crack surfaces. The threshold of subharmonic generation was studied, and the influence of crack interface parameters on the subharmonic resonance condition was investigated. The different threshold behaviors between the nonlinear boundary condition and the fatigue crack was found, which can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments of an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The fatigue damage was characterized in terms of a subharmonic damage index. The experimental results demonstrated that the subharmonic component of the sensing signal can be used to detect the fatigue crack and further distinguish it from inherent nonlinear boundary conditions.
Fatigue crack damage detection using subharmonic component with nonlinear boundary condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Weiliang, E-mail: wwl@whu.edu.cn; Qu, Wenzhong, E-mail: qwz@whu.edu.cn, E-mail: xiaoli6401@126.com; Xiao, Li, E-mail: qwz@whu.edu.cn, E-mail: xiaoli6401@126.com
In recent years, researchers have focused on structural health monitoring (SHM) and damage detection techniques using nonlinear vibration and nonlinear ultrasonic methods. Fatigue cracks may exhibit contact acoustic nonlinearity (CAN) with distinctive features such as superharmonics and subharmonics in the power spectrum of the sensing signals. However, challenges have been noticed in the practical applications of the harmonic methods. For instance, superharmonics can also be generated by the piezoelectric transducers and the electronic equipment; super/subharmonics may also stem from the nonlinear boundary conditions such as structural fixtures and joints. It is hard to tell whether the nonlinear features come frommore » the structural damage or the intrinsic nonlinear boundary conditions. The objective of this paper is to demonstrate the application of nonlinear ultrasonic subharmonic method for detecting fatigue cracks with nonlinear boundary conditions. The fatigue crack was qualitatively modeled as a single-degree-of-freedom (SDOF) system with non-classical hysteretic nonlinear interface forces at both sides of the crack surfaces. The threshold of subharmonic generation was studied, and the influence of crack interface parameters on the subharmonic resonance condition was investigated. The different threshold behaviors between the nonlinear boundary condition and the fatigue crack was found, which can be used to distinguish the source of nonlinear subharmonic features. To evaluate the proposed method, experiments of an aluminum plate with a fatigue crack were conducted to quantitatively verify the subharmonic resonance range. Two surface-bonded piezoelectric transducers were used to generate and receive ultrasonic wave signals. The fatigue damage was characterized in terms of a subharmonic damage index. The experimental results demonstrated that the subharmonic component of the sensing signal can be used to detect the fatigue crack and further distinguish it from inherent nonlinear boundary conditions.« less
Meredith, Dennis S; Losina, Elena; Neumann, Gesa; Yoshioka, Hiroshi; Lang, Philipp K; Katz, Jeffrey N
2009-10-29
In this cross-sectional study, we conducted a comprehensive assessment of all articular elements that could be measured using knee MRI. We assessed the association of pathological change in multiple articular structures involved in the pathoanatomy of osteoarthritis. Knee MRI scans from patients over 45 years old were assessed using a semi-quantitative knee MRI assessment form. The form included six distinct elements: cartilage, bone marrow lesions, osteophytes, subchondral sclerosis, joint effusion and synovitis. Each type of pathology was graded using an ordinal scale with a value of zero indicating no pathology and higher values indicating increasingly severe levels of pathology. The principal dependent variable for comparison was the mean cartilage disease score (CDS), which captured the aggregate extent of involvement of articular cartilage. The distribution of CDS was compared to the individual and cumulative distributions of each articular element using the Chi-squared test. The correlations between pathological change in the various articular structures were assessed in a Spearman correlation table. Data from 140 patients were available for review. The cohort had a median age of 61 years (range 45-89) and was 61% female. The cohort included a wide spectrum of OA severity. Our analysis showed a statistically significant trend towards pathological change involving more articular elements as CDS worsened (p-value for trend < 0.0001). Comparison of CDS to change in the severity of pathology of individual articular elements showed statistically significant trends towards more severe pathology as CDS worsened for osteophytes (p-value for trend < 0.0001), bone marrow lesions (p = 0.0003), and subchondral sclerosis (p = 0.009), but not joint effusion or synovitis. There was a moderate correlation between cartilage damage, osteophytes and BMLs as well as a moderate correlation between joint effusion and synovitis. However, cartilage damage and osteophytes were only weakly associated with synovitis or joint effusion. Our results support an inter-relationship of multiple articular elements in the pathoanatomy of knee OA. Prospective studies of OA pathogenesis in humans are needed to correlate these findings to clinically relevant outcomes such as pain and function.
Wireless structural monitoring for homeland security applications
NASA Astrophysics Data System (ADS)
Kiremidjian, Garo K.; Kiremidjian, Anne S.; Lynch, Jerome P.
2004-07-01
This paper addresses the development of a robust, low-cost, low power, and high performance autonomous wireless monitoring system for civil assets such as large facilities, new construction, bridges, dams, commercial buildings, etc. The role of the system is to identify the onset, development, location and severity of structural vulnerability and damage. The proposed system represents an enabling infrastructure for addressing structural vulnerabilities specifically associated with homeland security. The system concept is based on dense networks of "intelligent" wireless sensing units. The fundamental properties of a wireless sensing unit include: (a) interfaces to multiple sensors for measuring structural and environmental data (such as acceleration, displacements, pressure, strain, material degradation, temperature, gas agents, biological agents, humidity, corrosion, etc.); (b) processing of sensor data with embedded algorithms for assessing damage and environmental conditions; (c) peer-to-peer wireless communications for information exchange among units(thus enabling joint "intelligent" processing coordination) and storage of data and processed information in servers for information fusion; (d) ultra low power operation; (e) cost-effectiveness and compact size through the use of low-cost small-size off-the-shelf components. An integral component of the overall system concept is a decision support environment for interpretation and dissemination of information to various decision makers.
Gas-tungsten arc welding of aluminum alloys
Frye, Lowell D.
1984-01-01
A gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to provide a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surfaces are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy contiguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.
NASA Astrophysics Data System (ADS)
Kettermann, Michael; von Hagke, Christoph; Urai, Janos L.
2017-04-01
Dilatant faults often form in rocks containing pre-existing joints, but the effects of joints on fault segment linkage and fracture connectivity is not well understood. Studying evolution of dilatancy and influence of fractures on fault development provides insights into geometry of fault zones in brittle rocks and will eventually allow for predicting their subsurface appearance. In an earlier study we recognized the effect of different angles between strike direction of vertical joints and a basement fault on the geometry of a developing fault zone. We now systematically extend the results by varying geometric joint parameters such as joint spacing and vertical extent of the joints and measuring fracture density and connectivity. A reproducibility study shows a small error-range for the measurements, allowing for a confident use of the experimental setup. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. We varied the vertical extent of the joints from 5 to 50 mm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. A counterintuitive result is that joint depth is of only minor importance for the evolution of the fault zone. Even very shallow joints form weak areas at which the fault starts to form and propagate. More important is joint spacing. Very large joint spacing leads to faults and secondary fractures that form subparallel to the basement fault. In contrast, small joint spacing results in fault strands that only localize at the pre-existing joints, and secondary fractures that are oriented at high angles to the pre-existing joints. With this new set of experiments we can now quantitatively constrain how (i) the angle between joints and basement fault, (ii) the joint depth and (iii) the joint spacing affect fault zone parameters such as (1) the damage zone width, (2) the density of secondary fractures, (3) map-view area of open gaps or (4) the fracture connectivity. We apply these results to predict subsurface geometries of joint-fault networks in cohesive rocks, e.g. basaltic sequences in Iceland and sandstones in the Canyonlands NP, USA.
Effects of Welding Parameters on Mechanical Properties in Electron Beam Welded CuCrZr Alloy Plates
NASA Astrophysics Data System (ADS)
Jaypuria, Sanjib; Doshi, Nirav; Pratihar, Dilip Kumar
2018-03-01
CuCrZr alloys are attractive structural materials for plasma-facing components (PFC) and heat sink element in the International Thermonuclear Experimental Reactor (ITER) fusion reactors. This material has gained so much attention because of its high thermal conductivity and fracture toughness, high resistance to radiation damage and stability at elevated temperatures. The objective of this work is to study the effects of electron beam welding parameters on the mechanical strength of the butt welded CuCrZr joint. Taguchi method is used as the design of experiments to optimize the input parameters, such as accelerating voltage, beam current, welding speed, oscillation amplitude and frequency. The joint strength and ductility are the desired responses, which are measured through ultimate tensile strength and percent elongation, respectively. Accelerating voltage and welding speed are found to have significant influence on the strength. A combination of low amplitude and high-frequency oscillation is suggested for the higher joint strength and ductility. There is a close agreement between Taguchi predicted results and experimental ones. Fractographic analysis of joint and weld zone analysis are carried out to study the failure behaviour and microstructural variation in the weld zone, respectively.
Goetzen, Michael; Hofmann-Fliri, Ladina; Arens, Daniel; Zeiter, Stephan; Stadelmann, Vincent; Nehrbass, Dirk; Richards, R Geoff; Blauth, Michael
2015-01-01
Augmentation of implants with polymethylmethacrylate (PMMA) bone cement in osteoporotic fractures is a promising approach to increase implant purchase. Side effects of PMMA for the metaphyseal bone, particularly for the adjacent subchondral bone plate and joint cartilage, have not yet been studied. The following experimental study investigates whether subchondral PMMA injection compromises the homeostasis of the subchondral bone and/or the joint cartilage.Ten mature sheep were used to simulate subchondral PMMA injection. Follow-ups of 2 (4 animals) and 4 (6 animals) months were chosen to investigate possible cartilage damage and subchondral plate alterations in the knee. Evaluation was completed by means of high-resolution peripheral quantitative computed tomography (HRpQCT) imaging, histopathological osteoarthritis scoring, and determination of glycosaminoglycan content in the joint cartilage. Results were compared with the untreated contralateral knee and statistically analyzed using nonparametric tests.Evaluation of the histological osteoarthritis score revealed no obvious cartilage damage for the treated knee; median histological score after 2 months 0 (range 4), after 4 months 1 (range 5). There was no significant difference when compared with the untreated control site after 2 and 4 months (P = 0.23 and 0.76, respectively). HRpQCT imaging showed no damage to the metaphyseal trabeculae. Glycosaminoglycan measurements of the treated joint cartilage after 4 months revealed no significant difference compared with the untreated cartilage (P = 0.24).The findings of this study support initial clinical observation that PMMA implant augmentation of metaphyseal fractures appears to be a safe procedure for fixation without harming the subchondral bone plate and adjacent joint cartilage.
Comparative Study of 3-Dimensional Woven Joint Architectures for Composite Spacecraft Structures
NASA Technical Reports Server (NTRS)
Jones, Justin S.; Polis, Daniel L.; Segal, Kenneth N.
2011-01-01
The National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate initiated an Advanced Composite Technology (ACT) Project through the Exploration Technology Development Program in order to support the polymer composite needs for future heavy lift launch architectures. As an example, the large composite structural applications on Ares V inspired the evaluation of advanced joining technologies, specifically 3D woven composite joints, which could be applied to traditionally manufactured barrel segments. Implementation of these 3D woven joint technologies may offer enhancements in damage tolerance without sacrificing weight. However, baseline mechanical performance data is needed to properly analyze the joint stresses and subsequently design/down-select a preform architecture. Six different configurations were designed and prepared for this study; each consisting of a different combination of warp/fill fiber volume ratio and preform interlocking method (z-fiber, fully interlocked, or hybrid). Tensile testing was performed for this study with the enhancement of a dual camera Digital Image Correlation (DIC) system which provides the capability to measure full-field strains and three dimensional displacements of objects under load. As expected, the ratio of warp/fill fiber has a direct influence on strength and modulus, with higher values measured in the direction of higher fiber volume bias. When comparing the z-fiber weave to a fully interlocked weave with comparable fiber bias, the z-fiber weave demonstrated the best performance in two different comparisons. We report the measured tensile strengths and moduli for test coupons from the 6 different weave configurations under study.
Does a not-so-recent ankle sprain influence interjoint coordination during walking?
Dedieu, Philippe; Chamoun, Rima; Lacaud, Guilhaume; Moulinat, Thibault; Queron, Maxime; Zanone, Pier-Giorgio
2017-12-01
Ankle sprains are common joint injuries in daily and sports activities, whose underlying mechanisms have been amply studied. If joint structures are directly damaged, neuromuscular activity can be affected, particularly in the time domain. This study aims to establish whether previous ankle injury correlates with changes in the inter-joint synergy of the entire lower limb and in the muscle activity pattern during walking. Three-dimensional walking-gait analysis was conducted on twenty-four adults. Ten of them had never suffered from ankle sprain; fourteen had suffered from ankle sprain at least once during the three preceding years. Continuous Relative Phase (CRP) between the moving limbs assessed inter-joint coordination, and muscular activity was recorded by EMG. CRP between ankle and knee and between ankle and hip indicates that both joints moved in tight synchronization in the same direction on the injured side, whereas there was a time lag between joints on the healthy side for each sprained participants or on both side for the control group. Start-time and/or duration of muscular activity of tibialis anterior, soleus and peroneus longus occurred earlier and were longer on the injured side, respectively. Our findings suggest that ankle sprain modifies inter-joint coordination and muscular activity of the injured limb, inducing not an entirely new pattern of coordination but an alteration of the existing pattern. CRP revealed slight modifications in the extant inter-joint coordination which may not be captured by other kinematic variables, which opens perspectives on therapy and relapse prevention. Copyright © 2017 Elsevier Ltd. All rights reserved.
Saltzherr, Michael S; Coert, J Henk; Selles, Ruud W; van Neck, Johan W; Jaquet, Jean-Bart; van Osch, Gerjo J V M; Oei, Edwin H G; Luime, Jolanda J; Muradin, Galied S R
2017-03-14
Magnetic resonance imaging (MRI) is increasingly used for research in hand osteoarthritis, but imaging the thin cartilage layers in the hand joints remains challenging. We therefore assessed the accuracy of MRI in detecting cartilage loss in patients with symptomatic osteoarthritis of the first carpometacarpal (CMC1) joint. Twelve patients scheduled for trapeziectomy to treat severe symptomatic osteoarthritis of the CMC1 joint underwent a preoperative high resolution 3D spoiled gradient (SPGR) MRI scan. Subsequently, the resected trapezium was evaluated histologically. The sections were scored for cartilage damage severity (Osteoarthritis Research Society International (OARSI) score), and extent of damage (percentage surface area). Each MRI scan was scored for the area of normal cartilage, partial cartilage loss and full cartilage loss. The percentages of the total surface area with any cartilage loss and full-thickness cartilage loss were calculated using MRI and histological evaluation. MRI and histological evaluation both identified large areas of overall cartilage loss. The median (IQR) surface area of any cartilage loss on MRI was 98% (82-100%), and on histological assessment 96% (87-98%). However, MRI underestimated the extent of full-thickness cartilage loss. The median (IQR) surface area of full-thickness cartilage loss on MRI was 43% (22-70%), and on histological evaluation 79% (67-85%). The difference was caused by a thin layer of high signal on the articulating surface, which was interpreted as damaged cartilage on MRI but which was not identified on histological evaluation. Three-dimensional SPGR MRI of the CMC1 joint demonstrates overall cartilage damage, but underestimates full-thickness cartilage loss in patients with advanced osteoarthritis.
Hip Replacement: MedlinePlus Health Topic
... damage. The most common cause of damage is osteoarthritis . Osteoarthritis causes pain, swelling, and reduced motion in your ... Food and Drug Administration) Genetics Genetics Home Reference: osteoarthritis (National Library of Medicine) Images Hip joint replacement - ...
Wang, Dan Min; Lin, Ling; Peng, Jian Hua; Gong, Yao; Hou, Zhi Duo; Chen, Su Biao; Xiao, Zheng Yu
2018-06-08
The pathogenesis of sacroiliitis is unclear; therefore, we aimed to systematically study the immunopathology of sacroiliitis in patients with axial spondyloarthritis (axSpA), and explore the relationship between pannus formation, inflammation, and the structural damage caused by sacroiliitis. Fine needle aspiration biopsy of the sacroiliac joint (SIJ) was performed in 193 patients with axSpA. Clinical, laboratory, and imaging data were collected at baseline and during the follow up. Immunohistochemistry analysis was performed to detect CD34+ microvessels, CD68+ osteoclasts/macrophages, vascular endothelial growth factor (VEGF), metalloproteinase-3 (MMP-3), tumor necrosis factor-α (TNF-α), and caspase-3. Autopsy subjects were used as controls. In early sacroiliitis (grade 0-1) all pathological features could be observed, with the most common being subchondral pannus formation. Among the 193 patients, 98 were followed up for 1-13 years (mean 3.6 years); 63.3% had radiological progression at the endpoint. Multiple regression analysis showed that cartilage pannus invasion (OR 2.99, P = 0.010) and endochondral ossification (OR 3.97, P = 0.049) at baseline were risk factors for radiological structural damage. Compared to SIJ controls, the subchondral microvessel density, number of CD68+ multinuclear osteoclasts, and the levels of VEGF, caspase-3, MMP-3, and TNF-α expressed at the interface of the bone and cartilage were significantly higher in patients with sacroiliitis. Subchondral fibrovascular tissue formation is the most important pathological feature in early sacroiliitis. The existence of cartilage pannus invasion or endochondral ossification at baseline can predict radiological structural damage during the follow up.
Lowe, Jason A; Routh, Lucas K; Leary, Jeffrey T; Buzhardt, Paul C
2016-01-01
Recent published data have suggested successful union of subtalar and tibiotalar joints without formal debridement during tibiotalocalcaneal (TTC) fusion procedures. Although previous studies have reported on the importance of the proper guidewire starting point and trajectory to obtain appropriate hindfoot alignment for successful fusion, to our knowledge, no studies have quantified the amount of articular damage to the subtalar joint with retrograde reaming. We hypothesized that reaming would destroy >50% of the posterior facet of the subtalar joint. The bilateral lower extremities of 5 cadavers were obtained and the subtalar joints exposed. Retrograde TTC nail guidewires were inserted, and a 12-mm reamer was passed through the subtalar and ankle joints. Pre- and postreaming images of the subtalar joint were obtained to compare the amount of joint destruction after reaming. We found an average of 5.89% articular destruction of the talar posterior facet and an average of 4.01% articular destruction of the posterior facet of the calcaneus. No damage to the middle facets of the subtalar joint was observed. TTC nailing is a successful procedure for ankle and subtalar joint fusion. Published studies have reported successful subtalar union using TTC nailing without formal open debridement of the subtalar joint, preserving the soft tissue envelope. TTC nail insertion using a 12-mm reamer will destroy 5.89% and 4.01% of the respective talar and calcaneal posterior facets of the subtalar joint. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Kiapour, Ata M.; Fleming, Braden C.; Murray, Martha M.
2017-01-01
Background: Abnormal joint motion has been linked to joint arthrosis after anterior cruciate ligament (ACL) reconstruction. However, the relationships between the graft properties (ie, structural and anatomic) and extent of posttraumatic osteoarthritis are not well defined. Hypotheses: (1) The structural (tensile) and anatomic (area and alignment) properties of the reconstructed graft or repaired ACL correlate with the total cartilage lesion area 1 year after ACL surgery, and (2) side-to-side differences in anterior-posterior (AP) knee laxity correlate with the total cartilage lesion area 1 year postoperatively. Study Design: Controlled laboratory study. Methods: Sixteen minipigs underwent unilateral ACL transection and were randomly treated with ACL reconstruction or bridge-enhanced ACL repair. The tensile properties, cross-sectional area, and multiplanar alignment of the healing ACL or graft, AP knee laxity, and cartilage lesion areas were assessed 1 year after surgery. Results: In the reconstructed group, the normalized graft yield and maximum failure loads, cross-sectional area, sagittal and coronal elevation angles, and side-to-side differences in AP knee laxity at 60° of flexion were associated with the total cartilage lesion area 1 year after surgery (R 2 > 0.5, P < .04). In the repaired group, normalized ACL yield load, linear stiffness, cross-sectional area, and the sagittal and coronal elevation angles were associated with the total cartilage lesion area (R 2 > 0.5, P < .05). Smaller cartilage lesion areas were observed in the surgically treated knees when the structural and anatomic properties of the ligament or graft and AP laxity values were closer to those of the contralateral ACL-intact knee. Reconstructed grafts had a significantly larger normalized cross-sectional area and sagittal elevation angle (more vertical) when compared with repaired ACLs (P < .02). Conclusion: The tensile properties, cross-sectional area, and multiplanar alignment of the healing ACLs or grafts and AP knee laxity in reconstructed knees were associated with the extent of tibiofemoral cartilage damage after ACL surgery. Clinical Relevance: These data highlight the need for novel ACL injury treatments that can restore the structural and anatomic properties of the torn ACL to those of the native ACL in an effort to minimize the risk of early-onset posttraumatic osteoarthritis. PMID:28875154
Caballero, Alberto; Barrios, Carlos; Burgos, Jesús; Hevia, Eduardo; Correa, Carlos
2011-08-01
This experimental study in pigs was aimed at evaluating spinal growth disorders after partial arrest of the vertebral epiphyseal plates (EP) and neurocentral cartilages (NCC). Unilateral and multisegmental single or combined lesions of the physeal structures were performed by electrocoagulation throughout a video-assisted thoracoscopical approach. Thirty 4-week-old domestic pigs (mean weight 16 kg) were included in the experiments. The superior and inferior epiphyseal plates of T5 to T9 vertebra were damaged in ten animals by hemicircumferential electrocoagulation (group I). In other ten pigs (group II), right NCC at the same T5-T9 levels were damaged. Ten other animals underwent combined lesions of the ipsilateral hemiepiphyseal plates and NCC at the T5-T9 levels. A total of 26 animals could be evaluated after 12 weeks of follow-up using conventional X-rays, CT scans and histology. The pigs with hemicircumferential EP damage developed very slight concave non-structured scoliotic deformities without vertebral rotation.(mean 12° Cobb; range10-16°). Some of the damaged vertebra showed a marked wedgening with unilateral development alteration of the vertebral body, including the adjacent discs The animals with damage of the NCC developed mild scoliotic curves (mean 19° Cobb; range 16-24°) with convexity opposite to the damaged side and loss of physiological kyphosis. The injured segments showed an asymmetric growth with hypoplasia of the pedicle and costovertebral joints at the damaged side. The pigs undergoing combined EP and NCC lesions developed minimal non-structured curves, ranging from 10 to 12° Cobb. In these animals there was a lack of growth of a vertebral hemibody and disc hypoplasia at the damaged segments. Both damage of the NCC and the EP affect the height of the vertebral body. No spinal stenosis was found in any case. In most cases, the adjacent superior and inferior vertebral EP to damaged segments had a compensatory growth that maintained the straight spinal shape. In summary, unilateral direct lesion of the EP by hemicircumferential thoracoscopic electrocoagulation modifies vertebral growth, but is not able to induce true scoliostic curves in pigs. Only animals with damaged NCC developed mild scoliotic curves of lordotic type. This work rediscovers and emphasizes the decisive role of the neurocentral cartilage in the ethiopatogeny of idiopathic scoliosis.
Silva Rodrigues, João Francisco; Silva E Silva, Cristiane; França Muniz, Thayanne; de Aquino, Alana Fernanda; Neuza da Silva Nina, Larissa; Fialho Sousa, Nagila Caroline; Nascimento da Silva, Luis Claudio; de Souza, Breno Glaessner Gomes Fernandes; da Penha, Tatiana Aranha; Abreu-Silva, Ana Lúcia; de Sá, Joicy Cortez; Soares Fernandes, Elizabeth; Grisotto, Marcos Augusto Grigolin
2018-04-24
Rheumatoid arthritis (RA) is characterized by inflammation of one or more joints, and affects ~1% of the adult population worldwide. Sulforaphane (SFN) is a natural compound that has been suggested as an antioxidant. Here, SFN’s effects were evaluated in a murine mono-arthritis model. Mono-arthritis was induced in mice by a single intra-articular injection of Complete Freund’s Adjuvant (CFA-10 µg/joint, in 10 µL) into the ipsilateral joint. The contralateral joint received an equal volume of PBS. On the 4th day post-joint inflammation induction, animals received either SFN (10 mg/kg) or vehicle (3% DMSO in saline), intraperitoneally (i.p.), twice a day for 3 days. Joint swelling and secondary mechanical allodynia and hyperalgesia were evaluated over 7 days post-CFA. After this period, animals were culled and their blood and synovial fluid samples were collected for analysis of cell populations, cytokine release and thioredoxin reductase (TrxR) activity. Knee joint samples were also collected for histology. SFN reduced joint swelling and damage whilst increasing the recruitment of Ly6C⁺ and Ly6G⁺ cells to CFA-injected joints. SFN-treated animals presented down-regulation of CD11b and CD62L on synovial fluid Ly6G⁺ cells. Synovial fluid samples obtained from CFA-injected joints and plasma samples of SFN-treated mice presented higher levels of IL-6 and increased activity of TrxR, in comparison with controls. These results indicate that SFN reduces knee joint damage by modulating cell activation/migration to the joints, cytokine production and increasing the activity of TrxR, and therefore, may represent an alternative treatment to joint inflammation.
Modeling and testing miniature torsion specimens for SiC joining development studies for fusion
Henager, Jr., C. H.; Nguyen, Ba N.; Kurtz, Richard J.; ...
2015-08-05
The international fusion community has designed a miniature torsion specimen for neutron irradiation studies of joined SiC and SiC/SiC composite materials. For this research, miniature torsion joints based on this specimen design were fabricated using displacement reactions between Si and TiC to produce Ti 3SiC 2 + SiC joints with SiC and tested in torsion-shear prior to and after neutron irradiation. However, many miniature torsion specimens fail out-of-plane within the SiC specimen body, which makes it problematic to assign a shear strength value to the joints and makes it difficult to compare unirradiated and irradiated strengths to determine irradiation effects.more » Finite element elastic damage and elastic–plastic damage models of miniature torsion joints are developed that indicate shear fracture is more likely to occur within the body of the joined sample and cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model results are compared and discussed with regard to unirradiated and irradiated test data for a variety of joint materials. The unirradiated data includes Ti 3SiC 2 + SiC/CVD-SiC joints with tailored joint moduli, and includes steel/epoxy and CVD-SiC/epoxy joints. Finally, the implications for joint data based on this sample design are discussed.« less
Kang, Kwi Young; Woo, Jung-Won; Park, Sung-Hwan
2014-01-01
S100A8 and S100A9 are major leukocyte proteins, known as damage-associated molecular patterns, found at high concentrations in the synovial fluid of patients with rheumatoid arthritis (RA). A heterodimeric complex of S100A8/A9 is secreted by activated leukocytes and binds to Toll-like receptor 4, which mediates downstream signaling and promotes inflammation and autoimmunity. Serum and synovial fluid levels of S100A8/A9 are markedly higher in patients with RA than in patients with osteoarthritis or miscellaneous inflammatory arthritis. Serum levels of S100A8/A9 are significantly correlated with clinical and laboratory markers of inflammation, such as C-reactive protein, erythrocyte sedimentation rate, rheumatoid factor, and the Disease Activity Score for 28 joints. Significant correlations have also been found between S100A8/A9 and radiographic and clinical assessments of joint damage, such as hand radiographs and the Rheumatoid Arthritis Articular Damage score. In addition, among known inflammatory markers, S100A8/A9 has the strongest correlation with total sum scores of ultrasonography assessment. Furthermore, baseline levels of S100A8/A9 are independently associated with progression of joint destruction in longitudinal studies and are responsive to change during conventional and biologic treatments. These findings suggest S100A8/A9 to be a valuable diagnostic and prognostic biomarker for RA.
NASA Technical Reports Server (NTRS)
Wilkinson, J. P.
1990-01-01
The performance of the thermal protection system, field joint protection system, and systems tunnel components of Flight Set 360L006, are documented, as evaluated by postflight hardware inspection. The condition of both motors was similar to previous flights. Sixteen aft edge hits were noted on the ground environment instrumentation thermal protection system. Each hit left a clean substrate, indicating that the damage was caused by nozzle severance debris and/or water impact. No National Space and Transporation System debris criteria for missing thermal protection system were violated. One 5.0 by 1.0 in. unbond was observed on the left hand center field joint K5NA closeout and was elevated to an in-flight anomaly (STS-34-M-4) by the NASA Ice/Debris team. Aft edge damage to the K5NA and an associated black streak indicate that burning debris from the nozzle severance system was the likely cause of the damage. Minor divots caused by debris were seen on previous flights, but this is the first occurrence of a K5NA unbond. Since the unbond occurred after booster separation there is no impact on flight safety and no corrective actions was taken. The right hand center field joint primary heater failed the dielectric withstanding voltage test after joint closeout. The heater was then disabled by opening the circuit breaker, and the redundant heater was used. The redundant heater performed nominally during the launch countdown. A similar condition occurred on Flight 4 when a secondary joint heater failed the dielectric withstanding voltage test.
Fukae, Jun; Kon, Yujiro; Henmi, Mihoko; Sakamoto, Fumihiko; Narita, Akihiro; Shimizu, Masato; Tanimura, Kazuhide; Matsuhashi, Megumi; Kamishima, Tamotsu; Atsumi, Tatsuya; Koike, Takao
2010-05-01
To investigate the relationship between synovial vascularity assessed by quantitative power Doppler sonography (PDS) and progression of structural bone damage in a single finger joint in patients with rheumatoid arthritis (RA). We studied 190 metacarpophalangeal (MCP) joints and 190 proximal interphalangeal (PIP) joints of 19 patients with active RA who had initial treatment with disease-modifying antirheumatic drugs (DMARDs). Patients were examined by clinical and laboratory assessments throughout the study. Hand and foot radiography was performed at baseline and the twentieth week. Magnetic resonance imaging (MRI) was performed at baseline. PDS was performed at baseline and the eighth week. Synovial vascularity was evaluated according to both quantitative and semiquantitative methods. Quantitative PDS was significantly correlated with the enhancement rate of MRI in each single finger joint. Comparing quantitative synovial vascularity and radiographic change in single MCP or PIP joints, the level of vascularity at baseline showed a significant positive correlation with radiographic progression at the twentieth week. The change of vascularity in response to DMARDs, defined as the percentage change in vascularity by the eighth week from baseline, was inversely correlated with radiographic progression in each MCP joint. The quantitative PDS method was more useful than the semiquantitative method for the evaluation of synovial vascularity in a single finger joint. The change of synovial vascularity in a single finger joint determined by quantitative PDS could numerically predict its radiographic progression. Using vascularity as a guide to consider a therapeutic approach would have benefits for patients with active RA.
Crema, M D; Guermazi, A; Sayre, E C; Roemer, F W; Wong, H; Thorne, A; Singer, J; Esdaile, J M; Marra, M D; Kopec, J A; Nicolaou, S; Cibere, J
2011-12-01
Osteoarthritis (OA) is the most common arthropathy of the knee joint(1). Symptoms reported by patients and signs noted during physical examination guide clinicians in identifying subjects with knee OA(2-4). Pain is one of the most important symptoms reported by subjects with knee OA(2,3). Although very common, pain is a non-specific symptom, related to pathology in several structures within the knee joint, and includes synovitis(5), subchondral bone marrow lesions(6), and joint effusion(7). Further, pain is a subjective symptom that cannot be directly measured or assessed during physical examination. Crepitus or crepitation in association with arthritis is defined as a crackling or grinding sound on joint movement with a sensation in the joint. Crepitus may occur with or without pain and is a common finding during physical examination in subjects with knee OA(2-4,8,9). It is not known whether crepitus is related to pathology in various structures within the knee. The aim of our study was to determine the cross-sectional associations of structural pathologies within the knee with crepitus in a population-based cohort with knee pain, using magnetic resonance imaging (MRI). Subjects with knee pain were recruited as a random population sample, with crepitus assessed in each compartment of the knee using a validated and standardized approach during physical examination(10). MRI of the knee was performed to assess cartilage morphology, meniscal morphology, osteophytes, cruciate ligaments, and collateral ligaments. For both compartment-specific and whole-knee analyses, a multiple logistic regression analysis was performed to assess the associations of MRI-detected structural pathology with crepitus, adjusting for potential confounders. Variables were selected by backwards elimination within each compartment and in the overall knee models, and only statistically significant variables remained in the "selected" models; remaining variables in these models are adjusted for each other. An increased risk for compartment-specific crepitus was associated with osteophytes at the patellofemoral (PF) and lateral tibiofemoral (LTF) joints. Crepitus was associated with osteophytes and medial collateral ligament (MCL) pathology at the medial tibiofemoral (MTF) compartment, but cartilage damage was negatively associated with crepitus at this compartment. In the selected whole-knee model, only meniscal tears were associated with an increased risk for general crepitus. Thus, it seems that crepitus may be associated with pathology in several internal structures. Copyright © 2011 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Experimental investigation of reinforced bonded joints for composite laminates.
Bisagni, Chiara; Furfari, Domenico; Pacchione, Marco
2018-02-01
An experimental study has been carried out to investigate the behaviour of co-bonded carbon fibre reinforced plastics joints with a novel design incorporating a through the thickness local reinforcement. Different specimens were manufactured to investigate static and fatigue behaviour, as well as delamination size after impact and damage tolerance characteristics. The mechanical performances of the specimens with local reinforcement, consisting of the insertion of spiked thin metal sheets between co-bonded laminates, were compared with those ones obtained from specimens with purely co-bonded joints. This novel design demonstrated by tests that damage progression under cycling load results significantly delayed by the reinforcements. A significant number of experimental results were obtained that can be used to define preliminary design guidelines.
Experimental investigation of reinforced bonded joints for composite laminates
Bisagni, Chiara; Furfari, Domenico; Pacchione, Marco
2017-01-01
An experimental study has been carried out to investigate the behaviour of co-bonded carbon fibre reinforced plastics joints with a novel design incorporating a through the thickness local reinforcement. Different specimens were manufactured to investigate static and fatigue behaviour, as well as delamination size after impact and damage tolerance characteristics. The mechanical performances of the specimens with local reinforcement, consisting of the insertion of spiked thin metal sheets between co-bonded laminates, were compared with those ones obtained from specimens with purely co-bonded joints. This novel design demonstrated by tests that damage progression under cycling load results significantly delayed by the reinforcements. A significant number of experimental results were obtained that can be used to define preliminary design guidelines. PMID:29568127
Treatment of glenohumeral instability in rugby players.
Funk, Lennard
2016-02-01
Rugby is a high-impact collision sport, with impact forces. Shoulder injuries are common and result in the longest time off sport for any joint injury in rugby. The most common injuries are to the glenohumeral joint with varying degrees of instability. The degree of instability can guide management. The three main types of instability presentations are: (1) frank dislocation, (2) subluxations and (3) subclinical instability with pain and clicking. Understanding the exact mechanism of injury can guide diagnosis with classical patterns of structural injuries. The standard clinical examination in a large, muscular athlete may be normal, so specific tests and techniques are needed to unearth signs of pathology. Taking these factors into consideration, along with the imaging, allows a treatment strategy. However, patient and sport factors need to be also considered, particularly the time of the season and stage of sporting career. Surgery to repair the structural damage should include all lesions found. In chronic, recurrent dislocations with major structural lesions, reconstruction procedures such as the Latarjet procedure yields better outcomes. Rehabilitation should be safe, goal-driven and athlete-specific. Return to sport is dependent on a number of factors, driven by the healing process, sport requirements and extrinsic pressures. Level of evidence V.
Recent advances in aerospace composite NDE
NASA Astrophysics Data System (ADS)
Georgeson, Gary E.
2002-06-01
As the aerospace industry continues to advance the design and use of composite structure, the NDE community faces the difficulties of trying to keep up. The challenges lie in manufacturing evaluation of the newest aerospace structures and materials and the in-service inspection and monitoring of damaged or aging composites. This paper provides examples of several promising NDI applications in the world of aerospace composites. Airborne (or non-contact) Ultrasonic Testing (UT) has been available for decades, but recently has generated new interest due to significant improvements in transducer design and low noise electronics. Boeing is developing inspection techniques for composite joints and core blankets using this technology. In-service inspection techniques for thick, multi-layer structures are also being advanced. One effective technique integrates the S-9 Sondicator, a traditional bond testing device, with Boeing's Mobile Automated Scanner (MAUS) platform. Composite patches have seen limited use on-aircraft, due, in part, to the difficulty of determining the quality of a bonded joint. A unique approach using Electronic Speckle Pattern Interferometry (ESPI) is showing promise as a bonded patch-inspection method. Other NDI techniques currently being developed for aerospace application are also briefly discussed.
Latent Hardeners for the Assembly of Epoxy Composites
NASA Technical Reports Server (NTRS)
Palmieri, Frank; Wohl, Christopher J.; Connell, John W.; Mercado, Zoar; Galloway, Jordan
2016-01-01
Large-scale composite structures are commonly joined by secondary bonding of molded-and-cured thermoset components. This approach may result in unpredictable joint strengths. In contrast, assemblies made by co-curing, although limited in size by the mold, result in stable structures, and are certifiable for commercial aviation because of structural continuity through the joints. Multifunctional epoxy resins were prepared that should produce fully-cured subcomponents with uncured joining surfaces, enabling them to be assembled by co-curing in a subsequent out-of-autoclave process. Aromatic diamines were protected by condensation with a ketone or aldehyde to form imines. Properties of the amine-cured epoxy were compared with those of commercially available thermosetting epoxy resins and rheology and thermal analysis were used to demonstrate the efficacy of imine protection. Optimum conditions to reverse the protecting chemistry in the solid state using moisture and acid catalysis were determined. Alternative chemistries were also investigated. For example, chain reaction depolymerization and photoinitiated catalysts would be expected to minimize liberation of volatile organic content upon deprotection and avoid residual reactive species that could damage the resin. Results from the analysis of protected and deprotected resins will be presented.
Posterior Branches of Lumbar Spinal Nerves - Part I: Anatomy and Functional Importance.
Kozera, Katarzyna; Ciszek, Bogdan
2016-01-01
The aim of this paper is to compare anatomic descriptions of posterior branches of the lumbar spinal nerves and, on this basis, present the location of these structures. The majority of anatomy textbooks do not describe these nerves in detail, which may be attributable to the fact that for many years they were regarded as structures of minor clinical importance. The state of knowledge on these nerves has changed within the last 30 years. Attention has been turned to their function and importance for both diagnostic practice and therapy of lower back pain. Summarising the available literature, we may conclude that the medial and lateral branches separate at the junction of the facet joint and the distal upper edge of the transverse process; that the size, course and area supplied differ between the lateral and the medial branch; and that facet joints receive multisegmental innervation. It has been demonstrated that medial branches are smaller than the respective lateral branches and they have a more constant course. Medial branches supply the area from the midline to the facet joint line, while lateral branches innervate tissues lateral to the facet joint. The literature indicates difficulties with determining specific anatomic landmarks relative to which the lateral branch and the distal medial branch can be precisely located. Irritation of sensory fibres within posterior branches of the lumbar spinal nerves may be caused by pathology of facet joints, deformity of the spine or abnormalities due to overloading or injury. The anatomic location and course of posterior branches of spinal nerves should be borne in mind to prevent damaging them during low-invasive analgesic procedures.
Eschler, Anica; Rösler, Klaus; Rotter, Robert; Gradl, Georg; Mittlmeier, Thomas; Gierer, Philip
2014-09-01
The classification system of Rockwood and Young is a commonly used classification for acromioclavicular joint separations subdividing types I-VI. This classification hypothesizes specific lesions to anatomical structures (acromioclavicular and coracoclavicular ligaments, capsule, attached muscles) leading to the injury. In recent literature, our understanding for anatomical correlates leading to the radiological-based Rockwood classification is questioned. The goal of this experimental-based investigation was to approve the correlation between the anatomical injury pattern and the Rockwood classification. In four human cadavers (seven shoulders), the acromioclavicular and coracoclavicular ligaments were transected stepwise. Radiological correlates were recorded (Zanca view) with 15-kg longitudinal tension applied at the wrist. The resulting acromio- and coracoclavicular distances were measured. Radiographs after acromioclavicular ligament transection showed joint space enlargement (8.6 ± 0.3 vs. 3.1 ± 0.5 mm, p < 0.05) and no significant change in coracoclavicular distance (10.4 ± 0.9 vs. 10.0 ± 0.8 mm). According to the Rockwood classification only type I and II lesions occurred. After additional coracoclavicular ligament cut, the acromioclavicular joint space width increased to 16.7 ± 2.7 vs. 8.6 ± 0.3 mm, p < 0.05. The mean coracoclavicular distance increased to 20.6 ± 2.1 mm resulting in type III-V lesions concerning the Rockwood classification. Trauma with intact coracoclavicular ligaments did not result in acromioclavicular joint lesions higher than Rockwood type I and II. The clinical consequence for reconstruction of low-grade injuries might be a solely surgical approach for the acromioclavicular ligaments or conservative treatment. High-grade injuries were always based on additional structural damage to the coracoclavicular ligaments. Rockwood type V lesions occurred while muscle attachments were intact.
30 CFR 220.011 - Schedule of allowable direct and allocable joint costs and credits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... household applicances, and purchases of insurance against damages to or loss of personal property are... approval. (h) Damages and losses to NPSL property. All costs necessary for the repair or replacement of NPSL property made necessary because of damages or losses incurred by fire, flood, storm, theft...
Demonstrating damage tolerance of composite airframes
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr.
1993-01-01
Commercial transport aircraft operating in the United States are certified by the Federal Aviation Authority to be damage tolerant. On 28 April 1988, Aloha Airlines Flight 243, a Boeing 727-200 airplane, suffered an explosive decompression of the fuselage but landed safely. This event provides very strong justification for the damage tolerant design criteria. The likely cause of the explosive decompression was the linkup of numerous small fatigue cracks that initiated at adjacent fastener holes in the lap splice joint at the side of the body. Actually, the design should have limited the damage size to less than two frame spacings (about 40 inches), but this type of 'multi-site damage' was not originally taken into account. This cracking pattern developed only in the high-time airplanes (many flights). After discovery in the fleet, a stringent inspection program using eddy current techniques was inaugurated to discover these cracks before they linked up. Because of concerns about safety and the maintenance burden, the lap-splice joints of these high-time airplanes are being modified to remove cracks and prevent new cracking; newer designs account for 'multi-site damage'.
Laser Brazing of High Temperature Braze Alloy
NASA Technical Reports Server (NTRS)
Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.
2000-01-01
The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of the braze materials and tube substrate. Metallography of the laser braze joint was compared to the furnace braze. SEM Energy Disperse X-Ray Spectra (EDX) and back scattered imaging were used to analyze braze alloy segregation. Although all of the laser systems, CO2, ND:YAG, and direct diode laser produced good braze joint, the direct diode laser was selected for its system simplicity, compactness and portability. Excellent laser and braze alloy coupling is observed with powder alloy compared to braze alloy wire. Good wetting is found with different gold based braze alloys. The laser brazing process can be optimized so that the adverse affect on the parent materials can be eliminated. Metallography of the laser braze joint has shown that quality braze joint was produced with laser brazing process. Penetration of the laser braze to the substrate is at neglectable level. Zero penetration is observed. Microstructure examinations shown that no observable changes of the microstructure (grain structure and precipitation) in the HAZ area between laser braze and furnace braze. Wide gaps can be laser brazed with single pass for up to 0.024 inches. Finer dendritic structure is observed in laser brazing compared with equiaxial and coarser grain of the furnace brazing microstructure. Greater segregation is also found in the furnace braze. Higher hardness of the laser braze joint comparing to furnace braze is observed due to the fast cooling rate and Finer microstructure in the laser brazing. Laser braze joint properties meet or exceed the furnace joint properties. Direct diode laser for thin section tube brazing with high temperature braze alloys have been successfully demonstrated. The laser's high energy density and precise control has shown significant advantages in reducing process heat input to the substrates and provide high quality braze joints comparing to other localized braze process such as torch, TIG, and MPTA processes. Significant cost savings can be realized particularly with localized braze comparing to a full furnace braze cycle.
Exercise may decrease further destruction in the adult haemophilic joint.
Harris, S; Boggio, L N
2006-05-01
The effect of exercise on adult haemophilic joints was investigated. Forty-six subjects with existing joint disease were evaluated and range of motion (ROM) in joints was measured. The effect of exercise of large joint ROM in haemophilia was evaluated by comparing the ranges of motion in subjects who exercised at least three times weekly against those subjects who did not exercise. The exercise group showed improvement in the majority of joint ranges of motion compared with the non-exercise group (P = 0.003). Thus regular exercise may help reduce further destruction in haemophilic joints by strengthening muscle ligaments and tendons surrounding the joint thereby protecting them from damage caused by recurrent haemarthrotic events.
NASA Astrophysics Data System (ADS)
Tolga Çöğürcü, M.
2015-01-01
Turkey is situated in a very active earthquake region. In the last century, several earthquakes resulted in thousands of deaths and enormous economic losses. In 1999, the Marmara earthquake had an approximate death toll of more than 20 000, and in 2011, the Van earthquake killed 604 people. In general, Turkish residential buildings have reinforced concrete structural systems. These reinforced concrete structures have several deficiencies, such as low concrete quality, non-seismic steel detailing, and inappropriate structural systems including several architectural irregularities. In this study, the general characteristics of Turkish building stock and the deficiencies observed in structural systems are explained, and illustrative figures are given with reference to Turkish Earthquake Code 2007 (TEC, 2007). The poor concrete quality, lack of lateral or transverse reinforcement in beam-column joints and column confinement zones, high stirrup spacings, under-reinforced columns and over-reinforced beams are the primary causes of failures. Other deficiencies include weak column-stronger beam formations, insufficient seismic joint separations, soft story or weak story irregularities and short columns. Similar construction and design mistakes are also observed in other countries situated on active earthquake belts. Existing buildings still have these undesirable characteristics, so to prepare for future earthquakes, they must be rehabilitated.
NASA Astrophysics Data System (ADS)
Cogurcu, M. T.
2015-04-01
Turkey is situated in a very active earthquake region. In the last century, several earthquakes resulted in thousands of deaths and enormous economic losses. In 1999, the Kocaeli earthquake had an approximate death toll of more than 20 000, and in 2011 the Van earthquake killed 604 people. In general, Turkish residential buildings have reinforced concrete structural systems. These reinforced concrete structures have several deficiencies, such as low concrete quality, non-seismic steel detailing and inappropriate structural systems including several architectural irregularities. In this study, the general characteristics of Turkish building stock and the deficiencies observed in structural systems are explained, and illustrative figures are given with reference to the Turkish Earthquake Code 2007. The poor concrete quality, lack of lateral or transverse reinforcement in beam-column joints and column confinement zones, high stirrup spacings, under-reinforced columns and over-reinforced beams are the primary causes of failures. Other deficiencies include weak-column-stronger-beam formations, insufficient seismic joint separations, soft-story or weak-story irregularities and short columns. Similar construction and design mistakes are also observed in other countries situated on active earthquake belts. Existing buildings still have these undesirable characteristics, and so to prepare for future earthquakes they must be rehabilitated.
Lobet, S; Detrembleur, C; Francq, B; Hermans, C
2010-09-01
A major complication in haemophilia is the destruction of joint cartilage because of recurrent intraarticular and intramuscular bleeds. Therefore, joint assessment is critical to quantify the extent of joint damage, which has traditionally been evaluated using both radiological and clinical joint scores. Our study aimed to evaluate the natural progression of haemophilic arthopathy using three-dimensional gait analysis (3DGA) and to assess the reproducibility of this technique. We hypothesized that the musculoskeletal function was relatively stable in patients with haemophilia. Eighteen adults with established haemophilic arthropathies were evaluated twice by 3DGA (mean follow-up: 18 +/- 5 weeks). Unexpectedly, our findings revealed infraclinical deterioration of gait pattern, characterized by a 3.2% decrease in the recovery index, which is indicative of the subject's ability to save energy while walking. A tendency towards modification of segmental joint function was also observed. Gait analysis was sufficiently reproducible with regards to spatiotemporal parameters as well as kinetic, mechanical and energetic gait variables. The kinematic variables were reproducible in both the sagittal and frontal planes. In conclusion, 3DGA is a reproducible tool to assess abnormal gait patterns and monitor natural disease progression in haemophilic patients.
SATO, Shinji
2015-01-01
Characteristics of the 2011 Tohoku Tsunami have been revealed by collaborative tsunami surveys extensively performed under the coordination of the Joint Tsunami Survey Group. The complex behaviors of the mega-tsunami were characterized by the unprecedented scale and the low occurrence frequency. The limitation and the performance of tsunami countermeasures were described on the basis of tsunami surveys, laboratory experiments and numerical analyses. These findings contributed to the introduction of two-level tsunami hazards to establish a new strategy for tsunami disaster mitigation, combining structure-based flood protection designed by the Level-1 tsunami and non-structure-based damage reduction planned by the Level-2 tsunami. PMID:26062739
Sato, Shinji
2015-01-01
Characteristics of the 2011 Tohoku Tsunami have been revealed by collaborative tsunami surveys extensively performed under the coordination of the Joint Tsunami Survey Group. The complex behaviors of the mega-tsunami were characterized by the unprecedented scale and the low occurrence frequency. The limitation and the performance of tsunami countermeasures were described on the basis of tsunami surveys, laboratory experiments and numerical analyses. These findings contributed to the introduction of two-level tsunami hazards to establish a new strategy for tsunami disaster mitigation, combining structure-based flood protection designed by the Level-1 tsunami and non-structure-based damage reduction planned by the Level-2 tsunami.
Simple geometry tribological study of osteochondral graft implantation in the knee.
Bowland, Philippa; Ingham, Eileen; Fisher, John; Jennings, Louise M
2018-03-01
Robust preclinical test methods involving tribological simulations are required to investigate and understand the tribological function of osteochondral repair interventions in natural knee tissues. The aim of this study was to investigate the effects of osteochondral allograft implantation on the local tribology (friction, surface damage, wear and deformation) of the tissues in the natural knee joint using a simple geometry, reciprocating pin-on-plate friction simulator. In addition, the study aimed to assess the ability of osteochondral grafts to restore a low surface damage, deformation and wear articulation when compared to the native state. A method was developed to characterise and quantify surface damage wear and deformation of the opposing cartilage-bone pin surface using a non-contacting optical profiler (Alicona Infinite Focus). Porcine 12 mm diameter cartilage-bone pins were reciprocated against bovine cartilage-bone plates that had 6 mm diameter osteochondral allografts, cartilage defects or stainless steel pins (positive controls) inserted centrally. Increased levels of surface damage with changes in geometry were not associated with significant increases in the coefficient of dynamic friction. Significant damage to the opposing cartilage surface was observed in the positive control groups. Cartilage damage, deformation and wear (as measured by change in geometry) in the xenograft (2.4 mm 3 ) and cartilage defect (0.99 mm 3 ) groups were low and not significantly different (p > 0.05) compared to the negative control in either group. The study demonstrated the potential of osteochondral grafts to restore the congruent articular surface and biphasic tribology of the natural joint. An optical method has been developed to characterise cartilage wear, damage and deformation that can be applied to the tribological assessment of osteochondral grafts in a whole natural knee joint simulation model.
Simple geometry tribological study of osteochondral graft implantation in the knee
Bowland, Philippa; Ingham, Eileen; Fisher, John; Jennings, Louise M
2018-01-01
Robust preclinical test methods involving tribological simulations are required to investigate and understand the tribological function of osteochondral repair interventions in natural knee tissues. The aim of this study was to investigate the effects of osteochondral allograft implantation on the local tribology (friction, surface damage, wear and deformation) of the tissues in the natural knee joint using a simple geometry, reciprocating pin-on-plate friction simulator. In addition, the study aimed to assess the ability of osteochondral grafts to restore a low surface damage, deformation and wear articulation when compared to the native state. A method was developed to characterise and quantify surface damage wear and deformation of the opposing cartilage-bone pin surface using a non-contacting optical profiler (Alicona Infinite Focus). Porcine 12 mm diameter cartilage-bone pins were reciprocated against bovine cartilage-bone plates that had 6 mm diameter osteochondral allografts, cartilage defects or stainless steel pins (positive controls) inserted centrally. Increased levels of surface damage with changes in geometry were not associated with significant increases in the coefficient of dynamic friction. Significant damage to the opposing cartilage surface was observed in the positive control groups. Cartilage damage, deformation and wear (as measured by change in geometry) in the xenograft (2.4 mm3) and cartilage defect (0.99 mm3) groups were low and not significantly different (p > 0.05) compared to the negative control in either group. The study demonstrated the potential of osteochondral grafts to restore the congruent articular surface and biphasic tribology of the natural joint. An optical method has been developed to characterise cartilage wear, damage and deformation that can be applied to the tribological assessment of osteochondral grafts in a whole natural knee joint simulation model. PMID:29375001
Thermographic and microscopic evaluation of LARS knee ligament tearing.
Pătraşcu, Jenel Marian; Amarandei, Mihaela; Kun, Karla Noemy; Borugă, Ovidiu; Totorean, Alina; Andor, Bogdan; Florescu, Sorin
2014-01-01
Damage to knee articular ligaments causes important functional problems and adversely affects particularly the stability of the knee joint. Several methods were developed in order to repair damage to the anterior cruciate ligament (ACL), which employ autografts, allografts, as well as synthetic ligaments. One such synthetic scaffold, the ligament advanced reinforcement system (LARS) synthetic ligament is made of non-absorbing polyethylene terephthalate fibers whose structure allow tissue ingrowths in the intra-articular part, improving the stability of the joint. The LARS ligament is nowadays widely used in modern knee surgery in the Europe, Canada, China or Japan. This paper evaluates LARS ligament from two perspectives. The first regards a study done by the Orthopedics Clinic II, Timisoara, Romania, which compared results obtained by employing two techniques of ACL repair - the Bone-Tendon-Bone (BTB) or LARS arthroscopic, intra-articular techniques. This study found that patients treated with the BTB technique presented with an IKDC score of 45.82±1.14 units preoperative, with increasing values in the first nine months after each implant post-surgical ligament restoration, reaching an average value of 75.92 ± 2.88 units postoperative. Patients treated with the LARS technique presented with an IKDC score of 43.64 ± 1.11 units preoperative, and a score of 77.32 ± 2.71 units postoperative. The second perspective describes the thermographic and microscopic analysis of an artificial knee ligament tearing or loosening. The objective of the study was to obtain information regarding the design of artificial ligaments in order to expand their lifespan and avoid complications such as recurring synovitis, osteoarthritis and trauma of the knee joint. Thermographic data has shown that tearing begins from the inside out, thus improving the inner design of the ligament would probably enhance its durability. An optical microscope was employed to obtain images of structural damage in the inner layers, for use in further analysis of the tears. In conclusion, the LARS artificial ligament, like the BTB technique, displays both advantages and disadvantages. It is important to understand that these two options of ACL lesion repair are not competing. LARS could, in addition to its use in primary ACL ruptures, be utilized in revisions of autologous graft rupture post primary ACL repair.
Articular cartilage. Part II. The osteoarthritic joint.
Muehleman, C; Arsenis, C H
1995-05-01
Articular hyaline cartilage, though a metabolically active tissue, has limited capacity for repair. Though the integrity of the cartilage is dependent upon a certain level of force placed upon it, excessive force leads to damage. It is when the breakdown of the cartilage exceeds the capacity of the cartilage for repair that osteoarthritis results. At present, pharmacologic treatment of osteoarthritis is focused toward the control of pain and stiffness. This treatment, however, masks the symptoms of the disease and effectively allows the patient to do further damage to the joint.
NEUTRON RADIATION DAMAGE IN CCD CAMERAS AT JOINT EUROPEAN TORUS (JET).
Milocco, Alberto; Conroy, Sean; Popovichev, Sergey; Sergienko, Gennady; Huber, Alexander
2017-10-26
The neutron and gamma radiations in large fusion reactors are responsible for damage to charged couple device (CCD) cameras deployed for applied diagnostics. Based on the ASTM guide E722-09, the 'equivalent 1 MeV neutron fluence in silicon' was calculated for a set of CCD cameras at the Joint European Torus. Such evaluations would be useful to good practice in the operation of the video systems. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Structural response of transport airplanes in crash situations
NASA Technical Reports Server (NTRS)
Thomson, R. G.; Caiafa, C.
1983-01-01
This report highlights the results of contractural studies of transport accident data undertaken in a joint research program sponsored by the FAA and NASA. From these accident data studies it was concluded that the greatest potential for improved transport crashworthiness is in the reduction of fire related fatalities. Accident data pertaining to fuselage integrity, main landing gear collapse, fuel tank rupture, wing breaks, tearing of tank lower surfaces, and engine pod scrubbing are discussed. In those accidents where the energy absorbing protective capability of the fuselage structure is expended and the airplane experiences major structural damage, trauma caused fatalities are also discussed. The dynamic performance of current seat/restraint systems are examined but it is concluded that the accident data does not adequately define the relationship between occupant response and the dynamic interaction with the seat, floor and fuselage structure.
Heel anatomy for retrograde tibiotalocalcaneal roddings: a roentgenographic and anatomic analysis.
Flock, T J; Ishikawa, S; Hecht, P J; Wapner, K L
1997-04-01
There is an increased interest in load-sharing devices for tibiotalocalcaneal arthrodesis. Although the neurovascular anatomy of the heel has been well described, the purpose of this study is to consider heel anatomy as it relates to plantar heel incisions and to well-defined fluoroscopic landmarks to prevent complications during these procedures. Twenty lateral radiographs of normal feet while standing were evaluated by two observers. The distance from the calcaneocuboid (CC) joint to a line parallel to the center of the intramedullary canal of the tibia was calculated. In the second part of the study, 14 dissections of the arterial and neural anatomy were performed. The distances from the CC joint to structures crossing the heel proximal to the CC joint were studied. In the 20 standing radiographs, the mean distance from the CC joint to the middle of the intramedullary canal of the tibia was 2.1 cm (standard deviation, 0.55 cm). In the dissections, the only artery or nerve found to cross the plantar surface proximal to the CC joint was the nerve to the abductor digiti quinti (NAbDQ). The mean distance from the CC joint to the NAbDQ was 3.1 cm (standard deviation, 1.36 cm). Assuming reaming to 12 mm, NAbDQ would be at risk 42% of the time. We recommend careful dissection of the heel during retrograde roddings to avoid damage to NAbDQ and subsequent neurogenic heel pain.
NASA Astrophysics Data System (ADS)
He, Jingjing; Guan, Xuefei; Peng, Tishun; Liu, Yongming; Saxena, Abhinav; Celaya, Jose; Goebel, Kai
2013-10-01
This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in situ non-destructive evaluation (NDE) during fatigue cyclical loading. PZT wafers are used to monitor the wave reflection from the boundaries of the fatigue crack at the edge of bolt joints. The group velocity of the guided wave is calculated to select a proper time window in which the received signal contains the damage information. It is found that the fatigue crack lengths are correlated with three main features of the signal, i.e., correlation coefficient, amplitude change, and phase change. It was also observed that a single feature cannot be used to quantify the damage among different specimens since a considerable variability was observed in the response from different specimens. A multi-feature integration method based on a second-order multivariate regression analysis is proposed for the prediction of fatigue crack lengths using sensor measurements. The model parameters are obtained using training datasets from five specimens. The effectiveness of the proposed methodology is demonstrated using several lap joint specimens from different manufactures and under different loading conditions.
Yiu, Sean; Farewell, Vernon T; Tom, Brian D M
2017-08-01
Many psoriatic arthritis patients do not progress to permanent joint damage in any of the 28 hand joints, even under prolonged follow-up. This has led several researchers to fit models that estimate the proportion of stayers (those who do not have the propensity to experience the event of interest) and to characterize the rate of developing damaged joints in the movers (those who have the propensity to experience the event of interest). However, when fitted to the same data, the paper demonstrates that the choice of model for the movers can lead to widely varying conclusions on a stayer population, thus implying that, if interest lies in a stayer population, a single analysis should not generally be adopted. The aim of the paper is to provide greater understanding regarding estimation of a stayer population by comparing the inferences, performance and features of multiple fitted models to real and simulated data sets. The models for the movers are based on Poisson processes with patient level random effects and/or dynamic covariates, which are used to induce within-patient correlation, and observation level random effects are used to account for time varying unobserved heterogeneity. The gamma, inverse Gaussian and compound Poisson distributions are considered for the random effects.
Gas-tungsten arc welding of aluminum alloys
Frye, L.D.
1982-03-25
The present invention is directed to a gas-tungsten arc welding method for joining together structures formed of aluminum alloy with these structures disposed contiguously to a heat-damagable substrate of a metal dissimilar to the aluminum alloy. The method of the present invention is practiced by diamond machining the fay surfaces of the aluminum alloy structures to profice a mirror finish thereon having a surface roughness in the order of about one microinch. The fay surface are aligned and heated sufficiently by the tungsten electrode to fuse the aluminum alloy continguous to the fay surfaces to effect the weld joint. The heat input used to provide an oxide-free weld is significantly less than that required if the fay surfaces were prepared by using conventional chemical and mechanical practices.
From intricate to integrated: Biofabrication of articulating joints.
Groen, Wilhelmina Margaretha; Diloksumpan, Paweena; van Weeren, Paul René; Levato, Riccardo; Malda, Jos
2017-10-01
Articulating joints owe their function to the specialized architecture and the complex interplay between multiple tissues including cartilage, bone and synovium. Especially the cartilage component has limited self-healing capacity and damage often leads to the onset of osteoarthritis, eventually resulting in failure of the joint as an organ. Although in its infancy, biofabrication has emerged as a promising technology to reproduce the intricate organization of the joint, thus enabling the introduction of novel surgical treatments, regenerative therapies, and new sets of tools to enhance our understanding of joint physiology and pathology. Herein, we address the current challenges to recapitulate the complexity of articulating joints and how biofabrication could overcome them. The combination of multiple materials, biological cues and cells in a layer-by-layer fashion, can assist in reproducing both the zonal organization of cartilage and the gradual transition from resilient cartilage toward the subchondral bone in biofabricated osteochondral grafts. In this way, optimal integration of engineered constructs with the natural surrounding tissues can be obtained. Mechanical characteristics, including the smoothness and low friction that are hallmarks of the articular surface, can be tuned with multi-head or hybrid printers by controlling the spatial patterning of printed structures. Moreover, biofabrication can use digital medical images as blueprints for printing patient-specific implants. Finally, the current rapid advances in biofabrication hold significant potential for developing joint-on-a-chip models for personalized medicine and drug testing or even for the creation of implants that may be used to treat larger parts of the articulating joint. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res 35:2089-2097, 2017. © 2017 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc.
Warnock, Jennifer J; Nemanic, Sarah; O'Donnell, Matthew D; Wiest, Jason E
2014-11-01
To evaluate volume of extra-articular fluid egress and complications associated with 2 fluid ingress/egress techniques for stifle arthroscopy. Ex vivo study. Canine cadavers (n = 14). Four cadavers (8 stifles) were used to validate 3D computed tomographic (CT) methods to quantify stifle joint intra- and extra-articular volumes of iodinated contrast medium. Ten canine cadavers (20 stifles) had preoperative CT, followed by stifle arthroscopy using a 10% solution of iodinated contrast enhanced ingress fluid delivered by pressure bag (2PB) or by arthroscopic peristaltic pump (3FP). All 3FP limbs had an additional fluid egress portal placed by cannula and obturator. Arthroscopy was limited to 20 minutes/joint. The volume of the contrast medium egress into the soft tissues was measured on postoperative 3D CT reconstructed images. Mean percentage of total ingress fluids administered that remained in the joint and extra-articular tissues postoperatively was 8.8 ± 1.2% in 3FP and 33.2 ± 8% in 2PB (P = .014). Two 3FP joints had 4-5 mm egress obturator tracks on the proximal medial trochlear ridge. Two 2PB joints had severe joint collapse from extracapsular fluid precluding further examination. Intermittent visual blurring by joint fluid mixing or fat pad fragmentation/dissolution was noted in 2PB joints. A superior technique was not identified: 2PB had greater egress fluid tissue accumulation, whereas 3FP had better viewing of intra-articular structures with less tissue egress fluid accumulation; however, cartilage damage was induced with the egress obturator. © Copyright 2014 by The American College of Veterinary Surgeons.
Orthopaedic management of haemophilia arthropathy of the ankle.
Pasta, G; Forsyth, A; Merchan, C R; Mortazavi, S M J; Silva, M; Mulder, K; Mancuso, E; Perfetto, O; Heim, M; Caviglia, H; Solimeno, L
2008-07-01
Joint bleeding, or haemarthrosis, is the most common type of bleeding episode experienced by individuals with haemophilia A and B. This leads to changes within the joints, including synovial proliferation, which results in further bleeding and chronic synovitis. Blood in the joint can also directly damage the cartilage, and with repeated bleeding, there is progressive destruction of both cartilage and bone. The end result is known as haemophilic arthropathy. The joints most commonly affected are the knees, elbows and ankles, although any synovial joint may be involved. In the ankle, both the tibiotalar and subtalar joints may be affected and joint bleeding and arthropathy can lead to a number of deformities. Haemophilic arthropathy can be prevented through regular factor replacement prophylaxis and implementing physiotherapy. However, when necessary, there are multiple surgical and non-surgical options available. In early ankle arthropathy with absent or minimal joint changes, both radioisotopic and chemical synoviorthesis can be used to reduce the hypertrophied synovium. These procedures can decrease the frequency of bleeding episodes, minimizing the risk of articular cartilage damage. Achilles tendon lengthening can be performed, in isolation or in combination with other surgical measures, to correct Achilles tendon contractures. Both arthroscopic and open synovectomies are available as a means to remove the friable villous layer of the synovium and are often indicated when bleeding episodes cannot be properly controlled by factor replacement therapy or synoviorthesis. In the later stages of ankle arthropathy, other surgical options may be considered. Debridement may be indicated when there are loose pieces of cartilage or anterior osteophytes, and can help to improve the joint function, even in the presence of articular cartilage damage. Supramalleolar tibial osteotomy may be indicated in patients with a valgus deformity of the hindfoot without degenerative radiographic findings. Joint fusion, or arthrodesis, is the treatment of choice in the advanced stages of ankle arthropathy although total ankle replacement is currently available. Early ankle replacement components were associated with a poor outcome, but as implant designs have improved, there have been successful outcomes achieved. As the ankle is a commonly affected joint in many individuals with haemophilia, it is important to add to the knowledge base to validate indications and timing of surgical and non-surgical interventions in ankle arthropathy.
Validation of automatic joint space width measurements in hand radiographs in rheumatoid arthritis.
Schenk, Olga; Huo, Yinghe; Vincken, Koen L; van de Laar, Mart A; Kuper, Ina H H; Slump, Kees C H; Lafeber, Floris P J G; Bernelot Moens, Hein J
2016-10-01
Computerized methods promise quick, objective, and sensitive tools to quantify progression of radiological damage in rheumatoid arthritis (RA). Measurement of joint space width (JSW) in finger and wrist joints with these systems performed comparable to the Sharp-van der Heijde score (SHS). A next step toward clinical use, validation of precision and accuracy in hand joints with minimal damage, is described with a close scrutiny of sources of error. A recently developed system to measure metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints was validated in consecutive hand images of RA patients. To assess the impact of image acquisition, measurements on radiographs from a multicenter trial and from a recent prospective cohort in a single hospital were compared. Precision of the system was tested by comparing the joint space in mm in pairs of subsequent images with a short interval without progression of SHS. In case of incorrect measurements, the source of error was analyzed with a review by human experts. Accuracy was assessed by comparison with reported measurements with other systems. In the two series of radiographs, the system could automatically locate and measure 1003/1088 (92.2%) and 1143/1200 (95.3%) individual joints, respectively. In joints with a normal SHS, the average (SD) size of MCP joints was [Formula: see text] and [Formula: see text] in the two series of radiographs, and of PIP joints [Formula: see text] and [Formula: see text]. The difference in JSW between two serial radiographs with an interval of 6 to 12 months and unchanged SHS was [Formula: see text], indicating very good precision. Errors occurred more often in radiographs from the multicenter cohort than in a more recent series from a single hospital. Detailed analysis of the 55/1125 (4.9%) measurements that had a discrepant paired measurement revealed that variation in the process of image acquisition (exposure in 15% and repositioning in 57%) was a more frequent source of error than incorrect delineation by the software (25%). Various steps in the validation of an automated measurement system for JSW of MCP and PIP joints are described. The use of serial radiographs from different sources, with a short interval and limited damage, is helpful to detect sources of error. Image acquisition, in particular repositioning, is a dominant source of error.
NASA Astrophysics Data System (ADS)
Ioussoufovitch, Seva; Morrison, Laura B.; Lee, Ting-Yim; St. Lawrence, Keith; Diop, Mamadou
2015-03-01
Rheumatoid arthritis (RA) is characterized by chronic synovial inflammation, which can cause progressive joint damage and disability. Diffuse optical spectroscopy (DOS) and imaging have the potential to become potent monitoring tools for RA. We devised a method that combined time-resolved DOS and tracer kinetics modeling to rapidly and reliably quantify blood flow in the joint. Preliminary results obtained from two animals show that the technique can detect joint inflammation as early as 5 days after onset.
NASA Technical Reports Server (NTRS)
Lowry, D. W.; Rich, M. J.
1983-01-01
The installation of a composite skin panel on the cargo ramp of a CH-530 marine helicopter is discussed. The composite material is of Kevlar/Epoxy (K/E) which replaces aluminum outer skins on the aft two bays of the ramp. The cargo ramp aft region was selected as being a helicopter airframe surface subjected to possible significant field damage and would permit an evaluation of the long term durability of the composite skin panel. A structural analysis was performed and the skin shears determined. Single lap joints of K/E riveted to aluminum were statically tested. The joint tests were used to determine bearing allowables and the required K/E skin gage. The K/E skin panels riveted to aluminum edge members were tested in a shear fixture to confirm the allowable shear and bearing strengths. Impact tests were conducted on aluminum skin panels to determine energy level and damage relationship. The K/E skin panels of various ply orientations and laminate thicknesses were then impacted at similar energy levels. The results of the analysis and tests were used to determine the required K/E skin gages in each of the end two bays of the ramp.
Damage Tolerance Assessment of Friction Pull Plug Welds
NASA Technical Reports Server (NTRS)
McGill, Preston; Burkholder, Jonathan
2012-01-01
Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.
Fanconi anemia proteins in telomere maintenance.
Sarkar, Jaya; Liu, Yie
2016-07-01
Mammalian chromosome ends are protected by nucleoprotein structures called telomeres. Telomeres ensure genome stability by preventing chromosome termini from being recognized as DNA damage. Telomere length homeostasis is inevitable for telomere maintenance because critical shortening or over-lengthening of telomeres may lead to DNA damage response or delay in DNA replication, and hence genome instability. Due to their repetitive DNA sequence, unique architecture, bound shelterin proteins, and high propensity to form alternate/secondary DNA structures, telomeres are like common fragile sites and pose an inherent challenge to the progression of DNA replication, repair, and recombination apparatus. It is conceivable that longer the telomeres are, greater is the severity of such challenges. Recent studies have linked excessively long telomeres with increased tumorigenesis. Here we discuss telomere abnormalities in a rare recessive chromosomal instability disorder called Fanconi Anemia and the role of the Fanconi Anemia pathway in telomere biology. Reports suggest that Fanconi Anemia proteins play a role in maintaining long telomeres, including processing telomeric joint molecule intermediates. We speculate that ablation of the Fanconi Anemia pathway would lead to inadequate aberrant structural barrier resolution at excessively long telomeres, thereby causing replicative burden on the cell. Published by Elsevier B.V.
Health monitoring of prestressing tendons in post-tensioned concrete structures
NASA Astrophysics Data System (ADS)
Salamone, Salvatore; Bartoli, Ivan; Nucera, Claudio; Phillips, Robert; Lanza di Scalea, Francesco
2011-04-01
Currently 90% of bridges built in California are post-tensioned box-girder. In such structures the steel tendons are the main load-carrying components. The loss of prestress, as well as the presence of defects or the tendon breakage, can be catastrophic for the entire structure. Unfortunately, today there is no well-established method for the monitoring of prestressing (PS) tendons that can provide simultaneous information related to the presence of defects and the level of prestress in a continuous, real time manner. If such a monitoring system were available, considerable savings would be achieved in bridge maintenance since repairs would be implemented in a timely manner without traffic disruptions. This paper presents a health monitoring system for PS tendons in post-tensioned structures of interest to Caltrans. Such a system uses ultrasonic guided waves and embedded sensors to provide simultaneously and in real time, (a) measurements of the level of applied prestress, and (b) defect detection at early grow stages. The proposed PS measurement technique exploits the sensitivity of ultrasonic waves to the inter-wire contact developing in a multi-wire strand as a function of prestress level. In particular the nonlinear ultrasonic behavior of the tendon under changing levels of prestress is monitored by tracking higher-order harmonics at (nω) arising under a fundamental guided-wave excitation at (ω). Moreover this paper also present real-time damage detection and location in post-tensioned bridge joints using Acoustic Emission techniques. Experimental tests on large-scale single-tendon PT joint specimens, subjected to multiple load cycles, will be presented to validate the monitoring of PS loads (through nonlinear ultrasonic probing) and the monitoring of damage progression and location (through acoustic emission techniques). Issues and potential for the use of such techniques to monitor post-tensioned bridges in the field will be discussed.
Drewniak, Elizabeth I; Jay, Gregory D; Fleming, Braden C; Zhang, Ling; Warman, Matthew L; Crisco, Joseph J
2012-01-01
Objective To investigate the effects of lubricin gene dosage and cyclic loading on whole joint coefficient of friction and articular cartilage surface integrity in mouse knee joints. Methods Joints from mice with 2 (Prg4+/+), 1 (Prg4+/−), or no (Prg4−/−) functioning lubricin alleles were subjected to 26 hours of cyclic loading using a custom-built pendulum. Coefficient of friction values were measured at multiple time points. Contralateral control joints were left unloaded. Following testing, joints were examined for histologic evidence of damage and cell viability. Results At baseline, the coefficient of friction values in Prg4−/− mice were significantly higher than those in Prg4+/+ and Prg4+/− mice (P < 0.001). Cyclic loading continuously increased the coefficient of friction in Prg4−/− mouse joints. In contrast, Prg4+/− and Prg4+/+ mouse joints had no coefficient of friction increases during the first 4 hours of loading. After 26 hours of loading, joints from all genotypes had increased coefficient of friction values compared to baseline and unloaded controls. Significantly greater increases occurred in Prg4−/− and Prg4+/− mouse joints compared to Prg4+/+ mouse joints. The coefficient of friction values were not significantly associated with histologic evidence of damage or loss of cell viability. Conclusion Our findings indicate that mice lacking lubricin have increased baseline coefficient of friction values and are not protected against further increases caused by loading. Prg4+/− mice are indistinguishable from Prg4+/+ mice at baseline, but have significantly greater coefficient of friction values following 26 hours of loading. Lubricin dosage affects joint properties during loading, and may have clinical implications in patients for whom injury or illness alters lubricin abundance. PMID:21905020
Philpott, Holly T.; O'Brien, Melissa; McDougall, Jason J.
2017-01-01
Abstract Osteoarthritis (OA) is a multifactorial joint disease, which includes joint degeneration, intermittent inflammation, and peripheral neuropathy. Cannabidiol (CBD) is a noneuphoria producing constituent of cannabis that has the potential to relieve pain. The aim of this study was to determine whether CBD is anti-nociceptive in OA, and whether inhibition of inflammation by CBD could prevent the development of OA pain and joint neuropathy. Osteoarthritis was induced in male Wistar rats (150-175 g) by intra-articular injection of sodium monoiodoacetate (MIA; 3 mg). On day 14 (end-stage OA), joint afferent mechanosensitivity was assessed using in vivo electrophysiology, whereas pain behaviour was measured by von Frey hair algesiometry and dynamic incapacitance. To investigate acute joint inflammation, blood flow and leukocyte trafficking were measured on day 1 after MIA. Joint nerve myelination was calculated by G-ratio analysis. The therapeutic and prophylactic effects of peripheral CBD (100-300 μg) were assessed. In end-stage OA, CBD dose-dependently decreased joint afferent firing rate, and increased withdrawal threshold and weight bearing (P < 0.0001; n = 8). Acute, transient joint inflammation was reduced by local CBD treatment (P < 0.0001; n = 6). Prophylactic administration of CBD prevented the development of MIA-induced joint pain at later time points (P < 0.0001; n = 8), and was also found to be neuroprotective (P < 0.05; n = 6-8). The data presented here indicate that local administration of CBD blocked OA pain. Prophylactic CBD treatment prevented the later development of pain and nerve damage in these OA joints. These findings suggest that CBD may be a safe, useful therapeutic for treating OA joint neuropathic pain. PMID:28885454
Philpott, Holly T; OʼBrien, Melissa; McDougall, Jason J
2017-12-01
Osteoarthritis (OA) is a multifactorial joint disease, which includes joint degeneration, intermittent inflammation, and peripheral neuropathy. Cannabidiol (CBD) is a noneuphoria producing constituent of cannabis that has the potential to relieve pain. The aim of this study was to determine whether CBD is anti-nociceptive in OA, and whether inhibition of inflammation by CBD could prevent the development of OA pain and joint neuropathy. Osteoarthritis was induced in male Wistar rats (150-175 g) by intra-articular injection of sodium monoiodoacetate (MIA; 3 mg). On day 14 (end-stage OA), joint afferent mechanosensitivity was assessed using in vivo electrophysiology, whereas pain behaviour was measured by von Frey hair algesiometry and dynamic incapacitance. To investigate acute joint inflammation, blood flow and leukocyte trafficking were measured on day 1 after MIA. Joint nerve myelination was calculated by G-ratio analysis. The therapeutic and prophylactic effects of peripheral CBD (100-300 μg) were assessed. In end-stage OA, CBD dose-dependently decreased joint afferent firing rate, and increased withdrawal threshold and weight bearing (P < 0.0001; n = 8). Acute, transient joint inflammation was reduced by local CBD treatment (P < 0.0001; n = 6). Prophylactic administration of CBD prevented the development of MIA-induced joint pain at later time points (P < 0.0001; n = 8), and was also found to be neuroprotective (P < 0.05; n = 6-8). The data presented here indicate that local administration of CBD blocked OA pain. Prophylactic CBD treatment prevented the later development of pain and nerve damage in these OA joints. These findings suggest that CBD may be a safe, useful therapeutic for treating OA joint neuropathic pain.
Caine, Jonathan S.
2006-01-01
This report presents a field-based characterization of fractured and faulted crystalline bedrock in the southern portion of the Questa caldera and its margin. The focus is (1) the identification and description of brittle geological structures and (2) speculation on the potential effects and controls that these structures might have on the potential fluxes of paleo to present-day ground water in relation to natural or mining-related metal and acid loads to surface and ground water. The entire study area is pervasively jointed with a few distinctive patterns such as orthogonal, oblique orthogonal, and conjugate joint sets. Joint intensity, the number of joints measured per unit line length, is high to extreme. Three types of fault zones are present that include partially silicified, low- and high-angle faults with well-developed damage zones and clay-rich cores and high-angle, unsilicified open faults. Conceptually, the joint networks can be thought of as providing the background porosity and permeability structure of the bedrock aquifer system. This background is cut by discrete entities such as the faults with clay-rich cores and open faults that may act as important hydrologic heterogeneities. The southern caldera margin runs parallel to the course of the Red River Valley, whose incision has left an extreme topographic gradient at high angles to the river. Many of the faults and fault intersections run parallel to this assumed hydraulic gradient; thus, these structures have great potential to provide paleo and present-day, discrete and anisotropic pathways for solute transport within the otherwise relatively low porosity and permeability bedrock background aquifer system. Although brittle fracture networks and faults are pervasive and complex, simple Darcy calculations are used to estimate the hydraulic conductivity and potential ground-water discharges of the bedrock aquifer, caldera margin, and other faults in order to gain insight into the potential contributions of these features to the ground-water and surface-water flow systems. These calculations show that, because all of these features are found along the Red River in the Cabin Springs-Columbine Park-Goat Hill fan area, their combined effect increases the probability that the bedrock aquifer ground-water flow system provides discharge to the Red River along this reach.
Platelet Rich Plasma and Knee Surgery
Sánchez, Mikel; Sánchez, Pello; Orive, Gorka; Anitua, Eduardo; Padilla, Sabino
2014-01-01
In orthopaedic surgery and sports medicine, the knee joint has traditionally been considered the workhorse. The reconstruction of every damaged element in this joint is crucial in achieving the surgeon's goal to restore the knee function and prevent degeneration towards osteoarthritis. In the last fifteen years, the field of regenerative medicine is witnessing a boost of autologous blood-derived platelet rich plasma products (PRPs) application to effectively mimic and accelerate the tissue healing process. The scientific rationale behind PRPs is the delivery of growth factors, cytokines, and adhesive proteins present in platelets and plasma, as well as other biologically active proteins conveyed by the plasma such as fibrinogen, prothrombin, and fibronectin; with this biological engineering approach, new perspectives in knee surgery were opened. This work describes the use of PRP to construct and repair every single anatomical structure involved in knee surgery, detailing the process conducted in ligament, meniscal, and chondral surgery. PMID:25302310
The role of peel stresses in cyclic debonding
NASA Technical Reports Server (NTRS)
Everett, R. A., Jr.
1982-01-01
When an adhesively bonded joint is undergoing cyclic loading, one of the possible damage modes that occurs is called cyclic debonding - progressive separation of the adherends by failure of the adhesive bond under cyclic loading. In most practical structures, both peel and shear stresses exist in the adhesive bonding during cyclic loading. The results of an experimental and analytical study to determine the role of peel stresses on cyclic debonding in a mixed mode specimen are presented. Experimentally, this was done by controlling the forces that create the peel stresses by applying a clamping force to oppose the peel stresses. Cracked lap shear joints were chosen for this study. A finite element analysis was developed to assess the effect of the clamping force on the strain energy release rates due to shear and peel stresses. The results imply that the peel stress is the principal stress causing cyclic debonding.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE OIL POLLUTION ACT REGULATIONS NATURAL RESOURCE... restoration is achieved without double recovery of damages. For joint assessments, trustees must designate one... there is no double recovery of damages. (3) Trustees may develop pre-incident or incident-specific...
Analysis Concerning the Inspection Threshold for Multi-Site Damage.
DOT National Transportation Integrated Search
1993-12-01
Periodic inspections, at a prescribed interval, for Multi-Site Damage (MS) in longitudinal fuselage lap-joints start when the aircraft has accumulated a certain number of flights, the inspection threshold. The work reported here was an attempt to obt...
Stefanik, Joshua J.; Guermazi, Ali; Zhu, Yanyan; Zumwalt, Ann C.; Gross, K. Douglas; Clancy, Margaret; Lynch, John A.; Segal, Neil A.; Lewis, Cora E.; Roemer, Frank W.; Powers, Christopher M.; Felson, David T.
2011-01-01
Objective To determine the relationship between quadriceps weakness and cartilage damage and bone marrow lesions (BMLs) in the patellofemoral joint (PFJ), and if this relationship is modified by patella alta. Methods The Multicenter Osteoarthritis (MOST) Study is a cohort study of persons aged 50–79 years with or at risk for knee OA. Concentric knee extensor strength was measured using an isokinetic dynamometer. Patella alta was measured using the Insall-Salvati ratio (ISR) on the lateral radiograph, and cartilage damage and bone marrow lesions (BMLs) were graded on MRI in the PFJ. We determined the association between quadriceps weakness with cartilage damage and BMLs in the PFJ among those knees with (ISR≥1.2) and without patella alta (ISR<1.2) using multiple binomial regression. Results 807 knees were studied (mean age 62 years, BMI 30, ISR 1.10), 64% from female subjects. Compared with knees in the highest strength tertile, those in the lowest had 10.2% {95% Confidence Interval (CI) 3–18}, 9.1% (95% CI 2–16), and 7.1% (95% CI 1–13) higher prevalence of lateral PFJ cartilage damage, medial PFJ cartilage damage, and lateral PFJ BMLs, respectively. The association between quadriceps weakness with cartilage damage and BMLs was not different between knees with and with out patella alta in the lateral PFJ. Conclusion Quadriceps weakness was associated with PFJ cartilage damage and BMLs. While both patella alta and quadriceps weakness are associated with PFJ damage, the combination of the two was not associated with more damage than either of these factors alone. PMID:21702087
NASA Technical Reports Server (NTRS)
Sandifer, J. P.; Denny, A.; Wood, M. A.
1985-01-01
Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.
Herrero-Fresneda, Immaculada; Torras, Joan; Cruzado, Josep M.; Condom, Enric; Vidal, August; Riera, Marta; Lloberas, Nuria; Alsina, Jeroni; Grinyo, Josep M.
2003-01-01
This study assesses the individual contributions of the nonalloreactive factor, cold ischemia (CI), and alloreactivity to late functional and structural renal graft changes, and examines the effect of the association of both factors on the progression of chronic allograft nephropathy. Lewis rats acted as receptors of kidneys from either Lewis or Fischer rats. For CI, kidneys were preserved for 5 hours. The rats were divided into four groups: Syn, syngeneic graft; SynI, syngeneic graft and CI; Allo, allogeneic graft; AlloI, allogeneic graft and CI. Renal function was assessed every 4 weeks for 24 weeks. Grafts were evaluated for acute inflammatory response at 1 week and for chronic histological damage at 24 weeks. Only when CI and allogenicity were combined did immediate posttransplant mortality occur, while survivors showed accelerated renal insufficiency that induced further mortality at 12 weeks after transplant. Solely ischemic rats developed renal insufficiency. Renal structural damage in ischemic rats was clearly tubulointerstitial, while significant vasculopathy and glomerulosclerosis appeared only in the allogeneic groups. There was increased infiltration of macrophages and expression of mRNA-transforming growth factor-β1 in the ischemic groups, irrespective of the allogeneic background. The joint association of CI plus allogenicity significantly increased cellular infiltration at both early and late stages, aggravating tubulointerstitial and vascular damage considerably. In summary, CI is mainly responsible for tubulointerstitial damage, whereas allogenicity leads to vascular lesion. The association of both factors accelerates and aggravates the progression of experimental chronic allograft nephropathy. PMID:12507896
Audio-based bolt-loosening detection technique of bolt joint
NASA Astrophysics Data System (ADS)
Zhang, Yang; Zhao, Xuefeng; Su, Wensheng; Xue, Zhigang
2018-03-01
Bolt joint, as the commonest coupling structure, is widely used in electro-mechanical system. However, it is the weakest part of the whole system. The increase of preload tension force can raise the reliability and strength of the bolt joint. Therefore, the pretension force is one of the most important factors to ensure the stability of bolt joint. According to the way of generating pretension force, the pretension force can be monitored by bolt torque, degrees and elongation. The existing bolt-loosening monitoring methods all require expensive equipment, which greatly restricts the practicality of the bolt-loosening monitoring. In this paper, a new method of bolt-loosening detection technique based on audio is proposed. The sound that bolt is hit by a hammer is recorded on the Smartphone, and the collected audio signal is classified and identified by support vector machine algorithm. First, a verification test was designed and the results show that this new method can identify the damage of bolt looseness accurately. Second, a variety of bolt-loosening was identified. The results indicate that this method has a high accuracy in multiclass classification of the bolt looseness. This bolt-loosening detection technique based on audio not only can reduce the requirements of technical and professional experience, but also make bolt-loosening monitoring simpler and easier.
Full Scale RC Beam-Column Joints Strengthened with Steel Reinforced Polymer Systems
NASA Astrophysics Data System (ADS)
De Vita, Alessandro; Napoli, Annalisa; Realfonzo, Roberto
2017-07-01
This paper presents the results of an experimental campaign performed at the Laboratory of Materials and Structural Testing of the University of Salerno (Italy) in order to investigate the seismic performance of RC beam-column joints strengthened with Steel Reinforced Polymer (SRP) systems. With the aim to represent typical façade frames’ beam-column subassemblies found in existing RC buildings, specimens were provided with two short beam stubs orthogonal to the main beam and were designed with inadequate seismic details. Five members were strengthened by using two different SRP layouts while the remaining ones were used as benchmarks. Once damaged, two specimens were also repaired, retrofitted with SRP and subjected to cyclic test again. The results of cyclic tests performed on SRP strengthened joints are examined through a comparison with the outcomes of the previous experimental program including companion specimens not provided with transverse beam stubs and strengthened by Carbon Fiber Reinforced Polymer (CFRP) systems. In particular, both qualitative and quantitative considerations about the influence of the confining effect provided by the secondary beams on the joint response, the suitability of all the adopted strengthening solutions (SRP/CFRP systems), the performances and the failure modes experienced in the several cases studied are provided.
Østergaard, Mikkel; Peterfy, Charles G; Bird, Paul; Gandjbakhch, Frédérique; Glinatsi, Daniel; Eshed, Iris; Haavardsholm, Espen A; Lillegraven, Siri; Bøyesen, Pernille; Ejbjerg, Bo; Foltz, Violaine; Emery, Paul; Genant, Harry K; Conaghan, Philip G
2017-11-01
The Outcome Measures in Rheumatology (OMERACT) Rheumatoid Arthritis (RA) Magnetic Resonance Imaging (MRI) scoring system (RAMRIS), evaluating bone erosion, bone marrow edema/osteitis, and synovitis, was introduced in 2002, and is now the standard method of objectively quantifying inflammation and damage by MRI in RA trials. The objective of this paper was to identify subsequent advances and based on them, to provide updated recommendations for the RAMRIS. MRI studies relevant for RAMRIS and technical and scientific advances were analyzed by the OMERACT MRI in Arthritis Working Group, which used these data to provide updated considerations on image acquisition, RAMRIS definitions, and scoring systems for the original and new RA pathologies. Further, a research agenda was outlined. Since 2002, longitudinal studies and clinical trials have documented RAMRIS variables to have face, construct, and criterion validity; high reliability and sensitivity to change; and the ability to discriminate between therapies. This has enabled RAMRIS to demonstrate inhibition of structural damage progression with fewer patients and shorter followup times than has been possible with conventional radiography. Technical improvements, including higher field strengths and improved pulse sequences, allow higher image resolution and contrast-to-noise ratio. These have facilitated development and validation of scoring methods of new pathologies: joint space narrowing and tenosynovitis. These have high reproducibility and moderate sensitivity to change, and can be added to RAMRIS. Combined scores of inflammation or joint damage may increase sensitivity to change and discriminative power. However, this requires further research. Updated 2016 RAMRIS recommendations and a research agenda were developed.
Effects of radiofrequency probe application on irrigation fluid temperature in the wrist joint.
Sotereanos, Dean G; Darlis, Nickolaos A; Kokkalis, Zinon T; Zanaros, George; Altman, Gregory T; Miller, Mark Carl
2009-12-01
Radiofrequency (RF) probes used in wrist arthroscopy may raise joint fluid temperature, increasing the risk of capsular and ligamentous damage. The purposes of the current study were to measure joint fluid temperature during wrist arthroscopy with the use of RF probes, and to determine whether using an outlet portal will reduce the maximum temperature. We performed wrist arthroscopy on 8 cadaveric arms. Ablation and coagulation cycles using RF probe were performed at documented locations within the joint. This was done for 60-second intervals on both the radial and ulnar side of the wrist, to mimic clinical practice. We used 4 fiberoptic phosphorescent probes to measure temperature (radial, ulnar, inflow-tube, and outflow-tube probes) and measured joint fluid temperature with and without outflow. There was a significant difference between wrists with and without outflow when examining maximum ablation temperatures (p < .002). All specimens showed higher maximum and average ablation temperatures without outflow. Maximum joint temperatures, greater than 60 degrees C, were observed in only no-outflow conditions. In performing RF ablation during wrist arthroscopy, the use of an outlet portal reduces the joint fluid temperature. Without an outlet portal, maximum temperatures can exceed desirable levels when using ablation; such temperatures have the potential to damage adjacent tissues. It is useful to maintain adequate outflow when using the radiofrequency probes during wrist arthroscopy.
NASA Astrophysics Data System (ADS)
Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang
2017-02-01
Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.
Resistance welding graphite-fiber composites
NASA Technical Reports Server (NTRS)
Lamoureux, R. T.
1980-01-01
High-strength joints are welded in seconds in carbon-reinfored thermoplastic beams. Resistance-welding electrode applies heat and pressure to joint and is spring-loaded to follow softening material to maintain contact; it also holds parts together for cooling and hardening. Both transverse and longitudinal configurations can be welded. Adhesive bonding and encapsulation are more time consuming methods and introduce additional material into joint, while ultrasonic heating can damage graphite fibers in composite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muehleman,C.; Li, J.; Zhong, Z.
2006-01-01
Objective: To demonstrate the ability of a novel radiographic technique, Diffraction Enhanced Radiographic Imaging (DEI), to render high contrast images of canine knee joints for identification of cartilage lesions in situ. Methods: DEI was carried out at the X-15A beamline at Brookhaven National Laboratory on intact canine knee joints with varying levels of cartilage damage. Two independent observers graded the DE images for lesions and these grades were correlated to the gross morphological grade. Results: The correlation of gross visual grades with DEI grades for the 18 canine knee joints as determined by observer 1 (r2=0.8856, P=0.001) and observer 2more » (r2=0.8818, P=0.001) was high. The overall weighted ? value for inter-observer agreement was 0.93, thus considered high agreement. Conclusion: The present study is the first study for the efficacy of DEI for cartilage lesions in an animal joint, from very early signs through erosion down to subchondral bone, representing the spectrum of cartilage changes occurring in human osteoarthritis (OA). Here we show that DEI allows the visualization of cartilage lesions in intact canine knee joints with good accuracy. Hence, DEI may be applicable for following joint degeneration in animal models of OA.« less
Plating To Reinforce Welded Joints
NASA Technical Reports Server (NTRS)
Otousa, J. E.
1982-01-01
Electrodeposition used to strengthen welded joints gouged, nicked, or suffered other mechanical damage. Plating cell, typically of acrylic plastic such as poly (Methylmetacrylate), is assembled around part to be plated. Areas not to be plated are masked with plater's tape. Weld area is plated in standard nickel-plating process.
Joint Chiefs of Staff > Leadership
Senior Enlisted Advisor Joint Staff History Joint Staff Inspector General Joint Staff Structure Origin of J8 | Force Structure, Resources & Assessment Contact Joint Staff Structure Joint Staff Organizational Chart Joint Chiefs of Staff Links Home Today in DOD About DOD Top Issues News Photos/Videos
Effects of joints in truss structures
NASA Technical Reports Server (NTRS)
Ikegami, R.
1988-01-01
The response of truss-type structures for future space applications, such as Large Deployable Reflector (LDR), will be directly affected by joint performance. Some of the objectives of research at BAC were to characterize structural joints, establish analytical approaches that incorporate joint characteristics, and experimentally establish the validity of the analytical approaches. The test approach to characterize joints for both erectable and deployable-type structures was based upon a Force State Mapping Technique. The approach pictorially shows how the nonlinear joint results can be used for equivalent linear analysis. Testing of the Space Station joints developed at LaRC (a hinged joint at 2 Hz and a clevis joint at 2 Hz) successfully revealed the nonlinear characteristics of the joints. The Space Station joints were effectively linear when loaded to plus or minus 500 pounds with a corresponding displacement of about plus or minus 0.0015 inch. It was indicated that good linear joints exist which are compatible with errected structures, but that difficulty may be encountered if nonlinear-type joints are incorporated in the structure.
NASA Astrophysics Data System (ADS)
Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice
2014-03-01
In this study, a correlation-based imaging technique called "Excitelet" is used to monitor an aerospace grade aluminum plate, representative of an aircraft component. The principle is based on ultrasonic guided wave generation and sensing using three piezoceramic (PZT) transducers, and measurement of reflections induced by potential defects. The method uses a propagation model to correlate measured signals with a bank of signals and imaging is performed using a roundrobin procedure (Full-Matrix Capture). The formulation compares two models for the complex transducer dynamics: one where the shear stress at the tip of the PZT is considered to vary as a function of the frequency generated, and one where the PZT is discretized in order to consider the shear distribution under the PZT. This method allows taking into account the transducer dynamics and finite dimensions, multi-modal and dispersive characteristics of the material and complex interactions between guided wave and damages. Experimental validation has been conducted on an aerospace grade aluminum joint instrumented with three circular PZTs of 10 mm diameter. A magnet, acting as a reflector, is used in order to simulate a local reflection in the structure. It is demonstrated that the defect can be accurately detected and localized. The two models proposed are compared to the classical pin-force model, using narrow and broad-band excitations. The results demonstrate the potential of the proposed imaging techniques for damage monitoring of aerospace structures considering improved models for guided wave generation and propagation.
Patellofemoral pain in athletes
Petersen, Wolf; Rembitzki, Ingo; Liebau, Christian
2017-01-01
Patellofemoral pain (PFP) is a frequent cause of anterior knee pain in athletes, which affects patients with and without structural patellofemoral joint (PFJ) damage. Most younger patients do not have any structural changes to the PFJ, such as an increased Q angle and a cartilage damage. This clinical entity is known as patellofemoral pain syndrome (PFPS). Older patients usually present with signs of patellofemoral osteoarthritis (PFOA). A key factor in PFPS development is dynamic valgus of the lower extremity, which leads to lateral patellar maltracking. Causes of dynamic valgus include weak hip muscles and rearfoot eversion with pes pronatus valgus. These factors can also be observed in patients with PFOA. The available evidence suggests that patients with PFP are best managed with a tailored, multimodal, nonoperative treatment program that includes short-term pain relief with nonsteroidal anti-inflammatory drugs (NSAIDs), passive correction of patellar maltracking with medially directed tape or braces, correction of the dynamic valgus with exercise programs that target the muscles of the lower extremity, hip, and trunk, and the use of foot orthoses in patients with additional foot abnormalities. PMID:28652829
NASA Astrophysics Data System (ADS)
He, Jingjing; Wang, Dengjiang; Zhang, Weifang
2015-03-01
This study presents an experimental and modeling study for damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in-situ non-destructive testing during fatigue cyclical loading. A multi-feature integration method is developed to quantify the crack size using signal features of correlation coefficient, amplitude change, and phase change. In addition, probability of detection (POD) model is constructed to quantify the reliability of the developed sizing method. Using the developed crack size quantification method and the resulting POD curve, probabilistic fatigue life prediction can be performed to provide comprehensive information for decision-making. The effectiveness of the overall methodology is demonstrated and validated using several aircraft lap joint specimens from different manufactures and under different loading conditions.
NASA Astrophysics Data System (ADS)
Tesfa, B.; Horler, G.; Thobiani, F. Al; Gu, F.; Ball, A. D.
2012-05-01
Many industrial structures associated with railway infrastructures rely on a large number of bolted joint connections to ensure safe and reliable operation of the track and trackside furniture. Significant sums of money are spent annually to repair the damage caused by bolt failures and to maintain the integrity of bolted structures. In the UK, Network Rail (the organization responsible for rail network maintenance and safety) conducts corrective and preventive maintenance manually on 26,000 sets of points (each having approximately 30 bolted joints per set), in order to ensure operational success and safety for the travelling public. Such manual maintenance is costly, disruptive, unreliable and prone to human error. The aim of this work is to provide a means of automatically measuring the clamping force of each individual bolted joint, by means of an instrumented washer. This paper describes the development of a sensor means to be used in the washer, which satisfies the following criteria. Sense changes in the clamping force of the joint and report this fact. Provide compatibility with the large dynamic range of clamping force. Satisfy the limitations in terms of physical size. Provide the means to electronically interface with the washer. Provide a means of powering the washer in situ. Provide a solution at an acceptable cost. Specifically the paper focuses on requirements 1, 2 and 3 and presents the results that support further development of the proposed design and the realization of a pre-prototype system. In the paper, various options for the force sensing element (strain gage, capacitor, piezo-resistive) have been compared, using design optimization techniques. As a result of the evaluation, piezo-resistive sensors in concert with a proprietary force attenuation method, have been found to offer the best performance and cost trade-off The performance of the novel clamping force sensor has been evaluated experimentally and the results show that a smart washer can be developed to monitor the condition of bolted joints as found on railway track and points.
Development of a new connection for precast concrete walls subjected to cyclic loading
NASA Astrophysics Data System (ADS)
Vaghei, Ramin; Hejazi, Farzad; Taheri, Hafez; Jaafar, Mohd Saleh; Aziz, Farah Nora Aznieta Abdul
2017-01-01
The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures is an important factor that ensures stability of buildings subjected to dynamic loads from earthquakes, vehicles, and machineries. However, structural engineers still lack knowledge on the proper connection and detailed joints of IBS structure construction. Therefore, this study proposes a special precast concrete wall-to-wall connection system for dynamic loads that resists multidirectional imposed loads and reduces vibration effects (PI2014701723). This system is designed to connect two adjacent precast wall panels by using two steel U-shaped channels (i.e., male and female joints). During casting, each joint is adapted for incorporation into a respective wall panel after considering the following conditions: one side of the steel channel opens into the thickness face of the panel; a U-shaped rubber is implemented between the two channels to dissipate the vibration effect; and bolts and nuts are used to create an extension between the two U-shaped male and female steel channels. The developed finite element model of the precast wall is subjected to cyclic loads to evaluate the performance of the proposed connection during an imposed dynamic load. Connection performance is then compared with conventional connections based on the energy dissipation, stress, deformation, and concrete damage in the plastic range. The proposed precast connection is capable of exceeding the energy absorption of precast walls subjected to dynamic load, thereby improving its resistance behavior in all principal directions.
NASA Astrophysics Data System (ADS)
Ma, Jiansuo; Wang, Yuanqing; Li, Mingfeng; Bai, Runshan; Ban, Huiyong
2018-03-01
In the process of existing steel structure operation, in order to prevent the bolted joints from being damaged by insufficient carrying capacity, welds can be used for reinforcement. Weld reinforced combined connection with bolts and weld consists with high strength bolts and side fillet weld composition. The parameters and properties of high strength bolts and fillet welds have a direct effect on the connection. Based on the test results, We explore the influence that welding seam reinforcement and the performance of the connection between the number of high strength bolts and specifications changes in this paper. It will provide a theoretical reference for the design of connection nodes of steel structure reinforcement project.
Oldenburg, J; Zimmermann, R; Katsarou, O; Theodossiades, G; Zanon, E; Niemann, B; Kellermann, E; Lundin, B
2015-01-01
In patients with haemophilia A, factor VIII (FVIII) prophylaxis reduces bleeding frequency and joint damage compared with on-demand therapy. To assess the effect of prophylaxis initiation age, magnetic resonance imaging (MRI) was used to evaluate bone and cartilage damage in patients with severe haemophilia A. In this cross-sectional, multinational investigation, patients aged 12–35 years were assigned to 1 of 5 groups: primary prophylaxis started at age <2 years (group 1); secondary prophylaxis started at age 2 to <6 years (group 2), 6 to <12 years (group 3), or 12−18 years (group 4); or on-demand treatment (group 5). Joint status at ankles and knees was assessed using Compatible Additive MRI scoring (maximum and mean ankle; maximum and mean of all 4 joints) and Gilbert scores in the per-protocol population (n = 118). All prophylaxis groups had better MRI joint scores than the on-demand group. MRI scores generally increased with current patient age and later start of prophylaxis. Ankles were the most affected joints. In group 1 patients currently aged 27−35 years, the median of maximum ankle scores was 0.0; corresponding values in groups 4 and 5 were 17.0 and 18.0, respectively [medians of mean index joint scores: 0.0 (group 1), 8.1 (group 2) and 13.8 (group 4)]. Gilbert scores revealed outcomes less pronounced than MRI scores. MRI scores identified pathologic joint status with high sensitivity. Prophylaxis groups had lower annualized joint bleeds and MRI scores vs. the on-demand group. Primary prophylaxis demonstrated protective effects against joint deterioration compared with secondary prophylaxis. PMID:25470205
NASA Astrophysics Data System (ADS)
Baur, Jeffery W.; Slinker, Keith; Kondash, Corey
2017-04-01
Understanding the shear strain, viscoelastic response, and onset of damage within bonded composites is critical to their design, processing, and reliability. This presentation will discuss the multidisciplinary research conducted which led to the conception, development, and demonstration of two methods for measuring the shear within a bonded joint - dualplane digital image correlation (DIC) and a micro-cantilever shear sensor. The dual plane DIC method was developed to measure the strain field on opposing sides of a transparent single-lap joint in order to spatially quantify the joint shear strain. The sensor consists of a single glass fiber cantilever beam with a radially-grown forest of carbon nanotubes (CNTs) within a capillary pore. When the fiber is deflected, the internal radial CNT array is compressed against an electrode within the pore and the corresponding decrease in electrical resistance is correlated with the external loading. When this small, simple, and low-cost sensor was integrated within a composite bonded joint and cycled in tension, the onset of damage prior to joint failure was observed. In a second sample configuration, both the dual plane DIC and the hair sensor detected viscoplastic changes in the strain of the sample in response to continued loading.
Ankle rehabilitation device with two degrees of freedom and compliant joint
NASA Astrophysics Data System (ADS)
Racu (Cazacu, C.-M.; Doroftei, I.
2015-11-01
We propose a rehabilitation device that we intend to be low cost and easy to manufacture. The system will ensure functionality but also have a small dimensions and low mass, considering the physiological dimensions of the foot and lower leg. To avoid injure of the ankle joint, this device is equipped with a compliant joint between the motor and mechanical transmission. The torque of this joint is intended to be adjustable, according to the degree of ankle joint damage. To choose the material and the dimensions of this compliant joint, in this paper we perform the first stress simulation. The minimum torque is calculated, while the maximum torque is given by the preliminary chosen actuator.
A systematic, multimodality approach to emergency elbow imaging.
Singer, Adam D; Hanna, Tarek; Jose, Jean; Datir, Abhijit
2016-01-01
The elbow is a complex synovial hinge joint that is frequently involved in both athletic and nonathletic injuries. A thorough understanding of the normal anatomy and various injury patterns is essential when utilizing diagnostic imaging to identify damaged structures and to assist in surgical planning. In this review, the elbow anatomy will be scrutinized in a systematic approach. This will be followed by a comprehensive presentation of elbow injuries that are commonly seen in the emergency department accompanied by multimodality imaging findings. A short discussion regarding pitfalls in elbow imaging is also included. Copyright © 2015 Elsevier Inc. All rights reserved.
Clinical characteristics of RA patients with secondary SS and association with joint damage.
Brown, Lindsay E; Frits, Michelle L; Iannaccone, Christine K; Weinblatt, Michael E; Shadick, Nancy A; Liao, Katherine P
2015-05-01
Secondary SS (sSS) is a common extra-articular manifestation of RA. There are conflicting data regarding the association of sSS with worse joint damage. This study aims to characterize sSS patients in an RA cohort and study the association between sSS and joint damage. We conducted a cross-sectional study of RA patients with ≥1 year of follow-up at a large academic centre. Subjects with co-morbid diseases that can also result in sicca symptoms were excluded from the analysis. Subjects were considered to have sSS if they were reported as having sSS by their rheumatologist at recruitment into the cohort and had the diagnosis confirmed by chart review. The primary outcome was Sharp score using bilateral hand radiographs at recruitment. We constructed a linear regression model to determine the association of sSS status and Sharp score adjusted by age, gender, disease duration and ACPA and RF status. We studied 829 RA subjects, mean age 57 years, 83% female, mean RA duration 13 years, 74% seropositive; 85 subjects (10.3%) had sSS. We observed a female predominance (95.3%), longer mean disease duration (16.9 years) and higher frequency of RF or ACPA positive among patients with sSS and RA. Having sSS at baseline was associated with higher Sharp scores (P = 0.03), independent of age, gender, RA disease duration and seropositive disease. In our RA cohort, RA subjects with sSS had worse joint damage, suggesting that sSS is a marker of more aggressive disease. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
20 CFR 10.712 - How much of any settlement or judgment must be paid to the United States?
Code of Federal Regulations, 2014 CFR
2014-04-01
... entire amount of the award; (ii) Subtract the amount of award representing damage to real or personal... Damage $0.00 (iii) Subtotal A (Line a minus Line b) $100,000.00 (iv) Amount Allocated for Loss of... which is permitted under the state law and for damage to her vehicle (documented at $50,000.00). A joint...
20 CFR 10.712 - How much of any settlement or judgment must be paid to the United States?
Code of Federal Regulations, 2013 CFR
2013-04-01
... entire amount of the award; (ii) Subtract the amount of award representing damage to real or personal... Damage $0.00 (iii) Subtotal A (Line a minus Line b) $100,000.00 (iv) Amount Allocated for Loss of... which is permitted under the state law and for damage to her vehicle (documented at $50,000.00). A joint...
20 CFR 10.712 - How much of any settlement or judgment must be paid to the United States?
Code of Federal Regulations, 2012 CFR
2012-04-01
... entire amount of the award; (ii) Subtract the amount of award representing damage to real or personal... Damage $0.00 (iii) Subtotal A (Line a minus Line b) $100,000.00 (iv) Amount Allocated for Loss of... which is permitted under the state law and for damage to her vehicle (documented at $50,000.00). A joint...
NASA Technical Reports Server (NTRS)
Beeson, Harold D.; Davis, Dennis D.; Ross, William L., Sr.; Tapphorn, Ralph M.
2002-01-01
This document represents efforts accomplished at the NASA Johnson Space Center White Sands Test Facility (WSTF) in support of the Enhanced Technology for Composite Overwrapped Pressure Vessels (COPV) Program, a joint research and technology effort among the U.S. Air Force, NASA, and the Aerospace Corporation. WSTF performed testing for several facets of the program. Testing that contributed to the Task 3.0 COPV database extension objective included baseline structural strength, failure mode and safe-life, impact damage tolerance, sustained load/impact effect, and materials compatibility. WSTF was also responsible for establishing impact protection and control requirements under Task 8.0 of the program. This included developing a methodology for establishing an impact control plan. Seven test reports detail the work done at WSTF. As such, this document contributes to the database of information regarding COPV behavior that will ensure performance benefits and safety are maintained throughout vessel service life.
Screening Adhesively Bonded Single-Lap-Joint Testing Results Using Nonlinear Calculation Parameters
2012-03-01
versus displacement response for single-lap-joints bonded with damage-tolerant adhe- sives, such the polyurea adhesive plotted in Figure 2, is much...displacement response for a single-lap-joint bonded with a polyurea adhesive. Complex x-y plots are commonly fitted using the Levenberg-Marquardt...expected decrease in maximum strength for the polyurea in compar- ison to the epoxy, which could have been obtained using a traditional analysis approach
Cartilage tissue engineering: From biomaterials and stem cells to osteoarthritis treatments.
Vinatier, C; Guicheux, J
2016-06-01
Articular cartilage is a non-vascularized and poorly cellularized connective tissue that is frequently damaged as a result of trauma and degenerative joint diseases such as osteoarthrtis. Because of the absence of vascularization, articular cartilage has low capacity for spontaneous repair. Today, and despite a large number of preclinical data, no therapy capable of restoring the healthy structure and function of damaged articular cartilage is clinically available. Tissue-engineering strategies involving the combination of cells, scaffolding biomaterials and bioactive agents have been of interest notably for the repair of damaged articular cartilage. During the last 30 years, cartilage tissue engineering has evolved from the treatment of focal lesions of articular cartilage to the development of strategies targeting the osteoarthritis process. In this review, we focus on the different aspects of tissue engineering applied to cartilage engineering. We first discuss cells, biomaterials and biological or environmental factors instrumental to the development of cartilage tissue engineering, then review the potential development of cartilage engineering strategies targeting new emerging pathogenic mechanisms of osteoarthritis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Physical examination and imaging of medial collateral ligament and posteromedial corner of the knee.
Craft, Jason A; Kurzweil, Peter R
2015-06-01
The medial collateral ligament (MCL) is the most commonly injured knee ligament. Most will heal well with nonoperative treatment. However, not all medial knee injuries are the same. A detailed physical examination can help determine the severity of the medial-sided injury. When combined with advanced imaging, the examination will delineate damage to associated medial knee structures, including the location of MCL damage, posteromedial capsule injuries, and combined cruciate injuries. Failure to recognize MCL injuries that may be prone to chronic laxity can lead to significant disability, joint damage, and failure of concomitant cruciate ligament reconstructions. Magnetic resonance imaging is the mainstay of diagnostic imaging, with coronal sequences allowing full assessment of the MCL complex. Tangential views aid in the diagnosis of concomitant injuries. Stress radiography can play a role in evaluating MCL healing and subtle chronic laxity. Ultrasonography is also gaining acceptance as a means to assess MCL injuries. Use of a detailed examination and advanced imaging will allow optimal treatment of medial knee injuries and improve clinical outcomes.
Validation of automatic joint space width measurements in hand radiographs in rheumatoid arthritis
Schenk, Olga; Huo, Yinghe; Vincken, Koen L.; van de Laar, Mart A.; Kuper, Ina H. H.; Slump, Kees C. H.; Lafeber, Floris P. J. G.; Bernelot Moens, Hein J.
2016-01-01
Abstract. Computerized methods promise quick, objective, and sensitive tools to quantify progression of radiological damage in rheumatoid arthritis (RA). Measurement of joint space width (JSW) in finger and wrist joints with these systems performed comparable to the Sharp–van der Heijde score (SHS). A next step toward clinical use, validation of precision and accuracy in hand joints with minimal damage, is described with a close scrutiny of sources of error. A recently developed system to measure metacarpophalangeal (MCP) and proximal interphalangeal (PIP) joints was validated in consecutive hand images of RA patients. To assess the impact of image acquisition, measurements on radiographs from a multicenter trial and from a recent prospective cohort in a single hospital were compared. Precision of the system was tested by comparing the joint space in mm in pairs of subsequent images with a short interval without progression of SHS. In case of incorrect measurements, the source of error was analyzed with a review by human experts. Accuracy was assessed by comparison with reported measurements with other systems. In the two series of radiographs, the system could automatically locate and measure 1003/1088 (92.2%) and 1143/1200 (95.3%) individual joints, respectively. In joints with a normal SHS, the average (SD) size of MCP joints was 1.7±0.2 and 1.6±0.3 mm in the two series of radiographs, and of PIP joints 1.0±0.2 and 0.9±0.2 mm. The difference in JSW between two serial radiographs with an interval of 6 to 12 months and unchanged SHS was 0.0±0.1 mm, indicating very good precision. Errors occurred more often in radiographs from the multicenter cohort than in a more recent series from a single hospital. Detailed analysis of the 55/1125 (4.9%) measurements that had a discrepant paired measurement revealed that variation in the process of image acquisition (exposure in 15% and repositioning in 57%) was a more frequent source of error than incorrect delineation by the software (25%). Various steps in the validation of an automated measurement system for JSW of MCP and PIP joints are described. The use of serial radiographs from different sources, with a short interval and limited damage, is helpful to detect sources of error. Image acquisition, in particular repositioning, is a dominant source of error. PMID:27921071
The role of tissue damage in whiplash associated disorders: Discussion paper 1
Bogduk, Nikolai; Ivancic, Paul C.; McLean, Samuel A.; Siegmund, Gunter P.; Winkelstein, Beth
2011-01-01
STUDY DESIGN Non-systematic review of cervical spine lesions in whiplash-associated disorders (WAD). OBJECTIVE To describe whiplash injury models in terms of basic and clinical science, to summarize what can and cannot be explained by injury models, and to highlight future research areas to better understand the role of tissue damage in WAD. SUMMARY OF BACKGROUND DATA The frequent lack of detectable tissue damage has raised questions about whether tissue damage is necessary for WAD and what role it plays in the clinical context of WAD. METHODS Non-systematic review. RESULTS Lesions of various tissues have been documented by numerous investigations conducted in animals, cadavers, healthy volunteers and patients. Most lesions are undetected by imaging techniques. For zygapophysial (facet) joints, lesions have been predicted by bioengineering studies and validated through animal studies; for zygapophysial joint pain, a valid diagnostic test and a proven treatment are available. Lesions of dorsal root ganglia, discs, ligaments, muscles and vertebral artery have been documented in biomechanical and autopsy studies, but no valid diagnostic test is available to assess their clinical relevance. The proportion of WAD patients in whom a persistent lesion is the major determinant of ongoing symptoms is unknown. Psychosocial factors, stress reactions and generalized hyperalgesia have also been shown to predict WAD outcomes. CONCLUSION There is evidence supporting a lesion-based model in WAD. Lack of macroscopically identifiable tissue damage does not rule out the presence of painful lesions. The best available evidence concerns zygapophysial joint pain. The clinical relevance of other lesions needs to be addressed by future research. PMID:22020601
Nondestructive Evaluation and Health Monitoring of Adhesively Bonded Composite Structures
NASA Astrophysics Data System (ADS)
Roth, William Walker
As the growth of fiber reinforced composite materials continues in many industries, structural designers will have to look to new methods of joining components. In order to take full advantage of composite materials, such as increased stiffness, decreased weight, tailored material properties and increased fatigue life, mechanical fasteners will need to be replaced by adhesive bonding or welding, when possible. Mechanical fasteners require the drilling of holes, which damages the laminate and becomes the source of further fatigue damage. Also, an increase in laminate thickness or inclusion of other features is required for the material to withstand the bearing stress needed to preload fasteners. Adhesives transfer the load over a large area, do not require additional machining operations, provide increased stiffness through the joint, provide corrosion protection when joining dissimilar materials, and provide vibrational damping. Additionally, the repair of composite structures, which will become a major concern in the near future, will require the use of adhesive bonding for thermoset composites. In order for adhesives to be used to join primary aerospace structures they must meet certification requirements, which includes proof that the joint can withstand the required ultimate load without structural failure. For most components, nondestructive inspection is used to find critical flaws, which is combined with fracture mechanics to ensure that the structure can meet the requirements. This process works for some of the adhesive flaws, but other critical defects are not easily detected. Weak interface bonding is particularly challenging. This type of defect results in an interphase zone that may be only a dozen microns in thickness. Traditional bulk wave ultrasonic techniques cannot easily distinguish this zone from the interface between adherend and adhesive. This work considers two approaches to help solve this problem. Guided elastic wave propagation along laminate structures is highly dependent on the boundary conditions at the surface and between plies, especially at high frequencies. This work investigates how interfacial defects can alter the propagation of guided waves through bonded fiber reinforced composite materials. As well as how this information can be used to determine the interface properties and correlate the results with fracture parameters. The second approach investigates how structural health monitoring can be used to detect the growth of disbonds from service loads. A mode selection technique is proposed for selecting frequency ranges for electromechanical impedance spectroscopy.
Crema, M D; Nevitt, M C; Guermazi, A; Felson, D T; Wang, K; Lynch, J A; Marra, M D; Torner, J; Lewis, C E; Roemer, F W
2014-10-01
To determine the association of MRI-assessed worsening of tibiofemoral cartilage damage, meniscal damage, meniscal extrusion, separately and together, with progression of radiographic joint space narrowing (JSN). The Multicenter Osteoarthitis Study (MOST) Study is a cohort study of subjects with or at risk for knee osteoarthritis (OA). Knees with radiographic OA Kellgren-Lawrence grade 2 at baseline and with baseline and 30-month 1.0 T MRIs were selected for reading using the WORMS system for cartilage damage, meniscal damage, and meniscal extrusion. The association of worsening of cartilage damage, meniscal damage, and/or meniscal extrusion with increases in the JSN was performed using logistic regression. A total of 276 knees (one per subject) were included (women 68.5%, mean age 62.9 ± 7.8, mean body mass index (BMI) 30.2 ± 5.0). Worsening of each MRI feature was associated with any increase in JSN (P < 0.01). Worsening of cartilage damage was more frequently observed than worsening of meniscal damage and extrusion, and was significantly associated with both slow and fast progression of JSN. An increasing risk of JSN worsening was associated with increasing number of worsening MRI features (P for trend < 0.0001). Worsening of tibiofemoral cartilage damage, meniscal damage, and meniscal extrusion are independent predictors of JSN progression in the same compartment. Worsening of cartilage damage is more frequently observed in JSN when compared to meniscal worsening. A strong cumulative effect on JSN progression is observed for worsening of more than one MRI feature. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Low dose native type II collagen prevents pain in a rat osteoarthritis model
2013-01-01
Background Osteoarthritis is the most widespread joint-affecting disease. Patients with osteoarthritis experience pain and impaired mobility resulting in marked reduction of quality of life. A progressive cartilage loss is responsible of an evolving disease difficult to treat. The characteristic of chronicity determines the need of new active disease modifying drugs. Aim of the present research is to evaluate the role of low doses of native type II collagen in the rat model of osteoarthritis induced by sodium monoiodoacetate (MIA). Methods 1, 3 and 10 mg kg-1 porcine native type II collagen were daily per os administered for 13 days starting from the day of MIA intra-articular injection. Results On day 14, collagen-treated rats showed a significant prevention of pain threshold alterations induced by MIA. Evaluation were performed on paws using mechanical noxious (Paw pressure test) or non-noxious (Electronic Von Frey test) stimuli, and a decrease of articular pain was directly measured on the damaged joint (PAM test). The efficacy of collagen in reducing pain was as higher as the dose was lowered. Moreover, a reduced postural unbalance, measured as hind limb weight bearing alterations (Incapacitance test), and a general improvement of motor activity (Animex test) were observed. Finally, the decrease of plasma and urine levels of CTX-II (Cross Linked C-Telopeptide of Type II Collagen), a biomarker of cartilage degradation, suggests a collagen-dependent decrease of structural joint damage. Conclusions These results describe the preclinical efficacy of low dosages of native type II collagen as pain reliever by a mechanism that involves a protective effect on cartilage. PMID:23915264
The detrimental effects of iron on the joint: a comparison between haemochromatosis and haemophilia.
van Vulpen, Lize F D; Roosendaal, Goris; van Asbeck, B Sweder; Mastbergen, Simon C; Lafeber, Floris P J G; Schutgens, Roger E G
2015-08-01
Joint damage due to (recurrent) joint bleeding in haemophilia causes major morbidity. Although the exact pathogenesis has not been fully elucidated, a central role for iron is hypothesised. Likewise, in hereditary haemochromatosis joint destruction is caused by iron overload. A comparison between these types of arthropathy could provide more insight in the influence of iron in inducing joint damage. A literature review was performed to compare both disorders with respect to their clinical and histological characteristics, and preclinical studies on the influence of iron on different joint components were reviewed. Similarities in the features of arthropathy in haemochromatosis and haemophilia are cartilage degeneration, subchondral bone changes with osteophyte and cyst formation, and osteoporosis. In both disorders synovial inflammation and proliferation are seen, although this is much more explicit in haemophilia. Other substantial differences are the age at onset, the occurrence of chondrocalcinosis radiographically and calcium pyrophosphate dihydrate deposition disease in haemochromatosis, and a rapid progression with joint deformity and neovascularisation in haemophilia. Preclinical studies demonstrate detrimental effects of iron to all components of the joint, resulting in synovial inflammation and hyperplasia, chondrocyte death, and impaired osteoblast function. These effects, particularly the synovial changes, are aggravated in the presence of a pro-inflammatory signal, which is prominent in haemophilic arthropathy and minimal in haemochromatosis. Additional research is needed to further specify the role of iron as a specific target in treating these types of arthropathy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Forslind, K; Svensson, B
2016-01-01
To determine the value of magnetic resonance imaging (MRI) of bones and joints in patients with recent-onset rheumatoid arthritis (RA) treated for 2 years from diagnosis with disease-modifying anti-rheumatic drugs (DMARDs) and glucocorticoids. Thirteen patients with early RA were treated according to clinical practice and followed with MRI, radiographs, and Disease Activity Score calculated on 28 joints (DAS28) at inclusion (baseline) and after 1, 4, 7, 13, and 25 months. MRI of the dominant wrist and metacarpophalangeal (MCP) joints were assessed for synovitis, bone oedema, and erosions using the RA MRI Score (RAMRIS) and for tenosynovitis by an MRI tenosynovitis scoring method. Radiographs were assessed by the van der Heijde modified Sharp score (SHS). Clinical remission was defined by a DAS28 < 2.6. MRI at baseline detected inflammation in joints and tendons in all patients as well as erosions in 10 out of 13 patients. Over time, the erosion score increased while the synovitis and tenosynovitis scores remained almost unchanged. Bone oedema strongly correlated with synovitis. Synovitis and tenosynovitis correlated well with the erosion score at baseline but not thereafter. The MRI changes showed that joint damage started early and continued in the presence of persistent synovial and tenosynovial inflammation. The observations made in this small study suggest that the treatment goal of 'clinical remission' should be supplemented by a 'joint remission' goal. To this end, MRI is an appropriate tool. Further studies are needed to evaluate the optimal use of MRI in early RA.
Computational predictive methods for fracture and fatigue
NASA Technical Reports Server (NTRS)
Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.
1994-01-01
The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.
Computational predictive methods for fracture and fatigue
NASA Astrophysics Data System (ADS)
Cordes, J.; Chang, A. T.; Nelson, N.; Kim, Y.
1994-09-01
The damage-tolerant design philosophy as used by aircraft industries enables aircraft components and aircraft structures to operate safely with minor damage, small cracks, and flaws. Maintenance and inspection procedures insure that damages developed during service remain below design values. When damage is found, repairs or design modifications are implemented and flight is resumed. Design and redesign guidelines, such as military specifications MIL-A-83444, have successfully reduced the incidence of damage and cracks. However, fatigue cracks continue to appear in aircraft well before the design life has expired. The F16 airplane, for instance, developed small cracks in the engine mount, wing support, bulk heads, the fuselage upper skin, the fuel shelf joints, and along the upper wings. Some cracks were found after 600 hours of the 8000 hour design service life and design modifications were required. Tests on the F16 plane showed that the design loading conditions were close to the predicted loading conditions. Improvements to analytic methods for predicting fatigue crack growth adjacent to holes, when multiple damage sites are present, and in corrosive environments would result in more cost-effective designs, fewer repairs, and fewer redesigns. The overall objective of the research described in this paper is to develop, verify, and extend the computational efficiency of analysis procedures necessary for damage tolerant design. This paper describes an elastic/plastic fracture method and an associated fatigue analysis method for damage tolerant design. Both methods are unique in that material parameters such as fracture toughness, R-curve data, and fatigue constants are not required. The methods are implemented with a general-purpose finite element package. Several proof-of-concept examples are given. With further development, the methods could be extended for analysis of multi-site damage, creep-fatigue, and corrosion fatigue problems.
Dynamics of combined forest damage risks for 21st century (SRES A1B, B1)
NASA Astrophysics Data System (ADS)
Panferov, Oleg; Merklein, Johannes; Sogachev, Andrey; Junghans, Udo; Ahrends, Bernd
2010-05-01
The ongoing climate change can result in increasing frequency of weather extremes (Leckebusch et al., 2008) which in turn can produce wide area forest damage (windthrows, droughts, insect attacks) within forest ecosystems in Europe. The probability and extent of damage, depend not only on a strength of a driving force itself but especially on combinations of effecting agents and their interactions with forest ecosystem structure and soil properties. The combined effect of several factors which are not the extremes themselves can lead to the biotic and/or abiotic damage so that the combination becomes an extreme event. As soon as a damage event occurs, the forest structure is changed. The changes in forest structure in their turn strengthen or inhibits the influence of different climatic factors thus increase or decrease the probability of the next damage event creating positive or negative feedbacks. To assess the roles of separate meteorological factors and their combinations in forest damage under present and future climatic conditions the coupled model was created in University of Goettingen, as a part of a Decision Support System (Jansen et al, 2008, Panferov et al., 2009). The model combines the 3D ABL Model SCADIS (Panferov and Sogachev, 2008) with modified soil hydrology model BROOK 90 (Federer, 2003, Ahrends et al. 2009) and the model of climate dependent biotic damage. The projected future developments of forest damage events in 21st Century were carried out under conditions of SRES scenarios A1B and B1; the present conditions were evaluated using the measured data of German Weather Service. Climate scenario data of coupled ECHAM5-MPIOM were downscaled by the regional climate model Climate Local Model (CLM) to the spatial resolution of 0.2° x 0.2° and temporal resolution of 24 hours. Using these data as input the small-scale coupled process based modeling was then carried out for example region of Solling, Germany calculating the water and energy balance of forest ecosystems, wind loading on trees and biotic damage for several tree species and typical soil types. The damage risks a certain forest stand at a given soil results from daily combinations of air and soil temperatures, soil water characteristics, static and gust wind loads on trees with dynamic LAI and of soil texture. Some damaged stands show higher vulnerability and thus - positive feedbacks to climate forcing (Vygodskaya et al., 2007). Therefore, changes of microclimate in remaining stands after changes in forest structure are taken into account. Model output is aggregated to 30-years periods and compared to "present conditions" of 1981-2010. The results show considerable increment of both biotic and abiotic risks towards 2100 relatively to "present" caused by weak changes in precipitation and wind patterns and strong increase of mean air temperature and soil temperatures. It is shown, e.g. that the wind- damage-induced changes of structure and microclimate provide a positive feedback i.e. - increase the probability of the next damage event. The study was financed by BMBF within the frames of joint project "Decision Support System - Forest and Climate Change" (DSS-WuK) and by Grant of Ministry for Science and Culture of Lower Saxony "KLIFF". We gratefully acknowledge this support.
Finite element model updating of riveted joints of simplified model aircraft structure
NASA Astrophysics Data System (ADS)
Yunus, M. A.; Rani, M. N. Abdul; Sani, M. S. M.; Shah, M. A. S. Aziz
2018-04-01
Thin metal sheets are widely used to fabricate a various type of aerospace structures because of its flexibility and easily to form into any type shapes of structure. The riveted joint has turn out to be one of the popular joint types in jointing the aerospace structures because they can be easily be disassembled, maintained and inspected. In this paper, thin metal sheet components are assembled together via riveted joints to form a simplified model of aerospace structure. However, to model the jointed structure that are attached together via the mechanical joints such as riveted joint are very difficult due to local effects. Understandably that the dynamic characteristic of the joined structure can be significantly affected by these joints due to local effects at the mating areas of the riveted joints such as surface contact, clamping force and slips. A few types of element connectors that available in MSC NATRAN/PATRAN have investigated in order to presented as the rivet joints. Thus, the results obtained in term of natural frequencies and mode shapes are then contrasted with experimental counterpart in order to investigate the acceptance level of accuracy between element connectors that are used in modelling the rivet joints of the riveted joints structure. The reconciliation method via finiteelement model updating is used to minimise the discrepancy of the initial finite element model of the riveted joined structure as close as experimental data and their results are discussed.
NASA Technical Reports Server (NTRS)
Seshadri, Banavara R.; Smith, Stephen W.; Newman, John A.
2013-01-01
Friction stir welding (FSW) fabrication technology is being adopted in aerospace applications. The use of this technology can reduce production cost, lead-times, reduce structural weight and need for fasteners and lap joints, which are typically the primary locations of crack initiation and multi-site fatigue damage in aerospace structures. FSW is a solid state welding process that is well-suited for joining aluminum alloy components; however, the process introduces residual stresses (both tensile and compressive) in joined components. The propagation of fatigue cracks in a residual stress field and the resulting redistribution of the residual stress field and its effect on crack closure have to be estimated. To insure the safe insertion of complex integral structures, an accurate understanding of the fatigue crack growth behavior and the complex crack path process must be understood. A life prediction methodology for fatigue crack growth through the weld under the influence of residual stresses in aluminum alloy structures fabricated using FSW will be detailed. The effects and significance of the magnitude of residual stress at a crack tip on the estimated crack tip driving force are highlighted. The location of the crack tip relative to the FSW and the effect of microstructure on fatigue crack growth are considered. A damage tolerant life prediction methodology accounting for microstructural variation in the weld zone and residual stress field will lead to the design of lighter and more reliable aerospace structures
NASA Astrophysics Data System (ADS)
Ebrahimian, Hamed; Astroza, Rodrigo; Conte, Joel P.; de Callafon, Raymond A.
2017-02-01
This paper presents a framework for structural health monitoring (SHM) and damage identification of civil structures. This framework integrates advanced mechanics-based nonlinear finite element (FE) modeling and analysis techniques with a batch Bayesian estimation approach to estimate time-invariant model parameters used in the FE model of the structure of interest. The framework uses input excitation and dynamic response of the structure and updates a nonlinear FE model of the structure to minimize the discrepancies between predicted and measured response time histories. The updated FE model can then be interrogated to detect, localize, classify, and quantify the state of damage and predict the remaining useful life of the structure. As opposed to recursive estimation methods, in the batch Bayesian estimation approach, the entire time history of the input excitation and output response of the structure are used as a batch of data to estimate the FE model parameters through a number of iterations. In the case of non-informative prior, the batch Bayesian method leads to an extended maximum likelihood (ML) estimation method to estimate jointly time-invariant model parameters and the measurement noise amplitude. The extended ML estimation problem is solved efficiently using a gradient-based interior-point optimization algorithm. Gradient-based optimization algorithms require the FE response sensitivities with respect to the model parameters to be identified. The FE response sensitivities are computed accurately and efficiently using the direct differentiation method (DDM). The estimation uncertainties are evaluated based on the Cramer-Rao lower bound (CRLB) theorem by computing the exact Fisher Information matrix using the FE response sensitivities with respect to the model parameters. The accuracy of the proposed uncertainty quantification approach is verified using a sampling approach based on the unscented transformation. Two validation studies, based on realistic structural FE models of a bridge pier and a moment resisting steel frame, are performed to validate the performance and accuracy of the presented nonlinear FE model updating approach and demonstrate its application to SHM. These validation studies show the excellent performance of the proposed framework for SHM and damage identification even in the presence of high measurement noise and/or way-out initial estimates of the model parameters. Furthermore, the detrimental effects of the input measurement noise on the performance of the proposed framework are illustrated and quantified through one of the validation studies.
Influences of Nozzle Material on Laser Droplet Brazing Joints with Cu89Sn11 Preforms
NASA Astrophysics Data System (ADS)
Stein, Stefan; Heberle, Johannes; Gürtler, Franz Josef; Cvecek, Kristian; Roth, Stephan; Schmidt, Michael
This paper presents latest results on the influences of nozzle material and geometry on the electromechanical contacting of sensitive piezoceramic actuator modules. Two nozzle types have been investigated,a standard WC/Co nozzle which is used for soldering applications and a novelceramic nozzle. Applications for active piezoceramic components integrated in structural parts are e.g. active damping, energy harvesting, or monitoring of vibrations and material failure. Anup to now unsolved problem is the electrical contacting of such components without damaging the conductor or the metallization of the ceramic substrate. Since piezoelectric components are to be integrated into structures made of casted aluminum, requirements are high mechanical strength and temperature resistance. Within this paper a method forcontacting piezoceramic modules is presented. A spherical braze preform of tin bronze Cu89Sn11 with a diameter of 600 μm is located in a ceramic nozzle and is subsequently melted by a laser pulse. The liquid solder is ejected from the nozzlevia nitrogen overpressure and wets the surface of the metallization pad and the Cu-wire, resulting in a brazing joint after solidification. The process is called laser droplet brazing (LDB). To asses the thermal evolution during one cycle WC/Co and ZTA have been simulated numerically for two different geometries enabling a proposition weather the geometry or the material properties have a significant influence on the thermal load during one cycle. To evaluate the influence of the nozzle on the joint the positioning accuracy, joint height and detachment times have been evaluated. Results obtained with the ZTA nozzle show comparable positioning accuracies to a WC/Co nozzle with a lower standard deviation of solder detachment time.
An Orthopedic Perspective. Does Running Cause Osteoarthritis?
ERIC Educational Resources Information Center
Pascale, Mark; Grana, William A.
1989-01-01
Discusses the development of osteoarthritis and whether running and other impact loading sports promote it. Although these sports do not cause arthritis in normal weight bearing limbs, they can accelerate it in damaged joints. It is important to identify people with preeexisting joint disease so they can choose nonimpact-loading aerobic exercise.…
Senior Enlisted Advisor Joint Staff History Joint Staff Inspector General Joint Staff Structure Origin of J8 | Force Structure, Resources & Assessment Contact Joint Staff Senior Leaders Gen. Joseph F Biography All Joint Staff Biographies Thomas F. Carney, Vice Director for Force Structure, Resources,and
Gravity-induced rock mass damage related to large en masse rockslides: Evidence from Vajont
NASA Astrophysics Data System (ADS)
Paronuzzi, Paolo; Bolla, Alberto
2015-04-01
The Vajont landslide is a well-known, reservoir-induced slope failure that occurred on 9 October 1963 and was characterized by an 'en masse' sliding motion that triggered various large waves, determining catastrophic consequences for the nearby territory and adjacent villages. During the Vajont dam construction, and especially after the disaster, some researchers identified widespread field evidence of heavy rock mass damage involving the presumed prehistoric rockslide and/or the 1963 failed mass. This paper describes evidence of heavy gravitational damage, including (i) folding, (ii) fracturing, (iii) faulting, and (iv) intact rock disintegration. The gravity-induced rock mass damage (GRMD) characterizes the remnants of the basal shear zone, still resting on the large detachment surface, and the 1963 failed rock mass. The comprehensive geological study of the 1963 Vajont landslide, based on the recently performed geomechanical survey (2006-present) and on the critical analysis of the past photographic documentation (1959-1964), allows us to recognize that most GRMD evidence is related to the prehistoric multistage Mt. Toc rockslide. The 1963 catastrophic en masse remobilization induced an increase to the prehistoric damage, reworking preexisting structures and creating additional gravity-driven features (folds, fractures, faults, and rock fragmentation). The gravity-induced damage was formed during the slope instability phases that preceded the collapse (static or quasi-static GRMD) and also as a consequence of the sliding motion and of the devastating impact between the failed blocks (dynamic GRMD). Gravitational damage originated various types of small drag folds such as flexures, concentric folds, chevron, and kink-box folds, all having a radius of 1-5 m. Large buckle folds (radius of 10-50 m) are related to the dynamic damage and were formed during the en masse motion as a consequence of deceleration and impact processes that involved the sliding mass. Prior to failure, unstable rock slopes can be affected by diffuse newly formed gravity-driven joints that are absent in the surrounding area and within the underlying bedrock, as the Vajont case history demonstrates (joint sets J9 and J10). These fractures, caused by critical tensile and shear stresses, represent an important mechanical clue to recognizing, on a geological basis, the instability condition of a rock slope under investigation. Owing to its complex geological evolution, the Vajont landslide is an outstanding example to help learn about cumulative GRMD effects that can accumulate over time when an ancient rockslide is further remobilized by a sudden en masse sliding motion.
Roessler, Philip P; Schüttler, Karl F; Heyse, Thomas J; Wirtz, Dieter C; Efe, Turgay
2016-03-01
The anterolateral ligament of the knee (ALL) has caused a lot of rumors in orthopaedics these days. The structure that was first described by Segond back in 1879 has experienced a long history of anatomic descriptions and speculations until its rediscovery by Claes in 2013. Its biomechanical properties and function have been examined recently, but are not yet fully understood. While the structure seems to act as a limiter of internal rotation and lateral meniscal extrusion its possible proprioceptive effect remains questionable. Its contribution to the pivot shift phenomenon has been uncovered in parts, therefore it has been recognized that a concomitant anterolateral stabilization together with ACL reconstruction may aid in prevention of postoperative instability after severe ligamentous knee damages. However, there are a lot of different methods to perform this procedure and the clinical outcome has yet to be examined. This concise review will give an overview on the present literature to outline the long history of the ALL under its different names, its anatomic variances and topography as well as on histologic examinations, imaging modalities, arthroscopic aspects and methods for a possible anterolateral stabilization of the knee joint.
NASA Astrophysics Data System (ADS)
Chen, Y.; Ni, Y. Q.; Ye, X. W.; Yang, H. X.; Zhu, S.
2012-04-01
Wind energy utilization as a reliable energy source has become a large industry in the last 20 years. Nowadays, wind turbines can generate megawatts of power and have rotor diameters that are on the order of 100 meters in diameter. One of the key components in a wind turbine is the blade which could be damaged by moisture absorption, fatigue, wind gusts or lighting strikes. The wind turbine blades should be routinely monitored to improve safety, minimize downtime, lower the risk of sudden breakdowns and associated huge maintenance and logistics costs, and provide reliable power generation. In this paper, a real-time wind turbine blade monitoring system using fiber Bragg grating (FBG) sensors with the fiber optic rotary joint (FORJ) is proposed, and applied to monitor the structural responses of a 600 W small scale wind turbine. The feasibility and effectiveness of the FORJ is validated by continuously transmitting the optical signals between the FBG interrogator at the stationary side and the FBG sensors on the rotating part. A comparison study between the measured data from the proposed system and those from an IMote2-based wireless strain measurement system is conducted.
Singh, Namrata; Vogelgesang, Scott A
2017-05-01
Monoarticular arthritis is inflammation characterized by joint pain, swelling, and sometimes periarticular erythema. Although chronic causes are seen, the onset is often acute. An infected joint can quickly lead to permanent damage, making it a medical emergency. However, acute gout presenting as monoarticular arthritis is often so uncomfortable it requires urgent attention. Monoarticular crystalline arthritis is common and a septic joint is a medical emergency so it is no surprise that these diagnoses come to mind with complaint of inflammation in 1 joint. However, there are many causes of monoarticular arthritis that clinicians must consider. Copyright © 2016 Elsevier Inc. All rights reserved.
Dynamic Analyses Including Joints Of Truss Structures
NASA Technical Reports Server (NTRS)
Belvin, W. Keith
1991-01-01
Method for mathematically modeling joints to assess influences of joints on dynamic response of truss structures developed in study. Only structures with low-frequency oscillations considered; only Coulomb friction and viscous damping included in analysis. Focus of effort to obtain finite-element mathematical models of joints exhibiting load-vs.-deflection behavior similar to measured load-vs.-deflection behavior of real joints. Experiments performed to determine stiffness and damping nonlinearities typical of joint hardware. Algorithm for computing coefficients of analytical joint models based on test data developed to enable study of linear and nonlinear effects of joints on global structural response. Besides intended application to large space structures, applications in nonaerospace community include ground-based antennas and earthquake-resistant steel-framed buildings.
Joint Inversion of 3d Mt/gravity/magnetic at Pisagua Fault.
NASA Astrophysics Data System (ADS)
Bascur, J.; Saez, P.; Tapia, R.; Humpire, M.
2017-12-01
This work shows the results of a joint inversion at Pisagua Fault using 3D Magnetotellurics (MT), gravity and regional magnetic data. The MT survey has a poor coverage of study area with only 21 stations; however, it allows to detect a low resistivity zone aligned with the Pisagua Fault trace that it is interpreted as a damage zone. The integration of gravity and magnetic data, which have more dense sampling and coverage, adds more detail and resolution to the detected low resistivity structure and helps to improve the structure interpretation using the resulted models (density, magnetic-susceptibility and electrical resistivity). The joint inversion process minimizes a multiple target function which includes the data misfit, model roughness and coupling norms (crossgradient and direct relations) for all geophysical methods considered (MT, gravity and magnetic). This process is solved iteratively using the Gauss-Newton method which updates the model of each geophysical method improving its individual data misfit, model roughness and the coupling with the other geophysical models. For solving the model updates of magnetic and gravity methods were developed dedicated 3D inversion software codes which include the coupling norms with additionals geophysical parameters. The model update of the 3D MT is calculated using an iterative method which sequentially filters the priority model and the output model of a single 3D MT inversion process for obtaining the resistivity model coupled solution with the gravity and magnetic methods.
NASA Technical Reports Server (NTRS)
Slater, Richard
1996-01-01
A joint U.S./Russian film test was conducted during MIR Mission 18 to evaluate the effects of radiation on photographic film during long-duration space flights. Two duplicate sets of film were flown on this MIR mission: one set was processed and evaluated by the NASA/JSC Photographic Laboratory, and the other by the RKK Energia's Photographic Laboratory in Moscow. This preliminary report includes only the results of the JSC evaluation (excluding the SN-10 film which was not available for evaluation at the time this report was written). The final report will include an evaluation by JSC of the SN-10 film and an evaluation of the test data by the RKK Energia. ISC's evaluation of the test data showed the positive film flown was damaged very little when exposed to approximately 8 rads of radiation. Two of the three negative films were significantly damaged and the third film was damaged only moderately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, R.
1996-04-01
A joint U.S./Russian film test was conducted during MIR Mission 18 to evaluate the effects of radiation on photographic film during long-duration space flights. Two duplicate sets of film were flown on this MIR mission: one set was processed and evaluated by the NASA/JSC Photographic Laboratory, and the other by the RKK Energia`s Photographic Laboratory in Moscow. This preliminary report includes only the results of the JSC evaluation (excluding the SN-10 film which was not available for evaluation at the time this report was written). The final report will include an evaluation by JSC of the SN-10 film and anmore » evaluation of the test data by the RKK Energia. ISC`s evaluation of the test data showed the positive film flown was damaged very little when exposed to approximately 8 rads of radiation. Two of the three negative films were significantly damaged and the third film was damaged only moderately.« less
Franceschi, F; Togni, S; Belcaro, G; Dugall, M; Luzzi, R; Ledda, A; Pellegrini, L; Eggenhoffner, R; Giacomelli, L
2016-10-01
Several experimental studies and clinical trials support the potential of Boswellia serrata extracts (BSE) for the treatment of various inflammatory diseases. The aim of this registry study was to assess the safety and the efficacy of a novel lecithin-based delivery form of Boswellia serrata extract (Casperome®) in the supportive management of osteo-muscular pain. 52 healthy young rugby players with acute knee pain and inflammation were recruited. Informed participants freely decided to follow either a standard management (SM) to control joint pain (control group = 27) or SM associated with oral daily supplementation with Casperome® (supplement group =25). Parameters associated with osteo-muscular pain and inflammation, and measurements of joint health and functions were assessed at the inclusion and after a 4-week supplementation. A significant beneficial effect of Casperome® vs SM alone was observed for all the parameters evaluated, namely: local pain on effort; pain-free walking distance (treadmill test); minimal joint effusion; structural damage (joint, tendons, muscles) and intramuscular hematomas; thermal imaging of the anterior knee; Visual Analog Scale for Pain (VAS Pain); need for concomitant drugs and medical attention; measurement of inflammatory biomarkers. Our registry study suggests that Casperome® supplementation could represent an effective and safe, integrated approach for the treatment of osteo-muscular pain and inflammation.
Nondestructive evaluation of helicopter rotor blades using guided Lamb modes.
Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay
2014-03-01
This paper presents an application for turning and direct modes in a complex composite laminate structure. The propagation and interaction of turning modes and fundamental Lamb modes are investigated in the skin, spar and web sections of a helicopter rotor blade. Finite element models were used to understand the various mode conversions at geometric discontinuities such as web-spar joints. Experimental investigation was carried out with the help of air coupled ultrasonic transducers. The turning and direct modes were confirmed with the help of particle displacements and velocities. Experimental B-Scans were performed on damaged and undamaged samples for qualitative and quantitative assessment of the structure. A strong correlation between the numerical and experimental results was observed and reported. Copyright © 2013 Elsevier B.V. All rights reserved.
Blom, M; Creemers, M C W; Kievit, W; Lemmens, J A M; van Riel, P L C M
2013-01-01
To investigate the prevalence of cervical spine damage due to rheumatoid arthritis (RA) in the long term and to investigate which disease-specific factors are related to this damage. Patients with early RA from the Nijmegen inception cohort with 6 to 12 years of follow-up were included. Conventional radiographs of the cervical spine were obtained at baseline, 3, 6, 9, and 12 years and scored for erosions of C1 and C2, anterior atlantoaxial subluxation (AAS) and atlantoaxial impaction (AAI). Disease-specific factors, such as disease activity, functionality, and peripheral joint damage, at baseline, 3, 6, and 9 years, were compared between patients with and without cervical spine damage at 9 years. A total of 196 patients were included, of whom 134 had radiographs at 9 years. Cervical spine damage was present in 16% (22/134) of the patients at 9 years. During the total 12 years of follow-up, AAS and erosions of C2 were observed most frequently. Erosions of C1 and AAI were very rare. Patients with cervical spine damage at 9 years had a higher number of erosions of the peripheral joints and failed more disease-modifying anti-rheumatic drugs (DMARDs) at 3, 6, and 9 years. Patients without peripheral erosive disease at 3 years were unlikely to develop cervical spine damage within 9 years of disease duration. The prevalence of cervical spine damage due to RA was 16% at 9 years. Patients without peripheral erosive disease at 3 years were unlikely to develop cervical spine damage at 9 years.
Banaszek, Daniel; Pickell, Michael; Wilson, Evan; Ducsharm, Melissa; Hesse, Daniel; Easteal, Ron; Bardana, Davide D
2017-01-01
The purpose of this study was to examine the safety of an arthroscopic technique for acromioclavicular joint (ACJ) reconstruction by investigating its proximity to important neurovascular structures. Six shoulders from 4 cadaveric specimens were used for ACJ reconstruction in this study. The procedure consists of performing an arthroscopic acromioclavicular (AC) reduction with a double button construct, followed by coracoclavicular ligament reconstruction without drilling clavicular tunnels. Shoulders were subsequently dissected in order to identify and measure distances to adjacent neurovascular structures. The suprascapular artery and nerve were the closest neurovascular structures to implanted materials. The mean distances were 8.2 (standard deviation [SD] = 3.6) mm to the suprascapular nerve and 5.6 (SD = 4.2) mm to the suprascapular artery. The mean distance of the suprascapular nerve from implants was found to be greater than 5 mm (P = .040), while the distance to the suprascapular artery was not (P > .5). Neither difference was statistically significant (P = .80 for artery; P = .08 for nerve). Mini-open, arthroscopically assisted ACJ reconstruction safely avoids the surrounding nerves, with no observed damage to any neurovascular structures including the suprascapular nerve and artery, and may be a viable alternative to open techniques. However, surgeons must remain cognizant of possible close proximity to the suprascapular artery. This study represents an evaluation of the safety and feasibility of a minimally invasive ACJ reconstruction as it relates to the proximity of neurovascular structures. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Senior Enlisted Advisor Joint Staff History Joint Staff Inspector General Joint Staff Structure Origin of J8 | Force Structure, Resources & Assessment Contact Joint Staff Media News Videos Chairman's
2013-03-01
framework of orientation distribution functions and crack-induced texture o Quantify effects of temperature on damage behavior and damage monitoring...measurement model was obtained from hidden Markov modeling (HMM) of joint time-frequency (TF) features extracted from the PZT sensor signals using the...considered PZT sensor signals recorded from a bolted aluminum plate. About only 20% of the samples of a signal were first randomly selected as
Bertuglia, Andrea; Pagliara, Eleonora; Grego, Elena; Ricci, Alessandro; Brkljaca-Bottegaro, Nika
2016-11-08
Joint impact injuries initiate a progressive articular damage finally leading to post-traumatic osteoarthritis (PTOA). Racehorses represent an ideal, naturally available, animal model of the disease. Standardbred racehorses developing traumatic osteoarthritis of the fetlock joint during the first year of their career were enrolled in our study. Age-matched controls were contemporarily included. Biomarker levels of equine osteoarthritis were measured in serum and synovial fluid (SF) at baseline, and repeated yearly over the next 4 years of training (from T1 to T4). The effect of time and disease on the biomarker concentrations were analysed, and their relationship with clinical and radiographic parameters were assessed. We hypothesized that the kinetics of pro-inflammatory cytokines and structural biomarkers of joint disease would demonstrate progression of degenerative joint status during post-traumatic osteoarthritis and clarify the effect of early joint trauma. The concentrations of IL1-ß, IL-6, TNF-α in the SF of PTOA group peaked at T0, decreased at T1, and then progressively increased with time, reaching levels higher than those observed at baseline starting from T3. CTXII and COMP levels were similar in PTOA and control horses at baseline, and increased in serum and synovial fluid of PTOA horses starting from T2 (serum and synovial CTXII, and serum COMP) or T3 (synovial COMP). The percentual change of TNF-α in the SF of the affected joints independently contributed to explaining the radiological changes at T3 vs T2 and T4 vs T3. Temporal changes of selected biomarkers in STBRs with an acute episode of traumatic fetlock OA demonstrated that long-term increased concentrations of inflammatory cytokines, type II collagen fragments and COMP, in the SF and serum, are related to PTOA. Based on the observed decrease in inflammatory merkers at T1, we hypothesize that the progression of PTOA could be effectively modulated by proper treatment strategies. Annual variations of synovial concentration of TNF-α can reliably predict radiographic progression of PTOA.
2014-01-01
Introduction High levels of the oncoprotein survivin may be detected in the majority of patients with early rheumatoid arthritis (RA). Survivin is a sensitive predictor of joint damage and persistent disease activity. Survivin-positive patients are often poor responders to antirheumatic and biological treatment. The aim of this study was to investigate the reproducibility of survivin status and its significance for clinical and immunological assessment of RA patients. Methods Survivin levels were measured in 339 patients from the Better Anti-Rheumatic FarmacOTherapy (BARFOT) cohort of early RA at baseline and after 24 months. The association of survivin status with joint damage (total Sharp-van der Heijde score), disease activity (Disease Activity Score based on evaluation of 28 joints (DAS28)), functional disability (Health Assessment Questionnaire (HAQ)), and pain perception (Visual Analogue Scale (VAS)) was calculated in the groups positive and negative for survivin on both occasions, and for the positive-negative and negative-positive groups. Results In 268 patients (79%) the levels of survivin were similar at baseline and after 24 months, 15% converted from survivin-positive to survivin-negative, and 5% from survivin-negative to survivin-positive. A combination of smoking and antibodies against cyclic citrullinated peptides (aCCP) predicted persistently (baseline and 24 months) high levels of survivin (odds ratio 4.36 (95% CI: 2.64 to 7.20), P < 0.001), positive predictive value 0.66 and specificity 0.83). The independent nature of survivin and aCCP was demonstrated by statistical and laboratory analysis. Survivin positivity on both test occasions was associated with the progression of joint damage, significantly higher DAS28 and lower rate of remission at 24 and 60 months compared to negative-negative patients. Survivin status was less associated with changes in HAQ and VAS. Conclusions Survivin is a relevant and reproducible marker of severe RA. Persistently high levels of survivin were associated with smoking and the presence of aCCP and/or RF antibodies and predicted persistent disease activity and joint damage. PMID:24428870
Coupled Flow and Mechanics in Porous and Fractured Media*
NASA Astrophysics Data System (ADS)
Martinez, M. J.; Newell, P.; Bishop, J.
2012-12-01
Numerical models describing subsurface flow through deformable porous materials are important for understanding and enabling energy security and climate security. Some applications of current interest come from such diverse areas as geologic sequestration of anthropogenic CO2, hydro-fracturing for stimulation of hydrocarbon reservoirs, and modeling electrochemistry-induced swelling of fluid-filled porous electrodes. Induced stress fields in any of these applications can lead to structural failure and fracture. The ultimate goal of this research is to model evolving faults and fracture networks and flow within the networks while coupling to flow and mechanics within the intact porous structure. We report here on a new computational capability for coupling of multiphase porous flow with geomechanics including assessment of over-pressure-induced structural damage. The geomechanics is coupled to the flow via the variation in the fluid pore pressures, whereas the flow problem is coupled to mechanics by the concomitant material strains which alter the pore volume (porosity field) and hence the permeability field. For linear elastic solid mechanics a monolithic coupling strategy is utilized. For nonlinear elastic/plastic and fractured media, a segregated coupling is presented. To facilitate coupling with disparate flow and mechanics time scales, the coupling strategy allows for different time steps in the flow solve compared to the mechanics solve. If time steps are synchronized, the controller allows user-specified intra-time-step iterations. The iterative coupling is dynamically controlled based on a norm measuring the degree of variation in the deformed porosity. The model is applied for evaluation of the integrity of jointed caprock systems during CO2 sequestration operations. Creation or reactivation of joints can lead to enhanced pathways for leakage. Similarly, over-pressures can induce flow along faults. Fluid flow rates in fractures are strongly dependent on the effective hydraulic aperture, which is a non-linear function of effective normal stress. The dynamically evolving aperture field updates the effective, anisotropic permeability tensor, thus resulting in a highly coupled multiphysics problem. Two models of geomechanical damage are discussed: critical shear-slip criteria and a sub-grid joint model. Leakage rates through the caprock resulting from the joint model are compared to those assuming intact material, allowing a correlation between potential for leakage and injection rates/pressures, for various in-situ stratigraphies. *This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energys National Nuclear Security Administration under Contract DE-AC04-94AL85000.
NASA Technical Reports Server (NTRS)
Rosheim, Mark; Trechsel, Hans
1993-01-01
Anthropomorphic telerobotic hand contains actuators, joints, sensors, and complex wiring harnesses. Glove protects interior components of hand from dirt and damage. Imitates motions of human fingers and wrist in lifelike and dexterous way. Incorporates pitch/yaw joints in wrist and head knuckles. Hand modular; so fingers removable, interchangeable units. Feature simplifies servicing and maintenance, which must be done frequently in such complex mechanism.
Sagar, Devi Rani; Ashraf, Sadaf; Xu, Luting; Burston, James J; Menhinick, Matthew R; Poulter, Caroline L; Bennett, Andrew J; Walsh, David A; Chapman, Victoria
2014-01-01
Background Increased subchondral bone turnover may contribute to pain in osteoarthritis (OA). Objectives To investigate the analgesic potential of a modified version of osteoprotegerin (osteoprotegerin-Fc (OPG-Fc)) in the monosodium iodoacetate (MIA) model of OA pain. Methods Male Sprague Dawley rats (140–260 g) were treated with either OPG-Fc (3 mg/kg, subcutaneously) or vehicle (phosphate-buffered saline) between days 1 and 27 (pre-emptive treatment) or days 21 and 27 (therapeutic treatment) after an intra-articular injection of MIA (1 mg/50 µl) or saline. A separate cohort of rats received the bisphosphonate zoledronate (100 µg/kg, subcutaneously) between days 1 and 25 post-MIA injection. Incapacitance testing and von Frey (1–15 g) hind paw withdrawal thresholds were used to assess pain behaviour. At the end of the study, rats were killed and the knee joints and spinal cord removed for analysis. Immunohistochemical studies using Iba-1 and GFAP quantified levels of activation of spinal microglia and astrocytes, respectively. Joint sections were stained with haematoxylin and eosin or Safranin-O fast green and scored for matrix proteoglycan and overall joint morphology. The numbers of tartrate-resistant acid phosphatase-positive osteoclasts were quantified. N=10 rats/group. Results Pre-emptive treatment with OPG-Fc significantly attenuated the development of MIA-induced changes in weightbearing, but not allodynia. OPG-Fc decreased osteoclast number, inhibited the formation of osteophytes and improved structural pathology within the joint similarly to the decrease seen after pretreatment with the bisphosphonate, zoledronate. Therapeutic treatment with OPG-Fc decreased pain behaviour, but did not improve pathology in rats with established joint damage. Conclusions Our data suggest that early targeting of osteoclasts may reduce pain associated with OA. PMID:23723320
Mechanical joining of materials with limited ductility: Analysis of process-induced defects
NASA Astrophysics Data System (ADS)
Jäckel, M.; Coppieters, S.; Hofmann, M.; Vandermeiren, N.; Landgrebe, D.; Debruyne, D.; Wallmersberger, T.; Faes, K.
2017-10-01
The paper shows experimental and numerical analyses of the clinching process of 6xxx series aluminum sheets in T6 condition and the self-pierce riveting process of an aluminum die casting. In the experimental investigations the damage behavior of the materials when using different tool parameters is analyzed. The focus of the numerical investigations is the damage prediction by a comparison of different damage criteria. Moreover, strength-and fatigue tests were carried out to investigate the influence of the joining process-induced damages on the strength properties of the joints.
Evaluation of joint findings with gait analysis in children with hemophilia.
Cayir, Atilla; Yavuzer, Gunes; Sayli, Revide Tülin; Gurcay, Eda; Culha, Vildan; Bozkurt, Murat
2014-01-01
Hemophilic arthropathy due to recurrent joint bleeding leads to physical, psychological and socioeconomic problems in children with hemophilia and reduces their quality of life. The purpose of this study was to evaluate joint damage through various parameters and to determine functional deterioration in the musculoskeletal system during walking using kinetic and kinematic gait analysis. Physical examination and kinetic and kinematic gait analysis findings of 19 hemophilic patients aged 7-20 years were compared with those of age, sex and leg length matched controls. Stride time was longer in the hemophilia group (p=0.001) compared to the age matched healthy control group, while hip, knee and ankle joint rotation angles were more limited (p=0.001, p=0.035 and p=0.001, respectively). In the hemophilia group, the extensor moment of the knee joint in the stance phase was less than that in the control group (p=0.001). Stride time was longer in the severe hemophilia group compared to the mild-moderate hemophilia and control groups (p=0.011 and p=0.001, respectively). Rotation angle of the ankle was wider in the control group compared to the other two groups (p=0.001 for both). Rotation angle of the ankle joint was narrower in the severe hemophilia group compared to the others (p=0.001 for each). Extensor moment of the knee joint was greater in the control group compared to the other two groups (p=0.003 and p=0.001, respectively). Walking velocity was higher in the control group compared to the severe hemophilia group. Kinetic and kinematic gait analysis has the sensitivity to detect minimal changes in biomechanical parameters. Gait analysis can be used as a reliable method to detect early joint damage.
Chen, Y; Sun, Y; Pan, X; Ho, K; Li, G
2015-10-01
Osteoarthritis (OA) is a progressive joint disorder. To date, there is not effective medical therapy. Joint distraction has given us hope for slowing down the OA progression. In this study, we investigated the benefits of joint distraction in OA rat model and the probable underlying mechanisms. OA was induced in the right knee joint of rats through anterior cruciate ligament transaction (ACLT) plus medial meniscus resection. The animals were randomized into three groups: two groups were treated with an external fixator for a subsequent 3 weeks, one with and one without joint distraction; and one group without external fixator as OA control. Serum interleukin-1β level was evaluated by ELISA; cartilage quality was assessed by histology examinations (gross appearance, Safranin-O/Fast green stain) and immunohistochemistry examinations (MMP13, Col X); subchondral bone aberrant changes was analyzed by micro-CT and immunohistochemistry (Nestin, Osterix) examinations. Characters of OA were present in the OA group, contrary to in general less severe damage after distraction treatment: firstly, IL-1β level was significantly decreased; secondly, cartilage degeneration was attenuated with lower histologic damage scores and the lower percentage of MMP13 or Col X positive chondrocytes; finally, subchondral bone abnormal change was attenuated, with reduced bone mineral density (BMD) and bone volume/total tissue volume (BV/TV) and the number of Nestin or Osterix positive cells in the subchondral bone. In the present study, we demonstrated that joint distraction reduced the level of secondary inflammation, cartilage degeneration and subchondral bone aberrant change, joint distraction may be a strategy for slowing OA progression. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Electromigration analysis of solder joints under ac load: A mean time to failure model
NASA Astrophysics Data System (ADS)
Yao, Wei; Basaran, Cemal
2012-03-01
In this study, alternating current (ac) electromigration (EM) degradation simulations were carried out for Sn95.5%Ag4.0%Cu0.5 (SAC405- by weight) solder joints. Mass transport analysis was conducted with viscoplastic material properties for quantifying damage mechanism in solder joints. Square, sine, and triangle current wave forms ac were used as input signals. dc and pulsed dc (PDC) electromigration analysis were conducted for comparison purposes. The maximum current density ranged from 2.2×106A/cm2 to 5.0×106A/cm2, frequency ranged from 0.05 Hz to 5 Hz with ambient temperature varying from 350 K to 450 K. Because the room temperature is nearly two-thirds of SAC solder joint's melting point on absolute temperature scale (494.15 K), viscoplastic material model is essential. Entropy based damage evolution model was used to investigate mean time to failure (MTF) behavior of solder joints subjected to ac stressing. It was observed that MTF was inversely proportional to ambient temperature T1.1 in Celsius and also inversely proportional to current density j0.27 in A/cm2. Higher frequency will lead to a shorter lifetime with in the frequency range we studied, and a relationship is proposed as MTF∝f-0.41. Lifetime of a solder joint subjected to ac is longer compared with dc and PDC loading conditions. By introducing frequency, ambient temperature and current density dependency terms, a modified MTTF equation was proposed for solder joints subjected to ac current stressing.
Nistala, K; Murray, K J
2001-09-01
We describe 2 pediatric patients with sickle cell disease (SCD) who developed seropositive juvenile rheumatoid arthritis (JRA). Both patients have severe joint damage, the compound effect of both disease processes. The bone and cartilage destruction, which poses serious therapeutic challenges, highlights the difficulty of making a diagnosis of chronic inflammatory disease in the setting of SCD. There may be a correlation between increased levels of tumor necrosis factor-alpha in the synovial tissue of joints damaged by arthritis and local sickling. The resultant ischemia and corresponding inflammatory infiltrates could in turn worsen existing synovial proliferation and cartilage destruction as well as trigger further sickling.
Yuuki, Arata; Muneta, Takeshi; Ohara, Toshiyuki; Sekiya, Ichiro; Koga, Hideyuki
2017-03-01
Associations of lateral/medial knee instability with anterior cruciate ligament (ACL) injury have not been thoroughly investigated. The purposes of this study were to investigate whether lateral/medial knee instability is associated with ACL injury, and to clarify relevant factors for lateral/medial knee instability in ACL-injured knees. One hundred and nineteen patients with unilateral ACL-injured knees were included. Lateral/medial knee instability was assessed with varus/valgus stress X-ray examination for both injured and uninjured knees by measuring varus/valgus angle, lateral/medial joint opening, and lateral/medial joint opening index. Manual knee instability tests for ACL were evaluated to investigate associations between lateral/medial knee instability and anterior and/or rotational instabilities. Patients' backgrounds were evaluated to identify relevant factors for lateral/medial knee instability. Damage on the lateral collateral ligament (LCL) on MRI was also evaluated. All parameters regarding lateral knee instability in injured knees were significantly greater than in uninjured knees. There were significant correlations between lateral knee instability and the Lachman test as well as the pivot shift test. Patients with LCL damage had significantly greater lateral joint opening than those without LCL damage on MRI. Sensitivity of LCL damage on MRI to lateral joint opening was 100%, while its specificity was 36%. No other relevant factors were identified. In medial knee instability, there were also correlations between medial knee instability and the Lachman test/pivot shift test. However, the correlations were weak and other parameters were not significant. Lateral knee instability was greater in ACL-deficient knees than in uninjured knees. Lateral knee instability was associated with ACL-related instabilities as well as LCL damage on MRI, whereas MRI had low specificity to lateral knee instability. On the other hand, the association of medial knee instability on ACL-related instability was less than that of lateral knee instability. Level IV, case series with no comparison group. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
Durability assessments of concrete using electrical properties and acoustic emission testing
NASA Astrophysics Data System (ADS)
Todak, Heather N.
Premature damage deterioration has been observed in pavement joints throughout the Midwestern region of the United States. Over time, severe joint damage creates a transportation safety concern and the necessary repairs can be an extreme economic burden. The deterioration is due in part to freeze-thaw damage associated with fluid accumulation at the pavement joints. This very preventable problem is an indication that current specifications and construction practices for freeze-thaw durability of concrete are inadequate. This thesis serves to create a better understanding of moisture ingress, freeze-thaw damage mechanisms, and the effect of variations in mixture properties on freeze-thaw behavior of concrete. The concepts of the nick point degree of saturation, sorptivity rates, and critical degree of saturation are discussed. These factors contribute to service life, defined in this study as the duration of time a concrete element remains below levels of critical saturation which are required for damage development to initiate. A theoretical model and a simple experimental procedure are introduced which help determine the nick point for a series of 32 concrete mixtures with unique mixture proportions and air entrainment properties. This simple experimental procedure is also presented as a method to measure important electrical properties in order to establish the formation factor, a valuable measure of concrete transport properties. The results of freeze-thaw testing with acoustic emission monitoring are presented to help understand and quantify damage development in concrete specimens when conditioned to various degrees of saturation. This procedure was used to study the relationship between air entrainment properties and the critical degree of saturation. Applying the concepts of degree of saturation and sorptivity, a performance-based model is proposed as a new approach to specifications for freeze-thaw durability. Finally, a conceptual model is presented to illustrate the effect of various changes in mixture proportions and air void properties on service life.
Neutron protein crystallography: A complementary tool for locating hydrogens in proteins.
O'Dell, William B; Bodenheimer, Annette M; Meilleur, Flora
2016-07-15
Neutron protein crystallography is a powerful tool for investigating protein chemistry because it directly locates hydrogen atom positions in a protein structure. The visibility of hydrogen and deuterium atoms arises from the strong interaction of neutrons with the nuclei of these isotopes. Positions can be unambiguously assigned from diffraction at resolutions typical of protein crystals. Neutrons have the additional benefit to structural biology of not inducing radiation damage in protein crystals. The same crystal could be measured multiple times for parametric studies. Here, we review the basic principles of neutron protein crystallography. The information that can be gained from a neutron structure is presented in balance with practical considerations. Methods to produce isotopically-substituted proteins and to grow large crystals are provided in the context of neutron structures reported in the literature. Available instruments for data collection and software for data processing and structure refinement are described along with technique-specific strategies including joint X-ray/neutron structure refinement. Examples are given to illustrate, ultimately, the unique scientific value of neutron protein crystal structures. Copyright © 2015 Elsevier Inc. All rights reserved.
Joint Chiefs of Staff > Directorates > J3 | Operations
Joint Staff Structure Joint Staff Inspector General Origin of Joint Concepts U.S. Code | Joint Chiefs of J8 | Force Structure, Resources & Assessment Contact J3 Operations Home : Directorates : J3
NASA Astrophysics Data System (ADS)
Pan, Peng; Wu, Shoujun; Wang, Haishen; Nie, Xin
2018-04-01
Earthquake investigations have illustrated that even code-compliant reinforced concrete frames may suffer from soft-story mechanism. This damage mode results in poor ductility and limited energy dissipation. Continuous components offer alternatives that may avoid such failures. A novel infilled rocking wall frame system is proposed that takes advantage of continuous component and rocking characteristics. Previous studies have investigated similar systems that combine a reinforced concrete frame and a wall with rocking behavior used. However, a large-scale experimental study of a reinforced concrete frame combined with a rocking wall has not been reported. In this study, a seismic performance evaluation of the newly proposed infilled rocking wall frame structure was conducted through quasi-static cyclic testing. Critical joints were designed and verified. Numerical models were established and calibrated to estimate frame shear forces. The results evaluation demonstrate that an infilled rocking wall frame can effectively avoid soft-story mechanisms. Capacity and initial stiffness are greatly improved and self-centering behavior is achieved with the help of the infilled rocking wall. Drift distribution becomes more uniform with height. Concrete cracks and damage occurs in desired areas. The infilled rocking wall frame offers a promising approach to achieving seismic resilience.
The lexicon of polyethylene wear in artificial joints.
McKellop, Harry A
2007-12-01
The analysis of wear on polyethylene components that have been retrieved after use in patients has provided invaluable understanding of how wear occurs in vivo, and how it may be minimized through improved materials and implant design. The great number of such studies that have been published over the past three decades has lead to an extensive vocabulary to describe the tribology of prosthetic joints. However, these also have led to some confusion, due to the occasional misuse of terms from classical tribology, along with the use of multiple terms to describe the same wear phenomenon, and vice versa. The author has proposed that our understanding of wear in artificial joints may be enhanced by recognizing that there are four general subject areas: Modes, Mechanisms, Damage and Debris. Wear Mode 1 occurs when the two bearing surfaces are articulating against each other in the manner intended by the implant designer. Mode 2 occurs when a bearing surface articulates against a non-bearing surface. Mode 3 occurs when third-body abrasive particles have become entrapped between the two bearing surfaces, and Mode 4 occurs when two non-bearing surfaces are wearing against each other. The least wear occurs in Mode 1, whereas severe wear typically occurs in Modes 2, 3 and 4. The classical wear mechanisms that apply to prosthetic joints include adhesion, abrasion and fatigue. These can occur in varying amounts in either of the four wear modes. As used in the literature for the past three decades, wear "damage" can best be defined as the change surface texture or morphology that is caused by the action of the wear mechanisms. Although a wide variety of terms have been used, an overview of the literature indicates that about eight terms have been sufficient to describe the types of damage that occur on retrieved polyethylene components, i.e., burnishing, abrasion, scratches, plastic deformation, cracks, pits, delamination, and embedded third bodies. The author suggests that, as far as possible, investigators endeavor to limit their descriptions of surface damage to these terms and, importantly, to clearly and consistently distinguish the classical wear mechanisms from the types of damage produced by those mechanisms. Wear debris refers to the billions of particles, some measuring in nanometers, that are generated by the wear mechanisms, and that initiate biological reactions, such as osteolysis, that may lead to the failure of the implant. As the methods for recovering wear debris from joint fluids and tissues are improved, investigators are using a growing number of terms to describe them. As with the types of damage, it will be important in the coming years to maximize clarity and minimize redundancy of the vocabulary in this important area of research.
Composite skid landing gear design investigation
NASA Astrophysics Data System (ADS)
Shrotri, Kshitij
A Composite Skid Landing Gear Design investigation has been conducted. Limit Drop Test as per Federal Aviation Regulations (FAR) Part 27.725 and Crash test as per MIL STD 1290A (AV) were simulated using ABAQUS to evaluate performance of multiple composite fiber-matrix systems. Load factor developed during multiple landing scenarios and energy dissipated during crash were computed. Strength and stiffness based constraints were imposed. Tsai-Wu and LaRC04 physics based failure criteria were used for limit loads. Hashin's damage initiation criteria with Davila-Camanho's energy based damage evolution damage evolution law were used for crash. Initial results indicate that all single-composite skid landing gear may no be feasible due to strength concerns in the cross member bends. Hybridization of multiple composites with elasto-plastic aluminum 7075 showed proof of strength under limit loads. Laminate tailoring for load factor optimization under limit loads was done by parameterization of a single variable fiber orientation angle for multiple laminate families. Tsai-Wu failure criterion was used to impose strength contraints. A quasi-isotropic N = 4 (pi/4) 48 ply IM7/8552 laminate was shown to be the optimal solution with a load failure will be initiated as matrix cracking under compression and fiber kinking under in-plane shear and longitudinal compression. All failures under limit loads being reported in the metal-composite hybrid joint region, the joint was simulated by adhesive bonding and filament winding, separately. Simply adhesive bonding the metal and composite regions does not meet strength requirements. A filament wound metal-composite joint shows proof of strength. Filament wound bolted metal-composite joint shows proof of strength. Filament wound composite bolted to metal cross member radii is the final joining methodology. Finally, crash analysis was conducted as per requirements from MIL STD 1290A (AV). Crash at 42 ft/sec with 1 design gross weight (DGW) lift was simulated using ABAQUS. Plastic and friction energy dissipation in the reference aluminum skid landing gear was compared with plastic, friction and damage energy dissipation in the hybrid composite design. Damage in composites was modeled as progressive damage with Hashin's damage initiation criteria and an energy based damage evolution law. The latter meets requirements of aircraft kinetic energy dissipation up to 20 ft/sec (67.6 kJ) as per MIL STD 1290A (AV). Weight saving possibility of up to 49% over conventional metal skid landing gear is reported. The final design recommended includes Ke49/PEEK skids, 48 ply IM7/8552 (or IM7/PEEK) cross member tapered beams and Al 7075 cross member bend radii, the latter bolted to the filament wound composite-metal tapered beam. Concerns in composite skid landing gear designs, testing requirements and future opportunities are addressed.
NASA Astrophysics Data System (ADS)
DelGrande, Nancy; Dolan, Kenneth W.; Durbin, Philip F.; Gorvad, Michael R.; Kornblum, B. T.; Perkins, Dwight E.; Schneberk, Daniel J.; Shapiro, Arthur B.
1993-11-01
We discuss three-dimensional dynamic thermal imaging of structural flaws using dual-band infrared (DBIR) computed tomography. Conventional (single-band) thermal imaging is difficult to interpret. It yields imprecise or qualitative information (e.g., when subsurface flaws produce weak heat flow anomalies masked by surface clutter). We use the DBIR imaging technique to clarify interpretation. We capture the time history of surface temperature difference patterns at the epoxy-glue disbond site of a flash-heated lap joint. This type of flawed structure played a significant role in causing damage to the Aloha Aircraft fuselage on the aged Boeing 737 jetliner. The magnitude of surface-temperature differences versus time for 0.1 mm air layer compared to 0.1 mm glue layer, varies from 0.2 to 1.6 degree(s)C, for simultaneously scanned front and back surfaces. The scans are taken every 42 ms from 0 to 8 s after the heat flash. By ratioing 3 - 5 micrometers and 8 - 12 micrometers DBIR images, we located surface temperature patterns from weak heat flow anomalies at the disbond site and remove the emissivity mask from surface paint of roughness variations. Measurements compare well with calculations based on TOPAX3D, a three-dimensional, finite element computer model. We combine infrared, ultrasound and x-ray imaging methods to study heat transfer, bond quality and material differences associated with the lap joint disbond site.
Gutiérrez-Rebolledo, Gabriel Alfonso; Galar-Martínez, Marcela; García-Rodríguez, Rosa Virginia; Chamorro-Cevallos, Germán A.; Hernández-Reyes, Ana Gabriela
2015-01-01
Abstract One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity. PMID:25599112
Sungur, Nezih; Ulusoy, Mustafa Gürhan; Boyacgil, Süreyya; Ortaparmak, Hülya; Akyüz, Mihriban; Ortak, Turgut; Koçer, Uğur; Sensöz, Omer
2006-02-01
Kirschner-wire (K-wire) fixation for 3-6 weeks is an approved method for stabilization of the fingers after the release of flexion contracture deformity. On the other hand, articular surface damage in small joints due to pin fixation is still a topic of debate. Reports claiming permanent joint destruction due to this procedure exist in the literature. To clarify this doubt, a prospective study was carried out in 72 patients with flexion contracture of the hand fingers. After the surgical release of the deformity, immobilization of the interphalangeal (IP) and metacarpophalangeal (MCP) joints was carried out with K-wire fixation for 3 weeks. Clinical evaluation of the patients was accomplished with total active motion (TAM), grip, and pinch force measurements, whereas magnetic resonance (MR) and radionuclide imaging were used as radiodiagnostic tools. Mean follow-up period of the patients was 32 months. Satisfactory results were obtained in terms of functional and esthetic aspects. Evaluation of the data derived from the clinical and radiologic measurements revealed no permanent articular surface damage. K-wire fixation was documented to be an invaluable therapeutic approach not only to prevent recurrence of the contracture deformity but also to stabilize the skin graft effectively. This technique was concluded to provide effective immobilization without permanent articular damage.
Gutiérrez-Rebolledo, Gabriel Alfonso; Galar-Martínez, Marcela; García-Rodríguez, Rosa Virginia; Chamorro-Cevallos, Germán A; Hernández-Reyes, Ana Gabriela; Martínez-Galero, Elizdath
2015-08-01
One of the major mechanisms in the pathogenesis of chronic inflammation is the excessive production of reactive oxygen and reactive nitrogen species, and therefore, oxidative stress. Spirulina (Arthrospira) maxima has marked antioxidant activity in vivo and in vitro, as well as anti-inflammatory activity in certain experimental models, the latter activity being mediated probably by the antioxidant activity of this cyanobacterium. In the present study, chronic inflammation was induced through injection of Freund's complete adjuvant (CFA) in rats treated daily with Spirulina (Arthrospira) maxima for 2 weeks beginning on day 14. Joint diameter, body temperature, and motor capacity were assessed each week. On days 0 and 28, total and differential leukocyte counts and serum oxidative damage were determined, the latter by assessing lipid peroxidation and protein carbonyl content. At the end of the study, oxidative damage to joints was likewise evaluated. Results show that S. maxima favors increased mobility, as well as body temperature regulation, and a number of circulating leukocytes, lymphocytes, and monocytes in specimens with CFA-induced chronic inflammation and also protects against oxidative damage in joint tissue as well as serum. In conclusion, the protection afforded by S. maxima against development of chronic inflammation is due to its antioxidant activity.
DOT National Transportation Integrated Search
2017-03-01
Joints are often considered as the weak link in a structure and often deterioration of the structure initiates from the : joints. Joints transfer the stresses from super-structure to sub-structure and in this process are subjected to large : transfer...
Stiff, Strong Splice For A Composite Sandwich Structure
NASA Technical Reports Server (NTRS)
Schmaling, D.
1991-01-01
New type of splice for composite sandwich structure reduces peak shear stress in structure. Layers of alternating fiber orientation interposed between thin ears in adhesive joint. Developed for structural joint in spar of helicopter rotor blade, increases precision of control over thickness of adhesive at joint. Joint easy to make, requires no additional pieces, and adds little weight.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Davis, Pamela A.
2015-01-01
Under NASA's Environmentally Responsible Aviation Project (ERA) the most promising vehicle concepts and technologies that can simultaneously reduce aircraft fuel use, community noise, and emissions are being evaluated. Two key factors to accomplishing these goals are reducing structural weight and moving away from the traditional tube and wing aircraft configuration to a shape that has improved lift and less drag. The hybrid wing body (HWB) configuration produces more lift and less drag by smoothly joining the wings to the center fuselage section so it provides aerodynamic advantages. This shape, however, presents structural challenges with its pressurized, non-circular cabin subjected to aerodynamic flight loads. In the HWB, the structure of the center section where the passenger cabin would be located must support large in-plane loads as well as internal pressure on nearly-flat panels and right-angle joints. This structural arrangement does not lend itself to simple, efficient designs. Traditional aluminum and even state-of-the-art composites do not provide a solution to this challenge.
Neutrophils: Beneficial and Harmful Cells in Septic Arthritis
Boff, Daiane; Crijns, Helena; Teixeira, Mauro M.
2018-01-01
Septic arthritis is an inflammatory joint disease that is induced by pathogens such as Staphylococcus aureus. Infection of the joint triggers an acute inflammatory response directed by inflammatory mediators including microbial danger signals and cytokines and is accompanied by an influx of leukocytes. The recruitment of these inflammatory cells depends on gradients of chemoattractants including formylated peptides from the infectious agent or dying cells, host-derived leukotrienes, complement proteins and chemokines. Neutrophils are of major importance and play a dual role in the pathogenesis of septic arthritis. On the one hand, these leukocytes are indispensable in the first-line defense to kill invading pathogens in the early stage of disease. However, on the other hand, neutrophils act as mediators of tissue destruction. Since the elimination of inflammatory neutrophils from the site of inflammation is a prerequisite for resolution of the acute inflammatory response, the prolonged stay of these leukocytes at the inflammatory site can lead to irreversible damage to the infected joint, which is known as an important complication in septic arthritis patients. Thus, timely reduction of the recruitment of inflammatory neutrophils to infected joints may be an efficient therapy to reduce tissue damage in septic arthritis. PMID:29401737
Mechanical Behavior of CFRP Lattice Core Sandwich Bolted Corner Joints
NASA Astrophysics Data System (ADS)
Zhu, Xiaolei; Liu, Yang; Wang, Yana; Lu, Xiaofeng; Zhu, Lingxue
2017-12-01
The lattice core sandwich structures have drawn more attention for the integration of load capacity and multifunctional applications. However, the connection of carbon fibers reinforced polymer composite (CFRP) lattice core sandwich structure hinders its application. In this paper, a typical connection of two lattice core sandwich panels, named as corner joint or L-joint, was investigated by experiment and finite element method (FEM). The mechanical behavior and failure mode of the corner joints were discussed. The results showed that the main deformation pattern and failure mode of the lattice core sandwich bolted corner joints structure were the deformation of metal connector and indentation of the face sheet in the bolt holes. The metal connectors played an important role in bolted corner joints structure. In order to save the calculation resource, a continuum model of pyramid lattice core was used to replace the exact structure. The computation results were consistent with experiment, and the maximum error was 19%. The FEM demonstrated the deflection process of the bolted corner joints structure visually. So the simplified FEM can be used for further analysis of the bolted corner joints structure in engineering.
Comparison of structural performance of one- and two-bay rotary joints for truss applications
NASA Technical Reports Server (NTRS)
Vail, J. Douglas; Lake, Mark S.
1991-01-01
The structural performance of one- and two-bay large-diameter discrete-bearing rotary joints was addressed for application to truss-beam structures such as the Space Station Freedom. Finite element analyses are performed to determine values for rotary joint parameters that give the same bending vibration frequency as the parent truss beam. The structural masses and maximum internal loads of these joints are compared to determine their relative structural efficiency. Results indicate that no significant difference exists in the masse of one- and two-bay rotary joints. This conclusion is reinforced with closed-form calculations of rotary joint structural efficiency in extension. Also, transition truss-member loads are higher in the one-bay rotary joint. However, because of the increased buckling strength of these members, the external load-carrying capability of the one-bay concept is higher than that of the two-bay concept.
Tenascin-C Prevents Articular Cartilage Degeneration in Murine Osteoarthritis Models.
Matsui, Yuriyo; Hasegawa, Masahiro; Iino, Takahiro; Imanaka-Yoshida, Kyoko; Yoshida, Toshimichi; Sudo, Akihiro
2018-01-01
Objective The objective of this study was to determine whether intra-articular injections of tenascin-C (TNC) could prevent cartilage damage in murine models of osteoarthritis (OA). Design Fluorescently labeled TNC was injected into knee joints and its distribution was examined at 1 day, 4 days, 1 week, 2 weeks, and 4 weeks postinjection. To investigate the effects of TNC on cartilage degeneration after surgery to knee joints, articular spaces were filled with 100 μg/mL (group I), 10 μg/mL (group II) of TNC solution, or control (group III). TNC solution of 10 μg/mL was additionally injected twice after 3 weeks (group IV) or weekly after 1 week, 2 weeks, and 3 weeks (group V). Joint tissues were histologically assessed using the Mankin score and the modified Chambers system at 2 to 8 weeks after surgery. Results Exogenous TNC was maintained in the cartilage and synovium for 1 week after administration. Histological scores in groups I and II were better than scores in group III at 4 and 6 weeks, but progressive cartilage damage was seen in all groups 8 weeks postoperatively. Sequential TNC injections (groups IV and V) showed significantly better Mankin score than single injection (group II) at 8 weeks. Conclusion TNC administered exogenously remained in the cartilage of knee joints for 1 week, and could decelerate articular cartilage degeneration in murine models of OA. We also showed that sequential administration of TNC was more effective than a single injection. TNC could be an important molecule for prevention of articular cartilage damage.
Vectra DA for the objective measurement of disease activity in patients with rheumatoid arthritis.
Segurado, O G; Sasso, E H
2014-01-01
Quantitative and regular assessment of disease activity in rheumatoid arthritis (RA) is required to achieve treatment targets such as remission and to optimize clinical outcomes. To assess inflammation accurately, predict joint damage and monitor treatment response, a measure of disease activity in RA should reflect the pathological processes resulting in irreversible joint damage and functional disability. The Vectra DA blood test is an objective measure of disease activity for patients with RA. Vectra DA provides an accurate, reproducible score on a scale of 1 to 100 based on the concentrations of 12 biomarkers that reflect the pathophysiologic diversity of RA. The analytical validity, clinical validity, and clinical utility of Vectra DA have been evaluated for patients with RA in registries and prospective and retrospective clinical studies. As a biomarker-based instrument for assessing disease activity in RA, the Vectra DA test can help monitor therapeutic response to methotrexate and biologic agents and assess clinically challenging situations, such as when clinical measures are confounded by non-inflammatory pain from fibromyalgia. Vectra DA scores correlate with imaging of joint inflammation and are predictive for radiographic progression, with high Vectra DA scores being associated with more frequent and severe progression and low scores being predictive for non-progression. In summary, the Vectra DA score is an objective measure of RA disease activity that quantifies inflammatory status. By predicting risk for joint damage more effectively than conventional clinical and laboratory measures, it has the potential to complement these measures and optimise clinical decision making.
Firkins, P; Hailey, J L; Fisher, J; Lettington, A H; Butter, R
1998-10-01
The wear of ultra-high molecular weight polyethylene (UHMWPE) in artificial joints and the resulting wear debris-induced osteolysis remains a major clinical concern in the orthopaedic sector. Third-body damage of metallic femoral heads is often cited as a cause of accelerated polyethylene wear, and the use of ceramic femoral heads in the hip is gaining increasing favour. In the knee prostheses and for smaller diameter femoral heads, the application of hard surface coatings, such as diamond-like carbon, is receiving considerable attention. However, to date, there has been little or no investigation of the tribology of these coatings in simulated biological environments. In this study, diamond-like carbon (DLC) has been compared to stainless steel in its undamaged form and following simulated third-body damage. The wear of UHMWPE was found to be similar when sliding against undamaged DLC and stainless steel counterfaces. DLC was found to be much more damage resistant than DLC. Under test conditions that simulate third-body damage to the femoral head, the wear of UHMWPE was seven times lower against DLC than against stainless steel (P < 0.05). The study shows DLC has considerable potential as a femoral bearing surface in artificial joints.
NASA Technical Reports Server (NTRS)
Ricks, Glen A.
1988-01-01
The assembly test article (ATA) consisted of two live loaded redesigned solid rocket motor (RSRM) segments which were assembled and disassembled to simulate the actual flight segment stacking process. The test assembly joint was flight RSRM design, which included the J-joint insulation design and metal capture feature. The ATA test was performed mid-November through 24 December 1987, at Kennedy Space Center (KSC), Florida. The purpose of the test was: certification that vertical RSRM segment mating and separation could be accomplished without any damage; verification and modification of the procedures in the segment stacking/destacking documents; and certification of various GSE to be used for flight assembly and inspection. The RSRM vertical segment assembly/disassembly is possible without any damage to the insulation, metal parts, or seals. The insulation J-joint contact area was very close to the predicted values. Numerous deviations and changes to the planning documents were made to ensure the flight segments are effectively and correctly stacked. Various GSE were also certified for use on flight segments, and are discussed in detail.
Innate Immunity Sensors Participating in Pathophysiology of Joint Diseases: A Brief Overview
Gallo, Jiri; Raska, Milan; Konttinen, Yrjö T.; Nich, Christophe; Goodman, Stuart B.
2015-01-01
The innate immune system consists of functionally specialized “modules” that are activated in response to a particular set of stimuli via sensors located on the surface or inside the tissue cells. These cells screen tissues for a wide range of exogenous and endogenous danger/damage-induced signals with the aim to reject or tolerate them and maintain tissue integrity. In this line of thinking, inflammation evolved as an adaptive tool for restoring tissue homeostasis. A number of diseases are mediated by a maladaptation of the innate immune response, perpetuating chronic inflammation and tissue damage. Here, we review recent evidence on the cross talk between innate immune sensors and development of rheumatoid arthritis, osteoarthritis, and aseptic loosening of total joint replacements. In relation to the latter topic, there is a growing body of evidence that aseptic loosening and periprosthetic osteolysis results from long-term maladaptation of periprosthetic tissues to the presence of by-products continuously released from an artificial joint. PMID:25747032
Haj-Mirzaian, Arya; Guermazi, Ali; Hafezi-Nejad, Nima; Sereni, Christopher; Hakky, Michael; Hunter, David J; Zikria, Bashir; Roemer, Frank W; Demehri, Shadpour
2018-04-12
To determine the association of superolateral Hoffa's fat pad (SHFP) oedema and patellofemoral joint structural damage in participants of Foundation for the National Institute of Health Osteoarthritis Biomarkers Consortium study. Baseline and 24-month MRIs of 600 subjects were assessed. The presence of SHFP oedema (using 0-3 grading scale) and patellar morphology metrics were determined using baseline MRI. Quantitative patellar cartilage volume and semi-quantitative MRI osteoarthritis knee score (MOAKS) variables were extracted. The associations between SHFP oedema and patellar cartilage damage, bone marrow lesion (BML), osteophyte and morphology were evaluated in cross-sectional model. In longitudinal analysis, the associations between oedema and cartilage volume loss (defined using reliable change index) and MOAKS worsening were evaluated. In cross-sectional evaluations, the presence of SHFP oedema was associated with simultaneous lateral patellar cartilage/BML defects and inferior-medial patellar osteophyte size. A significant positive correlation between the degree of patella alta and SHFP oedema was detected (r = 0.259, p < 0.001). The presence of oedema was associated with 24-month cartilage volume loss (odds ratio (OR) 2.11, 95% confidence interval 1.46-3.06) and medial patellar BML size (OR 1.92 (1.15-3.21)) and number (OR 2.50 (1.29-4.88)) worsening. The optimal cut-off value for the grade of baseline SHFP oedema regarding both presence and worsening of patellar structural damage was ≥ 1 (presence of any SHFP hyperintensity). The presence of SHFP oedema could be considered as a predictor of future patellar cartilage loss and BML worsening, and an indicator of simultaneous cartilage, BML and osteophyte defects. • SHFP oedema was associated with simultaneous lateral patellar OA-related structural damage. • SHFP oedema was associated with longitudinal patellar cartilage loss over 24 months. • SHFP oedema could be considered as indicator and predictor of patellar OA.
A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III; Finckenor, Jeffrey L.
1999-01-01
A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables as a function of adhesive properties and convergences of different joints based on the two optimization methods.
[Comparative evolution surgical accesses to temporo-mandibular joint].
Sysoliatin, P G; Novikov, A I; Sysoliatin, S P; Bobylev, N G; Brega, I N
2007-01-01
In experiment on 30 corpses of adult people criteria of an operational wound (depth of a wound, a corner of operational action, an axis of operational action, a corner of an inclination of operational action) were studied at preauricularis, intrauricularis, intrauriculo-temporalis and posterior mandibullaris access to temporo-mandibular joint (TMJ). New surgical intrauriculo-temporalis access to the joint is substantrated. On the basis of the analysis of 289 operations at 268 patients the indications to a choice of surgical access were developed at various diseases and damages of TMJ.
Quantitative metal magnetic memory reliability modeling for welded joints
NASA Astrophysics Data System (ADS)
Xing, Haiyan; Dang, Yongbin; Wang, Ben; Leng, Jiancheng
2016-03-01
Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quantitative evaluation. In order to promote the development of quantitative MMM reliability assessment, a new MMM model is presented for welded joints. Steel Q235 welded specimens are tested along the longitudinal and horizontal lines by TSC-2M-8 instrument in the tensile fatigue experiments. The X-ray testing is carried out synchronously to verify the MMM results. It is found that MMM testing can detect the hidden crack earlier than X-ray testing. Moreover, the MMM gradient vector sum K vs is sensitive to the damage degree, especially at early and hidden damage stages. Considering the dispersion of MMM data, the K vs statistical law is investigated, which shows that K vs obeys Gaussian distribution. So K vs is the suitable MMM parameter to establish reliability model of welded joints. At last, the original quantitative MMM reliability model is first presented based on the improved stress strength interference theory. It is shown that the reliability degree R gradually decreases with the decreasing of the residual life ratio T, and the maximal error between prediction reliability degree R 1 and verification reliability degree R 2 is 9.15%. This presented method provides a novel tool of reliability testing and evaluating in practical engineering for welded joints.
NASA Astrophysics Data System (ADS)
Ma, Guowei; Zhang, Junfei; Wang, Li; Li, Zhijian; Sun, Junbo
2018-07-01
3D concrete printing is an innovative and promising construction method that is rapidly gaining ground in recent years. This technique extrudes premixed concrete materials through a nozzle to build structural components layer upon layer without formworks. The build-up process of depositing filaments or layers intrinsically produce laminated structures and create weak joints between adjacent layers. It is of great significance to clearly elaborate the mechanical characteristics of 3D printed components response to various applied loads and the different performance from the mould-cast ones. In this study, a self-developed 3D printing system was invented and applied to fabricate concrete samples. Three points bending test and direct double shear test were carried out to investigate the mechanical properties of 3D printed prisms. The anisotropic behaviors were probed by loading in different directions. Meanwhile, piezoelectric lead zirconate titanate (PZT) transducers were implemented to monitor the damage evolution of the printed samples in the loading process based on the electromechanical impedance method. Test results demonstrate that the tensile stresses perpendicular to the weaken interfaces formed between filaments were prone to induce cracks than those parallel to the interfaces. The damages of concrete materials resulted in the decrease in the frequency and a change in the amplitude in the conductance spectrum acquired by mounted PZT patches. The admittance signatures showed a clear gradation of the examined damage levels of printed prisms exposed to applied loadings.
NASA Astrophysics Data System (ADS)
Stolz, Martin; Gottardi, Riccardo; Raiteri, Roberto; Miot, Sylvie; Martin, Ivan; Imer, Raphaël; Staufer, Urs; Raducanu, Aurelia; Düggelin, Marcel; Baschong, Werner; Daniels, A. U.; Friederich, Niklaus F.; Aszodi, Attila; Aebi, Ueli
2009-03-01
The pathological changes in osteoarthritis-a degenerative joint disease prevalent among older people-start at the molecular scale and spread to the higher levels of the architecture of articular cartilage to cause progressive and irreversible structural and functional damage. At present, there are no treatments to cure or attenuate the degradation of cartilage. Early detection and the ability to monitor the progression of osteoarthritis are therefore important for developing effective therapies. Here, we show that indentation-type atomic force microscopy can monitor age-related morphological and biomechanical changes in the hips of normal and osteoarthritic mice. Early damage in the cartilage of osteoarthritic patients undergoing hip or knee replacements could similarly be detected using this method. Changes due to aging and osteoarthritis are clearly depicted at the nanometre scale well before morphological changes can be observed using current diagnostic methods. Indentation-type atomic force microscopy may potentially be developed into a minimally invasive arthroscopic tool to diagnose the early onset of osteoarthritis in situ.
Fischenich, Kristine M.; Button, Keith D.; Coatney, Garrett A.; Fajardo, Ryan S.; Leikert, Kevin M.; Haut, Roger C.; Haut Donahue, Tammy L.
2014-01-01
The objective of this study was to induce anterior cruciate ligament (ACL) and meniscal damage, via a single tibiofemoral compressive impact, in order to document articular cartilage and meniscal changes post impact. Tibiofemoral joints of Flemish Giant rabbits were subjected to a single blunt impact that ruptured the ACL and produced acute meniscal damage. Animals were allowed unrestricted cage activity for 12 weeks before euthanasia. India ink analysis of the articular cartilage revealed higher degrees of surface damage on the impacted tibias (p=0.018) and femurs (p<0.0001) compared to controls. Chronic meniscal damage was most prevalent in the medial central and medial posterior regions. Mechanical tests revealed an overall 19.4% increase in tibial plateau cartilage thickness (p=0.026), 34.8% increase in tibial plateau permeability (p=0.054), 40.8% increase in femoral condyle permeability (p=0.029), and 20.1% decrease in femoral condyle matrix modulus (p=0.012) in impacted joints compared to controls. Both the instantaneous and equilibrium moduli of the lateral and medial menisci were decreased compared to control (p<0.02). Histological analyses revealed significantly increased presence of fissures in the medial femur (p = 0.036). In both the meniscus and cartilage there was a significant decrease in GAG coverage for the impacted limbs. Based on these results it is clear that an unattended combined meniscal and ACL injury results in significant changes to the soft tissues in this experimental joint 12 weeks post injury. Such changes are consistent with a clinical description of mid to late stage PTOA of the knee. PMID:25523754
de Rooster, H; Cox, E; van Bree, H
2000-11-01
To measure and compare synovial fluid antibody titers to type-I and -II collagen in stifle joints with instability caused by complete or partial cranial cruciate ligament (CCL) rupture and joints with osteoarthrosis secondary to other pathologic changes in dogs. 82 dogs with diseased stifle joints. Synovial fluid samples were collected from 7 dogs with clinically normal stifles (control group) and 82 dogs with diseased joints (50 stifle joints with complete rupture of the CCL, 20 with partial damage of the CCL, and 12 joints with radiographic signs of osteoarthritis secondary to other arthropathies). Synovial fluid samples were tested for autoantibodies to type-I and -II collagen by an ELISA. In dogs with complete and partial CCL rupture, synovial fluid antibody titers to type-I and -II collagen were significantly increased, compared with control dogs. Forty-eight percent (24/50) of samples from dogs with complete CCL rupture and 35% (7/20) of samples from dogs with partial CCL rupture had antibody titers to type-I collagen that were greater than the mean plus 2 standard deviations of the control group titers. Synovial fluid antibody titers to type-II collagen were high in 40% of the dogs with partial or (8/20) complete (20/50) CCL rupture. Dogs with osteoarthrosis secondary to other pathologic changes had significantly increased synovial fluid antibodies to type-I and -II collagen, compared with control dogs. Increases in autoantibodies to collagen in synovial fluid are not specific for the type of joint disorder. It is unlikely that the anticollagen antibodies play an active role in the initiation of weakening of the CCL.
Halls, Serena; Law, Rebecca-Jane; Jones, Jeremy G; Markland, David A; Maddison, Peter J; Thom, Jeanette M
2017-09-01
Although exercise is an important factor in the management of rheumatoid arthritis (RA), research indicates that patients perceive that health professionals (HPs) are uncertain about the place of exercise in treatment and its relationship with joint damage. The present study investigated the perceptions of HPs regarding the effects of exercise on joint health in RA patients. A questionnaire investigating perceptions of exercise and joint health was distributed via professional networks and websites. Confirmatory factor analysis (CFA) was used to analyse questionnaire data and develop a focus group interview guide. Focus groups were conducted with multidisciplinary teams (MDTs) of rheumatology HPs and analysed using framework analysis. A total of 137 rheumatology HPs (95 female; 27-65 years of age) completed questionnaires. CFA showed that a four-factor model provided a marginally acceptable fit. Analysis of four focus groups (n = 24; 19 female; 30-60 years of age) identified five themes relating to HPs' perceptions of exercise and joint health in RA patients: 'Exercise is beneficial', 'Concerns about damage to joints', 'Patients have barriers to exercise', 'HP knowledge differs' and 'Patients may think service delivery is vague'. HPs were highly aware of the benefits and importance of exercise for RA patients. However, to remove the patient perception that HPs lack certainty and clarity regarding exercise it is important to ensure: (i) consistent promotion of exercise across the whole MDT; (ii) clear provision of information regarding rest, joint protection and exercise; (iii) HP education to ensure consistent, accurate knowledge, and understanding of the potential for conflicting advice when promoting exercise as part of an MDT. Copy © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
The Joint Chiefs of Staff Video Collections
Senior Enlisted Advisor Joint Staff History Joint Staff Inspector General Joint Staff Structure Origin of J8 | Force Structure, Resources & Assessment Contact Home : Media : Videos Featured Videos Gen
Biplanar x-ray fluoroscopy for sacroiliac joint fusion.
Vanaclocha-Vanaclocha, Vicente; Verdú-López, Francisco; Sáiz-Sapena, Nieves; Herrera, Juan Manuel; Rivera-Paz, Marlon
2016-07-01
Chronic pain originating from the sacroiliac joint (SI) can cause severe dysfunction. Although many patients respond to conservative management with NSAIDs, some do need further treatment in the form of SI joint fusion (SIJF). To achieve safe and successful SIJF, intraoperative x-ray fluoroscopy is mandatory to avoid serious damages to nearby vascular and neural structures. Each step of the procedure has to be confirmed by anteroposterior (AP) and lateral projections. With a single-arm x-ray, the arch has to be moved back and forth for the AP and lateral projections, and this lengthens the procedure. To achieve the same results in less time, the authors introduced simultaneous biplanar fluoroscopy with 2 x-ray arches. After the patient is positioned prone with the legs spread apart in the so-called Da Vinci position, one x-ray arch for the lateral projection is placed at a right angle to the patient, and a second x-ray machine is placed with its arch between the legs of the patient. This allows simultaneous AP and lateral x-ray projections and, in the authors' hands, markedly speeds up the procedure. Biplanar fluoroscopy allows excellent AP and lateral projections to be made quickly at any time during the surgical procedure. This is particularly useful in cases of bilateral SI joint fusion if both sides are done at the same time. The video can be found here: https://youtu.be/TX5gz8c765M .
NASA Astrophysics Data System (ADS)
Scarselli, G.; Ciampa, F.; Ginzburg, D.; Meo, M.
2015-04-01
Nonlinear ultrasonic non-destructive evaluation (NDE) methods can be used for the identification of defects within adhesive bonds as they rely on the detection of nonlinear elastic features for the evaluation of the bond strength. In this paper the nonlinear content of the structural response of a single lap joint subjected to ultrasonic harmonic excitation is both numerically and experimentally evaluated to identify and characterize the defects within the bonded region. Different metallic samples with the same geometry were experimentally tested in order to characterize the debonding between two plates by using two surface bonded piezoelectric transducers in pitch-catch mode. The dynamic response of the damaged samples acquired by the single receiver sensor showed the presence of higher harmonics (2nd and 3rd) and subharmonics of the fundamental frequencies. These nonlinear elastic phenomena are clearly due to nonlinear effects induced by the poor adhesion between the two plates. A new constitutive model aimed at representing the nonlinear material response generated by the interaction of the ultrasonic waves with the adhesive joint is also presented. Such a model is implemented in an explicit FE software and uses a nonlinear user defined traction-displacement relationship implemented by means of a cohesive material user model interface. The developed model is verified for the different geometrical and material configurations. Good agreement between the experimental and numerical nonlinear response showed that this model can be used as a simple and useful tool for understanding the quality of the adhesive joint.
Robson, Holly; Specht, Karsten; Beaumont, Helen; Parkes, Laura M; Sage, Karen; Lambon Ralph, Matthew A; Zahn, Roland
2017-07-01
Behavioural impairment post-stroke is a consequence of structural damage and altered functional network dynamics. Hypoperfusion of intact neural tissue is frequently observed in acute stroke, indicating reduced functional capacity of regions outside the lesion. However, cerebral blood flow (CBF) is rarely investigated in chronic stroke. This study investigated CBF in individuals with chronic Wernicke's aphasia (WA) and examined the relationship between lesion, CBF and neuropsychological impairment. Arterial spin labelling CBF imaging and structural MRIs were collected in 12 individuals with chronic WA and 13 age-matched control participants. Joint independent component analysis (jICA) investigated the relationship between structural lesion and hypoperfusion. Partial correlations explored the relationship between lesion, hypoperfusion and language measures. Joint ICA revealed significant differences between the control and WA groups reflecting a large area of structural lesion in the left posterior hemisphere and an associated area of hypoperfusion extending into grey matter surrounding the lesion. Small regions of remote cortical hypoperfusion were observed, ipsilateral and contralateral to the lesion. Significant correlations were observed between the neuropsychological measures (naming, repetition, reading and semantic association) and the jICA component of interest in the WA group. Additional ROI analyses found a relationship between perfusion surrounding the core lesion and the same neuropsychological measures. This study found that core language impairments in chronic WA are associated with a combination of structural lesion and abnormal perfusion in non-lesioned tissue. This indicates that post-stroke impairments are due to a wider disruption of neural function than observable on structural T1w MRI. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Hodson, Keith R.; Crider, Juliet G.; Huntington, Katharine W.
2016-10-01
Fluid-driven cementation and diagenesis within fault zones can influence host rock permeability and rheology, affecting subsequent fluid migration and rock strength. However, there are few constraints on the feedbacks between diagenetic conditions and structural deformation. We investigate the cementation history of a fault-intersection zone on the Moab Fault, a well-studied fault system within the exhumed reservoir rocks of the Paradox Basin, Utah, USA. The fault zone hosts brittle structures recording different stages of deformation, including joints and two types of deformation bands. Using stable isotopes of carbon and oxygen, clumped isotope thermometry, and cathodoluminescence, we identify distinct source fluid compositions for the carbonate cements within the fault damage zone. Each source fluid is associated with different carbonate precipitation temperatures, luminescence characteristics, and styles of structural deformation. Luminescent carbonates appear to be derived from meteoric waters mixing with an organic-rich or magmatic carbon source. These cements have warm precipitation temperatures and are closely associated with jointing, capitalizing on increases in permeability associated with fracturing during faulting and subsequent exhumation. Earlier-formed non-luminescent carbonates have source fluid compositions similar to marine waters, low precipitation temperatures, and are closely associated with deformation bands. The deformation bands formed at shallow depths very early in the burial history, preconditioning the rock for fracturing and associated increases in permeability. Carbonate clumped isotope temperatures allow us to associate structural and diagenetic features with burial history, revealing that structural controls on fluid distribution are established early in the evolution of the host rock and fault zone, before the onset of major displacement.
Creating Defense Excellence: Defense Addendum to Road Map for National Security
2001-05-15
occasionally distrust political appointees—many of whom can be young , inexperienced academics—as “interlopers” who can severely damage well-established...centralization, lost managerial competence, and the loss of Service esprit de corps. The centralized approach may instill greater efficiency toward a...This is necessary because the evolution of joint warfighting and defense economics has shifted many past roles and responsibilities to joint and
... are important for motion and standing. Playing sports, running, falling, or having an accident can damage your legs. Common leg injuries include sprains and strains, joint dislocations, and fractures. ...
Hayami, Tadashi; Pickarski, Maureen; Zhuo, Ya; Wesolowski, Gregg A; Rodan, Gideon A; Duong, Le T
2006-02-01
Osteoarthritis (OA) is a chronic joint disease characterized by cartilage destruction, subchondral bone sclerosis, and osteophyte formation. Subchondral bone stiffness has been proposed to initiate and/or contribute to cartilage deterioration in OA. The purpose of this study was to characterize subchondral bone remodeling, cartilage damage, and osteophytosis during the disease progression in two models of surgically induced OA. Rat knee joints were subjected either to anterior cruciate ligament transection (ACLT) alone or in combination with resection of medial menisci (ACLT + MMx). Histopathological changes in the surgical joints were compared with sham at 1, 2, 4, 6, and 10 weeks post-surgery. Using a modified Mankin scoring system, we demonstrate that articular cartilage damage occurs within 2 weeks post-surgery in both surgical models. Detectable cartilage surface damage and proteoglycan loss were observed as early as 1 week post-surgery. These were followed by the increases in vascular invasion into cartilage, in loss of chondrocyte number and in cell clustering. Histomorphometric analysis revealed subchondral bone loss in both models within 2 weeks post-surgery followed by significant increases in subchondral bone volume relative to sham up to 10 weeks post-surgery. Incidence of osteophyte formation was optimally observed in ACLT joints at 10 weeks and in ACLT + MMx joints at 6 weeks post-surgery. In summary, the two surgically induced rat OA models share many characteristics seen in human and other animal models of OA, including progressive articular cartilage degradation, subchondral bone sclerosis, and osteophyte formation. Moreover, increased subchondral bone resorption is associated with early development of cartilage lesions, which precedes significant cartilage thinning and subchondral bone sclerosis. Together, these findings support a role for bone remodeling in OA pathogenesis and suggest that these rat models are suitable for evaluating bone resorption inhibitors as potential disease-modifying pharmaco-therapies.
NASA Astrophysics Data System (ADS)
Guo, Y.; Wang, H.; Deng, Z.; You, H.
2009-12-01
To research the ground destroyed features and tectonic stress field of the 2008 Wenchuan Earthquake, we went the earthquake-hazard area, Hongkou Town in Dujiangyan City, Yingxiu Town in Wenchuan County, Bailu Town in Pengzhou City, Yinghua Town in Shifang City, Hanwang Town in Mianzhu City and Beichuan Cit early and late twice in 2008. The geological survey was made. Firstly, the ground destroyed features of the Wenchuan Earthquake around both Yingxiu - Beichuan Fracture and Guanxian - Jiangyou Fracture were analyzed. They mainly display as the ground crack ground, road steep slope, ground deformation, road rise high and deformation, road staggering and rupture, etc. Besides, the Wenchuan Earthquake resulted in the great deal of building collapse and lots of bridges damage even break down; It can be seen that the first floor of the building disappeared or damaged seriously; Some building still stood there although damaged by the earthquake; A few of building was damaged slightly and kept intact structure. Furthermore, the earthquake caused earth slide, mudflow and rolling stone, which lead to the building destroyed seriously, river blocked up, the life line engineering destroyed. Secondly, the phenomena of the ground destroy were analyzed preliminarily. The seismic intensity was determined based on the field investigation. The damaged situation of the construction was concluded. Based on the principle of structure geology and making use of the Stereographic projection, the stress field was analyzed according to the attitude, structural nature and relations among the fracture, fault scratch and joint fissure as well as the characteristics of ground deformation thirdly. The geodynamics of the 2008 Wenchuan Earthquake are probed into preliminarily. The main compressive stress (the maximum main stress) σ1 took Northeast by east direction, and the main tensile stress (the minimum main stress)σ3 took Northwest by north direction. The main fracture shows as the right-lateral thrust fracture. The general horizontal diminution and the vertical upheaval of the ground are discussed. At last, the paper compared the relationship between the ground damage and the fracture in the area hit by the 2008 Wenchuan Earthquake. The method to avoid and mitigate the loss of treasure and life caused by the earthquake is proposed. The chief aspects that require the more attention for the reconstruction after disaster are given.
Damage Control Surgery and the Joint Solution
2017-06-01
IV. THE SERVICES ’ OPERATE, TRAIN AND EQUIP FOR DEPLOYMENT OF DCS 13 V. COURSES OF ACTION 20 VI. CONCLUSION...Figure 14: Notional Service Enlisted Specialty Training Timeline 25 Figure 15: Timeline of Events for Base Hospital #28...implications for casualty care. Lastly, a short excerpt on how each Service organizes, trains and equips their personnel for the delivery of damage control
Overcoming Barriers to Firewise Actions by Residents. Final Report to Joint Fire Science Program
James D. Absher; Jerry J. Vaske; Katie M. Lyon
2013-01-01
Encouraging the public to take action (e.g., creating defensible space) that can reduce the likelihood of wildfire damage and decrease the likelihood of injury is a common approach to increasing wildfire safety and damage mitigation. This study was designed to improve our understanding of both individual and community actions that homeowners currently do or might take...
Physically-based Assessment of Tropical Cyclone Damage and Economic Losses
NASA Astrophysics Data System (ADS)
Lin, N.
2012-12-01
Estimating damage and economic losses caused by tropical cyclones (TC) is a topic of considerable research interest in many scientific fields, including meteorology, structural and coastal engineering, and actuarial sciences. One approach is based on the empirical relationship between TC characteristics and loss data. Another is to model the physical mechanism of TC-induced damage. In this talk we discuss about the physically-based approach to predict TC damage and losses due to extreme wind and storm surge. We first present an integrated vulnerability model, which, for the first time, explicitly models the essential mechanisms causing wind damage to residential areas during storm passage, including windborne-debris impact and the pressure-debris interaction that may lead, in a chain reaction, to structural failures (Lin and Vanmarcke 2010; Lin et al. 2010a). This model can be used to predict the economic losses in a residential neighborhood (with hundreds of buildings) during a specific TC (Yau et al. 2011) or applied jointly with a TC risk model (e.g., Emanuel et al 2008) to estimate the expected losses over long time periods. Then we present a TC storm surge risk model that has been applied to New York City (Lin et al. 2010b; Lin et al. 2012; Aerts et al. 2012), Miami-Dade County, Florida (Klima et al. 2011), Galveston, Texas (Lickley, 2012), and other coastal areas around the world (e.g., Tampa, Florida; Persian Gulf; Darwin, Australia; Shanghai, China). These physically-based models are applicable to various coastal areas and have the capability to account for the change of the climate and coastal exposure over time. We also point out that, although made computationally efficient for risk assessment, these models are not suitable for regional or global analysis, which has been a focus of the empirically-based economic analysis (e.g., Hsiang and Narita 2012). A future research direction is to simplify the physically-based models, possibly through parameterization, and make connections to the global loss data and economic analysis.
Talaván-Serna, J; Montiel-Company, J M; Bellot-Arcís, C; Almerich-Silla, J M
2017-02-01
The purpose of this study was to conduct a systematic review of the literature on temporomandibular joint damage directly related to general anaesthesia and sedation. We searched MEDLINE, SCOPUS and the COCHRANE Library for titles and abstracts containing terms related to the subject. The search delimiters were analytical and descriptive studies with abstracts in Spanish, German, English or French, with no time limit. The search was updated in January 2015. Of the 398 articles found, 89 were duplicates and only 28 were of interest. Of these, 23 (82.14%) were case and case series reports, 4 (14.28%) were longitudinal studies and 1 (3.57%) was a cross-sectional study. General anaesthesia and sedation are risk factors for temporomandibular joint damage because of the drop in muscle tone caused by the drugs employed and because of airway management manoeuvres involving the joint. Joint complications have been described with spontaneous ventilation as well as with ventilation assisted by a face or laryngeal mask and with intubation. They are more frequent in women and/or patients with previous temporomandibular problems. Proper assessment is required both before and after anaesthesia or sedation in order to foresee and avoid or minimize temporomandibular complications. The data should be treated with caution, as the evidence of case and case series reports is not of a high standard and the small number of analytical studies is not entirely comparable. General anaesthesia and sedation techniques can influence the onset of temporomandibular joint disorders. More studies are needed to provide better clinical evidence. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Neidel, J; Schroers, B; Sintermann, F
1998-01-01
To determine whether systemic administration of methotrexate (MTX) can prevent joint destruction in experimental osteoarthrosis (OA) in rabbits, the disorder was induced unilaterally in the knee joints of 40 rabbits by partial medial meniscectomy and sectioning of the medial collateral and both cruciate ligaments. A sham operation (arthrotomy only) was performed in another four animals. Effects on the cartilage of the femoral condyles were studied after 6 and 12 weeks. Twelve weeks after induction, femoral and tibial osteophyte formation was demonstrated on radiographs in all cases. Marked cartilage damage was found histologically (median Mankin score 10 vs 1 for non-operated controls; P < 0.05, Wilcoxon test). Cartilage proteoglycan (GAG) content (dye binding assay) was reduced in operated joints [63 +/- 8 (mean +/- SEM) vs 75 +/- 6 micrograms chondroitin sulfate/mg cartilage wet weight], and the leukocyte count in the joints was elevated (226 +/- 14 vs 7 +/- 3 leukocytes per microliter joint aspirate after injection of 0.5 ml saline solution; both P < 0.05, Wilcoxon test). The rate of GAG synthesis was unchanged (ex vivo labelling with 35S-sulfate). Treatment with MTX (30 mg x kg body weight-1 x week-1 i.m., starting 12 h postoperatively) reduced cartilage damage (median Mankin score 8 vs 10 for placebo, P < 0.05, Mann-Whitney U-test), but had no significant effect on the other parameters tested. No significant MTX effects were observed on cartilage from nonoperated joints. Our data indicate that MTX may have a limited therapeutic effect in experimental OA in the rabbit.
A Case Report of an Acromioclavicular Joint Ganglion Associated with a Rotator Cuff Tear.
Tanaka, Suguru; Gotoh, Masafumi; Mitsui, Yasuhiro; Shirachi, Isao; Okawa, Takahiro; Higuchi, Fujio; Shiba, Naoto
2017-04-13
We report a case of subcutaneous ganglion adjacent to the acromioclavicular joint with massive rotator cuff tear [1-7]. An 81-year-old woman presented with a ganglion adjacent to the acromioclavicular joint that had first been identified 9 months earlier. The ganglion had recurred after having been aspirated by her local physician, so she was referred to our hospital. The puncture fluid was yellowish, clear and viscous. Magnetic resonance imaging identified a massive rotator cuff tear with multi- lobular cystic lesions continuous to the acromioclavicular joint, presenting the "geyser sign". During arthroscopy, distal clavicular resection and excision of the ganglion were performed together with joint debridement. At present, the ganglion has not recurred and the patient has returned to normal daily activity. In this case, the ganglion may have developed subsequent to the concomitant massive cuff tear, due to subcutaneous fluid flow through the damaged acromioclavicular joint.
Simulating the Structural Response of a Preloaded Bolted Joint
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Phillips, Dawn R.; Raju, Ivatury S.
2008-01-01
The present paper describes the structural analyses performed on a preloaded bolted-joint configuration. The joint modeled was comprised of two L-shaped structures connected together using a single bolt. Each L-shaped structure involved a vertical flat segment (or shell wall) welded to a horizontal segment (or flange). Parametric studies were performed using elasto-plastic, large-deformation nonlinear finite element analyses to determine the influence of several factors on the bolted-joint response. The factors considered included bolt preload, washer-surface-bearing size, edge boundary conditions, joint segment length, and loading history. Joint response is reported in terms of displacements, gap opening, and surface strains. Most of the factors studied were determined to have minimal effect on the bolted-joint response; however, the washer-bearing-surface size affected the response significantly.
Prink, Adam; Hayashi, Kei; Kim, Sun-Young; Kim, James; Kapatkin, Amy
2010-01-01
To evaluate whether synovial fluid concentrations of an osteoarthritis biomarker in dysplastic canine elbows with medial coronoid disease (MCD) are elevated compared with unaffected elbows and to determine if these concentrations correlate to the degree of articular cartilage damage. Cross sectional clinical study. Dogs (n=19; 35 elbows) with MCD and dogs (8; 16 elbows) with unaffected elbows. Concentrations of a collagenase-generated cleavage neoepitope of type II collagen (Col2-3/4C(long mono), or C2C) in joint fluid from elbows were analyzed and compared between dogs with MCD and unaffected dogs. Correlation of C2C concentration with subjective grading of articular cartilage surface damage was also evaluated. Mean (+/-SD) C2C concentration from MCD dogs was significantly higher (112.3+/-24.8 ng/mL) than in unaffected dogs (76.1+/-16.9 ng/mL; P<.05). There was a moderate correlation between cartilage damage grade and increasing C2C concentrations (P<.05, r=0.62) C2C concentrations are elevated in the synovial fluid of dogs with MCD compared with unaffected elbows, and a moderate, significant correlation was identified between these concentrations and subjective grading of articular cartilage damage. This preliminary data suggest that C2C concentrations in synovial fluid may have potential as a biomarker for diagnosis of articular cartilage damage associated with MCD and as a means of objectively determining the degree of articular cartilage damage.
Rodriguez-Rodriguez, Luis; Ivorra-Cortes, Jose; Carmona, F David; Martín, Javier; Balsa, Alejandro; van Steenbergen, Hanna W; van der Helm-van Mil, Annette H M; González-Álvaro, Isidoro; Fernandez-Gutiérrez, Benjamín
2015-11-05
Prostaglandin E receptor 4 (PTGER4) is implicated in immune regulation and bone metabolism. The aim of this study was to analyze its role in radiological joint damage in rheumatoid arthritis (RA). Six independent cohorts of patients with RA of European or North American descent were included, comprising 1789 patients with 5083 sets of X-rays. The Hospital Clínico San Carlos Rheumatoid Arthritis, Princesa Early Arthritis Register Longitudinal study, and Hospital Universitario de La Paz early arthritis (Spain) cohorts were used as discovery cohorts, and the Leiden Early Arthritis Clinic (The Netherlands), Wichita (United States), and National Databank for Rheumatic Diseases (United States and Canada) cohorts as replication cohorts. First, the PTGER4 rs6896969 single-nucleotide polymorphism (SNP) was genotyped using TaqMan assays and available Illumina Immunochip data and studied in the discovery and replication cohorts. Second, the PTGER4 gene and adjacent regions were analyzed using Immunochip genotyping data in the discovery cohorts. On the basis of pooled p values, linkage disequilibrium structure of the region, and location in regions with transcriptional properties, SNPs were selected for replication. The results from discovery, replication, and overall cohorts were pooled using inverse-variance-weighted meta-analysis. Influence of the polymorphisms on the overall radiological damage (constant effect) and on damage progression over time (time-varying effect) was analyzed. The rs6896969 polymorphism showed a significant association with radiological damage in the constant effect pooled analysis of the discovery cohorts, although no significant association was observed in the replication cohorts or the overall pooled analysis. Regarding the analysis of the PTGER4 region, 976 variants were analyzed in the discovery cohorts. From the constant and time-varying effect analyses, 12 and 20 SNPs, respectively, were selected for replication. Only the rs76523431 variant showed a significant association with radiographic progression in the time-varying effect pooled analysis of the discovery, replication, and overall cohorts. The overall pooled effect size was 1.10 (95 % confidence interval 1.05-1.14, p = 2.10 × 10(-5)), meaning that radiographic yearly progression was 10 % greater for each copy of the minor allele. The PTGER4 gene is a candidate risk factor for radiological progression in RA.
NASA Astrophysics Data System (ADS)
Iskander-Rizk, Sophinese; Wu, Min; Springeling, Geert; Mastik, Frits; Beurskens, Robert H. S. H.; van der Steen, Antonius F. W.; van Soest, Gijs
2018-02-01
Intravascular photoacoustic/ultrasound imaging (IVPA/US) can image the structure and composition of atherosclerotic lesions identifying lipid-rich plaques ex vivo and in vivo. In the literature, multiple IVPA/US catheter designs were presented and validated both in ex-vivo models and preclinical in-vivo situations. Since the catheter is a critical component of the imaging system, we discuss here a catheter design oriented to imaging plaque in a realistic and translatable setting. We present a catheter optimized for light delivery, manageable flush parameters and robustness with reduced mechanical damage risks at the laser/catheter joint interface. We also show capability of imaging within sheath and in water medium.
NASA airframe structural integrity program
NASA Technical Reports Server (NTRS)
Harris, Charles E.
1991-01-01
NASA has initiated a research program with the long-term objective of supporting the aerospace industry in addressing issues related to the aging commercial transport fleet. The interdisciplinary program combines advanced fatigue crack growth prediction methodology with innovative nondestructive examination technology with the focus on multi-site damage (MSD) at riveted connections. A fracture mechanics evaluation of the concept of pressure proof testing the fuselage to screen for MSD has been completed. Also, a successful laboratory demonstration of the ability of the thermal flux method to detect disbonds at riveted lap splice joints has been conducted. All long-term program elements have been initiated and the plans for the methodology verification program are being coordinated with the airframe manufacturers.
NASA airframe structural integrity program
NASA Technical Reports Server (NTRS)
Harris, Charles E.
1990-01-01
NASA initiated a research program with the long-term objective of supporting the aerospace industry in addressing issues related to the aging of the commercial transport fleet. The program combines advanced fatigue crack growth prediction methodology with innovative nondestructive examination technology with the focus on multi-stage damage (MSD) at rivited connections. A fracture mechanics evaluation of the concept of pressure proof testing the fuselage to screen for MSD was completed. A successful laboratory demonstration of the ability of the thermal flux method to detect disbonds at rivited lap splice joints was conducted. All long-term program elements were initiated, and the plans for the methodology verification program are being coordinated with the airframe manufacturers.
Estimating unknown parameters in haemophilia using expert judgement elicitation.
Fischer, K; Lewandowski, D; Janssen, M P
2013-09-01
The increasing attention to healthcare costs and treatment efficiency has led to an increasing demand for quantitative data concerning patient and treatment characteristics in haemophilia. However, most of these data are difficult to obtain. The aim of this study was to use expert judgement elicitation (EJE) to estimate currently unavailable key parameters for treatment models in severe haemophilia A. Using a formal expert elicitation procedure, 19 international experts provided information on (i) natural bleeding frequency according to age and onset of bleeding, (ii) treatment of bleeds, (iii) time needed to control bleeding after starting secondary prophylaxis, (iv) dose requirements for secondary prophylaxis according to onset of bleeding, and (v) life-expectancy. For each parameter experts provided their quantitative estimates (median, P10, P90), which were combined using a graphical method. In addition, information was obtained concerning key decision parameters of haemophilia treatment. There was most agreement between experts regarding bleeding frequencies for patients treated on demand with an average onset of joint bleeding (1.7 years): median 12 joint bleeds per year (95% confidence interval 0.9-36) for patients ≤ 18, and 11 (0.8-61) for adult patients. Less agreement was observed concerning estimated effective dose for secondary prophylaxis in adults: median 2000 IU every other day The majority (63%) of experts expected that a single minor joint bleed could cause irreversible damage, and would accept up to three minor joint bleeds or one trauma related joint bleed annually on prophylaxis. Expert judgement elicitation allowed structured capturing of quantitative expert estimates. It generated novel data to be used in computer modelling, clinical care, and trial design. © 2013 John Wiley & Sons Ltd.
Fonseca, João Eurico; Cavaleiro, João; Teles, José; Sousa, Elsa; Andreozzi, Valeska L; Antunes, Marília; Amaral-Turkman, Maria A; Canhão, Helena; Mourão, Ana F; Lopes, Joana; Caetano-Lopes, Joana; Weinmann, Pamela; Sobral, Marta; Nero, Patrícia; Saavedra, Maria J; Malcata, Armando; Cruz, Margarida; Melo, Rui; Braña, Araceli; Miranda, Luis; Patto, José V; Barcelos, Anabela; da Silva, José Canas; Santos, Luís M; Figueiredo, Guilherme; Rodrigues, Mário; Jesus, Herberto; Quintal, Alberto; Carvalho, Teresa; da Silva, José A Pereira; Branco, Jaime; Queiroz, Mário Viana
2007-01-01
The objective of this study was to assess whether clinical measures of rheumatoid arthritis activity and severity were influenced by tumor necrosis factor-alpha (TNF-alpha) promoter genotype/haplotype markers. Each patient's disease activity was assessed by the disease activity score using 28 joint counts (DAS28) and functional capacity by the Health Assessment Questionnaire (HAQ) score. Systemic manifestations, radiological damage evaluated by the Sharp/van der Heijde (SvdH) score, disease-modifying anti-rheumatic drug use, joint surgeries, and work disability were also assessed. The promoter region of the TNF-alpha gene, between nucleotides -1,318 and +49, was sequenced using an automated platform. Five hundred fifty-four patients were evaluated and genotyped for 10 single-nucleotide polymorphism (SNP) markers, but 5 of these markers were excluded due to failure to fall within Hardy-Weinberg equilibrium or to monomorphism. Patients with more than 10 years of disease duration (DD) presented significant associations between the -857 SNP and systemic manifestations, as well as joint surgeries. Associations were also found between the -308 SNP and work disability in patients with more than 2 years of DD and radiological damage in patients with less than 10 years of DD. A borderline effect was found between the -238 SNP and HAQ score and radiological damage in patients with 2 to 10 years of DD. An association was also found between haplotypes and the SvdH score for those with more than 10 years of DD. An association was found between some TNF-alpha promoter SNPs and systemic manifestations, radiological progression, HAQ score, work disability, and joint surgeries, particularly in some classes of DD and between haplotypes and radiological progression for those with more than 10 years of DD.
Fonseca, João Eurico; Cavaleiro, João; Teles, José; Sousa, Elsa; Andreozzi, Valeska L; Antunes, Marília; Amaral-Turkman, Maria A; Canhão, Helena; Mourão, Ana F; Lopes, Joana; Caetano-Lopes, Joana; Weinmann, Pamela; Sobral, Marta; Nero, Patrícia; Saavedra, Maria J; Malcata, Armando; Cruz, Margarida; Melo, Rui; Braña, Araceli; Miranda, Luis; Patto, José V; Barcelos, Anabela; da Silva, José Canas; Santos, Luís M; Figueiredo, Guilherme; Rodrigues, Mário; Jesus, Herberto; Quintal, Alberto; Carvalho, Teresa; da Silva, José A Pereira; Branco, Jaime; Queiroz, Mário Viana
2007-01-01
The objective of this study was to assess whether clinical measures of rheumatoid arthritis activity and severity were influenced by tumor necrosis factor-alpha (TNF-α) promoter genotype/haplotype markers. Each patient's disease activity was assessed by the disease activity score using 28 joint counts (DAS28) and functional capacity by the Health Assessment Questionnaire (HAQ) score. Systemic manifestations, radiological damage evaluated by the Sharp/van der Heijde (SvdH) score, disease-modifying anti-rheumatic drug use, joint surgeries, and work disability were also assessed. The promoter region of the TNF-α gene, between nucleotides -1,318 and +49, was sequenced using an automated platform. Five hundred fifty-four patients were evaluated and genotyped for 10 single-nucleotide polymorphism (SNP) markers, but 5 of these markers were excluded due to failure to fall within Hardy-Weinberg equilibrium or to monomorphism. Patients with more than 10 years of disease duration (DD) presented significant associations between the -857 SNP and systemic manifestations, as well as joint surgeries. Associations were also found between the -308 SNP and work disability in patients with more than 2 years of DD and radiological damage in patients with less than 10 years of DD. A borderline effect was found between the -238 SNP and HAQ score and radiological damage in patients with 2 to 10 years of DD. An association was also found between haplotypes and the SvdH score for those with more than 10 years of DD. An association was found between some TNF-α promoter SNPs and systemic manifestations, radiological progression, HAQ score, work disability, and joint surgeries, particularly in some classes of DD and between haplotypes and radiological progression for those with more than 10 years of DD. PMID:17408492
Galil, Sahar Mahfouz Abdel; El-Shafey, Abeer Mohamed; Hagrass, Hoda A; Fawzy, Faten; Sammak, Ahmed El
2016-04-01
Matrix metalloproteinase-3 (MMP-3) plays a pivotal role in the destruction of bone and degradation of cartilage components in rheumatoid arthritis (RA). We aimed in this study to analyze the relation between baseline levels of MMP-3 and the progression of joint damage in RA. Eighty-one untreated RA patients with joint symptoms for <1 year were evaluated at baseline and after 12 months as regards erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-CCP) and plain X-ray of both hands and wrists. Baseline levels of MMP-3 were measured by enzyme-linked immunosorbent assay and magnetic resonance imaging (MRI) of hands/wrists was performed. Disease Activity Score (DAS28) and Health Assessment Questionnaire (HAQ) were performed at baseline evaluation and after 12 months. The baseline MMP-3 levels were significantly higher in the high-progression group compared with the low-progression one (95.75 ± 42.84 vs. 50.45 ± 12.83, P < 0.001). There was a positive correlation between baseline levels of MMP-3 and MRI erosion score and other baseline clinical parameters, except for HAQ and the van der Heijde modification of the Sharp scoring system (SvdH) scores, while after 12 months, there were high positive correlations between MMP-3 and SvdH score, as well as all parameters except for ESR. Serum baseline levels of MMP-3 are strong prognostic markers of disease activity, and act well as an early predictor of progressive joint damage in recent-onset RA disease. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.
About the Joint Chiefs of Staff
JCS: Search Home Media News Photos Videos Publications About The Joint Staff Chairman Vice Chairman J8 | Force Structure, Resources & Assessment Contact Joint Staff Structure Home : About About the Joint Chiefs of Staff Download the CJCS Historic Guide The Joint Chiefs of Staff consist of the Chairman
Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements
NASA Astrophysics Data System (ADS)
Song, Y.; Hartwigsen, C. J.; McFarland, D. M.; Vakakis, A. F.; Bergman, L. A.
2004-05-01
Mechanical joints often affect structural response, causing localized non-linear stiffness and damping changes. As many structures are assemblies, incorporating the effects of joints is necessary to produce predictive finite element models. In this paper, we present an adjusted Iwan beam element (AIBE) for dynamic response analysis of beam structures containing joints. The adjusted Iwan model consists of a combination of springs and frictional sliders that exhibits non-linear behavior due to the stick-slip characteristic of the latter. The beam element developed is two-dimensional and consists of two adjusted Iwan models and maintains the usual complement of degrees of freedom: transverse displacement and rotation at each of the two nodes. The resulting element includes six parameters, which must be determined. To circumvent the difficulty arising from the non-linear nature of the inverse problem, a multi-layer feed-forward neural network (MLFF) is employed to extract joint parameters from measured structural acceleration responses. A parameter identification procedure is implemented on a beam structure with a bolted joint. In this procedure, acceleration responses at one location on the beam structure due to one known impulsive forcing function are simulated for sets of combinations of varying joint parameters. A MLFF is developed and trained using the patterns of envelope data corresponding to these acceleration histories. The joint parameters are identified through the trained MLFF applied to the measured acceleration response. Then, using the identified joint parameters, acceleration responses of the jointed beam due to a different impulsive forcing function are predicted. The validity of the identified joint parameters is assessed by comparing simulated acceleration responses with experimental measurements. The capability of the AIBE to capture the effects of bolted joints on the dynamic responses of beam structures, and the efficacy of the MLFF parameter identification procedure, are demonstrated.
Wakitani, S; Imoto, K; Saito, M; Yamamoto, T; Kawabata, H
2002-05-01
Reconstruction of a knee damaged by cement packed to cure a giant-cell tumor is sometimes difficult. We reconstructed such a knee by removal of the cement, autologous bone transplantation and distraction osteogenesis using the Ilizarov apparatus. In this paper the results 29 months after the salvage surgery are given. We saw a 31-year-old woman's knee joint that showed osteoarthritic change after curettage, cryosurgery and cementation performed 4 years previously for a giant-cell tumor of the proximal tibia. We reconstructed the knee joint. This procedure included cement removal, alignment correction by tibial osteotomy, subchondral bone reconstruction by autologous bone transplantation, and filling the defect after removing the bone cement by elongating the diaphysis using the Ilizarov apparatus. Distraction was terminated 4 months later when 54 mm of elongation was performed. All devices were removed 12 months after the surgery. Seventeen months after the removal of the apparatus, the range of motion of the right knee was 0 degrees extension and 110 degrees flexion, and the patient was able to walk without pain. Although the treatment period is long and there may be some complications of Ilizarov lengthening and distraction osteogenesis, this procedure has numerous benefits. Bony defects can be soundly reconstructed and, at the same time, the alignment of the knee can be corrected. Also it is not necessary to reconstruct the ligaments because the insertions are intact. If osteoarthritis progresses, a surface type total knee replacement can be performed, not constrained type prosthesis, which would be used if the bony structure had not been reconstructed. This procedure may be one of the candidates for reconstructing such knee joints destroyed by bone cement. Copyright 2002 OsteoArthritis Research Society International. Published by Elsevier Science Ltd. All rights reserved.
Simmonds, B A J; Hannam, K J; Fox, K R; Tobias, J H
2016-03-01
This qualitative study explored the acceptability of high-impact physical activity for increasing bone strength in later life. Thematic analysis established the barriers and facilitators to this physical activity. They prioritised joint over skeletal health, of which they had little concept. Interventions need to clearly communicate the rationale and benefits. The aim of this study was to explore the acceptability of doing high-impact physical activity in later life. This qualitative study was embedded within a large-scale observational study and was designed to address specific objectives and feed into a subsequent intervention. Five focus groups with physically active men and women (over 50 years) were used to develop an interview topic guide to explore the acceptability of high-impact physical activity in older men and women (over 65 years) in South West England. A total of 28 semi-structured interviews with 31 participants were then conducted and transcripts analysed thematically. Three main barriers emerged: conceptualising bone, damage to joints and falling/safety concerns. Two main facilitators were also identified: the need to understand clear tangible benefits and incorporation of activity into everyday habits. Older adults were interested how high-impact physical activity would help to maintain their mobility, independence or social relationships. Some participants wanted tangible feedback from accelerometers, health care professionals and/or bone scans in order to develop a more intimate knowledge of their bone health. Interventions incorporating high-impact physical activity for older adults need to communicate how this activity can impact more broadly on health and lives; that physical activity will be safe, beneficial and not damaging to their joints will need to be clearly conveyed. Ways in which high-impact physical activity can be habitualised into everyday activities, be fun and interactive may help facilitate longer term adoption.
Hand Surgery In World War II. Medical Department, United States Army,
1955-09-01
Few of these patients presented deep cicatrices , latent infection was minimal, and as a rule the position of function was maintained. DEBARKATION...HOSPITAL 217 Many patients were received with large dorsal cicatrices which, although healed, were unstable. Joints and tendons not directly injured by...burns were frequently damaged by constriction and immobility because of superimposed cicatrices . Joint stiffness was likely to be even more pronounced
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulus, Wilfred; Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor; Rahman, Irman Abdul
Lead-free solders are important material in nano and microelectronic surface mounting technology for various applications in bio medicine, environmental monitoring, spacecraft and satellite instrumentation. Nevertheless solder joint in radiation environment needs higher reliability and resistance to any damage caused by ionizing radiations. In this study a lead-free 99.0Sn0.3Ag0.7Cu wt.% (SAC) solder joint was developed and subjected to various doses of gamma radiation to investigate the effects of the ionizing radiation to micromechanical hardness of the solder. Averaged hardness of the SAC joint was obtained from nanoindentation test. The results show a relationship between hardness values of indentations and the incrementmore » of radiation dose. Highest mean hardness, 0.2290 ± 0.0270 GPa was calculated on solder joint which was exposed to 5 Gray dose of gamma radiation. This value indicates possible radiation hardening effect on irradiated solder. The hardness gradually decreased to 0.1933 ± 0.0210 GPa and 0.1631 ± 0.0173 GPa when exposed to doses 50 and 500 gray respectively. These values are also lower than the hardness of non irradiated sample which was calculated as 0.2084 ± 0.0.3633 GPa indicating possible radiation damage and needs further related atomic dislocation study.« less
Tins, Bernhard; Cassar-Pullicino, Victor; McCall, Iain; Cool, Paul; Williams, David; Mangham, David
2006-04-01
The standard treatment for chondroblastoma is surgery, which can be difficult and disabling due to its apo- or epiphyseal location. Radiofrequency (RF) ablation potentially offers a minimally invasive alternative. The often large size of chondroblastomas can make treatment with plain electrode systems difficult or impossible. This article describes the preliminary experience of RF treatment of chondroblastomas with a multi-tined expandable RF electrode system. Four cases of CT guided RF treatment are described. The tumour was successfully treated in all cases. In two cases, complications occurred; infraction of a subarticular chondroblastoma in one case and cartilage and bone damage in the unaffected compartment of a knee joint in the other. Radiofrequency treatment near a joint surface threatens the integrity of cartilage and therefore long-term joint function. In weight-bearing areas, the lack of bone replacement in successfully treated lesions contributes to the risk of mechanical failure. Multi-tined expandable electrode systems allow the treatment of large chondroblastomas. In weight-bearing joints and lesions near to the articular cartilage, there is a risk of cartilage damage and mechanical weakening of the bone. In lesions without these caveats, RF ablation appears promising. The potential risks and benefits need to be evaluated for each case individually.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.
2015-03-01
The use of SiC and SiC-composites in fission or fusion environments requires joining methods for assembling systems. The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes. These torsion specimens fail out-of-plane when joints are strong and when elastic moduli are within a certain range compared to SiC, which causes difficulties in determining shear strengths for joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed that indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimensmore » when a certain modulus and strength ratio between the joint material and the joined material exists. The model was extended to treat elastic-plastic joints such as SiC/epoxy and steel/epoxy joints tested as validation of the specimen design.« less
Huo, Yinghe; Vincken, Koen L; van der Heijde, Desiree; de Hair, Maria J H; Lafeber, Floris P; Viergever, Max A
2017-11-01
Objective: Wrist joint space narrowing is a main radiographic outcome of rheumatoid arthritis (RA). Yet, automatic radiographic wrist joint space width (JSW) quantification for RA patients has not been widely investigated. The aim of this paper is to present an automatic method to quantify the JSW of three wrist joints that are least affected by bone overlapping and are frequently involved in RA. These joints are located around the scaphoid bone, viz. the multangular-navicular, capitate-navicular-lunate, and radiocarpal joints. Methods: The joint space around the scaphoid bone is detected by using consecutive searches of separate path segments, where each segment location aids in constraining the subsequent one. For joint margin delineation, first the boundary not affected by X-ray projection is extracted, followed by a backtrace process to obtain the actual joint margin. The accuracy of the quantified JSW is evaluated by comparison with the manually obtained ground truth. Results: Two of the 50 radiographs used for evaluation of the method did not yield a correct path through all three wrist joints. The delineated joint margins of the remaining 48 radiographs were used for JSW quantification. It was found that 90% of the joints had a JSW deviating less than 20% from the mean JSW of manual indications, with the mean JSW error less than 10%. Conclusion: The proposed method is able to automatically quantify the JSW of radiographic wrist joints reliably. The proposed method may aid clinical researchers to study the progression of wrist joint damage in RA studies. Objective: Wrist joint space narrowing is a main radiographic outcome of rheumatoid arthritis (RA). Yet, automatic radiographic wrist joint space width (JSW) quantification for RA patients has not been widely investigated. The aim of this paper is to present an automatic method to quantify the JSW of three wrist joints that are least affected by bone overlapping and are frequently involved in RA. These joints are located around the scaphoid bone, viz. the multangular-navicular, capitate-navicular-lunate, and radiocarpal joints. Methods: The joint space around the scaphoid bone is detected by using consecutive searches of separate path segments, where each segment location aids in constraining the subsequent one. For joint margin delineation, first the boundary not affected by X-ray projection is extracted, followed by a backtrace process to obtain the actual joint margin. The accuracy of the quantified JSW is evaluated by comparison with the manually obtained ground truth. Results: Two of the 50 radiographs used for evaluation of the method did not yield a correct path through all three wrist joints. The delineated joint margins of the remaining 48 radiographs were used for JSW quantification. It was found that 90% of the joints had a JSW deviating less than 20% from the mean JSW of manual indications, with the mean JSW error less than 10%. Conclusion: The proposed method is able to automatically quantify the JSW of radiographic wrist joints reliably. The proposed method may aid clinical researchers to study the progression of wrist joint damage in RA studies.
Camera Based Closed Loop Control for Partial Penetration Welding of Overlap Joints
NASA Astrophysics Data System (ADS)
Abt, F.; Heider, A.; Weber, R.; Graf, T.; Blug, A.; Carl, D.; Höfler, H.; Nicolosi, L.; Tetzlaff, R.
Welding of overlap joints with partial penetration in automotive applications is a challenging process, since the laser power must be set very precisely to achieve a proper connection between the two joining partners without damaging the backside of the sheet stack. Even minor changes in welding conditions can lead to bad results. To overcome this problem a camera based closed loop control for partial penetration welding of overlap joints was developed. With this closed loop control it is possible to weld such configurations with a stable process result even under changing welding conditions.
Fatigue failure of pb-free electronic packages under random vibration loads
NASA Astrophysics Data System (ADS)
Saravanan, S.; Prabhu, S.; Muthukumar, R.; Gowtham Raj, S.; Arun Veerabagu, S.
2018-03-01
The electronic equipment are used in several fields like, automotive, aerospace, consumer goods where they are subjected to vibration loads leading to failure of solder joints used in these equipment. This paper presents a methodology to predict the fatigue life of Pb-free surface mounted BGA packages subjected to random vibrations. The dynamic characteristics of the PCB, such as the natural frequencies, mode shapes and damping ratios were determined. Spectrum analysis was used to determine the stress response of the critical solder joint and the cumulative fatigue damage accumulated by the solder joint for a specific duration was determined.
High-Resolution Methods for Diagnosing Cartilage Damage In Vivo
Novakofski, Kira D.; Pownder, Sarah L.; Koff, Matthew F.; Williams, Rebecca M.; Potter, Hollis G.; Fortier, Lisa A.
2016-01-01
Advances in current clinical modalities, including magnetic resonance imaging and computed tomography, allow for earlier diagnoses of cartilage damage that could mitigate progression to osteoarthritis. However, current imaging modalities do not detect submicrometer damage. Developments in in vivo or arthroscopic techniques, including optical coherence tomography, ultrasonography, bioelectricity including streaming potential measurement, noninvasive electroarthrography, and multiphoton microscopy can detect damage at an earlier time point, but they are limited by a lack of penetration and the ability to assess an entire joint. This article reviews current advancements in clinical and developing modalities that can aid in the early diagnosis of cartilage injury and facilitate studies of interventional therapeutics. PMID:26958316
... tear damage than are many other joints. Seek emergency care if you have: An obvious deformity in ... http://www.mayoclinic.org/symptoms/elbow-pain/basics/definition/SYM-20050874 . Mayo Clinic Footer Legal Conditions and ...
Ragni, Margaret V
2011-01-01
A major goal of comprehensive hemophilia care is to prevent occurrence of bleeds by prophylaxis or regular preventive factor, one or more times weekly. Although prophylaxis is effective in reducing bleeding and joint damage in children, whether it is necessary to continue into adulthood is not known. The purpose of this article is to describe a Phase III randomized controlled trial to evaluate prophylaxis comparing two dose regimens in adults with severe hemophilia A. I hypothesize that adults with mature cartilage and joints are less susceptible to joint bleeds and joint damage, and that once-weekly recombinant factor VIII prophylaxis, with up to two rescue doses per week, is as effective as thrice-weekly prophylaxis in reducing bleeding frequency, but less costly and more acceptable, with higher quality of life. The ultimate goal of this project is to determine whether once-weekly prophylaxis is any worse than thrice-weekly prophylaxis in reducing joint bleeding frequency, while potentially utilizing less factor, at lower cost, leading to a better quality of life. This is an innovative concept, as it challenges the current paradigm of thrice-weekly prophylaxis in adults, which is based on dosing in children. Furthermore, this trial will assess interdose thrombin generation, a novel tissue factor-based assay of hemostasis, to determine if individualized thrombin generation can predict more individualized prophylaxis dosing, which would be practice changing. PMID:21939418
Antioxidant response of soybean seedlings to joint stress of lanthanum and acid rain.
Liang, Chanjuan; Wang, Weimin
2013-11-01
Excess of rare earth elements in soil can be a serious environmental stress on plants, in particular when acid rain coexists. To understand how such a stress affects plants, we studied antioxidant response of soybean leaves and roots exposed to lanthanum (0.06, 0.18, and 0.85 mmol L(-1)) under acid rain conditions (pH 4.5 and 3.0). We found that low concentration of La3+ (0.06 mmol L(-1)) did not affect the activity of antioxidant enzymes (catalase and peroxidase) whereas high concentration of La3+ (≥0.18 mmol L(-1)) did. Compared to treatment with acid rain (pH 4.5 and pH 3.0) or La3+ alone, joint stress of La3+ and acid rain affected more severely the activity of catalase and peroxidase, and induced more H2O2 accumulation and lipid peroxidation. When treated with high level of La3+ (0.85 mmol L(-1)) alone or with acid rain (pH 4.5 and 3.0), roots were more affected than leaves regarding the inhibition of antioxidant enzymes, physiological function, and growth. The severity of oxidative damage and inhibition of growth caused by the joint stress associated positively with La3+ concentration and soil acidity. These results will help us understand plant response to joint stress, recognize the adverse environmental impact of rare earth elements in acidic soil, and develop measures to eliminate damage caused by such joint stress.
NASA Technical Reports Server (NTRS)
Hayashi, K.; Thabit, G. 3rd; Vailas, A. C.; Bogdanske, J. J.; Cooley, A. J.; Markel, M. D.
1996-01-01
The purpose of this study was to evaluate the effect of laser energy at nonablative levels on joint capsular histologic and biochemical properties in an in vitro rabbit model. The medial and lateral portions of the femoropatellar joint capsule from both stifles of 12 mature New Zealand White rabbits were used. Specimens were divided into three treatment groups (5 watts, 10 watts, and 15 watt) and one control group using a randomized block design. Specimens were placed in a 37 degrees bath of lactated Ringer's solution and laser energy was applied using a holmium:yttrium-aluminum-garnet laser in four transverse passes across the tissue at a velocity of 2 mm/sec with the handpiece set 1.5 mm from the synovial surface. Histologic analysis revealed thermal alteration of collagen (fusion) and fibroblasts (pyknosis) at all energy densities, with higher laser energy causing significantly greater morphologic changes over a larger area (P < 0.05). Application of laser energy did not significantly alter the biochemical parameters evaluated, including type I collagen content and nonreducible crosslinks (P > 0.05). This study demonstrated that nonablative laser energy caused significant thermal damage to the joint capsular tissue in an energy-dependent fashion, but type I collagen content and nonreducible crosslinks (P > 0.05). This study demonstrated that nonablative laser energy caused significant thermal damage to the joint capsular tissue in an energy-dependent fashion, but type I Collagen content and nonreducible corsslinks were not significantly altered.
Effect of Sn-Ag-Cu on the Improvement of Electromigration Behavior in Sn-58Bi Solder Joint
NASA Astrophysics Data System (ADS)
Wang, Fengjiang; Zhou, Lili; Zhang, Zhijie; Wang, Jiheng; Wang, Xiaojing; Wu, Mingfang
2017-10-01
Reliability issues caused by the formation of a Bi-rich layer at the anode interface usually occurs in the Sn-58Bi eutectic solder joint during electromigration (EM). To improve the EM performance of a Sn-58Bi solder joint, Sn-3.0Ag-0.5Cu solder was introduced into it to produce SnBi-SnAgCu structural or compositional composite joints, and their EM behaviors were investigated with the current density of 1.0 × 104 A/cm2 for different stressing times. The structure of the compositional composite solder joint was obtained by the occurrence of partial or full mixing between Sn-Bi and Sn-Ag-Cu solder with a suitable soldering temperature. In the structural composite joint, melted Sn-Bi was partially mixed with Sn-Ag-Cu solder to produce a Cu/Sn-Bi/Sn-Ag-Cu/Sn-Bi/Cu structure. In the compositional composite joint, full melting and mixing between these two solders occurred to produce a Cu/Sn-Ag-Cu-Bi/Cu structure, in which the solder matrix was a homogeneous structure including Sn, Bi phases, Cu6Sn5 and Ag3Sn IMCs. After current stressing, the EM performance of Sn-Bi solder was obviously improved with the structural or the compositional composite joint. In Sn-58Bi joints, a thick Bi-rich layer was easily produced at the anode interface, and obviously increased with stressing time. However, after current stressing on the structural composite joints, the existence of s Sn-3.0Ag-0.5Cu interlayer between the two Sn-58Bi solders effectively acted as a diffusion barrier and significantly slowed the formation of the Bi-rich layer at the anode side and the IMC thicknesses at the interfaces.
Shear load transfer in high and low stress tendons.
Kondratko-Mittnacht, Jaclyn; Duenwald-Kuehl, Sarah; Lakes, Roderic; Vanderby, Ray
2015-05-01
Tendon is an integral part of joint movement and stability, as it functions to transmit load from muscle to bone. It has an anisotropic, fibrous hierarchical structure that is generally loaded in the direction of its fibers/fascicles. Internal load distributions are altered when joint motion rotates an insertion site or when local damage disrupts fibers/fascicles, potentially causing inter-fiber (or inter-fascicular) shear. Tendons with different microstructures (helical versus linear) may redistribute loads differently. This study explored how shear redistributes axial loads in rat tail tendon (low stress tendons with linear microstructure) and porcine flexor tendon (high stress with helical microstructure) by creating lacerations on opposite sides of the tendon, ranging from about 20% to 60% of the tendon width, to create various magnitudes of shear. Differences in fascicular orientation were quantified using polarized light microscopy. Unexpectedly, both tendon types maintained about 20% of pre-laceration stress values after overlapping cuts of 60% of tendon width (no intact fibers end to end) suggesting that shear stress transfer can contribute more to overall tendon strength and stiffness than previously reported. All structural parameters for both tendon types decreased linearly with increasing laceration depth. The tail tendon had a more rapid decline in post-laceration elastic stress and modulus parameters as well as a more linear and less tightly packed fascicular structure, suggesting that positional tendons may be less well suited to redistribute loads via a shear mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shear Load Transfer in High and Low Stress Tendons
Kondratko-Mittnacht, Jaclyn; Duenwald-Kuehl, Sarah; Lakes, Roderic; Vanderby, Ray
2016-01-01
Background Tendon is an integral part of joint movement and stability, as it functions to transmit load from muscle to bone. It has an anisotropic, fibrous hierarchical structure that is generally loaded in the direction of its fibers/fascicles. Internal load distributions are altered when joint motion rotates an insertion site or when local damage disrupts fibers/fascicles, potentially causing inter-fiber (or inter-fascicular) shear. Tendons with different microstructure (helical versus linear) may redistribute loads differently. Method of Approach This study explored how shear redistributes axial loads in rat tail tendon (low stress tendons with linear microstructure) and porcine flexor tendon (high stress with helical microstructure) by creating lacerations on opposite sides of the tendon, ranging from about 20-60% of the tendon width, to create various magnitudes of shear. Differences in fascicular orientation were quantified using polarized light microscopy. Results and Conclusions Unexpectedly, both tendon types maintained about 20% of pre-laceration stress values after overlapping cuts of 60% of tendon width (no intact fibers end to end) suggesting that shear stress transfer can contribute more to overall tendon strength and stiffness than previously reported. All structural parameters for both tendon types decreased linearly with increasing laceration depth. The tail tendon had a more rapid decline in post-laceration elastic stress and modulus parameters as well as a more linear and less tightly packed fascicular structure, suggesting that positional tendons may be less well suited to redistribute loads via a shear mechanism. PMID:25700261
A Review on Strengthening Steel Beams Using FRP under Fatigue
Jumaat, Mohd Zamin; Ramli Sulong, N. H.
2014-01-01
In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems. PMID:25243221
Study of utilization of advanced composites in fuselage structures of large transports
NASA Technical Reports Server (NTRS)
Jackson, A. C.; Campion, M. C.; Pei, G.
1984-01-01
The effort required by the transport aircraft manufacturers to support the introduction of advanced composite materials into the fuselage structure of future commercial and military transport aircraft is investigated. Technology issues, potential benefits to military life cycle costs and commercial operating costs, and development plans are examined. The most urgent technology issues defined are impact dynamics, acoustic transmission, pressure containment and damage tolerance, post-buckling, cutouts, and joints and splices. A technology demonstration program is defined and a rough cost and schedule identified. The fabrication and test of a full-scale fuselage barrel section is presented. Commercial and military benefits are identified. Fuselage structure weight savings from use of advanced composites are 16.4 percent for the commercial and 21.8 percent for the military. For the all-composite airplanes the savings are 26 percent and 29 percent, respectively. Commercial/operating costs are reduced by 5 percent for the all-composite airplane and military life cycle costs by 10 percent.
Volkov, A V; Shutov, Iu M; Shutova, M Z
2012-01-01
The influence of anthropology on topographical anatomical structure peculiarities of soft tissue formations of shoulder girdle has been investigated. The dependence of anatomical structure and topography of muscles, ligaments, tendon sheaths, synovial bursae, rotator cuffs on patient's body constitution type has been examined. The influence of a somatotype on topical damage of soft tissue structures of shoulder girdle has been proved. The so-called "holes" or weak areas, joint capsules, places where ligaments attach to bones and cartilages, where vascular formations also take place have been revealed. It is in these areas that degenerative inflammatory process begins. First of all this process influences hemolymph circulation, then it results in disturbance in production and resorption of synovial fluid and causes destructive processes in ligaments, tendons and osteochondral tissue. Due to research the ability to conduct differential diagnosis has been determined, methods of modality treatment and prevention of periarticular tissue diseases have been optimized.
A review on strengthening steel beams using FRP under fatigue.
Kamruzzaman, Mohamed; Jumaat, Mohd Zamin; Sulong, N H Ramli; Islam, A B M Saiful
2014-01-01
In recent decades, the application of fibre-reinforced polymer (FRP) composites for strengthening structural elements has become an efficient option to meet the increased cyclic loads or repair due to corrosion or fatigue cracking. Hence, the objective of this study is to explore the existing FRP reinforcing techniques to care for fatigue damaged structural steel elements. This study covers the surface treatment techniques, adhesive curing, and support conditions under cyclic loading including fatigue performance, crack propagation, and failure modes with finite element (FE) simulation of the steel bridge girders and structural elements. FRP strengthening composites delay initial cracking, reduce the crack growth rate, extend the fatigue life, and decrease the stiffness decay with residual deflection. Prestressed carbon fibre-reinforced polymer (CFRP) is the best strengthening option. End anchorage prevents debonding of the CRRP strips at the beam ends by reducing the local interfacial shear and peel stresses. Hybrid-joint, nanoadhesive, and carbon-flex can also be attractive for strengthening systems.
Evolution of the Deformation Behavior of Sn-Rich Solders during Cyclic Fatigue
NASA Astrophysics Data System (ADS)
Wentlent, Luke Arthur
Continuous developments in the electronics industry have provided a critical need for a quantitative, fundamental understanding of the behavior of SnAgCu (SAC) solders in both isothermal and thermal fatigue conditions. This study examines the damage behavior of Sn-based solders in a constant amplitude and variable amplitude environment. In addition, damage properties are correlated with crystal orientation and slip behavior. Select solder joints were continuously characterized and tested repeatedly in order to eliminate the joint to joint variation due to the anisotropy of beta-Sn. Characterization was partitioned into three different categories: effective properties and slip behavior, creep mechanisms and crystal morphology development, and atomic behavior and evolution. Active slip systems were correlated with measured properties. Characterization of the mechanical behavior was performed by the calculation and extrapolation of the elastic modulus, work, effective stiffness, Schmid factors, and time-dependent plasticity (creep). Electron microscopy based characterization methods included Scanning Electron Microscopy (SEM), Electron Backscattering Diffraction (EBSD), and Transmission Electron Microscopy (TEM). Testing showed a clear evolution of the steady-state creep mechanism when the cycling amplitudes were varied, from dislocation controlled to diffusion controlled creep. Dislocation behavior was examined and shown to evolve differently in single amplitude vs. variable amplitude testing. Finally, the mechanism of the recrystallization behavior of the beta-Sn was observed. This work fills a gap in the literature, providing a systematic study which identifies how the damage behavior in Sn-alloys depends upon the previous damage. A link is made between the observed creep behavior and the dislocation observations, providing a unified picture. Information developed in this work lays a stepping stone to future fundamental analyses as well as clarifying aspects of the mechanistic behavior of Sn and Sn-based alloys.
Design, Fabrication and Characterization of High Temperature Joints in Ceramic Composites
NASA Technical Reports Server (NTRS)
Singh, M.
1999-01-01
Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200 C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.
Design, Fabrication, and Characterization of High Temperature Joints in Ceramic Composites
NASA Technical Reports Server (NTRS)
Singh, M.
1999-01-01
Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.
Landewé, Robert B.; Mease, Philip J.; McInnes, Iain B.; Conaghan, Philip G.; Pricop, Luminita; Ligozio, Greg; Richards, Hanno B.; Mpofu, Shephard
2016-01-01
Objective To assess whether secukinumab treatment in patients with active psoriatic arthritis (PsA) is associated with sustained inhibition of radiographic progression. Methods In this phase III, double‐blind, placebo‐controlled study, 606 patients with PsA were randomized to receive intravenous (IV) secukinumab at a dose of 10 mg/kg (weeks 0, 2, 4) followed by subcutaneous secukinumab at a dose of 150 mg or 75 mg (the IV→150 mg and IV→75 mg groups, respectively) or placebo. Patients were stratified according to prior anti–tumor necrosis factor (anti‐TNF) exposure (71% were anti‐TNF naive). At week 16, placebo‐treated patients who had at least a 20% reduction in the tender and swollen joint counts (responders) continued to receive placebo until week 24; nonresponders were re‐randomized to receive secukinumab at a dose of 150 mg or 75 mg. The modified total Sharp/van der Heijde score (SHS) was determined at baseline, week 16 or 24, and week 52. Results In the overall population, radiographic progression was inhibited through 52 weeks; efficacy was demonstrated for both erosion and joint space narrowing scores and in patients who switched from placebo to secukinumab at week 24. Subgroup analyses showed that secukinumab reduced radiographic progression at week 24, regardless of previous anti‐TNF treatment. Among anti‐TNF–naive patients, the mean changes from baseline to week 24 in the modified total SHS were 0.05 in the pooled secukinumab group and 0.57 in the placebo group; among patients with an inadequate response or intolerance to anti‐TNF treatment, the mean changes were 0.16 and 0.58, respectively. Anti‐TNF–naive patients showed negligible progression through week 52. Inhibition of structural damage was observed through week 52 irrespective of concomitant methotrexate use. A high proportion of patients receiving secukinumab showed no progression (change in SHS of ≤ 0.5) from baseline to week 24 (82.3% of the IV→150 mg group and 92.3% of the IV→75 mg group) and from week 24 to week 52 (85.7% of the IV→150 mg group and 85.8% of the IV→75 mg group). Conclusion Secukinumab inhibited radiographic progression over 52 weeks of treatment in patients with active PsA. PMID:27014997
Experimental validation of a structural damage detection method based on marginal Hilbert spectrum
NASA Astrophysics Data System (ADS)
Banerji, Srishti; Roy, Timir B.; Sabamehr, Ardalan; Bagchi, Ashutosh
2017-04-01
Structural Health Monitoring (SHM) using dynamic characteristics of structures is crucial for early damage detection. Damage detection can be performed by capturing and assessing structural responses. Instrumented structures are monitored by analyzing the responses recorded by deployed sensors in the form of signals. Signal processing is an important tool for the processing of the collected data to diagnose anomalies in structural behavior. The vibration signature of the structure varies with damage. In order to attain effective damage detection, preservation of non-linear and non-stationary features of real structural responses is important. Decomposition of the signals into Intrinsic Mode Functions (IMF) by Empirical Mode Decomposition (EMD) and application of Hilbert-Huang Transform (HHT) addresses the time-varying instantaneous properties of the structural response. The energy distribution among different vibration modes of the intact and damaged structure depicted by Marginal Hilbert Spectrum (MHS) detects location and severity of the damage. The present work investigates damage detection analytically and experimentally by employing MHS. The testing of this methodology for different damage scenarios of a frame structure resulted in its accurate damage identification. The sensitivity of Hilbert Spectral Analysis (HSA) is assessed with varying frequencies and damage locations by means of calculating Damage Indices (DI) from the Hilbert spectrum curves of the undamaged and damaged structures.
... damage. Vision loss. Hearing loss. Mental retardation. Tumor Necrosis Factor Receptor-Associated Periodic Syndrome (TRAPS) is associated ... red spots on the skin caused by burst blood vessels (purpura). Joint pain. Permanent shortening of a muscle ...
The processing and heterostructuring of silk with light
NASA Astrophysics Data System (ADS)
Sidhu, Mehra S.; Kumar, Bhupesh; Singh, Kamal P.
2017-09-01
Spider silk is a tough, elastic and lightweight biomaterial, although there is a lack of tools available for non-invasive processing of silk structures. Here we show that nonlinear multiphoton interactions of silk with few-cycle femtosecond pulses allow the processing and heterostructuring of the material in ambient air. Two qualitatively different responses, bulging by multiphoton absorption and plasma-assisted ablation, are observed for low- and high-peak intensities, respectively. Plasma ablation allows us to make localized nanocuts, microrods, nanotips and periodic patterns with minimal damage while preserving molecular structure. The bulging regime facilitates confined bending and microwelding of silk with materials such as metal, glass and Kevlar with strengths comparable to pristine silk. Moreover, analysis of Raman bands of microwelded joints reveals that the polypeptide backbone remains intact while perturbing its weak hydrogen bonds. Using this approach, we fabricate silk-based functional topological microstructures, such as Mobiüs strips, chiral helices and silk-based sensors.
The processing and heterostructuring of silk with light.
Sidhu, Mehra S; Kumar, Bhupesh; Singh, Kamal P
2017-09-01
Spider silk is a tough, elastic and lightweight biomaterial, although there is a lack of tools available for non-invasive processing of silk structures. Here we show that nonlinear multiphoton interactions of silk with few-cycle femtosecond pulses allow the processing and heterostructuring of the material in ambient air. Two qualitatively different responses, bulging by multiphoton absorption and plasma-assisted ablation, are observed for low- and high-peak intensities, respectively. Plasma ablation allows us to make localized nanocuts, microrods, nanotips and periodic patterns with minimal damage while preserving molecular structure. The bulging regime facilitates confined bending and microwelding of silk with materials such as metal, glass and Kevlar with strengths comparable to pristine silk. Moreover, analysis of Raman bands of microwelded joints reveals that the polypeptide backbone remains intact while perturbing its weak hydrogen bonds. Using this approach, we fabricate silk-based functional topological microstructures, such as Mobiüs strips, chiral helices and silk-based sensors.
Reliability aspects of a composite bolted scarf joint. [in wing skin splice
NASA Technical Reports Server (NTRS)
Reed, D. L.; Eisenmann, J. R.
1975-01-01
The design, fabrication, static test, and fatigue test of both tension and compression graphite-epoxy candidates for a wing splice representative of a next-generation transport aircraft was the objective of the reported research program. A single-scarf bolted joint was selected as the design concept. Test specimens were designed and fabricated to represent an upper-surface and a lower-surface panel containing the splice. The load spectrum was a flight-by-flight random-load history including ground-air-ground loads. The results of the fatigue testing indicate that, for this type of joint, the inherent fatigue resistance of the laminate is reflected in the joint behavior and, consequently, the rate of damage accumulation is very slow under realistic fatigue loadings.
Self-Alining, Latching Joint For Folding Structural Elements
NASA Technical Reports Server (NTRS)
Bush, H. G.; Wallsom, R. E.
1982-01-01
Structural column elements assembled quickly and easily with aid of new center joint. Joint alines column elements automatically and fastens them together securely. Tapered half columns are stacked like paper cups, unfolded, and connected to other similar elements to form truss structures.
Bone effects of biologic drugs in rheumatoid arthritis.
Corrado, Addolorata; Neve, Anna; Maruotti, Nicola; Cantatore, Francesco Paolo
2013-01-01
Biologic agents used in the treatment of rheumatoid arthritis (RA) are able to reduce both disease activity and radiographic progression of joint disease. These drugs are directed against several proinflammatory cytokines (TNF α , IL-6, and IL-1) which are involved both in the pathogenesis of chronic inflammation and progression of joint structural damage and in systemic and local bone loss typically observed in RA. However, the role of biologic drugs in preventing bone loss in clinical practice has not yet clearly assessed. Many clinical studies showed a trend to a positive effect of biologic agents in preventing systemic bone loss observed in RA. Although the suppression of inflammation is the main goal in the treatment of RA and the anti-inflammatory effects of biologic drugs exert a positive effect on bone metabolism, the exact relationship between the prevention of bone loss and control of inflammation has not been clearly established, and if the available biologic drugs against TNF α , IL-1, and IL-6 can exert their effect on systemic and local bone loss also through a direct mechanism on bone cell metabolism is still to be clearly defined.
Heinemeier, Katja M; Schjerling, Peter; Heinemeier, Jan; Møller, Mathias B; Krogsgaard, Michael R; Grum-Schwensen, Tomas; Petersen, Michael M; Kjaer, Michael
2016-07-06
The poor regenerative capacity of articular cartilage presents a major clinical challenge and may relate to a limited turnover of the cartilage collagen matrix. However, the collagen turnover rate during life is not clear, and it is debated whether osteoarthritis (OA) can influence it. Using the carbon-14 ((14)C) bomb-pulse method, life-long replacement rates of collagen were measured in tibial plateau cartilage from 23 persons born between 1935 and1997 (15 and 8 persons with OA and healthy cartilage, respectively). The (14)C levels observed in cartilage collagen showed that, virtually, no replacement of the collagen matrix happened after skeletal maturity and that neither OA nor tissue damage, per se, influenced collagen turnover. Regional differences in (14)C content across the joint surface showed that cartilage collagen located centrally on the joint surface is formed several years earlier than collagen located peripherally. The collagen matrix of human articular cartilage is an essentially permanent structure that has no significant turnover in adults, even with the occurrence of disease. Copyright © 2016, American Association for the Advancement of Science.
Durão, Carlos; Alves, Magda; Barros, André; Pedrosa, Frederico
2017-08-01
Hip fractures with unstable pelvic ring have great morbidity and mortality rates. These fractures result from high energy trauma such as falls from heights, road accidents and collapsing structures or other similar mechanisms of action. We report the case of a 63 years old man, construction worker, who stood inside a ditch during a wall construction when he was surprised by this collapse, which resulted in direct trauma to the right thigh and pelvis. The autopsy revealed diaphysis fracture of the right femur with an open book pelvic fracture with severe hemorrhagic infiltration and hematoma of the pelvic muscles without arterial injury. Bone bleeding and the vascular damage associated with disruption of the sacroiliac ligaments promote a very significant bleeding. Simple maneuvers such as sheet circumferential compression to promote pelvic ring closure are effective on stabilizing and closure of the sacroiliac joint. Hip manipulation of the fracture was performed during the necropsy to demonstrate and prove how a simple sheet contention can promote stabilization of the pelvic ring by closing the sacroiliac joints in open book fractures.
Augmented reality environment for temporomandibular joint motion analysis.
Wagner, A; Ploder, O; Zuniga, J; Undt, G; Ewers, R
1996-01-01
The principles of interventional video tomography were applied for the real-time visualization of temporomandibular joint movements in an augmented reality environment. Anatomic structures were extracted in three dimensions from planar cephalometric radiographic images. The live-image fusion of these graphic anatomic structures with real-time position data of the mandible and the articular fossa was performed with a see-through, head-mounted display and an electromagnetic tracking system. The dynamic fusion of radiographic images of the temporomandibular joint to anatomic temporomandibular joint structures in motion created a new modality for temporomandibular joint motion analysis. The advantages of the method are its ability to accurately examine the motion of the temporomandibular joint in three dimensions without restraining the subject and its ability to simultaneously determine the relationship of the bony temporomandibular joint and supporting structures (ie, occlusion, muscle function, etc) during movement before and after treatment.
Smolen, Josef S; Choe, Jung-Yoon; Prodanovic, Nenad; Niebrzydowski, Jaroslaw; Staykov, Ivan; Dokoupilova, Eva; Baranauskaite, Asta; Yatsyshyn, Roman; Mekic, Mevludin; Porawska, Wieskawa; Ciferska, Hana; Jedrychowicz-Rosiak, Krystyna; Zielinska, Agnieszka; Choi, Jasmine; Rho, Young Hee
2017-10-01
SB2 is a biosimilar to the reference infliximab (INF). Similar efficacy, safety and immunogenicity between SB2 and INF up to 30 weeks were previously reported. This report investigates such clinical similarity up to 54 weeks, including structural joint damage. In this phase III, double-blind, parallel-group, multicentre study, patients with moderate to severe RA despite MTX were randomized (1:1) to receive 3 mg/kg of either SB2 or INF at 0, 2, 6 and every 8 weeks thereafter. Dose escalation by 1.5 mg/kg up to a maximum dose of 7.5 mg/kg was allowed after week 30. Efficacy, safety and immunogenicity were measured at each visit up to week 54. Radiographic damage evaluated by modified total Sharp score was measured at baseline and week 54. A total of 584 patients were randomized to receive SB2 (n = 291) or INF (n = 293). The rate of radiographic progression was comparable between SB2 and INF (mean modified total Sharp score difference: SB2, 0.38; INF, 0.37) at 1 year. ACR responses, 28-joint DAS, Clinical Disease Activity Index and Simplified Disease Activity Index were comparable between SB2 and INF up to week 54. The incidence of treatment-emergent adverse events and anti-drug antibodies were comparable between treatment groups. Such comparable trends of efficacy, safety and immunogenicity were consistent from baseline up to 54 weeks. The pattern of dose increment was also comparable between SB2 and INF. SB2 maintained similar efficacy, safety and immunogenicity with INF up to 54 weeks in patients with moderate to severe RA. Radiographic progression was comparable at 1 year. ClinicalTrials.gov (http://clinicaltrials.gov; NCT01936181) and EudraCT (https://www.clinicaltrialsregister.eu; 2012-005733-37). © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology.
Smolen, Josef S.; Choe, Jung-Yoon; Prodanovic, Nenad; Niebrzydowski, Jaroslaw; Staykov, Ivan; Dokoupilova, Eva; Baranauskaite, Asta; Yatsyshyn, Roman; Mekic, Mevludin; Porawska, Wieskawa; Ciferska, Hana; Jedrychowicz-Rosiak, Krystyna; Zielinska, Agnieszka; Choi, Jasmine; Rho, Young Hee
2017-01-01
Abstract Objectives SB2 is a biosimilar to the reference infliximab (INF). Similar efficacy, safety and immunogenicity between SB2 and INF up to 30 weeks were previously reported. This report investigates such clinical similarity up to 54 weeks, including structural joint damage. Methods In this phase III, double-blind, parallel-group, multicentre study, patients with moderate to severe RA despite MTX were randomized (1:1) to receive 3 mg/kg of either SB2 or INF at 0, 2, 6 and every 8 weeks thereafter. Dose escalation by 1.5 mg/kg up to a maximum dose of 7.5 mg/kg was allowed after week 30. Efficacy, safety and immunogenicity were measured at each visit up to week 54. Radiographic damage evaluated by modified total Sharp score was measured at baseline and week 54. Results A total of 584 patients were randomized to receive SB2 (n = 291) or INF (n = 293). The rate of radiographic progression was comparable between SB2 and INF (mean modified total Sharp score difference: SB2, 0.38; INF, 0.37) at 1 year. ACR responses, 28-joint DAS, Clinical Disease Activity Index and Simplified Disease Activity Index were comparable between SB2 and INF up to week 54. The incidence of treatment-emergent adverse events and anti-drug antibodies were comparable between treatment groups. Such comparable trends of efficacy, safety and immunogenicity were consistent from baseline up to 54 weeks. The pattern of dose increment was also comparable between SB2 and INF. Conclusion SB2 maintained similar efficacy, safety and immunogenicity with INF up to 54 weeks in patients with moderate to severe RA. Radiographic progression was comparable at 1 year. Trial registration ClinicalTrials.gov (http://clinicaltrials.gov; NCT01936181) and EudraCT (https://www.clinicaltrialsregister.eu; 2012-005733-37) PMID:28957563
Sagar, Devi Rani; Ashraf, Sadaf; Xu, Luting; Burston, James J; Menhinick, Matthew R; Poulter, Caroline L; Bennett, Andrew J; Walsh, David A; Chapman, Victoria
2014-08-01
Increased subchondral bone turnover may contribute to pain in osteoarthritis (OA). To investigate the analgesic potential of a modified version of osteoprotegerin (osteoprotegerin-Fc (OPG-Fc)) in the monosodium iodoacetate (MIA) model of OA pain. Male Sprague Dawley rats (140-260 g) were treated with either OPG-Fc (3 mg/kg, subcutaneously) or vehicle (phosphate-buffered saline) between days 1 and 27 (pre-emptive treatment) or days 21 and 27 (therapeutic treatment) after an intra-articular injection of MIA (1 mg/50 µl) or saline. A separate cohort of rats received the bisphosphonate zoledronate (100 µg/kg, subcutaneously) between days 1 and 25 post-MIA injection. Incapacitance testing and von Frey (1-15 g) hind paw withdrawal thresholds were used to assess pain behaviour. At the end of the study, rats were killed and the knee joints and spinal cord removed for analysis. Immunohistochemical studies using Iba-1 and GFAP quantified levels of activation of spinal microglia and astrocytes, respectively. Joint sections were stained with haematoxylin and eosin or Safranin-O fast green and scored for matrix proteoglycan and overall joint morphology. The numbers of tartrate-resistant acid phosphatase-positive osteoclasts were quantified. N=10 rats/group. Pre-emptive treatment with OPG-Fc significantly attenuated the development of MIA-induced changes in weightbearing, but not allodynia. OPG-Fc decreased osteoclast number, inhibited the formation of osteophytes and improved structural pathology within the joint similarly to the decrease seen after pretreatment with the bisphosphonate, zoledronate. Therapeutic treatment with OPG-Fc decreased pain behaviour, but did not improve pathology in rats with established joint damage. Our data suggest that early targeting of osteoclasts may reduce pain associated with OA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.