Sample records for structural marsh management

  1. Impacts of marsh management on coastal-marsh bird habitats

    USGS Publications Warehouse

    Mitchell, L.R.; Gabrey, S.; Marra, P.P.; Erwin, R.M.

    2006-01-01

    The effects of habitat-management practices in coastal marshes have been poorly evaluated. We summarize the extant literature concerning whether these manipulations achieve their goals and the effects of these manipulations on target (i.e., waterfowl and waterfowl food plants) and non-target organisms (particularly coastal-marsh endemics). Although we focus on the effects of marsh management on birds, we also summarize the scant literature concerning the impacts of marsh manipulations on wildlife such as small mammals and invertebrates. We address three common forms of anthropogenic marsh disturbance: prescribed fire, structural marsh management, and open-marsh water management. We also address marsh perturbations by native and introduced vertebrates.

  2. Structural marsh management research priorities

    USGS Publications Warehouse

    Cahoon, Donald R.; Groat, Charles G.

    1989-01-01

    The paper presents a prioritized list of research issues related to structural marsh management developed by a multidisciplinary panel of regulatory agency representatives, landowners, and scientists. More than 75 issues were identified concerning landscape changes, influence on ecological processes (i.e., hydrologic, biologic, and edaphic factors), habitat quality, cumulative impacts, and management approach. These issues were prioritized and organized around six basic questions regulatory personnel must try to answer for each marsh management plan application. The six questions deal with the influence of marsh management on, in order of most immediate need, marsh loss and health, fisheries, wildlife, habitat change, water quality, and cumulative effects.

  3. Plant community composition and biomass in Gulf Coast Chenier Plain marshes: Responses to winter burning and structural marsh management

    USGS Publications Warehouse

    Gabrey, S.W.; Afton, A.D.

    2001-01-01

    Many marshes in the Gulf Coast Chenier Plain, USA, are managed through a combination of fall or winter burning and structural marsh management (i.e., levees and water control structures; hereafter SMM). The goals of winter burning and SMM include improvement of waterfowl and furbearer habitat, maintenance of historic isohaline lines, and creation and maintenance of emergent wetlands. Although management practices are intended to influence the plant community, effects of these practices on primary productivity have not been investigated. Marsh processes, such as vertical accretion and nutrient cycles, which depend on primary productivity may be affected directly or indirectly by winter burning or SMM. We compared Chenier Plain plant community characteristics (species composition and above- and belowground biomass) in experimentally burned and unburned control plots within impounded and unimpounded marshes at 7 months (1996), 19 months (1997), and 31 months (1998) after burning. Burning and SMM did not affect number of plant species or species composition in our experiment. For all three years combined, burned plots had higher live above-ground biomass than did unburned plots. Total above-ground and dead above-ground biomasses were reduced in burned plots for two and three years, respectively, compared to those in unburned control plots. During all three years, belowground biomass was lower in impounded than in unimpounded marshes but did not differ between burn treatments. Our results clearly indicate that current marsh management practices influence marsh primary productivity and may impact other marsh processes, such as vertical accretion, that are dependent on organic matter accumulation and decay.

  4. Vertebrate herbivory in managed coastal wetlands: A manipulative experiment

    USGS Publications Warehouse

    Johnson, L.A.; Foote, A.L.

    1997-01-01

    Structural marsh management and nutria herbivory are both believed to strongly influence plant production in the brackish, deltaic marshes of coastal Louisiana, USA. Previous studies have tested the effects of structural management on aboveground biomass after implementing management, but very few studies have collected data before and after management. Thus, to test the effects of structural marsh management on Spartina patens (Ait.) Muhl. and Scirpus americanus Pers., the aboveground biomass of both species was estimated before and after the construction of shallow, leveed impoundments. The water level in each impoundment was managed with a single flap-gated culvert fitted with a variable crest weir. Additionally, the influence of nutria grazing on aboveground biomass was measured by nondestructively sampling fenced (ungrazed) and unfenced (grazed) plots in both managed and unmanaged areas. While there was no significant difference in S. patens production between managed and unmanaged areas, marsh management negatively affected Sc. americanus production the two species also differed in their responses to grazing. Grazing dramatically reduced the sedge, Sc. americanus, while the grass, S. patens, remained at similar biomass levels in grazed and ungrazed plant stands. These findings support the belief that herbivory has a strong influence on plant production, but do not support the claim that management increases plant production in the deltaic marshes of Louisiana.

  5. Use of structured decision making to identify monitoring variables and management priorities for salt marsh ecosystems

    USGS Publications Warehouse

    Neckles, Hilary A.; Lyons, James E.; Guntenspergen, Glenn R.; Shriver, W. Gregory; Adamowicz, Susan C.

    2015-01-01

    Most salt marshes in the USA have been degraded by human activities, and coastal managers are faced with complex choices among possible actions to restore or enhance ecosystem integrity. We applied structured decision making (SDM) to guide selection of monitoring variables and management priorities for salt marshes within the National Wildlife Refuge System in the northeastern USA. In general, SDM is a systematic process for decomposing a decision into its essential elements. We first engaged stakeholders in clarifying regional salt marsh decision problems, defining objectives and attributes to evaluate whether objectives are achieved, and developing a pool of alternative management actions for achieving objectives. Through this process, we identified salt marsh attributes that were applicable to monitoring National Wildlife Refuges on a regional scale and that targeted management needs. We then analyzed management decisions within three salt marsh units at Prime Hook National Wildlife Refuge, coastal Delaware, as a case example of prioritizing management alternatives. Values for salt marsh attributes were estimated from 2 years of baseline monitoring data and expert opinion. We used linear value modeling to aggregate multiple attributes into a single performance score for each alternative, constrained optimization to identify alternatives that maximized total management benefits subject to refuge-wide cost constraints, and used graphical analysis to identify the optimal set of alternatives for the refuge. SDM offers an efficient, transparent approach for integrating monitoring into management practice and improving the quality of management decisions.

  6. Hydrologic aspects of marsh ponds during winter on the Gulf Coast Chenier Plain, USA: Effects of structural marsh management

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2004-01-01

    The hydrology of marsh ponds influences aquatic invertebrate and waterbird communities. Hydrologic variables in marsh ponds of the Gulf Coast Chenier Plain are potentially affected by structural marsh management (SMM: levees, water control structures and impoundments) that has been implemented since the 1950s. Assuming that SMM restricts tidal flows and drainage of rainwater, we predicted that SMM would increase water depth, and concomitantly decrease salinity and transparency in impounded marsh ponds. We also predicted that SMM would increase seasonal variability in water depth in impounded marsh ponds because of the potential incapacity of water control structures to cope with large flooding events. In addition, we predicted that SMM would decrease spatial variability in water depth. Finally, we predicted that ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes would be similar in water depth, temperature, dissolved oxygen (O2), and transparency. Using a priori multivariate analysis of variance (MANOVA) contrast, we tested these predictions by comparing hydrologic variables within ponds of impounded and unimpounded marshes during winters 1997-1998 to 1999-2000 on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. Specifically, we compared hydrologic variables (1) between IM and unimpounded mesohaline marsh ponds (UM); and (2) among IF, IO, and IM marshes ponds. As predicted, water depth was higher and salinity and O2 were lower in IM than in UM marsh ponds. However, temperature and transparency did not differ between IM and UM marsh ponds. Water depth varied more among months in IM marsh ponds than within those of UM marshes, and variances among and within ponds were lower in IM than UM marshes. Finally, all hydrologic variables, except salinity, were similar among IF, IO, and IM marsh ponds. Hydrologic changes within marsh ponds due to SMM should (1) promote benthic invertebrate taxa that tolerate low levels of O2 and salinity; (2) deter waterbird species that cannot cope with increased water levels; and (3) reduce waterbird species diversity by decreasing spatial variability in water depth among and within marsh ponds.

  7. Sediments in marsh ponds of the Gulf Coast Chenier Plain: Effects of structural marsh management and salinity

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2005-01-01

    Physical characteristics of sediments in coastal marsh ponds (flooded zones of marsh associated with little vegetation) have important ecological consequences because they determine compositions of benthic invertebrate communities, which in turn influence compositions of waterbird communities. Sediments in marsh ponds of the Gulf Coast Chenier Plain potentially are affected by (1) structural marsh management (levees, water control structures and impoundments; SMM), and (2) variation in salinity. Based on available literature concerning effects of SMM on sediments in emergent plant zones (zones of marsh occasionally flooded and associated with dense vegetation) of coastal marshes, we predicted that SMM would increase sediment carbon content and sediment hardness, and decrease oxygen penetration (O2 depth) and the silt-clay fraction in marsh pond sediments. Assuming that freshwater marshes are more productive than are saline marshes, we also predicted that sediments of impounded freshwater marsh ponds would contain more carbon than those of impounded oligohaline and mesohaline marsh ponds, whereas C:N ratio, sediment hardness, silt-clay fraction, and O2 depth would be similar among pond types. Accordingly, we measured sediment variables within ponds of impounded and unimpounded marshes on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. To test the above predictions, we compared sediment variables (1) between ponds of impounded (IM) and unimpounded mesohaline marshes (UM), and (2) among ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes. An a priori multivariate analysis of variance (MANOVA) contrast indicated that sediments differed between IM and UM marsh ponds. As predicted, the silt-clay fraction and O2 depth were lower and carbon content, C:N ratio, and sediment hardness were higher in IM than in UM marsh ponds. An a priori MANOVA contrast also indicated that sediments differed among IF, IO, and IM marsh ponds. As predicted, carbon content was higher in IF marsh ponds than in ponds of other impounded marsh types. In contrast to our predictions, C:N ratio and sediment hardness were lowest and silt-clay fraction and O2 depth were highest in IO and IM marsh ponds. Our results indicated that SMM has affected physical properties of sediments in coastal marsh ponds. Moreover, sediments in IF marsh ponds were affected more so than were those in IO and IM marsh ponds. Our results, in conjunction with those of previous studies, indicated that sediments of marsh ponds and emergent plant zones differed greatly. We predict that changes in pond sediments due to SMM will promote greater epifaunal macroinvertebrate biomass, which in turn should attract larger populations of wintering waterbirds. However, waterbirds that filter or probe soft sediments may be negatively affected by SMM because of the expected decrease in infaunal invertebrate biomass. ?? Springer 2005.

  8. Marsh canopy structure changes and the Deepwater Horizon oil spill

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2016-01-01

    Marsh canopy structure was mapped yearly from 2009 to 2012 in the Barataria Bay, Louisiana coastal region that was impacted by the 2010 Deepwater Horizon (DWH) oil spill. Based on the previously demonstrated capability of NASA's UAVSAR polarimetric synthetic aperture radar (PolSAR) image data to map Spartina alterniflora marsh canopy structure, structure maps combining the leaf area index (LAI) and leaf angle distribution (LAD, orientation) were constructed for yearly intervals that were directly relatable to the 2010 LAI-LAD classification. The yearly LAI-LAD and LAI difference maps were used to investigate causes for the previously revealed dramatic change in marsh structure from prespill (2009) to postspill (2010, spill cessation), and the occurrence of structure features that exhibited abnormal spatial and temporal patterns. Water level and salinity records showed that freshwater releases used to keep the oil offshore did not cause the rapid growth from 2009 to 2010 in marsh surrounding the inner Bay. Photointerpretation of optical image data determined that interior marsh patches exhibiting rapid change were caused by burns and burn recovery, and that the pattern of 2010 to 2011 LAI decreases in backshore marsh and extending along some tidal channels into the interior marsh were not associated with burns. Instead, the majority of 2010 to 2011 shoreline features aligned with vectors displaying the severity of 2010 shoreline oiling from the DWH spill. Although the association is not conclusive of a causal oil impact, the coexistent pattern is a significant discovery. PolSAR marsh structure mapping provided a unique perspective of marsh biophysical status that enhanced detection of change and monitoring of trends important to management effectiveness.

  9. Florida's salt-marsh management issues: 1991-98.

    PubMed

    Carlson, D B; O'Bryan, P D; Rey, J R

    1999-06-01

    During the 1990s, Florida has continued to make important strides in managing salt marshes for both mosquito control and natural resource enhancement. The political mechanism for this progress continues to be interagency cooperation through the Florida Coordinating Council on Mosquito Control and its Subcommittee on Managed Marshes (SOMM). Continuing management experience and research has helped refine the most environmentally acceptable source reduction methods, which typically are Rotational Impoundment Management or Open Marsh Water Management. The development of regional marsh management plans for salt marshes within the Indian River Lagoon by the SOMM has helped direct the implementation of the best management practices for these marshes. Controversy occasionally occurs concerning what management technique is most appropriate for individual marshes. The most common disagreement is over the benefits of maintaining an impoundment in an "open" vs. "closed" condition, with the "closed" condition, allowing for summer mosquito control flooding or winter waterfowl management. New federal initiatives influencing salt-marsh management have included the Indian River Lagoon-National Estuary Program and the Pesticide Environmental Stewardship Program. A new Florida initiative is the Florida Department of Environmental Protection's Eco-system Management Program with continuing involvement by the Surface Water Improvement and Management program. A developing mitigation banking program has the potential to benefit marsh management but mosquito control interests may suffer if not handled properly. Larvicides remain as an important salt-marsh integrated pest management tool with the greatest acreage being treated with temephos, followed by Bacillus thuringiensis israelensis and methoprene. However, over the past 14 years, use of biorational larvicides has increased greatly.

  10. Effects of weir management on marsh loss, Marsh Island, Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Nyman, John A.; Chabreck, Robert H.; Linscombe, R. G.

    1990-11-01

    Weirs are low-level dams traditionally used in Louisiana's coastal marshes to improve habitat for ducks and furbearers. Currently, some workers hope that weirs may reduce marsh loss, whereas others fear that weirs may accelerate marsh loss. Parts of Marsh Island, Louisiana, have been weir-managed since 1958 to improve duck and furbearer habitat. Using aerial photographs, marsh loss that occurred between 1957 and 1983 in a 2922-ha weir-managed area was compared to that in a 2365-ha unmanaged area. Marsh loss was 0.38%/yr in the weir-managed area, and 0.35%/yr in the unmanaged area. Because marsh loss in the two areas differed less than 0.19%/yr, it was concluded that weirs did not affect marsh loss. The increase in open water between 1957 and 1983 did not result from the expansion of lakes or bayous. Rather, solid marsh converted to broken marsh, and the amount of vegetation within previously existing broken marsh decreased. Solid marsh farthest from large lakes and bayous, and adjacent to existing broken marsh, seemed more likely to break up. Marsh Island has few canals; therefore, marsh loss resulted primarily from natural processes. Weirs may have different effects under different hydrological conditions; additional studies are needed before generalizations regarding weirs and marsh loss can be made.

  11. Evaluating ecological equivalence of created marshes: comparing structural indicators with stable isotope indicators of blue crab trophic support

    USGS Publications Warehouse

    Llewellyn, Chris; LaPeyre, Megan K.

    2010-01-01

    This study sought to examine ecological equivalence of created marshes of different ages using traditional structural measures of equivalence, and tested a relatively novel approach using stable isotopes as a measure of functional equivalence. We compared soil properties, vegetation, nekton communities, and δ13C and δ15N isotope values of blue crab muscle and hepatopancreas tissue and primary producers at created (5-24 years old) and paired reference marshes in SW Louisiana. Paired contrasts indicated that created and reference marshes supported equivalent plant and nekton communities, but differed in soil characteristics. Stable isotope indicators examining blue crab food web support found that the older marshes (8 years+) were characterized by comparable trophic diversity and breadth compared to their reference marshes. Interpretation of results for the youngest site was confounded by the fact that the paired reference, which represented the desired end goal of restoration, contained a greater diversity of basal resources. Stable isotope techniques may give coastal managers an additional tool to assess functional equivalency of created marshes, as measured by trophic support, but may be limited to comparisons of marshes with similar vegetative communities and basal resources, or require the development of robust standardization techniques.

  12. Marsh management plans in practice: Do they work in coastal Louisiana, USA?

    NASA Astrophysics Data System (ADS)

    Cowan, James H.; Turner, R. Eugene; Cahoon, Donald R.

    1988-01-01

    Louisiana's coastal wetlands represent about 41% of the nation's total and are extensively managed for fish, fur, and waterfowl. Marsh management plans (MMPs) are currently used to avoid potential user conflicts and are believed to be a best management practice for specific management goals. In this article, we define MMPs and examine their variety, history, impacts, and future. A MMP is an organized written plan submitted to state and federal permitting agencies for approval and whose purpose is to regulate wetland habitat quantity and quality (control land loss and enhance productivity). MMPs are usually implemented by making structural modifications in the marsh, primarily by using a variety of water control structures in levees to impound or semi-impound managed areas. It appears that MMPs using impoundments are only marginally successful in achieving and often contradict management goals. Although 20% of coastal Louisiana may be in MMPs by the year 2000, conflict resolution of public and private goals is compromised by a surfeit of opinion and dearth of data and experience. Based on interpretation of these results, we believe the next phase of management should include scientific studies of actual impacts, utilization of post-construction monitoring data, inventory of existing MMPs, development of new techniques, and determination of cumulative impacts.

  13. Recent accretion in two managed marsh impoundments in coastal Louisiana

    USGS Publications Warehouse

    Cahoon, D.R.

    1994-01-01

    Recent accretion was measured by the feldspar marker horizon method in two gravity-drained, managed, marsh impoundments and unmanaged reference marshes located on the rapidly subsiding coast of Louisiana. Water level management was designed to limit hydrologic exchange to the managed marsh by regulating the direction and rate of water flows. During a drawdown-flooding water management cycle, the unmanaged reference marshes had significantly higher vertical accretion rates, higher soil bulk density and soil mineral matter content, lower soil organic matter content, and higher rates of organic matter accumulation than the managed marsh. The rate of mineral matter accumulation was higher in both reference marshes, but was significantly higher in only one. Spatial variability in accumulation rates was low when analyzed in one managed marsh site, suggesting a primarily autochthonous source of matter. In contrast, the associated reference marsh apparently received allochthonous material that settled out in a distinct spatial pattern as water velocity decreased. The impoundment marshes experienced an accretion deficit of one full order of magnitude (0.1 vs. 1.0 m/yr) based on comparison of accretion and sea level rise data, while the unmanaged reference marshes experienced a five-fold smaller deficit or no deficit. These data suggest that the gravity-drained impoundments likely have a shorter life expectancy than the reference marshes in the rapidly subsiding Louisiana coast.

  14. Consequences of climate change, eutrophication, and other anthropogenic impacts to coastal salt marshes: multiple stressors reduce resiliency and sustainability

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Wigand, C.; Nelson, J.; Davey, E.; Van Dyke, E.; Wasson, K.

    2011-12-01

    Coastal salt marshes provide a wide variety of ecosystem services, including habitat for protected vertebrates and ecologically valuable invertebrate fauna, flood protection, and improvements in water quality for adjacent marine and estuarine environments. Here, we consider the impacts of future sea level rise combined with other anthropogenic stressors to salt marsh sustainability through the implementation of field and laboratory mesocosms, manipulative experiments, correlative studies, and predictive modeling conducted in central California and southern New England salt marshes. We report on measurements of soil respiration, decomposition, sediment accumulation, and marsh elevation, which considered jointly suggest an association between nitrate input and marsh elevation loss resulting from mineralization of soil organic matter. Furthermore, use of imaging techniques (CT scans) has shown differences in belowground root and rhizome structure associated with fertilization, resulting in a loss of sediment cohesion promoted by fine root structure. Additionally, field and greenhouse mesocosm experiments have provided insight into the specific biogeochemical processes responsible for plant mortality at high immersion or salinity levels. In conclusion, we have found that poor water quality (i.e. eutrophication) leads to enhanced respiration and decomposition of soil organic matter, which ultimately contributes to a loss of salt marsh sustainability. However, marsh deterioration studied at field sites (Jamaica Bay, NY and Elkhorn Slough, CA) is associated not only with enhanced nutrient loads, but also increased immersion due to tidal range increases resulting from dredging. To ensure the continuation of the ecosystem services provided by tidal wetlands and to develop sustainable management strategies that provide favorable outcomes under a variety of future sea level rise and land use scenarios, we need to develop a better understanding of the relative impacts of the various stressors leading to salt marsh loss. Without this understanding, costly remediation may unintentionally lead to continued marsh deterioration. More research is needed to carefully document the positive and negative aspects of nutrient loading to coastal marsh sustainability in order to ensure that coastal watersheds are managed in a way that minimizes detrimental impacts to adjacent coastal habitats, while not interfering unnecessarily with important and needed public interest activities such as agriculture and wastewater discharge.

  15. Can conservation biologists rely on established community structure rules to manage novel systems? ... Not in salt marshes.

    PubMed

    Fariña, José M; Silliman, Brian R; Bertness, Mark D

    2009-03-01

    We experimentally examined plant zonation in a previously unstudied Chilean salt marsh system to test the generality of mechanisms generating zonation of plants across intertidal stress gradients. Vertical zonation in this system is striking. The low-lying clonal succulent, Sarcocornia fruticosa, dominates the daily flooded low marsh, while intermediate elevations are dominated by the much taller Spartina densiflora. Irregularly flooded higher elevations are dominated by Schoenoplectus californicus, with the small forb, Selliera radicans, found associated with Schoenoplectus at its base. Transplant studies of all four species into each zone both with and without competition revealed the mechanisms driving these striking patterns in plant segregation. In the regularly flooded low marsh, Sarcocornia and Spartina grow in the zone that they normally dominate and are displaced when reciprocally transplanted between zones with neighbors, but without neighbors they grow well in each other's zone. Thus, interspecific competition alone generates low marsh zonation as in some mediterranean marshes, but differently than most of the Californian marshes where physical stress is the dominant factor. In contrast, mechanisms generating high marsh patterns are similar to New England marshes. Schoenoplectus dies when transplanted to lower elevations with or without neighbors and thus is limited from the low marsh by physical stress, while Selliera grows best associated with Schoenoplectus, which shades and ameliorates potentially limiting desiccation stress. These results reveal that mechanisms driving community organization across environmental stress gradients, while generally similar among systems, cannot be directly extrapolated to unstudied systems. This finding has important implications for ecosystem conservation because it suggests that the mechanistic understanding of pattern generation necessary to manage and restore specific communities in novel habitats cannot rely exclusively on results from similar systems, and it identifies a critical role for experimental ecology in the management and conservation of natural systems and the services they provide.

  16. Use of herbicides to control alligatorweed and restore native plants in managed marshes

    Treesearch

    Shannon L. Allen; Gary R. Hepp; James H. Miller

    2007-01-01

    Marsh management is used to improve the quality of wetland habitats for a variety of waterfowl and other waterbirds. However, alien plants, such as alligatorweed (Alternanthera philoxeroides (Mart.) Griseb.), may impact success of marsh management by competing with and displacing important native plants. In managed marshes, we tested effects of...

  17. Composition of breeding bird communities in Gulf Coast Chenier Plain marshes: Effects of winter burning

    USGS Publications Warehouse

    Gabrey, S.W.; Afton, A.D.

    2004-01-01

    Marsh managers along the Gulf Coast Chenier Plain frequently use winter burns to alter marsh vegetation and improve habitat quality for wintering waterfowl. However, effects of these burns on marsh avifauna are not well documented. We recorded abundances of breeding bird species and vegetation structure in burned and unburned control marshes during one breeding season before (1996) and two breeding seasons after (1997, 1998) experimental winter burns. We used non-metric multidimensional scaling analysis to assess the extent and direction of changes in bird community compositions of burned and unburned control marshes and to investigate the influence of vegetation structure on bird community composition. Overall, we found that Seaside Sparrows (Emberizidae: Ammodramus maritimus [Wilson]) and Red-winged Blackbirds and Boat-tailed Grackles (Icteridae: Agelaius phoeniceus [L.] and Quiscalus major Vieillot, respectively) comprised > 85% of observed birds. In burned marshes during the first breeding season following experimental burns (1997), icterid abundance increased while Seaside Sparrow abundance decreased relative to pre-burn (1996) conditions. This pattern was reversed during the second breeding season post-burn. No obvious patterns of change in avian abundance were detected in unburned control marshes over the 3-year period. Qualitative changes in breeding bird community composition were related to effects of winter burning on percent cover of dead vegetation and Spartina patens (Aiton) Muhl.

  18. Effects of structural marsh management and salinity on invertebrate prey of waterbirds in marsh ponds during winter on the Gulf Coast Chenier Plain

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2003-01-01

    Aquatic invertebrates are important food resources for wintering waterbirds, and prey selection generally is limited by prey size. Aquatic invertebrate communities are influenced by sediments and hydrologic characteristics of wetlands, which were affected by structural marsh management (levees, water-control structures and impoundments; SMM) and salinity on the Gulf Coast Chenier Plain of North America. Based on previous research, we tested general predictions that SMM reduces biomass of infaunal invertebrates and increases that of epifaunal invertebrates and those that tolerate low levels of dissolved oxygen (O2) and salinity. We also tested the general prediction that invertebrate biomass in freshwater, oligohaline, and mesohaline marshes are similar, except for taxa adapted to specific ranges of salinity. Finally, we investigated relationships among invertebrate biomass and sizes, sediment and hydrologic variables, and marsh types. Accordingly, we measured biomass of common invertebrate by three size classes (63 to 199 ??m, 200 to 999 ??m, and ???1000 ??m), sediment variables (carbon content, C:N ratio, hardness, particle size, and O, penetration), and hydrologic variables (salinity, water depth,temperature, 02, and turbidity) in ponds of impounded freshwater (IF), oligohaline (IO), mesohaline (IM), and unimpounded mesohaline (UM) marshes during winters 1997-1998 to 1999-2000 on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana, USA. As predicted, an a priori multivariate analysis of variance (MANOVA) contrast indicated that biomass of an infaunal class of invertebrates (Nematoda, 63 to 199 ??m) was greater in UM marsh ponds than in those of IM marshes, and biomass of an epifaunal class of invertebrates (Ostracoda, 200 to 999 ??m) was greater in IM marsh ponds than in those of UM marshes. The observed reduction in Nematoda due to SMM also was consistent with the prediction that SMM reduces invertebrates that do not tolerate low salinity. Furthermore, as predicted, an a priori MANOVA contrast indicated that biomass of a single invertebrate class adapted to low salinity (Oligochaeta, 200 to 999 ??m) was greater in ponds of IF marshes than in those of IO and IM marshes. A canonical correspondence analysis indicated that variation in salinity and O2 penetration best explained differences among sites that maximized biomass of the common invertebrate classes. Salinity was positively correlated with the silt-clay fraction, O2, and O2 penetration, and negatively correlated with water depth, sediment hardness, carbon, and C:N. Nematoda, Foraminifera, and Copepoda generally were associated with UM marsh ponds and high salinity, whereas other invertebrate classes were distributed among impounded marsh ponds and associated with lower salinity. Our results suggest that SMM and salinity have relatively small effects on invertebrate prey of wintering waterbirds in marsh ponds because they affect biomass of Nematoda and Oligochaeta, and few waterbirds consume these invertebrates. ?? 2003, The Society of Wetland Scientists.

  19. Hydrologic modeling as a predictive basis for ecological restoration of salt marshes

    USGS Publications Warehouse

    Roman, C.T.; Garvine, R.W.; Portnoy, J.W.

    1995-01-01

    Roads, bridges, causeways, impoundments, and dikes in the coastal zone often restrict tidal flow to salt marsh ecosystems. A dike with tide control structures, located at the mouth of the Herring River salt marsh estuarine system (Wellfleet, Massachusetts) since 1908, has effectively restricted tidal exchange, causing changes in marsh vegetation composition, degraded water quality, and reduced abundance of fish and macroinvertebrate communities. Restoration of this estuary by reintroduction of tidal exchange is a feasible management alternative. However, restoration efforts must proceed with caution as residential dwellings and a golf course are located immediately adjacent to and in places within the tidal wetland. A numerical model was developed to predict tide height levels for numerous alternative openings through the Herring River dike. Given these model predictions and knowledge of elevations of flood-prone areas, it becomes possible to make responsible decisions regarding restoration. Moreover, tidal flooding elevations relative to the wetland surface must be known to predict optimum conditions for ecological recovery. The tide height model has a universal role, as demonstrated by successful application at a nearby salt marsh restoration site in Provincetown, Massachusetts. Salt marsh restoration is a valuable management tool toward maintaining and enhancing coastal zone habitat diversity. The tide height model presented in this paper will enable both scientists and resource professionals to assign a degree of predictability when designing salt marsh restoration programs.

  20. Effects of Management on the Composition and Structure of Northern Hardwood Forests in Upper Michigan

    Treesearch

    Thomas R. Crow; David S. Buckley; Elizabeth A. Nauertz; John C. Zasada

    2002-01-01

    To improve our understanding of how management affects the composition and structure of northern hardwood forests, we compared managed with unmanaged sugar maple (Acer saccharum Marsh.) dominated forests. Unmanaged old-growth and unmanaged second-growth forests provided baselines for comparing the effects of even-aged and uneven-aged forest...

  1. Macrofaunal Succession and Community Structure in Salicornia Marshes of Southern California

    NASA Astrophysics Data System (ADS)

    Talley, T. S.; Levin, L. A.

    1999-11-01

    Lack of basic understanding of ecosystem structure and function forms a major impediment to successful conservation of coastal ecosystems. This paper provides a description of the fauna and examines faunal succession in Salicornia -vegetated sediments of southern California. Environmental attributes (vegetation and sediment properties) and macrofaunal (animals ≥0·3 mm) community structure were examined in sediments of five natural, southern California Salicornia spp. marshes (Tijuana Estuary, San Diego Bay, Mission Bay, Upper Newport Bay and Anaheim Bay) and in created Salicornia marshes 16 months to 10 years in age, located within four of the bays. Oligochaetes and insects were the dominant taxa in both natural (71 to 98% of total fauna) and created (91 to 97%) marshes. In San Diego, Newport and Anaheim Bays, macrofaunal densities were generally higher in the created marshes (88 000 to 290 000 ind m -2) than in their natural counterparts (26 000 to 50 000 ind m -2). In the youngest system, Mission Bay, the reverse was true (natural: 113 000 vs created: 28 000 ind m -2). Similar species numbers were recorded from the created and adjacent natural marshes. Insects, especially chironomids, dolichopodids, and heleids, as well as the naidid oligochaete, Paranais litoralis, characterize early successional stages. Enchytraeid and tubificid oligochaetes reflect later succession evident in natural and older created marshes. Sediment organic matter (both combustible and below-ground plant biomass) was the environmental variable most commonly associated with densities of various macrofaunal taxa. These relationships were generally negative in the natural marshes and positive in the created marshes. Within-bay comparisons of macrofauna from natural Salicornia- vs Spartina -vegetated habitat in San Diego and Mission Bays revealed lower macrofaunal density (San Diego Bay only), proportionally fewer oligochaetes and more insects, and no differences in species richness in the Salicornia habitat. The oldest created Salicornia marsh (San Diego Bay) exhibited an assemblage intermediate in composition between those of the natural Salicornia- and Spartina- vegetated marshes. These results suggest: (a) faunal recovery following Salicornia marsh creation can require 10 or more years, (b) high macrofaunal variability among bays requires marsh creation reference site selection from within the same bay, and (c) Spartina -based research should not be used for Salicornia marsh management decisions.

  2. Remote sensing as an aid for marsh management

    NASA Technical Reports Server (NTRS)

    Ragan, J. G.; Green, J. H.

    1973-01-01

    NASA aerial photography, primarily color infrared and color positive transparencies, is used in a study of marsh management practices and in comparing managed and unmanaged marsh areas. Weir locations for tidal control are recommended.

  3. Effects of winter marsh burning on abundance and nesting activity of Louisiana seaside sparrows in the Gulf Coast Chenier Plain

    USGS Publications Warehouse

    Gabrey, S.W.; Afton, A.D.

    2000-01-01

    Louisiana Seaside Sparrows (Ammodramus maritimus fisheri) breed and winter exclusively in brackish and saline marshes along the northern Gulf of Mexico. Many Gulf Coast marshes, particularly in the Chenier Plain of southwestern Louisiana and southeastern Texas, are burned intentionally in fall or winter as part of waterfowl management programs. Fire reportedly has negatively affected two Seaside Sparrow subspecies (A. m. nigrescens and A. m. mirabilis) in Florida, but there is no published information regarding effects of fire on A. m. fisheri. We compared abundance of territorial male Louisiana Seaside Sparrows, number of nesting activity indicators, and vegetation structure in paired burned and unburned plots in Chenier Plain marshes in southwestern Louisiana during the 1996 breeding season (April-July) before experimental winter burns (January 1997) and again during two breeding seasons post-burn (1997-1998). We found that abundance of male sparrows decreased in burned plots during the first breeding season post-burn, but was higher than that of unburned plots during the second breeding season post-burn. Indicators of nesting activity showed a similar but non-significant pattern in response to burning. Sparrow abundance and nesting activity seemingly are linked to dead vegetation cover, which was lower in burned plots during the first breeding season post-burn, but did not differ from that in unburned plots during the second breeding season post-burn. We recommend that marsh management plans in the Gulf Coast Chenier Plain integrate waterfowl and Seaside Sparrow management by maintaining a mosaic of burned and unburned marshes and allowing vegetation to recover for at least two growing seasons before reburning a marsh.

  4. A century of landscape disturbance and urbanization of the San Francisco Bay region affects the present-day genetic diversity of the California Ridgway’s rail (Rallus obsoletus obsoletus)

    USGS Publications Warehouse

    Wood, Dustin A.; Bui, Thuy-Vy D.; Overton, Cory T.; Vandergast, Amy; Casazza, Michael L.; Hull, Joshua M.; Takekawa, John Y.

    2016-01-01

    Fragmentation and loss of natural habitat have important consequences for wild populations and can negatively affect long-term viability and resilience to environmental change. Salt marsh obligate species, such as those that occupy the San Francisco Bay Estuary in western North America, occupy already impaired habitats as result of human development and modifications and are highly susceptible to increased habitat loss and fragmentation due to global climate change. We examined the genetic variation of the California Ridgway’s rail (Rallus obsoletus obsoletus), a state and federally endangered species that occurs within the fragmented salt marsh of the San Francisco Bay Estuary. We genotyped 107 rails across 11 microsatellite loci and a single mitochondrial gene to estimate genetic diversity and population structure among seven salt marsh fragments and assessed demographic connectivity by inferring patterns of gene flow and migration rates. We found pronounced genetic structuring among four geographically separate genetic clusters across the San Francisco Bay. Gene flow analyses supported a stepping stone model of gene flow from south-to-north. However, contemporary gene flow among the regional embayments was low. Genetic diversity among occupied salt marshes and genetic clusters were not significantly different. We detected low effective population sizes and significantly high relatedness among individuals within salt marshes. Preserving genetic diversity and connectivity throughout the San Francisco Bay may require attention to salt marsh restoration in the Central Bay where habitat is both most limited and most fragmented. Incorporating periodic genetic sampling into the management regime may help evaluate population trends and guide long-term management priorities.

  5. Food web heterogeneity and succession in created saltmarshes

    USGS Publications Warehouse

    Nordstrom, M C; Demopoulos, Amanda W.J.; Whitcraft, CR; Rismondo, A.; McMillan, P.; Gonzales, J P; Levin, L A

    2015-01-01

    1. Ecological restoration must achieve functional as well as structural recovery. Functional metrics for reestablishment of trophic interactions can be used to complement traditional monitoring of structural attributes. In addition, topographic effects on food web structure provide added information within a restoration context; often, created sites may require spatial heterogeneity to effectively match structure and function of natural habitats. 2. We addressed both of these issues in our study of successional development of benthic food web structure, with focus on bottom–up driven changes in macroinvertebrate consumer assemblages in the salt marshes of the Venice Lagoon, Italy. We combined quantified estimates of the changing community composition with stable isotope data (13C:12C and 15N:14N) to compare the general trophic structure between created (2–14 years) marshes and reference sites and along topographic elevation gradients within salt marshes. 3. Macrofaunal invertebrate consumers exhibited local, habitat-specific trophic patterns. Stable isotope-based trophic structure changed with increasing marsh age, in particular with regards to mid-elevation (Salicornia) habitats. In young marshes, the mid-elevation consumer signatures resembled those of unvegetated ponds. The mid elevation of older and natural marshes had a more distinct Salicornia-zone food web, occasionally resembling that of the highest (Sarcocornia-dominated) elevation. In summary, this indicates that primary producers and availability of vascular plant detritus structure consumer trophic interactions and the flow of carbon. 4. Functionally different consumers, subsurface-feeding detritivores (Oligochaeta) and surface grazers (Hydrobia sp.), showed distinct but converging trajectories of isotopic change over time, indicating that successional development may be asymmetric between ‘brown’ (detrital) guilds and ‘green’ (grazing) guilds in the food web. 5. Synthesis and applications. Created marsh food webs converged into a natural state over about a decade, with successional shifts seen in both consumer community composition and stable isotope space. Strong spatial effects were noted, highlighting the utility of stable isotopes to evaluate functional equivalence in spatially heterogeneous systems. Understanding the recovery of functional properties such as food web support, and their inherent spatial variability, is key to planning and managing successful habitat restoration.

  6. Remote sensing as an aid for marsh management: Lafouche parish, Louisiana. [aerial photography of Louisiana

    NASA Technical Reports Server (NTRS)

    Ragan, J. G.; Green, J. H.; Whitehurst, C. A.

    1974-01-01

    NASA aerial photography, primarily color infrared and color positive transparencies, was used in a study of marsh management practices and in comparing managed and unmanaged marsh areas. Weir locations for tidal control are recommended.

  7. Nekton community response to a large-scale Mississippi River discharge: Examining spatial and temporal response to river management

    USGS Publications Warehouse

    Piazza, Bryan P.; La Peyre, M.K.

    2011-01-01

    Freshwater flow is generally held to be one of the most influential factors affecting community structure and production in estuaries. In coastal Louisiana, the Caernarvon Freshwater Diversion (CFD) is managed to control freshwater discharge from the Mississippi River into Breton Sound basin. Operational since 1991, CFD has undergone several changes in management strategy including pulsed spring flooding, which was introduced in 2001. We used a 20-yr time series of fisheries-independent data to investigate how variation in freshwater inflow (i.e., pre- and post-CFD, and pre and post spring pulsing management) influences the downstream nekton community (abundance, diversity, and assemblage). Analyses of long-term data demonstrated that while there were effects from the CFD, they largely involved subtle changes in community structure. Spatially, effects were largely limited to the sites immediately downstream of the diversion and extended only occasionally to more down-estuary sites. Temporally, effects were 1) immediate (detected during spring diversion events) or 2) delayed (detected several months post-diversion). Analysis of river management found that pulsed spring-time inflow resulted in more significant changes in nekton assemblages, likely due to higher discharge rates that 1) increased marsh flooding, thus increasing marsh habitat accessibility for small resident marsh species, and 2) reduced salinity, possibly causing displacement of marine pelagic species down estuary. ?? 2010.

  8. Responses of salt marsh ecosystems to mosquito control management practices along the Atlantic Coast (U.S.A.)

    USGS Publications Warehouse

    James-Pirri, Mary-Jane; Erwin, R. Michael; Prosser, Diann J.; Taylor, Janith D.

    2012-01-01

    Open marsh water management (OMWM) of salt marshes modifies grid-ditched marshes by creating permanent ponds and radial ditches in the high marsh that reduce mosquito production and enhance fish predation on mosquitoes. It is preferable to using pesticides to control salt marsh mosquito production and is commonly presented as a restoration or habitat enhancement tool for grid-ditched salt marshes. Monitoring of nekton, vegetation, groundwater level, soil salinity, and bird communities before and after OMWM at 11 (six treatment and five reference sites) Atlantic Coast (U.S.A.) salt marshes revealed high variability within and among differing OMWM techniques (ditch-plugging, reengineering of sill ditches, and the creation of ponds and radial ditches). At three marshes, the dominant nekton shifted from fish (primarily Fundulidae species) to shrimp (Palaemonidae species) after manipulations and shrimp density increased at other treatment sites. Vegetation changed at only two sites, one with construction equipment impacts (not desired) and one with a decrease in woody vegetation along existing ditches (desired). One marsh had lower groundwater level and soil salinity, and bird use, although variable, was often unrelated to OMWM manipulations. The potential effects of OMWM manipulations on non-target salt marsh resources need to be carefully considered by resource planners when managing marshes for mosquito control.

  9. Multiple stressors and the potential for synergistic loss of New England salt marshes

    PubMed Central

    Angelini, Christine; Bertness, Mark D.

    2017-01-01

    Climate change and other anthropogenic stressors are converging on coastal ecosystems worldwide. Understanding how these stressors interact to affect ecosystem structure and function has immediate implications for coastal planning, however few studies quantify stressor interactions. We examined past and potential future interactions between two leading stressors on New England salt marshes: sea-level rise and marsh crab (Sesarma reticulatum) grazing driven low marsh die-off. Geospatial analyses reveal that crab-driven die-off has led to an order of magnitude more marsh loss than sea-level rise between 2005 and 2013. However, field transplant experimental results suggest that sea-level rise will facilitate crab expansion into higher elevation marsh platforms by inundating and gradually softening now-tough high marsh peat, exposing large areas to crab-driven die-off. Taking interactive effects of marsh softening and concomitant overgrazing into account, we estimate that even modest levels of sea-level rise will lead to levels of salt marsh habitat loss that are 3x greater than the additive effects of sea-level rise and crab-driven die-off would predict. These findings highlight the importance of multiple stressor studies in enhancing mechanistic understanding of ecosystem vulnerabilities to future stress scenarios and encourage managers to focus on ameliorating local stressors to break detrimental synergisms, reduce future ecosystem loss, and enhance ecosystem resilience to global change. PMID:28859097

  10. Multiple stressors and the potential for synergistic loss of New England salt marshes.

    PubMed

    Crotty, Sinead M; Angelini, Christine; Bertness, Mark D

    2017-01-01

    Climate change and other anthropogenic stressors are converging on coastal ecosystems worldwide. Understanding how these stressors interact to affect ecosystem structure and function has immediate implications for coastal planning, however few studies quantify stressor interactions. We examined past and potential future interactions between two leading stressors on New England salt marshes: sea-level rise and marsh crab (Sesarma reticulatum) grazing driven low marsh die-off. Geospatial analyses reveal that crab-driven die-off has led to an order of magnitude more marsh loss than sea-level rise between 2005 and 2013. However, field transplant experimental results suggest that sea-level rise will facilitate crab expansion into higher elevation marsh platforms by inundating and gradually softening now-tough high marsh peat, exposing large areas to crab-driven die-off. Taking interactive effects of marsh softening and concomitant overgrazing into account, we estimate that even modest levels of sea-level rise will lead to levels of salt marsh habitat loss that are 3x greater than the additive effects of sea-level rise and crab-driven die-off would predict. These findings highlight the importance of multiple stressor studies in enhancing mechanistic understanding of ecosystem vulnerabilities to future stress scenarios and encourage managers to focus on ameliorating local stressors to break detrimental synergisms, reduce future ecosystem loss, and enhance ecosystem resilience to global change.

  11. Occupancy modeling of autonomously recorded vocalizations to predict distribution of rallids in tidal wetlands

    USGS Publications Warehouse

    Stiffler, Lydia L.; Anderson, James T.; Katzner, Todd

    2018-01-01

    Conservation and management for a species requires reliable information on its status, distribution, and habitat use. We identified occupancy and distributions of king (Rallus elegans) and clapper (R. crepitans) rail populations in marsh complexes along the Pamunkey and Mattaponi Rivers in Virginia, USA by modeling data on vocalizations recorded from autonomous recording units (ARUs). Occupancy probability for both species combined was 0.64 (95% CI: 0.53, 0.75) in marshes along the Pamunkey and 0.59 (0.45, 0.72) in marshes along the Mattaponi. Occupancy probability along the Pamunkey was strongly influenced by salinity, increasing logistically by a factor of 1.62 (0.6, 2.65) per parts per thousand of salinity. In contrast, there was not a strong salinity gradient on the Mattaponi and therefore vegetative community structure determined occupancy probability on that river. Estimated detection probability across both marshes was 0.63 (0.62, 0.65), but detection rates decreased as the season progressed. Monitoring wildlife within wetlands presents unique challenges for conservation managers. Our findings provide insight not only into how rails responded to environmental variation but also into the general utility of ARUs for occupancy modeling of the distribution and habitat associations of rails within tidal marsh systems.

  12. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure

    USGS Publications Warehouse

    Wigand, Cathleen; Roman, Charles T.; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B.; Moran, S. Bradley; Cahoon, Donald R.; Lynch, James C.; Rafferty, Patricia

    2014-01-01

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of larger diameter rhizomes and swelling (dilation) of waterlogged peat. JoCo Marsh kept pace with sea-level rise through surface accretion and soil organic matter accumulation. Understanding the effects of multiple stressors, including nutrient enrichment, on soil structure, organic matter accumulation, and elevation change will better inform management decisions aimed at maintaining and restoring coastal marshes.

  13. Below the disappearing marshes of an urban estuary: historic nitrogen trends and soil structure.

    PubMed

    Wigand, Cathleen; Roman, Charles T; Davey, Earl; Stolt, Mark; Johnson, Roxanne; Hanson, Alana; Watson, Elizabeth B; Moran, S Bradley; Cahoon, Donald R; Lynch, James C; Rafferty, Patricia

    2014-06-01

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long-term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of larger diameter rhizomes and swelling (dilation) of waterlogged peat. JoCo Marsh kept pace with sea-level rise through surface accretion and soil organic matter accumulation. Understanding the effects of multiple stressors, including nutrient enrichment, on soil structure, organic matter accumulation, and elevation change will better inform management decisions aimed at maintaining and restoring coastal marshes.

  14. Ontogenetic shifts in fishes between vegetated and unvegetated tidepools: assessing the effect of physical structure on fish habitat selection.

    PubMed

    Oliveira, R R de S; Macieira, R M; Giarrizzo, T

    2016-07-01

    The aim of this study of tidepool fishes was analyse variation in their use of intertidal habitats (rocky shore, mangrove and salt marsh). Specimens were collected during wet and dry periods from 18 tidepools in the three habitats. A total of 7690 specimens, belonging to 19 families and 30 species, was captured. The fish assemblage in rocky shore pools was clearly distinct from that of vegetated habitats (mangrove and salt marshes). The rocky shore fauna was dominated by permanent resident species, whereas pools in mangrove and salt marsh habitats were inhabited primarily by opportunistic and transient species. Habitat segregation by ontogenetic stage (e.g. smaller individuals in mangroves, intermediate size classes in salt marsh and sub-adults/adults on rocky shores) indicates age-related migration in response to the physical structure of these habitats and to the natural history of each fish species. These findings are important for the development of effective conservation and management plans for intertidal fishes. © 2016 The Fisheries Society of the British Isles.

  15. Identification of metrics to monitor salt marsh integrity on National Wildlife Refuges in relation to conservation and management objectives

    USGS Publications Warehouse

    Neckles, Hilary A.; Guntenspergen, Glenn R.; Shriver, W. George; Danz, Nicholas P.; Wiest, Whitney A.; Nagel, Jessica L.; Olker, Jennifer H.

    2013-01-01

    Implementation of these metrics for quantitative assessment of NWRS salt marsh integrity in FWS Region 5 requires developing sampling designs for each refuge. Additionally, it is important to determine how the monitoring information will be used within a management context. SDM should be used to complete the analysis of salt marsh management decisions. The next steps would involve 1) prioritizing and weighting the management objectives; 2) predicting responses to individual management actions in terms of objectives and metrics; 3) using multiattribute utility theory to convert all measurable attributes to a common utility scale; 4) determining the total management benefit of each action by summing utilities across objectives; and 5) maximizing the total management benefits within cost constraints for each refuge. This process would allow the optimum management decisions for NWRS salt marshes to be selected and implemented based directly on monitoring data and current understanding of marsh responses to management actions. Monitoring the outcome of management actions would then allow new monitoring data to be incorporated into subsequent decisions. 

  16. Nekton assemblage structure in natural and created marsh-edge habitats of the Guadalupe Estuary, Texas, USA

    NASA Astrophysics Data System (ADS)

    Zeug, Steven C.; Shervette, Virginia R.; Hoeinghaus, David J.; Davis, Stephen E., III

    2007-02-01

    Natural and created Spartina brackish marsh habitats in the Guadalupe Estuary, adjacent to the Aransas National Wildlife Refuge, Texas, USA were surveyed during spring, summer, and fall 2004 to evaluate the equivalence of nekton assemblages in an old (>30 years) created marsh. During each season, six replicate samples were collected in each marsh type using a 1-m 2 drop sampler. Multivariate analysis revealed significant differences in nekton assemblage structure among marsh type, both within and across seasons. Species richness was significantly higher in the natural marsh in spring and summer but not in fall. Several species that were dominant in the natural marsh but rare or absent in the created marsh had strong correlations with the presence of oyster substrate that was only encountered in natural marsh samples. Although cumulative richness was greater in the natural marsh, eight species were collected only from the created marsh. Shrimp and fish biomass was significantly higher in natural marsh. Analysis of the density, biomass and size structure of three commercially important crustaceans indicated that the created marsh supported similar biomass of some species (white shrimp, blue crab); however, the size structure of some populations was variable among marshes (blue crab, brown shrimp). We conclude that lower substrate complexity (specifically oyster) and soil organic content in the created marsh reduced measures of nekton similarity and recommend that these features be addressed in future restoration efforts.

  17. Marsh canopy leaf area and orientation calculated for improved marsh structure mapping

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.; Bannister, Terri

    2015-01-01

    An approach is presented for producing the spatiotemporal estimation of leaf area index (LAI) of a highly heterogeneous coastal marsh without reliance on user estimates of marsh leaf-stem orientation. The canopy LAI profile derivation used three years of field measured photosynthetically active radiation (PAR) vertical profiles at seven S. alterniflora marsh sites and iterative transform of those PAR attenuation profiles to best-fit light extinction coefficients (KM). KM sun zenith dependency was removed obtaining the leaf angle distribution (LAD) representing the average marsh orientation and the LAD used to calculate the LAI canopy profile. LAI and LAD reproduced measured PAR profiles with 99% accuracy and corresponded to field documented structures. LAI and LAD better reflect marsh structure and results substantiate the need to account for marsh orientation. The structure indexes are directly amenable to remote sensing spatiotemporal mapping and offer a more meaningful representation of wetland systems promoting biophysical function understanding.

  18. A Climate Change Adaptation Strategy for Management of ...

    EPA Pesticide Factsheets

    Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, including species of concern, such as the saltmarsh sparrow (Ammodramus caudacutus). We present a climate change adaptation strategy (CCAS) adopted by scientific, management, and policy stakeholders for managing coastal marshes and enhancing system resiliency. A common adaptive management approach previously used for restoration projects was modified to identify climate-related vulnerabilities and plan climate change adaptive actions. As an example of implementation of the CCAS, we describe the stakeholder plans and management actions the US Fish and Wildlife Service and partners developed to build coastal resiliency in the Narrow River Estuary, RI, in the aftermath of Superstorm Sandy. When possible, an experimental BACI (before-after, control-impact) design, described as pre- and post-sampling at the impact site and one or more control sites, was incorporated into the climate change adaptation and implementation plans. Specific climate change adaptive actions and monitoring plans are described and include shoreline stabilization, restoring marsh drainage, increasing marsh elevation, and enabling upland marsh migration. The CCAS provides a framework and methodology for successfully managing coa

  19. Comparison of wetland structural characteristics between created and natural salt marshes in southwest Louisiana, USA

    USGS Publications Warehouse

    Edwards, K.R.; Proffitt, C.E.

    2003-01-01

    The use of dredge material is a well-known technique for creating or restoring salt marshes that is expected to become more common along the Gulf of Mexico coast in the future. However, the effectiveness of this restoration method is still questioned. Wetland structural characteristics were compared between four created and three natural salt marshes in southwest Louisiana, USA. The created marshes, formed by the pumping of dredge material into formerly open water areas, represent a chronosequence, ranging in age from 3 to 19 years. Vegetation and soil structural factors were compared to determine whether the created marshes become more similar over time to the natural salt marshes. Vegetation surveys were conducted in 1997, 2000, and 2002 using the line-intercept technique. Site elevations were measured in 2000. Organic matter (OM) was measured in 1996 and 2002, while bulk density and soil particle-size distribution were determined in 2002 only. The natural marshes were dominated by Spartina alterniflora, as were the oldest created marshes; these marshes had the lowest mean site elevations ( 35 cm NGVD) and became dominated by high marsh (S. patens, Distichlis spicata) and shrub (Baccharis halimifolia, Iva frutescens) species. The higher elevation marsh seems to be following a different plant successional trajectory than the other marshes, indicating a relationship between marsh elevation and species composition. The soils in both the created and natural marshes contain high levels of clays (30-65 %), with sand comprising < 1 % of the soil distribution. OM was significantly greater and bulk density significantly lower in two of the natural marshes when compared to the created marshes. The oldest created marsh had significantly greater OM than the younger created marshes, but it may still take several decades before equivalency is reached with the natural marshes. Vegetation structural characteristics in the created marshes take only a few years to become similar to those in the natural marshes, just so long as the marshes are formed at a proper elevation. This agrees with other studies from North Carolina and Texas. However, it will take several decades for the soil characteristics to reach equivalency with the natural marshes, if they ever will.

  20. Mosquito production in a rotationally managed impoundment compared to other management techniques.

    PubMed

    Carlson, D B; O'Bryan, P D

    1988-06-01

    Mosquito production was monitored by larval dipping for 12 months in a 20.2 ha central east coast Florida salt marsh impoundment which was being managed under a rotational impoundment management (RIM) regime. This regime, implemented to provide mosquito control while retaining natural resource benefits, virtually eliminated salt-marsh Aedes mosquito production from late May through September when the marsh was closed to the estuary and flooded to approximately 1.0 ft NGVD. Anopheles spp. were collected only along the upland marsh edges in relatively low densities. Compared with the management methods of: 1) open to the estuary with culverts and, 2) passive retention of water with flapgate risers, RIM proved to be significantly more effective in reducing mosquito production.

  1. The impact of invasive plants on tidal-marsh vertebrate species: common reed (Phragmites australis) and smooth cordgrass (Spartina alterniflora) as case studies

    USGS Publications Warehouse

    Guntenspergen, Glenn R.; Nordby, J. Cully

    2006-01-01

    Large areas of tidal marsh in the contiguous US and the Maritime Provinces of Canada are threatened by invasive plant species. Our understanding of the impact these invasions have on tidal-marsh vertebrates is sparse. In this paper, we focus on two successful invasive plant taxa that have spread outside their native range --common reed (Phragmites australis) and smooth cordgrass (Spartina a/terniflora). A cryptic haplotype of common reed has expanded its range in Atlantic Coast tidal marshes and smooth cordgrass, a native dominant plant of Atlantic Coast low-marsh habitat, has expanded its range and invaded intertidal-marsh habitats of the Pacific Coast. The invasions of common reed in Atlantic Coast tidal marshes and smooth cordgrass in Pacific Coast tidal marshes appear to have similar impacts. The structure and composition of these habitats has been altered and invasion and dominance by these two taxa can lead to profound changes in geomorphological processes, altering the vertical relief and potentially affecting invertebrate communities and the entire trophic structure of these systems. Few studies have documented impacts of invasive plant taxa on tidal-marsh vertebrate species in North America. However, habitat specialists that are already considered threatened or endangered are most likely to be affected. Extensive experimental studies are needed to examine the direct impact of invasive plant species on native vertebrate species. Careful monitoring of sites during the initial stages of plant invasion and tracking ecosystem changes through time are essential. Since tidal marshes are the foci for invasion by numerous species, we also need to understand the indirect impacts of invasion of these habitats on the vertebrate community. We also suggest the initiation of studies to determine if vertebrate species can compensate behaviorally for alterations in their habitat caused by invasive plant species, as well as the potential for adaptation via rapid evolution. Finally, we urge natural-resource managers to consider the impact various invasive plant control strategies will have on native vertebrate communities.

  2. Role of different salt marsh plants on metal retention in an urban estuary (Lima estuary, NW Portugal)

    NASA Astrophysics Data System (ADS)

    Almeida, C. M. R.; Mucha, Ana P.; Teresa Vasconcelos, M.

    2011-01-01

    The aim of the present work was to understand the role different salt marsh plants on metal distribution and retention in the Lima River estuary (NW Portugal), which to our knowledge have not been ascertained in this area yet. The knowledge of these differences is an important requirement for the development of appropriate management strategies, and is poorly described for Eurosiberian estuaries, like the one selected. In addition it is important to understand the difference among introduced and native salt marsh plants. In this work, metal levels (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) were surveyed (by atomic absorption spectrometry) in sediments from sites vegetated with Juncus maritimus, Spartina patens, Phragmites australis and Triglochin striata (rhizo-sediments), in non-vegetated sediments and in the different tissues of the plants (roots, rhizomes and aerial shoots). In general, rhizo-sediments had higher metal concentrations than non-vegetated sediments, a feature that seems common to sediments colonized by salt marsh plants of different estuarine areas. All plants concentrated metals, at least Cd, Cu and Zn (and Pb for T. striata) in their belowground structures ([ M] belowground tissues/[ M] non-vegetated sediment > 1). However, when considered per unit of salt marsh area, the different selected plants played a different role on sediment metal distribution and retention. Triglochin striata retained a significant metal burden in it belowground structures (root plus rhizomes) acting like a possible phyto-stabilizer, whereas P. australis had an higher metal burden in aboveground tissues acting as a possible phyto-extractor. As for J. maritimus and S. patens, metal burden distribution between above and belowground structures depended on the metal, with J. maritimus retaining, for instance, much more Cd and Cu in the aboveground than in the belowground structures. Therefore, the presence of invasive and exotic plants in some areas of the salt marsh may considerably affect metal distribution and retention in the estuarine region.

  3. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes

    PubMed Central

    Leonardi, Nicoletta; Ganju, Neil K.; Fagherazzi, Sergio

    2016-01-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans. PMID:26699461

  4. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes

    USGS Publications Warehouse

    Leonardi, Nicoletta; Ganju, Neil K.; Fagherazzi, Sergio

    2016-01-01

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  5. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes.

    PubMed

    Leonardi, Nicoletta; Ganju, Neil K; Fagherazzi, Sergio

    2016-01-05

    Salt marsh losses have been documented worldwide because of land use change, wave erosion, and sea-level rise. It is still unclear how resistant salt marshes are to extreme storms and whether they can survive multiple events without collapsing. Based on a large dataset of salt marsh lateral erosion rates collected around the world, here, we determine the general response of salt marsh boundaries to wave action under normal and extreme weather conditions. As wave energy increases, salt marsh response to wind waves remains linear, and there is not a critical threshold in wave energy above which salt marsh erosion drastically accelerates. We apply our general formulation for salt marsh erosion to historical wave climates at eight salt marsh locations affected by hurricanes in the United States. Based on the analysis of two decades of data, we find that violent storms and hurricanes contribute less than 1% to long-term salt marsh erosion rates. In contrast, moderate storms with a return period of 2.5 mo are those causing the most salt marsh deterioration. Therefore, salt marshes seem more susceptible to variations in mean wave energy rather than changes in the extremes. The intrinsic resistance of salt marshes to violent storms and their predictable erosion rates during moderate events should be taken into account by coastal managers in restoration projects and risk management plans.

  6. Compartment-based hydrodynamics and water quality modeling of a northern Everglades wetland, Florida, USA

    USGS Publications Warehouse

    Wang, Hongqing; Meselhe, Ehab A.; Waldon, Michael G.; Harwell, Matthew C.; Chen, Chunfang

    2012-01-01

    The last remaining large remnant of softwater wetlands in the US Florida Everglades lies within the Arthur R. Marshall Loxahatchee National Wildlife Refuge. However, Refuge water quality today is impacted by pumped stormwater inflows to the eutrophic and mineral-enriched 100-km canal, which circumscribes the wetland. Optimal management is a challenge and requires scientifically based predictive tools to assess and forecast the impacts of water management on Refuge water quality. In this research, we developed a compartment-based numerical model of hydrodynamics and water quality for the Refuge. Using the numerical model, we examined the dynamics in stage, water depth, discharge from hydraulic structures along the canal, and exchange flow among canal and marsh compartments. We also investigated the transport of chloride, sulfate and total phosphorus from the canal to the marsh interior driven by hydraulic gradients as well as biological removal of sulfate and total phosphorus. The model was calibrated and validated using long-term stage and water quality data (1995-2007). Statistical analysis indicates that the model is capable of capturing the spatial (from canal to interior marsh) gradients of constituents across the Refuge. Simulations demonstrate that flow from the eutrophic and mineral-enriched canal impacts chloride and sulfate in the interior marsh. In contrast, total phosphorus in the interior marsh shows low sensitivity to intrusion and dispersive transport. We conducted a rainfall-driven scenario test in which the pumped inflow concentrations of chloride, sulfate and total phosphorus were equal to rainfall concentrations (wet deposition). This test shows that pumped inflow is the dominant factor responsible for the substantially increased chloride and sulfate concentrations in the interior marsh. Therefore, the present day Refuge should not be classified as solely a rainfall-driven or ombrotrophic wetland. The model provides an effective screening tool for studying the impacts of various water management alternatives on water quality across the Refuge, and demonstrates the practicality of similarly modeling other wetland systems. As a general rule, modeling provides one component of a multi-faceted effort to provide technical support for ecosystem management decisions.

  7. Effects of open marsh water management on numbers of larval salt marsh mosquitoes

    USGS Publications Warehouse

    James-Pirri, Mary-Jane; Ginsberg, Howard S.; Erwin, R. Michael; Taylor, Janith

    2009-01-01

    Open marsh water management (OMWM) is a commonly used approach to manage salt marsh mosquitoes than can obviate the need for pesticide application and at the same time, partially restore natural functions of grid-ditched marshes. OMWM includes a variety of hydrologic manipulations, often tailored to the specific conditions on individual marshes, so the overall effectiveness of this approach is difficult to assess. Here, we report the results of controlled field trials to assess the effects of two approaches to OMWM on larval mosquito production at National Wildlife Refuges (NWR). A traditional OMWM approach, using pond construction and radial ditches was used at Edwin B. Forsythe NWR in New Jersey, and a ditch-plugging approach was used at Parker River NWR in Massachusetts. Mosquito larvae were sampled from randomly placed stations on paired treatment and control marshes at each refuge. The proportion of sampling stations that were wet declined after OMWM at the Forsythe site, but not at the Parker River site. The proportion of samples with larvae present and mean larval densities, declined significantly at the treatment sites on both refuges relative to the control marshes. Percentage of control for the 2 yr posttreatment, compared with the 2 yr pretreatment, was >90% at both treatment sites.

  8. Tidal marsh susceptibility to sea-level rise: importance of local-scale models

    USGS Publications Warehouse

    Thorne, Karen M.; Buffington, Kevin J.; Elliott-Fisk, Deborah L.; Takekawa, John Y.

    2015-01-01

    Increasing concern over sea-level rise impacts to coastal tidal marsh ecosystems has led to modeling efforts to anticipate outcomes for resource management decision making. Few studies on the Pacific coast of North America have modeled sea-level rise marsh susceptibility at a scale relevant to local wildlife populations and plant communities. Here, we use a novel approach in developing an empirical sea-level rise ecological response model that can be applied to key management questions. Calculated elevation change over 13 y for a 324-ha portion of San Pablo Bay National Wildlife Refuge, California, USA, was used to represent local accretion and subsidence processes. Next, we coupled detailed plant community and elevation surveys with measured rates of inundation frequency to model marsh state changes to 2100. By grouping plant communities into low, mid, and high marsh habitats, we were able to assess wildlife species vulnerability and to better understand outcomes for habitat resiliency. Starting study-site conditions were comprised of 78% (253-ha) high marsh, 7% (30-ha) mid marsh, and 4% (18-ha) low marsh habitats, dominated by pickleweed Sarcocornia pacifica and cordgrass Spartina spp. Only under the low sea-level rise scenario (44 cm by 2100) did our models show persistence of some marsh habitats to 2100, with the area dominated by low marsh habitats. Under mid (93 cm by 2100) and high sea-level rise scenarios (166 cm by 2100), most mid and high marsh habitat was lost by 2070, with only 15% (65 ha) remaining, and a complete loss of these habitats by 2080. Low marsh habitat increased temporarily under all three sea-level rise scenarios, with the peak (286 ha) in 2070, adding habitat for the endemic endangered California Ridgway’s rail Rallus obsoletus obsoletus. Under mid and high sea-level rise scenarios, an almost complete conversion to mudflat occurred, with most of the area below mean sea level. Our modeling assumed no marsh migration upslope due to human levee and infrastructure preventing these types of processes. Other modeling efforts done for this area have projected marsh persistence to 2100, but our modeling effort with site-specific datasets allowed us to model at a finer resolution with much higher local confidence, resulting in different results for management. Our results suggest that projected sea-level rise will have significant impacts on marsh plant communities and obligate wildlife, including those already under federal and state protection. Comprehensive modeling as done here improves the potential to implement adaptive management strategies and prevent marsh habitat and wildlife loss in the future.

  9. Ecogeomorphology of Spartina patens-dominated tidal marshes: Soil organic matter accumulation, marsh elevation dynamics, and disturbance

    USGS Publications Warehouse

    Cahoon, D.R.; Ford, M.A.; Hensel, P.F.; Fagherazzi, Sergio; Marani, Marco; Blum, Linda K.

    2004-01-01

    Marsh soil development and vertical accretion in Spartina patens (Aiton) Muhl.-dominated tidal marshes is largely dependent on soil organic matter accumulation from root-rhizome production and litter deposition. Yet there are few quantitative data sets on belowground production and the relationship between soil organic matter accumulation and soil elevation dynamics for this marsh type. Spartina patens marshes are subject to numerous stressors, including sea-level rise, water level manipulations (i.e., flooding and draining) by impoundments, and prescribed burning. These stressors could influence long-term marsh sustainability by their effect on root production, soil organic matter accumulation, and soil elevation dynamics. In this review, we summarize current knowledge on the interactions among vegetative production, soil organic matter accumulation and marsh elevation dynamics, or the ecogeomorphology, of Spartina patens-dominated tidal marshes. Additional studies are needed of belowground production/decomposition and soil elevation change (measured simultaneously) to better understand the links among soil organic matter accumulation, soil elevation change, and disturbance in this marsh type. From a management perspective, we need to better understand the impacts of disturbance stressors, both lethal and sub-lethal, and the interactive effect of multiple stressors on soil elevation dynamics in order to develop better management practices to safeguard marsh sustainability as sea level rises.

  10. Grounds Conservation Management Plan (1982-1991), Fish and Wildlife Management Plan (1982-1991), Forest Resource Management Plan (1979-1988).

    DTIC Science & Technology

    1985-06-01

    necessary for complete control. The third weed group includes purslane , spotted spurge and knotweed. These weeds may be controlled with dicamba. [j 4...of marsh communities varies with salinity gradients fron brackish to fresh waters. Hideaway Pond has a completely fresh water marsh (no tidal...or pocket marshes convolute the shoreline of Tetotum Flats along Upper Machodoc Creek. Species composition varies with salinity and those pockets

  11. Marshes as "Mountain Tops": Genetic Analyses of the Critically Endangered São Paulo Marsh Antwren (Aves: Thamnophilidae).

    PubMed

    de Camargo, Crisley; Gibbs, H Lisle; Costa, Mariellen C; Del-Rio, Glaucia; Silveira, Luís F; Wasko, Adriane P; Francisco, Mercival R

    2015-01-01

    Small populations of endangered species can be impacted by genetic processes such as drift and inbreeding that reduce population viability. As such, conservation genetic analyses that assess population levels of genetic variation and levels of gene flow can provide important information for managing threatened species. The São Paulo Marsh Antwren (Formicivora paludicola) is a recently-described and critically endangered bird from São Paulo State (Brazil) whose total estimated population is around 250-300 individuals, distributed in only 15 isolated marshes around São Paulo metropolitan region. We used microsatellite DNA markers to estimate the population genetic characteristics of the three largest remaining populations of this species all within 60 km of each other. We detected a high and significant genetic structure between all populations (overall FST = 0.103) which is comparable to the highest levels of differentiation ever documented for birds, (e.g., endangered birds found in isolated populations on the tops of African mountains), but also evidence for first-generation immigrants, likely from small local unsampled populations. Effective population sizes were small (between 28.8-99.9 individuals) yet there are high levels of genetic variability within populations and no evidence for inbreeding. Conservation implications of this work are that the high levels of genetic structure suggests that translocations between populations need to be carefully considered in light of possible local adaptation and that remaining populations of these birds should be managed as conservation units that contain both main populations studied here but also small outlying populations which may be a source of immigrants.

  12. VARYING LANDSCAPE STRUCTURE AND POTENTIAL DENITRIFICATION ACTIVITY AMONG SALT MARSHES ALONG AN ANTHROPOGENIC DISTURBANCE GRADIENT

    EPA Science Inventory

    Marsh landscape structure and denitrification are proposed as indicators of key wetland services, providing animal habitat and water quality maintenance, respectively. We examined marsh landscape structure (i.e., plant species richness and extent of dominant plant species) and po...

  13. Ecological structure and function in a restored versus natural salt marsh

    PubMed Central

    Rezek, Ryan J.; Lebreton, Benoit; Sterba-Boatwright, Blair

    2017-01-01

    Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions. PMID:29261795

  14. Ecological structure and function in a restored versus natural salt marsh.

    PubMed

    Rezek, Ryan J; Lebreton, Benoit; Sterba-Boatwright, Blair; Beseres Pollack, Jennifer

    2017-01-01

    Habitat reconstruction is commonly employed to restore degraded estuarine habitats and lost ecological functions. In this study, we use a combination of stable isotope analyses and macrofauna community analysis to compare the ecological structure and function between a recently constructed Spartina alterniflora salt marsh and a natural reference habitat over a 2-year period. The restored marsh was successful in providing habitat for economically and ecologically important macrofauna taxa; supporting similar or greater density, biomass, and species richness to the natural reference during all but one sampling period. Stable isotope analyses revealed that communities from the natural and the restored marshes relied on a similar diversity of food resources and that decapods had similar trophic levels. However, some generalist consumers (Palaemonetes spp. and Penaeus aztecus) were more 13C-enriched in the natural marsh, indicating a greater use of macrophyte derived organic matter relative to restored marsh counterparts. This difference was attributed to the higher quantities of macrophyte detritus and organic carbon in natural marsh sediments. Reduced marsh flooding frequency was associated with a reduction in macrofaunal biomass and decapod trophic levels. The restored marsh edge occurred at lower elevations than natural marsh edge, apparently due to reduced fetch and wind-wave exposure provided by the protective berm structures. The lower elevation of the restored marsh edge mitigated negative impacts in sampling periods with low tidal elevations that affected the natural marsh. The results of this study highlight the importance of considering sediment characteristics and elevation in salt marsh constructions.

  15. Great Lakes clams find refuge from zebra mussels in restored, lake-connected marsh (Ohio)

    USGS Publications Warehouse

    Nichols, S. Jerrine; Wilcox, Douglas A.

    2004-01-01

    Since the early 1990s, more than 95 percent of the freshwater clams once found in Lake Erie have died due to the exotic zebara mussel (Dreissena polymorpha). Zebra mussels attach themselves to native clams in large numbers, impeding the ability of the clams to eat and burrow. However, in 1996, we discovered a population of native clams in Metzger Marsh in western Lake Erie (about 50 miles [80 km] east of Toledo) that were thriving despite the longtime presence of zebra mussel in surrounding waters. At that time, Metzger Marsh was undergoing extensive restoration, including construction of a dike to replace the eroded barrier beach and of a water-control structure to maintain hydrologic connections with the lake (Wilcox and Whillans 1999). The restoration plan called for a drawdown of water levels to promote plant growth from the seedbank -- a process that would also destroy most of the clam population. State and federal resource managers recommended removing as many clams as possible to a site that was isolated from zebra mussels, and then returning them to the marsh after it was restored. We removed about 7,000 native clams in 1996 and moved them back to Metzger Marsh in 1999.

  16. Collaborative decision-analytic framework to maximize resilience of tidal marshes to climate change

    USGS Publications Warehouse

    Thorne, Karen M.; Mattsson, Brady J.; Takekawa, John Y.; Cummings, Jonathan; Crouse, Debby; Block, Giselle; Bloom, Valary; Gerhart, Matt; Goldbeck, Steve; Huning, Beth; Sloop, Christina; Stewart, Mendel; Taylor, Karen; Valoppi, Laura

    2015-01-01

    Decision makers that are responsible for stewardship of natural resources face many challenges, which are complicated by uncertainty about impacts from climate change, expanding human development, and intensifying land uses. A systematic process for evaluating the social and ecological risks, trade-offs, and cobenefits associated with future changes is critical to maximize resilience and conserve ecosystem services. This is particularly true in coastal areas where human populations and landscape conversion are increasing, and where intensifying storms and sea-level rise pose unprecedented threats to coastal ecosystems. We applied collaborative decision analysis with a diverse team of stakeholders who preserve, manage, or restore tidal marshes across the San Francisco Bay estuary, California, USA, as a case study. Specifically, we followed a structured decision-making approach, and we using expert judgment developed alternative management strategies to increase the capacity and adaptability to manage tidal marsh resilience while considering uncertainties through 2050. Because sea-level rise projections are relatively confident to 2050, we focused on uncertainties regarding intensity and frequency of storms and funding. Elicitation methods allowed us to make predictions in the absence of fully compatible models and to assess short- and long-term trade-offs. Specifically we addressed two questions. (1) Can collaborative decision analysis lead to consensus among a diverse set of decision makers responsible for environmental stewardship and faced with uncertainties about climate change, funding, and stakeholder values? (2) What is an optimal strategy for the conservation of tidal marshes, and what strategy is robust to the aforementioned uncertainties? We found that when taking this approach, consensus was reached among the stakeholders about the best management strategies to maintain tidal marsh integrity. A Bayesian decision network revealed that a strategy considering sea-level rise and storms explicitly in wetland restoration planning and designs was optimal, and it was robust to uncertainties about management effectiveness and budgets. We found that strategies that avoided explicitly accounting for future climate change had the lowest expected performance based on input from the team. Our decision-analytic framework is sufficiently general to offer an adaptable template, which can be modified for use in other areas that include a diverse and engaged stakeholder group.

  17. High Spatial resolution remote sensing for salt marsh change detection on Fire Island National Seashore

    NASA Astrophysics Data System (ADS)

    Campbell, A.; Wang, Y.

    2017-12-01

    Salt marshes are under increasing pressure due to anthropogenic stressors including sea level rise, nutrient enrichment, herbivory and disturbances. Salt marsh losses risk the important ecosystem services they provide including biodiversity, water filtration, wave attenuation, and carbon sequestration. This study determines salt marsh change on Fire Island National Seashore, a barrier island along the south shore of Long Island, New York. Object-based image analysis was used to classifying Worldview-2, high resolution satellite, and topobathymetric LiDAR. The site was impacted by Hurricane Sandy in October of 2012 causing a breach in the Barrier Island and extensive overwash. In situ training data from vegetation plots were used to train the Random Forest classifier. The object-based Worldview-2 classification achieved an overall classification accuracy of 92.75. Salt marsh change for the study site was determined by comparing the 2015 classification with a 1997 classification. The study found a shift from high marsh to low marsh and a reduction in Phragmites on Fire Island. Vegetation losses were observed along the edge of the marsh and in the marsh interior. The analysis agreed with many of the trends found throughout the region including the reduction of high marsh and decline of salt marsh. The reduction in Phragmites could be due to the species shrinking niche between rising seas and dune vegetation on barrier islands. The complex management issues facing salt marsh across the United States including sea level rise and eutrophication necessitate very high resolution classification and change detection of salt marsh to inform management decisions such as restoration, salt marsh migration, and nutrient inputs.

  18. Marshes as “Mountain Tops”: Genetic Analyses of the Critically Endangered São Paulo Marsh Antwren (Aves: Thamnophilidae)

    PubMed Central

    de Camargo, Crisley; Gibbs, H. Lisle; Costa, Mariellen C.; Del-Rio, Glaucia; Silveira, Luís F.

    2015-01-01

    Small populations of endangered species can be impacted by genetic processes such as drift and inbreeding that reduce population viability. As such, conservation genetic analyses that assess population levels of genetic variation and levels of gene flow can provide important information for managing threatened species. The São Paulo Marsh Antwren (Formicivora paludicola) is a recently-described and critically endangered bird from São Paulo State (Brazil) whose total estimated population is around 250–300 individuals, distributed in only 15 isolated marshes around São Paulo metropolitan region. We used microsatellite DNA markers to estimate the population genetic characteristics of the three largest remaining populations of this species all within 60 km of each other. We detected a high and significant genetic structure between all populations (overall F ST = 0.103) which is comparable to the highest levels of differentiation ever documented for birds, (e.g., endangered birds found in isolated populations on the tops of African mountains), but also evidence for first-generation immigrants, likely from small local unsampled populations. Effective population sizes were small (between 28.8–99.9 individuals) yet there are high levels of genetic variability within populations and no evidence for inbreeding. Conservation implications of this work are that the high levels of genetic structure suggests that translocations between populations need to be carefully considered in light of possible local adaptation and that remaining populations of these birds should be managed as conservation units that contain both main populations studied here but also small outlying populations which may be a source of immigrants. PMID:26447791

  19. A Climate Change Adaptation Strategy for Management of Coastal Marsh Systems

    EPA Science Inventory

    Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, includin...

  20. Modeling impacts of sea-level rise, oil price, and management strategy on the costs of sustaining Mississippi delta marshes with hydraulic dredging.

    PubMed

    Wiegman, Adrian R H; Day, John W; D'Elia, Christopher F; Rutherford, Jeffrey S; Morris, James T; Roy, Eric D; Lane, Robert R; Dismukes, David E; Snyder, Brian F

    2018-03-15

    Over 25% of Mississippi River delta plain (MRDP) wetlands were lost over the past century. There is currently a major effort to restore the MRDP focused on a 50-year time horizon, a period during which the energy system and climate will change dramatically. We used a calibrated MRDP marsh elevation model to assess the costs of hydraulic dredging to sustain wetlands from 2016 to 2066 and 2016 to 2100 under a range of scenarios for sea level rise, energy price, and management regimes. We developed a subroutine to simulate dredging costs based on the price of crude oil and a project efficiency factor. Crude oil prices were projected using forecasts from global energy models. The costs to sustain marsh between 2016 and 2100 changed from $128,000/ha in the no change scenario to ~$1,010,000/ha in the worst-case scenario for sea level rise and energy price, an ~8-fold increase. Increasing suspended sediment concentrations, which is possible using managed river diversions, raised created marsh lifespan and decreased long term dredging costs. Created marsh lifespan changed nonlinearly with dredging fill elevation and suspended sediment level. Cost effectiveness of marsh creation and nourishment can be optimized by adjusting dredging fill elevation to the local sediment regime. Regardless of management scenario, sustaining the MRDP with hydraulic dredging suffered declining returns on investment due to the convergence of energy and climate trends. Marsh creation will likely become unaffordable in the mid to late 21st century, especially if river sediment diversions are not constructed before 2030. We recommend that environmental managers take into consideration coupled energy and climate scenarios for long-term risk assessments and adjust restoration goals accordingly. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Mitigation and enhancement techniques for the Upper Mississippi River system and other large river systems

    USGS Publications Warehouse

    Schnick, Rosalie A.; Morton, John M.; Mochalski, Jeffrey C.; Beall, Jonathan T.

    1982-01-01

    Extensive information is provided on techniques that can reduce or eliminate the negative impact of man's activities (particularly those related to navigation) on large river systems, with special reference to the Upper Mississippi River. These techniques should help resource managers who are concerned with such river systems to establish sound environmental programs. Discussion of each technique or group of techniques include (1) situation to be mitigated or enhanced; (2) description of technique; (3) impacts on the environment; (4) costs; and (5) evaluation for use on the Upper Mississippi River Systems. The techniques are divided into four primary categories: Bank Stabilization Techniques, Dredging and Disposal of Dredged Material, Fishery Management Techniques, and Wildlife Management Techniques. Because techniques have been grouped by function, rather than by structure, some structures are discussed in several contexts. For example, gabions are discussed for use in revetments, river training structures, and breakwaters. The measures covered under Bank Stabilization Techniques include the use of riprap revetments, other revetments, bulkheads, river training structures, breakwater structures, chemical soil stabilizers, erosion-control mattings, and filter fabrics; the planting of vegetation; the creation of islands; the creation of berms or enrichment of beaches; and the control of water level and boat traffic. The discussions of Dredging and the Disposal of Dredged Material consider dredges, dredging methods, and disposal of dredged material. The following subjects are considered under Fishery Management Techniques: fish attractors; spawning structures; nursery ponds, coves, and marshes; fish screens and barriers; fish passage; water control structures; management of water levels and flows; wing dam modification; side channel modification; aeration techniques; control of nuisance aquatic plants; and manipulated of fish populations. Wildlife Management Techniques include treatments of artificial nest structures, island creation or development, marsh creation or development, greentree reservoirs and mast management, vegetation control, water level control, and revegetation.

  2. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States

    USGS Publications Warehouse

    Osland, Michael J.; Day, Richard H.; Doyle, Thomas W.; Enwright, Nicholas

    2013-01-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970–2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh–mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services.

  3. Relationships Between Watershed Emergy Flow and Coastal New England Salt Marsh Structure, Function, and Condition

    EPA Science Inventory

    This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI. The field-collected data wer...

  4. Spatial patterns of plant litter in a tidal freshwater marsh and implications for marsh persistence.

    PubMed

    Elmore, Andrew J; Engelhardt, Katharina A M; Cadol, Daniel; Palinkas, Cindy M

    2016-04-01

    The maintenance of marsh platform elevation under conditions of sea level rise is dependent on mineral sediment supply to marsh surfaces and conversion of above- and belowground plant biomass to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here, we explore spatial pattern in a variable related to aboveground biomass, plant litter, to reveal its role in the maintenance of marsh surfaces. Plant litter persisting through the dormant season represents the more recalcitrant portion of plant biomass, and as such has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, aboveground biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located within the Potomac River estuary, USA. LiDAR and field observations show that plant litter structure becomes more prominent with increasing elevation. Spatial patterns in litter structure exhibit stability from year to year and correlate with patterns in soil organic matter content, revealed by measuring the loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important tradeoff with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, aboveground litter contributes organic matter to soil development. This organic matter contribution has the potential to eclipse that of belowground biomass as the root:shoot ratio of dominant species at high elevations is low compared to that of dominant species at low elevations. Because of these tradeoffs in mineral and organic matter incorporation into soil across elevation gradients, the rate of marsh surface elevation change is remarkably consistent across elevation. Because of the role of plant litter in marsh ecosystem processes, monitoring and assessment of these dynamic geomorphic marsh landscapes might be streamlined through the measurement of plant litter structure, either via LiDAR technologies or field observation.

  5. AmeriFlux US-WPT Winous Point North Marsh

    DOE Data Explorer

    Chen, Jiquan [University of Toledo / Michigan State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-WPT Winous Point North Marsh. Site Description - The marsh site has been owned by the Winous Point Shooting Club since 1856 and has been managed by wildlife biologists since 1946. The hydrology of the marsh is relatively isolated by the surrounding dikes and drainages and only receives drainage from nearby croplands through three connecting ditches. Since 2001, the marsh has been managed to maintain year-round inundation with the lowest water levels in September. Within the 0–250 m fetch of the tower, the marsh comprises 42.9% of floating-leaved vegetation, 52.7% of emergent vegetation, and 4.4% of dike and upland during the growing season. Dominant emergent plants include narrow-leaved cattail (Typha angustifolia), rose mallow (Hibiscus moscheutos), and bur reed (Sparganium americanum). Common floating-leaved species are water lily (Nymphaea odorata) and American lotus (Nelumbo lutea) with foliage usually covering the water surface from late May to early October.

  6. Final report: Initial ecosystem response of salt marshes to ditch plugging and pool creation: Experiments at Rachel Carson National Wildlife Refuge (Maine)

    USGS Publications Warehouse

    Adamowicz, S.C.; Roman, C.T.

    2002-01-01

    This study evaluates the response of three salt marshes, associated with the Rachel Carson National Wildlife Refuge (Maine), to the practice of ditch plugging. Drainage ditches, originally dug to drain the marsh for mosquito control or to facilitate salt hay farming, are plugged with marsh peat in an effort to impound water upstream of the plug, raise water table levels in the marsh, and increase surface water habitat. At two study sites, Moody Marsh and Granite Point Road Marsh, ditch plugs were installed in spring 2000. Monitoring of hydrology, vegetation, nekton and bird utilization, and marsh development processes was conducted in 1999, before ditch plugging, and then in 2000 and 2001 (all parameters except nekton), after ditch plugging. Each study site had a control marsh that was monitored simultaneously with the plugged marsh, and thus, we employed a BACI study design (before, after, control, impact). A third site, Marshall Point Road Marsh, was plugged in 1998. Monitoring of the plugged and control sites was conducted in 1999 and 2000, with limited monitoring in 2001, thus there was no ?before? plug monitoring. With ditch plugging, water table levels increased toward the marsh surface and the areal extent of standing water increased. Responding to a wetter substrate, a vegetation change from high marsh species (e.g., Spartina patens) to those more tolerant of flooded conditions (e.g., Spartina alterniflora) was noted at two of the three ditch plugged sites. Initial response of the nekton community (fishes and decapod crustaceans) was evaluated by monitoring utilization of salt marsh pools using a 1m2 enclosure trap. In general, nekton species richness, density, and community structure remained unchanged following ditch plugging at the Moody and Granite Point sites. At Marshall Point, species richness and density (number of individuals per m2) were significantly greater in the experimental plugged marsh than the control marsh (<2% of the control marsh was open water habitat vs. 11% of the plugged marsh). The response of birds, categorized as waterfowl & waterbirds, shorebirds & wading birds, gulls & terns, and miscellaneous (raptors, passerines, other), was variable. Following ditch plugging, bird species richness increased at the Granite Point site (1999 pre-plug = 15.4, 2000 post-plug = 26.2, 2001 post-plug = 38.7). Because of a low sample size at Moody Marsh, reliable statements on species richness cannot be made. Density of birds (no. of birds per ha) remained unchanged with ditch plugging at Granite Point Marsh, although there was a strong, but not statistically significant, trend toward increased density. This study only reports on initial responses of marsh functions to ditch plugging. Monitoring should continue at these sites, and perhaps at additional sites, for the next decade or so. A monitoring plan is recommended. Long-term monitoring will include evaluation of salt marsh development processes using SET (surface elevation table) methodology. There is concern, although not confirmed, that as ditch-plugged marshes become wetter and marsh grass production declines their ability to keep pace with sea level rise could be jeopardized. It is suggested that ditch plugging should be considered an experimental marsh management technique. Additional monitoring on the physical and habitat responses of ditch-plugged marshes is required, along with assessments of other techniques aimed at restoring open water habitat to the marsh surface.

  7. Effects of livestock species and stocking density on accretion rates in grazed salt marshes

    NASA Astrophysics Data System (ADS)

    Nolte, Stefanie; Esselink, Peter; Bakker, Jan P.; Smit, Christian

    2015-01-01

    Coastal ecosystems, such as salt marshes, are threatened by accelerated sea-level rise (SLR). Salt marshes deliver valuable ecosystem services such as coastal protection and the provision of habitat for a unique flora and fauna. Whether salt marshes in the Wadden Sea area are able to survive accelerated SLR depends on sufficient deposition of sediments which add to vertical marsh accretion. Accretion rate is influenced by a number of factors, and livestock grazing was recently included. Livestock grazing is assumed to reduce accretion rates in two ways: (a) directly by increasing soil compaction through trampling, and (b) indirectly by affecting the vegetation structure, which may lower the sediment deposition. For four years, we studied the impact of two livestock species (horse and cattle) at two stocking densities (0.5 and 1.0 animal ha-1) on accretion in a large-scale grazing experiment using sedimentation plates. We found lower cumulative accretion rates in high stocking densities, probably because more animals cause more compaction and create a lower canopy. Furthermore, a trend towards lower accretion rates in horse-compared to cattle-grazed treatments was found, most likely because (1) horses are more active and thus cause more compaction, and (2) herbage intake by horses is higher than by cattle, which causes a higher biomass removal and shorter canopy. During summer periods, negative accretion rates were found. When the grazing and non-grazing seasons were separated, the impact of grazing differed among years. In summer, we only found an effect of different treatments if soil moisture (precipitation) was relatively low. In winter, a sufficiently high inundation frequency was necessary to create differences between grazing treatments. We conclude that stocking densities, and to a certain extent also livestock species, affect accretion rates in salt marshes. Both stocking densities and livestock species should thus be taken into account in management decisions of salt marshes. In our study accretion rates were higher than the current SLR. Further research is needed to include grazing effects into sedimentation models, given the importance of grazing management in the Wadden Sea area.

  8. 75 FR 22618 - Eastern Neck National Wildlife Refuge, Kent County, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... habitats are highly diverse, and include tidal marsh, open water, and woodland. The refuge's managed... protection and restoration of shoreline, tidal marsh, and submerged aquatic vegetation; invasive plant and... protection and restoration of the refuge's shoreline and tidal marshes. Priorities under this alternative are...

  9. Short-term Morphodynamics of an Eroding Salt Marsh Shoreline in the Delaware Estuary, USA

    NASA Astrophysics Data System (ADS)

    Fanta, D.; Quirk, T. E.

    2017-12-01

    Marsh edge morphology can change rapidly through erosional and depositional processes. Along seemingly similar stretches of marsh shoreline, erosion processes and rates can vary dramatically. In the Delaware Estuary, annual rates of edge erosion vary from a few centimeters to several meters across relatively short stretches of shoreline. Differences in erosion processes observed here include areas with and without vegetation growth seaward of the eroding marsh scarp. To better understand the factors that influence changes in marsh edge morphology, we examined wave energy, marsh scarp profile, and vegetation structure in relation to lateral erosion and accretion along two stretches of the Delaware Estuary for two years. Rates of erosion ranged from 0.01 to over 7 m/yr depending on shoreline exposure to waves and location on marsh scarp depth profile. Sediment deposition and accretion were up to an order of magnitude higher 15 cm from the marsh edge than 5 cm from the marsh edge, and were driven by storm events. In some areas, vegetation persisted seaward of eroding marshes where wave activity was dampened by a shallower bathymetric profile. Wave energy, distance from the edge and marsh elevation all contributed to vegetation structure, and therefore sedimentation and accretion dynamics. These results highlight the interactive nature of biophysical processes leading to lateral retreat or potential resilience of marsh edges.

  10. Estuaries and Tidal Marshes. Habitat Pac.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Washington, DC.

    This educational packet consists of an overview, three lesson plans, student data sheets, and a poster. The overview examines estuaries and tidal or salt marshes by discussing the plants and animals in these habitats, marsh productivity, benefits and management of the habitats, historical aspects, and development and pollution. A glossary and list…

  11. Development of a Climate-Change Adaptation Strategy for Management of Coastal Marsh Systems in Southern New England USA

    EPA Science Inventory

    Sea level rise is accelerating throughout the U.S. Northeast causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat ...

  12. Development of a Climate Change Adaptation Strategy for Management of Coastal Marsh Systems in Southern New England USA

    EPA Science Inventory

    Sea level rise is accelerating throughout the U.S. Northeast causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat ...

  13. Dragonflies are biocontrol agents in Wisconsin cranberry marshes

    USDA-ARS?s Scientific Manuscript database

    Dragonflies (Order Odonata) are abundant predators that emerge in large hatch events each summer in Wisconsin cranberry marshes. They seem to be a potential group of biocontrol agents for pest management that may be influenced by the diversity found on the marsh. In fact, our evidence shows that dra...

  14. Geostatistical evaluation of integrated marsh management impact on mosquito vectors using before-after-control-impact (BACI) design

    PubMed Central

    Rochlin, Ilia; Iwanejko, Tom; Dempsey, Mary E; Ninivaggi, Dominick V

    2009-01-01

    Background In many parts of the world, salt marshes play a key ecological role as the interface between the marine and the terrestrial environments. Salt marshes are also exceedingly important for public health as larval habitat for mosquitoes that are vectors of disease and significant biting pests. Although grid ditching and pesticides have been effective in salt marsh mosquito control, marsh degradation and other environmental considerations compel a different approach. Targeted habitat modification and biological control methods known as Open Marsh Water Management (OMWM) had been proposed as a viable alternative to marsh-wide physical alterations and chemical control. However, traditional larval sampling techniques may not adequately assess the impacts of marsh management on mosquito larvae. To assess the effectiveness of integrated OMWM and marsh restoration techniques for mosquito control, we analyzed the results of a 5-year OMWM/marsh restoration project to determine changes in mosquito larval production using GIS and geostatistical methods. Methods The following parameters were evaluated using "Before-After-Control-Impact" (BACI) design: frequency and geographic extent of larval production, intensity of larval production, changes in larval habitat, and number of larvicide applications. The analyses were performed using Moran's I, Getis-Ord, and Spatial Scan statistics on aggregated before and after data as well as data collected over time. This allowed comparison of control and treatment areas to identify changes attributable to the OMWM/marsh restoration modifications. Results The frequency of finding mosquito larvae in the treatment areas was reduced by 70% resulting in a loss of spatial larval clusters compared to those found in the control areas. This effect was observed directly following OMWM treatment and remained significant throughout the study period. The greatly reduced frequency of finding larvae in the treatment areas led to a significant decrease (~44%) in the number of times when the larviciding threshold was reached. This reduction, in turn, resulted in a significant decrease (~74%) in the number of larvicide applications in the treatment areas post-project. The remaining larval habitat in the treatment areas had a different geographic distribution and was largely confined to the restored marsh surface (i.e. filled-in mosquito ditches); however only ~21% of the restored marsh surface supported mosquito production. Conclusion The geostatistical analysis showed that OMWM demonstrated considerable potential for effective mosquito control and compatibility with other natural resource management goals such as restoration, wildlife habitat enhancement, and invasive species abatement. GPS and GIS tools are invaluable for large scale project design, data collection, and data analysis, with geostatistical methods serving as an alternative or a supplement to the conventional inference statistics in evaluating the project outcome. PMID:19549297

  15. The role of tidal marsh restoration in fish management in the San Francisco Estuary

    USGS Publications Warehouse

    Herbold, Bruce; Baltz, Donald; Brown, Larry R.; Grossinger, Robin; Kimmerer, Wim J.; Lehman, Peggy W.; Moyle, Peter B.; Nobriga, Matthew L.; Simenstad, Charles A.

    2015-01-01

    Tidal marsh restoration is an important management issue in the San Francisco Estuary (estuary). Restoration of large areas of tidal marsh is ongoing or planned in the lower estuary (up to 6,000 ha, Callaway et al. 2011). Large areas are proposed for restoration in the upper estuary under the Endangered Species Act biological opinions (3,237 ha) and the Bay Delta Conservation Plan (26,305 ha). In the lower estuary, tidal marsh has proven its value to a wide array of species that live within it (Palaima 2012). In the Sacramento–San Joaquin Delta (Delta), one important function ascribed to restoration of freshwater tidal marshes is that they make large contributions to the food web of fish in open waters (BDCP 2013). The Ecosystem Restoration Program ascribed a suite of ecological functions to tidal marsh restoration, including habitat and food web benefits to native fish (CDFW 2010). This background was the basis for a symposium, Tidal Marshes and Native Fishes in the Delta: Will Restoration Make a Difference? held at the University of California, Davis, on June 10, 2013. This paper summarizes conclusions the authors drew from the symposium.

  16. EVALUATING THE INTEGRITY OF SALT MARSHES IN NARRAGANSETT BAY SUBESTUARIES USING A WATESHED APPROACH

    EPA Science Inventory

    A watershed approach to examine measures of structure and function in salt marshes of similar geomorphology and hydrology in Narragansett Bay was used to develop a reference system for evaluating salt marsh integrity. We describe integrity as the capability of a salt marsh to pro...

  17. Endangered species management and ecosystem restoration: Finding the common ground

    USGS Publications Warehouse

    Casazza, Michael L.; Overton, Cory T.; Bui, Thuy-Vy D.; Hull, Joshua M.; Albertson, Joy D.; Bloom, Valary K.; Bobzien, Steven; McBroom, Jennifer; Latta, Marilyn; Olofson, Peggy; Rohmer, Tobias M.; Schwarzbach, Steven E.; Strong, Donald R.; Grijalva, Erik; Wood, Julian K.; Skalos, Shannon; Takekawa, John Y.

    2016-01-01

    Management actions to protect endangered species and conserve ecosystem function may not always be in precise alignment. Efforts to recover the California Ridgway’s Rail (Rallus obsoletus obsoletus; hereafter, California rail), a federally and state-listed species, and restoration of tidal marsh ecosystems in the San Francisco Bay estuary provide a prime example of habitat restoration that has conflicted with species conservation. On the brink of extinction from habitat loss and degradation, and non-native predators in the 1990s, California rail populations responded positively to introduction of a non-native plant, Atlantic cordgrass (Spartina alterniflora). California rail populations were in substantial decline when the non-native Spartina was initially introduced as part of efforts to recover tidal marshes. Subsequent hybridization with the native Pacific cordgrass (Spartina foliosa) boosted California rail populations by providing greater cover and increased habitat area. The hybrid cordgrass (S. alterniflora × S. foliosa) readily invaded tidal mudflats and channels, and both crowded out native tidal marsh plants and increased sediment accretion in the marsh plain. This resulted in modification of tidal marsh geomorphology, hydrology, productivity, and species composition. Our results show that denser California rail populations occur in invasive Spartina than in native Spartina in San Francisco Bay. Herbicide treatment between 2005 and 2012 removed invasive Spartina from open intertidal mud and preserved foraging habitat for shorebirds. However, removal of invasive Spartina caused substantial decreases in California rail populations. Unknown facets of California rail ecology, undesirable interim stages of tidal marsh restoration, and competing management objectives among stakeholders resulted in management planning for endangered species or ecosystem restoration that favored one goal over the other. We have examined this perceived conflict and propose strategies for moderating harmful effects of restoration while meeting the needs of both endangered species and the imperiled native marsh ecosystem.

  18. Evaluating Tidal Marsh Sustainability in the Face of Sea-Level Rise: A Hybrid Modeling Approach Applied to San Francisco Bay

    PubMed Central

    Stralberg, Diana; Brennan, Matthew; Callaway, John C.; Wood, Julian K.; Schile, Lisa M.; Jongsomjit, Dennis; Kelly, Maggi; Parker, V. Thomas; Crooks, Stephen

    2011-01-01

    Background Tidal marshes will be threatened by increasing rates of sea-level rise (SLR) over the next century. Managers seek guidance on whether existing and restored marshes will be resilient under a range of potential future conditions, and on prioritizing marsh restoration and conservation activities. Methodology Building upon established models, we developed a hybrid approach that involves a mechanistic treatment of marsh accretion dynamics and incorporates spatial variation at a scale relevant for conservation and restoration decision-making. We applied this model to San Francisco Bay, using best-available elevation data and estimates of sediment supply and organic matter accumulation developed for 15 Bay subregions. Accretion models were run over 100 years for 70 combinations of starting elevation, mineral sediment, organic matter, and SLR assumptions. Results were applied spatially to evaluate eight Bay-wide climate change scenarios. Principal Findings Model results indicated that under a high rate of SLR (1.65 m/century), short-term restoration of diked subtidal baylands to mid marsh elevations (−0.2 m MHHW) could be achieved over the next century with sediment concentrations greater than 200 mg/L. However, suspended sediment concentrations greater than 300 mg/L would be required for 100-year mid marsh sustainability (i.e., no elevation loss). Organic matter accumulation had minimal impacts on this threshold. Bay-wide projections of marsh habitat area varied substantially, depending primarily on SLR and sediment assumptions. Across all scenarios, however, the model projected a shift in the mix of intertidal habitats, with a loss of high marsh and gains in low marsh and mudflats. Conclusions/Significance Results suggest a bleak prognosis for long-term natural tidal marsh sustainability under a high-SLR scenario. To minimize marsh loss, we recommend conserving adjacent uplands for marsh migration, redistributing dredged sediment to raise elevations, and concentrating restoration efforts in sediment-rich areas. To assist land managers, we developed a web-based decision support tool (www.prbo.org/sfbayslr). PMID:22110638

  19. Structural classification of marshes with Polarimetric SAR highlighting the temporal mapping of marshes exposed to oil

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Jones, Cathleen E.

    2015-01-01

    Empirical relationships between field-derived Leaf Area Index (LAI) and Leaf Angle Distribution (LAD) and polarimetric synthetic aperture radar (PolSAR) based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acquired in 2009. Regression analyses showed that LAI correspondence with the PolSAR biophysical indicator variables equaled or exceeded those of vegetation water content (VWC) correspondences. In the final six regressor model, the ratio HV/VV explained 49% of the total 77% explained LAI variance, and the HH-VV coherence and phase information accounted for the remainder. HV/HH dominated the two regressor LAD relationship, and spatial heterogeneity and backscatter mechanism followed by coherence information dominated the final three regressor model that explained 74% of the LAD variance. Regression results applied to 2009 through 2012 PolSAR images showed substantial changes in marsh LAI and LAD. Although the direct cause was not substantiated, following a release of freshwater in response to the 2010 Deepwater Horizon oil spill, the fairly uniform interior marsh structure of 2009 was more vertical and dense shortly after the oil spill cessation. After 2010, marsh structure generally progressed back toward the 2009 uniformity; however, the trend was more disjointed in oil impact marshes.             

  20. Fire helps restore natural disturbance regime to benefit rare and endangered marsh birds endemic to the Colorado River.

    PubMed

    Conway, Courtney J; Nadeau, Christopher P; Piest, Linden

    2010-10-01

    Large flood events were part of the historical disturbance regime within the lower basin of most large river systems around the world. Large flood events are now rare in the lower basins of most large river systems due to flood control structures. Endemic organisms that are adapted to this historical disturbance regime have become less abundant due to these dramatic changes in the hydrology and the resultant changes in vegetation structure. The Yuma Clapper Rail is a federally endangered bird that breeds in emergent marshes within the lower Colorado River basin in the southwestern United States and northwestern Mexico. We evaluated whether prescribed fire could be used as a surrogate disturbance event to help restore historical conditions for the benefit of Yuma Clapper Rails and four sympatric marsh-dependent birds. We conducted call-broadcast surveys for marsh birds within burned and unburned (control) plots both pre- and post-burn. Fire increased the numbers of Yuma Clapper Rails and Virginia Rails, and did not affect the numbers of Black Rails, Soras, and Least Bitterns. We found no evidence that detection probability of any of the five species differed between burn and control plots. Our results suggest that prescribed fire can be used to set back succession of emergent marshlands and help mimic the natural disturbance regime in the lower Colorado River basin. Hence, prescribed fire can be used to help increase Yuma Clapper Rail populations without adversely affecting sympatric species. Implementing a coordinated long-term fire management plan within marshes of the lower Colorado River may allow regulatory agencies to remove the Yuma Clapper Rail from the endangered species list.

  1. Fire helps restore natural disturbance regime to benefit rare and endangered marsh birds endemic to the Colorado River

    USGS Publications Warehouse

    Conway, C.J.; Nadeau, C.P.; Piest, L.

    2010-01-01

    Large flood events were part of the historical disturbance regime within the lower basin of most large river systems around the world. Large flood events are now rare in the lower basins of most large river systems due to flood control structures. Endemic organisms that are adapted to this historical disturbance regime have become less abundant due to these dramatic changes in the hydrology and the resultant changes in vegetation structure. The Yuma Clapper Rail is a federally endangered bird that breeds in emergent marshes within the lower Colorado River basin in the southwestern United States and northwestern Mexico. We evaluated whether prescribed fire could be used as a surrogate disturbance event to help restore historical conditions for the benefit of Yuma Clapper Rails and four sympatric marsh-dependent birds. We conducted call-broadcast surveys for marsh birds within burned and unburned (control) plots both pre-and post-burn. Fire increased the numbers of Yuma Clapper Rails and Virginia Rails, and did not affect the numbers of Black Rails, Soras, and Least Bitterns. We found no evidence that detection probability of any of the five species differed between burn and control plots. Our results suggest that prescribed fire can be used to set back succession of emergent marshlands and help mimic the natural disturbance regime in the lower Colorado River basin. Hence, prescribed fire can be used to help increase Yuma Clapper Rail populations without adversely affecting sympatric species. Implementing a coordinated long-term fire management plan within marshes of the lower Colorado River may allow regulatory agencies to remove the Yuma Clapper Rail from the endangered species list. ?? 2010 by the Ecological Society of America.

  2. EVALUATING THE INTEGRITY OF SALT MARSHES IN NARRAGANSETT BAY SUB-ESTUARIES USING A WATERSHED APPROACH

    EPA Science Inventory

    A watershed approach to examine measures of structure and function in salt marshes of similar geomorphology and hydrology in Narragansett Bay is being used to develop a reference system for evaluating salt marsh integrity. We describe integrity as the capability of a salt marsh t...

  3. Salt marsh sediment bacteria: their distribution and response to external nutrient inputs.

    PubMed

    Bowen, Jennifer L; Crump, Byron C; Deegan, Linda A; Hobbie, John E

    2009-08-01

    A primary focus among microbial ecologists in recent years has been to understand controls on the distribution of microorganisms in various habitats. Much less attention has been paid to the way that environmental disturbance interacts with processes that regulate bacterial community composition. We determined how human disturbance affected the distribution and community structure of salt marsh sediment bacteria by using denaturing gradient gel electrophoresis of 16S rRNA in five different habitats in each of four salt marshes located in northeastern Massachusetts, USA. Two of the four marsh creeks were experimentally enriched 15 x above background by the addition of nitrogen and phosphorus fertilizers for two or more growing seasons. Our results indicate that extrinsic factors acting at broad scales do not influence the distribution of salt marsh sediment bacteria. Intrinsic factors, controlled by local-scale environmental heterogeneity, do play a role in structuring these sediment microbial communities, although nutrient enrichment did not have a consequential effect on the microbial community in most marsh habitats. Only in one habitat, a region of the marsh creek wall that is heavily colonized by filamentous algae, did we see any effect of fertilization on the microbial community structure. When similar habitats were compared among marshes, there was considerable convergence in the microbial community composition during the growing season. Environmental factors that correlated best with microbial community composition varied with habitat, suggesting that habitat-specific intrinsic forces are primarily responsible for maintaining microbial diversity in salt marsh sediments.

  4. Effects of prescribed burning on marsh-elevation change and the risk of wetland loss

    USGS Publications Warehouse

    McKee, Karen L.; Grace, James B.

    2012-01-01

    Marsh-elevation change is the net effect of biophysical processes controlling inputs versus losses of soil volume. In many marshes, accumulation of organic matter is an important contributor to soil volume and vertical land building. In this study, we examined how prescribed burning, a common marsh-management practice, may affect elevation dynamics in the McFaddin National Wildlife Refuge, Texas by altering organic-matter accumulation. Experimental plots were established in a brackish marsh dominated by Spartina patens, a grass found throughout the Gulf of Mexico and Atlantic marshes. Experimental plots were subjected to burning and nutrient-addition treatments and monitored for 3.5 years (April 2005 – November 2008). Half of the plots were burned once in 2006; half of the plots were fertilized seasonally with nitrogen, phosphorus, and potassium. Before and after the burns, seasonal measurements were made of soil physicochemistry, vegetation structure, standing and fallen plant biomass, aboveground and belowground production, decomposition, and accretion and elevation change (measured with Surface Elevation Tables (SET)). Movements in different soil strata (surface, root zone, subroot zone) were evaluated to identify which processes were contributing to elevation change. Because several hurricanes occurred during the study period, we also assessed how these storms affected elevation change rates. The main findings of this study were as follows: 1. The main drivers of elevation change were accretion on the marsh surface and subsurface movement below the root zone, but the relative influence of these processes varied temporally. Prior to Hurricanes Gustav and Ike (September 2008), the main driver was subsurface movement; after the hurricane, both accretion and subsurface movement were important. 2. Prior to Hurricanes Gustav and Ike, rates of elevation gain and accretion above a marker horizon were higher in burned plots compared to nonburned plots, whereas nutrient addition had no detectable influence on elevation dynamics. 3. Burning decreased standing and fallen plant litter, reducing fuel load. Hurricanes Gustav and Ike also removed fallen litter from all plots. 4. Aboveground and belowground production rates varied annually but were unaffected by burning and nutrient treatments. 5. Decomposition (of a standard cellulose material) in upper soil layers was increased in burned plots but was unaffected by nutrient treatments. 6. Soil physicochemistry was unaffected by burning or nutrient treatments. 7. The elevation deficit (difference between rate of submergence and vertical land development) prior to hurricanes was less in burned plots (6.2 millimeters per year [mm yr-1]) compared to nonburned plots (7.2 mm yr-1). 8. Storm sediments delivered by Hurricane Ike raised elevations an average of 7.4 centimeters (cm), which countered an elevation deficit that had accrued over 11 years. Our findings provide preliminary insights into elevation dynamics occurring in brackish marshes of the Texas Chenier Plain under prescribed fire management. The results of this study indicate that prescribed burning conducted at 3- to 5-year intervals is not likely to negatively impact the long-term sustainability of S. patens-dominated brackish marshes at McFaddin National Wildlife Refuge and may offset existing elevation deficits by ≈ 1 mm yr-1. The primary drivers of elevation change varied in time and space, leading to a more complex situation in terms of predicting how disturbances may alter elevation trajectories. The potential effect of burning on elevation change in other marshes will depend on several site-specific factors, including geomorphic/ sedimentary setting, tide range, local rate of relative sea level rise, plant species composition, additional management practices (for example, for flood control), and disturbance types and frequency (for example, hurricanes or herbivore grazing). Increasing the scope of inference would require installation of SETs in replicate marshes undergoing different prescribed fire intervals and in different geomorphic settings (with different hurricane frequencies and/or different sedimentary settings). Multiple locations along the Gulf and Atlantic coasts where prescribed fire is used as a management tool could provide the appropriate setting for these installations.

  5. Seasonal changes in community composition and trophic structure of fish populations of five salt marshes along the Essex coastline, United Kingdom

    NASA Astrophysics Data System (ADS)

    Green, Benjamin C.; Smith, David J.; Earley, Sarah E.; Hepburn, Leanne J.; Underwood, Graham J. C.

    2009-11-01

    European intertidal salt marshes are important nursery sites for juvenile fish and crustaceans. Due to the increasing threat of habitat loss, the seasonal changes of salt marsh fish communities need to be understood in order to appreciate the ecological and economic importance of the saltmarsh habitat. This study was the first in Great Britain to investigate the seasonal changes of salt marsh fish communities and the variation in community structure between closely located marsh habitats. Between February 2007 and March 2008, five marshes on three estuaries of the Essex coastline were sampled using flume nets to block off intertidal creeks at high tide. Fourteen fish species were caught. The community overall was dominated by three species that made up 91.6% of the total catch: the common goby Pomatoschistus microps (46.2% of the total catch), juvenile herring Clupea harengus (24.3%), and juvenile and larval sea bass Dicentrarchus labrax (21.2%). Cluster analysis demonstrated clear seasonal patterns, with some community structures unique to specific marshes or estuaries. The marsh fish community shifts from a highly diverse community during spring, to a community dominated by D. labrax and P. microps in autumn, and low diversity during winter months. Gravimetric stomach content analysis of fish community identified three main trophic guilds; macroinvertivores, planktivores and omnivores. The macroinvertivore feeding guild contained D. labrax and P. microps, the two most frequently occurring species. This investigation demonstrates the importance of British salt marshes as nursery habitats for commercial fish species.

  6. Review of the ecosystem service implications of mangrove encroachment into salt marshes.

    PubMed

    Kelleway, Jeffrey J; Cavanaugh, Kyle; Rogers, Kerrylee; Feller, Ilka C; Ens, Emilie; Doughty, Cheryl; Saintilan, Neil

    2017-10-01

    Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea-level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change. © 2017 John Wiley & Sons Ltd.

  7. Estimates of future inundation of salt marshes in response to sea-level rise in and around Acadia National Park, Maine

    USGS Publications Warehouse

    Nielsen, Martha G.; Dudley, Robert W.

    2013-01-01

    Salt marshes are ecosystems that provide many important ecological functions in the Gulf of Maine. The U.S. Geological Survey investigated salt marshes in and around Acadia National Park from Penobscot Bay to the Schoodic Peninsula to map the potential for landward migration of marshes using a static inundation model of a sea-level rise scenario of 60 centimeters (cm; 2 feet). The resulting inundation contours can be used by resource managers to proactively adapt to sea-level rise by identifying and targeting low-lying coastal areas adjacent to salt marshes for conservation or further investigation, and to identify risks to infrastructure in the coastal zone. For this study, the mapping of static inundation was based on digital elevation models derived from light detection and ranging (LiDAR) topographic data collected in October 2010. Land-surveyed control points were used to evaluate the accuracy of the LiDAR data in the study area, yielding a root mean square error of 11.3 cm. An independent accuracy assessment of the LiDAR data specific to salt-marsh land surfaces indicated a root mean square error of 13.3 cm and 95-percent confidence interval of ± 26.0 cm. LiDAR-derived digital elevation models and digital color aerial photography, taken during low tide conditions in 2008, with a pixel resolution of 0.5 meters, were used to identify the highest elevation of the land surface at each salt marsh in the study area. Inundation contours for 60-cm of sea-level rise were delineated above the highest marsh elevation for each marsh. Confidence interval contours (95-percent,± 26.0 cm) were delineated above and below the 60-cm inundation contours, and artificial structures, such as roads and bridges, that may present barriers to salt-marsh migration were mapped. This study delineated 114 salt marshes totaling 340 hectares (ha), ranging in size from 0.11 ha (marshes less than 0.2 ha were mapped only if they were on Acadia National Park property) to 52 ha, with a median size of 1.0 ha. Inundation contours were mapped at 110 salt marshes. Approximately 350 ha of low-lying upland areas adjacent to these marshes will be inundated with 60 cm of sea-level rise. Many of these areas are currently freshwater wetlands. There are potential barriers to marsh migration at 27 of the 114 marshes. Although only 23 percent of the salt marshes in the study are on ANP property, about half of the upland areas that will be inundated are within ANP; most of the predicted inundated uplands (approximately 170 ha) include freshwater wetlands in the Northeast Creek and Bass Harbor Marsh areas. Most of the salt marshes analyzed do not have a significant amount of upland area available for migration. Seventy-five percent of the salt marshes have 20 meters or less of adjacent upland that would be inundated along most of their edges. All inundation contours, salt marsh locations, potential barriers, and survey data are stored in geospatial files for use in a geographic information system and are a part of this report.

  8. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties

    EPA Science Inventory

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  9. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties.

    EPA Science Inventory

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  10. Centuries of human-driven change in salt marsh ecosystems.

    PubMed

    Gedan, K Bromberg; Silliman, B R; Bertness, M D

    2009-01-01

    Salt marshes are among the most abundant, fertile, and accessible coastal habitats on earth, and they provide more ecosystem services to coastal populations than any other environment. Since the Middle Ages, humans have manipulated salt marshes at a grand scale, altering species composition, distribution, and ecosystem function. Here, we review historic and contemporary human activities in marsh ecosystems--exploitation of plant products; conversion to farmland, salt works, and urban land; introduction of non-native species; alteration of coastal hydrology; and metal and nutrient pollution. Unexpectedly, diverse types of impacts can have a similar consequence, turning salt marsh food webs upside down, dramatically increasing top down control. Of the various impacts, invasive species, runaway consumer effects, and sea level rise represent the greatest threats to salt marsh ecosystems. We conclude that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.

  11. HYDROLOGIC CHARACTERISTICS OF A MANAGED WETLAND AND A NATURAL RIVERINE WETLAND ALONG THE KANKAKEE RIVER IN NORTHWESTERN INDIANA. SCIENTIFIC INVESTIGATIONS REPORT 2006-5222.

    EPA Science Inventory

    Characteristics of ground-water/surface-water interactions were identified at a managed wetland (Hog Marsh) and a natural riverine wetland (LaSalle) located on the north and south sides, respectively, of the Kankakee River in northwestern Indiana. Hog Marsh covers about 390 hecta...

  12. Quantifying Trophic Interactions and Carbon Flow in Louisiana Salt Marshes Using Multiple Biomarkers

    NASA Astrophysics Data System (ADS)

    Polito, M. J.; Lopez-Duarte, P. C.; Olin, J.; Johnson, J. J.; Able, K.; Martin, C. W.; Fodrie, J.; Hooper-Bui, L. M.; Taylor, S.; Stouffer, P.; Roberts, B. J.; Rabalais, N. N.; Jensen, O.

    2017-12-01

    Salt marshes are critical habitats for many species in the northern Gulf of Mexico. However, given their complex nature, quantifying trophic linkages and the flow of carbon through salt marsh food webs is challenging. This gap in our understanding of food web structure and function limits our ability to evaluate the impacts of natural and anthropogenic stressors on salt marsh ecosystems. For example, 2010 Deepwater Horizon (DWH) oil spill had the potential to alter trophic and energy pathways. Even so, our ability to evaluate its effects on Louisiana salt marsh food webs was limited by a poor basis for comparison of the pre-spill baseline food web. To be better equipped to measure significant alterations in salt marsh ecosystems in the future, we quantified trophic interactions at two marsh sites in Barataria Bay, LA in May and October of 2015. Trophic structure and carbon flow across 52 species of saltmarsh primary producers and consumers were examined through a combination of three approaches: bulk tissue stable isotope analysis (δ13C, δ15N, δ34S), dietary fatty acid analysis (FAA), and compound-specific stable isotope analysis of essential amino acids (δ13C EAA). Bulk stable isotope analysis indicated similar trophic diversity between sites and seasons with the use of aquatic resources increasing concomitantly with trophic level. FAA and δ13C EAA biomarkers revealed that marsh organisms were largely divided into two groups: those that primarily derive carbon from terrestrial C4 grasses, and those that predominately derive carbon from a combination of phytoplankton and benthic microalgal sources. Differences in trophic structure and carbon flow were minimal between seasons and sites that were variably impacted by the DWH spill. These data on salt marsh ecosystem structure will be useful to inform future injury assessments and restoration initiatives.

  13. The effects of crab bioturbation on Mid-Atlantic saltmarsh tidal creek extension: Geotechnical and geochemical changes

    NASA Astrophysics Data System (ADS)

    Wilson, C. A.; Hughes, Z. J.; FitzGerald, D. M.

    2012-06-01

    Understanding saltmarsh response to sea-level rise is critical for management and mitigation of these valuable coastal areas. However, comprehensive field studies of sea-level driven changes to the marsh landscape that consider combined biological, geological, and hydrodynamic interactions are rare. This study analyzes ecophysical feedbacks from crab colonization and bioturbation on geotechnical and geochemical properties of the soil in a Mid-Atlantic Spartina alterniflora saltmarsh. The study area is within a marsh that is experiencing creek extension due to accelerated sea-level rise and increasing periods of marsh inundation. Measurements of redox potential, pH, belowground biomass, and soil strength reveal that intense crab bioturbation by Sesarma reticulatum significantly changes the biogeochemical properties of the soil. Oxidized conditions in the upper 10-15 cm of the marsh induced by burrowing causes enhanced degradation of S. alterniflora belowground biomass (roots and rhizomes, reduction from 1.9 ± 0.6 kg/m2 to 1.1 ± 0.4 kg/m2), which reduces the structural integrity of the soil. This process ultimately increases the erosion potential of the sediment in creek head areas (documented by a reduction in shear strength from 10 ± 7 kPa to 2 ± 1 kPa), facilitating creek extension in order to accommodate tidal flows. The pervasiveness of similar tidal creek morphology in southeast Atlantic saltmarshes suggests this process is occurring in other marshes with a moderate tidal range undergoing sea-level rise.

  14. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; LaPeyre, Megan K.; Caldwell, Andral W.; Piazza, Sarai C.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable.

  15. Defining restoration targets for water depth and salinity in wind-dominated Spartina patens (Ait.) Muhl. coastal marshes

    USGS Publications Warehouse

    Nyman, J.A.; La Peyre, M.K.; Caldwell, A.; Piazza, S.; Thom, C.; Winslow, C.

    2009-01-01

    Coastal wetlands provide valued ecosystem functions but the sustainability of those functions often is threatened by artificial hydrologic conditions. It is widely recognized that increased flooding and salinity can stress emergent plants, but there are few measurements to guide restoration, management, and mitigation. Marsh flooding can be estimated over large areas with few data where winds have little effect on water levels, but quantifying flooding requires hourly measurements over long time periods where tides are wind-dominated such as the northern Gulf of Mexico. Estimating salinity of flood water requires direct daily measurements because coastal marshes are characterized by dynamic salinity gradients. We analyzed 399,772 hourly observations of water depth and 521,561 hourly observations of water salinity from 14 sites in Louisiana coastal marshes dominated by Spartina patens (Ait.) Muhl. Unlike predicted water levels, observed water levels varied monthly and annually. We attributed those observed variations to variations in river runoff and winds. In stable marshes with slow wetland loss rates, we found that marsh elevation averaged 1 cm above mean high water, 15 cm above mean water, and 32 cm above mean low water levels. Water salinity averaged 3.7 ppt during April, May, and June, and 5.4 ppt during July, August, and September. The daily, seasonal, and annual variation in water levels and salinity that were evident would support the contention that such variation be retained when designing and operating coastal wetland management and restoration projects. Our findings might be of interest to scientists, engineers, and managers involved in restoration, management, and restoration in other regions where S. patens or similar species are common but local data are unavailable. ?? 2009 Elsevier B.V.

  16. Assessment of metal and trace element contamination in water, sediment, plants, macroinvertebrates, and fish in Tavasci Marsh, Tuzigoot National Monument, Arizona

    USGS Publications Warehouse

    Beisner, Kimberly R.; Paretti, Nicholas V.; Brasher, Anne M.D.; Fuller, Christopher C.; Miller, Matthew P.

    2014-01-01

    Tavasci Marsh is a large freshwater marsh within the Tuzigoot National Monument in central Arizona. It is the largest freshwater marsh in Arizona that is unconnected to the Colorado River and is designated as an Important Bird Area by the Audubon Society. The marsh has been altered significantly by previous land use and the monument’s managers are evaluating the restoration of the marsh. In light of historical mining activities located near the marsh from the first half of the 20th century, evaluations of water, sediment, plant, and aquatic biota in the marsh were conducted. The evaluations were focused on nine metals and trace elements commonly associated with mining and other anthropogenic activities (As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn) together with isotopic analyses to understand the presence, sources and timing of water and sediment contaminants to the marsh and the occurrence in aquatic plants, dragonfly larvae, and fish. Results of water analyses indicate that there were two distinct sources of water contributing to the marsh during the study: one from older high elevation recharge entering the marsh at Shea Spring (as well as a number of unnamed seeps and springs on the northeastern edge of the marsh) and the other from younger low elevation recharge or from Pecks Lake. Water concentrations for arsenic exceeded the U.S. Environmental Protection Agency primary drinking water standard of 10 μg/L at all sampling sites. Surface waters at Tavasci Marsh may contain conditions favorable for methylmercury production. All surficial and core sediment samples exceeded or were within sample concentration variability of at least one threshold sediment quality guideline for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn. Several sediment sites were also above or were within sample concentration variability of severe or probable effect sediment quality guidelines for As, Cd, and Cu. Three sediment cores collected in the marsh have greater metal and trace element concentrations at depth for Bi, Cd, Cu, Hg, In, Pb, Sb, Sn, Te, and Zn. Radioisotope dating indicates that the elevated metal and trace element concentrations are associated with sediments deposited before 1963. Arsenic concentration was greater in cattail roots compared with surrounding sediment at Tavasci Marsh. Concentrations of As, Ni, and Se from yellow bullhead catfish (Ameiurus natalis) in Tavasci Marsh exceeded the 75th percentile of several other regional studies. Mercury concentration in dragonfly larvae and fish from Tavasci Marsh were similar to or greater than in Tavasci Marsh sediment. Future work includes a biologic risk assessment utilizing the data collected in this study to provide the monument management with additional information for their restoration plan.

  17. The structure of salt marsh soil mesofauna food webs – The prevalence of disturbance

    PubMed Central

    Kiggen, Mirijam; Klarner, Bernhard; Maraun, Mark; Scheu, Stefan

    2017-01-01

    Mesofauna taxa fill key trophic positions in soil food webs, even in terrestrial–marine boundary habitats characterized by frequent natural disturbances. Salt marshes represent such boundary habitats, characterized by frequent inundations increasing from the terrestrial upper to the marine pioneer zone. Despite the high abundance of soil mesofauna in salt marshes and their important function by facilitating energy and carbon flows, the structure, trophic ecology and habitat-related diet shifts of mesofauna species in natural salt marsh habitats is virtually unknown. Therefore, we investigated the effects of natural disturbance (inundation frequency) on community structure, food web complexity and resource use of soil mesofauna using stable isotope analysis (15N, 13C) in three salt marsh zones. In this intertidal habitat, the pioneer zone is exposed to inundations twice a day, but lower and upper salt marshes are less frequently inundated based on shore height. The mesofauna comprised 86 species / taxa dominated by Collembola, Oribatida and Mesostigmata. Shifts in environmental disturbances influenced the structure of food webs, diversity and density declined strongly from the land to the sea pointing to the importance of increasing levels of inundation frequency. Accordingly, the reduced diversity and density was associated by a simplification of the food web in the pioneer zone as compared to the less inundated lower and upper salt marsh with a higher number of trophic levels. Strong variations in δ15N signatures demonstrated that mesofauna species are feeding at multiple trophic levels. Primary decomposers were low and most mesofauna species functioned as secondary decomposers or predators including second order predators or scavengers. The results document that major decomposer taxa, such as Collembola and Oribatida, are more diverse than previously assumed and predominantly dwell on autochthonous resources of the respective salt marsh zone. The results further suggest that Mesostigmata mostly adopt an intraguild predation lifestyle. The high trophic position of a large number of predators suggests that intraguild predation is of significant importance in salt marsh food webs. Presumably, intraguild predation contributes to stabilizing the salt marsh food web against disturbances. PMID:29240806

  18. Microbial Community Analysis of a Coastal Salt Marsh Affected by the Deepwater Horizon Oil Spill

    PubMed Central

    Beazley, Melanie J.; Martinez, Robert J.; Rajan, Suja; Powell, Jessica; Piceno, Yvette M.; Tom, Lauren M.; Andersen, Gary L.; Hazen, Terry C.; Van Nostrand, Joy D.; Zhou, Jizhong; Mortazavi, Behzad; Sobecky, Patricia A.

    2012-01-01

    Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems. PMID:22815990

  19. Multi-scale functional mapping of tidal marsh vegetation for restoration monitoring

    NASA Astrophysics Data System (ADS)

    Tuxen Bettman, Karin

    2007-12-01

    Nearly half of the world's natural wetlands have been destroyed or degraded, and in recent years, there have been significant endeavors to restore wetland habitat throughout the world. Detailed mapping of restoring wetlands can offer valuable information about changes in vegetation and geomorphology, which can inform the restoration process and ultimately help to improve chances of restoration success. I studied six tidal marshes in the San Francisco Estuary, CA, US, between 2003 and 2004 in order to develop techniques for mapping tidal marshes at multiple scales by incorporating specific restoration objectives for improved longer term monitoring. I explored a "pixel-based" remote sensing image analysis method for mapping vegetation in restored and natural tidal marshes, describing the benefits and limitations of this type of approach (Chapter 2). I also performed a multi-scale analysis of vegetation pattern metrics for a recently restored tidal marsh in order to target the metrics that are consistent across scales and will be robust measures of marsh vegetation change (Chapter 3). Finally, I performed an "object-based" image analysis using the same remotely sensed imagery, which maps vegetation type and specific wetland functions at multiple scales (Chapter 4). The combined results of my work highlight important trends and management implications for monitoring wetland restoration using remote sensing, and will better enable restoration ecologists to use remote sensing for tidal marsh monitoring. Several findings important for tidal marsh restoration monitoring were made. Overall results showed that pixel-based methods are effective at quantifying landscape changes in composition and diversity in recently restored marshes, but are limited in their use for quantifying smaller, more fine-scale changes. While pattern metrics can highlight small but important changes in vegetation composition and configuration across years, scientists should exercise caution when using metrics in their studies or to validate restoration management decisions, and multi-scale analyses should be performed before metrics are used in restoration science for important management decisions. Lastly, restoration objectives, ecosystem function, and scale can each be integrated into monitoring techniques using remote sensing for improved restoration monitoring.

  20. Connectivity Among Salt Marsh Subhabitats: Residency and Movements of the Mummichog (Fundulus heteroclitus)

    EPA Science Inventory

    We examined connectivity among marsh subhabitats to determine the structural limits and important components of a polyhaline salt marsh by studying the patterns of abundance, residency, and movement of a numerically and ecologically dominant nektonic fish (mummichog, Fundulus het...

  1. Development of a decision support tool for water and resource management using biotic, abiotic, and hydrological assessments of Topock Marsh, Arizona

    USGS Publications Warehouse

    Holmquist-Johnson, Christopher; Hanson, Leanne; Daniels, Joan; Talbert, Colin; Haegele, Jeanette

    2016-05-23

    Topock Marsh is a large wetland adjacent to the Colorado River and the main feature of Havasu National Wildlife Refuge (Havasu NWR) in southern Arizona. In 2010, the U.S. Fish and Wildlife Service (FWS) and Bureau of Reclamation began a project to improve water management capabilities at Topock Marsh and protect habitats and species. Initial construction required a drawdown, which caused below-average inflows and water depths in 2010–11. U.S. Geological Survey Fort Collins Science Center (FORT) scientists collected an assemblage of biotic, abiotic, and hydrologic data from Topock Marsh during the drawdown and immediately after, thus obtaining valuable information needed by FWS.Building upon that work, FORT developed a decision support system (DSS) to better understand ecosystem health and function of Topock Marsh under various hydrologic conditions. The DSS was developed using a spatially explicit geographic information system package of historical data, habitat indices, and analytical tools to synthesize outputs for hydrologic time periods. Deliverables include high-resolution orthorectified imagery of Topock Marsh; a DSS tool that can be used by Havasu NWR to compare habitat availability associated with three hydrologic scenarios (dry, average, wet years); and this final report which details study results. This project, therefore, has addressed critical FWS management questions by integrating ecologic and hydrologic information into a DSS framework. This DSS will assist refuge management to make better informed decisions about refuge operations and better understand the ecological results of those decisions by providing tools to identify the effects of water operations on species-specific habitat and ecological processes. While this approach was developed to help FWS use the best available science to determine more effective water management strategies at Havasu NWR, technologies used in this study could be applied elsewhere within the region.

  2. Recent Advances in Studies of Coastal Marsh Sedimentation

    NASA Astrophysics Data System (ADS)

    Pasternack, G. B.; Leonard, L. A.

    2001-05-01

    Limited understanding of sedimentation processes in coastal marshes is a key constraint on the management of environmental impacts associated with sea level rise, degrading quality and quantity of aquatic habitats, and downstream impacts of watershed land use. The problem is exacerbated by complex interactions among physical, ecological, and chemical variables that impact sedimentation over a large range of spatio-temporal scales. These challenges are being met by increasingly sophisticated approaches which cross-fertilize from other disciplines or go even further to integrate multidisciplinary perspectives. One example of the former has been improved precision of fine scale measurements of fluid mechanics and sediment transport over marsh plains and application of those measurements in geomorphologic and coastal engineering models. This advancement has improved our understanding of marsh dynamics at a mechanistic level, which is key for improving the predictive capabilities of wetland models. An example of a multidisciplinary approach that has become very common is the combined usage of multiple monitoring, isotopic, and palynological methods for estimating sedimentation and erosion at a site over a range of time scales. By applying such combinations, it has been possible to piece apart the relative roles of natural processes such as sea level rise and storms from human impacts such as flow constrictions, channel dredging, and sediment supply changes. Beyond improving approaches used to study marshes, past work has led to new questions about marsh morphodynamics and how coastal marshes interact with upland watersheds. With the aid of chaos theory, some recent studies have asserted that coastal marsh channels are fractal and thus must follow universal laws in common with watershed drainages and other dendritic systems. Also, where marshes exist among a mosaic of habitats on a delta, research has revealed the relative roles of watershed versus coastal processes in controlling marsh morphology and ecology. Amazingly, some tidal freshwater deltas are only 50-100 years old due to rapid sedimentation caused by upland land use, but show the widest diversity of plants among all coastal marsh types. These systems often serve as seed banks that protect estuaries from loss of their important SAV beds. Given the central role of marsh sedimentation in the underlying dynamics of marsh evolution, research in this area will continue to play a vital role in management of an increasingly stressed coastal zone.

  3. The effects of two different water management regimes on flooding and mosquito production in a salt marsh impoundment.

    PubMed

    Carlson, D B; Vigliano, R R

    1985-06-01

    Over two years, the management regimes of: 1) opening a southeast Florida salt marsh impoundment to the adjacent estuary with culverts through the dike, then, 2) passively retaining water with flapgate risers was studied to determine the effects on marsh flooding and resultant mosquito production. Larval dipping demonstrated that all broods occurred at elevations of 0.25-0.90 ft (= 0.08-0.27 m) NGVD. Mosquito production differed significantly between some sampling quadrats and 65 (out of 75) broods were produced in the spring and summer from rainfall. Without artificial pumping, trapping of rainfall with flapgate risers aided in eliminating oviposition sites but still allowed mosquito production in some marsh locations. Even though tidal flooding permitted larvivorous fish access to mosquito larvae, they were not able to provide adequate control to eliminate larviciding.

  4. Tidal events and salt-marsh structure influence black mangrove (Avicennia germinans) recruitment across an ecotone.

    PubMed

    Peterson, Jennifer M; Bell, Susan S

    2012-07-01

    Field experiments were conducted at a black mangrove-salt-marsh ecotone in southwest Florida (U.S.A.) to investigate retention of propagules of the black mangrove, Avicennia germinans, by salt-marsh plants as a mechanism of facilitation operating on recruitment success at landward boundaries. Buoyant A. germinans propagules are dispersed by tides, and stranding is required for establishment; therefore, processes that enable stranding should facilitate mangrove recruitment. We expected the physical structure of salt-marsh vegetation to define propagule retention capacity, and we predicted that salt-marsh plants with distinct growth forms would differentially retain propagules. Experimental monoculture plots (1 m2) of salt-marsh plants with different growth forms (Sporobolus virginicus [grass], Sesuvium portulacastrum [succulent forb], and Batis maritima [succulent scrub]) were created, and A. germinans propagules were emplaced into these plots and monitored over time. For comparison, propagules were also placed into natural polyculture plots (1 m2). Polyculture plots contained at least two of the salt-marsh plant taxa selected for monoculture treatments, and S. virginicus was always present within these polyculture plots. Natural polyculture plots retained 59.3% +/- 11.0% (mean +/- SE) of emplaced propagules. Monocultures varied in their propagule retention capacities with plots of S. virginicus retaining on average 65.7% +/- 11.5% of transplanted propagules compared to 7.2% +/- 1.8% by B. maritima and 5.0% +/- 1.9% by S. portulacastrum. Plots containing S. virginicus retained a significantly greater percentage of emplaced propagules relative to the two succulent salt-marsh taxa. Furthermore, propagule entrapment, across all treatments, was strongly correlated with salt-marsh structure (r2 = 0.6253, P = 0.00001), which was estimated using an indirect quantitative metric (lateral obstruction) calculated from digital images of plots. Overall, our findings imply that entrapment of propagules by salt-marsh plants may be facilitative if propagules are dispersed beyond the established tree line by spring or storm tides, and that facilitation may be sustained over time. We conclude that salt-marsh ecotone permeability may modulate landward encroachment by A. germinans, and that interactions among the early life history stages of black mangroves and neighboring plants may direct community responses to climate change.

  5. RELATIONSHIPS OF NITROGEN LOADINGS AND PHYSICAL CHARACTERISTICS WITH PLANT STRUCTURE IN NEW ENGLAND SALT MARSHES

    EPA Science Inventory

    Nitrogen enrichment is hypothesized to cause competitive displacement of dominant plants in New England salt marshes. In this Narragansett Bay, RI, field survey, we examined the vascular plant species richness and the extent, density, and height of Spartina species in ten marshe...

  6. Below the Disappearing Marshes of an Urban Estuary: Historic Nitrogen Trends and Soil Structure

    EPA Science Inventory

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wa...

  7. Use of habitats by female mallards wintering in Southwestern Louisiana

    USGS Publications Warehouse

    Link, Paul T.; Afton, A.D.; Cox, R.R.; Davis, B.E.

    2011-01-01

    Habitat use by wintering Mallards (Anas platyrhychos) on the Gulf Coast Chenier Plain (GCCP) has received little study and quantitative data is needed for management of GCCP waterfowl. Radio-telemetry techniques were used to record habitats used by 135 female Mallards during winters 2004-2005 and 2005-2006 in south-western Louisiana. Habitat use was quantitatively estimated for areas open and closed to hunting, by general habitat types (i.e., marsh, rice, idle, pasture, or other), and for specific marsh types (i.e., freshwater, intermediate, brackish, or salt). Variation in these estimates was subsequently examined in relation to individual female, female age (adult or immature), winter (2004-2005 or 2005-2006), and hunt periods within winter (second hunting season [SHUNT] or post hunting season [POST]). Diurnal use of areas closed to hunting was greater during hunted time periods in winter 2005-2006 than in winter 2004-2005. Nocturnal use of areas closed to hunting was 3.1 times greater during SHUNT than during POST, and immatures used areas closed to hunting more than adults. Diurnal use of marsh was 3.3 times greater than that of any other habitat during both winters. Nocturnal use of marsh, rice, idle, and pasture were similar during both winters. Females used freshwater marsh habitats extensively (64.699.8% proportional use), whereas brackish and salt marsh combined was used less frequently (035.8% proportional use). These results suggest that freshwater marsh is important to Mallards and a high priority for restoration and management efforts.

  8. Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion

    PubMed Central

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Xiang, Jian; Lin, Yongxin

    2016-01-01

    Invasion of Spartina alterniflora in coastal areas of China increased methane (CH4) emissions. To elucidate the underlying mechanisms, we measured CH4 production potential, methanogen community structure and biogeochemical factors along a coastal wetland transect comprised of five habitat regions: open water, bare tidal flat, invasive S. alterniflora marsh and native Suaeda salsa and Phragmites australis marshes. CH4 production potential in S. alterniflora marsh was 10 times higher than that in other regions, and it was significantly correlated with soil organic carbon, dissolved organic carbon and trimethylamine concentrations, but was not correlated with acetate or formate concentrations. Although the diversity of methanogens was lowest in S. alterniflora marsh, invasion increased methanogen abundance by 3.48-fold, compared with native S. salsa and P. australis marshes due to increase of facultative Methanosarcinaceae rather than acetotrophic and hydrogenotrophic methanogens. Ordination analyses suggested that trimethylamine was the primary factor regulating shift in methanogen community structure. Addition of trimethylamine increased CH4 production rates by 1255-fold but only by 5.61- and 11.4-fold for acetate and H2/CO2, respectively. S. alterniflora invasion elevated concentration of non-competitive trimethylamine, and shifted methanogen community from acetotrophic to facultative methanogens, which together facilitated increased CH4 production potential. PMID:26728134

  9. Wetland management reduces sediment and nutrient loading to the upper Mississippi River

    USGS Publications Warehouse

    Kreiling, Rebecca M.; Schubauer-Berigan, Joseph P.; Richardson, William B.; Bartsch, Lynn; Hughes, Peter E.; Strauss, Eric A.

    2013-01-01

    Restored riparian wetlands in the Upper Mississippi River basin have potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh and an adjacent natural marsh that were connected to Halfway Creek, a small tributary of the Mississippi. We measured sediment, N, and P removal through a mass balance budget approach, N removal through denitrification, and N and P removal through mechanical soil excavation. The marsh complex had average retention rates of approximately 30 Mg sediment ha−1 yr−1, 26 kg total N ha−1 yr−1, and 20 kg total P ha−1 yr−1. Water flowed into the restored marsh only during high-discharge events. Although the majority of retention occurred in the natural marsh, portions of the natural marsh were hydrologically disconnected at low discharge due to historical over-bank sedimentation. The natural marsh removed >60% of sediment, >10% of P, and >5% of N loads (except the first year, when it was a N source). The marsh complex was a source of NH4+ and soluble reactive P. The average denitrification rate for the marsh complex was 2.88 mg N m−2 h−1. Soil excavation removed 3600 Mg of sediment, 5.6 Mg of N, and 2.7 Mg of P from the restored marsh. The marsh complex was effective in removing sediment and nutrients from storm flows; however, retention could be increased if more water was diverted into both restored and natural marshes before entering the river.

  10. Salt Marsh development studies at Waquoit Bay, Massachusetts: Influence of geomorphology on long-term plant community structure

    NASA Astrophysics Data System (ADS)

    Orson, Richard A.; Howes, Brian L.

    1992-11-01

    Stochastic events relating to beach formation and inlet dynamics have been the major factors influencing the development of the Waquoit Bay tidal marshes. This results from the physical structure of the Waquoit Bay system where tidal exchange is limited to one or two small inlets and is in contrast to marsh development in nearby Barnstable Marsh where direct unrestricted exchange with Cape Cod Bay has smoothed the effects of stochastic events on vegetation development. We contend that vegetation development in salt marshes where connections to adjacent waters are restricted will be dominated by abiotic factors (e.g. storms, sedimentation rates, etc.) while those marshes directly linked to open bodies of water and where alterations to hydrodynamic factors are gradual, autecological processes (e.g. interspecific competition) will dominate long-term plant community development. The results from the five marsh systems within the Waquoit Bay complex suggest that once a vegetation change occurs the new community tended to persist for long periods of time (100's-1000's years). Stability of the 'new' community appeared to depend upon the stability of the physical structure of the system and/or time between perturbations necessary to allow the slower autecological processes to have a discernable effect. In order for the plant community to persist as long as observed, the vegetation must also be exerting an influence on the processes of development. Increased production of roots and rhizomes and growth characteristics (density of culms) are some of the factors which help to maintain long-term species dominance. It is clear from this investigation that the structure of the plant community at any one point in time is dependent upon numerous factors including historical developmental influences. To properly assess changes to the present plant community or determine recent rates of accretion, historic developmental trends must be considered. The factors that have influenced the development of marsh in the past will be important in understanding and formulating predictive models in the future.

  11. Quantifying Thin Mat Floating Marsh Strength and Interaction with Hydrodynamic Conditions

    NASA Astrophysics Data System (ADS)

    Collins, J. H., III; Sasser, C.; Willson, C. S.

    2016-12-01

    Louisiana possesses over 350,000 acres of unique floating vegetated systems known as floating marshes or flotants. Floating marshes make up 70% of the Terrebonne and Barataria basin wetlands and exist in several forms, mainly thick mat or thin mat. Salt-water intrusion, nutria grazing, and high-energy wave events are believed to be some contributing factors to the degradation of floating marshes; however, there has been little investigation into the hydrodynamic effects on their structural integrity. Due to their unique nature, floating marshes could be susceptible to changes in the hydrodynamic environment that may result from proposed river freshwater and sediment diversion projects introducing flow to areas that are typically somewhat isolated. This study aims to improve the understanding of how thin mat floating marshes respond to increased hydrodynamic stresses and, more specifically, how higher water velocities might increase the washout probability of this vegetation type. There are two major components of this research: 1) A thorough measurement of the material properties of the vegetative mats as a root-soil matrix composite material; and 2) An accurate numerical simulation of the hydrodynamics and forces imposed on the floating marsh mats by the flow. To achieve these goals, laboratory and field experiments were conducted using a customized device to measure the bulk properties of typical floating marshes. Additionally, Delft-3D FLOW and ANSYS FLUENT were used to simulate the flow around a series of simplified mat structures in order to estimate the hydrodynamic forcings on the mats. The hydrodynamic forcings are coupled with a material analysis, allowing for a thorough analysis of their interaction under various conditions. The 2-way Fluid Structure Interaction (F.S.I.) between the flow and the mat is achieved by coupling a Finite Element Analysis (F.E.A.) solver in ANSYS with FLUENT. The flow conditions necessary for the structural failure of the floating marshes are determined for a multitude of mat shapes and sizes, leading to a quantifiable critical velocity required for washout. Ultimately, through dimensional analysis, an equation for washout potential will be developed from the results, which could be used as a design guideline.

  12. SALT MARSH HABITAT FROM A FISH EYE VIEW: A TEST OF THE DIMENSIONLESS INDEX OF HABITAT COMPLEXITY

    EPA Science Inventory

    Salt marshes are considered important foraging and predator refuge areas for fish, but these functions are rarely measured. The goal of this study was to examine the relationship between the structural complexity of the habitat and fish size in marshes subjected to different wat...

  13. Changes in lagoonal marsh morphology at selected northeastern Atlantic coast sites of significance to migratory waterbirds

    USGS Publications Warehouse

    Erwin, R.M.; Sanders, G.M.; Prosser, D.J.

    2004-01-01

    Five lagoonal salt marsh areas, ranging from 220 ha to 3,670 ha, were selected from Cape Cod, Massachusetts to the southern DelMarVa peninsula, Virginia, USA to examine the degree to which Spartina marsh area and microhabitats had changed from the early or mid- 1900s to recent periods. We chose areas based on their importance to migratory bird populations, agency concerns about marsh loss and sea-level rise, and availability of historic imagery. We georeferenced and processed aerial photographs from a variety of sources ranging from 1932 to 1994. Of particular interest were changes in total salt marsh area, tidal creeks, tidal flats, tidal and non-tidal ponds, and open water habitats. Nauset Marsh, within Cape Cod National Seashore, experienced an annual marsh loss of 0.40% (19% from 1947 to 1994) with most loss attributed to sand overwash and conversion to open water. At Forsythe National Wildlife Refuge in southern New Jersey, annual loss was 0.27% (17% from 1932 to 1995), with nearly equal attribution of loss to open water and tidal pond expansion. At Curlew Bay, Virginia, annual loss was 0.20% (9% from 1949 to 1994) and almost entirely due to perimeter erosion to open water. At Gull Marsh, Virginia, a site chosen because of known erosional losses, we recorded the highest annual loss rate, 0.67% per annum, again almost entirely due to erosional, perimeter loss. In contrast, at the southernmost site, Mockhorn Island Wildlife Management Area, Virginia, there was a net gain of 0.09% per annum (4% from 1949 to 1994), with tidal flats becoming increasingly vegetated. Habitat. implications for waterbirds are considerable; salt marsh specialists such as laughing gulls (Larus atricilla), Forster's terns (Sterna forsteri), black rail, (Laterallus jamaicensis), seaside sparrow (Ammodramus maritimus), and saltmarsh sharp-tailed sparrow (Ammodramus caudacutus) are particularly at risk if these trends continue, and all but the laughing gull are species of concern to state and federal managers.

  14. Regulation of salt marsh mosquito populations by the 18.6-yr lunar-nodal cycle.

    PubMed

    Rochlin, Ilia; Morris, James T

    2017-08-01

    The 18.6-yr lunar-nodal cycle drives changes in tidal amplitude globally, affecting coastal habitat formation, species and communities inhabiting rocky shores, and salt marsh vegetation. However, the cycle's influence on salt marsh fauna lacked sufficient long-term data for testing its effect. We circumvented this problem by using salt marsh mosquito records obtained over a period of over four decades in two estuaries in the northeastern USA. Salt marsh mosquito habitat is near the highest tide level where the impact of the nodal cycle on flood frequency is greatest. Wavelet spectral and cross-correlation analyses revealed periodicity in salt marsh mosquito abundance that was negatively correlated with tidal amplitude. Tidal amplitude was a significant predictor of salt marsh mosquito abundance with the cycle maxima coinciding with lower mosquito populations, possibly due to access by predatory fish. However, these effects were detected only at the location with extensive salt marsh habitat and astronomical tides and were weakened or lacked significance at the location with small microtidal salt marshes and wind-driven tides. Mosquitoes can serve as proxy indicators for numerous invertebrate species on the salt marsh. These predictable cycles and their effects need to be taken into consideration when investigating, restoring, or managing intertidal communities that are also facing sea-level rise. © 2017 by the Ecological Society of America.

  15. Marsh nesting by mallards

    USGS Publications Warehouse

    Krapu, G.L.; Talent, L.G.; Dwyer, T.J.

    1979-01-01

    Nest-site selection by mallard (Anas platyrhynchos) hens was studied on a 52-km2, privately owned area in the Missouri Coteau of south-central North Dakota during 1974-77. Sixty-six percent of 53 nests initiated by radio-marked and unmarked hens were in wetlands in dense stands of emergent vegetation and usually within 50 m of the wetland edge. These findings and other sources of information suggest that significant numbers of mallards breeding in the Prairie Pothole Region nest in marsh habitat. Potential factors contributing to mallard use of marsh habitat for nesting purposes are discussed. Management considerations associated with marsh nesting by mallards are described and research needs are identified.

  16. Habitat management affects soil chemistry and allochthonous organic inputs mediating microbial structure and exo-enzyme activity in Wadden Sea salt-marsh soils

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Granse, Dirk; Thi Do, Hai; Weingartner, Magdalena; Nolte, Stefanie; Hoth, Stefan; Jensen, Kai

    2016-04-01

    The Wadden Sea (WS) region is Europe's largest wetland and home to approximately 20% of its salt marsh area. Mainland salt marshes of the WS are anthropogenically influenced systems and have traditionally been used for livestock grazing in wide parts. After foundation of WS National Parks in the late 1980s and early 1990s, artificial drainage has been abandoned; however, livestock grazing is still common in many areas of the National Parks and is under ongoing discussion as a habitat-management practice. While studies so far focused on effects of livestock grazing on biodiversity, little is known about how biogeochemical processes, element cycling, and particularly carbon sequestration are affected. Here, we present data from a recent field study focusing on grazing effects on soil properties, microbial exo-enzyme activity, microbial abundance and structure. Exo-enzyme activity was studied conducting digestive enzyme assays for various enzymes involved in C- and N cycling. Microbial abundance and structure was assessed measuring specific gene abundance of fungi and bacteria using quantitative PCR. Soil compaction induced by grazing led to higher bulk density and decreases in soil redox (Δ >100 mV). Soil pH was significantly lower in grazed parts. Further, the proportion of allochthonous organic matter (marine input) was significantly smaller in grazed vs. ungrazed sites, likely caused by a higher sediment trapping capacity of the taller vegetation in the ungrazed sites. Grazing induced changes in bulk density, pH and redox resulted in reduced activity of enzymes involved in microbial C acquisition; however, there was no grazing effect on enzymes involved in N acquisition. While changes in pH, bulk density or redox did not affect microbial abundance and structure, the relative amount of marine organic matter significantly reduced the relative abundance of fungi (F:B ratio). We conclude that livestock grazing directly affects microbial exo-enzyme activity, thus slowing down C turnover, and indirectly changes microbial structure, namely relative fungal abundance, by reducing high-quality marine organic matter inputs.

  17. Salt Marsh Sustainability in New England: Progress and Remaining Challenges

    EPA Science Inventory

    Natural resource managers, conservationists, and scientists described marsh loss and degradation in many New England coastal systems at the 2014 “Effects of Sea Level Rise on Rhode Island’s Salt Marshes” workshop, organized by the Narragansett Bay National Estua...

  18. Delineation of marsh types and marsh-type change in coastal Louisiana for 2007 and 2013

    USGS Publications Warehouse

    Hartley, Stephen B.; Couvillion, Brady R.; Enwright, Nicholas M.

    2017-05-30

    The Bureau of Ocean Energy Management researchers often require detailed information regarding emergent marsh vegetation types (such as fresh, intermediate, brackish, and saline) for modeling habitat capacities and mitigation. In response, the U.S. Geological Survey in cooperation with the Bureau of Ocean Energy Management produced a detailed change classification of emergent marsh vegetation types in coastal Louisiana from 2007 and 2013. This study incorporates two existing vegetation surveys and independent variables such as Landsat Thematic Mapper multispectral satellite imagery, high-resolution airborne imagery from 2007 and 2013, bare-earth digital elevation models based on airborne light detection and ranging, alternative contemporary land-cover classifications, and other spatially explicit variables. An image classification based on image objects was created from 2007 and 2013 National Agriculture Imagery Program color-infrared aerial photography. The final products consisted of two 10-meter raster datasets. Each image object from the 2007 and 2013 spatial datasets was assigned a vegetation classification by using a simple majority filter. In addition to those spatial datasets, we also conducted a change analysis between the datasets to produce a 10-meter change raster product. This analysis identified how much change has taken place and where change has occurred. The spatial data products show dynamic areas where marsh loss is occurring or where marsh type is changing. This information can be used to assist and advance conservation efforts for priority natural resources.

  19. Community structure and abundance of benthic infaunal invertebrates in Maine fringing marsh ecosystems

    Treesearch

    Richard A. MacKenzie; Michele Dionne; Jeremy Miller; Michael Haas; Pamela A. Morgan

    2015-01-01

    Fringing marshes are abundant ecosystems that dominate the New England coastline. Despite their abundance, very little baseline data is available from them and few studies have documented the ecosystems services that they provide. This information is important for conservation efforts as well as for an increased understanding of how fringing marshes function compared...

  20. Wetland management reduces sediment and nutrient loading to the upper Mississippi river.

    PubMed

    Kreiling, Rebecca M; Schubauer-Berigan, Joseph P; Richardson, William B; Bartsch, Lynn A; Hughes, Peter E; Cavanaugh, Jennifer C; Strauss, Eric A

    2013-01-01

    Restored riparian wetlands in the Upper Mississippi River basin have potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh and an adjacent natural marsh that were connected to Halfway Creek, a small tributary of the Mississippi. We measured sediment, N, and P removal through a mass balance budget approach, N removal through denitrification, and N and P removal through mechanical soil excavation. The marsh complex had average retention rates of approximately 30 Mg sediment ha yr, 26 kg total N ha yr, and 20 kg total P ha yr. Water flowed into the restored marsh only during high-discharge events. Although the majority of retention occurred in the natural marsh, portions of the natural marsh were hydrologically disconnected at low discharge due to historical over-bank sedimentation. The natural marsh removed >60% of sediment, >10% of P, and >5% of N loads (except the first year, when it was a N source). The marsh complex was a source of NH and soluble reactive P. The average denitrification rate for the marsh complex was 2.88 mg N m h. Soil excavation removed 3600 Mg of sediment, 5.6 Mg of N, and 2.7 Mg of P from the restored marsh. The marsh complex was effective in removing sediment and nutrients from storm flows; however, retention could be increased if more water was diverted into both restored and natural marshes before entering the river. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Is saltmarsh restoration success constrained by matching natural environments or altered succession? A test using niche models.

    PubMed

    Sullivan, Martin J P; Davy, Anthony J; Grant, Alastair; Mossman, Hannah L

    2018-05-01

    Restored habitats, such as saltmarsh created through managed realignment, sometimes fail to meet targets for biological equivalence with natural reference sites. Understanding why this happens is important in order to improve restoration outcomes.Elevation in the tidal frame and sediment redox potential are major controls on the distribution of saltmarsh plants. We use niche models to characterize 10 species' responses to these, and test whether differences in species occurrence between restored and natural saltmarshes in the UK result from failure to recreate adequate environmental conditions.Six species occurred less frequently in recently restored marshes than natural marshes. Failure of restored marshes to achieve the elevation and redox conditions of natural marshes partially explained the underrepresentation of five of these species, but did not explain patterns of occurrence on older (>50 years) restored marshes.For all species, an effect of marsh age remained after controlling for differences in environmental conditions. This could be due to differences in successional mechanism between restored and natural marshes. In recently restored marshes, high-marsh species occurred lower in the tidal frame and low-marsh species occurred higher in the tidal frame than in natural marshes. This supports the hypothesis that competition is initially weaker in restored marshes, because of the availability of bare sediment across the whole tidal frame. Species that establish outside their normal realized niche, such as Atriplex portulacoides , may inhibit subsequent colonization of other species that occurred less frequently than expected on older restored marshes. Synthesis and applications . Niche models can be used to test whether abiotic differences between restored sites and their natural counterparts are responsible for discrepancies in species occurrence. In saltmarshes, simply replicating environmental conditions will not result in equivalent species occurrence.

  2. Multiscale habitat selection of wetland birds in the northern Gulf Coast

    USGS Publications Warehouse

    Pickens, Bradley A.; King, Sammy L.

    2014-01-01

    The spatial scale of habitat selection has become a prominent concept in ecology, but has received less attention in coastal ecology. In coastal marshes, broad-scale marsh types are defined by vegetation composition over thousands of hectares, water-level management is applied over hundreds of hectares, and fine-scale habitat is depicted by tens of meters. Individually, these scales are known to affect wetland fauna, but studies have not examined all three spatial scales simultaneously. We investigated wetland bird habitat selection at the three scales and compared single- and multiscale models. From 2009 to 2011, we surveyed marsh birds (i.e., Rallidae, bitterns, grebes), shorebirds, and wading birds in fresh and intermediate (oligohaline) coastal marsh in Louisiana and Texas, USA. Within each year, six repeated surveys of wintering, resident, and migratory breeding birds were conducted at > 100 points (n = 304). The results revealed fine-scale factors, primarily water depth, were consistently better predictors than marsh type or management. However, 10 of 11 species had improved models with the three scales combined. Birds with a linear association with water depth were, correspondingly, most abundant with deeper fresh marsh and permanently impounded water. Conversely, intermediate marsh had a greater abundance of shallow water species, such as king rail Rallus elegans, least bittern Ixobrychus exilis, and sora Porzana carolina. These birds had quadratic relationships with water depth or no relationship. Overall, coastal birds were influenced by multiple scales corresponding with hydrological characteristics. The effects suggest the timing of drawdowns and interannual variability in spring water levels can greatly affect wetland bird abundance.

  3. Salt Marsh Ecosystem Responses to Restored Tidal Connectivity across a 14y Chronosequence

    NASA Astrophysics Data System (ADS)

    Capooci, M.; Spivak, A. C.; Gosselin, K.

    2016-02-01

    Salt marshes support valuable ecosystem services. Yet, human activities negatively impact salt marsh function and contribute to their loss at a global scale. On Cape Cod, MA, culverts and impoundments under roads and railways restricted tidal exchange and resulted in salt marsh conversion to freshwater wetlands. Over the past 14 y, these structures have been removed or replaced, restoring tidal connectivity between marshes and a saltwater bay. We evaluated differences in plant community composition, sediment properties, and pore water chemistry in marshes where tidal connectivity was restored using a space-for-time, or chronosequence approach. Each restored marsh was paired with a nearby, natural salt marsh to control for variability between marshes. In each restored and natural salt marsh we evaluated the plant community by measuring species-specific percent cover and biomass and collected sediment cores for bulk density and pore water analyses. Plant communities responded rapidly: salt-tolerant species, such as Spartina alterniflora, became established while freshwater species, including Phragmites australis, were less abundant within 3 y of restoration. The number of plant species was generally greater in marshes restored within 10 y, compared to older and natural marshes. Sediment bulk density varied with depth and across sites. This likely reflects differences in site history and local conditions. Deeper horizons (24-30cm) generally had higher values in restored sites while surface values (0-3cm) were similar in restored and natural marshes. Porewater pH and sulfide were similar in restored and natural marshes, suggesting rapid microbial responses to seawater reintroduction. Overall, marsh properties and processes reflecting biological communities responded rapidly to tidal restoration. However, variability between study locations underscores the potential importance of site history, local hydrology, and geomorphology in shaping marsh biogeochemistry.

  4. Microspatial ecotone dynamics at a shifting range limit: plant-soil variation across salt marsh-mangrove interfaces.

    PubMed

    Yando, E S; Osland, M J; Hester, M W

    2018-05-01

    Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh-mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant-soil dynamics across the salt marsh-mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.

  5. Salt Marsh Sustainability in New England: Progress and Remaining Challenges

    EPA Science Inventory

    Natural resource managers, conservationists, and scientists described marsh loss and degradation in many New England coastal systems at the 2014 “Effects of Sea Level Rise on Rhode Island’s Salt Marshes” workshop, organized by the Narragansett Bay National Estuarine Research Rese...

  6. Nothing Goes to Waste in Arcata's Teeming Marshes.

    ERIC Educational Resources Information Center

    Stewart, Doug

    1990-01-01

    Describes a waste water management system in Arcata, California, that utilizes a series of human-made marshes to filter and clean the city's sewage water. Discusses the development of this project, adaptations of the idea for other cities, key constraints, and related projects. (MCO)

  7. Changes in methane emission and microbial community structure in a Phragmites australis-expanding tidal marsh of a temperature region

    NASA Astrophysics Data System (ADS)

    Kim, J.; Lee, J.; Kang, H.

    2017-12-01

    Phragmites australis is one of the representative vegetation of coastal wetlands which is distributed in North America, East Asia and European Countries. In North America, P. australis has invaded large areas of coastal wetlands, which causes various ecological problems such as increases in methane emission and reduction in biodiversity. In South Korea, P. australis is rapidly expanded in tidal marshes in Suncheon Bay. The expansion of P. australis enhanced methane emission by increasing dissolved organic carbon and soil moisture, and changing in relative abundances of methanogen, methanotroph, and sulfate reducing bacteria. Microbial community structure might be also shifted and affect methane cycle, but accurate observation on microbial community structure has not been fully illustrated yet. Therefore, we tried to monitor the changing microbial community structure due to P. australis expansion by using Next Generation Sequencing (NGS). NGS results showed that microbial community was substantially changed with the expansion. We also observed seasonal variations and chronosequence of microbial community structures along the expansion of P. australis, which showed distinctive changing patterns. P. australis expansion substantially affected microbial community structure in tidal marsh which may play an important role in methane cycle in tidal marshes.

  8. The shift from hold-the-line to management retreat and implications to coastal change: Farlington Marshes, a case of conflicts

    NASA Astrophysics Data System (ADS)

    Esteves, L. S.; Foord, J.; Draux, H.

    2012-04-01

    Although it can be argued that coastal erosion is primarily a natural process, in many developed coasts it has been triggered or intensified by human-induced activities affecting local sediment budget and pathways. For a long time, coastal engineering works have been used to reshape the world's coastlines to accommodate for social and economic needs. The realisation that such interference with natural processes would result in cascading environmental impacts at various temporal and spatial scales is relatively recent. As a result, a series of regulations have been implemented to mitigate further damage to coastal environments and compensatory measures are now required as part of licensing approval for certain coastal activities. For example, the construction and upgrade of coastal defences are now constrained due to potential detrimental impacts caused on adjacent designated European habitats or species. This study evaluates how a shift from socio-economic needs to a natural-conservancy focus is influencing coastal management approaches in England and the implications for coastal evolution. More specifically, Farlington Marshes (Portsmouth, southern England) will be used as a case study to assess how complex interactions between natural coastal processes, coastal defences and the need for environmental conservation are affecting shoreline changes, evolution of intertidal habitats and biodiversity. Farlington Marshes are designated grazing marshes of national and European importance and a valued recreational area used by local residents. Seawalls built in the 18th century protect the freshwater habitats from flooding but cause detrimental impact on intertidal habitats of Langstone Habour, which are also designated conservation areas (Ramsar, Special Areas of Conservation, Special Protection Areas, Sites of Special Scientific Interest). The presence of seawalls has caused erosion and coastal squeeze, which are the main causes of the rapid loss of saltmarshes observed in Langstone Harbour (more than 80% between 1946 and 2002, Cope et al. 2008). Coastal defences protecting Farlington Marshes are reaching the end of their life-time in the next decade. Upgrading of existing defences might be required in the future if flood risk in the developed areas inland of Farlington Marshes is to be kept at current levels. Constraints arise from the high costs to upgrade the defences and, principally, from the potential environmental impact on designated conservation zones. For these reasons, the North Solent Shoreline Management Plan (2010) suggests that, in the long-term (in 50 to 100 years), managed realignment might be a better option for Farlignton Marshes. This study assesses potential consequences of the implementation of managed realignment in Farlington Marshes, concerning: future changes in sediment budget and pathways, impacts on coastal erosion and flood risk, sustainability of habitats and implications to conservation objectives.

  9. Factors that influence vital rates of Seaside and Saltmarsh sparrows in coastal New Jersey, USA

    EPA Science Inventory

    As salt marsh habitat continues to disappear, understanding the factors that influence salt marsh breeding bird population dynamics is an important step towards managing declining wildlife populations. Using five years (2011 2015) of demographic data, we evaluated and compared S...

  10. Wetland Management Reduces Sediment and Nutrient Loading to the Upper Mississippi River

    EPA Science Inventory

    Restored riparian wetlands in the Upper Mississippi River basin have the potential to remove sediment and nutrients from tributaries before they flow into the Mississippi River. For 3 yr we calculated retention efficiencies of a marsh complex, which consisted of a restored marsh...

  11. Tidal Flushing Restores the Physiological Condition of Fish Residing in Degraded Salt Marshes

    PubMed Central

    Dibble, Kimberly L.; Meyerson, Laura A.

    2012-01-01

    Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton’s K) to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0–1) while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration. PMID:23029423

  12. Tidal flushing restores the physiological condition of fish residing in degraded salt marshes.

    PubMed

    Dibble, Kimberly L; Meyerson, Laura A

    2012-01-01

    Roads, bridges, and dikes constructed across salt marshes can restrict tidal flow, degrade habitat quality for nekton, and facilitate invasion by non-native plants including Phragmites australis. Introduced P. australis contributes to marsh accretion and eliminates marsh surface pools thereby adversely affecting fish by reducing access to intertidal habitats essential for feeding, reproduction, and refuge. Our study assessed the condition of resident fish populations (Fundulus heteroclitus) at four tidally restricted and four tidally restored marshes in New England invaded by P. australis relative to adjacent reference salt marshes. We used physiological and morphological indicators of fish condition, including proximate body composition (% lipid, % lean dry, % water), recent daily growth rate, age class distributions, parasite prevalence, female gravidity status, length-weight regressions, and a common morphological indicator (Fulton's K) to assess impacts to fish health. We detected a significant increase in the quantity of parasites infecting fish in tidally restricted marshes but not in those where tidal flow was restored to reduce P. australis cover. Using fish length as a covariate, we found that unparasitized, non-gravid F. heteroclitus in tidally restricted marshes had significantly reduced lipid reserves and increased lean dry (structural) mass relative to fish residing in reference marshes. Fish in tidally restored marshes were equivalent across all metrics relative to those in reference marshes indicating that habitat quality was restored via increased tidal flushing. Reference marshes adjacent to tidally restored sites contained the highest abundance of young fish (ages 0-1) while tidally restricted marshes contained the lowest. Results indicate that F. heteroclitus residing in physically and hydrologically altered marshes are at a disadvantage relative to fish in reference marshes but the effects can be reversed through ecological restoration.

  13. Assessing tidal marsh vulnerability to sea-level rise in the Skagit Delta

    USGS Publications Warehouse

    Hood, W. Gregory; Grossman, Eric E.; Curt Veldhuisen,

    2016-01-01

    Historical aerial photographs, from 1937 to the present, show Skagit Delta tidal marshes prograding into Skagit Bay for most of the record, but the progradation rates have been steadily declining and the marshes have begun to erode in recent decades despite the large suspended sediment load provided by the Skagit River. In an area of the delta isolated from direct riverine sediment supply by anthropogenic blockage of historical distributaries, 0.5-m tall marsh cliffs along with concave marsh profiles indicate wave erosion is contributing to marsh retreat. This is further supported by a “natural experiment” provided by rocky outcrops that shelter high marsh in their lee, while being bounded by 0.5-m lower eroded marsh to windward and on either side. Coastal wetlands with high sediment supply are thought to be resilient to sea level rise, but the case of the Skagit Delta shows this is not necessarily true. A combination of sea level rise and wave-generated erosion may overwhelm sediment supply. Additionally, anthropogenic obstruction of historical distributaries and levee construction along the remaining distributaries likely increase the jet momentum of river discharge, forcing much suspended sediment to bypass the tidal marshes and be exported from Skagit Bay. Adaptive response to the threat of climate change related sea level rise and increased wave frequency or intensity should consider the efficacy of restoring historical distributaries and managed retreat of constrictive river levees to maximize sediment delivery to delta marshes.

  14. Saltmarsh plant responses to eutrophication.

    PubMed

    Johnson, David Samuel; Warren, R Scott; Deegan, Linda A; Mozdzer, Thomas J

    2016-12-01

    In saltmarsh plant communities, bottom-up pressure from nutrient enrichment is predicted to increase productivity, alter community structure, decrease biodiversity, and alter ecosystem functioning. Previous work supporting these predictions has been based largely on short-term, plot-level (e.g., 1-300 m 2 ) studies, which may miss landscape-level phenomena that drive ecosystem-level responses. We implemented an ecosystem-scale, nine-year nutrient experiment to examine how saltmarsh plants respond to simulated conditions of coastal eutrophication. Our study differed from previous saltmarsh enrichment studies in that we applied realistic concentrations of nitrate (70-100 μM NO 3 - ), the most common form of coastal nutrient enrichment, via tidal water at the ecosystem scale (~60,000 m 2 creeksheds). Our enrichments added a total of 1,700 kg N·creek -1 ·yr -1 , which increased N loading 10-fold vs. reference creeks (low-marsh, 171 g N·m -2 ·yr -1 ; high-marsh, 19 g N·m -2 ·yr -1 ). Nutrients increased the shoot mass and height of low marsh, tall Spartina alterniflora; however, declines in stem density resulted in no consistent increase in aboveground biomass. High-marsh plants S. patens and stunted S. alterniflora did not respond consistently to enrichment. Nutrient enrichment did not shift community structure, contrary to the prediction of nutrient-driven dominance of S. alterniflora and Distichlis spicata over S. patens. Our mild responses may differ from the results of previous studies for a number of reasons. First, the limited response of the high marsh may be explained by loading rates orders of magnitude lower than previous work. Low loading rates in the high marsh reflect infrequent inundation, arguing that inundation patterns must be considered when predicting responses to estuarine eutrophication. Additionally, we applied nitrate instead of the typically used ammonium, which is energetically favored over nitrate for plant uptake. Thus, the form of nitrogen enrichment used, not just N-load, may be important in predicting plant responses. Overall, our results suggest that when coastal eutrophication is dominated by nitrate and delivered via flooding tidal water, aboveground saltmarsh plant responses may be limited despite moderate-to-high water-column N concentrations. Furthermore, we argue that the methodological limitations of nutrient studies must be considered when using results to inform management decisions about wetlands. © 2016 by the Ecological Society of America.

  15. Autocyclic erosion in tidal marshes

    NASA Astrophysics Data System (ADS)

    Singh Chauhan, Poornendu P.

    2009-09-01

    A common mode whereby destruction of coastal lowlands occurs is frontal erosion. The edge cliffing, nonetheless, is also an inherent aspect of salt marsh development in many northwest European tidal marshes. Quite a few geomorphologists in the earlier half of the past century recognized such edge erosion as a definite repetitive stage within an autocyclic mode of marsh growth. A shift in research priorities during the past decades (primarily because of coastal management concerns, however) has resulted in an enhanced focus on sediment-flux measurement campaigns on salt marshes. This, somewhat "object-oriented" strategy hindered any further development of the once-established autocyclic growth concept, which virtually has gone into oblivion in recent times. This work makes an attempt to resurrect the notion of autocyclicity by employing its premises to address edge erosion in tidal marshes. Through a review of intertidal morphosedimentology the underlying framework for autocyclicity is envisaged. The phenomenon is demonstrated in the Holocene salt marsh plain of Moricambe basin in NW England that displays several distinct phases of marsh retreat in the form of abandoned clifflets. The suite of abandoned shorelines and terraces has been identified in detailed field mapping that followed analysis of topographic maps and aerial photographs. Vertical trends in marsh plain sediments are recorded in trenches for signs of past marsh front movements. The characteristic sea level history of the area offers an opportunity to differentiate the morphodynamic variability induced in the autocyclic growth of the marsh plain in scenarios of rising and falling sea level and the accompanied change in sediment budget. The ideas gathered are incorporated to construct a conceptual model that links temporal extent of marsh erosion to inner tidal flat sediment budget and sea level tendency. The review leads to recognition of the necessity of adopting an holistic approach in the morphodynamic investigations where marshes should be treated as a component within the "marsh-mudflat system" as each element apparently modulates evolution of the other, with an eventual linkage to subtidal channels.

  16. Quantifying vegetation and nekton response to tidal restoration of a New England salt marsh

    USGS Publications Warehouse

    Roman, C.T.; Raposa, K.B.; Adamowicz, S.C.; James-Pirri, M.J.; Catena, J.G.

    2002-01-01

    Tidal flow to salt marshes throughout the northeastern United States is often restricted by roads, dikes, impoundments, and inadequately sized culverts or bridge openings, resulting in altered ecological structure and function. In this study we evaluated the response of vegetation and nekton (fishes and decapod crustaceans) to restoration of full tidal flow to a portion of the Sachuest Point salt marsh, Middletown, Rhode Island. A before, after, control, impact study design was used, including evaluations of the tide-restricted marsh, the same marsh after reintroduction of tidal flow (i.e., tide-restored marsh), and an unrestricted control marsh. Before tidal restoration vegetation of the 3.7-ha tide-restricted marsh was dominated by Phragmites australis and was significantly different from the adjacent 6.3-ha Spartina -dominated unrestricted control marsh (analysis of similarities randomization test, p < 0.001). After one growing season vegetation of the tide-restored marsh had changed from its pre-restoration condition (analysis of similarities randomization test, p < 0.005). Although not similar to the unrestricted control marsh, Spartina patens and S. alterniflora abundance increased and abundance and height of Phragmites significantly declined, suggesting a convergence toward typical New England salt marsh vegetation. Before restoration shallow water habitat (creeks and pools) of the unrestricted control marsh supported a greater density of nekton compared with the tide-restricted marsh (analysis of variance, p < 0.001), but after one season of restored tidal flow nekton density was equivalent. A similar trend was documented for nekton species richness. Nekton density and species richness from marsh surface samples were similar between the tide-restored marsh and unrestricted control marsh. Fundulus heteroclitus and Palaemonetes pugio were the numerically dominant fish and decapod species in all sampled habitats. This study provides an example of a quantitative approach for assessing the response of vegetation and nekton to tidal restoration.

  17. Marsh-nekton connectivity - A estuarine food web study in Yaquina Bay, Oregon using dual isotope analysis

    EPA Science Inventory

    Understanding temporal and spatial variability in community-level interactions of PNW estuaries has implications for ecosystem-based management principles. Here, we are analyzing the contribution of marsh derived food sources to non-commercial resident fish in Yaquina Bay, a tem...

  18. Structural Data for the Columbus Salt Marsh Geothermal Area - GIS Data

    DOE Data Explorer

    Faulds, James E.

    2011-12-31

    Shapefiles and spreadsheets of structural data, including attitudes of faults and strata and slip orientations of faults. - Detailed geologic mapping of ~30 km2 was completed in the vicinity of the Columbus Marsh geothermal field to obtain critical structural data that would elucidate the structural controls of this field. - Documenting E‐ to ENE‐striking left lateral faults and N‐ to NNE‐striking normal faults. - Some faults cut Quaternary basalts. - This field appears to occupy a displacement transfer zone near the eastern end of a system of left‐lateral faults. ENE‐striking sinistral faults diffuse into a system of N‐ to NNE‐striking normal faults within the displacement transfer zone. - Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.

  19. Colonization, succession, and nutrition of macrobenthic assemblages in a restored wetland at Tijuana Estuary, California

    NASA Astrophysics Data System (ADS)

    Moseman, Serena M.; Levin, Lisa A.; Currin, Carolyn; Forder, Charlotte

    2004-08-01

    Modes of colonization, the successional trajectory, and trophic recovery of a macrofaunal community were analyzed over 19 months in the Friendship marsh, a 20-acre restored wetland in Tijuana Estuary, California. Traditional techniques for quantifying macrofaunal communities were combined with emerging stable isotopic approaches for evaluation of trophic recovery, making comparisons with a nearby natural Spartina foliosa habitat. Life history-based predictions successfully identified major colonization modes, although most taxa employed a variety of tactics for colonizing the restored marsh. The presence of S. foliosa did not seem to affect macrofaunal colonization or succession at the scale of this study. However, soil organic matter content in the restored marsh was positively correlated with insect densities, and high initial salinities may have limited the success of early colonists. Total macrofaunal densities recovered to natural marsh levels after 14 months and diversity, measured as species richness and the Shannon index ( H'), was comparable to the natural marsh by 19 months. Some compositional disparities between the natural and created communities persisted after 19 months, including lower percentages of surface-feeding polychaetes ( Polydora spp.) and higher percentages of dipteran insects and turbellarians in the Friendship marsh. As surficial structural similarity of infaunal communities between the Friendship and natural habitat was achieved, isotopic analyses revealed a simultaneous trajectory towards recovery of trophic structure. Enriched δ 13C signatures of benthic microalgae and infauna, observed in the restored marsh shortly after establishment compared to natural Spartina habitat, recovered after 19 months. However, the depletion in δ 15N signatures of macrofauna in the Friendship marsh indicated consumption of microalgae, particularly nitrogen-fixing cyanobacteria, while macroalgae and Spartina made a larger contribution to macrofaunal diets in the natural habitat. Future successional studies must continue to develop and employ novel combinations of techniques for evaluating structural and functional recovery of disturbed and created habitats.

  20. What's the Use of a Salt Marsh?

    ERIC Educational Resources Information Center

    Van Raalte, Charlene

    1977-01-01

    Summarizes information about salt marshes, including descriptions of their development and structure, details of their values in terms of commercial fishing, stabilization of coastal zones, "reclamation" for grazing and cropfields, recreation and aesthetics. (CS)

  1. Evaluating the role of coastal habitats and sea-level rise in hurricane risk mitigation: An ecological economic assessment method and application to a business decision.

    PubMed

    Reddy, Sheila M W; Guannel, Gregory; Griffin, Robert; Faries, Joe; Boucher, Timothy; Thompson, Michael; Brenner, Jorge; Bernhardt, Joey; Verutes, Gregory; Wood, Spencer A; Silver, Jessica A; Toft, Jodie; Rogers, Anthony; Maas, Alexander; Guerry, Anne; Molnar, Jennifer; DiMuro, Johnathan L

    2016-04-01

    Businesses may be missing opportunities to account for ecosystem services in their decisions, because they do not have methods to quantify and value ecosystem services. We developed a method to quantify and value coastal protection and other ecosystem services in the context of a cost-benefit analysis of hurricane risk mitigation options for a business. We first analyze linked biophysical and economic models to examine the potential protection provided by marshes. We then applied this method to The Dow Chemical Company's Freeport, Texas facility to evaluate natural (marshes), built (levee), and hybrid (marshes and a levee designed for marshes) defenses against a 100-y hurricane. Model analysis shows that future sea-level rise decreases marsh area, increases flood heights, and increases the required levee height (12%) and cost (8%). In this context, marshes do not provide sufficient protection to the facility, located 12 km inland, to warrant a change in levee design for a 100-y hurricane. Marshes do provide some protection near shore and under smaller storm conditions, which may help maintain the coastline and levee performance in the face of sea-level rise. In sum, the net present value to the business of built defenses ($217 million [2010 US$]) is greater than natural defenses ($15 million [2010 US$]) and similar to the hybrid defense scenario ($229 million [2010 US$]). Examination of a sample of public benefits from the marshes shows they provide at least $117 million (2010 US$) in coastal protection, recreational value, and C sequestration to the public, while supporting 12 fisheries and more than 300 wildlife species. This study provides information on where natural defenses may be effective and a replicable approach that businesses can use to incorporate private, as well as public, ecosystem service values into hurricane risk management at other sites. © 2015 The Authors. Integrated Environmental Assessment and Management Published by Wiley Periodicals, Inc. on behalf of SETAC.

  2. Effect of petroleum hydrocarbons in copper phytoremediation by a salt marsh plant (Juncus maritimus) and the role of autochthonous bioaugmentation.

    PubMed

    Montenegro, I P F M; Mucha, A P; Reis, I; Rodrigues, P; Almeida, C M R

    2016-10-01

    This work aimed to investigate, under controlled but environmental relevant conditions, the effects of the presence of both inorganic and organic contaminants (copper and petroleum hydrocarbons) on phytoremediation potential of the salt marsh plant Juncus maritimus. Moreover, bioaugmentation, with an autochthonous microbial consortium (AMC) resistant to Cu, was tested, aiming an increase in the remediation potential of this plant in the presence of a co-contamination. Salt marsh plants with sediment attached to their roots were collected, placed in vessels, and kept in greenhouses, under tidal simulation. Sediments were contaminated with Cu and petroleum, and the AMC was added to half of the vessels. After 5 months, plants accumulated significant amounts of Cu but only in belowground structures. The amount of Cu was even higher in the presence of petroleum. AMC addition increased Cu accumulation in belowground tissues, despite decreasing Cu bioavailability, promoting J. maritimus phytostabilization potential. Therefore, J. maritimus has potential to phytoremediate co-contaminated sediments, and autochthonous bioaugmentation can be a valuable strategy for the recovery and management of moderately impacted estuaries. This approach can contribute for a sustainable use of the environmental resources. Graphical abstract ᅟ.

  3. Marshes to mudflats—Effects of sea-level rise on tidal marshes along a latitudinal gradient in the Pacific Northwest

    USGS Publications Warehouse

    Thorne, Karen M.; Dugger, Bruce D.; Buffington, Kevin J.; Freeman, Chase M.; Janousek, Christopher N.; Powelson, Katherine W.; Gutenspergen, Glenn R.; Takekawa, John Y.

    2015-11-17

    In the Pacific Northwest, coastal wetlands support a wealth of ecosystem services including habitat provision for wildlife and fisheries and flood protection. The tidal marshes, mudflats, and shallow bays of coastal estuaries link marine, freshwater, and terrestrial habitats, and provide economic and recreational benefits to local communities. Climate change effects such as sea-level rise are altering these habitats, but we know little about how these areas will change over the next 50–100 years. Our study examined the effects of sea-level rise on nine tidal marshes in Washington and Oregon between 2012 and 2015, with the goal of providing scientific data to support future coastal planning and conservation. We compiled physical and biological data, including coastal topography, tidal inundation, vegetation structure, as well as recent and historical sediment accretion rates, to assess and model how sea-level rise may alter these ecosystems in the future. Multiple factors, including initial elevation, marsh productivity, sediment availability, and rates of sea-level rise, affected marsh persistence. Under a low sea-level rise scenario, all marshes remained vegetated with little change in the present configuration of communities of marsh plants or gradually increased proportions of middle-, high-, or transition-elevation zones of marsh vegetation. However, at most sites, mid sea-level rise projections led to loss of habitat of middle and high marshes and a gain of low marshes. Under a high sea-level rise scenario, marshes at most sites eventually converted to intertidal mudflats. Two sites (Grays Harbor and Willapa) seemed to have the most resilience to a high rate of rise in sea-level, persisting as low marsh until at least 2110. Our main model finding is that most tidal marsh study sites are resilient to sea-level rise over the next 50–70 years, but that sea-level rise will eventually outpace marsh accretion and drown most habitats of high and middle marshes by 2110.

  4. Spatial Patterns of Plant Litter and Sedimentation in a Tidal Freshwater Marsh and Implications for Marsh Persistence

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Cadol, D. D.; Palinkas, C. M.; Engelhardt, K. A.

    2014-12-01

    The maintenance of marsh platform elevation under sea level rise is dependent on sedimentation and biomass conversion to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here we explore spatial pattern in plant litter, a variable related to productivity, to understand its role in physical and biological interactions in a freshwater marsh. Plant litter that persists through the dormant season has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located along the Potomac River estuary. We completed two years of repeat RTK GPS surveys with corresponding measurements of litter height (over 2000 observations) to train a non-parametric random forest decision tree to predict litter height. LiDAR and field observations show that plant litter height increases with increasing elevation, although important deviations from this relationship are apparent. These spatial patterns exhibit stability from year to year and lead to corresponding patterns in soil organic matter content, revealed by loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important trade-off with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, litter contributes organic matter to soil development. Despite these tradeoffs, changes in elevation over time are consistent across elevation, with only small positive differences in elevation gain over time at elevations where the most sediment is deposited or where litter exhibits the most biomass.

  5. Examination of Below-Ground Structure and Soil Respiration Rates of Stable and Deteriorating Salt Marshes in Jamaica Bay (NY)

    EPA Science Inventory

    CAT scan imaging is currently being used to examine below-ground peat and root structure in cores collected from salt marshes of Jamaica Bay, part of the Gateway National Recreation Area (NY). CAT scans or Computer-Aided Tomography scans use X-ray equipment to produce multiple i...

  6. Coastal vertebrate exposure to predicted habitat changes due to sea level rise

    USGS Publications Warehouse

    Hunter, Elizabeth A.; Nibbelink, Nathan P.; Alexander, Clark R.; Barrett, Kyle; Mengak, Lara F.; Guy, Rachel; Moore, Clinton; Cooper, Robert J.

    2015-01-01

    Sea level rise (SLR) may degrade habitat for coastal vertebrates in the Southeastern United States, but it is unclear which groups or species will be most exposed to habitat changes. We assessed 28 coastal Georgia vertebrate species for their exposure to potential habitat changes due to SLR using output from the Sea Level Affecting Marshes Model and information on the species’ fundamental niches. We assessed forecasted habitat change up to the year 2100 using three structural habitat metrics: total area, patch size, and habitat permanence. Almost all of the species (n = 24) experienced negative habitat changes due to SLR as measured by at least one of the metrics. Salt marsh and ocean beach habitats experienced the most change (out of 16 categorical land cover types) across the three metrics and species that used salt marsh extensively (rails and marsh sparrows) were ranked highest for exposure to habitat changes. Species that nested on ocean beaches (Diamondback Terrapins, shorebirds, and terns) were also ranked highly, but their use of other foraging habitats reduced their overall exposure. Future studies on potential effects of SLR on vertebrates in southeastern coastal ecosystems should focus on the relative importance of different habitat types to these species’ foraging and nesting requirements. Our straightforward prioritization approach is applicable to other coastal systems and can provide insight to managers on which species to focus resources, what components of their habitats need to be protected, and which locations in the study area will provide habitat refuges in the face of SLR.

  7. Coastal Vertebrate Exposure to Predicted Habitat Changes Due to Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Hunter, Elizabeth A.; Nibbelink, Nathan P.; Alexander, Clark R.; Barrett, Kyle; Mengak, Lara F.; Guy, Rachel K.; Moore, Clinton T.; Cooper, Robert J.

    2015-12-01

    Sea level rise (SLR) may degrade habitat for coastal vertebrates in the Southeastern United States, but it is unclear which groups or species will be most exposed to habitat changes. We assessed 28 coastal Georgia vertebrate species for their exposure to potential habitat changes due to SLR using output from the Sea Level Affecting Marshes Model and information on the species' fundamental niches. We assessed forecasted habitat change up to the year 2100 using three structural habitat metrics: total area, patch size, and habitat permanence. Almost all of the species ( n = 24) experienced negative habitat changes due to SLR as measured by at least one of the metrics. Salt marsh and ocean beach habitats experienced the most change (out of 16 categorical land cover types) across the three metrics and species that used salt marsh extensively (rails and marsh sparrows) were ranked highest for exposure to habitat changes. Species that nested on ocean beaches (Diamondback Terrapins, shorebirds, and terns) were also ranked highly, but their use of other foraging habitats reduced their overall exposure. Future studies on potential effects of SLR on vertebrates in southeastern coastal ecosystems should focus on the relative importance of different habitat types to these species' foraging and nesting requirements. Our straightforward prioritization approach is applicable to other coastal systems and can provide insight to managers on which species to focus resources, what components of their habitats need to be protected, and which locations in the study area will provide habitat refuges in the face of SLR.

  8. Chance findings about early holocene tidal marshes of Grays Harbor, Washington, in relation to rapidly rising seas and great subduction earthquakes

    USGS Publications Warehouse

    Phipps, James B.; Hemphill-Haley, Eileen; Atwater, Brian F.

    2015-06-18

    The puzzles posed by these findings include: (1) How did the marshes manage to endure centuries of relative sea-level rise that likely approached 1 cm/yr on average? (2) Did the marshes also endure subsidence that accompanied great thrust earthquakes on the Cascadia Subduction Zone? (3) Was their eventual drowning triggered by a Cascadia earthquake of unusually large size, or can the drowning be explained by sea-level rise that included a jump from drainage of glacial Lake Agassiz?

  9. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit

    PubMed Central

    Davis, Jenny L.; Currin, Carolyn A.; O’Brien, Colleen; Raffenburg, Craig; Davis, Amanda

    2015-01-01

    Living shorelines are a type of estuarine shoreline erosion control that incorporates native vegetation and preserves native habitats. Because they provide the ecosystem services associated with natural coastal wetlands while also increasing shoreline resilience, living shorelines are part of the natural and hybrid infrastructure approach to coastal resiliency. Marshes created as living shorelines are typically narrow (< 30 m) fringing marshes with sandy substrates that are well flushed by tides. These characteristics distinguish living shorelines from the larger meadow marshes in which most of the current knowledge about created marshes was developed. The value of living shorelines for providing both erosion control and habitat for estuarine organisms has been documented but their capacity for carbon sequestration has not. We measured carbon sequestration rates in living shorelines and sandy transplanted Spartina alterniflora marshes in the Newport River Estuary, North Carolina. The marshes sampled here range in age from 12 to 38 years and represent a continuum of soil development. Carbon sequestration rates ranged from 58 to 283 g C m-2 yr-1 and decreased with marsh age. The pattern of lower sequestration rates in older marshes is hypothesized to be the result of a relative enrichment of labile organic matter in younger sites and illustrates the importance of choosing mature marshes for determination of long-term carbon sequestration potential. The data presented here are within the range of published carbon sequestration rates for S. alterniflora marshes and suggest that wide-scale use of the living shoreline approach to shoreline management may come with a substantial carbon benefit. PMID:26569503

  10. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit.

    PubMed

    Davis, Jenny L; Currin, Carolyn A; O'Brien, Colleen; Raffenburg, Craig; Davis, Amanda

    2015-01-01

    Living shorelines are a type of estuarine shoreline erosion control that incorporates native vegetation and preserves native habitats. Because they provide the ecosystem services associated with natural coastal wetlands while also increasing shoreline resilience, living shorelines are part of the natural and hybrid infrastructure approach to coastal resiliency. Marshes created as living shorelines are typically narrow (< 30 m) fringing marshes with sandy substrates that are well flushed by tides. These characteristics distinguish living shorelines from the larger meadow marshes in which most of the current knowledge about created marshes was developed. The value of living shorelines for providing both erosion control and habitat for estuarine organisms has been documented but their capacity for carbon sequestration has not. We measured carbon sequestration rates in living shorelines and sandy transplanted Spartina alterniflora marshes in the Newport River Estuary, North Carolina. The marshes sampled here range in age from 12 to 38 years and represent a continuum of soil development. Carbon sequestration rates ranged from 58 to 283 g C m-2 yr-1 and decreased with marsh age. The pattern of lower sequestration rates in older marshes is hypothesized to be the result of a relative enrichment of labile organic matter in younger sites and illustrates the importance of choosing mature marshes for determination of long-term carbon sequestration potential. The data presented here are within the range of published carbon sequestration rates for S. alterniflora marshes and suggest that wide-scale use of the living shoreline approach to shoreline management may come with a substantial carbon benefit.

  11. 75 FR 66780 - Suisun Marsh Habitat Management, Preservation, and Restoration Plan, California

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... joint lead agencies, and the State of California Department of Fish and Game (DFG), acting as the... comprehensive 30-year plan designed to address various conflicts regarding use of resources within approximately... comprehensive plan designed to address the various conflicts regarding use of Marsh resources, with the focus on...

  12. Spatial patch occupancy patterns of the Lower Keys marsh rabbit

    USGS Publications Warehouse

    Eaton, Mitchell J.; Hughes, Phillip T.; Nichols, James D.; Morkill, Anne; Anderson, Chad

    2011-01-01

    Reliable estimates of presence or absence of a species can provide substantial information on management questions related to distribution and habitat use but should incorporate the probability of detection to reduce bias. We surveyed for the endangered Lower Keys marsh rabbit (Sylvilagus palustris hefneri) in habitat patches on 5 Florida Key islands, USA, to estimate occupancy and detection probabilities. We derived detection probabilities using spatial replication of plots and evaluated hypotheses that patch location (coastal or interior) and patch size influence occupancy and detection. Results demonstrate that detection probability, given rabbits were present, was <0.5 and suggest that naïve estimates (i.e., estimates without consideration of imperfect detection) of patch occupancy are negatively biased. We found that patch size and location influenced probability of occupancy but not detection. Our findings will be used by Refuge managers to evaluate population trends of Lower Keys marsh rabbits from historical data and to guide management decisions for species recovery. The sampling and analytical methods we used may be useful for researchers and managers of other endangered lagomorphs and cryptic or fossorial animals occupying diverse habitats.

  13. A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing.

    PubMed

    Altieri, Andrew H; Bertness, Mark D; Coverdale, Tyler C; Herrmann, Nicholas C; Angelini, Christine

    2012-06-01

    Overexploitation of predators has been linked to the collapse of a growing number of shallow-water marine ecosystems. However, salt-marsh ecosystems are often viewed and managed as systems controlled by physical processes, despite recent evidence for herbivore-driven die-off of marsh vegetation. Here we use field observations, experiments, and historical records at 14 sites to examine whether the recently reported die-off of northwestern Atlantic salt marshes is associated with the cascading effects of predator dynamics and intensive recreational fishing activity. We found that the localized depletion of top predators at sites accessible to recreational anglers has triggered the proliferation of herbivorous crabs, which in turn results in runaway consumption of marsh vegetation. This suggests that overfishing may be a general mechanism underlying the consumer-driven die-off of salt marshes spreading throughout the western Atlantic. Our findings support the emerging realization that consumers play a dominant role in regulating marine plant communities and can lead to ecosystem collapse when their impacts are amplified by human activities, including recreational fishing.

  14. Utilizing remote sensing of thematic mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, Joan A.; May, L. Nelson, Jr.; Rosenthal, Alan; Baumann, Robert H.; Gosselink, James G.

    1988-01-01

    The continuing disintegration of the coastal marshes of Louisiana is one of the major environmental problems of the nation. The problem of marsh loss in Louisiana is relevant to fishery management because Louisiana leads the nation in landings of fishery products, and most of the landed species are dependent upon estuaries and their associated tidal marshes. In evaluating the potential effect of marshland loss on fisheries, the first two critical factors to consider are: whether land-water interface in actual disintegrating marshes is currently increasing or decreasing, and the magnitude of the change. In the present study, LANDSAT Thematic Mapper (TM) data covering specific marshes in coastal Louisiana were used to test conclusions from the Browder et al (1984) model with regard to the stage in disintegration at which maximum interface occurs; to further explore the relationship between maximum interface and the pattern of distribution of land and water suggested by the model; and to determine the direction and degree of change in land-water interface in relation to land loss in actual marshes.

  15. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    USGS Publications Warehouse

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh-dominated coasts. Such datasets can be instrumental in effective coastal-resource management.

  16. Tidal management sffects sub-adult fish assemblages in impounded South Carolina Marshes

    USGS Publications Warehouse

    Carswell, Ben L.; Peterson, James T.; Jennings, Cecil A.

    2015-01-01

    In coastal South Carolina, most impounded marshes are managed for waterfowl; fewer are managed for fishes. Tidal control is central to each strategy but raises concerns that nursery function could be impaired. This research examined the assemblage composition of fishes during early-life stages. We sampled two impoundments of each management type monthly in 2008 and 2009. We used light traps to collect 61,527 sub-adult fish representing 21 species and 16 families and push nets to collect 12,670 sub-adult fish representing 13 species and 11 families. The effective number of species detected at larval stage in “fish” impoundments (summer mean = 2.52 ± 0.20, winter mean = 2.02 ± 0.66) was greater than in “waterfowl” impoundments (summer mean = 1.27 ± 0.14, winter mean = 1.06 ± 0.09); CI = 90 %. Species richness did not differ between management types, but hierarchical linear models predicted differences in assemblage composition. These findings underscore the importance of frequent water exchange for maintaining diverse assemblages of early-life-stage fishes in marsh impoundments.

  17. Relationships between watershed emergy flow and coastal New England salt marsh structure, function, and condition.

    PubMed

    Brandt-Williams, Sherry; Wigand, Cathleen; Campbell, Daniel E

    2013-02-01

    This study evaluated the link between watershed activities and salt marsh structure, function, and condition using spatial emergy flow density (areal empower density) in the watershed and field data from 10 tidal salt marshes in Narragansett Bay, RI, USA. The field-collected data were obtained during several years of vegetation, invertebrate, soil, and water quality sampling. The use of emergy as an accounting mechanism allowed disparate factors (e.g., the amount of building construction and the consumption of electricity) to be combined into a single landscape index while retaining a uniform quantitative definition of the intensity of landscape development. It expanded upon typical land use percentage studies by weighting each category for the intensity of development. At the RI salt marsh sites, an impact index (watershed emergy flow normalized for marsh area) showed significant correlations with mudflat infauna species richness, mussel density, plant species richness, the extent and density of dominant plant species, and denitrification potential within the high salt marsh. Over the 4-year period examined, a loading index (watershed emergy flow normalized for watershed area) showed significant correlations with nitrite and nitrate concentrations, as well as with the nitrogen to phosphorus ratios in stream discharge into the marshes. Both the emergy impact and loading indices were significantly correlated with a salt marsh condition index derived from intensive field-based assessments. Comparison of the emergy indices to calculated nitrogen loading estimates for each watershed also produced significant positive correlations. These results suggest that watershed emergy flow is a robust index of human disturbance and a potential tool for rapid assessment of coastal wetland condition.

  18. Evaluation of sensor types and environmental controls on mapping biomass of coastal marsh emergent vegetation

    USGS Publications Warehouse

    Byrd, Kristin B.; O'Connell, Jessica L.; Di Tommaso, Stefania; Kelly, Maggi

    2014-01-01

    There is a need to quantify large-scale plant productivity in coastal marshes to understand marsh resilience to sea level rise, to help define eligibility for carbon offset credits, and to monitor impacts from land use, eutrophication and contamination. Remote monitoring of aboveground biomass of emergent wetland vegetation will help address this need. Differences in sensor spatial resolution, bandwidth, temporal frequency and cost constrain the accuracy of biomass maps produced for management applications. In addition the use of vegetation indices to map biomass may not be effective in wetlands due to confounding effects of water inundation on spectral reflectance. To address these challenges, we used partial least squares regression to select optimal spectral features in situ and with satellite reflectance data to develop predictive models of aboveground biomass for common emergent freshwater marsh species, Typha spp. and Schoenoplectus acutus, at two restored marshes in the Sacramento–San Joaquin River Delta, California, USA. We used field spectrometer data to test model errors associated with hyperspectral narrowbands and multispectral broadbands, the influence of water inundation on prediction accuracy, and the ability to develop species specific models. We used Hyperion data, Digital Globe World View-2 (WV-2) data, and Landsat 7 data to scale up the best statistical models of biomass. Field spectrometer-based models of the full dataset showed that narrowband reflectance data predicted biomass somewhat, though not significantly better than broadband reflectance data [R2 = 0.46 and percent normalized RMSE (%RMSE) = 16% for narrowband models]. However hyperspectral first derivative reflectance spectra best predicted biomass for plots where water levels were less than 15 cm (R2 = 0.69, %RMSE = 12.6%). In species-specific models, error rates differed by species (Typha spp.: %RMSE = 18.5%; S. acutus: %RMSE = 24.9%), likely due to the more vertical structure and deeper water habitat of S. acutus. The Landsat 7 dataset (7 images) predicted biomass slightly better than the WV-2 dataset (6 images) (R2 = 0.56, %RMSE = 20.9%, compared to R2 = 0.45, RMSE = 21.5%). The Hyperion dataset (one image) was least successful in predicting biomass (R2 = 0.27, %RMSE = 33.5%). Shortwave infrared bands on 30 m-resolution Hyperion and Landsat 7 sensors aided biomass estimation; however managers need to weigh tradeoffs between cost, additional spectral information, and high spatial resolution that will identify variability in small, fragmented marshes common to the Sacramento–San Joaquin River Delta and elsewhere in the Western U.S.

  19. A methodological framework to assist decision-making on prioritising conflicting uses ion multi-functional environments

    NASA Astrophysics Data System (ADS)

    Esteves, L. S.; Foord, J.; Draux, H.

    2012-04-01

    A strong and evidence-based environmental legislation contributes to reduce the generalised degradation of natural and semi-natural environments. However, the wide range of coastal settings and the complexity of interactions between physical, biological and socio-economic factors prevent the development of very specific guidelines at national and regional levels. Often coastal management decisions are taken locally as local governments are better placed to engage with local community. However, they can also be more influenced by stronger local sectors and suffer from lack of expertise, experience and funding. Significant conflicts might arise between sectoral interests, especially in multi-functional coastal areas. Reaching a consensus on which function is more important is a difficult task. Here a methodological framework is suggested to support decision-making in (1) the identification of priority objectives (e.g. which function should be preserved; how much loss is acceptable etc.); (2) the selection of measurable indicators to assess environmental damage (e.g. loss of habitats, services etc.) and (3) assessment of habitat/service compensation. Amongst the initial decisions, it is necessary to (a) determine at which scales (temporal and spatial) the objectives will be defined and (b) the sensitivity of each step to conflicts between experts' opinion (what is scientifically more adequate) and local needs (what the local community expects). The framework is applied to address conflicts identified in the management of Farlington Marshes (Langstone Harbour, Portsmouth, southern England) between habitat conservation, management of flood risk and provision of recreational grounds/green areas. Langstone Harbour is a designated conservation area of national, European and international importance. The North Solent Shoreline Management Plan (2011) indicates that 'hold-the-line' is the most adequate approach to be implemented along most of Langstone Harbour's shoreline in the next 100 years, except along Farlington Marshes. Farlington Marshes are designated grazing marshes of recreational important in a highly urban environment with scarce green areas. Seawalls built in the 18th century protect the freshwater habitats from tidal flooding but aggravate loss of intertidal habitats due to coastal squeeze and erosion. Existing coastal defences protecting Farlington Marshes are reaching the end of their life-time and upgrading of existing defences might be required in the future if flood risk is to be kept at current levels. Constraints arise not only due to the high costs to upgrade the defences but also from the detrimental environmental impact this might cause on designated conservation zones. For these reasons, managed retreat has been suggested as a preferable alternative for Farlignton Marshes in the long-term (in 50 to 100 years). However, the multi-functional character of Fartlington Marshes implicates that some of the functions will be lost or considerably affected whatever management alternative is to be implemented. This study assesses the potential benefits and drawbacks resulting from the adoption of three alternative management scenarios for Farlington Marhses by following a methodological framework incorporating the principles of integrated coastal zone management and considering the most common methods used worldwide to assess environmental damage and compensatory measures.

  20. Sea-level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Islands region of Florida, USA

    USGS Publications Warehouse

    Krauss, Ken W.; From, Andrew S.; Doyle, Thomas W.; Doyle, Terry J.; Barry, Michael J.

    2011-01-01

    The Ten Thousand Islands region of southwestern Florida, USA is a major feeding and resting destination for breeding, migrating, and wintering birds. Many species of waterbirds rely specifically on marshes as foraging habitat, making mangrove encroachment a concern for wildlife managers. With the alteration of freshwater flow and sea-level rise trends for the region, mangroves have migrated upstream into traditionally salt and brackish marshes, mirroring similar descriptions around the world. Aside from localized freezes in some years, very little seems to be preventing mangrove encroachment. We mapped changes in mangrove stand boundaries from the Gulf of Mexico inland to the northern boundary of Ten Thousand Islands National Wildlife Refuge (TTINWR) from 1927 to 2005, and determined the area of mangroves to be approximately 7,281 hectares in 2005, representing an 1,878 hectare increase since 1927. Overall change represents an approximately 35% increase in mangrove coverage on TTINWR over 78 years. Sea-level rise is likely the primary driver of this change; however, the construction of new waterways facilitates the dispersal of mangrove propagules into new areas by extending tidal influence, exacerbating encroachment. Reduced volume of freshwater delivery to TTINWR via overland flow and localized rainfall may influence the balance between marsh and mangrove as well, potentially offering some options to managers interested in conserving marsh over mangrove.

  1. Flood defence in the Blackwater Estuary, Essex, UK: the impact of sedimentological and geochemical changes on salt marsh development in the Tollesbury Managed Realignment site.

    PubMed

    Chang, Y H; Scrimshaw, M D; Macleod, C L; Lester, J N

    2001-06-01

    Recent changes in the UK's coastal defence strategy have resulted in the introduction of Managed Realignment (MR), a technique which attempts to establish salt marshes on low-lying coastal farmland. This work investigates the impact of MR, in particular on the interactions between sediment movement, changes in heavy metal concentrations and salt marsh development. Pre- and post-inundation samples were collected and analysed between 1995 and 1997. Sediment transport patterns (1996) demonstrated that sediment particles were distributed by tides around the site, resulting in a change in the spatial distribution of the metals which was related to the sediment particle size distribution. Despite the presence of some metal contaminants found within the MR site, vegetated salt marsh has developed since 1997. However, heavy metals such as Cu, Mn, Ni, Pb and Zn exhibited relative depletion in the sediment developing with salt marsh in 1997, which is in agreement with data indicating that concentrations of metals within sediments is related to frequency of tidal inundation. During initial development of the site, sediment transport was the main factor controlling metal distribution, however, subsequently the frequency of tidal inundation became the most significant factor. Further work may allow for prediction of how future MR sites will develop with respect to redistribution of sediments and subsequent transport of contaminants in the dissolved phase.

  2. Precision Monitoring of Water Level in a Salt Marsh with Low Cost Tilt Loggers

    NASA Astrophysics Data System (ADS)

    Sheremet, Vitalii A.; Mora, Jordan W.

    2016-04-01

    Several salt pannes and pools in the Sage Lot tidal marsh of Waquoit Bay system, MA were instrumented with newly developed Arm-and-Float water level gauges (utilizing accelerometer tilt logger) permitting to record water level fluctuations with accuracy of 1 mm and submillimeter resolution. The methodology of the instrument calibration, deployment, and elevation control are described. The instrument performance was evaluated. Several month long deployments allowed us to analyze the marsh flooding and draining processes, study differences among the salt pannes. The open channel flow flooding-draining mechanism and slower seepage were distinguished. From the drain curve the seepage rate can be quantified. The seepage rate remains approximately constant for all flooding draining episodes, but varies from panne to panne depending on bottom type and location. Seasonal differences due to the growth of vegetation are also recorded. The analysis of rain events allows us to estimate the catch area of subbasins in the marsh. The implication for marsh ecology and marsh accretion are discussed. The gradual sea level rise coupled with monthly tidal datum variability and storm surges result in migration and development of a salt marsh. The newly developed low cost instrumentation allows us to record and analyze these changes and may provide guidance for the ecological management.

  3. Herbivory Drives the Spread of Salt Marsh Die-Off

    PubMed Central

    Bertness, Mark D.; Brisson, Caitlin P.; Bevil, Matthew C.; Crotty, Sinead M.

    2014-01-01

    Salt marsh die-off is a Western Atlantic conservation problem that has recently spread into Narragansett Bay, Rhode Island, USA. It has been hypothesized to be driven by: 1) eutrophication decreasing plant investment into belowground biomass causing plant collapse, 2) boat wakes eroding creek banks, 3) pollution or disease affecting plant health, 4) substrate hardness controlling herbivorous crab distributions and 5) trophic dysfunction releasing herbivorous crabs from predator control. To distinguish between these hypotheses we quantified these variables at 14 Narragansett Bay salt marshes where die-off intensity ranged from <5% to nearly 98%. Nitrogen availability, wave intensity and plant growth did not explain any variation in die-off. Herbivory explained 73% of inter-site variation in die-off and predator control of herbivores and substrate hardness also varied significantly with die-off. This suggests that salt marsh die-off is being largely driven by intense herbivory via the release of herbivorous crabs from predator control. Our results and those from other marsh systems suggest that consumer control may not simply be a factor to consider in marsh conservation, but with widespread predator depletion impacting near shore habitats globally, trophic dysfunction and runaway consumption may be the largest and most urgent management challenge for salt marsh conservation. PMID:24651837

  4. Flora and ecological profile of native and exotic estuarine wetland vegetation by hydrogeomorphic setting at Rush Ranch, Suisun Marsh

    USDA-ARS?s Scientific Manuscript database

    The manuscript includes a profile of the ecology and distribution of estuarine wetland vegetation at the Rush Ranch reserve site in the brackish Suisun Marsh reach of San Francisco Estuary The data and analyses will serve as a baseline for future scientific research and conservation management. A ...

  5. From hydrodynamic to hydrological modelling: Investigating long-term hydrological regimes of key wetlands in the Macquarie Marshes, a semi-arid lowland floodplain in Australia

    NASA Astrophysics Data System (ADS)

    Wen, Li; Macdonald, Rohan; Morrison, Tim; Hameed, Tahir; Saintilan, Neil; Ling, Joanne

    2013-09-01

    The Macquarie Marshes is an intermittently flooded wetland complex covering nearly 200,000 ha. It is one of the largest semi-permanent wetland systems in the Murray-Darling Basin, Australia, and portions of the Marshes are listed as internationally important under the Ramsar Convention. Previous studies indicate that the Marshes have undergone accelerated ecological degradation since the 1980s. The ecological degradation is documented in declining biodiversity, encroaching of terrestrial species, colonisation of exotic species, and deterioration of floodplain forests. There is strong evidence that reduction in river flows is the principal cause of the decrease in ecological values. Although the streams are relatively well gauged and modelled, the lack of hydrological records within the Marshes hampers any attempts to quantitatively investigate the relationship between hydrological variation and ecosystem integrity. To enable a better understanding of the long-term hydrological variations within the key wetland systems, and in particular, to investigate the impacts of the different water management policies (e.g. environmental water) on wetlands, a river system model including the main wetland systems was needed. The morphological complex nature of the Marshes means that the approximation of hydrological regimes within wetlands using stream hydrographs would have been difficult and inaccurate. In this study, we built a coupled 1D/2D MIKE FLOOD floodplain hydrodynamic model based on a 1 m DEM derived from a LiDAR survey. Hydrological characteristics of key constituent wetlands such as the correlation between water level and inundation area, relationships between stream and wetlands and among wetlands were estimated using time series extracted from hydrodynamic simulations. These relationships were then introduced into the existing river hydrological model (IQQM) to represent the wetlands. The model was used in this study to simulate the daily behaviours of inflow/outflow, volume, and inundated area for key wetlands within the Marshes under natural conditions and recent water management practices for the period of July 1 1991 to June 30 2009. The results revealed that the recent water management practices have induced large changes to wetland hydrology. The most noticeable changes include the dramatic reductions in high flows (i.e. flows with less than 25% exceedence, reduction ranges from 85% to 98% of the high flow peak depending on the location), areal inundation extent (ranging from 13% to 79% depending on climatic conditions), and flow rising/falling rates (over 90% for high flows). Our analysis also highlighted that the impacts of water management practices on some of the flow variables for wetland habitats contrasted with those for instream habitats. For example, we did not find any evident alterations in the low flows (i.e. 75% exceedence) attributable to water management.

  6. Mosquitoes Associated with Ditch-Plugged and Control Tidal Salt Marshes on the Delmarva Peninsula

    PubMed Central

    Leisnham, Paul T.; Sandoval-Mohapatra, Sarah

    2011-01-01

    A study was conducted during the summer of 2009 (from July to September) to characterize mosquito communities among different habitats in five historically ditched tidal salt marshes and three adjacent wooded areas in the E.A. Vaughn Wetland Management Area on the Maryland Delmarva Peninsula, USA. Study marshes are characteristic of Atlantic coastal salt marshes that had undergone grid ditching from the 1930s to 1950s. In the autumn of 2008 (October and November) ditches were plugged near their outlets in two (‘experimental’) marshes with the aim to restore their natural tidal hydrology. The three other marshes were not plugged. Marshes were sampled from July to September in 2009 by using standard dip count method. A total of 2,457 mosquito larvae representing six species were collected on 15.4% (86/557) of all sample occasions and 399 adults representing four mosquito species were collected from landing counts. Aedes sollicitans, Anopheles bradleyi and Culex salinarius were the most common species collected in larval habitats, and Ae. sollicitans was the most common adult collected. Wooded habitats had more total mosquitoes, were also more frequently occupied by mosquitoes and had higher densities of mosquitoes than marsh habitats. Almost all larvae collected from marshes were from one experimental and one control site. The majority of larvae at the control site were Ae. sollicitans in marsh pannes while Cx. salinarius, An. bradleyi, Ae. cantator, and Ae. sollicitans were collected in high numbers from ditches at the experimental site. We found a difference in the proportion of marsh pannes occupied by Ae. sollicitans but not total mosquitoes sampled 4–5 days after spring tide events than on other occasions. Salinity measures of 42 larval habitats showed lower median salinity in mosquito-occupied habitats (11.5 ppt) than unoccupied habitats (20.1 ppt), and in habitats in wooded areas followed by ditches and pannes in marsh areas. The results of this study suggest that wooded areas adjacent to salt marshes may be a substantial source of biting adult mosquitoes usually associated with salt marsh habitats and that ditch plugging may alter the productivity of mosquitoes on some marshes. We recommend future studies consider mosquito productivity from habitats surrounding salt marshes, and if assessments of marsh alterations are a goal, compare multiple experimental and control areas before and after treatments to determine if alterations have a consistent impact on regional mosquito production. PMID:21909293

  7. A one-dimensional diffusion analogy model for estimation of tide heights in selected tidal marshes in Connecticut

    USGS Publications Warehouse

    Bjerklie, David M.; O’Brien, Kevin; Rozsa, Ron

    2013-01-01

    A one-dimensional diffusion analogy model for estimating tide heights in coastal marshes was developed and calibrated by using data from previous tidal-marsh studies. The method is simpler to use than other one- and two-dimensional hydrodynamic models because it does not require marsh depth and tidal prism information; however, the one-dimensional diffusion analogy model cannot be used to estimate tide heights, flow velocities, and tide arrival times for tide conditions other than the highest tide for which it is calibrated. Limited validation of the method indicates that it has an accuracy within 0.3 feet. The method can be applied with limited calibration information that is based entirely on remote sensing or geographic information system data layers. The method can be used to estimate high-tide heights in tidal wetlands drained by tide gates where tide levels cannot be observed directly by opening the gates without risk of flooding properties and structures. A geographic information system application of the method is demonstrated for Sybil Creek marsh in Branford, Connecticut. The tidal flux into this marsh is controlled by two tide gates that prevent full tidal inundation of the marsh. The method application shows reasonable tide heights for the gates-closed condition (the normal condition) and the one-gate-open condition on the basis of comparison with observed heights. The condition with all tide gates open (two gates) was simulated with the model; results indicate where several structures would be flooded if the gates were removed as part of restoration efforts or if the tide gates were to fail.

  8. Inundation, vegetation, and sediment effects on litter decomposition in Pacific Coast tidal marshes

    USGS Publications Warehouse

    Janousek, Christopher; Buffington, Kevin J.; Guntenspergen, Glenn R.; Thorne, Karen M.; Dugger, Bruce D.; Takekawa, John Y.

    2017-01-01

    The cycling and sequestration of carbon are important ecosystem functions of estuarine wetlands that may be affected by climate change. We conducted experiments across a latitudinal and climate gradient of tidal marshes in the northeast Pacific to evaluate the effects of climate- and vegetation-related factors on litter decomposition. We manipulated tidal exposure and litter type in experimental mesocosms at two sites and used variation across marsh landscapes at seven sites to test for relationships between decomposition and marsh elevation, soil temperature, vegetation composition, litter quality, and sediment organic content. A greater than tenfold increase in manipulated tidal inundation resulted in small increases in decomposition of roots and rhizomes of two species, but no significant change in decay rates of shoots of three other species. In contrast, across the latitudinal gradient, decomposition rates of Salicornia pacifica litter were greater in high marsh than in low marsh. Rates were not correlated with sediment temperature or organic content, but were associated with plant assemblage structure including above-ground cover, species composition, and species richness. Decomposition rates also varied by litter type; at two sites in the Pacific Northwest, the grasses Deschampsia cespitosa and Distichlis spicata decomposed more slowly than the forb S. pacifica. Our data suggest that elevation gradients and vegetation structure in tidal marshes both affect rates of litter decay, potentially leading to complex spatial patterns in sediment carbon dynamics. Climate change may thus have direct effects on rates of decomposition through increased inundation from sea-level rise and indirect effects through changing plant community composition.

  9. Soil Carbon Stocks in a Shifting Ecosystem; Climate Induced Migration of Mangroves into Salt Marsh

    NASA Astrophysics Data System (ADS)

    Simpson, L.; Osborne, T.; Feller, I. C.

    2015-12-01

    Across the globe, coastal wetland vegetation distributions are changing in response to climate change. The increase in global average surface temperature has already caused shifts in the structure and distribution of many ecological communities. In parts of the southeastern United States, increased winter temperatures have resulted in the poleward range expansion of mangroves at the expense of salt marsh habitat. Our work aims to document carbon storage in the salt marsh - mangrove ecotone and any potential changes in this reservoir that may ensue due to the shifting range of this habitat. Differences in SOM and C stocks along a latitudinal gradient on the east coast of Florida will be presented. The gradient studied spans 342 km and includes pure mangrove habitat, the salt marsh - mangrove ecotone, and pure salt marsh habitat.This latitudinal gradient gives us an exceptional opportunity to document and investigate ecosystem soil C modifications as mangroves transgress into salt marsh habitat due to climatic change.

  10. Tidal marshes: A global perspective on the evolution and conservation of their terrestrial vertebrates

    USGS Publications Warehouse

    Greenberg, Russell; Maldonado, Jesus; Droege, Sam; McDonald, M.V.

    2006-01-01

    Globally, tidal marshes are found in small pockets or narrow bands totaling only approximately 45,000 square kilometers. The combination of salinity, low floristic and structural complexity, and regular tidal inundation, as well as unpredictable catastrophic flooding, provides a unique selective environment that shapes local adaptations, including those that are morphological, physiological, demographic, and behavioral. Although tidal marshes support a low diversity of nonaquatic vertebrate species, a high proportion of these inhabitants, at least along North American coastlines, are restricted to or have subspecies restricted to tidal marshes. Tidal marshes and their endemic fauna face broad threats from a variety of human-caused environmental changes. Future research should focus on global inventories, intercontinental comparative work, and investigation to determine why almost all presently described endemic taxa appear to be found in North America.

  11. Co-occurrence dynamics of endangered Lower Keys marsh rabbits and free-ranging domestic cats: Prey responses to an exotic predator removal program.

    PubMed

    Cove, Michael V; Gardner, Beth; Simons, Theodore R; O'Connell, Allan F

    2018-04-01

    The Lower Keys marsh rabbit ( Sylvilagus palustris hefneri ) is one of many endangered endemic species of the Florida Keys. The main threats are habitat loss and fragmentation from sea-level rise, development, and habitat succession. Exotic predators such as free-ranging domestic cats ( Felis catus ) pose an additional threat to these endangered small mammals. Management strategies have focused on habitat restoration and exotic predator control. However, the effectiveness of predator removal and the effects of anthropogenic habitat modifications and restoration have not been evaluated. Between 2013 and 2015, we used camera traps to survey marsh rabbits and free-ranging cats at 84 sites in the National Key Deer Refuge, Big Pine Key, Florida, USA. We used dynamic occupancy models to determine factors associated with marsh rabbit occurrence, colonization, extinction, and the co-occurrence of marsh rabbits and cats during a period of predator removal. Rabbit occurrence was positively related to freshwater habitat and patch size, but was negatively related to the number of individual cats detected at each site. Furthermore, marsh rabbit colonization was negatively associated with relative increases in the number of individual cats at each site between survey years. Cat occurrence was negatively associated with increasing distance from human developments. The probability of cat site extinction was positively related to a 2-year trapping effort, indicating that predator removal reduced the cat population. Dynamic co-occurrence models suggested that cats and marsh rabbits co-occur less frequently than expected under random conditions, whereas co-detections were site and survey-specific. Rabbit site extinction and colonization were not strongly conditional on cat presence, but corresponded with a negative association. Our results suggest that while rabbits can colonize and persist at sites where cats occur, it is the number of individual cats at a site that more strongly influences rabbit occupancy and colonization. These findings indicate that continued predator management would likely benefit endangered small mammals as they recolonize restored habitats.

  12. THE EFFECT OF NITROGEN OVER-ENRICHMENT ON SOME PLANT-SOIL RELATIONSHIPS AND MICROBIAL PROCESSES

    EPA Science Inventory

    Salt marshes of similar geomorphology and hydrology with varying watershed nitrogen loads were examined for differences in plant structure, soil characteristics, and
    denitrification. We observed landward encroachment of the low marsh Spartina alterniflora, and the displacement...

  13. Coastal Vertebrate Exposure to Predicted Habitat Changes Due to Sea Level Rise.

    PubMed

    Hunter, Elizabeth A; Nibbelink, Nathan P; Alexander, Clark R; Barrett, Kyle; Mengak, Lara F; Guy, Rachel K; Moore, Clinton T; Cooper, Robert J

    2015-12-01

    Sea level rise (SLR) may degrade habitat for coastal vertebrates in the Southeastern United States, but it is unclear which groups or species will be most exposed to habitat changes. We assessed 28 coastal Georgia vertebrate species for their exposure to potential habitat changes due to SLR using output from the Sea Level Affecting Marshes Model and information on the species' fundamental niches. We assessed forecasted habitat change up to the year 2100 using three structural habitat metrics: total area, patch size, and habitat permanence. Almost all of the species (n = 24) experienced negative habitat changes due to SLR as measured by at least one of the metrics. Salt marsh and ocean beach habitats experienced the most change (out of 16 categorical land cover types) across the three metrics and species that used salt marsh extensively (rails and marsh sparrows) were ranked highest for exposure to habitat changes. Species that nested on ocean beaches (Diamondback Terrapins, shorebirds, and terns) were also ranked highly, but their use of other foraging habitats reduced their overall exposure. Future studies on potential effects of SLR on vertebrates in southeastern coastal ecosystems should focus on the relative importance of different habitat types to these species' foraging and nesting requirements. Our straightforward prioritization approach is applicable to other coastal systems and can provide insight to managers on which species to focus resources, what components of their habitats need to be protected, and which locations in the study area will provide habitat refuges in the face of SLR.

  14. [VARIABILITY AND DETERMINING FACTORS OF THE BODY SIZE STRUCTURE OF THE INFRAPOPULATION OF COSMOCERCA ORNATA (NEMATODA: COSMOCERCIDAE) IN MARSH FROGS].

    PubMed

    Kirillov, A A; Kirillova, N Yu

    2015-01-01

    Variability of the body size in females of the Cosmocerca ornata (Dujardin, 1845), a parasite of marsh frogs, is studied. The influence of both biotic (age, sex and a phenotype of the host, density of the parasite population) and abiotic (a season of the year, water temperature) factors on the formation of the body size structure in the C. ornata hemipopulation (infrapopulation) is demonstrated. The body size structure of the C. ornata hemipopulation is characterized by the low level of individual variability as within certain subpopulation groups of amphibians (sex, age and phenotype), so within the population of marsh frogs as a whole. The more distinct are the differences in biology and ecology of these host subpopulations, the more pronounced is the variability in the body size of C ornata.

  15. Test of salt marsh as a site of production and export of fish biomass with implications for impoundment management and restoration

    USGS Publications Warehouse

    Stevens, Philip W.

    2002-01-01

    Salt marshes are among the most productive ecosystems in the world, and although they are thought to enhance the productivity of open estuarine waters, the mechanism by which energy transfer occurs has been debated for decades. One possible mechanism is the transfer of saltmarsh production to estuarine waters by vagile fishes and invertebrates. Saltmarsh impoundments in the Indian River Lagoon, Florida, that have been reconnected to the estuary by culverts provide unique opportunities for studying marsh systems with respect to aquatic communities. The boundaries between salt marshes and the estuary are clearly defined by a system of dikes that confine fishes into a known area, and the exchange of aquatic organisms are restricted to culverts where they may be easily sampled. A multi-gear approach was used monthly to estimate fish standing stock, fish ingress/egress, and predation. Changes in saltmarsh fish abundance, and exchange with the estuary reflected the seasonal pattern of marsh flooding in the xv northern Indian River Lagoon system. During a six month period of marsh flooding, saltmarsh fishes had continuous access to marsh food resources. Piscivorous fishes regularly entered the marsh via creeks and ditches to prey upon marsh fishes, and piscivorous birds aggregated following major fish migrations to the marsh surface or to deep habitats. As water levels receded in winter, saltmarsh fishes concentrated into deep habitats and migration to the estuary ensued. The monthly estimates of fish standing stock, net fish ingress, and predation were used to develop a biomass budget to estimate annual production of fishes and the relative yield to predatory fish, birds, and direct migration to the estuary. Annual production of saltmarsh fishes was estimated to be 17.7 g·m-2 salt marsh, which falls within the range of previously reported values for estuarine fish communities. The relative yields were at least 21% to piscivorous fishes, 14% to piscivorous birds, and 32% to export. Annual export of fish biomass was 5.6 g fish·m-2 salt marsh, representing about 2% of saltmarsh primary production. Saltmarsh fishes convert marsh production to high quality vagile biomass (fishes concentrate energy, protein, and nutrients as body mass) and move this readily useable production to the estuary, providing an efficient link between salt marshes and estuarine predators.

  16. Assessment of Roots, Rhizomes, and Soil Respiration in Disturbed Wetlands

    EPA Science Inventory

    Accelerated sea level rise and cultural eutrophication are anthropogenic stressors known to alter the structure and function of salt marsh ecosystems. Many salt marshes in Jamaica Bay (NY) are reported to be disappearing at an alarming rate, approximately 35 - 40 acres per year....

  17. Greenhouse gas emissions from a created brackish marsh in eastern North Carolina

    USGS Publications Warehouse

    Shiau, Yo-Jin; Burchell, Michael R.; Krauss, Ken W.; Birgand, François; Broome, Stephen W.

    2016-01-01

    Tidal marsh creation helps remediate global warming because tidal wetlands are especially proficient at sequestering carbon (C) in soils. However, greenhouse gas (GHG) losses can offset the climatic benefits gained from C storage depending on how these tidal marshes are constructed and managed. This study attempts to determine the GHG emissions from a 4–6 year old created brackish marsh, what environmental factors governed these emissions, and how the magnitude of the fluxes relates to other wetland ecosystems. The static flux chamber method was used to measure GHG fluxes across three distinct plant zones segregated by elevation. The major of soil GHG fluxes from the marsh were from CO2 (−48–192 mg C m-2 h-1), although it was near the lower end of values reported from other wetland types having lower salinities, and would mostly be offset by photosynthetic uptake in this created brackish marsh. Methane flux was also low (−0.33–0.86 mg C m-2 h-1), likely inhibited by the high soil SO42−and soil redox potentials poised above −150 mV in this in this created brackish marsh environment. Low N2O flux (−0.11–0.10 mg N m-2 h-1) was due to low soil NO3− and soil redox conditions favoring complete denitrification. GHG fluxes from this created brackish marsh were generally lower than those recorded from natural marshes, suggesting that C sequestration may not be offset by the radiative forcing from soil GHG emissions if projects are designed properly.

  18. Integrated ecosystem services assessment: Valuation of changes due to sea level rise in Galveston Bay, Texas, USA.

    PubMed

    Yoskowitz, David; Carollo, Cristina; Pollack, Jennifer Beseres; Santos, Carlota; Welder, Kathleen

    2017-03-01

    The goal of the present study was to identify the potential changes in ecosystem service values provided by wetlands in Galveston Bay, Texas, USA, under the Intergovernmental Panel on Climate Change (IPCC) A1B max (0.69 m) sea level rise scenario. Built exclusively upon the output produced during the Sea Level Affecting Marshes Model 6 (SLAMM 6) exercise for the Galveston Bay region, this study showed that fresh marsh and salt marsh present a steady decline from 2009 (initial condition) to 2100. Fresh marsh was projected to undergo the biggest changes, with the loss of approximately 21% of its extent between 2009 and 2100 under the A1B max scenario. The percentages of change for salt marsh were less prominent at approximately 12%. This trend was also shown in the values of selected ecosystem services (disturbance regulation, waste regulation, recreation, and aesthetics) provided by these habitats. An ordinary least squares regression was used to calculate the monetary value of the selected ecosystem services provided by salt marsh and fresh marsh in 2009, and in 2050 and 2100 under the A1B max scenario. The value of the selected services showed potential monetary losses in excess of US$40 million annually in 2100, compared to 2009 for fresh marsh and more than $11 million for salt marsh. The estimates provided here are only small portions of what can be lost due to the decrease in habitat extent, and they highlight the need for protecting not only built infrastructure but also natural resources from sea level rise. Integr Environ Assess Manag 2017;13:431-443. © 2016 SETAC. © 2016 SETAC.

  19. Multiple baseline radar interferometry applied to coastal land cover classification and change analyses

    USGS Publications Warehouse

    Ramsey, Elijah W.; Lu, Z.; Rangoonwala, A.; Rykhus, Russ

    2006-01-01

    ERS-1 and ERS-2 SAR data were collected in tandem over a four-month period and used to generate interferometric coherence, phase, and intensity products that we compared to a classified land cover coastal map of Big Bend, Florida. Forests displayed the highest intensity, and marshes the lowest. The intensity for fresh marsh and forests progressively shifted while saline marsh intensity variance distribution changed with the season. Intensity variability suggested instability between temporal comparisons. Forests, especially hardwoods, displayed lower coherences and marshes higher. Only marshes retained coherence after 70 days. Coherence was more responsive to land cover class than intensity and provided discrimination in winter. Phase distributions helped reveal variation in vegetation structure, identify broad land cover classes and unique within-class variations, and estimate water-level changes. Copyright ?? 2006 by V. H. Winston & Son, Inc. All rights reserved.

  20. Storm surges and climate change implications for tidal marshes: Insight from the San Francisco Bay Estuary, California, USA

    USGS Publications Warehouse

    Thorne, Karen M.; Buffington, Kevin J.; Swanson, Kathleen; Takekawa, John Y.

    2013-01-01

    Tidal marshes are dynamic ecosystems, which are influenced by oceanic and freshwater processes and daily changes in sea level. Projected sea-level rise and changes in storm frequency and intensity will affect tidal marshes by altering suspended sediment supply, plant communities, and the inundation duration and depth of the marsh platform. The objective of this research was to evaluate if regional weather conditions resulting in low-pressure storms changed tidal conditions locally within three tidal marshes. We hypothesized that regional storms will increase sea level heights locally, resulting in increased inundation of the tidal marsh platform and plant communities. Using site-level measurements of elevation, plant communities, and water levels, we present results from two storm events in 2010 and 2011 from the San Francisco Bay Estuary (SFBE), California, USA. The January 2010 storm had the lowest recorded sea level pressure in the last 30 years for this region. During the storm episodes, the duration of tidal marsh inundation was 1.8 and 3.1 times greater than average for that time of year, respectively. At peak storm surges, over 65% in 2010 and 93% in 2011 of the plant community was under water. We also discuss the implications of these types of storms and projected sea-level rise on the structure and function of the tidal marshes and how that will impact the hydro-geomorphic processes and marsh biotic communities.

  1. Influence of Black Mangrove Expansion on Salt Marsh Food Web Dynamics in Coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Powell, C.; Baustian, M. M.; Polito, M. J.

    2017-12-01

    The range of black mangroves (Avicennia germinans) is projected to expand in the northern Gulf of Mexico due to reduced winter freeze events and an increased rate of droughts. The colonization of mangroves in salt marshes alters habitat structure and creates a novel basal carbon source for consumers. This addition may modify trophic linkages and the structure of estuarine food webs. To understand the implications of mangrove expansion on food web dynamics of traditional Spartina alterniflora marshes, two sites in coastal Louisiana with three habitat types, marsh-dominated, mangrove-dominated, and a transition or mix of the two, were studied. Community composition of juvenile nekton was sampled using fyke nets, minnow traps, and suction sampling and analyzed for abundance and diversity. Primary carbon sources (emergent vegetation, phytoplankton, macroalgae, benthic microalgae, submerged aquatic vegetation, and soil organic matter) and consumers ((blue crabs (Callinectes sapidus), brown shrimp (Farfantepenaeus aztecus), grass shrimp (Palaemonetes spp.), Gulf killifish (Fundulus grandis), periwinkle snails (Littoraria irrorata), eastern oysters (Crassostrea virginica), and southern ribbed mussels (Geukensia granosissima)) collected at each habitat type were measured using stable isotope analysis (δ13C, δ15N, δ34S) to identify trophic level, basal carbon sources, and assess how mangrove carbon is incorporated into salt marsh food webs. While data analysis is ongoing, preliminary results indicate that basal carbon sources supporting some marsh consumers (e.g., periwinkle snails) shift between habitat types, while others remain static (e.g., grass shrimp). This research will further develop our understanding of how climate induced shifts in vegetation influences valued marsh-dependent consumers in the estuarine ecosystems of northern Gulf of Mexico.

  2. Nutrient Effects on Belowground Organic Matter in a Minerogenic Salt Marsh, North Inlet, SC

    EPA Science Inventory

    Belowground structure and carbon dioxide emission rates were examined in minerogenic marshes of the North Inlet estuary, a system dominated by depositional processes and typical of the southeastern USA. Three areas were sampled: a long-term nutrient enrichment experiment (Goat Is...

  3. Long-term hydrologic effects on marsh plant community structure in the southern Everglades

    USGS Publications Warehouse

    Busch, David E.; Loftus, W.F.; Bass, O.L.

    1998-01-01

    Although large-scale transformation of Everglades landscapes has occurred during the past century, the patterns of association among hydrologic factors and southern Everglades freshwater marsh vegetation have not been well-defined. We used a 10-year data base on the aquatic biota of Shark Slough to classify vegetation and describe plant community change in intermediate- to long-hydroperiod Everglades marshes. Study area marsh vegetation was quantitatively grouped into associations dominated by 1) Cladium jamaicense, 2) a group of emergents including Eleocharis cellulosa, Sagittaria lancifolia, and Rhyncospora tracyi, 3) taxa associated with algal mats (Utricularia spp. and Bacopa caroliniana), and 4) the grasses Panicum hemitomon and Paspalidium geminatum. During the decade evaluated, the range of water depths that characterized our study sites approached both extremes depicted in the 40-year hydrologic record for the region. Water depths were near the long-term average during the mid-1980s, declined sharply during a late 1980s drought, and underwent a prolonged increase from 1991 through 1995. Overall macrophyte cover varied inversely with water depth, while the response of periphyton was more complex. An ordination analysis, based on plant species abundance, revealed that study area vegetation structure was associated with hydrologic patterns. Marsh plant community structure showed evidence of cyclic interannual variation corresponding to hydrologic change over the decade evaluated. Lower water depths, the occurrence of marl substrates, and high periphyton cover were correlated. These factors contributed to reduced macrophyte cover in portions of the study area from which water had been diverted.

  4. Forcing functions governing salt transport processes in coastal navigation canals and connectivity to surrounding marshes in South Louisiana using Houma Navigation Canal as a surrogate

    USGS Publications Warehouse

    Snedden, Gregg

    2014-01-01

    Understanding how circulation and mixing processes in coastal navigation canals influence the exchange of salt between marshes and coastal ocean, and how those processes are modulated by external physical processes, is critical to anticipating effects of future actions and circumstance. Examples of such circumstances include deepening the channel, placement of locks in the channel, changes in freshwater discharge down the channel, changes in outer continental shelf (OCS) vessel traffic volume, and sea level rise. The study builds on previous BOEM-funded studies by investigating salt flux variability through the Houma Navigation Canal (HNC). It examines how external physical factors, such as buoyancy forcing and mixing from tidal stirring and OCS vessel wakes, influence dispersive and advective fluxes through the HNC and the impact of this salt flux on salinity in nearby marshes. This study quantifies salt transport processes and salinity variability in the HNC and surrounding Terrebonne marshes. Data collected for this study include time-series data of salinity and velocity in the HNC, monthly salinity-depth profiles along the length of the channel, hourly vertical profiles of velocity and salinity over multiple tidal cycles, and salinity time series data at three locations in the surrounding marshes along a transect of increasing distance from the HNC. Two modes of vertical current structure were identified. The first mode, making up 90% of the total flow field variability, strongly resembled a barotropic current structure and was coherent with alongshelf wind stress over the coastal Gulf of Mexico. The second mode was indicative of gravitational circulation and was linked to variability in tidal stirring and the longitudinal salinity gradients along the channel’s length. Diffusive process were dominant drivers of upestuary salt transport, except during periods of minimal tidal stirring when gravitational circulation became more important. Salinity in the surrounding marshes was much more responsive to salinity variations in the HNC than it was to variations in the lower Terrebonne marshes, suggesting that the HNC is the primary conduit for saltwater intrusion to the middle Terrebonne marshes. Finally, salt transport to the middle Terrebonne marshes directly associated with vessel wakes was negligible.

  5. Genetic effects of a large-scale Spartina alterniflora (smooth cordgrass) dieback and recovery in the northern Gulf of Mexico

    USGS Publications Warehouse

    Edwards, K.R.; Travis, S.E.; Proffitt, C.E.

    2005-01-01

    A large-scale dieback event struck marshes along the northwestern Gulf of Mexico coast during summer 2000, in apparent response to a prolonged and severe drought. Along the Louisiana coast, large areas of the dominant marsh species, Spartina alterniflora, turned brown, followed by death of at least the aboveground structures or entire plant mortality. Key ecological and genetic measures were studied in a dieback-affected marsh in southwest Louisiana (C83 marsh, Sabine National Wildlife Refuge), for which existed predieback ecologic and genetic datasets. Effects on genetic diversity only were studied in a second set of sites in southeastern Louisiana (near Bay Junop), where the dieback was more widespread. We hypothesized that stem density, live aboveground biomass, and genetic diversity would be significantly reduced compared to predieback conditions and to nearby unaffected marshes. Stem densities and biomass levels approached predieback conditions 14 months after first observance of the dieback in the Sabine marsh and were similar to or exceeded the same measures for a nearby unaffected marsh. DNA extracted from leaf samples in the Sabine and Bay Junop sites was used to construct genotype profiles using AFLPs and analyzed using the complement of Simpson's Index (1-D), the richness measure G/N, average heterozygosity ???H???, and the estimated proportion of polymorphic genes ???P???. Genetic diversity was relatively unaffected by the dieback at either the Sabine or Bay Junop sites. Evidence from field observations and the results of the genetic analyses suggest that seedling recruitment is an important factor in the recovery of both the Bay Junop and C83 sites, although re-growth from surviving below-ground rhizomes appeared to dominate recovery at the latter site. Survival of below-ground structures, leading to the rapid recovery observed, indicates a high level of resilience of the Sabine marsh to drought-induced stress. Still, the genetic diversity of S. alterniflora- dominated marshes may be promoted by occasional disturbance events, which produce open areas in which seedling recruitment can occur. ?? 2005 Estuarine Research Federation.

  6. Baldcypress, an important wetland tree species: ecological value, management and mensuration

    Treesearch

    Bernard R. Parresol

    2002-01-01

    China has the largest area of wetlands in Asia and the fourth largest amount worldwide. Wetlands include marshes, swamps, salt marshes, parts of streams, shorelines, and flood plains. It is estimated that wetlands in China cover over 25 million ha, 80% being of the fresh water variety, or 2.6% of the land base (Lu 1990). However, it is recognized that existing wetland...

  7. Wetland modeling and information needs at Stillwater National Wildlife Refuge

    USGS Publications Warehouse

    Hamilton, David B.; Auble, Gregor T.

    1993-01-01

    The marshes in and around Stillwater National Wildlife Refuge (the Refuge) are extremely dynamic; expanding and contracting in size both seasonally, due to runoff and subsequent evapotranspiration, and over longer periods, due to climatic variation. The dynamic nature of these marshes results in a diversity of wetland habitats, which support a variety of migratory birds. To maintain this wetland diversity and control the loss of migratory bird habitat in the Lahontan Valley, the Refuge was established and currently manages a complex of marsh units. However, changes in the hydrology, and changes that will occur as a result of the Fallon Paiute-Shoshone and Truckee-Carson-Pyramid Lake Water Rights Settlement Act (Public Law 101-618, 104 Stat. 3389), greatly affect the Refuge's wetland management capability. In light of these changes, and the legal requirements associated with environmental impact assessments, the Refuge convened a workshop to discuss several aspects of wetland management in the Lahontan Valley. The workshop, described in this report, had three primary objectives: 1. discuss the types and relative proportions of primary wetland habitats that should be provided as described in the settlement act; 2. discuss wetland management models that might be developed to help manage these marshes under hydrologic regimes likely in the future; and 3. discuss future information and monitoring needs, including proposals for valley-wide biodiversity surveys, which would be helpful when considering withdrawn Bureau of Reclamation (BR) lands for possible incorporation into the Refuge. Several presentations at the beginning of the workshop provided a common basis for discussing these objectives. Refuge staff provided background on the history and past management. The Nature Conservatory discussed their role in the settlement act, proposals for valley-wide biodiversity surveys, and results of a literature review for Stillwater Marsh and the Lahontan Valley (Nachlinger 1993). Kay Fowler provided an historical context of changes in vegetation and waterbird use of the marshes based on her ethnography of the local Paiute Indians (Fowler 1993). Finally, Bob Elston discussed a model that predicts archaeological sites based on environmental variables (Raven and Elston 1989). The workshop was organized by staff from the Refuge and facilitated by the authors of this report. Participants included Ron Anglin, Bill Henry, Anne Janik, Cliff Creger, Fred Paveglio, and Mary Jo Elpers of the U.S. Fish and Wildlife Service (the Service); Jeff Baumgartner, Jan Nachlinger, Hope Humphries, and Graham Chisholm of The Nature Conservancy; David Yardas of the Environmental Defense Fund; David Robertson of Robertson Software, Inc.; Norm Saake, Terry Retterer, and Larry Neel of the Nevada Department of Wildlife; Lew Oring and Kay Fowler of the University of Nevada; and Robert Elston of Intermountain Research.

  8. A complex-systems approach to predicting effects of sea level rise and nitrogen loading on nitrogen cycling in coastal wetland ecosystems

    USGS Publications Warehouse

    Larsen, Laurel G.; Moseman, Serena; Santoro, Alyson; Hopfensperger, Kristine; Burgin, Amy

    2010-01-01

    To effectively manage coastal ecosystems, we need an improvedunderstanding of how tidal marsh ecosystem services will respond to sea-level rise and increased nitrogen (N) loading to coastal areas. Here we review existing literature to better understand how these interacting perturbations s will likely impact N removal by tidal marshes. We propose that the keyy factors controlling long-term changes in N removal are plant-community changes, soil accretion rates, surface-subsurface flow paths, marsh geomorphology microbial communities, and substrates for microbial reactions. Feedbacks affecting relative elevations and sediment accretion ratess will serve as dominant controls on future N removal throughout the marsh. Given marsh persistence, we hypothesize that the processes dominating N removal will vary laterally across the marsh and longitudinallyalong the estuarine gradient. In salt marsh interiors, where nitrate reduction rates are often limited by delivery of nitrate to bacterial communities, reductions in groundwater discharge due to sea level rise may trigger a net reduction in N removal. In freshwater marshes, we expect a decreasee in N removal efficiency due to increased sulfide concentrations. Sulfide encroachment will increase the relative importance of dissimilatory nitrate reduction to ammonium and lead to greater bacterial nitrogen immobilization, ultimately resulting in an ecosystem that retains more N and is less effective at permanent N removal from the watershed. In contrast, we predict that sealevel–driven expansion of the tidal creek network and the degree of surface-subsurface exchange flux through tidal creek banks will result in greater N-removal efficiency from these locations.

  9. Impact of the 2010 Deepwater Horizon oil spill on population size and genetic structure of horse flies in Louisiana marshes

    PubMed Central

    Husseneder, Claudia; Donaldson, Jennifer R.; Foil, Lane D.

    2016-01-01

    The greenhead horse fly, Tabanus nigrovittatus Macquart, is frequently found in coastal marshes of the Eastern United States. The greenhead horse fly larvae are top predators in the marsh and thus vulnerable to changes in the environment, and the adults potentially are attracted to polarized surfaces like oil. Therefore, horse fly populations could serve as bioindicators of marsh health and toxic effects of oil intrusion. In this study, we describe the impact of the April 2010 Deep Water Horizon oil spill in the Gulf of Mexico on tabanid population abundance and genetics as well as mating structure. Horse fly populations were sampled biweekly from oiled and unaffected locations immediately after the oil spill in June 2010 until October 2011. Horse fly abundance estimates showed severe crashes of tabanid populations in oiled areas. Microsatellite genotyping of six pristine and seven oiled populations at ten polymorphic loci detected genetic bottlenecks in six of the oiled populations in association with fewer breeding parents, reduced effective population size, lower number of family clusters and fewer migrants among populations. This is the first study assessing the impact of oil contamination at the level of a top arthropod predator of the invertebrate community in salt marshes. PMID:26755069

  10. Relationships between wintering waterbirds and invertebrates, sediments and hydrology of coastal marsh ponds

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2004-01-01

    We studied relationships among sediment variables (carbon content, C:N, hardness, oxygen penetration, silt-clay fraction), hydrologic variables (dissolved oxygen, salinity, temperature, transparency, water depth), sizes and biomass of common invertebrate classes, and densities of 15 common waterbird species in ponds of impounded freshwater, oligohaline, mesohaline, and unimpounded mesohaline marshes during winters 1997-98 to 1999-2000 on Rockefeller State Wildlife Refuge, Louisiana, USA. Canonical correspondence analysis and forward selection was used to analyze the above variables. Water depth and oxygen penetration were the variables that best segregated habitat characteristics that resulted in maximum densities of common waterbird species. Most common waterbird species were associated with specific marsh types, except Green-winged Teal (Anas crecca) and Northern Shoveler (Anas clypeata). We concluded that hydrologic manipulation of marsh ponds is the best way to manage habitats for these birds, if the hydrology can be controlled adequately.

  11. Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Zhou, Tingzhang; Lu, Chunhui; Shen, Chengji; Zhang, Chenming; D'Alpaos, Andrea; Li, Ling

    2017-05-01

    Salt marshes, distributed globally at the land-ocean interface, are a highly productive eco-system with valuable ecological functions. While salt marshes are affected by various eco-geo-hydrological processes and factors, soil moisture and salinity affect plant growth and play a key role in determining the structure and functions of the marsh ecosystem. To examine the variations of both soil parameters, we simulated pore-water flow and salt transport in a creek-marsh system subjected to spring-neap tides, evaporation and rainfall. The results demonstrated that within a sandy-loam marsh, the tide-induced pore-water circulation averted salt build-up due to evaporation in the near-creek area. In the marsh interior where the horizontal drainage was weak, density-driven flow was responsible for dissipating salt accumulation in the shallow soil layer. In the sandy-loam marsh, the combined influences of spring-neap tides, rainfall and evaporation led to the formation of three characteristic zones, c.f., a near-creek zone with low soil water saturation (i.e., well-aerated) and low pore-water salinity as affected by the semi-diurnal spring tides, a less well-aerated zone with increased salinity where drainage occurred during the neap tides, and an interior zone where evaporation and rainfall infiltration regulated the soil conditions. These characteristics, however, varied with the soil type. In low-permeability silt-loam and clay-loam marshes, the tide-induced drainage weakened and the soil conditions over a large area became dominated by evaporation and rainfall. Sea level rise was found to worsen the soil aeration condition but inhibit salt accumulation due to evaporation. These findings shed lights on the soil conditions underpinned by various hydrogeological processes, and have important implications for further investigations on marsh plant growth and ecosystem functions.

  12. Dynamic interactions between coastal storms and salt marshes: A review

    NASA Astrophysics Data System (ADS)

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil Kamal; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented. Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion. Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental effect for marsh boundaries even during calm weather. On the other hand, when a violent storm causes substantial erosion but sediments are redistributed across nearby areas, the long term impact might not be as severe as if sediments were permanently lost from the system, and the salt marsh could easily recover to the initial state.

  13. Dynamic interactions between coastal storms and salt marshes: A review

    USGS Publications Warehouse

    Leonardi, Nicoletta; Carnacina, Iacopo; Donatelli, Carmine; Ganju, Neil K.; Plater, Andrew James; Schuerch, Mark; Temmerman, Stijn

    2018-01-01

    This manuscript reviews the progresses made in the understanding of the dynamic interactions between coastal storms and salt marshes, including the dissipation of extreme water levels and wind waves across marsh surfaces, the geomorphic impact of storms on salt marshes, the preservation of hurricanes signals and deposits into the sedimentary records, and the importance of storms for the long term survival of salt marshes to sea level rise. A review of weaknesses, and strengths of coastal defences incorporating the use of salt marshes including natural, and hybrid infrastructures in comparison to standard built solutions is then presented.Salt marshes are effective in dissipating wave energy, and storm surges, especially when the marsh is highly elevated, and continuous. This buffering action reduces for storms lasting more than one day. Storm surge attenuation rates range from 1.7 to 25 cm/km depending on marsh and storms characteristics. In terms of vegetation properties, the more flexible stems tend to flatten during powerful storms, and to dissipate less energy but they are also more resilient to structural damage, and their flattening helps to protect the marsh surface from erosion, while stiff plants tend to break, and could increase the turbulence level and the scour. From a morphological point of view, salt marshes are generally able to withstand violent storms without collapsing, and violent storms are responsible for only a small portion of the long term marsh erosion.Our considerations highlight the necessity to focus on the indirect long term impact that large storms exerts on the whole marsh complex rather than on sole after-storm periods. The morphological consequences of storms, even if not dramatic, might in fact influence the response of the system to normal weather conditions during following inter-storm periods. For instance, storms can cause tidal flats deepening which in turn promotes wave energy propagation, and exerts a long term detrimental effect for marsh boundaries even during calm weather. On the other hand, when a violent storm causes substantial erosion but sediments are redistributed across nearby areas, the long term impact might not be as severe as if sediments were permanently lost from the system, and the salt marsh could easily recover to the initial state.

  14. Use of historical and geospatial data to guide the restoration of a Lake Erie coastal marsh

    USGS Publications Warehouse

    Kowalski, Kurt P.; Wilcox, Douglas A.

    1999-01-01

    Historical and geospatial data were used to identify the relationships between water levels, wetland vegetation, littoral drift of sediments, and the condition of a protective barrier beach at Metzger Marsh, a coastal wetland in western Lake Erie, to enhance and guide a joint federal and state wetland restoration project. Eleven sets of large-scale aerial photographs dating from 1940 through 1994 were interpreted to delineate major vegetation types and boundaries of the barrier beach. A geographic information system (GIS) was then used to digitize the data and calculate the vegetated area and length of barrier beach. Supplemented by paleoecological and sedimentological analyses, aerial photographic interpretation revealed that Metzger Marsh was once a drowned-river-mouth wetland dominated by sedges and protected by a sand barrier beach. Extremely high water levels, storm events, and reduction of sediments in the littoral drift contributed to the complete destruction of the barrier beach in 1973 and prevented its recovery. The extent of wetland vegetation, correlated to water levels and condition of the barrier beach, decreased from a high of 108 ha in 1940 to a low of 33 ha in 1994. The lack of an adequate sediment supply and low probability of a period of extremely low lake levels in the near future made natural reestablishment of the barrier beach and wetland vegetation unlikely. Therefore, the federal and state managers chose to construct a dike to replace the protective barrier beach. Recommendations stemming from this historical analysis, however, resulted in the incorporation of a water-control structure in the dike that will retain a hydrologic connection between wetland and lake. Management of the wetland will seek to mimic processes natural to the wetland type identified by this analysis.

  15. Factors affecting breeding dispersal of European ducks on Engure Marsh, Latvia

    USGS Publications Warehouse

    Blums, P.; Nichols, J.D.; Lindberg, M.S.; Hines, J.E.; Mednis, A.

    2003-01-01

    1. We used up to 35 years of capture-recapture data from nearly 3300 individual female ducks nesting on Engure Marsh, Latvia, and multistate modelling to test predictions about the influence of environmental, habitat and management factors on breeding dispersal probability within the marsh. 2. Analyses based on observed dispersal distances of common pochards and tufted ducks provided no evidence that breeding success in year t influenced dispersal distance between t and t + 1. 3. Breeding dispersal distances (year t to t + 1) of pochards and tufted ducks were associated with a delay in relative nest initiation dates in year t + 1. The delay was greater for pochards (c. 4 days) than for tufted ducks (c. 2 days) when females dispersed > 0.8 km. 4. Northern shovelers and tufted ducks moved from a large island to small islands at low water levels and from small islands to the large island at high water levels before the construction of elevated small islands (1960-82). Following this habitat management (1983-94). breeding fidelity was extremely high and not influenced by water level in the marsh for either species. 5. Because pochard nesting habitats in black-headed gull colonies were saturated during the entire study period, nesting females moved into and out of colonies with similar probabilities. Local survival probabilities and incubation body masses were higher for both yearlings (SY) and adults (ASY) nesting within gull colonies, suggesting that these females were of better quality than females nesting outside of the colonies. 6. Tufted ducks showed higher probabilities of moving from islands to emergent marshes when water levels were higher both before and after habitat management. However, rates of movement for a given water level were higher during the period before management than after. 7. Both pochards and tufted ducks exhibited asymmetric movement with respect to proximity to water, with higher movement probabilities to near-water nesting locations than away from these locations. 8. Multistate capture-recapture models provided analyses that were useful in investigating sources of variation in breeding dispersal probabilities.

  16. Co‐occurrence dynamics of endangered Lower Keys marsh rabbits and free‐ranging domestic cats: Prey responses to an exotic predator removal program

    USGS Publications Warehouse

    Cove, Michael V.; Gardner, Beth; Simons, Theodore R.; O'Connell, Allan F.

    2018-01-01

    The Lower Keys marsh rabbit (Sylvilagus palustris hefneri) is one of many endangered endemic species of the Florida Keys. The main threats are habitat loss and fragmentation from sea‐level rise, development, and habitat succession. Exotic predators such as free‐ranging domestic cats (Felis catus) pose an additional threat to these endangered small mammals. Management strategies have focused on habitat restoration and exotic predator control. However, the effectiveness of predator removal and the effects of anthropogenic habitat modifications and restoration have not been evaluated. Between 2013 and 2015, we used camera traps to survey marsh rabbits and free‐ranging cats at 84 sites in the National Key Deer Refuge, Big Pine Key, Florida, USA. We used dynamic occupancy models to determine factors associated with marsh rabbit occurrence, colonization, extinction, and the co‐occurrence of marsh rabbits and cats during a period of predator removal. Rabbit occurrence was positively related to freshwater habitat and patch size, but was negatively related to the number of individual cats detected at each site. Furthermore, marsh rabbit colonization was negatively associated with relative increases in the number of individual cats at each site between survey years. Cat occurrence was negatively associated with increasing distance from human developments. The probability of cat site extinction was positively related to a 2‐year trapping effort, indicating that predator removal reduced the cat population. Dynamic co‐occurrence models suggested that cats and marsh rabbits co‐occur less frequently than expected under random conditions, whereas co‐detections were site and survey‐specific. Rabbit site extinction and colonization were not strongly conditional on cat presence, but corresponded with a negative association. Our results suggest that while rabbits can colonize and persist at sites where cats occur, it is the number of individual cats at a site that more strongly influences rabbit occupancy and colonization. These findings indicate that continued predator management would likely benefit endangered small mammals as they recolonize restored habitats.

  17. Effect of fertilization on Soil Respiration and Belowground Macro-organic Matter in Spartina alternatflora Marsh Soils

    EPA Science Inventory

    Human activities and rising populations increase watershed nutrient loads, which may alter the structure and function of coastal wetlands. In a long-term fertilization experiment in the North Inlet-Winyah Bay Reserve (NI-WB, NERR) (SC) Spartina marsh system, we used a 2 X 2 facto...

  18. RELATIONSHIPS OF NITROGEN LOADINGS, RESIDENTIAL DEVELOPMENT, AND PHYSICAL CHARACTERISTICS WITH PLANT STRUCTURE IN NEW ENGLAND SALT MARSHES

    EPA Science Inventory

    We examined the vascular plant species richness and the extent, density, and height of Spartina species of ten Narragansett Bay, Rhode Island (United States) fringe salt marshes which had a wide range of residential land development N-loadings associated with their watersheds. Si...

  19. ESTIMATION OF BACTERIAL CELL NUMBERS IN HUMIC ACID-RICH SALT MARSH SEDIMENTS WITH PROBES DIRECTED TO 16S RIBOSOMAL DNA

    EPA Science Inventory

    The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membr...

  20. Balancing habitat delivery for breeding marsh birds and nonbreeding waterfowl: An integrated waterbird management and monitoring approach at Clarence Cannon National Wildlife Refuge, Missouri

    USGS Publications Warehouse

    Loges, Brian W.; Lyons, James E.; Tavernia, Brian G.

    2017-08-23

    The Clarence Cannon National Wildlife Refuge (CCNWR) in the Mississippi River flood plain of eastern Missouri provides high quality emergent marsh and moist-soil habitat benefitting both nesting marsh birds and migrating waterfowl. Staff of CCNWR manipulate water levels and vegetation in the 17 units of the CCNWR to provide conditions favorable to these two important guilds. Although both guilds include focal species at multiple planning levels and complement objectives to provide a diversity of wetland community types and water regimes, additional decision support is needed for choosing how much emergent marsh and moist-soil habitat should be provided through annual management actions.To develop decision guidance for balanced delivery of high-energy waterfowl habitat and breeding marsh bird habitat, two measureable management objectives were identified: nonbreeding Anas Linnaeus (dabbling duck) use-days and Rallus elegans (king rail) occupancy of managed units. Three different composite management actions were identified to achieve these objectives. Each composite management action is a unique combination of growing season water regime and soil disturbance. The three composite management actions are intense moist-soil management (moist-soil), intermediate moist-soil (intermediate), and perennial management, which idles soils disturbance (perennial). The two management objectives and three management options were used in a multi-criteria decision analysis to indicate resource allocations and inform annual decision making. Outcomes of the composite management actions were predicted in two ways and multi-criteria decision analysis was used with each set of predictions. First, outcomes were predicted using expert-elicitation techniques and a panel of subject matter experts. Second, empirical data from the Integrated Waterbird Management and Monitoring Initiative collected between 2010 and 2013 were used; where data were lacking, expert judgment was used. Also, a Bayesian decision model was developed that can be updated with monitoring data in an adaptive management framework.Optimal resource allocations were identified in the form of portfolios of composite management actions for the 17 units in the framework. A constrained optimization (linear programming) was used to maximize an objective function that was based on the sum of dabbling duck and king rail utility. The constraints, which included management costs and a minimum energetic carrying capacity (total moist-soil acres), were applied to balance habitat delivery for dabbling ducks and king rails. Also, the framework was constrained in some cases to apply certain management actions of interest to certain management units; these constraints allowed for a variety of hypothetical Habitat Management Plans, including one based on output from a hydrogeomorphic study of the refuge. The decision analysis thus created numerous refuge-wide scenarios, each representing a unique mix of options (one for each of 17 units) and associated benefits (i.e., outcomes with respect to two management objectives).Prepared in collaboration with the U.S. Fish and Wildlife Service, the decision framework presented here is designed as a decision-aiding tool for CCNWR managers who ultimately make difficult decisions each year with multiple objectives, multiple management units, and the complexity of natural systems. The framework also provides a way to document hypotheses about how the managed system functions. Furthermore, the framework identifies specific monitoring needs and illustrates precisely how monitoring data will be used for decision-aiding and adaptive management.

  1. Effects of climate change on tidal marshes along a latitudinal gradient in California

    USGS Publications Warehouse

    Thorne, Karen M.; MacDonald, Glen M.; Ambrose, Rich F.; Buffington, Kevin J.; Freeman, Chase M.; Janousek, Christopher N.; Brown, Lauren N.; Holmquist, James R.; Guntenspergen, Glenn R.; Powelson, Katherine W.; Barnard, Patrick L.; Takekawa, John Y.

    2016-08-05

    Public SummaryThe coastal region of California supports a wealth of ecosystem services including habitat provision for wildlife and fisheries. Tidal marshes, mudflats, and shallow bays within coastal estuaries link marine, freshwater and terrestrial habitats, and provide economic and recreational benefits to local communities. Climate change effects such as sea-level rise (SLR) are altering these habitats, but we know little about how these areas will change over the next 50–100 years. Our study examined the projected effects of three recent SLR scenarios produced for the West Coast of North America on tidal marshes in California. We compiled physical and biological data, including coastal topography, tidal inundation, plant composition, and sediment accretion to project how SLR may alter these ecosystems in the future. The goal of our research was to provide results that support coastal management and conservation efforts across California. Under a low SLR scenario, all study sites remained vegetated tidal wetlands, with most sites showing little elevation and vegetation change relative to sea level. At most sites, mid SLR projections led to increases in low marsh habitat at the expense of middle and high marsh habitat. Marshes at Morro Bay and Tijuana River Estuary were the most vulnerable to mid SLR with many areas becoming intertidal mudflat. Under a high SLR scenario, most sites were projected to lose vegetated habitat, eventually converting to intertidal mudflats. Our results suggest that California marshes are vulnerable to major habitat shifts under mid or high rates of SLR, especially in the latter part of the century. Loss of vegetated tidal marshes in California due to SLR is expected to impact ecosystem services that are dependent on coastal wetlands such as wildlife habitat, carbon sequestration, improved water quality, and coastal protection from storms.

  2. Wave attenuation across a tidal marsh in San Francisco Bay

    USGS Publications Warehouse

    Foster-Martinez, Madeline R.; Lacy, Jessica; Ferner, Matthew C.; Variano, Evan A.

    2018-01-01

    Wave attenuation is a central process in the mechanics of a healthy salt marsh. Understanding how wave attenuation varies with vegetation and hydrodynamic conditions informs models of other marsh processes that are a function of wave energy (e.g. sediment transport) and allows for the incorporation of marshes into coastal protection plans. Here, we examine the evolution of wave height across a tidal salt marsh in San Francisco Bay. Instruments were deployed along a cross-shore transect, starting on the mudflat and crossing through zones dominated by Spartina foliosa and Salicornia pacifica. This dataset is the first to quantify wave attenuation for these vegetation species, which are abundant in the intertidal zone of California estuaries. Measurements were collected in the summer and winter to assess seasonal variation in wave attenuation. Calculated drag coefficients of S. foliosa and S. pacifica were similar, indicating equal amounts of vegetation would lead to similar energy dissipation; however, S. pacifica has much greater biomass close to the bed (<20 cm) and retains biomass throughout the year, and therefore, it causes more total attenuation. S. foliosa dies back in the winter, and waves often grow across this section of the marsh. For both vegetation types, attenuation was greatest for low water depths, when the vegetation was emergent. For both seasons, attenuation rates across S. pacifica were the highest and were greater than published attenuation rates across similar (Spartina alterniflora) salt marshes for the comparable depths. These results can inform designs for marsh restorations and management plans in San Francisco Bay and other estuaries containing these species.

  3. Abstracts from "Coastal Marsh Dieback in the Northern Gulf of Mexico: Extent, Causes, Consequences, and Remedies

    USGS Publications Warehouse

    Stewart, Robert E.; Proffitt, C. Edward; Charron, Tammy Michelle

    2001-01-01

    In the spring of 2000, scientists discovered a new and unprecedented loss of salt marsh vegetation in coastal Louisiana and other areas along the northern coast of the Gulf of Mexico. This dieback of salt marsh vegetation, sometimes called the brown marsh phenomenon', primarily involved the rapid browning and dieback of smooth cordgrass (Spanina alterniflora). Coastal Louisiana has already undergone huge, historical losses of coastal marsh due to both human-induced and natural factors, and the current overall rate of wetland loss (25-35 sq mi 65-91 SQ KM each year) stands to threaten Louisiana's coastal ecosystem, infrastructure, and economy. On January 11-12, 2001, individuals from Federal and State agencies, universities, and the private sector met at the conference 'Coastal Marsh Dieback in the Northern Gulf of Mexico: Extent, Causes, Consequences, and Remedies' to discuss and share information shout the marsh dieback. Presentations discussed trends in the progress of dieback during the summer of 2000 and in environmental conditions occurring at field study sites, possible causes including drought and Mississippi low flow' conditions, changes in soil conditions (salinity, the bioavailability of metals, pathogens, etc.), the potential for wetland loss that could occur if above and below normality occurs and is sustained over an extended period, advanced techniques for tracking the dieback via aerial photography and remote sensing, linkages of marsh hydrology to the dieback, and mechanisms of modeling dieback and recovery. In addition, presentations were made regarding development of a web site to facilitate information sharing and progress in preparation for requests for proposals based on an emergency appropriation by the U.S. Congress. All findings tended to support the idea that the dieback constituted a continuing environmental emergency and research and natural resource management efforts should be expended accordingly.

  4. Unsupervised detection of salt marsh platforms: a topographic method

    NASA Astrophysics Data System (ADS)

    Goodwin, Guillaume C. H.; Mudd, Simon M.; Clubb, Fiona J.

    2018-03-01

    Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM), referred to as Topographic Identification of Platforms (TIP). Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94 % for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90 % for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method may benefit from combination with existing creek detection algorithms. Fallen blocks and high tidal flat portions, associated with potential pioneer zones, can also lead to differences between our method and supervised mapping. Although pioneer zones prove difficult to classify using a topographic method, we suggest that these transition areas should be considered when analysing erosion and accretion processes, particularly in the case of incipient marsh platforms. Ultimately, we have shown that unsupervised classification of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyse topographic evolution.

  5. The Blackwater NWR inundation model. Rising sea level on a low-lying coast: land use planning for wetlands

    USGS Publications Warehouse

    Larsen, Curt; Clark, Inga; Guntenspergen, Glenn; Cahoon, Don; Caruso, Vincent; Hupp, Cliff; Yanosky, Tom

    2004-01-01

    The Blackwater National Wildlife Refuge (BNWR), on the Eastern Shore of Chesapeake Bay (figure 1), occupies an area less than 1 meter above sea level. The Refuge has been featured prominently in studies of the impact of sea level rise on coastal wetlands. Most notably, the refuge has been sited by the Intergovernmental Panel on Climate Change (IPCC) as a key example of 'wetland loss' attributable to rising sea level due to global temperature increase. Comparative studies of aerial photos taken since 1938 show an expanding area of open water in the central area of the refuge. The expanding area of open water can be shown to parallel the record of sea level rise over the past 60 years. The U.S. Fish and Wildlife Service (FWS) manages the refuge to support migratory waterfowl and to preserve endangered upland species. High marsh vegetation is critical to FWS waterfowl management strategies. A broad area once occupied by high marsh has decreased with rising sea level. The FWS needs a planning tool to help predict current and future areas of high marsh available for waterfowl. 'Wetland loss' is a relative term. It is dependant on the boundaries chosen for measurement. Wetland vegetation, zoned by elevation and salinity (figure 3), respond to rising sea level. Wetlands migrate inland and upslope and may vary in areas depending on the adjacent land slopes. Refuge managers need a geospatial tool that allows them to predict future areas that will be converted to high and intertidal marsh. Shifts in location and area of coverage must be anticipated. Viability of a current marsh area is also important. When will sea level rise make short-term management strategies to maintain an area impractical? The USGS has developed an inundation model for the BNWR centered on the refuge and surrounding areas. Such models are simple in concept, but they require a detailed topographic map upon which to superimpose future sea level positions. The new system of LIDAR mapping of land and shallow water surfaces has solved this problem. Our team has developed a detailed LIDAR map of the BNWR area at a 30 centimeter (ca. 1 ft) contour interval (figure 2). The new map allows us to identify the present marsh vegetation zones and to predict the location and area of future zones on a decade-by- decade basis over the next century at increments of sea level rise on the order of 3 cm/decade (ca. 1 inch). We have developed two scenarios for the model. The first is a steady-state model that uses the historic rate of sea level rise of 3.1 mm/yr to predict marsh areas. The second is a 'global warming' scenario utilizing a conservative IPCC model with an exponentially-increasing rate of sea level rise. Under either scenario, the BNWR is progressively inundated with an expanding core of open water. Although their positions change in the future, the areas of intertidal marsh as well as those of the critical high marsh remain fairly constant until the year 2050. Beyond that time, the low-lying land surface is overtopped by rising sea level and the area is dominated by open water. Our model suggests that wetland habitat in the Blackwater area might be maintained and sustained through a combination of public and private preservation efforts through easements in combination with judicious Federal land acquisition into the predicted areas of suitable marsh formation - but for only the next 50 years. Beyond that time much of this area will become open water.

  6. Coevolution of hydrodynamics, vegetation and channel evolution in wetlands of a semi-arid floodplain

    NASA Astrophysics Data System (ADS)

    Seoane, Manuel; Rodriguez, Jose Fernando; Rojas, Steven Sandi; Saco, Patricia Mabel; Riccardi, Gerardo; Saintilan, Neil; Wen, Li

    2015-04-01

    The Macquarie Marshes are located in the semi-arid region in north western NSW, Australia, and constitute part of the northern Murray-Darling Basin. The Marshes are comprised of a system of permanent and semi-permanent marshes, swamps and lagoons interconnected by braided channels. The wetland complex serves as nesting place and habitat for many species of water birds, fish, frogs and crustaceans, and portions of the Marshes was listed as internationally important under the Ramsar Convention. Some of the wetlands have undergone degradation over the last four decades, which has been attributed to changes in flow management upstream of the marshes. Among the many characteristics that make this wetland system unique is the occurrence of channel breakdown and channel avulsion, which are associated with decline of river flow in the downstream direction typical of dryland streams. Decrease in river flow can lead to sediment deposition, decrease in channel capacity, vegetative invasion of the channel, overbank flows, and ultimately result in channel breakdown and changes in marsh formation. A similar process on established marshes may also lead to channel avulsion and marsh abandonment, with the subsequent invasion of terrestrial vegetation. All the previous geomorphological evolution processes have an effect on the established ecosystem, which will produce feedbacks on the hydrodynamics of the system and affect the geomorphology in return. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological modelling framework that combines hydrodynamic, vegetation and channel evolution modules and in this presentation we provide an update on the status of the model. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological changes. Regular updates of stream network, floodplain surface elevations and vegetation coverage provide feedbacks to the hydrodynamic model.

  7. Bacterial community dynamic associated with autochthonous bioaugmentation for enhanced Cu phytoremediation of salt-marsh sediments.

    PubMed

    Almeida, C Marisa R; Oliveira, Tânia; Reis, Izabela; Gomes, Carlos R; Mucha, Ana P

    2017-12-01

    Autochthonous bioaugmentation for metal phytoremediation is still little explored, particularly its application to estuarine salt marshes, but results obtained so far are promising. Nevertheless, understanding the behaviour of the microbial communities in the process of bioaugmentation and their role in improving metal phytoremediation is very important to fully validate the application of this biological technology. This study aimed to characterize the bacterial community dynamic associated with the application of autochthonous bioaugmentation in an experimentation which showed that Phragmites australis rhizosphere microorganisms could increase this salt marsh plant potential to phytoremediate Cu contaminated sediments. Bacterial communities present in the autochthonous microbial consortium resistant to Cu added to the medium and in the sediment at the beginning and at the end of the experiment were characterized by ARISA. Complementarily, the consortium and the sediment used for its production were characterized by next generation sequencing using the pyrosequencing platform 454. The microbial consortium resistant to Cu obtained from non-vegetated sediment was dominated by the genus Lactococcus (46%), Raoultella (25%), Bacillus (12%) and Acinetobacter (11%), whereas the one obtained form rhizosediment was dominated by the genus Gluconacetobacter (77%), Bacillus (17%) and Dyella (3%). Results clearly showed that, after two months of experiment, Cu caused a shift in the bacterial community structure of sediments, an effect that was observed either with or without addition of the metal resistant microbial consortium. Therefore, bioaugmentation application improved the process of phytoremediation (metal translocation by the plant was increased) without inducing long term changes in the bacterial community structure of the sediments. So, phytoremediation combined with autochthonous bioaugmentation can be a suitable technology for the recovery of estuarine areas, contributing for an efficient risk management strategy of these coastal zones. Copyright © 2017. Published by Elsevier Ltd.

  8. Community Composition of Nitrous Oxide-Related Genes in Salt Marsh Sediments Exposed to Nitrogen Enrichment.

    PubMed

    Angell, John H; Peng, Xuefeng; Ji, Qixing; Craick, Ian; Jayakumar, Amal; Kearns, Patrick J; Ward, Bess B; Bowen, Jennifer L

    2018-01-01

    Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated profiles of microbial communities and communities of micro-organisms containing specific nitrogen cycling genes that encode several enzymes ( amoA, norB, nosZ) related to nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms involved in the production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that previously measured rates of nitrous oxide production and consumption are likely the result of changes in community structure, not simply changes in microbial activity.

  9. Vegetation Influences on Tidal Freshwater Marsh Sedimentation and Accretion

    NASA Astrophysics Data System (ADS)

    Cadol, D. D.; Elmore, A. J.; Engelhardt, K.; Palinkas, C. M.

    2011-12-01

    Continued sea level rise, and the potential for acceleration over the next century, threatens low-lying natural and cultural resources throughout the world. In the national capital region of the United States, for example, the National Park Service manages over 50 km^2 of land along the shores of the tidal Potomac River and its tributaries that may be affected by sea level rise. Dyke Marsh Wildlife Preserve on the Potomac River south of Washington, DC, is one such resource with a rich history of scientific investigation. It is a candidate for restoration to replace marsh area lost to dredging in the 1960s, yet for restoration to succeed in the long term, accretion must maintain the marsh surface within the tidal range of rising relative sea level. Marsh surface accretion rates tend to increase with depth in the tidal frame until a threshold depth is reached below which marsh vegetation cannot be sustained. Suspended sediment concentration, salinity, tidal range, and vegetation community all influence the relationship between depth and accretion rate. The complex interactions among these factors make sedimentation rates difficult to generalize across sites. Surface elevation tables (SET) and feldspar marker horizons have been monitored at 9 locations in Dyke Marsh for 5 years, providing detailed data on sedimentation, subsidence, and net accretion rates at these locations. We combine these data with spatially rich vegetation surveys, a LiDAR derived 1-m digital elevation model of the marsh, and temperature-derived inundation durations to model accretion rates across the marsh. Temperature loggers suggest a delayed arrival of tidal water within the marsh relative to that predicted by elevation alone, likely due to hydraulic resistance caused by vegetation. Wave driven coastal erosion has contributed to bank retreat rates of ~2.5 m/yr along the Potomac River side of the marsh while depositing a small berm of material inland of the retreating shoreline. Excluding sites affected by this process yields an average net accretion rate of 3.5 mm/yr, similar to the long term rate of 3-5 mm/yr derived from dated organic material from the base of marsh cores and local sea level rise of 3.8 mm/yr since 1984 recorded at the Washington, DC tide gage. The Potomac River shore sites affected by berm sedimentation average 45 mm/yr of accretion, though the majority of this was deposited as a 20-cm-thick packet in the winter of 2009-2010. Some additional elevation control is provided by a land survey of the marsh performed in 1992 in conjunction with a hydraulic modeling study, which indicates an average of 11 mm/yr of accretion across the marsh. All available evidence suggests that marsh surfaces have the capacity to keep up with sea level rise; however, rapid bank erosion poses a severe threat to the sustainability of the marsh.

  10. Water quality in South San Francisco Bay, California: current condition and potential issues for the South Bay Salt Pond Restoration Project.

    PubMed

    Grenier, J Letitia; Davis, Jay A

    2010-01-01

    The SBSPRP is an extensive tidal wetland restoration project that is underway at the margin of South San Francisco Bay, California. The Project, which aims to restore former salt ponds to tidal marsh and manage other ponds for water bird support, is taking place in the context of a highly urbanized watershed and an Estuary already impacted by chemical contaminants. There is an intimate relationship between water quality in the watershed, the Bay, and the transitional wetland areas where the Project is located. The Project seeks to restore habitat for endangered and endemic species and to provide recreational opportunities for people. Therefore, water quality and bioaccumulation of contaminants in fish and wildlife is an important concern for the success of the Project. Mercury, PCBs, and PBDEs are the persistent contaminants of greatest concern in the region. All of these contaminants are present at elevated concentrations both in the abiotic environment and in wildlife. Dioxins, pyrethroids, PAHs, and selenium are also problematic. Organochlorine insecticides have historically impacted the Bay, and they remain above thresholds for concern in a small proportion of samples. Emerging contaminants, such as PFCs and non-PBDE flame retardants, are also an important water quality issue. Beyond chemical pollutants, other concerns for water quality in South San Francisco Bay exist, and include biological constituents, especially invasive species, and chemical attributes, such as dissolved oxygen and salinity. Future changes, both from within the Project and from the Bay and watershed, are likely to influence water quality in the region. Project actions to restore wetlands could worsen, improve, or not affect the already impaired water quality in South Bay. Accelerated erosion of buried sediment as a consequence of Project restoration actions is a potentially serious regional threat to South Bay water and sediment quality. Furthermore, the planned restoration of salt ponds to tidal marsh has raised concerns about possible increased net production of methylmercury and its subsequent accumulation in the food web. This concern applies not only to the restored marshes, but also to the South Bay as a whole, which could be affected on a regional scale. The ponds that are converted to tidal marsh will sequester millions of cubic meters of sediment. Sequestration of sediment in marshes could remove contaminated sediment from the active zone of the Bay but could also create marshes with contaminated food webs. Some of the ponds will not be restored to marsh but will be managed for use by water birds. Therefore, the effect of dense avian populations on eutrophication and the introduction of pathogens should be considered. Water quality in the Project also could be affected by external changes, such as human population growth and climate change. To address these many concerns related to water quality, the SBSPRP managers, and others faced with management of wetland restoration at a regional scale, should practice adaptive management and ongoing monitoring for water quality, particularly monitoring bioaccumulation of contaminants in the food web.

  11. Unconstrained Structural Equation Models of Latent Interactions: Contrasting Residual- and Mean-Centered Approaches

    ERIC Educational Resources Information Center

    Marsh, Herbert W.; Wen, Zhonglin; Hau, Kit-Tai; Little, Todd D.; Bovaird, James A.; Widaman, Keith F.

    2007-01-01

    Little, Bovaird and Widaman (2006) proposed an unconstrained approach with residual centering for estimating latent interaction effects as an alternative to the mean-centered approach proposed by Marsh, Wen, and Hau (2004, 2006). Little et al. also differed from Marsh et al. in the number of indicators used to infer the latent interaction factor…

  12. Nitrogen Over-enrichment Effects on Belowground Structure in Coastal Wetlands and Implications for Delivery of Ecosysytem Services

    EPA Science Inventory

    Salt marshes supply many ecosystem services, such as fish, crab and bird habitat, flood abatement and carbon sequestration. Since salt marshes function as a moderating buffer between ocean and land, they are one of the first lines of defense to absorb the effects of sea level ris...

  13. A Framework for the Ecogeomorphological Modelling of the Macquarie Marshes, Australia

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. F.; Seoane Salazar, M.; Sandi Rojas, S.; Saco, P. M.; Riccardi, G.; Saintilan, N.; Wen, L.

    2014-12-01

    The Macquarie Marshes is a system of permanent and semi-permanent marshes, swamps and lagoons interconnected by braided channels. The Marshes are located in the semi-arid region in north western NSW, Australia, and constitute part of the northern Murray-Darling Basin. The wetland complex serves as nesting place and habitat for many species of water birds, fish, frogs and crustaceans, and portions of the Marshes was listed as internationally important under the Ramsar Convention. Over the last four decades, some of the wetlands have undergone degradation, which has been attributed to flow abstraction and regulation at Burrendong Dam upstream of the marshes. Among the many characteristics that make this wetland system unique is the occurrence of channel breakdown and channel avulsion, which are associated with decline of river flow in the downstream direction typical of dryland streams. Decrease in river flow can lead to sediment deposition, decrease in channel capacity, vegetative invasion of the channel, overbank flows, and ultimately result in channel breakdown and changes in marsh formation. A similar process on established marshes may also lead to channel avulsion and marsh abandonment. All the previous geomorphological evolution processes have an effect on the established ecosystem, which will produce feedbacks on the hydrodynamics of the system and affect the geomorphology in return. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological framework that combines hydrodynamic, vegetation and channel evolution modules. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological changes. Regular updates of stream network, floodplain surface elevations and vegetation coverage provide feedbacks to the hydrodynamic model. We perform preliminary tests by running continuous simulation over several years and compare the results to existing hydrological, vegetation and geomorphological data to assess the model capabilities and limitations. We also analyse the effects of the implementation of a number of water management strategies.

  14. Linking multi-temporal satellite imagery to coastal wetland dynamics and bird distribution

    USGS Publications Warehouse

    Pickens, Bradley A.; King, Sammy L.

    2014-01-01

    Ecosystems are characterized by dynamic ecological processes, such as flooding and fires, but spatial models are often limited to a single measurement in time. The characterization of direct, fine-scale processes affecting animals is potentially valuable for management applications, but these are difficult to quantify over broad extents. Direct predictors are also expected to improve transferability of models beyond the area of study. Here, we investigated the ability of non-static and multi-temporal habitat characteristics to predict marsh bird distributions, while testing model generality and transferability between two coastal habitats. Distribution models were developed for king rail (Rallus elegans), common gallinule (Gallinula galeata), least bittern (Ixobrychus exilis), and purple gallinule (Porphyrio martinica) in fresh and intermediate marsh types in the northern Gulf Coast of Louisiana and Texas, USA. For model development, repeated point count surveys of marsh birds were conducted from 2009 to 2011. Landsat satellite imagery was used to quantify both annual conditions and cumulative, multi-temporal habitat characteristics. We used multivariate adaptive regression splines to quantify bird-habitat relationships for fresh, intermediate, and combined marsh habitats. Multi-temporal habitat characteristics ranked as more important than single-date characteristics, as temporary water was most influential in six of eight models. Predictive power was greater for marsh type-specific models compared to general models and model transferability was poor. Birds in fresh marsh selected for annual habitat characterizations, while birds in intermediate marsh selected for cumulative wetness and heterogeneity. Our findings emphasize that dynamic ecological processes can affect species distribution and species-habitat relationships may differ with dominant landscape characteristics.

  15. A comparison of resident fish assemblages in managed and unmanaged coastal wetlands in North Carolina and South Carolina

    USGS Publications Warehouse

    Robinson, Kelly F.; Jennings, Cecil A.

    2014-01-01

    The dominant fish species within impounded coastal wetlands in the southeastern US may be different from the species that dominate natural marshes. We tested the hypothesis that resident fish assemblages inhabiting impounded coastal wetlands in South Carolina would differ from resident assemblages in natural marshes of the southeastern United States. We used rarefied species richness, Shannon's H' diversity,J' evenness, Morisita's index of similarity, and the percent similarity index to compare resident fish assemblages from two impoundments to 12 open-marsh resident fish assemblages from previously published studies in North and South Carolina. We used rotenone to sample fish assemblages in impoundments. The assemblages in natural marsh habitat had been sampled with rotenone and seines. We classified comparisons yielding a similarity index ≥0.50 as moderately similar and those with an index ≥0.75 as very similar. Fifty-three percent of the among-impoundment comparisons (Morisita's index) were at least moderately similar, whereas 7% of impoundment—natural marsh comparisons were moderately similar. A difference in tidal influence was the only parameter in the best-fitting model describing the observed Morisita's indices. The index of similarity decreased by 63% when tidal influence differed between compared assemblages. Species richness and diversity were greater in impoundments than natural marshes, but evenness was similar between habitat types. Our results support the hypothesis that resident fish assemblages in impounded wetlands and natural marshes are different, and suggest that a degree of tidal influence is the most important factor behind the difference.

  16. On the Lateral Retreat of Salt Marshes: Field Monitoring in the Venice Lagoon (Italy)

    NASA Astrophysics Data System (ADS)

    Solari, L.; Bendoni, M.; Mel, R.; Oumeraci, H.; Francalanci, S.; Lanzoni, S.

    2014-12-01

    Salt marshes are geomorphic structures located in ecotone environments such as lagoon and estuaries, providing lot of ecosystem services to local population. In the last decades they are disappearing due to several factors such as sea level rise, subsidence and edge erosion due to surface waves. The latter is likely the chief mechanism modeling marsh boundaries and leading to the loss of wide marsh areas. In the case of the Venice Lagoon, from the beginning of the last century, the whole salt marsh surface has more than halved and trends indicate that the salt marshes might completely disappear over the next 50 years. Here, we present a field monitoring activity that we are currently carrying out on a retreating salt marsh located in the north part of the Lagoon of Venice (Italy). The marsh is subject to North-East (Bora) wind. Marsh area loss during the last decades has been documented through the comparison of georeferenced aerial photographs showing a retreat rate of the order of 1 m/year. Field measurements started by the end of November 2013 and consist of: salt marsh bank geometry at different cross-sections and wave climate in the lagoon about 30 m in front of the salt marsh. Erosion data are obtained by means of erosion pins located horizontally on the marsh scarp; at higher banks (about 0.9 m), two pins are located along the same vertical direction, for lower banks (about 0.4m), only one pin is employed. Significant wave height has been measured during three storm surges by means of pressure transducers (Pts). The measured wave climate in front of the bank was then put into relationship with the offshore wave climate estimated using wind data (intensity and direction) and bathymetric data. Wind intensity and direction is measured hourly by several measurement stations located in the Lagoon of Venice. In this way, it is possible to extrapolate wave climate hourly at the monitored marsh and calculate the wave power that acted on the bank in a given time interval. Field survey revealed that the main retreating mechanisms are particle by particle erosion alternated to cantilever failures. Preliminary results show a linear relationship between erosion rate and wave energy flux and the existence of a critical threshold for the onset of erosion.

  17. Utilizing remote sensing of Thematic Mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, J. A.; May, L. N., Jr.; Rosenthal, A.; Baumann, R. H.; Gosselink, J. G.

    1986-01-01

    LANDSAT thematic mapper (TM) data are being used to refine and validate a stochastic spatial computer model to be applied to coastal resource management problems in Louisiana. Two major aspects of the research are: (1) the measurement of area of land (or emergent vegetation) and water and the length of the interface between land and water in TM imagery of selected coastal wetlands (sample marshes); and (2) the comparison of spatial patterns of land and water in the sample marshes of the imagery to that in marshes simulated by a computer model. In addition to activities in these two areas, the potential use of a published autocorrelation statistic is analyzed.

  18. Biogeochemical processes in an urban, restored wetland of San Francisco Bay, California, 2007-2009; methods and data for plant, sediment and water parameters

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Agee, Jennifer L.; Kieu, Le H.; Kakouros, Evangelos; Erikson, Li H.; Ward, Kristen

    2010-01-01

    The restoration of 18 acres of historic tidal marsh at Crissy Field has had great success in terms of public outreach and visibility, but less success in terms of revegetated marsh sustainability. Native cordgrass (Spartina foliosa) has experienced dieback and has failed to recolonize following extended flooding events during unintended periodic closures of its inlet channel, which inhibits daily tidal flushing. We examined the biogeochemical impacts of these impoundment events on plant physiology and on sulfur and mercury chemistry to help the National Park Service land managers determine the relative influence of these inlet closures on marsh function. In this comparative study, we examined key pools of sulfur, mercury, and carbon compounds both during and between closure events. Further, we estimated the net hydrodynamic flux of methylmercury and total mercury to and from the marsh during a 24-hour diurnal cycle. This report documents the methods used and the data generated during the study.

  19. Full-waveform and discrete-return lidar in salt marsh environments: An assessment of biophysical parameters, vertical uncertatinty, and nonparametric dem correction

    NASA Astrophysics Data System (ADS)

    Rogers, Jeffrey N.

    High-resolution and high-accuracy elevation data sets of coastal salt marsh environments are necessary to support restoration and other management initiatives, such as adaptation to sea level rise. Lidar (light detection and ranging) data may serve this need by enabling efficient acquisition of detailed elevation data from an airborne platform. However, previous research has revealed that lidar data tend to have lower vertical accuracy (i.e., greater uncertainty) in salt marshes than in other environments. The increase in vertical uncertainty in lidar data of salt marshes can be attributed primarily to low, dense-growing salt marsh vegetation. Unfortunately, this increased vertical uncertainty often renders lidar-derived digital elevation models (DEM) ineffective for analysis of topographic features controlling tidal inundation frequency and ecology. This study aims to address these challenges by providing a detailed assessment of the factors influencing lidar-derived elevation uncertainty in marshes. The information gained from this assessment is then used to: 1) test the ability to predict marsh vegetation biophysical parameters from lidar-derived metrics, and 2) develop a method for improving salt marsh DEM accuracy. Discrete-return and full-waveform lidar, along with RTK GNSS (Real-time Kinematic Global Navigation Satellite System) reference data, were acquired for four salt marsh systems characterized by four major taxa (Spartina alterniflora, Spartina patens, Distichlis spicata, and Salicornia spp.) on Cape Cod, Massachusetts. These data were used to: 1) develop an innovative combination of full-waveform lidar and field methods to assess the vertical distribution of aboveground biomass as well as its light blocking properties; 2) investigate lidar elevation bias and standard deviation using varying interpolation and filtering methods; 3) evaluate the effects of seasonality (temporal differences between peak growth and senescent conditions) using lidar data flown in summer and spring; 4) create new products, called Relative Uncertainty Surfaces (RUS), from lidar waveform-derived metrics and determine their utility; and 5) develop and test five nonparametric regression model algorithms (MARS -- Multivariate Adaptive Regression, CART -- Classification and Regression Trees, TreeNet, Random Forests, and GPSM -- Generalized Path Seeker) with 13 predictor variables derived from both discrete and full waveform lidar sources in order to develop a method of improving lidar DEM quality. Results of this study indicate strong correlations for Spartina alterniflora (r > 0.9) between vertical biomass (VB), the distribution of vegetation biomass by height, and vertical obscuration (VO), the measure of the vertical distribution of the ratio of vegetation to airspace. It was determined that simple, feature-based lidar waveform metrics, such as waveform width, can provide new information to estimate salt marsh vegetation biophysical parameters such as vegetation height. The results also clearly illustrate the importance of seasonality, species, and lidar interpolation and filtering methods on elevation uncertainty in salt marshes. Relative uncertainty surfaces generated from lidar waveform features were determined useful in qualitative/visual assessment of lidar elevation uncertainty and correlate well with vegetation height and presence of Spartina alterniflora. Finally, DEMs generated using full-waveform predictor models produced corrections (compared to ground based RTK GNSS elevations) with R2 values of up to 0.98 and slopes within 4% of a perfect 1:1 correlation. The findings from this research have strong potential to advance tidal marsh mapping, research and management initiatives.

  20. Silver nanoparticles uptake by salt marsh plants - Implications for phytoremediation processes and effects in microbial community dynamics.

    PubMed

    Fernandes, Joana P; Mucha, Ana P; Francisco, Telmo; Gomes, Carlos Rocha; Almeida, C Marisa R

    2017-06-15

    This study investigated the uptake of silver nanoparticles (AgNPs) by a salt marsh plant, Phragmites australis, as well as AgNPs effects on rhizospheric microbial community, evaluating the implications for phytoremediation processes. Experiments were carried out with elutriate solution doped with Ag, either in ionic form or in NP form. Metal uptake was evaluated in plant tissues, elutriate solutions and sediments (by AAS) and microbial community was characterized in terms of bacterial community structure (evaluated by ARISA). Results showed Ag accumulation but only in plant belowground tissues and only in the absence of rhizosediment, the presence of sediment reducing Ag availability. But in plant roots Ag accumulation was higher when Ag was in NP form. Multivariate analysis of ARISA profiles showed significant effect of the absence/presence of Ag either in ionic or NP form on microbial community structure, although without significant differences among bacterial richness and diversity. Overall, P. australis can be useful for phytoremediation of medium contaminated with Ag, including with AgNPs. However, the presence of Ag in either forms affected the microbial community structure, which may cause disturbances in ecosystems function and compromise phytoremediation processes. Such considerations need to be address regarding environmental management strategies applied to the very important estuarine areas. The form in which the metal was added affected metal uptake by Phragmites australis and rhizosediment microbial community structure, which can affect phytoremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Factors that influence vital rates of Seaside and Saltmarsh sparrows in coastal New Jersey, USA

    PubMed Central

    Roberts, Samuel G.; Longenecker, Rebecca A.; Etterson, Matthew A.; Ruskin, Katharine J.; Elphick, Chris S.; Olsen, Brian J.; Shriver, W. Gregory

    2018-01-01

    As saltmarsh habitat continues to disappear, understanding the factors that influence saltmarsh breeding bird population dynamics is an important step for the conservation of these declining species. Using five years (2011 – 2015) of demographic data, we evaluated and compared Seaside (Ammodramus maritimus) and Saltmarsh (A. caudacutus) sparrow apparent adult survival and nest survival at the Edwin B. Forsythe National Wildlife Refuge, New Jersey, USA. We determined the effect of site management history (unditched vs. ditched marsh) on adult and nest survival to aid in prioritizing future management or restoration actions. Seaside Sparrow apparent adult survival (61.6%, 95% CI: 52.5 – 70.0%) averaged >1.5 times greater than Saltmarsh Sparrow apparent adult survival (39.9%, 95% CI: 34.0 – 46.2%). Nest survival and predation and flooding rates did not differ between species, and predation was the primary cause of failure for both species. Apparent adult survival and nest survival did not differ between unditched and ditched marshes for either species, indicating that marsh ditching history may not affect breeding habitat quality for these species. With predation as the primary cause of nest failure for both species in New Jersey, we suggest that future research should focus on identification of predator communities in salt marshes and the potential for implementing predator-control programs to limit population declines. PMID:29479129

  2. Differences in sedge fen vegetation upstream and downstream from a managed impoundment

    USGS Publications Warehouse

    Kowalski, Kurt P.; Wilcox, Douglas A.

    2003-01-01

    The U.S. Fish and Wildlife Service proposed the restoration of wetlands impacted by a series of drainage ditches and pools located in an extensive undeveloped peatland in the Seney National Wildlife Refuge, Michigan. This study examined the nature and extent of degradation to the Marsh Creek wetlands caused by alteration of natural hydrology by a water-storage pool (C-3 Pool) that intersects the Marsh Creek channel. We tested the hypothesis that a reduction in moderate-intensity disturbance associated with natural water-level fluctuations below the C-3 dike contributed to lower species richness, reduced floristic quality and a larger tree and shrub component than vegetation upstream from the pool. Wetland plant communities were sampled quantitatively and analyzed for species richness, floristic quality and physiognomy. Aerial photographs, GIS databases and GPS data contributed to the characterization and analysis of the Marsh Creek wetlands. Results showed that there was lower species richness in vegetated areas downstream from the pool, but not the anticipated growth in shrubs. Wetland vegetation upstream and downstream from the pool had similar floristic quality, except for a greater number of weedy taxa above the pool. Seepage through the pool dike and localized ground-water discharge created conditions very similar to those observed around beaver dams in Marsh Creek. In essence, the dike containing the C-3 Pool affected hydrology and wetland plant communities in a manner similar to an enormous beaver dam, except that it did not allow seasonal flooding episodes to occur. Management actions to release water from the pool into the original Marsh Creek channel at certain times and in certain amounts that mimic the natural flow regime would be expected to promote greater plant species richness and minimize the negative impacts of the dike.

  3. Morphological acclimation and growth of ash (Fraxinus pennsylvanica Marsh.) advance regeneration following overstory harvesting in a Mississippi River floodplain forest

    Treesearch

    Alexander Sinz; Emmile S. Gardiner; Brian R. Lockhart; Ray A. Souter

    2011-01-01

    Stand-level growth responses and plant-level patterns of biomass accumulation and distribution were examined to learn how stand structure influences morphological acclimation and growth of green ash (Fraxinus pennsylvanica Marsh.) advance regeneration following overstory harvesting. Nine, 20-ha plots that received clearcut harvesting (100% basal area removal), partial...

  4. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium.

    PubMed

    Teixeira, Catarina; Almeida, C Marisa R; Nunes da Silva, Marta; Bordalo, Adriano A; Mucha, Ana P

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Vegetation cover, tidal amplitude and land area predict short-term marsh vulnerability in Coastal Louisiana

    USGS Publications Warehouse

    Schoolmaster, Donald; Stagg, Camille L.; Sharp, Leigh Anne; McGinnis, Tommy S.; Wood, Bernard; Piazza, Sarai

    2018-01-01

    The loss of coastal marshes is a topic of great concern, because these habitats provide tangible ecosystem services and are at risk from sea-level rise and human activities. In recent years, significant effort has gone into understanding and modeling the relationships between the biological and physical factors that contribute to marsh stability. Simulation-based process models suggest that marsh stability is the product of a complex feedback between sediment supply, flooding regime and vegetation response, resulting in elevation gains sufficient to match the combination of relative sea-level rise and losses from erosion. However, there have been few direct, empirical tests of these models, because long-term datasets that have captured sufficient numbers of marsh loss events in the context of a rigorous monitoring program are rare. We use a multi-year data set collected by the Coastwide Reference Monitoring System (CRMS) that includes transitions of monitored vegetation plots to open water to build and test a predictive model of near-term marsh vulnerability. We found that despite the conclusions of previous process models, elevation change had no ability to predict the transition of vegetated marsh to open water. However, we found that the processes that drive elevation change were significant predictors of transitions. Specifically, vegetation cover in prior year, land area in the surrounding 1 km2 (an estimate of marsh fragmentation), and the interaction of tidal amplitude and position in tidal frame were all significant factors predicting marsh loss. This suggests that 1) elevation change is likely better a predictor of marsh loss at time scales longer than we consider in this study and 2) the significant predictive factors affect marsh vulnerability through pathways other than elevation change, such as resistance to erosion. In addition, we found that, while sensitivity of marsh vulnerability to the predictive factors varied spatially across coastal Louisiana, vegetation cover in prior year was the best single predictor of subsequent loss in most sites followed by changes in percent land and tidal amplitude. The model’s predicted land loss rates correlated well with land loss rates derived from satellite data, although agreement was spatially variable. These results indicate 1) monitoring the loss of small scale vegetation plots can inform patterns of land loss at larger scales 2) the drivers of land loss vary spatially across coastal Louisiana, and 3) relatively simple models have potential as highly informative tools for bioassessment, directing future research, and management planning.

  6. Modeling the Impact of Boat Wakes on Living Shoreline Structures in Florida Intracoastal Waters

    NASA Astrophysics Data System (ADS)

    Herbert, D.; Astrom, E.; Bersoza, A.; Wasman, S.; Angelini, C.; Sheremet, A.

    2017-12-01

    Increased boating activity has driven morphological and biological changes along the coasts of estuarine environments. Large, recurrent boat wakes impede the growth of oyster reefs and salt marsh vegetation, which both serve as natural protection against erosion. A NOAA-funded experiment along a section of the Intracoastal Waterway at Guana Tolomato Matanzas National Estuarine Research Reserve (GTMNERR) near St. Augustine, Florida, studies the effectiveness of a living shorelines approach in mitigating the erosional impact of high-energy boat wakes. Living shorelines are a natural shoreline stabilization technique, where plants or organic structures are installed on the coastline. This study utilizes a combination of oyster gabions and porous breakwaters to facilitate oyster growth as well as marsh progradation. We present observations of flow and sediment transport associated with boat activity. Numerical simulations are used to evaluate the performance of the breakwaters and their effectiveness in reducing sediment resuspension and transport on the marsh surface.

  7. Effects of hydrologic connectivity and environmental nariables on nekton assemblage in a coastal marsh system

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Hydrologic connectivity and environmental variation can influence nekton assemblages in coastal ecosystems. We evaluated the effects of hydrologic connectivity (permanently connected pond: PCP; temporary connected pond: TCP), salinity, vegetation coverage, water depth and other environmental variables on seasonal nekton assemblages in freshwater, brackish, and saline marshes of the Chenier Plain, Louisiana, USA. We hypothesize that 1) nekton assemblages in PCPs have higher metrics (density, biomass, assemblage similarity) than TCPs within all marsh types and 2) no nekton species would be dominant across all marsh types. In throw traps, freshwater PCPs in Fall (36.0 ± 1.90) and Winter 2009 (43.2 ± 22.36) supported greater biomass than freshwater TCPs (Fall 2009: 9.1 ± 4.65; Winter 2009: 8.3 ± 3.42). In minnow traps, saline TCPs (5.9 ± 0.85) in Spring 2009 had higher catch per unit effort than saline PCPs (0.7 ± 0.67). Our data only partially support our first hypothesis as freshwater marsh PCPs had greater assemblage similarity than TCPs. As predicted by our second hypothesis, no nekton species dominated across all marsh types. Nekton assemblages were structured by individual species responses to the salinity gradient as well as pond habitat attributes (submerged aquatic vegetation coverage, dissolved oxygen, hydrologic connectivity).

  8. Microspatial ecotone dynamics at a shifting range limit: plant–soil variation across salt marsh–mangrove interfaces

    USGS Publications Warehouse

    Yando, Erik S.; Osland, Michael J.; Hester, Mark H.

    2018-01-01

    Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh–mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant–soil dynamics across the salt marsh–mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.

  9. Secretive marsh aird species co-eccurrences and habitat associations across the midwest, USA

    USGS Publications Warehouse

    Bolenbaugh, Jason R.; Krementz, David G.; Lehnen, Sarah E.

    2011-01-01

    Because secretive marsh birds are difficult to detect, population status and habitat use for these birds are not well known. We conducted repeated surveys for secretive marsh birds across 264 sites in the Upper Mississippi River and Great Lakes Joint Venture region to estimate abundance, occupancy, and detection probabilities during the 2008 and 2009 breeding seasons. We identified species groups based on observed species co-occurrences. Two species, least bittern Ixobrychus exilis and American bittern Botaurus lentiginosus, co-occurred with other species less often than expected by chance, and two species groups, rails (Virginia rail Rallus limicola and sora Porzana carolina) and open-water birds (pied-billed grebe Podilymbus podiceps, common moorhen Gallinula chloropus, and American coot Fulica americana; coots were only surveyed in 2009), co-occurred more often than expected by chance. These groupings were consistent between years. We then estimated the relation of these species and groups to landscape and local site characteristics by using zero-inflated abundance models that accounted for incomplete detection. At the landscape level (5-km radius), the amount of emergent herbaceous wetland was positively associated with least bittern occupancy, whereas the amount of woody wetland was negatively associated with least bittern, rail, and open-water bird occupancy. At the local level, habitat variables that were associated with abundance were not consistent among groups or between years, with the exception that both least bitterns and open-water birds had a strong positive association between abundance and water-vegetation interspersion. Land managers interested in marsh bird management or conservation may want to consider focusing efforts on landscapes with high amounts of emergent herbaceous wetland and low amounts of woody wetland, and managing for high amounts of water-vegetation interspersion within the wetland.

  10. 75 FR 6872 - Aransas National Wildlife Refuge Complex, Aransas, Calhoun, and Refugio Counties, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-12

    ... and freshwater marshes. Management efforts focus on protecting, enhancing, and restoring Refuge habitats and water management for the benefit of important fish and wildlife resources. Aransas NWRC was... the system is ``for use as an inviolate sanctuary, or any other management purpose, for migratory...

  11. Hydrology and cycling of nitrogen and phosphorus in Little Bean Marsh : a remnant riparian wetland along the Missouri River in Platte County, Missouri, 1996-97

    USGS Publications Warehouse

    Blevins, Dale W.

    2004-01-01

    The lack of concurrent water-quality and hydrologic data on riparian wetlands in the Midwestern United States has resulted in a lack of knowledge about the water-quality functions that these wetlands provide. Therefore, Little Bean Marsh, a remnant riparian wetland along the Missouri River, was investigated in 1996 and 1997 primarily to determine the magnitude and character of selected water-quality benefits that can be produced in such a wetland and to identify critical processes that can be managed in remnant or restored riparian wetlands for amelioration of water quality. Little Bean Marsh averages 69 hectares in size, has a maximum depth of about 1 meter, and the majority of the marsh is covered by macrophytes. In 1997, 41 percent of the water received by Little Bean Marsh was from direct precipitation, 14 percent was from ground-water seepage, 30 percent from watershed runoff, and 15 percent was backflow from Bean Lake. Although, Little Bean Marsh was both a ground-water recharge and discharge area, discharge to the marsh was three times the recharge to ground water. Ground-water levels closely tracked marsh water levels indicating a strong hydraulic connection between ground water and the marsh. Reduced surface runoff and ground-water availability are stabilizing influences on marsh hydrology and probably contribute to the persistence of emergent vegetation. The rapid hydraulic connection between Little Bean Marsh and ground water indicates that the hydrologic regime of most wetlands along the lower Missouri River is largely a function of the altitude of the marsh bottom relative to the altitude of the water table. More water was lost from the marsh through evapotranspiration (59 percent) than all other pathways combined. This is partially because the transpiration process of abundant macrophytes can greatly contribute to the evapotranspiration above that lost from open water surfaces. Surface outflow accounted for 36 percent and ground-water seepage accounted for only 5 percent of the losses. Large residence times allows the marsh to greatly affect water quality before water escapes as ground-water recharge or surface outflow. The shallowness of Little Bean Marsh and ion exclusion during ice formation caused the highest specific conductances of 1,100 to 1,300 microsiemens per centimeter at 25 degrees Celsius to occur during the winter. This concentration of dissolved solutes under ice can make wetlands more vulnerable to toxic contaminants than deeper surface-water bodies. Dissolved oxygen was less than 5 mg/L (milligrams per liter) for 3 to 4 months and near 0 mg/L for about 1 month in summer. Despite depths of less than 1 meter, temperature stratification persisted more than 3 months during the summers of 1996 and 1997, preventing mixing and contributing to periods of anoxia. Shallow depths and extended periods of anoxia in the marsh limit the ability of some organisms to escape high-temperature stress. Turbidity in Little Bean Marsh usually was low for several reasons: sediment loadings from the largely flood-plain drainage were low, emergent vegetation shade out algae and shield the water from wind, and high concentrations of bivalent cations increase flocculation rates of inorganic suspended material. The high concentrations of bivalent cations was largely because of a substantial amount of ground-water seepage into the marsh. Dissolved organic nitrogen was the dominant nitrogen species in Little Bean Marsh. Denitrification and biotic uptake kept more than 62 percent of nitrate (NO3) and 43 percent of ammonium (NH4) concentrations in marsh samples less than a detection limit of 0.005 mg/L. This contrasts with the Missouri River where inorganic NO3 dominates. Consequently, artificial flood-plain drainage that bypasses riparian wetlands likely deliver substantially more biotically available inorganic nitrogen to receiving waters than surface water that has been routed through a remnant wetland. Aver

  12. Patterns of fish use and piscivore abundance within a reconnected saltmarsh impoundment in the northern Indian River Lagoon, Florida

    USGS Publications Warehouse

    Stevens, Philip W.; Montague, C.L.; Sulak, K.J.

    2006-01-01

    Nearly all saltmarshes in east-central, Florida were impounded for mosquito control during the 1960s. The majority of these marshes have since been reconnected to the estuary by culverts, providing an opportunity to effectively measure exchange of aquatic organisms. A multi-gear approach was used monthly to simultaneously estimate fish standing stock (cast net), fish exchange with the estuary (culvert traps), and piscivore abundance (gill nets and bird counts) to document patterns of fish use in a reconnected saltmarsh impoundment. Changes in saltmarsh fish abundance, and exchange of fish with the estuary reflected the seasonal pattern of marsh flooding in the northern Indian River Lagoon system. During a 6-month period of marsh flooding, resident fish had continuous access to the marsh surface. Large piscivorous fish regularly entered the impoundment via creeks and ditches to prey upon small resident fish, and piscivorous birds aggregated following major fish movements to the marsh surface or to deep habitats. As water levels receded in winter, saltmarsh fish concentrated into deep habitats and emigration to the estuary ensued (200% greater biomass left the impoundment than entered). Fish abundance and community structure along the estuary shoreline (although fringed with marsh vegetation) were not analogous to marsh creeks and ditches. Perimeter ditches provided deep-water habitat for large estuarine predators, and shallow creeks served as an alternative habitat for resident fish when the marsh surface was dry. Use of the impoundment as nursery by transients was limited to Mugil cephalus Linnaeus, but large juvenile and adult piscivorous fish used the impoundment for feeding. In conclusion, the saltmarsh impoundment was a feeding site for piscivorous fish and birds, and functioned as a net exporter of forage fish to adjacent estuarine waters. ?? Springer 2006.

  13. Using Imaging Spectroscopy to Map Changing Distributions of Dominant Species in Oil-Contaminated Salt Marshes of Louisiana

    NASA Astrophysics Data System (ADS)

    Beland, M. C.; Roberts, D. A.; Peterson, S.; Biggs, T. W.; Kokaly, R. F.; Piazza, S.; Roth, K. L.; Khanna, S.; Ustin, S.

    2016-12-01

    The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to differentiate plant species. However, obtaining satisfactory and consistent classification accuracies over time is a major challenge, particularly in dynamic intertidal landscapes. Here, we develop and evaluate an image classification system for a time series of AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using field-referenced image endmembers and canonical discriminant analysis (CDA), we classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification results were evaluated using ground surveys that were conducted contemporaneously to AVIRIS collection dates. We analyzed changes in dominant species cover from 2010-2012 for oiled and non-oiled shorelines. CDA discriminated dominant species with a high level of accuracy (overall accuracy = 82%, kappa = 0.78) and consistency over three imaging dates (overall2010 = 82%, overall2011 = 82%, overall2012 = 88%). Marshes dominated by Spartina alterniflora were the most spatially abundant in shoreline zones (≤ 28m from shore) for all three dates (2010 = 79%, 2011 = 61%, 2012 = 63%), followed by Juncus roemerianus (2010 = 11%, 2011 = 19%, 2012 = 17%) and Distichlis spicata (2010 = 4%, 2011 = 10%, 2012 = 7%). Marshes that were heavily contaminated with oil exhibited variable responses from 2010-2012. Marsh vegetation classes converted to a subtidal, open water class along oiled and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss along oil-contaminated shorelines doubled that of non-oiled shorelines. Only Spartina alterniflora dominated marshes were extensively degraded, losing 15% (354,604 m2) cover in oiled shoreline zones, suggesting that Spartina alterniflora marshes may be more vulnerable to shoreline erosion following hydrocarbon stress, due to their landscape position.

  14. Microbial community analysis of an Alabama coastal salt marsh impacted by the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Beazley, M. J.; Martinez, R.; Rajan, S.; Powell, J.; Piceno, Y.; Tom, L.; Andersen, G. L.; Hazen, T. C.; Van Nostrand, J. D.; Zhou, J.; Mortazavi, B.; Sobecky, P. A.

    2011-12-01

    Microbial community responses of an Alabama coastal salt marsh environment to the Deepwater Horizon oil spill were studied by 16S rRNA (PhyloChip) and functional gene (GeoChip) microarray-based analysis. Oil and tar balls associated with the oil spill arrived along the Alabama coast in June 2010. Marsh and inlet sediment samples collected in June, July, and September 2010 from a salt marsh ecosystem at Point Aux Pines Alabama were analyzed to determine if bacterial community structure changed as a result of oil perturbation. Sediment total petroleum hydrocarbon (TPH) concentrations ranged from below detection to 189 mg kg-1 and were randomly dispersed throughout the salt marsh sediments. Total DNA extracted from sediment and particulates were used for PhyloChip and GeoChip hybridization. A total of 4000 to 8000 operational taxonomic units (OTUs) were detected in marsh and inlet samples. Distinctive changes in the number of detectable OTUs were observed between June, July, and September 2010. Surficial inlet sediments demonstrated a significant increase in the total number of OTUs between June and September that correlated with TPH concentrations. The most significant increases in bacterial abundance were observed in the phyla Actinobacteria, Firmicutes, Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. Bacterial richness in marsh sediments also correlated with TPH concentrations with significant changes primarily in Acidobacteria, Actinobacteria, Firmicutes, Fusobacteria, Nitrospirae, and Proteobacteria. GeoChip microarray analysis detected 5000 to 8300 functional genes in marsh and inlet samples. Surficial inlet sediments demonstrated distinctive increases in the number of detectable genes and gene signal intensities in July samples compared to June. Signal intensities increased (> 1.5-fold) in genes associated with petroleum degradation. Genes related to metal resistance, stress, and carbon cycling also demonstrated increases in oiled sediments. This study demonstrates the value of applying phylogenetic and functional gene microarray technology to characterize the extensive microbial diversity of marsh environments. Moreover, this technology provides significant insight into bacterial community responses to anthropogenic oil events.

  15. Delineation of marsh types of the Texas coast from Corpus Christi Bay to the Sabine River in 2010

    USGS Publications Warehouse

    Enwright, Nicholas M.; Hartley, Stephen B.; Brasher, Michael G.; Visser, Jenneke M.; Mitchell, Michael K.; Ballard, Bart M.; Parr, Mark W.; Couvillion, Brady R.; Wilson, Barry C.

    2014-01-01

    Coastal zone managers and researchers often require detailed information regarding emergent marsh vegetation types for modeling habitat capacities and needs of marsh-reliant wildlife (such as waterfowl and alligator). Detailed information on the extent and distribution of marsh vegetation zones throughout the Texas coast has been historically unavailable. In response, the U.S. Geological Survey, in cooperation and collaboration with the U.S. Fish and Wildlife Service via the Gulf Coast Joint Venture, Texas A&M University-Kingsville, the University of Louisiana-Lafayette, and Ducks Unlimited, Inc., has produced a classification of marsh vegetation types along the middle and upper Texas coast from Corpus Christi Bay to the Sabine River. This study incorporates approximately 1,000 ground reference locations collected via helicopter surveys in coastal marsh areas and about 2,000 supplemental locations from fresh marsh, water, and “other” (that is, nonmarsh) areas. About two-thirds of these data were used for training, and about one-third were used for assessing accuracy. Decision-tree analyses using Rulequest See5 were used to classify emergent marsh vegetation types by using these data, multitemporal satellite-based multispectral imagery from 2009 to 2011, a bare-earth digital elevation model (DEM) based on airborne light detection and ranging (lidar), alternative contemporary land cover classifications, and other spatially explicit variables believed to be important for delineating the extent and distribution of marsh vegetation communities. Image objects were generated from segmentation of high-resolution airborne imagery acquired in 2010 and were used to refine the classification. The classification is dated 2010 because the year is both the midpoint of the multitemporal satellite-based imagery (2009–11) classified and the date of the high-resolution airborne imagery that was used to develop image objects. Overall accuracy corrected for bias (accuracy estimate incorporates true marginal proportions) was 91 percent (95 percent confidence interval [CI]: 89.2–92.8), with a kappa statistic of 0.79 (95 percent CI: 0.77–0.81). The classification performed best for saline marsh (user’s accuracy 81.5 percent; producer’s accuracy corrected for bias 62.9 percent) but showed a lesser ability to discriminate intermediate marsh (user’s accuracy 47.7 percent; producer’s accuracy corrected for bias 49.5 percent). Because of confusion in intermediate and brackish marsh classes, an alternative classification containing only three marsh types was created in which intermediate and brackish marshes were combined into a single class. Image objects were reattributed by using this alternative three-marsh-type classification. Overall accuracy, corrected for bias, of this more general classification was 92.4 percent (95 percent CI: 90.7–94.2), and the kappa statistic was 0.83 (95 percent CI: 0.81–0.85). Mean user’s accuracy for marshes within the four-marsh-type and three-marsh-type classifications was 65.4 percent and 75.6 percent, respectively, whereas mean producer’s accuracy was 56.7 percent and 65.1 percent, respectively. This study provides a more objective and repeatable method for classifying marsh types of the middle and upper Texas coast at an extent and greater level of detail than previously available for the study area. The seamless classification produced through this work is now available to help State agencies (such as the Texas Parks and Wildlife Department) and landscape-scale conservation partnerships (such as the Gulf Coast Prairie Landscape Conservation Cooperative and the Gulf Coast Joint Venture) to develop and (or) refine conservation plans targeting priority natural resources. Moreover, these data may improve projections of landscape change and serve as a baseline for monitoring future changes resulting from chronic and episodic stressors.

  16. Multispecies benefits of wetland conservation for marsh birds, frogs, and species at risk.

    PubMed

    Tozer, Douglas C; Steele, Owen; Gloutney, Mark

    2018-04-15

    Wetlands conserved using water level manipulation, cattle exclusion, naturalization of uplands, and other techniques under the North American Waterfowl Management Plan ("conservation project wetlands") are important for ducks, geese, and swans ("waterfowl"). However, the assumption that conservation actions for waterfowl also benefit other wildlife is rarely quantified. We modeled detection and occupancy of species at sites within 42 conservation project wetlands compared to sites within 52 similar nearby unmanaged wetlands throughout southern Ontario, Canada, and small portions of the adjacent U.S., using citizen science data collected by Bird Studies Canada's Great Lakes Marsh Monitoring Program, including 2 waterfowl and 13 non-waterfowl marsh-breeding bird species (n = 413 sites) and 7 marsh-breeding frog species (n = 191 sites). Occupancy was significantly greater at conservation project sites compared to unmanaged sites in 7 of 15 (47%) bird species and 3 of 7 (43%) frog species, with occupancy being higher by a difference of 0.12-0.38 across species. Notably, occupancy of priority conservation concern or at-risk Black Tern (Chlidonias niger), Common Gallinule (Gallinula galeata), Least Bittern (Ixobrychus exilis), Sora (Porzana carolina), and Western Chorus Frog (Pseudacris triseriata) was significantly higher at conservation project sites compared to unmanaged sites. The results demonstrate the utility of citizen science to inform wetland conservation, and suggest that actions under the North American Waterfowl Management Plan are effective for conserving non-waterfowl species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Varying Inundation Regimes Differentially Affect Natural and Sand-Amended Marsh Sediments.

    PubMed

    Wigand, C; Sundberg, K; Hanson, A; Davey, E; Johnson, R; Watson, E; Morris, J

    2016-01-01

    Climate change is altering sea level rise rates and precipitation patterns worldwide. Coastal wetlands are vulnerable to these changes. System responses to stressors are important for resource managers and environmental stewards to understand in order to best manage them. Thin layer sand or sediment application to drowning and eroding marshes is one approach to build elevation and resilience. The above- and below-ground structure, soil carbon dioxide emissions, and pore water constituents in vegetated natural marsh sediments and sand-amended sediments were examined at varying inundation regimes between mean sea level and mean high water (0.82 m NAVD88 to 1.49 m NAVD88) in a field experiment at Laws Point, part of the Plum Island Sound Estuary (MA). Significantly lower salinities, pH, sulfides, phosphates, and ammonium were measured in the sand-amended sediments than in the natural sediments. In natural sediments there was a pattern of increasing salinity with increasing elevation while in the sand-amended sediments the trend was reversed, showing decreasing salinity with increasing elevation. Sulfide concentrations generally increased from low to high inundation with highest concentrations at the highest inundation (i.e., at the lowest elevations). High pore water phosphate concentrations were measured at low elevations in the natural sediments, but the sand-amended treatments had mostly low concentrations of phosphate and no consistent pattern with elevation. At the end of the experiment the lowest elevations generally had the highest measures of pore water ammonium. Soil carbon dioxide emissions were greatest in the sand-amended mesocosms and at higher elevations. Differences in coarse root and rhizome abundances and volumes among the sediment treatments were detected with CT imaging, but by 20 weeks the natural and sand-amended treatments showed similar total belowground biomass at the intermediate and high elevations. Although differences in pore water nutrient concentrations, pH, salinity, and belowground root and rhizome morphology were detected between the natural and sand-amended sediments, similar belowground productivity and total biomass were measured by the end of the growing season. Since the belowground productivity supports organic matter accumulation and peat buildup in marshes, our results suggest that thin layer sand or sediment application is a viable climate adaptation action to build elevation and coastal resiliency, especially in areas with low natural sediment supplies.

  18. Integrating Blue Carbon Initiatives with the Management of Wildlife Cobenefits: a Case Study at the Nisqually River Delta, WA

    NASA Astrophysics Data System (ADS)

    Woo, I.; De La Cruz, S.; Windham-Myers, L.; Thorne, K.; Drexler, J. Z.; Byrd, K. B.; Bergamaschi, B. A.; Davis, M.; Anderson, F. E.; Ballanti, L.; Zhu, Z.; Schmerfeld, J.; Johnson, K.; Nakai, G.

    2016-12-01

    Carbon transport, cycling, and storage within coastal wetlands are amongst the most fundamental processes that support estuarine ecosystem services. In addition to providing habitat and trophic support for wildlife populations and fisheries, coastal wetlands accumulate and store carbon at significant rates. By capturing and storing carbon in soils, coastal wetland can play a vital role in offsetting greenhouse gasses, thereby helping mitigate the impacts of climate change. Estuarine restoration has significant potential to simultaneously increase carbon sequestration and ecosystem functioning for wildlife, linking traditional objectives of protecting, restoring, and managing diverse wetlands to support a broad array of species and their habitats with carbon sequestration initiatives. The Nisqually River Delta is the largest wetland restoration in the Pacific Northwest and is an ideal site to document the carbon co-benefits of a restoring and natural marsh. We compared the sources of carbon that enter food webs to carbon that has accumulated in soils. Juvenile Chinook foodwebs incorporated freshwater/brackish as well as estuarine-derived carbon sources. Soil carbon inputs reflected relatively recent estuarine restoration and a century of diked agricultural and fallow field land use history. A Net Ecosystem Carbon Balance will use EC flux towers to quantify CO2 and CH4 atmospheric flux and constrain aqueous dissolved carbon flux in channels. Ultimately, we will assess the resiliency of tidal marsh under past, present, and future sediment delivery scenarios. Past and present sedimentation data will be analyzed from our soil cores. Future scenarios incorporating potential management strategies to increase sediment delivery onto the delta will be leveraged with existing studies of hydrodynamics and sedimentation models. These scenarios will be used as model inputs to assess the viability of marshes as a result of prospective management strategies and sea-level rise. Historical and current imagery using a hierarchical classification framework and object based image classification system will be used to assess habitat change. Future habitat potential will be mapped based on management scenarios, hydrodynamic/sedimentation model outputs, and marsh resiliency model outputs.

  19. Effects of soil abiotic factors on the plant morphology in an intertidal salt marsh, Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Li, Shanze; Cui, Baoshan; Bai, Junhong; Xie, Tian; Yan, Jiaguo; Wang, Qing; Zhang, Shuyan

    2018-02-01

    Plant morphology plays important role in studying biogeography in many ecosystems. Suadea salsa, as a native plant community of northern China and an important habitat for diversity of waterbirds and macrobenthos, has often been overlooked. Nowadays, S. salsa community is facing great loss due to coastal reclamation activities and natural disturbances. To maintain and restore S. salsa community, it's important to address the plant morphology across marsh zones, as well as its relationships with local soil abiotic conditions. In our studied intertidal salt marsh, we found that less flood disturbance frequency, softer soil conditions, rich soil organic matter, total carbon and total nitrogen, lower water depth and water content, less species competition will benefit S. salsa plant in the morphology of high coverage, above-ground biomass, shoot height and leaf length. Lower soil porewater salinity will benefit the below-ground biomass of S. salsa. Thus, we recommend managers help alleviate soil abiotic stresses in the intertidal salt marshes, making the soil conditions more suitable for S. salsa growth and succession.

  20. Utilizing remote sensing of thematic mapper data to improve our understanding of estuarine processes and their influence on the productivity of estuarine-dependent fisheries

    NASA Technical Reports Server (NTRS)

    Browder, Joan A.; May, L. Nelson, Jr.; Rosenthal, Alan; Baumann, Robert H.; Gosselink, James G.

    1987-01-01

    A stochastic spatial computer model addressing coastal resource problems in Lousiana is being refined and validated using thematic mapper (TM) imagery. The TM images of brackish marsh sites were processed and data were tabulated on spatial parameters from TM images of the salt marsh sites. The Fisheries Image Processing Systems (FIPS) was used to analyze the TM scene. Activities were concentrated on improving the structure of the model and developing a structure and methodology for calibrating the model with spatial-pattern data from the TM imagery.

  1. Varying Inundation Regimes Differentially Affect Natural and ...

    EPA Pesticide Factsheets

    Climate change is altering sea-level rise rates and precipitation patterns worldwide. Coastal wetlands are vulnerable to these changes. System responses to stressors are important for resource managers and environmental stewards to understand in order to best manage them. Thin layer sand or sediment application to drowning and eroding marshes is one approach to build elevation and resilience. The above- and below-ground structure, soil carbon dioxide emissions, and pore water constituents in vegetated natural marsh sediments and sand-amended sediments were examined at varying inundation regimes between mean sea level and mean high water (0.82 m NAVD88 to 1.49 m NAVD88) in a field experiment at Laws Point, part of the Plum Island Sound Estuary (MA). Significantly lower salinities, pH, sulfides, phosphates, and ammonium were measured in the sand-amended sediments than in the natural sediments. In natural sediments there was a pattern of increasing salinity with increasing elevation while in the sand-amended sediments the trend was reversed, showing decreasing salinity with increasing elevation. Sulfide concentrations generally increased from low to high inundation with highest concentrations at the highest inundation (i.e., at the lowest elevations). High pore water phosphate concentrations were measured at low elevations in the natural sediments, but the sand-amended treatments had mostly low concentrations of phosphate and no consistent pattern with elevation. A

  2. Strategic Petroleum Reserve, West Hackberry oil storage cavern fire and spill of September 21, 1978: an environmental assessment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, A

    1980-02-29

    This report summarizes an environmental assessment of the fire and oil spill at the Strategic Petroleum Reserve site, West Hackberry, Louisiana. Subjective identification of oil contaminated habitats was supported by a more rigorous classification of samples utilizing discriminant analysis. Fourteen contaminated stations were identified along the shore of Black Lake just north and west of Wellpad 6, encompassing approximately 9 hectares. Seasonal variation in the structures of marsh and lake bottom communities in this contaminated area were not generally distinguishable from that of similar communities in uncontaminated habitats along the southern and southeastern shores of Black Lake. The major impactmore » of spilled oil on the marsh vegetation was to accelerate the natural marsh deterioration which will eventually impact animals dependent on marsh vegetation for habitat structure. Vanadium, the predominate trace metal in the oil, and pyrogenic products due to the fire were found at the most distant sampling site (5 km) from Cavern 6 during Phase I, but were not detected downwind of the fire in excess of background levels in the later phases. Remote sensing evaluation of vegetation under the plume also indicated that stress existed immediately after the fire, but had disappeared by the end of the 1-year survey.« less

  3. Effects of hydrologic connectivity on aquatic macroinvertebrate assemblages in different marsh types

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Hydrologic connectivity can be an important driver of aquatic macroinvertebrate assemblages. Its effects on aquatic macroinvertebrate assemblages in coastal marshes, however, are relatively poorly studied. We evaluated the effects of lateral hydrologic connectivity (permanently connected ponds: PCPs; temporary connected ponds: TCPs), and other environmental variables on aquatic macroinvertebrate assemblages and functional feeding groups (FFGs) in freshwater, brackish, and saline marshes in Louisiana, USA. We hypothesized that (1) aquatic macroinvertebrate assemblages in PCPs would have higher assemblage metric values (density, biomass, Shannon-Wiener diversity) than TCPs and (2) the density and proportional abundance of certain FFGs (i.e. scrapers, shredders, and collectors) would be greater in freshwater marsh than brackish and saline marshes. The data in our study only partially supported our first hypothesis: while freshwater marsh PCPs had higher density and biomass than TCPs, assemblage metric values in saline TCPs were greater than saline PCPs. In freshwater TCPs, long duration of isolation limited access of macroinvertebrates from adjacent water bodies, which may have reduced assemblage metric values. However, the relatively short duration of isolation in saline TCPs provided more stable or similar habitat conditions, facilitating higher assemblage metric values. As predicted by our second hypothesis, freshwater PCPs and TCPs supported a greater density of scrapers, shredders, and collectors than brackish and saline ponds. Aquatic macroinvertebrate assemblages seem to be structured by individual taxa responses to salinity as well as pond habitat attributes.

  4. Below the Disappearing Marshes of an Urban Estuary ...

    EPA Pesticide Factsheets

    Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated d

  5. Colony site dynamics and habitat use in Atlantic coast seabirds

    USGS Publications Warehouse

    Erwin, R.M.; Galli, J.; Burger, J.

    1981-01-01

    Seabird colony sizes and movements were documented in the DelMarVa coastal region in 1976-1977 and in New Jersey in 1978-1979. Most colonies were found on marsh and dredge deposition islands and on barrier island beaches. For the "traditionally" beach-nesting Herring Gull, Common Tern, and Black Skimmer, larger, more stable colonies were found on barrier beaches than on marsh islands. In marsh habitats, rates of colony-site change of marsh-nesting Forster's Tern and Laughing Gulls were similar to those of the former beach nesters. Several adaptations have evolved in marsh specialists to cope with a high risk of reproductive failure due to flooding, but both Herring Gulls and Common Terns also appear to be very adaptable in nesting under various habitat conditions.New colonies and those abandoned between years may be pioneering attempts by younger or inexperienced birds, because they are often smaller than persistent colonies, although patterns differ among areas and habitats. Colony-site dynamics are complex and result from many selective factors including competition, predation, physical changes in site structure, and flooding. The invasion of Herring Gulls into marshes along the mid-Atlantic coast has had an impact on new colony-site choice by associated seabirds.Calculating colony-site turnover rates allows for comparisons among species, habitats, and regions and may give useful insights into habitat quality and change and alternative nesting strategies.

  6. Effects of disturbance associated with seismic exploration for oil and gas reserves in coastal marshes

    USGS Publications Warehouse

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-01-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  7. Effects of Disturbance Associated With Seismic Exploration for Oil and Gas Reserves in Coastal Marshes

    NASA Astrophysics Data System (ADS)

    Howard, Rebecca J.; Wells, Christopher J.; Michot, Thomas C.; Johnson, Darren J.

    2014-07-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  8. Effects of disturbance associated with seismic exploration for oil and gas reserves in coastal marshes.

    PubMed

    Howard, Rebecca J; Wells, Christopher J; Michot, Thomas C; Johnson, Darren J

    2014-07-01

    Anthropogenic disturbances in wetland ecosystems can alter the composition and structure of plant assemblages and affect system functions. Extensive oil and gas extraction has occurred in wetland habitats along the northern Gulf of Mexico coast since the early 1900s. Activities involved with three-dimensional (3D) seismic exploration for these resources cause various disturbances to vegetation and soils. We documented the impact of a 3D seismic survey in coastal marshes in Louisiana, USA, along transects established before exploration began. Two semi-impounded marshes dominated by Spartina patens were in the area surveyed. Vegetation, soil, and water physicochemical data were collected before the survey, about 6 weeks following its completion, and every 3 months thereafter for 2 years. Soil cores for seed bank emergence experiments were also collected. Maximum vegetation height at impact sites was reduced in both marshes 6 weeks following the survey. In one marsh, total vegetation cover was also reduced, and dead vegetation cover increased, at impact sites 6 weeks after the survey. These effects, however, did not persist 3 months later. No effects on soil or water properties were identified. The total number of seeds that germinated during greenhouse studies increased at impact sites 5 months following the survey in both marshes. Although some seed bank effects persisted 1 year, these effects were not reflected in standing vegetation. The marshes studied were therefore resilient to the impacts resulting from 3D seismic exploration because vegetation responses were short term in that they could not be identified a few months following survey completion.

  9. Mangrove expansion and salt marsh decline at mangrove poleward limits.

    PubMed

    Saintilan, Neil; Wilson, Nicholas C; Rogers, Kerrylee; Rajkaran, Anusha; Krauss, Ken W

    2014-01-01

    Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation. © 2013 John Wiley & Sons Ltd.

  10. Mechanism of removal and retention of heavy metals from the acid mine drainage to coastal wetland in the Patagonian marsh.

    PubMed

    Idaszkin, Yanina L; Carol, Eleonora; María Del Pilar, Alvarez

    2017-09-01

    The attenuation of the acid mine drainage is one of the most important environmental challenges facing the mining industry worldwide. Mining waste deposits from an ancient metallurgical extraction of heavy metals were found near to the San Antonio marsh in Patagonia. The aim of this work was to determinate which mechanisms regulate the mobilization and retention of metals by acid drainage. A geological and geomorphological survey was carried out and samples from the mining waste deposits and the marsh were collected to determine soil texture, Eh pH, organic matter, Cu, Pb, Zn and Fe content, and soil mineralogical composition. Metals in marsh plants were determined in above- and below-ground structures. In the mining waste deposits polymetallic sulphides were recognized where the oxidation and formation of oxy-hydroxides and sulphates of Fe, Cu, Pb and Zn occurs. Then, by the alteration of those minerals, the metals enter in solution and are mobilized with the surface drainage towards the marsh where adsorption in the soils fine fraction and organic matter and/or by plants occurs. Locally, in the mining waste deposits, the precipitation/dissolution of Cu, Pb, and Zn sulphates take place in small centripetal drainage basins. In topographically lower portions of the marsh desorption and removal of metals by tidal flow could also be happen. The results allow to concluding that the marsh adjacent to the mining waste deposits is a geochemically active environment that naturally mitigates the contamination caused by acid drainage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Tropical vegetation evidence for rapid sea level changes associated with Heinrich Events

    NASA Astrophysics Data System (ADS)

    González, Catalina; Dupont, Lydie M.

    2010-03-01

    A Cariaco Basin pollen record shows the development of tropical salt marshes during marine isotope stage 3. Rapid and abrupt expansions of salt marsh vegetation in tropical South America are associated with north Atlantic Heinrich Events stadials (HE-stadials). Intervals of salt marsh expansion have an internal structure, which consists of a recurrent alternation of species that starts with pollen increments of Chenopodiaceae, that are followed by increments of grasses, and subsequently by increments of Cyperaceae. This pattern suggests a successional process that is determined by the close relationship between sea-level and plant community dynamics. The salt tolerant Chenopodiaceae, indicate hypersaline intertidal environments, which were most likely promoted by extremely dry atmospheric conditions. Rapid sea-level rise characterizes the onset of HE-stadials, causing the continued recruitment of pioneer species, which are the only ones tolerating rapid rates of disturbance. Once sea-level rise decelerates, marsh plants are able to trap and stabilize sediments, favouring the establishment of more competitive species. These results add to the scarce knowledge on the dynamics of tropical salt marsh ecosystems, and provide independent paleoclimatic evidence on sea-level changes following Antarctic climate variability.

  12. In situ burning of oil in coastal marshes. 1. Vegetation recovery and soil temperature as a function of water depth, oil type, and marsh type.

    PubMed

    Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D

    2005-03-15

    In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of <35 and 48 degrees C, respectively. Plant survival rate and growth responses at these water depth burns were not significantly different from the unburned control. In contrast, a water table 2 cm below the soil surface during the burn resulted in high soil temperatures, with 90-200 degrees C at 0-0.5 cm soil depth and 55-75 degrees C at 1-2 cm soil depth. The 2-cm soil exposure to fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.

  13. Earth Observations taken by the Expedition 15 Crew

    NASA Image and Video Library

    2007-05-11

    ISS015-E-07725 (11 May 2007) --- Marsh Island, Louisiana is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. Marsh Island, located along the southwestern coastline of Louisiana, is a remnant of an abandoned lobe of the Mississippi River Delta formed approximately 5000-7500 years before the present day, according to scientists. It is composed primarily of organic-rich muds and brackish marsh vegetation (some peat -- semiconsolidated plant and organic matter -- is also present). The intricate lake, pond and stream network of the island is highlighted in this image by silver-gray sunglint -- light reflected off of water surfaces directly back to the crewmember on the space station. Sunglint also illuminates water surfaces in the adjacent Gulf of Mexico and West Cote Blanche Bay -- variations in intensity of reflectance in these water bodies is due to surface roughness (often related to wind-driven waves or currents) and the presence of surfactants that can change the surface properties of the water. Marsh Island is a popular fishing, shrimping and birding location. The island has experienced significant loss of vegetation and land area -- nearly 3,000 hectares (7,000 acres) - due to erosion, with a corresponding loss of habitat for local and migratory birds, shrimp, alligators and deer. While Marsh Island is uninhabited, it has been the focus of intensive development for management of erosion, such as revegetation of deteriorated marsh areas. Leveed canals (straight silver-gray water features) help drain areas for above-surface revegetation, while sill dams help stabilize water levels and foster regrowth of important subsurface vegetation such as widgeongrass.

  14. Adaptive Management and Monitoring as Fundamental Tools to Effective Salt Marsh Restoration

    EPA Science Inventory

    Adaptive management as applied to ecological restoration is a systematic decision-making process in which the results of restoration activities are repeatedly monitored and evaluated to provide guidance that can be used in determining any necessary future restoration actions. In...

  15. Varying Inundation Regimes Differentially Affect Natural and Sand-Amended Marsh Sediments

    EPA Science Inventory

    Climate change is altering sea-level rise rates and precipitation patterns worldwide. Coastal wetlands are vulnerable to these changes. System responses to stressors are important for resource managers and environmental stewards to understand in order to best manage them. Thin la...

  16. Applications of remote sensing to estuarine management

    NASA Technical Reports Server (NTRS)

    Munday, J. C., Jr.; Gordon, H. H.; Hennigar, H. F.

    1977-01-01

    Remote sensing was used in the resolution of estuarine problems facing federal and Virginia governmental agencies. A prototype Elizabeth River Surface Circulation Atlas was produced from photogrammetry to aid in oil spill cleanup and source identification. Aerial photo analysis twice led to selection of alternative plans for dredging and spoil disposal which minimized marsh damage. Marsh loss due to a mud wave from a highway dyke was measured on sequential aerial photographs. An historical aerial photographic sequence gave basis to a potential Commonwealth of Virginia legal claim to accreting and migrating coastal islands.

  17. Adaptive management of perennial pepperweed for endangered specias and tidal marsh recovery

    USDA-ARS?s Scientific Manuscript database

    Perennial pepperweed has invaded a wide range of habitat types in the far west. In the San Francisco Estuary, dense infestations have impacted sensitive tidal wetlands and compromised endangered species recovery efforts. An adaptive management effort to reduce perennial pepperweed was initiated by...

  18. Influence of diesel contamination on the benthic microbial/meiofaunal food web of a Louisiana salt marsh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carman, K.R.; Fleeger, J.W.; Pomarico, S.

    The authors studied the influence of diesel-contaminated sediments on the benthic microbial/meiofaunal food web from a Louisiana salt marsh. Diesel-contaminated sediment was added to microcosms (intact cores of marsh mud) in a range of doses, and a suite of microbial and meiofaunal responses were measured over a 28-day period. The authors measured bacterial and microalgal (Chl a) abundance, bacterial and microalgal activity using radiotracers ({sup 14}C-acetate and {sup 14}CO{sub 2}, respectively), meiofaunal grazing on microalgae, meiofaunal community structure, and meiofaunal physiological condition. Preliminary results indicate that diesel-contaminated sediments influence microalgal biomass and activity, as well as the life histories ofmore » benthic copepod species.« less

  19. Channel, floodplain, and wetland responses to floods and overbank sedimentation, 1846-2006, Halfway Creek Marsh, Upper Mississippi Valley, Wisconsin

    USGS Publications Warehouse

    Fitzpatrick, F.A.; Knox, J.C.; Schubauer-Berigan, J. P.

    2009-01-01

    Conversion of upland forest and prairie vegetation to agricultural land uses, following Euro-American settlement in the Upper Mississippi River System, led to accelerated runoff and soil erosion that subsequently transformed channels, floodplains, and wetlands on bottomlands. Halfway Creek Marsh, at the junction of Halfway Creek and the Mississippi River on Wisconsin's western border, is representative of such historical transformation. This marsh became the focus of a 2005-2006 investigation by scientists from the U.S. Geological Survey, the University of Wisconsin- Madison, and the U.S. Environmental Protection Agency, who used an understanding of the historical transformation to help managers identify possible restoration alternatives for Halfway Creek Marsh. Field-scale topographic surveys and sediment cores provided data for reconstructing patterns and rates of historical overbank sedimentation in the marsh. Information culled from historical maps, aerial photographs, General Land Offi ce Survey notes, and other historical documents helped establish the timing of anthropogenic disturbances and document changes in channel patterns. Major human disturbances, in addition to agricultural land uses, included railroad and road building, construction of artifi cial levees, drainage alterations, and repeated dam failures associated with large floods. A volume of approximately 1,400,000 m3, involving up to 2 m of sandy historical overbank deposition, is stored through the upper and lower marshes and along the adjacent margins of Halfway Creek and its principal tributary, Sand Lake Coulee. The estimated overbank sedimentation rate for the entire marsh is ??3,000 m3 yr-1 for the recent period 1994-2006. In spite of reduced surface runoff and soil erosion in recent years, this recent sedimentation rate still exceeds by ??4 times the early settlement (1846-1885) rate of 700 m3 yr-1, when anthropogenic acceleration of upland surface runoff and soil erosion was beginning. The highest rate of historical bottomland sedimentation occurred from 1919 to 1936, when the estimated overbank sedimentation rate was 20,400 m3 yr- 1. This rate exceeded by nearly 30 times the 1846-1886 rate. Artifi cial levees were constructed along the upper reach of Halfway Creek in the marsh during the early twentieth century to restrict fl ooding on the adjacent bottomlands. Anomalously high overbank sedimentation rates subsequently occurred on the fl oodplain between the levees, which also facilitated more effi cient transport of sediment into the lower marsh bottomland. Although overbank sedimentation rates dropped after 1936, corresponding to the widespread adoption of soil-conservation and agricultural best-management practices, the continuation of anomalously high overbank sedimentation between the levees led to increased bank heights and development of a relatively deep channel. The deep cross-section morphology is commonly mistaken as evidence of channel incision; however, this morphology actually resulted from excessive overbank sedimentation. The historical metamorphosis of the Halfway Creek channel and riparian wetlands underscores the importance of understanding the long-term history of channel and fl oodplain evolution when restoration of channels and riparian wetlands are under consideration. Sedimentation patterns and channel morphology for Halfway Creek Marsh probably are representative of other anthropogenically altered riparian wetlands in the Upper Mississippi River System and similar landscapes elsewhere.

  20. Mapping changing distributions of dominant species in oil-contaminated salt marshes of Louisiana using imaging spectroscopy

    USGS Publications Warehouse

    Beland, Michael; Roberts, Dar A.; Peterson, Seth H.; Biggs, Trent W.; Kokaly, Raymond F.; Piazza, Sarai; Roth, Keely L.; Khanna, Shruti; Ustin, Susan L.

    2016-01-01

    The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to differentiate plant species. However, obtaining satisfactory and consistent classification accuracies over time is a major challenge, particularly in dynamic intertidal landscapes.Here, we develop and evaluate an image classification system for a time series of AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using field-referenced image endmembers and canonical discriminant analysis (CDA), we classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification results were evaluated using ground surveys that were conducted contemporaneously to AVIRIS collection dates. We analyzed changes in dominant species cover from 2010 to 2012 for oiled and non-oiled shorelines.CDA discriminated dominant species with a high level of accuracy (overall accuracy = 82%, kappa = 0.78) and consistency over three imaging dates (overall2010 = 82%, overall2011 = 82%, overall2012 = 88%). Marshes dominated by Spartina alterniflora were the most spatially abundant in shoreline zones (≤ 28 m from shore) for all three dates (2010 = 79%, 2011 = 61%, 2012 = 63%), followed by Juncus roemerianus (2010 = 11%, 2011 = 19%, 2012 = 17%) and Distichlis spicata (2010 = 4%, 2011 = 10%, 2012 = 7%).Marshes that were heavily contaminated with oil exhibited variable responses from 2010 to 2012. Marsh vegetation classes converted to a subtidal, open water class along oiled and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss along oil-contaminated shorelines doubled that of non-oiled shorelines. Only S. alterniflora dominated marshes were extensively degraded, losing 15% (354,604 m2) cover in oiled shoreline zones, suggesting that S. alterniflora marshes may be more vulnerable to shoreline erosion following hydrocarbon stress, due to their landscape position.

  1. Uncloaking a cryptic, threatened rail with molecular markers: origins, connectivity and demography of a recently-discovered population

    USGS Publications Warehouse

    Girard, Philippe; Takekawa, John Y.; Beissinger, Steven R.

    2010-01-01

    The threatened California Black Rail lives under dense marsh vegetation, is rarely observed, flies weakly and has a highly disjunct distribution. The largest population of rails is found in 8–10 large wetlands in San Francisco Bay (SF Bay), but a population was recently discovered in the foothills of the Sierra Nevada Mountains (Foothills), within a wetland network comprised of over 200 small marshes. Using microsatellite and mitochondrial analyses, our objectives were to determine the origins, connectivity and demography of this recently-discovered population. Analyses of individuals from the Foothills (n = 31), SF Bay (n = 31), the Imperial Valley (n = 6) and the East Coast (n = 3), combined with rigorous power evaluations, provided valuable insights into past history and current dynamics of the species in Northern California that challenge conventional wisdom about the species. The Foothills and SF Bay populations have diverged strongly from the Imperial Valley population, even more strongly than from individuals of the East Coast subspecies. The data also suggest a historical presence of the species in the Foothills. The SF Bay and Foothills populations had similar estimated effective population size over the areas sampled and appeared linked by a strongly asymmetrical migration pattern, with a greater probability of movement from the Foothills to SF Bay than vice versa. Random mating was inferred in the Foothills, but local substructure among marshes and inbreeding were detected in SF Bay, suggesting different dispersal patterns within each location. The unexpected dimensions of Black Rail demography and population structure suggested by these analyses and their potential importance for management are discussed.

  2. Fiddler crabs facilitate Spartina alterniflora growth, mitigating periwinkle overgrazing of marsh habitat.

    PubMed

    Gittman, Rachel K; Keller, Danielle A

    2013-12-01

    Ecologists have long been interested in identifying and testing factors that drive top-down or bottom-up regulation of communities. Most studies have focused on factors that directly exert top-down (e.g., grazing) or bottom-up (e.g., nutrient availability) control on primary production. For example, recent studies in salt marshes have demonstrated that fronts of Littoraria irrorata periwinkles can overgraze Spartina alterniflora and convert marsh to mudflat. The importance of indirect, bottom-up effects, particularly facilitation, in enhancing primary production has also recently been explored. Previous field studies separately revealed that fiddler crabs, which burrow to depths of more than 30 cm, can oxygenate marsh sediments and redistribute nutrients, thereby relieving the stress of anoxia and enhancing S. alterniflora growth. However, to our knowledge, no studies to date have explored how nontrophic facilitators can mediate top-down effects (i.e., grazing) on primary-producer biomass. We conducted a field study testing whether fiddler crabs can facilitate S. alterniflora growth sufficiently to mitigate overgrazing by periwinkles and thus sustain S. alterniflora marsh. As inferred from contrasts to experimental plots lacking periwinkles and fiddler crabs, periwinkles alone exerted top-down control of total aboveground biomass and net growth of S. alterniflora. When fiddler crabs were included, they counteracted the effects of periwinkles on net S. alterniflora growth. Sediment oxygen levels were greater and S. alterniflora belowground biomass was lower where fiddler crabs were present, implying that fiddler crab burrowing enhanced S. alterniflora growth. Consequently, in the stressful interior S. alterniflora marsh, where subsurface soil anoxia is widespread, fiddler crab facilitation can mitigate top-down control by periwinkles and can limit and possibly prevent loss of biogenically structured marsh habitat and its ecosystem services.

  3. Searching for the Source of Salt Marsh Buried Mercury.

    NASA Astrophysics Data System (ADS)

    Brooke, C. G.; Nelson, D. C.; Fleming, E. J.

    2016-12-01

    Salt marshes provide a barrier between upstream mercury contamination and coastal ecosystems. Mercury is sorbed, transported, and deposited in estuarine systems. Once the upstream mercury source has been remediated, the downstream mercury contaminated salt marsh sediments should become "capped" or buried by uncontaminated sediments preventing further ecosystem contamination. Downstream from a remediated mercury mine, an estuarine intertidal marsh in Tomales Bay, CA, USA, scavengers/predators (e.g. Pachygrapsus crassipes, Lined Shore Crab) have leg mercury concentrations as high as 5.5 ppm (dry wt./dry wt.), which increase significantly with crab size, a surrogate for trophic level. These elevated mercury concentrations suggests that "buried" mercury is rereleased into the environment. To locate possible sources of mercury release in Walker Marsh, we sampled a transect across the marsh that included diverse micro-environments (e.g. rhizoshere, stratified sediments, faunal burrows). From each location we determined the sediment structure, sediment color, total sediment mercury, total sediment iron, and microbial composition (n = 28). Where flora or fauna had perturbed the sediment, mercury concentrations were 10% less than undisturbed stratified sediments (1025 ppb vs. 1164 ppb, respectively). High-throughput SSU rRNA gene sequencing and subsequent co-occurrence network analysis genera indicated that in flora- or fauna- perturbed sediments there was an increased likelihood that microbial genera contained mercury mobilizing genes (94% vs 57%; in perturbed vs stratified sediments, respectively). Our observations are consistent with findings by others that in perturbed sites mercury mobility increased. We did however identify a microbial and geochemical profile with increased mercury mobility. For future work we plan to quantify the role these micro-environments have on mercury-efflux from salt marshes.

  4. Habitat heterogeneity influences restoration efficacy: Implications of a habitat-specific management regime for an invaded marsh

    NASA Astrophysics Data System (ADS)

    Tang, Long; Gao, Yang; Wang, Cheng-Huan; Li, Bo; Chen, Jia-Kuan; Zhao, Bin

    2013-07-01

    Invasive species have to be managed to prevent adverse consequences. Spartina alterniflora has invaded many marshes where salinity and inundation are often key factors affecting vegetation. The former was surface clipped twice and native Phragmites australis was planted in invaded zones to examine the effects of habitat properties on the efficacy of invader control and native restoration. The results showed that two clipping treatments almost eliminated S. alterniflora in the zones with long inundation periods of 80 h/15 d but stimulated compensatory growth of S. alterniflora in the zones with short inundation periods. Transplanted P. australis performed better over time in zones with low salinity (<10.5 psu) but performed poorly in high-salinity zones, indicating that the efficacy of invader management and native restoration activities changes significantly along habitat gradients. With a progression from the dyke to the seaward side of the studied marsh, there was a long then short then long inundation period whereas salinity increased consistently. The study indicates that the high-frequency removal of the above-ground parts of S. alterniflora should be used only in the middle tidal zones and that native vegetation should be planted in zones above the mean high water level while the others zones in the saltmarsh should be restored to mud flats. Usually, invasive plants can flourish in highly heterogeneous habitats, which can influence management efficacy by influencing the re-growth of treated invaders and the performance of restored native species. Therefore, habitat-specific management regimes for invasive species can be expected to be more efficient because of their dependence on specific habitats.

  5. Breeding ecology and nesting habitat associations of five marsh bird species in western New York

    USGS Publications Warehouse

    Lor, S.; Malecki, R.A.

    2006-01-01

    Nesting habitats and nest success of five species of marsh birds were studied during 1997 and 1998 at the Iroquois National Wildlife Refuge (NWR) and the adjacent Oak Orchard and Tonawanda State Wildlife Management Areas (WMA) located in western New York. Nest searches located 18 American Bittern (Botaurus lentiginosus), 117 Least Bittern (Ixobrychus exilis), 189 Pied-billed Grebe (Podilymbus podiceps), 23 Sora (Porzana carolina), and 72 Virginia Rail (Rallus limicola) nests. Average nest densities in 1998, our best nest searching year, ranged from 0.01/ha for Soras (N = 8) to 0.28/ha for Pied-billed Grebes (N = 160). Mayfield nest success estimates for Least Bittern were 80% (N = 16) in 1997 and 46% (N = 37) in 1998. Nest success estimates were 72% (N = 55) for Pied-billed Grebe, 43% (N = 6) for Sora, and 38% (N = 20) for Virginia Rail. Nests of all five species were located in ???70% emergent vegetation with a mean water depth of 24-56 cm and an average vegetation height that ranged from 69-133 cm. Logistic regression models were developed for each species using habitat variables at nest and random site locations. Each model was ranked with Akaike's Information Criterion for small sample size (AICc). In general, our best models indicated that increased emergent vegetation and horizontal cover with shallow water depths improved the odds of encountering marsh bird nests in the wetlands of western New York. We suggest that managing wetlands as a complex, at different stages of succession, would best benefit marsh bird species.

  6. The salt marsh vegetation spread dynamics simulation and prediction based on conditions optimized CA

    NASA Astrophysics Data System (ADS)

    Guan, Yujuan; Zhang, Liquan

    2006-10-01

    The biodiversity conservation and management of the salt marsh vegetation relies on processing their spatial information. Nowadays, more attentions are focused on their classification surveying and describing qualitatively dynamics based on RS images interpreted, rather than on simulating and predicting their dynamics quantitatively, which is of greater importance for managing and planning the salt marsh vegetation. In this paper, our notion is to make a dynamic model on large-scale and to provide a virtual laboratory in which researchers can run it according requirements. Firstly, the characteristic of the cellular automata was analyzed and a conclusion indicated that it was necessary for a CA model to be extended geographically under varying conditions of space-time circumstance in order to make results matched the facts accurately. Based on the conventional cellular automata model, the author introduced several new conditions to optimize it for simulating the vegetation objectively, such as elevation, growth speed, invading ability, variation and inheriting and so on. Hence the CA cells and remote sensing image pixels, cell neighbors and pixel neighbors, cell rules and nature of the plants were unified respectively. Taking JiuDuanSha as the test site, where holds mainly Phragmites australis (P.australis) community, Scirpus mariqueter (S.mariqueter) community and Spartina alterniflora (S.alterniflora) community. The paper explored the process of making simulation and predictions about these salt marsh vegetable changing with the conditions optimized CA (COCA) model, and examined the links among data, statistical models, and ecological predictions. This study exploited the potential of applying Conditioned Optimized CA model technique to solve this problem.

  7. Application of terrestrial laser scanner on tidal flat morphology at a typhoon event timescale

    NASA Astrophysics Data System (ADS)

    Xie, Weiming; He, Qing; Zhang, Keqi; Guo, Leicheng; Wang, Xianye; Shen, Jian; Cui, Zheng

    2017-09-01

    Quantification of tidal flat morphological changes at varying timescales is critical from a management point of view. High-resolution tidal flat morphology data, including those for mudflats and salt-marshes, are rare due to monitoring difficulty by traditional methods. Recent advances in Terrestrial Laser Scanner (TLS) technology allow rapid acquisition of high-resolution and large-scale morphological data, but it remains problematic for its application on salt-marshes due to the presence of dense vegetation. In this study, we applied a TLS system to retrieve high-accuracy digital elevation models in a tidal flat of the Yangtze Estuary by using a robust and accurate Progressive Morphological filter (PM) to separate ground and non-ground points. Validations against GPS-supported RTK measurements suggested remarkable performance. In this case the average estimation error was about 0.3 cm, while the Root Mean Square Error (RMSE) was 2.0 cm. We conducted three TLS surveys on the same field including salt-marshes and mudflats at the time points 5 days before, 3 days after, and 45 days after a typhoon event. The retrieved data showed that the mudflats suffered from profound erosion while the salt-marshes slightly accreted during the typhoon period. The average elevation change of the total area was about - 4 cm (- 0.28 cm per day). However, both the mudflats and salt-marshes deposited in the post-typhoon period and the accretion over salt-marshes occurred at a higher rate than that during the typhoon. The elevation of the total area increased by 15.9 cm (0.37 cm per day), suggesting fast recovery under calm conditions. Quantification of the erosion and deposition rates was aided by the high quality TLS data. This study shows the effectiveness of TLS in quantifying morphological changes of tidal flats at an event (and post-event) timescale. The data and analysis also provide sound evidence on vegetation impact in stimulating salt-marsh development and restoration, shedding lights on bio-morphological interactions.

  8. Avian botulism--another perspective.

    PubMed

    Wobeser, G

    1997-04-01

    Waterfowl botulism is unique among intoxications because toxin produced within its victims leads to secondary poisoning of other birds. Because of this phenomenon, the epizootiology of the carcass-maggot cycle of botulism resembles that of an infectious disease and the reproductive rate (R) of the disease could be defined as the average number of secondary intoxications attributable to a single carcass introduced into a marsh. I propose that toxin production and botulism occur commonly at a low level in many marshes and that factors which influence R determine when the disease expands into a large epizootic. A model that incorporates the number of carcasses occurring in a marsh, the probability of a carcass containing spores, the probability of a carcass persisting until toxin-bearing maggots emerge, and the contact rate between live birds and toxin, may be useful for predicting the extent of secondary poisoning, for identifying questions for research, and as a theoretical basis for management.

  9. Vegetation as self-adaptive coastal protection: Reduction of current velocity and morphologic plasticity of a brackish marsh pioneer.

    PubMed

    Carus, Jana; Paul, Maike; Schröder, Boris

    2016-03-01

    By reducing current velocity, tidal marsh vegetation can diminish storm surges and storm waves. Conversely, currents often exert high mechanical stresses onto the plants and hence affect vegetation structure and plant characteristics. In our study, we aim at analysing this interaction from both angles. On the one hand, we quantify the reduction of current velocity by Bolboschoenus maritimus, and on the other hand, we identify functional traits of B. maritimus' ramets along environmental gradients. Our results show that tidal marsh vegetation is able to buffer a large proportion of the flow velocity at currents under normal conditions. Cross-shore current velocity decreased with distance from the marsh edge and was reduced by more than 50% after 15 m of vegetation. We were furthermore able to show that plants growing at the marsh edge had a significantly larger diameter than plants from inside the vegetation. We found a positive correlation between plant thickness and cross-shore current which could provide an adaptive value in habitats with high mechanical stress. With the adapted morphology of plants growing at the highly exposed marsh edge, the entire vegetation belt is able to better resist the mechanical stress of high current velocities. This self-adaptive effect thus increases the ability of B. maritimus to grow and persist in the pioneer zone and may hence better contribute to ecosystem-based coastal protection by reducing current velocity.

  10. Mangrove expansion and saltmarsh decline at mangrove poleward limits

    USGS Publications Warehouse

    Saintilan, Neil; Wilson, Nicholas C.; Rogers, Kerrylee; Rajkaran, Anusha; Krauss, Ken W.

    2014-01-01

    Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the US Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the pole-ward extension of temperature thresholds co-incident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation.

  11. Perceptions of severe storms, climate change, ecological structures and resiliency three years post-hurricane Sandy in New Jersey.

    PubMed

    Burger, Joanna; Gochfeld, Michael

    2017-12-01

    Global warming is leading to increased frequency and severity of storms that are associated with flooding, increasing the risk to urban, coastal populations. This study examined perceptions of the relationship between severe storms, sea level rise, climate change and ecological barriers by a vulnerable environmental justice population in New Jersey. Patients using New Jersey's Federally Qualified Health Centers were interviewed after Hurricane [Superstorm] Sandy because it is essential to understand the perceptions of uninsured, underinsured, and economically challenged people to better develop a resiliency strategy for the most vulnerable people. Patients ( N = 355) using 6 centers were interviewed using a structured interview form. Patients were interviewed in the order they entered the reception area, in either English or Spanish. Respondents were asked to rate their agreement with environmental statements. Respondents 1) agreed with experts that "severe storms were due to climate change", "storms will come more often", and that "flooding was due to sea level rise", 2) did not agree as strongly that "climate change was due to human activity", 3) were neutral for statements that " Sandy damages were due to loss of dunes or salt marshes". 4) did not differ as a function of ethnic/racial categories, and 5) showed few gender differences. It is imperative that the public understand that climate change and sea level rise are occurring so that they support community programs (and funding) to prepare for increased frequency of storms and coastal flooding. The lack of high ratings for the role of dunes and marshes in preventing flooding indicates a lack of understanding that ecological structures protect coasts, and suggests a lack of support for management actions to restore dunes as part of a coastal preparedness strategy. Perceptions that do not support a public policy of coastal zone management to protect coastlines can lead to increased flooding, extensive property damages, and injuries or loss of life.

  12. Can functional equivalency between seagrasses and other coastal habitats offset loss of ecosystem health with reduced seagrass abundance?

    NASA Astrophysics Data System (ADS)

    Cebrian, J.; Anton, A.; Christiaen, B.; Gamble, R.; Stutes, J.

    2016-02-01

    Seagrasses provide important ecosystem services, such as habitat for fisheries, shoreline stabilization, pollution filtration, and carbon sequestration. Thus, seagrass loss may seriously compromise coastal ecosystem services worldwide. However, functional equivalency (or redundancy) between seagrasses and other components of coastal ecosystems, such as algae and marshes, can offset the loss of services under declining seagrass abundance. That is, if seagrasses are redundant with algae and marshes in their functionality, then ecosystem services may be preserved in changing coasts with declining seagrass but pervading algal and marsh communities. Here we present several instances of functional redundancy between seagrasses and other coastal components in the Northern Gulf of Mexico. We first examine how net ecosystem production, which sets a limit to carbon accumulation and export to neighbouring communities, changes with eutrophication-induced seagrass decline and concomitant increase in algal abundance. Results from comparative and manipulative field studies are congruent and show no change in net ecosystem production despite drastic shifts from seagrass to algal dominance. We further provide evidence that fringing marshes can counteract the reduction in habitat provision for structure-dependent fisheries due to seagrass loss. Using a large-scale field comparison we show that, as long as fringing marshes are preserved, the abundance and diversity of structure-dependent fisheries are maintained despite large seagrass loss. Functional redundancy for habitat provision also occurs between seagrasses and well-oxygenated macroagal stands, since canopy-dwelling faunal abundance remains unaltered if seagrasses are replaced by normoxic algal stands. In concert the results demonstrate substantial functional equivalency between seagrasses and other coastal components, and indicate seagrass loss does not necessarily result in depressed coastal ecosystem health and services.

  13. Effects of Deepwater Horizon Oil on the Movement and Survival of Marsh Periwinkle Snails (Littoraria irrorata).

    PubMed

    Garner, T Ross; Hart, Michael A; Sweet, Lauren E; Bagheri, Hanna T J; Morris, Jeff; Stoeckel, James A; Roberts, Aaron P

    2017-08-01

    The Deepwater Horizon (DWH) oil spill resulted in the release of millions of barrels of oil into the Gulf of Mexico, and some marsh shorelines experienced heavy oiling including vegetation laid over under the weight of oil. Periwinkle snails (Littoraria irrorata) are a critical component of these impacted habitats, and population declines following oil spills, including DWH, have been documented. This study determined the effects of oil on marsh periwinkle movement and survivorship following exposure to oil. Snails were placed in chambers containing either unoiled or oiled laid over vegetation to represent a heavily impacted marsh habitat, with unoiled vertical structure at one end. In the first movement assay, snail movement to standing unoiled vegetation was significantly lower in oiled chambers (oil thickness ≈ 1 cm) compared to unoiled chambers, as the majority (∼75%) of snails in oiled habitats never reached standing unoiled vegetation after 72 h. In a second movement assay, there was no snail movement standing unoiled structure in chambers with oil thicknesses of 0.1 and 0.5 cm, while 73% of snails moved in unoiled chambers after 4h. A toxicity assay was then conducted by exposing snails to oil coated Spartina stems in chambers for periods up to 72 h, and mortality was monitored for 7 days post exposure. Snail survival decreased with increasing exposure time, and significant mortality (∼35%) was observed following an oil exposure of less than 24 h. Here, we have shown that oil impeded snail movement to clean habitat over a short distance and resulted in oil-exposure times that decreased survival. Taken together, along with declines documented by others in field surveys, these results suggest that marsh periwinkle snails may have been adversely affected following exposure to DWH oil.

  14. A precise vertical network: Establishing new orthometric heights with static surveys in Florida tidal marshes

    USGS Publications Warehouse

    Raabe, E.A.; Stumpf, R.P.; Marth, N.J.; Shrestha, R.L.

    1996-01-01

    Elevation differences on the order of 10 cm within Florida's marsh system influence major variations in tidal flooding and in the associated plant communities. This low elevation gradient combined with sea level fluctuation of 5-to-10 cm over decadel and longer periods can generate significant alteration and erosion of marsh habitats along the Gulf Coast. Knowledge of precise and accurate elevations in the marsh is critical to the efficient monitoring and management of these habitats. Global positioning system (GPS) technology was employed to establish six new orthometric heights along the Gulf Coast from which kinematic surveys into the marsh interior are conducted. The vertical accuracy achieved using GPS technology was evaluated using two networks with 16 vertical and nine horizontal NGS published high accuracy positions. New positions were occupied near St. Marks National Wildlife Refuge and along the coastline of Levy County and Citrus County. Static surveys were conducted using four Ashtech dual frequency P-code receivers for 45-minute sessions and a data logging rate of 10 seconds. Network vector lengths ranged from 4 to 64 km and, including redundant baselines, totaled over 100 vectors. Analysis includes use of the GEOID93 model with a least squares network adjustment and reference to the National Geodetic Reference System (NGRS). The static surveys show high internal consistency and the desired centimeter-level accuracy is achieved for the local network. Uncertainties for the newly established vertical positions range from 0.8 cm to 1.8 cm at the 95% confidence level. These new positions provide sufficient vertical accuracy to achieve the project objectives of tying marsh surface elevations to long-term water level gauges recording sea level fluctuations along the coast.

  15. Mangrove expansion into salt marshes alters associated faunal communities

    NASA Astrophysics Data System (ADS)

    Smee, Delbert L.; Sanchez, James A.; Diskin, Meredith; Trettin, Carl

    2017-03-01

    Climate change is altering the distribution of foundation species, with potential effects on organisms that inhabit these environments and changes to valuable ecosystem functions. In the Gulf of Mexico, black mangroves (Avicennia germinans) are expanding northward into salt marshes dominated by Spartina alterniflora (hereafter Spartina). Salt marshes are essential habitats for many organisms, including ecologically and economically important species such as blue crabs (Callinectes sapidus) and Penaeid shrimp (e.g., Penaeus aztecus), which may be affected by vegetation changes. Black mangroves occupied higher tidal elevations than Spartina, and Spartina was present only at its lowest tidal elevations in sites when mangroves were established. We compared nekton and infaunal communities within monoculture stands of Spartina that were bordered by mangroves to nearby areas where mangroves had not yet become established. Nekton and infaunal communities were significantly different in Spartina stands bordered by mangroves, even though salinity and temperature were not different. Overall abundance and biomass of nekton and infauna was significantly higher in marshes without mangroves, although crabs and fish were more abundant in mangrove areas. Black mangrove expansion as well as other ongoing vegetation shifts will continue in a warming climate. Understanding how these changes affect associated species is necessary for management, mitigation, and conservation.

  16. Habitat selection by Forster's Terns (Sterna forsteri) at multiple spatial scales in an urbanized estuary: The importance of salt ponds

    USGS Publications Warehouse

    Bluso-Demers, Jill; Ackerman, Joshua T.; Takekawa, John Y.; Peterson, Sarah

    2016-01-01

    The highly urbanized San Francisco Bay Estuary, California, USA, is currently undergoing large-scale habitat restoration, and several thousand hectares of former salt evaporation ponds are being converted to tidal marsh. To identify potential effects of this habitat restoration on breeding waterbirds, habitat selection of radiotagged Forster's Terns (Sterna forsteri) was examined at multiple spatial scales during the pre-breeding and breeding seasons of 2005 and 2006. At each spatial scale, habitat selection ratios were calculated by season, year, and sex. Forster's Terns selected salt pond habitats at most spatial scales and demonstrated the importance of salt ponds for foraging and roosting. Salinity influenced the types of salt pond habitats that were selected. Specifically, Forster's Terns strongly selected lower salinity salt ponds (0.5–30 g/L) and generally avoided higher salinity salt ponds (≥31 g/L). Forster's Terns typically used tidal marsh and managed marsh habitats in proportion to their availability, avoided upland and tidal flat habitats, and strongly avoided open bay habitats. Salt ponds provide important habitat for breeding waterbirds, and restoration efforts to convert former salt ponds to tidal marsh may reduce the availability of preferred breeding and foraging areas.

  17. Breeding productivity of Smith Island black ducks

    USGS Publications Warehouse

    Haramis, G.M.; Jorde, Dennis G.; Olsen, Glenn H.; Stotts, D.B.; Harrison, M.K.; Perry, M.C.

    2002-01-01

    We investigated the breeding performance of American black ducks (Anas rubripes) on Smith Island, Chesapeake Bay, to improve our understanding of island black duck breeding ecology and to make management recommendations to enhance productivity. During 1995-96, we implanted 56 female black ducks with 20-g radio transmitters and tracked 35 of the individuals through the breeding season to locate nests, determine nest fate, and identify brood habitat. We also increased preseason banding efforts and compared capture characteristics over 12 years with those from the Deal Island Wildlife Management Area, a banding site on the mainland of Tangier Sound. A low rate of nesting (37%), lack of renesting, and poor hatching success (31%) indicated that island salt marsh habitats present a harsh environment for breeding black ducks. Black ducks located 11 of 13 nests (85%) in black needlerush (Juncus roemerianus) marsh where they were vulnerable to flooding from extreme tides and to egg predators. No nests were found on forested tree hammocks, a feature that distinguishes Smith Island from nearby South Marsh and Bloodsworth Islands. Nest predators included red foxes (Vulpes vulpes), herring gulls (Larus argentams), fish crows (Corvus ossifragus), and, potentially, Norway rats (Rattus norvegicus). Unlike mainland red foxes, foxes radio tracked on Smith Island were found to be capable swimmers and effective low marsh predators. We found shoreline meadows of widgeon grass (Ruppia maritima) to be important foraging sites for black ducks and suspected that the virtual absence of fresh water in this high salinity environment (1217+ ppt) to incur some cost in terms of growth and survival of ducklings. Preseason bandings revealed a high proportion of banded adults and a strong positive correlation in age ratios with the Deal Island banding site. This latter finding strongly suggests a negative universal effect of storm tides on nest success for Tangier Sound black ducks. Management to reduce nest predators, especially gulls and foxes, likely will have the greatest immediate benefit for island breeding black ducks.

  18. 76 FR 54247 - Supawna Meadows National Wildlife Refuge, Salem County, NJ; Final Comprehensive Conservation Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ..., New Jersey. In this final CCP, we describe how we will manage this refuge for the next 15 years..., and other wildlife. We would continue to actively manage tidal marsh and grassland habitats, and would... consideration would be to manage a diversity of other refuge wetland and upland habitats to benefit breeding and...

  19. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City

    USGS Publications Warehouse

    Wang, Hongqing; Chen, Qin; Hu, Kelin; Snedden, Gregg A.; Hartig, Ellen K.; Couvillion, Brady R.; Johnson, Cody L.; Orton, Philip M.

    2017-03-29

    The salt marshes of Jamaica Bay, managed by the New York City Department of Parks & Recreation and the Gateway National Recreation Area of the National Park Service, serve as a recreational outlet for New York City residents, mitigate flooding, and provide habitat for critical wildlife species. Hurricanes and extra-tropical storms have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. However, the magnitude and mechanisms of hurricane effects on sediment dynamics and associated coastal wetland morphology in the northeastern United States are poorly understood. In this study, the depth-averaged version of the Delft3D modeling suite, integrated with field measurements, was utilized to examine the effects of Hurricane Sandy and future potential hurricanes on salt marsh morphology in Jamaica Bay, New York City. Hurricane Sandy-induced wind, waves, storm surge, water circulation, sediment transport, deposition, and erosion were simulated by using the modeling system in which vegetation effects on flow resistance, surge reduction, wave attenuation, and sedimentation were also incorporated. Observed marsh elevation change and accretion from a rod surface elevation table and feldspar marker horizons and cesium-137- and lead-210-derived long-term accretion rates were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model.The model results (storm surge, waves, and marsh deposition and erosion) agreed well with field measurements. The validated modeling system was then used to detect salt marsh morphological change due to Hurricane Sandy across the entire Jamaica Bay over the short-term (for example, 4 days and 1 year) and long-term (for example, 5 and 10 years). Because Hurricanes Sandy (2012) and Irene (2011) were two large and destructive tropical cyclones which hit the northeast coast, the validated coupled model was run to predict the effects of Sandy-like and Irene-like hurricanes with different storm tracks and wind intensities on wetland morphology in Jamaica Bay. Model results indicate that, in Jamaica Bay salt marshes, the morphological changes (greater than 5 millimeters [mm] determined by the long-term marsh accretion rate) caused by Hurricane Sandy were complex and spatially heterogeneous. Most of the erosion (5–40 mm) and deposition (5–30 mm) were mainly characterized by fine sand for channels and bay bottoms and by mud for marsh areas. Hurricane Sandy-generated deposition and erosion were generated locally. The storm-induced net sediment input through Rockaway Inlet was only about 1 percent of the total amount of the sediment reworked by the hurricane. Salt marshes inside the western part of the bay showed erosion overall while marshes inside the eastern part showed deposition from Hurricane Sandy. Model results indicated that most of the marshes could recover from Hurricane Sandy-induced erosion after 1 year and demonstrated continued marsh accretion after the hurricane over the course of long simulation periods although the effect (accretion) was diminished. Local waves and currents generated by Hurricane Sandy appeared to play a critical role in sediment transport and associated wetland morphological change in Jamaica Bay. Hypothetical hurricanes, depending on their track and intensity, cause variable responses in spatial patterns of sediment deposition and erosion compared to simulations without the hurricane. In general, hurricanes passing west of the Jamaica Bay estuary appear to be more destructive to the salt marshes than those passing the east. Consequently, marshes inside the western part of the bay were likely to be more vulnerable to hurricanes than marshes inside the eastern part of the bay. 

  20. Seasonal habitat-use patterns of nekton in a tide-restricted and unrestricted New England salt marsh

    USGS Publications Warehouse

    Raposa, K.B.; Roman, C.T.

    2001-01-01

    Many New England salt marshes remain tide-restricted or are undergoing tidal restoration. Hydrologic manipulation of salt marshes affects marsh biogeochemistry and vegetation patterns, but responses by fishes and decapod crustaceans (nekton) remain unclear, This study examines nekton habitat-use patterns in the tide-restricted Hatches Harbor salt marsh (Provincetown, Massachusetts) relative to a downstream, unrestricted marsh. Nekton assemblages were sampled in tidal creek, marsh pool, and salt marsh surface habitats. Pools and creeks were sampled every two weeks for one year to account for seasonal variability, and the marsh surface was sampled at two-week intervals in summer and fall. Density, richness, and community composition of nekton in creek and marsh surface habitats were similar between the unrestricted and restricted marsh, but use of pools differed drastically on the two sides of the tide-restricting dike. In 95% of the cases tested, restricted marsh habitats provided equal or greater habitat value for nekton than the same habitat in the unrestricted marsh (based on density), suggesting that the restricted marsh did not provide a degraded habitat for most species. For some species, the restricted marsh provided nursery, breeding, and overwintering habitat during different seasons, and tidal restoration of this salt marsh must be approached with care to prevent losses of these valuable marsh functions.

  1. The link between water quality and tidal marshes in a highly impacted estuary.

    NASA Astrophysics Data System (ADS)

    Meire, Patrick; Maris, Tom; van Damme, Stefan; Jacobs, Sander; Cox, Tom; Struyf, Eric

    2010-05-01

    The Schelde estuary is one of the most heavily impacted estuaries in Europe. During several decades, untreated waste water from large cities (e.g. Brussels, Antwerp, Valenciennes, Lille) and industries was discharged in the river. As a result, the Schelde estuary has the reputation of being one of the most polluted estuaries in Europe. For a long time (approx. 1950 - 1995) all forms of higher life (macro-invertebrates and fish) were absent in the fresh and brackish parts of the estuary. Due to European legislation, a large part of the sewage water is now treated resulting in a significant recovery of water quality in the estuary. However, next to water quality, the estuary also suffered serious habitat losses during the last decades, mostly due to economic development and changing hydrological conditions causing more erosion. Over the last fifteen years, the management of the estuary has changed fundamentally. It is now more and more focused on the restoration of ecosystem services. In this presentation we will document the changes in water quality over the last 50 years and summarize recent work on the role of tidal marshes on water quality within the freshwater part of the Schelde estuary. Our results stress the important of taking into account ecosystem services and habitat restoration for long-term estuarine management. .After decades of high inorganic nutrient concentrations and recurring anoxia and hypoxia, we observed a paradoxical increase in chlorophyll-a concentrations with decreasing nutrient inputs, indicating a regime shift. Our results indicate that the recovery of a hypereutrophied systems towards a classical eutrophied state, needs the reduction of waste loads below certain thresholds. Paradoxically, phytoplankton production was inhibited by high ammonia or low oxygen concentrations. The system state change is accompanied by large fluctuations in oxygen concentrations. The improved water quality resulted in a remarkable recovery of different groups of higher organisms, especially fish populations. It is clear that the improved water quality is to a large part due to improved waste water treatment. However detailed studies of the exchange between tidal marshes and the estuary clearly proved also the importance of these habitats for water quality. A whole ecosystem labeling experiment gave evidence on the sink function of these marshes for nitrogen. Detailed mass balance studies show also the importance of mashes in the silica cycle. Amorphous biogenic silica is imported into marshes were it accumulates in the soil, while dissolved silica is exported again to the pelagic. At times when the concentrations of dissolved silica in the estuary are limiting (during plankton blooms), the export of DSi from the marshes is highest. These results clearly indicate the crucial role tidal marshes play in the estuarine biogeochemical cycles and in their resilience against imbalanced nutrient inputs. Based on these insights new tidal marshes have been developed along the Schelde, their design being so that the delivery of ecosystems services (eg impact on water quality) is maximal.

  2. Processes contributing to resilience of coastal wetlands to sea-level rise

    USGS Publications Warehouse

    Stagg, Camille L.; Krauss, Ken W.; Cahoon, Donald R.; Cormier, Nicole; Conner, William H.; Swarzenski, Christopher M.

    2016-01-01

    The objectives of this study were to identify processes that contribute to resilience of coastal wetlands subject to rising sea levels and to determine whether the relative contribution of these processes varies across different wetland community types. We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to marsh by measuring processes controlling wetland elevation. We found that, over 5 years of measurement, TFFWs were resilient, although some marginally, and oligohaline marshes exhibited robust resilience to sea-level rise. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems. We showed that the relative importance of surface and subsurface processes in controlling wetland surface elevation change differed between TFFWs and oligohaline marshes. The marshes had significantly higher rates of surface accretion than the TFFWs, and in the marshes, surface accretion was the primary contributor to elevation change. In contrast, elevation change in TFFWs was more heavily influenced by subsurface processes, such as root zone expansion or compaction, which played an important role in determining resilience of TFFWs to rising sea level. When root zone contributions were removed statistically from comparisons between relative sea-level rise and surface elevation change, sites that previously had elevation rate deficits showed a surplus. Therefore, assessments of wetland resilience that do not include subsurface processes will likely misjudge vulnerability to sea-level rise.

  3. No Substitute for Going to the Field: Correcting Lidar DEMs in Salt Marshes

    NASA Astrophysics Data System (ADS)

    Renken, K.; Morris, J. T.; Lynch, J.; Bayley, H.; Neil, A.; Rasmussen, S.; Tyrrell, M.; Tanis, M.

    2016-12-01

    Models that forecast the response of salt marshes to current and future trends in sea level rise increasingly are used to guide management of these vulnerable ecosystems. Lidar-derived DEMs serve as the foundation for modeling landform change. However, caution is advised when using these DEMs as the starting point for models of salt marsh evolution. While broad vegetation class (i.e., young forest, old forest, grasslands, desert, etc.) has proven to be a significant predictor of vertical displacement error in terrestrial environments, differentiating error among different species or community types within the same ecosystem has received less attention. Salt marshes are dominated by monocultures of grass species and thus are an ideal environment to examine the within-species effect on lidar DEM error. We analyzed error of lidar DEMs using elevations from real-time kinematic (RTK) surveys in saltmarshes in multiple national parks and wildlife refuge areas from the mouth of the Chesapeake Bay to Massachusetts. Error of the lidar DEMs was sometimes large, on the order of 0.25 m, and varied significantly between sites because vegetation cover varies seasonally and lidar data was not always collected in the same season for each park. Vegetation cover and composition were used to explain differences between RTK elevations and lidar DEMs. This research underscores the importance of collecting RTK elevation data and vegetation cover data coincident with lidar data to produce correction factors specific to individual salt marsh sites.

  4. Peat Archives in the Hudson River Estuary… Marsh Formation, Carbon Storage and Release, and Resilience

    NASA Astrophysics Data System (ADS)

    Peteet, D. M.; Corbett, E. J.; Nichols, J. E.; Kenna, T. C.; Chang, C.

    2017-12-01

    We target deep peat stores (at least 8 meters) of carbon in the lower Hudson Estuary, which formed as the glacial fjord became an estuary with mid-Holocene sea level rise. These deep marshes play an extremely important role in the estuary health and stability in a changing climate. Never before have we faced the threats to coastal marshes that we are facing today, and the resulting sedimentation rates, inorganic/organic component histories, pollen, macrofossil, isotopic, and XRF data reveal critical information about past vegetation and climate change. Long-term shifts in organic/inorganic storage appear to be linked to drought, as watershed erosion results in more sand, silt and clay in the marshes. Climatic shifts often result in regional watershed shifts in vegetation, both locally and regionally. Understanding how these marshes are linked to human impact (disturbance, invasive species, higher nitrogen, heavy metal pollution, dams) over the last four centuries is critical to providing management of these key ecosystems, and their preservation as sea level rises. Quantification of processes that cause carbon degradation and release from these wetlands to the estuary is also key to this investigation. Peat loss would contribute to heavy metal pollution in the estuary as well as carbon loss. Young investigators from secondary schools in New York City participated in much of the fieldwork as part of the NASA/GISS NYC Research Initiative and the LDEO Secondary School Field Research Carbon Team.

  5. Separating natural trends from direct human influences on flow changes and flooding of the Rock River in Wisconsin

    NASA Astrophysics Data System (ADS)

    Fredrick, K. C.; Bader, J. A.

    2016-12-01

    The Rock River of south-central Wisconsin is an integral feature of the glacial legacy and modern drainage system of the region. It runs from the Horicon marsh, a federally protected wetland, through mostly rural areas of Wisconsin and northern Illinois to its outlet to the Mississippi River. Economically important to the adjacent farmers and communities, the Rock River has a colorful history of recreation, management, and especially change. But over the years, changes to the upper Rock River between the Horicon Marsh and Watertown, Wisconsin have induced flooding of unprecedented frequency and duration, especially when compared against hydrometeorological conditions. Anecdotal evidence suggests unusual flooding of large swaths of farmland and roadways, along with unwelcome consequences of those floodwaters have been especially pronounced since the late 1990's. Beginning in 2007, continuous weekly monitoring of the Rock River stage has been conducted in Lebanon Township below the Horicon Marsh. In that time, multiple damaging flood events have been recorded. In search of causes for these anomalous events, especially with regard to duration, upstream and downstream management practices have been evaluated. Dam manipulation downstream of the Lebanon and Ashippun Township sections is one likely cause. However, upon further review, a continued upward trend in stream stage (0.58 feet of increase over nine years) cannot be as easily explained by management practices, especially considering a general decrease in overall precipitation during those same years.

  6. Landowner's perception of flood risk and preventive actions in estuarine environment: An empirical investigation.

    PubMed

    Rambonilaza, Tina; Joalland, Olivier; Brahic, Elodie

    2016-09-15

    Within Europe, flood and coastal risk management is undergoing a major paradigm shift as it moves from an approach dominated by investment in flood defence and control infrastructure to another one in which non-structural measures are favoured. One research challenge consists in developing a better understanding of local population risk perception and its effects on prevention and preparedness actions in order to improve social acceptability of adaptive flood risk management. Landowners' involvement in wetland management offer benefits beyond the line of their property. Accordingly, the purpose of this study is to achieve an empirical understanding of risk perception and self-protective behaviour among the landowners of the riparian marshes in the Gironde Estuary, in France. Application of the psychometric approach reveals that flood risk perception among landowners can be characterised by three synthetic variables that indicate on the degree of exposure, the sense of control and knowledge of the risk. Examining the relationships between these perceived risk dimensions and landowners' participation in water structures management provides three profiles of self-protective behaviour distinguishing "vulnerable", "autonomous", and "passive" individuals. Finally, implications of our findings for the management of flood risk in estuarine environment which is often drained areas are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Analysis and simulation of water-level, specific conductance, and total phosphorus dynamics of the Loxahatchee National Wildlife Refuge, Florida, 1995-2006

    USGS Publications Warehouse

    Conrads, Paul; Roehl, Edwin A.

    2010-01-01

    Two scenarios were simulated with the LOXANN DSS. One scenario increased the historical flows at four control structures by 40 percent. The second scenario used a user-defined hydrograph to set the outflow from the Refuge to the weekly average inflow to the Refuge delayed by 2 days. Both scenarios decreased the potential of canal water intruding into the marsh by decreasing the slope of the water level between the canals and the marsh.

  8. Selection and static calibration of the Marsh J1678 pressure gauge

    NASA Technical Reports Server (NTRS)

    Oxendine, Charles R.; Smith, Howard W.

    1993-01-01

    During the experimental testing of the ultralight, it was determined that a pressure gauge would be required to monitor the simulated flight loads. After analyzing several factors, which are indicated in the discussion section of this report, the Marsh J1678 pressure gauge appeared to be the prominent candidate for the task. However, prior to the final selection, the Marsh pressure gauge was calibrated twice by two different techniques. As a result of the calibration, the Marsh gauge was selected as the appropriate measuring device during the structural testing of the ultralight. Although, there are commerical pressure gauges available on the market that would have proven to be more efficient and accurate. However, in order to obtain these characteristics in a gauge, one has to pay the price on the price tag, and this value is an exponential function of the degree of accuracy efficiency, precision, and many other features that may be designed into the gauge. After analyzing the extent of precision and accuracy that would be required, a more expensive gauge wouldn't have proven to be a financial benefit towards the outcome of the experiment.

  9. Coastal Marsh Monitoring for Persistent Saltwater Intrusion

    NASA Technical Reports Server (NTRS)

    Hall, Callie M.

    2008-01-01

    This viewgraph presentation reviews NASA's work on the project that supports the Gulf of Mexico Alliance (GOMA) Governors Action Plan to monitor the coastal wetlands for saltwater intrusion. The action items that relate to the task are: (1) Obtain information on projected relative sea level rise, subsidence, and storm vulnerability to help prioritize conservation projects, including restoration, enhancement, and acquisition, and (2) Develop and apply ecosystem models to forecast the habitat structure and succession following hurricane disturbance and changes in ecological functions and services that impact vital socio-economic aspects of coastal systems. The objectives of the program are to provide resource managers with remote sensing products that support ecosystem forecasting models requiring salinity and inundation data. Specifically, the proposed work supports the habitat-switching modules in the Coastal Louisiana Ecosystem Assessment and Restoration (CLEAR) model, which provides scientific evaluation for restoration management.

  10. Seasonal Differences in the CO2 Exchange of a Short-Hydroperiod Florida Everglades Marsh

    NASA Astrophysics Data System (ADS)

    Schedlbauer, J. L.; Oberbauer, S. F.; Starr, G.; Jimenez, K. L.

    2009-12-01

    Although wetlands are among the world’s most productive ecosystems, little is known of long-term CO2 exchange in tropical and subtropical wetlands. As human pressure on wetlands increases and climate change proceeds, there is growing need to increase our knowledge of wetland ecosystem function. The Everglades is a highly managed wetlands complex occupying >6000 km2 in south Florida. This ecosystem is oligotrophic, but extremely high rates of productivity have been previously reported. To evaluate annual and seasonal (dry vs. wet season) ecosystem production, CO2 exchange was determined by eddy covariance in a short-hydroperiod marl marsh. Rates of net ecosystem exchange and ecosystem respiration were small year-round and declined in the wet season relative to the dry season. Inundation submerged approximately half of the marsh’s leaf area, substantially limiting gross ecosystem production. While light and air temperature exerted the primary controls on net ecosystem exchange and ecosystem respiration in the dry season, inundation weakened these relationships. The ecosystem shifted from a CO2 sink in the dry season to a CO2 source in the wet season; however, the marsh was a small carbon sink on an annual basis. Net ecosystem production, ecosystem respiration, and gross ecosystem production were -27.9, 394.3, and 422.2 g C m-2 year-1, respectively. Unexpectedly low CO2 flux rates and annual production distinguish the Everglades from many other wetlands. Nonetheless, impending changes in water management and climate are likely to alter the CO2 balance of this wetland and may increase the source strength of these extensive short-hydroperiod marshes.

  11. Multi-Scale Voxel Segmentation for Terrestrial Lidar Data within Marshes

    NASA Astrophysics Data System (ADS)

    Nguyen, C. T.; Starek, M. J.; Tissot, P.; Gibeaut, J. C.

    2016-12-01

    The resilience of marshes to a rising sea is dependent on their elevation response. Terrestrial laser scanning (TLS) is a detailed topographic approach for accurate, dense surface measurement with high potential for monitoring of marsh surface elevation response. The dense point cloud provides a 3D representation of the surface, which includes both terrain and non-terrain objects. Extraction of topographic information requires filtering of the data into like-groups or classes, therefore, methods must be incorporated to identify structure in the data prior to creation of an end product. A voxel representation of three-dimensional space provides quantitative visualization and analysis for pattern recognition. The objectives of this study are threefold: 1) apply a multi-scale voxel approach to effectively extract geometric features from the TLS point cloud data, 2) investigate the utility of K-means and Self Organizing Map (SOM) clustering algorithms for segmentation, and 3) utilize a variety of validity indices to measure the quality of the result. TLS data were collected at a marsh site along the central Texas Gulf Coast using a Riegl VZ 400 TLS. The site consists of both exposed and vegetated surface regions. To characterize structure of the point cloud, octree segmentation is applied to create a tree data structure of voxels containing the points. The flexibility of voxels in size and point density makes this algorithm a promising candidate to locally extract statistical and geometric features of the terrain including surface normal and curvature. The characteristics of the voxel itself such as the volume and point density are also computed and assigned to each point as are laser pulse characteristics. The features extracted from the voxelization are then used as input for clustering of the points using the K-means and SOM clustering algorithms. Optimal number of clusters are then determined based on evaluation of cluster separability criterions. Results for different combinations of the feature space vector and differences between K-means and SOM clustering will be presented. The developed method provides a novel approach for compressing TLS scene complexity in marshes, such as for vegetation biomass studies or erosion monitoring.

  12. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency.

    PubMed

    Schile, Lisa M; Callaway, John C; Morris, James T; Stralberg, Diana; Parker, V Thomas; Kelly, Maggi

    2014-01-01

    Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea-level rise. These results also emphasize the importance of adjacent uplands for long-term marsh survival and incorporating such areas in conservation planning efforts.

  13. Translocations of amphibians: Proven management method or experimental technique

    USGS Publications Warehouse

    Seigel, Richard A.; Dodd, C. Kenneth

    2002-01-01

    In an otherwise excellent review of metapopulation dynamics in amphibians, Marsh and Trenham (2001) make the following provocative statements (emphasis added): If isolation effects occur primarily in highly disturbed habitats, species translocations may be necessary to promote local and regional population persistence. Because most amphibians lack parental care, they areprime candidates for egg and larval translocations. Indeed, translocations have already proven successful for several species of amphibians. Where populations are severely isolated, translocations into extinct subpopulations may be the best strategy to promote regional population persistence. We take issue with these statements for a number of reasons. First, the authors fail to cite much of the relevant literature on species translocations in general and for amphibians in particular. Second, to those unfamiliar with current research in amphibian conservation biology, these comments might suggest that translocations are a proven management method. This is not the case, at least in most instances where translocations have been evaluated for an appropriate period of time. Finally, the authors fail to point out some of the negative aspects of species translocation as a management method. We realize that Marsh and Trenham's paper was not concerned primarily with translocations. However, because Marsh and Trenham (2001) made specific recommendations for conservation planners and managers (many of whom are not herpetologists or may not be familiar with the pertinent literature on amphibians), we believe that it is essential to point out that not all amphibian biologists are as comfortable with translocations as these authors appear to be. We especially urge caution about advocating potentially unproven techniques without a thorough review of available options.

  14. Nutrient Effects on Belowground Organic Matter in a ...

    EPA Pesticide Factsheets

    Belowground structure and carbon dioxide emission rates were examined in minerogenic marshes of the North Inlet estuary, a system dominated by depositional processes and typical of the southeastern USA. Three areas were sampled: a long-term nutrient enrichment experiment (Goat Island); a fringing marsh that only receives drainage from an entirely forested watershed (upper Crab Haul Creek); and three locations along a creek basin that receives drainage from a residential and golf course development situated at its headwaters (Debidue Creek). Responses to fertilization at Goat Island were an increase in soil organic matter, an increase in number of rhizomes, enlarged rhizome diameters, decreased fine root mass, and increased carbon dioxide emission rates. At the Crab Haul Creek, the greatest abundances of coarse roots and rhizomes were observed in the high marsh compared to the low marsh and creekbank. The upper and mid Debidue Creek, which may be influenced by nutrient inputs associated with land development, had significantly fewer rhizomes compared to the mouth, which was dominated by exchange with bay waters. Carbon dioxide emission rates at the fertilized Goat Island plots were similar in magnitude to the upper Debidue Creek and significantly greater than the Goat Island control plots and the Crab Haul Creek. Inputs of sediment and particulates in marshes dominated by depositional processes such as the North Inlet may buffer the system from adverse effects of

  15. [Population size and behavior pattern of Grus canadensis nesiotes (Aves: Gruidae) in two localities of Cuba].

    PubMed

    Ferrer-Sánchez, Yarelys; Ruiz, Idael; Denis, Dennis; Torres, Yordanis; Abasolo-Pacheco, Fernando; Plasencia-Vázquez, Alexis H

    2016-12-01

    The availability of information on species abundance in the Neotropic is insufficient, and this prevents the execution of precise analysis and the definition of adequate conservation strategies for endemic and threatened species. This study aimed to analyze the population size of the endemic and threatened subspecies Grus canadensis nesiotes. For this, a simultaneous census was undertaken in 24 count stations in Isla de la Juventud (IJ) and 32 stations in Ciego de Ávila (CA), Cuba, during two consecutive days between 2008 and 2010. Abundance and behavior pattern (instantaneous method) were analyzed by habitat type, to help understand how cranes modify their behavioral pattern when the natural habitat is changed. Flocks in IJ had three individuals, and between 1.9 ± 1.5 and 2.8 ± 1.5 in CA. Population size in IJ was 164 individuals, and in CA of 137, 141 and 168 individuals for the 2008-2010 period, respectively. The counting efficacy was high (IJ: 91 %; CA: 81-87 %) and the numerical concordance was intermediate (IJ: 45.4 %; CA: 72 %). When comparing the habitat type, the abundance was higher in natural savannahs (83), followed by coastal flats (59), pines (23) and cattle pastures (7) in IJ; while in CA, marsh grasslands hosted the greatest abundance for the three years period (130; 120; 112), followed by grassland with palms (2; 17; 51) and cattle pastures (5; 4; 5). The cranes were fed more in cattle pastures and were more alert in natural savannas and marsh grasslands. The frequency of feeding and alert behaviors was different from the natural savannah/coastal flats and natural savannah/cattle pastures combinations in IJ. For CA, differences were found between marsh grasslands and marsh grasslands with palms. The population size increased by management strategies adopted in CA; nevertheless, might be affected by habitat loss associated with invasive alien plants in IJ. We propose the maintenance of prescribed fire in marsh grasslands under protection regime, as a strategy for long-term management to contribute with population growth.

  16. Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates

    USGS Publications Warehouse

    Kirwan, Matthew L.; Murray, A. Brad; Donnelly, Jeffrey P.; Corbett, D. Reide

    2011-01-01

    Fluctuations in sea-level rise rates are thought to dominate the formation and evolution of coastal wetlands. Here we demonstrate a contrasting scenario in which land-use-related changes in sediment delivery rates drive the formation of expansive marshland, and vegetation feedbacks maintain their morphology despite recent sediment supply reduction. Stratigraphic analysis and radiocarbon dating in the Plum Island Estuary (Massachusetts, United States) suggest that salt marshes expanded rapidly during the eighteenth and nineteenth centuries due to increased rates of sediment delivery following deforestation associated with European settlement. Numerical modeling coupled with the stratigraphic observations suggests that existing marshland could survive, but not form under the low suspended sediment concentrations observed in the estuary today. These results suggest that many of the expansive marshes that characterize the modern North American coast are metastable relicts of high nineteenth century sediment delivery rates, and that recent observations of degradation may represent a slow return to pre-settlement marsh extent. In contrast to ecosystem management practices in which restoring pre-anthropogenic conditions is seen as a way to increase ecosystem services, our results suggest that widespread efforts to restore valuable coastal wetlands actually prevent some systems from returning to a natural state.

  17. Coordinating across scales: Building a regional marsh bird monitoring program from national and state Initiatives

    USGS Publications Warehouse

    Shriver, G.W.; Sauer, J.R.

    2008-01-01

    Salt marsh breeding bird populations (rails, bitterns, sparrows, etc.) in eastern North America are high conservation priorities in need of site specific and regional monitoring designed to detect population changes over time. The present status and trends of these species are unknown but anecdotal evidence of declines in many of the species has raised conservation concerns. Most of these species are listed as conservation priorities on comprehensive wildlife plans throughout the eastern U.S. National Wildlife Refuges, National Park Service units, and other wildlife conservation areas provide important salt marsh habitat. To meet management needs for these areas, and to assist regional conservation planning, survey designs are being developed to estimate abundance and population trends for these breeding bird species. The primary purpose of this project is to develop a hierarchical sampling frame for salt marsh birds in Bird Conservation Region (BCR) 30 that will provide the ability to estimate species population abundances on 1) specific sites (i.e. National Parks and National Wildlife Refuges), 2) within states or regions, and 3) within BCR 30. The entire breeding range of Saltmarsh Sharp-tailed and Coastal Plain Swamp sparrows are within BCR 30, providing an opportunity to detect population trends within the entire breeding ranges of two priority species.

  18. Vegetation, substrate and hydrology in floating marshes in the Mississippi river delta plain wetlands, USA

    USGS Publications Warehouse

    Sasser, C.E.; Gosselink, J.G.; Swenson, E.M.; Swarzenski, C.M.; Leibowitz, N.C.

    1996-01-01

    In the 1940s extensive floating marshes (locally called 'flotant') were reported and mapped in coastal wetlands of the Mississippi River Delta Plain. These floating marshes included large areas of Panicum hemitomon-dominated freshwater marshes, and Spartina patens/Scirpus olneyi brackish marshes. Today these marshes appear to be quite different in extent and type. We describe five floating habitats and one non-floating, quaking habitat based on differences in buoyancy dynamics (timing and degree of floating), substrate characteristics, and dominant vegetation. All floating marshes have low bulk density, organic substrates. Nearly all are fresh marshes. Panicum hemitomon floating marshes presently occur within the general regions that were reported in the 1940's by O'Neil, but are reduced in extent. Some of the former Panicum hemitomon marshes have been replaced by seasonally or variably floating marshes dominated, or co-dominated by Sagittaria lancifolia or Eleocharis baldwinii. ?? 1996 Kluwer Academic Publishers.

  19. Seasonal comparison of aquatic macroinvertebrate assemblages in a flooded coastal freshwater marsh

    USGS Publications Warehouse

    Kang, Sung-Ryong; King, Sammy L.

    2013-01-01

    Marsh flooding and drying may be important factors affecting aquatic macroinvertebrate density and distribution in coastal freshwater marshes. Limited availability of water as a result of drying in emergent marsh may decrease density, taxonomic diversity, and taxa richness. The principal objectives of this study are to characterize the seasonal aquatic macroinvertebrate assemblage in a freshwater emergent marsh and compare aquatic macroinvertebrate species composition, density, and taxonomic diversity to that of freshwater marsh ponds. We hypothesize that 1) freshwater emergent marsh has lower seasonal density and taxonomic diversity compared to that of freshwater marsh ponds; and 2) freshwater emergent marsh has lower taxa richness than freshwater marsh ponds. Seasonal aquatic macroinvertebrate density in freshwater emergent marsh ranged from 0 organisms/m2 (summer 2009) to 91.1 ± 20.53 organisms/m2 (mean ± SE; spring 2009). Density in spring was higher than in all other seasons. Taxonomic diversity did not differ and there were no unique species in the freshwater emergent marsh. Our data only partially support our first hypothesis as aquatic macroinvertebrate density and taxonomic diversity between freshwater emergent marsh and ponds did not differ in spring, fall, and winter but ponds supported higher macroinvertebrate densities than freshwater emergent marsh during summer. However, our data did not support our second hypothesis as taxa richness between freshwater emergent marsh and ponds did not statistically differ.

  20. Shoreline as a controlling factor in commercial shrimp production

    NASA Technical Reports Server (NTRS)

    Faller, K. H. (Principal Investigator)

    1978-01-01

    An ecological model was developed that relates marsh detritus export and shrimp production, based on the hypothesis that the shoreline is a controlling factor in the production of shrimp through regulation of detritus export from the marsh. LANDSAT data were used to develop measurements of shoreline length and area of marsh having more than 5.0 km shoreline/sq km for the coast of Louisiana, demonstrating the capability of remote sensing to provide important geographic information. These factors were combined with published tidal ranges and salinities to develop a mathematical model that predicted shrimp production for nine geographic units of the Louisiana coast, as indicated by the long term average commercial shrimp yield. The mathematical model relating these parameters and the shrimp production is consistent with an energy flow model describing the interaction of detritus producing marshlands with shrimp nursery grounds and inshore shrimping areas. The analysis supports the basic hypothesis and further raises the possibility of applications to coastal zone management requirements.

  1. Assessing the Potential for Inland Migration of a Northeastern Salt Marsh

    NASA Astrophysics Data System (ADS)

    Farron, S.; FitzGerald, D.; Hughes, Z. J.

    2017-12-01

    It is often assumed that as sea level rises, salt marshes will expand inland. If the slope of the upland is relatively flat and sufficient sediment is available, marshes should be able to spread horizontally and grow vertically in order to maintain their areal extent. However, in cases where marshes are backed by steeper slopes, or sediment supply is limited, rising sea level will produce minimal gains along the landward edge insufficient to offset potential losses along the seaward edge. This study uses future sea level rise scenarios to project areal losses for the Great Marsh in Massachusetts, the largest continuous salt marsh in New England. Land area covered by salt marsh is defined by surface elevation. Annual sediment input to the system is estimated based on the areal extent of high and low marsh, historical accretion rates for each, and known organic/inorganic ratios. Unlike other studies, sediment availability is considered to be finite, and future accretion rates are limited based on the assumption that the system is presently receiving the maximum sediment input available. The Great Marsh is dominated by high marsh; as sea level rises, it will convert to low marsh, vastly altering the ecological and sedimentological dynamics of the system. If it is assumed that former high marsh areas will build vertically at the increased rate associated with low marsh, then much of the total marsh area will be maintained. However, this may be an unrealistic assumption due to the low levels of suspended sediment within the Great Marsh system. Modeling the evolution of the Great Marsh by assuming that the current accretion rate is the maximum possible for this system reveals much greater losses than models assuming an unlimited sediment supply would predict (17% less marsh by 2115). In addition, uplands surrounding the Great Marsh have been shaped by glaciation, leaving numerous drumlins and other glacial landforms. Compared to the flat backbarrier, the surrounding hills offer little opportunity for expansion. Modeling results suggest that sea level rise over the next century will convert 12 km2 of marsh to open water, but only 9 km2 of new marsh will be formed through uplands inundation and sedimentation. These findings suggest that sea level rise presents a particular threat to the Great Marsh, and marshes like it.

  2. Summary of data from onsite and laboratory analyses of surface water and marsh porewater from South Florida Water Management District Water Conservation Areas, the Everglades, South Florida, March 1995

    USGS Publications Warehouse

    Reddy, Michael M.; Gunther, Charmaine D.

    2012-01-01

    This report presents results of chemical analysis for samples collected during March, 1995, as part of a study to quantify the interaction of aquatic organic material (referred to here as dissolved organic carbon with dissolved metal ions). The work was done in conjunction with the South Florida Water Management District, the U.S. Environmental Protection Agency, the U.S. Geological Survey South Florida Ecosystems Initiative, and the South Florida National Water Quality Assessment Study Unit. Samples were collected from surface canals and from marsh sites. Results are based on onsite and laboratory measurements for 27 samples collected at 10 locations. The data file contains sample description, dissolved organic carbon concentration and specific ultraviolet absorbance, and additional analytical data for samples collected at several sites in the Water Conservation Areas, the Everglades, south Florida.

  3. The role of hydrodynamic transport in greenhouse gas fluxes at a wetland with emergent vegetation

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Gilson, E.; Knox, S. H.; Matthes, J. H.; Verfaillie, J. G.; Baldocchi, D. D.; Variano, E. A.

    2013-12-01

    In wetlands with emergent vegetation, the hydrodynamic transport of dissolved gases is often neglected because emergent plants transport gases directly and limit wind-driven air-water gas exchange by sheltering the water surface. Nevertheless, wetland hydrodynamics, and thermally-driven stirring in particular, have the potential to impact gas fluxes in these environments. We are evaluating the importance of hydrodynamic dissolved gas transport at a re-established marsh on Twitchell Island in the Sacramento-San Joaquin Delta (California, USA). At this marsh, the U.S. Geological Survey has previously observed rapid accumulation of organic material (carbon sequestration) as well as very high methane emissions. To assess the role of hydrodynamics in the marsh's greenhouse gas fluxes, we measured dissolved carbon dioxide and methane in the water column on a bi-weekly basis beginning in July 2012. We employed a model for air-water gas fluxes in wetlands with emergent vegetation that predicts gas transfer velocities from meteorological conditions. Modeled air-water gas fluxes were compared with net gas fluxes measured at the marsh via the eddy covariance technique. This comparison revealed that hydrodynamic transport due to thermal convection was responsible for approximately one third of net carbon dioxide and methane fluxes. The cooling at the water surface driving thermal convection occurred each night and was most pronounced during the warmest months of the year. These finding have implications for the prediction and management of greenhouse gas fluxes at re-established marshes in the Sacramento-San Joaquin Delta and other similar wetlands.

  4. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    PubMed

    Markle, Chantel E; Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  5. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration

    PubMed Central

    Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada’s mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931–2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna. PMID:29444129

  6. State Paths of Clay Dominated Soils of Coastal Marshland: Scale Effect and Hydrodynamic Behaviour

    NASA Astrophysics Data System (ADS)

    Tojo Radimy, Raymond; Dudoignon, Patrick

    2017-12-01

    The paper is focused on clayey dominated sediments of coastal marshes of the West Atlantic coast of France because of their homogeneity in texture and mineralogy, and their vertical structure evolution from dried and solid state in surface down to saturated plastic-to-liquid state in depth. It proposes a “review” of the complementary petrographic and hydromechanical data obtained on theses clay dominated soils and a method of calculation for the relationships prevailing between the hydro-mechanical properties and microstructure behaviour of the clay matrices. This tool, based on the shrinkage curve of the clay matrix is applied as aid to the hydraulic management of marshlands regarding the soil-plant interactions.

  7. 39 CFR 776.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... buildings, structures and improvements. Contending site means a site or existing building for a proposed... saturated soil conditions. Wetlands generally include swamps, marshes, bogs, and similar areas. ...

  8. Marsh collapse thresholds for coastal Louisiana estimated using elevation and vegetation index data

    USGS Publications Warehouse

    Couvillion, Brady R.; Beck, Holly

    2013-01-01

    Forecasting marsh collapse in coastal Louisiana as a result of changes in sea-level rise, subsidence, and accretion deficits necessitates an understanding of thresholds beyond which inundation stress impedes marsh survival. The variability in thresholds at which different marsh types cease to occur (i.e., marsh collapse) is not well understood. We utilized remotely sensed imagery, field data, and elevation data to help gain insight into the relationships between vegetation health and inundation. A Normalized Difference Vegetation Index (NDVI) dataset was calculated using remotely sensed data at peak biomass (August) and used as a proxy for vegetation health and productivity. Statistics were calculated for NDVI values by marsh type for intermediate, brackish, and saline marsh in coastal Louisiana. Marsh-type specific NDVI values of 1.5 and 2 standard deviations below the mean were used as upper and lower limits to identify conditions indicative of collapse. As marshes seldom occur beyond these values, they are believed to represent a range within which marsh collapse is likely to occur. Inundation depth was selected as the primary candidate for evaluation of marsh collapse thresholds. Elevation relative to mean water level (MWL) was calculated by subtracting MWL from an elevation dataset compiled from multiple data types including light detection and ranging (lidar) and bathymetry. A polynomial cubic regression was used to examine a random subset of pixels to determine the relationship between elevation (relative to MWL) and NDVI. The marsh collapse uncertainty range values were found by locating the intercept of the regression line with the 1.5 and 2 standard deviations below the mean NDVI value for each marsh type. Results indicate marsh collapse uncertainty ranges of 30.7–35.8 cm below MWL for intermediate marsh, 20–25.6 cm below MWL for brackish marsh, and 16.9–23.5 cm below MWL for saline marsh. These values are thought to represent the ranges of inundation depths within which marsh collapse is probable.

  9. Hunting influences the diel patterns in habitat selection by northern pintails Anas acuta

    USGS Publications Warehouse

    Casazza, Michael L.; Coates, Peter S.; Miller, Michael R.; Overton, Cory T.; Yparraguirre, Daniel R.

    2012-01-01

    Northern pintail Anas acuta (hereafter pintail) populations wintering within Suisun Marsh, a large estuarine managed wetland near San Francisco Bay, California,USA, have declined markedly over the last four decades. The reasons for this decline are unclear. Information on how hunting and other factors influence the selection of vegetation types and sanctuaries would be beneficial to manage pintail populations in SuisunMarsh. During 1991-1993, we radio-marked and relocated female pintails (individuals: N = 203, relocations: N = 7,688) within Suisun Marsh to investigate habitat selection during the non-breeding months (winter). We calculated selection ratios for different vegetation types and for sanctuaries, and examined differences in those ratios between hunting season (i.e. hunting and non-hunting), age (hatchyear and after-hatch-year), and time of day (daylight or night hours). We found that diel patterns in selection were influenced by hunting disturbance. For example, prior to the hunting season and during daylight hours, pintails selected areas dominated by brass buttons Cotula coronopifolia, a potentially important food source, usually outside of sanctuary boundaries. However, during the hunting season, pintails did not select brass buttons during daylight hours, but instead highly selected permanent pools, mostly within sanctuaries. Also, during the hunting season, pintails showed strong selection for brass buttons at night. Sanctuaries provided more area of permanent water pools than within hunting areas and appeared to function as important refugia during daylight hours of the hunting season. Wildlife managers should encourage large protected permanent pools adjacent to hunted wetlands to increase pintail numbers within wetland environments and responsibly benefit hunting opportunities while improving pintail conservation.

  10. 11. DETAIL VIEW OF DAM 87, SHOWING STOPLOG STRUCTURE (PARTIALLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. DETAIL VIEW OF DAM 87, SHOWING STOPLOG STRUCTURE (PARTIALLY HIDDEN BY MARSH GRASSES IN LOWER PART OF PHOTO) AT RIGHT (WEST) END OF SPILLWAY - Upper Souris National Wildlife Refuge, Dam 87, Souris River Basin, Foxholm, Surrey (England), ND

  11. Response of a salt marsh microbial community to metal contamination

    NASA Astrophysics Data System (ADS)

    Mucha, Ana P.; Teixeira, Catarina; Reis, Izabela; Magalhães, Catarina; Bordalo, Adriano A.; Almeida, C. Marisa R.

    2013-09-01

    Salt marshes are important sinks for contaminants, namely metals that tend to accumulate around plant roots and could eventually be taken up in a process known as phytoremediation. On the other hand, microbial communities display important roles in the salt marsh ecosystems, such as recycling of nutrients and/or degradation of organic contaminants. Thus, plants can benefit from the microbial activity in the phytoremediation process. Nevertheless, above certain levels, metals are known to be toxic to microorganisms, fact that can eventually compromise their ecological functions. In this vein, the aim of present study was to investigate, in the laboratory, the effect of selected metals (Cd, Cu and Pb) on the microbial communities associated to the roots of two salt marsh plants. Sediments colonized by Juncus maritimus and Phragmites australis were collected in the River Lima estuary (NW Portugal), and spiked with each of the metals at three different Effects Range-Median (ERM) concentrations (1, 10×, 50×), being ERM the sediment quality guideline that indicates the concentration above which adverse biological effects may frequently occur. Spiked sediments were incubated with a nutritive saline solution, being left in the dark under constant agitation for 7 days. The results showed that, despite the initial sediments colonized by J. maritimus and P. australis displayed significant (p < 0.05) differences in terms of microbial community structure (evaluated by ARISA), they presented similar microbial abundances (estimated by DAPI). Also, in terms of microbial abundance, both sediments showed a similar response to metal addition, with a decrease in number of cells only observed for the higher addition of Cu. Nevertheless, both Cu and Pb, at intermediate metals levels promote a shift in the microbial community structure, with possibly effect on the ecological function of these microbial communities in salt marshes. These changes may affect plants phytoremediation potential and further work on this subject is in need.

  12. Automated Detection of Salt Marsh Platforms : a Topographic Method

    NASA Astrophysics Data System (ADS)

    Goodwin, G.; Mudd, S. M.; Clubb, F. J.

    2017-12-01

    Monitoring the topographic evolution of coastal marshes is a crucial step toward improving the management of these valuable landscapes under the pressure of relative sea level rise and anthropogenic modification. However, determining their geometrically complex boundaries currently relies on spectral vegetation detection methods or requires labour-intensive field surveys and digitisation.We propose a novel method to reproducibly isolate saltmarsh scarps and platforms from a DEM. Field observations and numerical models show that saltmarshes mature into sub-horizontal platforms delineated by sub-vertical scarps: based on this premise, we identify scarps as lines of local maxima on a slope*relief raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. Non-dimensional search parameters allow batch-processing of data without recalibration. We test our method using lidar-derived DEMs of six saltmarshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and automatic segregation exceeds 90% for resolutions of 1m, with all but one sites maintaining this performance for resolutions up to 3.5m. For resolutions of 1m, automatically detected platforms are comparable in surface area and elevation distribution to digitised platforms. We also find that our method allows the accurate detection of local bloc failures 3 times larger than the DEM resolution.Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, automatic detection classifies them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method would benefit from a combination with existing creek detection algorithms. Fallen blocs and pioneer zones are inconsistently identified, particularly in macro-tidal marshes, leading to differences between digitisation and the automated method: this also suggests that these areas must be carefully considered when analysing erosion and accretion processes. Ultimately, we have shown that automatic detection of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyse topographic evolution.

  13. 77 FR 76510 - Prime Hook National Wildlife Refuge, Sussex County, DE; Final Comprehensive Conservation Plan and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ... included climate change, sea level rise, refuge marshes, habitat and wildlife species management, mosquito... adulticides for mosquito control when there is a documented human disease threat, instead of only when a...

  14. Phenological Impacts of Hurricane Katrina (2005) and Gustav (2008) on Louisiana Coastal Marshes

    NASA Astrophysics Data System (ADS)

    Mo, Y.; Kearney, M.; Riter, A.

    2015-12-01

    Coastal marshes provide indispensable ecological functions, such as offering habitat for economic fish and wildlife, improving water quality, protecting inland areas from floods, and stabilizing the shoreline. Hurricanes—though helping to maintain the elevation of coastal wetlands by depositing large amounts of sediments—pose one of the largest threats for coastal marshes in terms of eroding shorelines, scouring marsh surfaces, and resuspending sediments. Coastal marshes phenologies can be important for understanding broad response of marshes to stressors, like hurricanes. We investigated the phenological impacts of Katrina and Gustav (Category 3 and 2 hurricanes at landfall in southeast Louisiana on 29 August, 2005, and 1 September, 2008, respectively) on freshwater, intermediate, brackish, and saline marshes in southeastern Louisiana. Landsat-derived Normalized Difference Vegetation Index data were processed using ENVI 4.8. Phenological patterns of the marshes were modeled using a nonlinear mixed model using SAS 9.4. We created and compared marsh phenologies of 1994 and 2014, the reference years, to those of 2005 and 2008, the hurricane years. Preliminary results show that in normal years: (1) the NDVI of four marsh types peaked in July; (2) freshwater marshes had the highest peak NDVI, followed by intermediate, brackish, and saline marshes; and (3) the growth durations of the marshes are around three to six months. In 2005, the major phenological change was shortening of growth duration, which was most obvious for intermediate and brackish marshes. The peak NDVI values of the four marsh types were not affected because the hurricane occurred at the end of August, one month after the peak NDVI time. By comparison, there was no obvious phenological impact on the marshes by Gustav (2008) with respect to peak NDVI, peak NDVI day, and growth duration.

  15. Effects of invasive cordgrass on presence of Marsh Grassbird in an area where it is not native.

    PubMed

    Ma, Zhijun; Gan, Xiaojing; Choi, Chi-Yeung; Li, Bo

    2014-02-01

    The threatened Marsh Grassbird (Locustella pryeri) first appeared in the salt marsh in east China after the salt marsh was invaded by cordgrass (Spartina alterniflora), a non-native invasive species. To understand the dependence of non-native Marsh Grassbird on the non-native cordgrass, we quantified habitat use, food source, and reproductive success of the Marsh Grassbird at the Chongming Dongtan (CMDT) salt marsh. In the breeding season, we used point counts and radio-tracking to determine habitat use by Marsh Grassbirds. We analyzed basal food sources of the Marsh Grassbirds by comparing the δ(13) C isotope signatures of feather and fecal samples of birds with those of local plants. We monitored the nests through the breeding season and determined the breeding success of the Marsh Grassbirds at CMDT. Density of Marsh Grassbirds was higher where cordgrass occurred than in areas of native reed (Phragmites australis) monoculture. The breeding territory of the Marsh Grassbird was composed mainly of cordgrass stands, and nests were built exclusively against cordgrass stems. Cordgrass was the major primary producer at the base of the Marsh Grassbird food chain. Breeding success of the Marsh Grassbird at CMDT was similar to breeding success within its native range. Our results suggest non-native cordgrass provides essential habitat and food for breeding Marsh Grassbirds at CMDT and that the increase in Marsh Grassbird abundance may reflect the rapid spread of cordgrass in the coastal regions of east China. Our study provides an example of how a primary invader (i.e., cordgrass) can alter an ecosystem and thus facilitate colonization by a second non-native species. © 2013 Society for Conservation Biology.

  16. Marshes on the Move: Testing effects of seawater intrusion on ...

    EPA Pesticide Factsheets

    The Northeastern United States is a hotspot for sea level rise (SLR), subjecting coastal salt marshes to erosive loss, shifts in vegetation communities, and altered biogeochemistry due to seawater intrusion. Salt marsh plant community zonation is driven by tradeoffs in stress tolerance and interspecific interactions. As seawater inundates progressively higher marsh elevations, shifts in marsh vegetation communities landward may herald salt marsh “migration”, which could allow continuity of marsh function and ecosystem service provision. To elucidate possible effects of seawater intrusion on marsh-upland edge plant communities, a space-for-time approach was replicated at two Rhode Island salt marshes. At each site, peat blocks (0.5 m x 0.5 m x 0.5 m, n=6) with intact upland-marsh edge vegetation were transplanted downslope into the regularly-inundated mid-marsh. Procedural controls (n=3) were established at each elevation by removing and replacing peat blocks, and natural controls (n=3) consisted of undisturbed plots. During peak productivity, each plot was assessed for species composition, percent cover and average height. Results demonstrate stunting of marsh-upland edge vegetation in response to increased inundation, and the beginnings of colonization of the transplanted plots by salt marsh species. The extent of colonization differed between the two sites, suggesting that site-specific factors govern vegetation responses to increased inundation.

  17. Evaluation of marsh development processes at Fire Island National Seashore: Recent and historic perspectives

    USGS Publications Warehouse

    Roman, C.T.; King, D.R.; Cahoon, D.R.; Lynch, J.C.; Appleby, P.G.

    2007-01-01

    Purpose and significance of the study: Salt marshes are dynamic environments, increasing in vertical elevation and migrating, often landward, as sea level rises. With sea level rise greater than marsh elevation increase, marshes can be submerged, marsh soils become waterlogged, and plant growth becomes stressed, often resulting in conversion of vegetation-dominated marsh to mudflat or open water habitat. Given that the rate of sea level rise is expected to accelerate over the next century and that some marshes in the northeast are becoming submerged (e.g., Jamaica Bay, NY), it is important to understand the processes that control marsh development. More specifically, the objectives of this project were to quantify vertical marsh elevation change in relation to recent rates of sea-level rise and to investigate factors or processes that are most influential in controlling the development and maintenance of Fire Island salt marshes.

  18. The effect of Hurricane Katrina on nekton communities in the tidal freshwater marshes of Breton Sound, Louisiana, USA

    USGS Publications Warehouse

    Piazza, Bryan P.; La Peyre, M.K.

    2009-01-01

    Hurricanes are climatically-induced resource pulses that affect community structure through the combination of physical and chemical habitat change. Estuaries are susceptible to hurricane pulses and are thought to be resilient to habitat change, because biotic communities often return quickly to pre-hurricane conditions. Although several examples provide evidence of quick recovery of estuarine nekton communities following a hurricane, few studies take place in tidal freshwater habitat where physical habitat effects can be extensive and may not be readily mitigated. We examined nekton communities (density, biomass, ?? and ?? diversity, % occurrence by residence status) in tidal freshwater marshes in Breton Sound, Louisiana, before and after a direct hit by Hurricane Katrina (2005). Vegetative marsh loss in the study area was extensive, and elevated salinity persisted for almost 6 months. Post-Katrina nekton density and biomass increased significantly, and the nekton community shifted from one of tidal freshwater/resident species to one containing brackish/migrant species, many of which are characterized by pelagic and benthic life history strategies. By spring 2007, the nekton community had shifted back to tidal freshwater/resident species, despite the enduring loss of vegetated marsh habitat. ?? 2009 Elsevier Ltd.

  19. Exploring the capacity of radar remote sensing to estimate wetland marshes water storage.

    PubMed

    Grings, F; Salvia, M; Karszenbaum, H; Ferrazzoli, P; Kandus, P; Perna, P

    2009-05-01

    This paper focuses on the use of radar remote sensing for water storage estimation in wetland marshes of the Paraná River Delta in Argentina. The approach followed is based on the analysis of a temporal set of ENVISAT ASAR data which includes images acquired under different polarizations and incidence angles as well as different environmental conditions (water level, precipitation, and vegetation condition). Two marsh species, named junco and cortadera, were monitored. This overall data set gave us the possibility of studying and understanding the basic interactions between the radar, the soil under different flood conditions, and the vegetation structure. The comprehension of the observed features was addressed through electromagnetic models developed for these ecosystems. The procedure used in this work to estimate water level within marshes combines a direct electromagnetic model, field work data specifically obtained to feed the model, the actual ASAR measurements and a well known retrieval scheme based on a cost function. Results are validated with water level evaluations at specific points. A map showing an estimation of the water storage capacity and its error in junco and cortadera areas for the date where the investigation was done is also presented.

  20. Vegetation engineers marsh morphology through multiple competing stable states

    NASA Astrophysics Data System (ADS)

    Marani, Marco; Da Lio, Cristina; D'Alpaos, Andrea

    2013-02-01

    Marshes display impressive biogeomorphic features, such as zonation, a mosaic of extensive vegetation patches of rather uniform composition, exhibiting sharp transitions in the presence of extremely small topographic gradients. Although generally associated with the accretion processes necessary for marshes to keep up with relative sea level rise, competing environmental constraints, and ecologic controls, zonation is still poorly understood in terms of the underlying biogeomorphic mechanisms. Here we find, through observations and modeling interpretation, that zonation is the result of coupled geomorphological-biological dynamics and that it stems from the ability of vegetation to actively engineer the landscape by tuning soil elevation within preferential ranges of optimal adaptation. We find multiple peaks in the frequency distribution of observed topographic elevation and identify them as the signature of biologic controls on geomorphodynamics through competing stable states modulated by the interplay of inorganic and organic deposition. Interestingly, the stable biogeomorphic equilibria correspond to suboptimal rates of biomass production, a result coherent with recent observations. The emerging biogeomorphic structures may display varying degrees of robustness to changes in the rate of sea level rise and sediment availability, with implications for the overall resilience of marsh ecosystems to climatic changes.

  1. Vegetation engineers marsh morphology through multiple competing stable states

    PubMed Central

    Marani, Marco; Da Lio, Cristina; D’Alpaos, Andrea

    2013-01-01

    Marshes display impressive biogeomorphic features, such as zonation, a mosaic of extensive vegetation patches of rather uniform composition, exhibiting sharp transitions in the presence of extremely small topographic gradients. Although generally associated with the accretion processes necessary for marshes to keep up with relative sea level rise, competing environmental constraints, and ecologic controls, zonation is still poorly understood in terms of the underlying biogeomorphic mechanisms. Here we find, through observations and modeling interpretation, that zonation is the result of coupled geomorphological–biological dynamics and that it stems from the ability of vegetation to actively engineer the landscape by tuning soil elevation within preferential ranges of optimal adaptation. We find multiple peaks in the frequency distribution of observed topographic elevation and identify them as the signature of biologic controls on geomorphodynamics through competing stable states modulated by the interplay of inorganic and organic deposition. Interestingly, the stable biogeomorphic equilibria correspond to suboptimal rates of biomass production, a result coherent with recent observations. The emerging biogeomorphic structures may display varying degrees of robustness to changes in the rate of sea level rise and sediment availability, with implications for the overall resilience of marsh ecosystems to climatic changes. PMID:23401529

  2. Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments

    PubMed Central

    Kearns, Patrick J.; Angell, John H.; Howard, Evan M.; Deegan, Linda A.; Stanley, Rachel H. R.; Bowen, Jennifer L.

    2016-01-01

    Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy. PMID:27666199

  3. Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments.

    PubMed

    Kearns, Patrick J; Angell, John H; Howard, Evan M; Deegan, Linda A; Stanley, Rachel H R; Bowen, Jennifer L

    2016-09-26

    Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy.

  4. Investigations on classification categories for wetlands of Chesapeake Bay using remotely sensed data

    NASA Technical Reports Server (NTRS)

    Williamson, F. S. L.

    1974-01-01

    The use of remote sensors to determine the characteristics of the wetlands of the Chesapeake Bay and surrounding areas is discussed. The objectives of the program are stated as follows: (1) to use data and remote sensing techniques developed from studies of Rhode River, West River, and South River salt marshes to develop a wetland classification scheme useful in other regions of the Chesapeake Bay and to evaluate the classification system with respect to vegetation types, marsh physiography, man-induced perturbation, and salinity; and (2) to develop a program using remote sensing techniques, for the extension of the classification to Chesapeake Bay salt marshes and to coordinate this program with the goals of the Chesapeake Research Consortium and the states of Maryland and Virginia. Maps of the Chesapeake Bay areas are developed from aerial photographs to display the wetland structure and vegetation.

  5. Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Kearns, Patrick J.; Angell, John H.; Howard, Evan M.; Deegan, Linda A.; Stanley, Rachel H. R.; Bowen, Jennifer L.

    2016-09-01

    Microorganisms control key biogeochemical pathways, thus changes in microbial diversity, community structure and activity can affect ecosystem response to environmental drivers. Understanding factors that control the proportion of active microbes in the environment and how they vary when perturbed is critical to anticipating ecosystem response to global change. Increasing supplies of anthropogenic nitrogen to ecosystems globally makes it imperative that we understand how nutrient supply alters active microbial communities. Here we show that nitrogen additions to salt marshes cause a shift in the active microbial community despite no change in the total community. The active community shift causes the proportion of dormant microbial taxa to double, from 45 to 90%, and induces diversity loss in the active portion of the community. Our results suggest that perturbations to salt marshes can drastically alter active microbial communities, however these communities may remain resilient by protecting total diversity through increased dormancy.

  6. Sedimentation and response to sea-level rise of a restored marsh with reduced tidal exchange: Comparison with a natural tidal marsh

    USGS Publications Warehouse

    Vandenbruwaene, W.; Maris, T.; Cahoon, D.R.; Meire, P.; Temmerman, S.

    2011-01-01

    Along coasts and estuaries, formerly embanked land is increasingly restored into tidal marshes in order to re-establish valuable ecosystem services, such as buffering against flooding. Along the Scheldt estuary (Belgium), tidal marshes are restored on embanked land by allowing a controlled reduced tide (CRT) into a constructed basin, through a culvert in the embankment. In this way tidal water levels are significantly lowered (ca. 3 m) so that a CRT marsh can develop on formerly embanked land with a ca. 3 m lower elevation than the natural tidal marshes. In this study we compared the long-term change in elevation (ΔE) within a CRT marsh and adjacent natural tidal marsh. Over a period of 4 years, the observed spatio-temporal variations in ΔE rate were related to variations in inundation depth, and this relationship was not significantly different for the CRT marsh and natural tidal marsh. A model was developed to simulate the ΔE over the next century. (1) Under a scenario without mean high water level (MHWL) rise in the estuary, the model shows that the marsh elevation-ΔE feedback that is typical for a natural tidal marsh (i.e. rising marsh elevation results in decreasing inundation depth and therefore a decreasing increase in elevation) is absent in the basin of the CRT marsh. This is because tidal exchange of water volumes between the estuary and CRT marsh are independent from the CRT marsh elevation but dependent on the culvert dimensions. Thus the volume of water entering the CRT remains constant regardless of the marsh elevation. Consequently the CRT MHWL follows the increase in CRT surface elevation, resulting after 75 years in a 2–2.5 times larger elevation gain in the CRT marsh, and a faster reduction of spatial elevation differences. (2) Under a scenario of constant MHWL rise (historical rate of 1.5 cm a-1), the equilibrium elevation (relative to MHWL) is 0.13 m lower in the CRT marsh and is reached almost 2 times faster. (3) Under a scenario of accelerated MHWL rise (acceleration of 0.02 cm a-1), the CRT marsh is much less able to keep up with the MHWL rise; after 75 years the CRT elevation is already 0.21 m lower than for the natural marsh. In conclusion, this study demonstrates that although short-term (4 years) ΔE rates are similar in a restored CRT marsh and natural tidal marsh, these ecosystems may evolve differently in response to sea-level rise in the longer term (10–100 years).

  7. Environmental assessment of Al-Hammar Marsh, Southern Iraq.

    PubMed

    Al-Gburi, Hind Fadhil Abdullah; Al-Tawash, Balsam Salim; Al-Lafta, Hadi Salim

    2017-02-01

    (a) To determine the spatial distributions and levels of major and minor elements, as well as heavy metals, in water, sediment, and biota (plant and fish) in Al-Hammar Marsh, southern Iraq, and ultimately to supply more comprehensive information for policy-makers to manage the contaminants input into the marsh so that their concentrations do not reach toxic levels. (b) to characterize the seasonal changes in the marsh surface water quality. (c) to address the potential environmental risk of these elements by comparison with the historical levels and global quality guidelines (i.e., World Health Organization (WHO) standard limits). (d) to define the sources of these elements (i.e., natural and/or anthropogenic) using combined multivariate statistical techniques such as Principal Component Analysis (PCA) and Agglomerative Hierarchical Cluster Analysis (AHCA) along with pollution analysis (i.e., enrichment factor analysis). Water, sediment, plant, and fish samples were collected from the marsh, and analyzed for major and minor ions, as well as heavy metals, and then compared to historical levels and global quality guidelines (WHO guidelines). Then, multivariate statistical techniques, such as PCA and AHCA, were used to determine the element sourcing. Water analyses revealed unacceptable values for almost all physio-chemical and biological properties, according to WHO standard limits for drinking water. Almost all major ions and heavy metal concentrations in water showed a distinct decreasing trend at the marsh outlet station compared to other stations. In general, major and minor ions, as well as heavy metals exhibit higher concentrations in winter than in summer. Sediment analyses using multivariate statistical techniques revealed that Mg, Fe, S, P, V, Zn, As, Se, Mo, Co, Ni, Cu, Sr, Br, Cd, Ca, N, Mn, Cr, and Pb were derived from anthropogenic sources, while Al, Si, Ti, K, and Zr were primarily derived from natural sources. Enrichment factor analysis gave results compatible with multivariate statistical techniques findings. Analysis of heavy metals in plant samples revealed that there is no pollution in plants in Al-Hammar Marsh. However, the concentrations of heavy metals in fish samples showed that all samples were contaminated by Pb, Mn, and Ni, while some samples were contaminated by Pb, Mn, and Ni. Decreasing of Tigris and Euphrates discharges during the past decades due to drought conditions and upstream damming, as well as the increasing stress of wastewater effluents from anthropogenic activities, led to degradation of the downstream Al-Hammar Marsh water quality in terms of physical, chemical, and biological properties. As such properties were found to consistently exceed the historical and global quality objectives. However, element concentration decreasing trend at the marsh outlet station compared to other stations indicate that the marsh plays an important role as a natural filtration and bioremediation system. Higher element concentrations in winter were due to runoff from the washing of the surrounding Sabkha during flooding by winter rainstorms. Finally, the high concentrations of heavy metals in fish samples can be attributed to bioaccumulation and biomagnification processes.

  8. Effects of uneven-aged and diameter-limit management on West Virginia tree and wood quality

    Treesearch

    Michael C. Wiemann; Thomas M. Schuler; John E. Baumgras

    2004-01-01

    Uneven-aged and diameter-limit management were compared with an unmanaged control on the Fernow Experimental Forest near Parsons, West Virginia, to determine how treatment affects the quality of red oak (Quercus rubra L.), sugar maple (Acer saccharum Marsh.), and yellow-poplar (Liriodendron tulipifera L.). Periodic harvests slightly increased stem lean, which often...

  9. Patterns of sediment accumulation in the tidal marshes of Maine

    USGS Publications Warehouse

    Wood, M.E.; Kelley, J.T.; Belknap, D.F.

    1989-01-01

    One year's measurements of surficial sedimentation rates (1986-1987) for 26 Maine marsh sites were made over marker horizons of brick dust. Observed sediment accumulation rates, from 0 to 13 mm yr-1, were compared with marsh morphology, local relative sea-level rise rate, mean tidal range, and ice rafting activity. Marshes with four different morphologies (back-barrier, fluvial, bluff-toe, and transitional) showed distinctly different sediment accumulation rates. In general, back-barrier marshes had the highest accumulation rates and blufftoe marshes had the lowest rates, with intermediate values for transitional and fluvial marshes. No causal relationship between modern marsh sediment accumulation rate and relative sea-level rise rate (from tide gauge records) was observed. Marsh accretionary balance (sediment accumulation rate minus relative sea-level rise rate) did not correlate with mean tidal range for this meso- to macro-tidal area. Estimates of ice-rafted debris on marsh sites ranged from 0% to >100% of measured surficial sedimentation rates, indicating that ice transport of sediment may make a significant contribution to surficial sedimentation on Maine salt marshes. ?? 1989 Estuarine Research Federation.

  10. Use of created cattail ( Typha) wetlands in mitigation strategies

    NASA Astrophysics Data System (ADS)

    Dobberteen, Ross A.; Nickerson, Norton H.

    1991-11-01

    In order to balance pressures for land-use development with protection of wetland resources, artificial wetlands have been constructed in an effort to replace lost ecosystems. Despite its regulatory appeal and prominent role in current mitigation strategies, it is unclear whether or not created systems actually compensate for lost wetland resources. Mitigation predictions that rely on artificial wetlands must be analyzed critically in terms of their efficacy. Destruction of wetlands due to burial by coal fly ash at a municipal landfill in Danvers, Massachusetts, USA, provided an opportunity to compare resulting growth of created cattail ( Typha) marshes with natural wetland areas. Once the appropriate cattail species was identified for growth under disturbed landfill conditions, two types of artificial wetlands were constructed. The two systems differed in their hydrologic attributes: while one had a surface water flow characteristic of most cattail wetlands, the second system mimicked soil and water conditions found in naturally occurring floating cattail marshes. Comparison of plant growth measurements for two years from the artificial systems with published values for natural cattail marshes revealed similar structure and growth patterns. Experiments are now in progress to investigate the ability of created cattail marshes to remove and accumulate heavy metals from polluted landfill leachate. Research of the type reported here must be pursued aggressively in order to document the performance of artificial wetlands in terms of plant structure and wetland functions. Such research should allow us to start to evaluate whether artificial systems actually compensate for lost wetlands by performing similar functions and providing the concomitant public benefits.

  11. ASSESSING NEW ENGLAND COASTAL WETLANDS USING A SYSTEMATIC REFERENCE-BASED APPROACH

    EPA Science Inventory

    The US Environmental Protection Agency, Atlantic Ecology Division is working collaboratively with Massachusetts Coastal Zone Management to implement landscape and rapid assessments of coastal salt marshes in Rhode Island and Massachusetts. Using a 3-tiered approach, the coastal ...

  12. Structure and vulnerability of Pacific Northwest tidal wetlands – A summary of wetland climate change research by the Western Ecology Division, U.S. EPA

    USGS Publications Warehouse

    Folger, Christina L; Lee, Henry; Janousek, Christopher N.; Reusser, Deborah A.

    2014-01-01

    Climate change poses a serious threat to the tidal wetlands of the Pacific Northwest (PNW) region of the U.S. In response to this threat, scientists at the Western Ecology Division of the U.S. EPA at and the Western Fisheries Research Center of the U.S. Geological Survey, along with other partners, initiated a series of studies on the structure and vulnerability of tidal wetlands to climate change. One research thrust was to evaluate community structure of PNW marshes, experimentally assess the vulnerability of marsh plants to inundation and salinity stress (as would happen with sea level rise), and evaluate the utility of the National Wetland Inventory (NWI) classification system. Another research thrust was to develop tools that provide insights into possible impacts of climate change. This effort included enhancing the Sea Level Affecting Marshes Model (SLAMM) to predict the effects of sea level rise on submerged aquatic vegetation (Zostera marina) distributions, evaluating changes in river flow into coastal estuaries in response to precipitation changes, and synthesizing Pacific Coast estuary, watershed, and climate data in a downloadable tool. Because the research resulting from these efforts was published in multiple venues, we summarized them in this document. We anticipate that future research efforts by the U.S. EPA will continue with a focus on climate change impacts on a regional scale.

  13. Marsh loss from 1984 - 2011 in the Breton Sound, Barataria and Terrebonne Basins, Louisiana, U.S.A.: Impacts of hurricanes and excess nutrients

    NASA Astrophysics Data System (ADS)

    Riter, J. C.; Kearney, M. S.; Turner, R.

    2012-12-01

    Twenty-four Landsat data sets (1984-2011), collected as close to peak vegetation growth as possible, were used to evaluate marsh vegetation health and marsh loss in Terrebonne, Barataria, and Breton Sound Basins. Marsh loss varies spatially and temporally in the basins: freshwater and most intermediate marshes located west of the Mississippi River and more than 40 km from the coast were determined to be more stable than marshes closer to the coast. In most areas of the three basins, vegetation health and marsh area from 1984-1992 were relatively stable with minor inter-annual fluctuations throughout each basin and only a few areas of localized marsh loss. By 1994, shoreline erosion, tidal creek erosion, and erosion of soil banks adjacent to canals had increased in marshes located <40 km from the Gulf of Mexico, although some sites suffered substantially greater erosion than most coastal areas. Wave erosion also increased around the shores of Lakes Salvador, Cataouatche, Levy and other large lakes by 1994. Marsh loss also occurred in marshes immediately west of the Mississippi River, especially in areas close to diversion inlets. Hurricane Ivan in 2004 produced little sustained widespread damage in the basin marshes. However, Hurricanes Katrina and Rita in 2005 and Gustav and Ike in 2008 caused extensive erosion of vegetation and the marsh substrate, especially near the inlet to Caernarvon diversion, but also near the Naomi and West Point a La Hache diversions inlets. We attribute the significant marsh damage from hurricanes to greater flooding, and greater wave and storm surge impacts due to diminished marsh soil strength from the effects of excess nutrients causing lower rhizome and root biomass and increased substrate decomposition rates.

  14. Vulnerability of Northeastern U.S. Salt Marshes to Climatic and Anthropogenic Stressors

    EPA Science Inventory

    In the Northeastern U.S., salt marsh area is in decline. Habitat change analysis has revealed fragmentation, displacement of high marsh by low marsh species, and marsh drowning, while development of adjacent uplands limits upslope migration. Using inundation experiments, field s...

  15. Habitat heterogeneity: importance of salt marsh pools and high marsh surfaces to fish production in two Gulf of Maine salt marshes

    Treesearch

    R.A. MacKenzie; M. Dionne

    2008-01-01

    Both permanent high marsh pools and the intertidal surfaces of Spartina patens high marshes in southern Maine, USA, proved to be important habitat for resident mummichog Fundulus heteroclitus production. Manipulations of fish movement onto high marsh Surfaces revealed similar growth rates and production among fish that were (1) restricted to pools, (2) had access to...

  16. Phytoremediation as a management option for contaminated sediments in tidal marshes, flood control areas and dredged sediment landfill sites.

    PubMed

    Bert, Valérie; Seuntjens, Piet; Dejonghe, Winnie; Lacherez, Sophie; Thuy, Hoang Thi Thanh; Vandecasteele, Bart

    2009-11-01

    Polluted sediments in rivers may be transported by the river to the sea, spread over river banks and tidal marshes or managed, i.e. actively dredged and disposed of on land. Once sedimented on tidal marshes, alluvial areas or control flood areas, the polluted sediments enter semi-terrestrial ecosystems or agro-ecosystems and may pose a risk. Disposal of polluted dredged sediments on land may also lead to certain risks. Up to a few years ago, contaminated dredged sediments were placed in confined disposal facilities. The European policy encourages sediment valorisation and this will be a technological challenge for the near future. Currently, contaminated dredged sediments are often not valorisable due to their high content of contaminants and their consequent hazardous properties. In addition, it is generally admitted that treatment and re-use of heavily contaminated dredged sediments is not a cost-effective alternative to confined disposal. For contaminated sediments and associated disposal facilities used in the past, a realistic, low cost, safe, ecologically sound and sustainable management option is required. In this context, phytoremediation is proposed in the literature as a management option. The aim of this paper is to review the current knowledge on management, (phyto)remediation and associated risks in the particular case of sediments contaminated with organic and inorganic pollutants. This paper deals with the following features: (1) management and remediation of contaminated sediments and associated risk assessment; (2) management options for ecosystems on polluted sediments, based on phytoremediation of contaminated sediments with focus on phytoextraction, phytostabilisation and phytoremediation of organic pollutants and (3) microbial and mycorrhizal processes occurring in contaminated sediments during phytoremediation. In this review, an overview is given of phytoremediation as a management option for semi-terrestrial and terrestrial ecosystems affected by polluted sediments, and the processes affecting pollutant bioavailability in the sediments. Studies that combine contaminated sediment and phytoremediation are relatively recent and are increasing in number since few years. Several papers suggest including phytoremediation in a management scheme for contaminated dredged sediments and state that phytoremediation can contribute to the revaluation of land-disposed contaminated sediments. The status of sediments, i.e. reduced or oxidised, highly influences contaminant mobility, its (eco)toxicity and the success of phytoremediation. Studies are performed either on near-fresh sediment or on sediment-derived soil. Field studies show temporal negative effects on plant growth due to oxidation and subsequent ageing of contaminated sediments disposed on land. The review shows that a large variety of plants and trees are able to colonise or develop on contaminated dredged sediment in particular conditions or events (e.g. high level of organic matter, clay and moisture content, flooding, seasonal hydrological variations). Depending on the studies, trees, high-biomass crop species and graminaceous species could be used to degrade organic pollutants, to extract or to stabilise inorganic pollutants. Water content of sediment is a limiting factor for mycorrhizal development. In sediment, specific bacteria may enhance the mobilisation of inorganic contaminants whereas others may participate in their immobilisation. Bacteria are also able to degrade organic pollutants. Their actions may be increased in the presence of plants. Choice of plants is particularly crucial for phytoremediation success on contaminated sediments. Extremely few studies are long-term field-based studies. Short-term effects and resilience of ecosystems is observed in long-term studies, i.e. due to degradation and stabilisation of pollutants. Terrestrial ecosystems affected by polluted sediments range from riverine tidal marshes with several interacting processes and vegetation development mainly determined by hydrology, over alluvial soils affected by overbank sedimentation (including flood control areas), to dredged sediment disposal facilities where hydrology and vegetation might be affected or managed by human intervention. This gradient is also a gradient of systems with highly variable soil and hydrological conditions in a temporal scale (tidal marshes) versus systems with a distinct soil development over time (dredged sediment landfill sites). In some circumstances (e.g. to avoid flooding or to ensure navigation) dredging operations are necessary. Management and remediation of contaminated sediments are necessary to reduce the ecological risks and risks associated with food chain contamination and leaching. Besides disposal, classical remediation technologies for contaminated sediment also extract or destroy contaminants. These techniques imply the sediment structure deterioration and prohibitive costs. On the contrary, phytoremediation could be a low-cost option, particularly suited to in situ remediation of large sites and environmentally friendly. However, phytoremediation is rarely included in the management scheme of contaminated sediment and accepted as a viable option. Phytoremediation is still an emerging technology that has to prove its sustainability at field scale. Research needs to focus on optimisations to enhance applicability and to address the economic feasibility of phytoremediation.

  17. Hydrologic data and groundwater-flow simulations in the Brown Ditch Watershed, Indiana Dunes National Lakeshore, near Beverly Shores and Town of Pines, Indiana

    USGS Publications Warehouse

    Lampe, David C.

    2016-03-15

    The results of this study can be used by water-resource managers to understand how surrounding ditches affect water levels in Great Marsh and other inland wetlands and residential areas. The groundwater model developed can be applied to answer questions about how alterations to the drainage system in the area affects water levels in the public and residential areas surrounding Great Marsh. The modeling methods developed in this study provide a template for other studies of groundwater flow and groundwater/surface-water interactions within the shallow surficial aquifer in northern Indiana, and in similar hydrologic settings that include surficial sand aquifers in coastal areas.

  18. Gulf of Mexico Integrated Science - Tampa Bay Study - Characterization of Tidal Wetlands

    USGS Publications Warehouse

    McIvor, Carole

    2005-01-01

    Tidal wetlands in Tampa Bay, Florida, consist of mangrove forests and salt marshes. Wetlands buffer storm surges, provide fish and wildlife habitat, and enhance water quality through the removal of water-borne nutrients and contaminants. Substantial areas of both mangroves and salt marshes have been lost to agricultural, residential, and industrial development in this urban estuary. Wetlands researchers are characterizing the biological components of tidal wetlands and examining the physical factors such as salinity, tidal flushing, and sediment deposition that control the composition of tidal wetland habitats. Wetlands restoration is a priority of resource managers in Tampa Bay. Baseline studies such as these are needed for successful restoration planning and evaluation.

  19. Unstable Pore-Water Flow in Intertidal Wetlands

    NASA Astrophysics Data System (ADS)

    Barry, D. A.; Shen, C.; Li, L.

    2014-12-01

    Salt marshes are important intertidal wetlands strongly influenced by interactions between surface water and groundwater. Bordered by coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur over vastly different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil condition, particularly aeration, which influences the marsh plant growth. Numerous studies have been carried out to examine the pore-water flow process in the marsh soil driven by tides, focusing on stable flow with the assumption of homogeneity in soil and fluid properties. This assumption, however, is questionable given the actual inhomogeneous conditions in the field. For example, the salinity of surface water in the tidal creek varies temporally and spatially due to the influence of rainfall and evapotranspiration as well as the freshwater input from upland areas to the estuary, creating density gradients across the marsh surface and within the marsh soil. Many marshes possess soil stratigraphy with low-permeability mud typically overlying high-permeability sandy deposits. Macropores such as crab burrows are commonly distributed in salt marsh sediments. All these conditions are prone to the development of non-uniform, unstable preferential pore-water flow in the marsh soil, for example, funnelling and fingering. Here we present results from laboratory experiments and numerical simulations to explore such unstable flow. In particular, the analysis aims to address how the unstable flow modifies patterns of local pore-water movement and solute transport, as well as the overall exchange between the marsh soil and creek water. The changes would influence not only the marsh soil condition for plant growth but also nutrient cycling in the marsh soil and discharge to the coastal sea.

  20. Mercury adsorption in the Mississippi River deltaic plain freshwater marsh soil of Louisiana Gulf coastal wetlands.

    PubMed

    Park, Jong-Hwan; Wang, Jim J; Xiao, Ran; Pensky, Scott M; Kongchum, Manoch; DeLaune, Ronald D; Seo, Dong-Cheol

    2018-03-01

    Mercury adsorption characteristics of Mississippi River deltaic plain (MRDP) freshwater marsh soil in the Louisiana Gulf coast were evaluated under various conditions. Mercury adsorption was well described by pseudo-second order and Langmuir isotherm models with maximum adsorption capacity of 39.8 mg g -1 . Additional fitting of intraparticle model showed that mercury in the MRDP freshwater marsh soil was controlled by both external surface adsorption and intraparticle diffusion. The partition of adsorbed mercury (mg g -1 ) revealed that mercury was primarily adsorbed into organic-bond fraction (12.09) and soluble/exchangeable fraction (10.85), which accounted for 63.5% of the total adsorption, followed by manganese oxide-bound (7.50), easily mobilizable carbonate-bound (4.53), amorphous iron oxide-bound (0.55), crystalline Fe oxide-bound (0.41), and residual fraction (0.16). Mercury adsorption capacity was generally elevated along with increasing solution pH even though dominant species of mercury were non-ionic HgCl 2 , HgClOH and Hg(OH) 2  at between pH 3 and 9. In addition, increasing background NaCl concentration and the presence of humic acid decreased mercury adsorption, whereas the presence of phosphate, sulfate and nitrate enhanced mercury adsorption. Mercury adsorption in the MRDP freshwater marsh soil was reduced by the presence of Pb, Cu, Cd and Zn with Pb showing the greatest competitive adsorption. Overall the adsorption capacity of mercury in the MRDP freshwater marsh soil was found to be significantly influenced by potential environmental changes, and such factors should be considered in order to manage the risks associated with mercury in this MRDP wetland for responding to future climate change scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Recovery strategies for the California clapper rail (Rallus longirostris obsoletus) in the heavily-urbanized San Francisco estuarine ecosystem

    USGS Publications Warehouse

    Foin, Theodore C.; Garcia, E. Jacqueline; Gill, Robert E.; Culberson, Steven D.; Collins, Joshua N.

    1997-01-01

    The California clapper rail (Rallus longirostris obsoletus), a Federal- and State-listed endangered marsh bird, has a geographic range restricted to one of the most heavily-urbanized estuaries in the world. The rail population has long been in a state of decline, although the exact contribution of each of the many contributing causes remains unclear. The rail is one of the key targets of emerging plans to conserve and restore tidal marshlands. Reduction of tidal marsh habitat, estimated at 85–95%, has been the major historical cause of rail decline. Increased predation intensity may be the more important present problem, because habitat fragmentation and alteration coupled with the invasion of the red fox have made the remaining populations more vulnerable to predators. Population viability analysis shows that adult survivorship is the key demographic variable; reversals in population fate occur over a narrow range of ecologically realistic values. Analysis of habitat requirements and population dynamics of the clapper rail in the San Francisco Estuary shows that decreased within-marsh habitat quality, particularly reduction of tidal flows and alteration of drainage, is an important barrier to population recovery. Management and restoration activities should emphasize the development of well-channelized high tidal marsh, because this is the key requirement of rail habitat. Developing effective restoration programs depends upon having information that field research will not provide. The effect of spatial pattern of reserves requires accurate estimation of the effects of prédation and inter-marsh movement, both of which are practically impossible to measure adequately. It will be necessary to develop and use simulation models that can be applied to geographic data to accomplish this task.

  2. Dynamics of marsh-mangrove ecotone since the mid-Holocene: A palynological study of mangrove encroachment and sea level rise in the Shark River Estuary, Florida

    PubMed Central

    Liu, Kam-biu

    2017-01-01

    Sea level rise and the associated inland shift of the marsh-mangrove ecotone in south Florida have raised many scientific and management concerns in recent years. Holocene paleoecological records can provide an important baseline to shed light on the long-term dynamics of vegetation changes across this ecotone in the past, which is needed to predict the future. In this study, we present palynological, X-ray fluorescence, and loss-on ignition data from four sedimentary cores recovered from a 20-km marine-to-freshwater transect along the Shark River Estuary, southwest Everglades, to document the patterns and processes of coastal vegetation changes in response to sea level rise since the mid-Holocene. Our record indicates that freshwater marsh progressively replaced marl prairies at the Shark River Estuary between 5700 and 4400 cal yr BP. As marine transgression continued, marine influence reached the threshold necessary for mangroves to establish at the current mouth of the Shark River Slough at 3800 cal yr BP. During the next 3000 years, although sea level rise in the Western North Atlantic slowed down to 0.4 mm/yr, a spatial and temporal gradient was evident as the marsh-mangrove ecotone shifted inland by 20 km from 3800 to 800 cal yr BP, accompanied by a gradual landward replacement of freshwater marsh by mangrove forest. If sea level continues to rise at 2.33 mm/yr in the 21st century in south Florida, it is possible that marine influence will reach the threshold for mangroves to establish in the central Everglades, and we could expect a much more aggressive mangrove encroachment toward the northern and interior parts of south Florida in the next few centuries. PMID:28282415

  3. Dynamics of marsh-mangrove ecotone since the mid-Holocene: A palynological study of mangrove encroachment and sea level rise in the Shark River Estuary, Florida.

    PubMed

    Yao, Qiang; Liu, Kam-Biu

    2017-01-01

    Sea level rise and the associated inland shift of the marsh-mangrove ecotone in south Florida have raised many scientific and management concerns in recent years. Holocene paleoecological records can provide an important baseline to shed light on the long-term dynamics of vegetation changes across this ecotone in the past, which is needed to predict the future. In this study, we present palynological, X-ray fluorescence, and loss-on ignition data from four sedimentary cores recovered from a 20-km marine-to-freshwater transect along the Shark River Estuary, southwest Everglades, to document the patterns and processes of coastal vegetation changes in response to sea level rise since the mid-Holocene. Our record indicates that freshwater marsh progressively replaced marl prairies at the Shark River Estuary between 5700 and 4400 cal yr BP. As marine transgression continued, marine influence reached the threshold necessary for mangroves to establish at the current mouth of the Shark River Slough at 3800 cal yr BP. During the next 3000 years, although sea level rise in the Western North Atlantic slowed down to 0.4 mm/yr, a spatial and temporal gradient was evident as the marsh-mangrove ecotone shifted inland by 20 km from 3800 to 800 cal yr BP, accompanied by a gradual landward replacement of freshwater marsh by mangrove forest. If sea level continues to rise at 2.33 mm/yr in the 21st century in south Florida, it is possible that marine influence will reach the threshold for mangroves to establish in the central Everglades, and we could expect a much more aggressive mangrove encroachment toward the northern and interior parts of south Florida in the next few centuries.

  4. Sediment redistributed by coastal marsh mosquito ditching in Cape May County, New Jersey, U.S.A.

    USGS Publications Warehouse

    Kirby, Ronald E.; Widjeskog, Lee E.

    2013-01-01

    Effects of mosquito ditching on salt marsh sediment budgets have not been quantified for lack of sufficient records, but such information is necessary to provide historical context for current management objectives. We were able to do so in Cape May County New Jersey where Mosquito Extermination Commission records reported 1,493,900 m3 of spoil redistributed through ditching from1902 to 1974. The amount of spoil redistributed rose to 2,240,850 m3–22,987,800 m3 overall when ditch cleaning efforts were included. On a 54 km2 study area, 161,560 m of ditches removed as much as 99,000 m3 of material. If all such sediment stayed in the system and was deposited in open water, it would have added 0.082 mm/yr to those areas. If the sediments had accumulated only in the larger water bodies, it would have been sufficient to add 0.16 mm/yr to those areas. Alternatively, if the material had been deposited only on the marsh surface, the material displaced by mosquito ditching was capable of adding only 0.036 mm/yr. These rates are inconsequential in a system infilling at a rate of 4.4–7.4 mm/yr. Materials released by mosquito ditching thus have added to the sediment budgets of this coastal system, but shoaling of bays and sounds in recent centuries is a consequence of increases in all sediment sources including many of anthropogenic origin. Nonetheless, other consequences of ditching to the marsh (e.g., increased drainage, transport of water, and erosion of ditch banks) are not negligible in consideration of all anthropogenic effects. These data can help parameterize models of salt marsh accretion in the face of climate change.

  5. 36 CFR 13.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mechanical failure or accident cannot take off. Facility means buildings, structures, park roads as defined... travel on or immediately over land, water, sand, snow, ice, marsh, wetland or other natural terrain...

  6. Assessing Salt Marsh Recovery Utilizing Improved Computer-Aided Tomography Technology (CTT)

    EPA Science Inventory

    In 2001 the Padanarum marsh, a small 7.2-acre marsh in Dartmouth, MA, was chosen as a Tidal Hydrology Restoration site. The site was initially characterized as a brackish mostly freshwater deteriorating marsh. In May 2003 the seawater input to this marsh was increased by replacin...

  7. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes

    USGS Publications Warehouse

    Ganju, Neil K.; Defne, Zafer; Kirwan, Matthew L.; Fagherazzi, Sergio; D'Alpaos, Andrea; Carniello, Luca

    2017-01-01

    Salt marshes are valued for their ecosystem services, and their vulnerability is typically assessed through biotic and abiotic measurements at individual points on the landscape. However, lateral erosion can lead to rapid marsh loss as marshes build vertically. Marsh sediment budgets represent a spatially integrated measure of competing constructive and destructive forces: a sediment surplus may result in vertical growth and/or lateral expansion, while a sediment deficit may result in drowning and/or lateral contraction. Here we show that sediment budgets of eight microtidal marsh complexes consistently scale with areal unvegetated/vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. All sites are exhibiting a sediment deficit, with half the sites having projected lifespans of less than 350 years at current rates of sea-level rise and sediment availability. These results demonstrate that open-water conversion and sediment deficits are holistic and sensitive indicators of salt marsh vulnerability.

  8. CO2 and CH4 fluxes in a Spartina salt marsh and brackish Phragmites marsh in Massachusetts

    NASA Astrophysics Data System (ADS)

    Tang, J.; Wang, F.; Kroeger, K. D.; Gonneea, M. E.

    2017-12-01

    Coastal salt marshes play an important role in global and regional carbon cycling. Tidally restricted marshes reduce salinity and provide a habitat suitable for Phragmites invasion. We measured greenhouse gas (GHG) emissions (CO2 and CH4) continuously with the eddy covariance method and biweekly with the static chamber method in a Spartina salt marsh and a Phragmites marsh on Cape Cod, Massachusetts, USA. We did not find significant difference in CO2 fluxes between the two sites, but the CH4 fluxes were much higher in the Phragmites site than the Spartina marsh. Temporally, tidal cycles influence the CO2 and CH4 fluxes in both sites. We found that the salt marsh was a significant carbon sink when CO2 and CH4 fluxes were combined. Restoring tidally restricted marshes will significantly reduce CH4 emissions and provide a strong ecosystem carbon service.

  9. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes

    PubMed Central

    Ganju, Neil K.; Defne, Zafer; Kirwan, Matthew L.; Fagherazzi, Sergio; D'Alpaos, Andrea; Carniello, Luca

    2017-01-01

    Salt marshes are valued for their ecosystem services, and their vulnerability is typically assessed through biotic and abiotic measurements at individual points on the landscape. However, lateral erosion can lead to rapid marsh loss as marshes build vertically. Marsh sediment budgets represent a spatially integrated measure of competing constructive and destructive forces: a sediment surplus may result in vertical growth and/or lateral expansion, while a sediment deficit may result in drowning and/or lateral contraction. Here we show that sediment budgets of eight microtidal marsh complexes consistently scale with areal unvegetated/vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. All sites are exhibiting a sediment deficit, with half the sites having projected lifespans of less than 350 years at current rates of sea-level rise and sediment availability. These results demonstrate that open-water conversion and sediment deficits are holistic and sensitive indicators of salt marsh vulnerability. PMID:28112167

  10. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes.

    PubMed

    Ganju, Neil K; Defne, Zafer; Kirwan, Matthew L; Fagherazzi, Sergio; D'Alpaos, Andrea; Carniello, Luca

    2017-01-23

    Salt marshes are valued for their ecosystem services, and their vulnerability is typically assessed through biotic and abiotic measurements at individual points on the landscape. However, lateral erosion can lead to rapid marsh loss as marshes build vertically. Marsh sediment budgets represent a spatially integrated measure of competing constructive and destructive forces: a sediment surplus may result in vertical growth and/or lateral expansion, while a sediment deficit may result in drowning and/or lateral contraction. Here we show that sediment budgets of eight microtidal marsh complexes consistently scale with areal unvegetated/vegetated marsh ratios (UVVR) suggesting these metrics are broadly applicable indicators of microtidal marsh vulnerability. All sites are exhibiting a sediment deficit, with half the sites having projected lifespans of less than 350 years at current rates of sea-level rise and sediment availability. These results demonstrate that open-water conversion and sediment deficits are holistic and sensitive indicators of salt marsh vulnerability.

  11. Nitrous oxide emissions could reduce the blue carbon value of marshes on eutrophic estuaries

    NASA Astrophysics Data System (ADS)

    Roughan, Brittney L.; Kellman, Lisa; Smith, Erin; Chmura, Gail L.

    2018-04-01

    The supply of nitrogen to ecosystems has surpassed the Earth’s Planetary Boundary and its input to the marine environment has caused estuarine waters to become eutrophic. Excessive supply of nitrogen to salt marshes has been associated with shifts in species’ distribution and production, as well as marsh degradation and loss. Our study of salt marshes in agriculturally intensive watersheds shows that coastal eutrophication can have an additional impact. We measured gas fluxes from marsh soils and verified emissions of nitrous oxide (N2O) in nitrogen-loaded marshes while the reference marsh was a sink for this gas. Salt marsh soils are extremely efficient carbon sinks, but emissions of N2O, a greenhouse gas 298 times more potent than CO2, reduces the value of the carbon sink, and in some marshes, may counterbalance any value of stored carbon towards mitigation of climate change. Although more research is merited on the nitrogen transformations and carbon storage in eutrophic marshes, the possibility of significant N2O emissions should be considered when evaluating the market value of carbon in salt marshes subject to high levels of nitrogen loading.

  12. Impacts of Adjacent Land Use and Isolation on Marsh Bird Communities

    NASA Astrophysics Data System (ADS)

    Smith, Lyndsay A.; Chow-Fraser, Patricia

    2010-05-01

    Over the next half century the human population is expected to grow rapidly, resulting in the conversion of rural areas into cities. Wetlands in these regions are therefore under threat, even though they have important ecosystem services and functions. Many obligate marsh-nesting birds in North America have shown declines over the past 40 years, and it is important to evaluate marsh bird community response to increased urbanization. We surveyed 20 coastal marshes in southern Ontario, Canada, and found that obligate marsh-nesting birds preferred rural over urban wetlands, generalist marsh-nesting birds showed no preference, while synanthropic species showed a trend towards increased richness and abundance in urban marshes. The Index of Marsh Bird Community Integrity (IMBCI) was calculated for each wetland and we found significantly higher scores in rural compared to urban wetlands. The presence of a forested buffer surrounding the marsh was not an important factor in predicting the distribution of generalists, obligates, synanthropic species, or the IMBCI. More isolated marshes had a lower species richness of obligate marsh-nesters and a lower IMBCI than less isolated marshes. Based on our results, we recommend that urban land use is not the dominant land use within 1000 m from any wetland, as it negatively affects the abundance and richness of obligate marsh-nesters, and the overall integrity of the avian community. We also recommend that all existing wetlands be conserved to mitigate against isolation effects and to preserve biodiversity.

  13. Impacts of adjacent land use and isolation on marsh bird communities.

    PubMed

    Smith, Lyndsay A; Chow-Fraser, Patricia

    2010-05-01

    Over the next half century the human population is expected to grow rapidly, resulting in the conversion of rural areas into cities. Wetlands in these regions are therefore under threat, even though they have important ecosystem services and functions. Many obligate marsh-nesting birds in North America have shown declines over the past 40 years, and it is important to evaluate marsh bird community response to increased urbanization. We surveyed 20 coastal marshes in southern Ontario, Canada, and found that obligate marsh-nesting birds preferred rural over urban wetlands, generalist marsh-nesting birds showed no preference, while synanthropic species showed a trend towards increased richness and abundance in urban marshes. The Index of Marsh Bird Community Integrity (IMBCI) was calculated for each wetland and we found significantly higher scores in rural compared to urban wetlands. The presence of a forested buffer surrounding the marsh was not an important factor in predicting the distribution of generalists, obligates, synanthropic species, or the IMBCI. More isolated marshes had a lower species richness of obligate marsh-nesters and a lower IMBCI than less isolated marshes. Based on our results, we recommend that urban land use is not the dominant land use within 1000 m from any wetland, as it negatively affects the abundance and richness of obligate marsh-nesters, and the overall integrity of the avian community. We also recommend that all existing wetlands be conserved to mitigate against isolation effects and to preserve biodiversity.

  14. High spatial variability in biogeochemical rates and microbial communities across Louisiana salt marsh landscapes

    NASA Astrophysics Data System (ADS)

    Roberts, B. J.; Chelsky, A.; Bernhard, A. E.; Giblin, A. E.

    2017-12-01

    Salt marshes are important sites for retention and transformation of carbon and nutrients. Much of our current marsh biogeochemistry knowledge is based on sampling at times and in locations that are convenient, most often vegetated marsh platforms during low tide. Wetland loss rates are high in many coastal regions including Louisiana which has the highest loss rates in the US. This loss not only reduces total marsh area but also changes the relative allocation of subhabitats in the remaining marsh. Climate and other anthropogenic changes lead to further changes including inundation patterns, redox conditions, salinity regimes, and shifts in vegetation patterns across marsh landscapes. We present results from a series of studies examining biogeochemical rates, microbial communities, and soil properties along multiple edge to interior transects within Spartina alterniflora across the Louisiana coast; between expanding patches of Avicennia germinans and adjacent S. alterniflora marshes; in soils associated with the four most common Louisiana salt marsh plants species; and across six different marsh subhabitats. Spartina alterniflora marsh biogeochemistry and microbial populations display high spatial variability related to variability in soil properties which appear to be, at least in part, regulated by differences in elevation, hydrology, and redox conditions. Differences in rates between soils associated with different vegetation types were also related to soil properties with S. alterniflora soils often yielding the lowest rates. Biogeochemical process rates vary significantly across marsh subhabitats with individual process rates differing in their hotspot habitat(s) across the marsh. Distinct spatial patterns may influence the roles that marshes play in retaining and transforming nutrients in coastal regions and highlight the importance of incorporating spatial sampling when scaling up plot level measurements to landscape or regional scales.

  15. Effect of Vegetation on Sediment Transport across Salt Marshes

    NASA Astrophysics Data System (ADS)

    Coleman, D. J.; Kirwan, M. L.; Guntenspergen, G. R.; Ganju, N. K.

    2016-12-01

    Salt marshes are a classic example of ecogeomorphology where interactions between plants and sediment transport govern the stability of a rapidly evolving ecosystem. In particular, plants slow water velocities which facilitates deposition of mineral sediment, and the resulting change in soil elevation influences the growth and species distribution of plants. The ability of a salt marsh to withstand sea level rise (SLR) is therefore dependent, among other factors, on the availability of mineral sediment. Here we measure suspended sediment concentrations (SSC) along a transect from tidal channel to marsh interior, exploring the role biomass plays in regulating the magnitude and spatial variability in vertical accretion. Our study was conducted in Spartina alterniflora dominated salt marshes along the Atlantic Coast from Massachusetts to Georgia. At each site, we deployed and calibrated optical back scatter turbidity probes to measure SSC in 15 minute intervals in a tidal channel, on the marsh edge, and in the marsh interior. We visited each site monthly to measure plant biomass via clip plots and vertical accretion via two types of sediment tiles. Preliminary results confirm classic observations that biomass is highest at the marsh edge, and that SSC and vertical accretion decrease across the marsh platform with distance from the channel. We expect that when biomass is higher, such as in southern sites like Georgia and months late in the growing season, SSC will decay more rapidly with distance into the marsh. Higher biomass will likely also correspond to increased vertical accretion, with the greatest effect at marsh edge locations. Our study will likely demonstrate how salt marsh plants interact with sediment transport dynamics to control marsh morphology and thus contribute to marsh resilience to SLR.

  16. Integrated Modeling for the Assessment of Ecological Impacts of Sea Level Rise

    NASA Astrophysics Data System (ADS)

    Hagen, S. C.; Lewis, G.; Bartel, R.; Batten, B.; Huang, W.; Morris, J.; Slinn, D. N.; Sparks, J.; Walters, L.; Wang, D.; Weishampel, J.; Yeh, G.

    2010-12-01

    Sea level rise (SLR) has the potential to affect a variety of coastal habitats with a myriad of deleterious ecological effects and to overwhelm human settlements along the coast. SLR should be given serious consideration when more than half of the U.S. population lives within 50 miles of the coast. SLR effects will be felt along coastal beaches and in estuarine waters, with consequences to barrier islands, submerged aquatic vegetation beds, sand and mud flats, oyster reefs, and tidal and freshwater wetlands. Managers of these coastal resources must be aware of potential consequences of SLR and adjust their plans accordingly to protect and preserve the resources under their care. The Gulf Coast provides critical habitats for a majority of the commercially important species in the Gulf of Mexico, which depend on inshore waters for either permanent residence or nursery area. The ecosystem services provided by these coastal habitats are at risk from rising sea level. Our team will assess the risk to coasts and coastal habitats from SLR in a 5-year project. We will apply existing models of circulation and transport from the watershed to the sea. The ultimate prediction will be of sediment loadings to the estuary as a result of overland flow, shoreline and barrier island erosion, and salinity transport, all of which will be used to model the evolution of intertidal marshes (MEM II). Over the five-year course of our research we will be simulating hydrodynamics and transport for all three NERRS reserves, including: Apalachicola, Weeks Bay and Grand Bay. The project will result in products whereby managers will be able to assess marshes, oyster reefs, submerged aquatic vegetation, predict wetland stability and indentify restoration locations for marsh and oyster habitats. In addition, we will produce Decision Support tools that will enable managers to predict future coastal erosion rates for management-specified shorelines. Project outcomes will enable the management community to prioritize risk management strategies, reformulate set back requirements, improve guidelines for construction of breakwaters and other coastal infrastructure, and assess water resources impacts and protection needs.

  17. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, Sergio; Kirwan, Matthew L.; Mudd, Simon M.; Guntenspergen, Glenn R.; Temmerman, Stijn; D'Alpaos, Andrea; van de Koppel, Johan; Rybczyk, John; Reyes, Enrique; Craft, Chris; Clough, Jonathan

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise.

  18. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D'Alpaos, A.; Van De Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; Clough, J.

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise. Copyright 2012 by the American Geophysical Union.

  19. Estuaries as Filters: The Role of Tidal Marshes in Trace Metal Removal

    PubMed Central

    Teuchies, Johannes; Vandenbruwaene, Wouter; Carpentier, Roos; Bervoets, Lieven; Temmerman, Stijn; Wang, Chen; Maris, Tom; Cox, Tom J. S.; Van Braeckel, Alexander; Meire, Patrick

    2013-01-01

    Flux calculations demonstrate that many estuaries are natural filters for trace metals. Yet, the underlying processes are poorly investigated. In the present study, it was hypothesized that intertidal marshes contribute significantly to the contaminant filter function of estuaries. Trace metal concentrations and sediment characteristics were measured along a transect from the subtidal, over an intertidal flat and marsh to a restored marsh with controlled reduced tide. Metal concentrations in the intertidal and restored marsh were found to be a factor two to five higher than values in the subtidal and intertidal flat sediments. High metal concentrations and high accretion rates indicate a high metal accumulation capacity of the intertidal marshes. Overbank sedimentation in the tidal marshes of the entire estuary was calculated to remove 25% to 50% of the riverine metal influx, even though marshes comprise less than 8% of the total surface of the estuary. In addition, the large-scale implementation of planned tidal marsh restoration projects was estimated to almost double the trace metal storage capacity of the present natural tidal marshes in the estuary. PMID:23950927

  20. Hydrology of Fritchie Marsh, coastal Louisiana

    USGS Publications Warehouse

    Kuniansky, E.L.

    1985-01-01

    Fritchie Marsh, near Slidell, Louisiana, is being considered as a disposal site for sewage effluent. A two-dimensional, finite element, surface water modeling systems was used to solve the shallow water equations for flow. Factors affecting flow patterns are channel locations, inlets, outlets, islands, marsh vegetation, marsh geometry, stage of the West Pearl River, flooding over the lower Pearl River basin, gravity tides, wind-induced currents, and sewage discharge to the marsh. Four steady-state simulations were performed for two hydrologic events at two rates of sewage discharge. The events, near tide with no wind or rain and neap tide with a tide differential across the marsh, were selected as worst-case events for sewage effluent dispersion and were assumed as steady state events. Because inflows and outflows to the marsh are tidally affected, steady state simulations cannot fully define the hydraulic characteristics of the marsh for all hydrologic events. Model results and field data indicate that, during near tide with little or no rain, large parts of the marsh are stagnant; and sewage effluent, at existing and projected flows, has minimal effect on marsh flows. (USGS)

  1. Strength in Numbers: Describing the Flooded Area of Isolated Wetlands

    USGS Publications Warehouse

    Lee, Terrie M.; Haag, Kim H.

    2006-01-01

    Thousands of isolated, freshwater wetlands are scattered across the karst1 landscape of central Florida. Most are small (less than 15 acres), shallow, marsh and cypress wetlands that flood and dry seasonally. Wetland health is threatened when wetland flooding patterns are altered either by human activities, such as land-use change and ground-water pumping, or by changes in climate. Yet the small sizes and vast numbers of isolated wetlands in Florida challenge our efforts to characterize them collectively as a statewide water resource. In the northern Tampa Bay area of west-central Florida alone, water levels are measured monthly in more than 400 wetlands by the Southwest Florida Water Management Distirct (SWFWMD). Many wetlands have over a decade of measurements. The usefulness of long-term monitoring of wetland water levels would greatly increase if it described not just the depth of water at a point in the wetland, but also the amount of the total wetland area that was flooded. Water levels can be used to estimate the flooded area of a wetland if the elevation contours of the wetland bottom are determined by bathymetric mapping. Despite the recognized importance of the flooded area to wetland vegetation, bathymetric maps are not available to describe the flooded areas of even a representative number of Florida's isolated wetlands. Information on the bathymetry of isolated wetlands is rare because it is labor intensive to collect the land-surface elevation data needed to create the maps. Five marshes and five cypress wetlands were studied by the U.S. Geological Survey (USGS) during 2000 to 2004 as part of a large interdisciplinary study of isolated wetlands in central Florida. The wetlands are located either in municipal well fields or on publicly owned lands (fig. 1). The 10 wetlands share similar geology and climate, but differ in their ground-water settings. All have historical water-level data and multiple vegetation surveys. A comprehensive report by Haag and others (2005) documents bathymetric mapping approaches, the frequency of flooding in different areas of the wetlands, and the relation between flooding and vegetation in these wetlands. This fact sheet describes bathymetric mapping approaches and partial results from two natural marshes (Hillsborough River State Park Marsh, and Green Swamp Marsh) and one impaired marsh (W-29 Marsh) that is located on a municipal well field and is affected by ground-water withdrawals. (fig. 1).

  2. Feeding ecology of northern pintails and green-winged teal wintering in California

    USGS Publications Warehouse

    Euliss, Ned H.; Harris, Stanley W.

    1987-01-01

    The feeding ecology of northern pintails (Anas acuta) and green-winged teal (A. crecca) was examined from October through February 1979-81 in 4 major seasonal marsh types in the Central Valley, California. The esophagi of 262 pintails contained 72.3% plant seeds and 27.7% animal matter. The esophagi of 173 green-winged teal contained 62.3% plant seeds and 37.6% animal matter. Swamp timothy (Heleochloa schoenoides) caryopses, chironomid midge larvae, and common barnyardgrass (Echinochloa crusgalli) caryopses formed >50% of the diet of both species. Both species were highly opportunistic and generally shifted their food habits seasonally to the most available foods. Animal matter increased seasonally in the diets of both and formed about 60% of the foods eaten during January and February compared to only about 8% in October and 17% in December. Both species used open water marsh habitats almost exclusively in daytime but they used densely vegetated marshes almost exclusively at night. Management recommendations based on the food habits and habitat use patterns of pintails and green-winged teal are offered.

  3. Forms and accumulation of soil P in natural and recently restored peatlands - Upper Klamath Lake, Oregon, USA

    USGS Publications Warehouse

    Graham, S.A.; Craft, C.B.; McCormick, P.V.; Aldous, A.

    2005-01-01

    Forms, amounts, and accumulation of soil phosphorus (P) were measured in natural and recently restored marshes surrounding Upper Klamath Lake located in south-central Oregon, USA to determine rates of P accumulation in natural marshes and to assess changes in P pools caused by long-term drainage in recently restored marshes. Soil cores were collected from three natural marshes and radiometrically dated to determine recent (l37Cs-based) and long-term (210Pb-based) rates of peat accretion and P accumulation. A second set of soil cores collected from the three natural marshes and from three recently restored marshes was analyzed using a modification of the Hedley procedure to determine the forms and amounts of soil P. Total P in the recently restored marshes (222 to 311 ??g cm-3) was 2-3 times greater than in the natural marshes (103 to 117 ??g cm-3), primarily due to greater bulk density caused by soil subsidence, a consequence of long-term marsh drainage. Occluded Fe- and Al-bound Pi, calcium-bound Pi and residual P were 4 times, 22 times, and 5 times greater, respectively, in the recently restored marshes. More than 67% of the P pool in both the natural and recently restored marshes was present in recalcitrant forms (humic-acid P o and residual P) that provide long-term P storage in peat. Phosphorus accumulation in the natural marshes averaged 0.45 g m-2 yr-1 (137Cs) and 0.40 g m-2 yr-1 (210Pb), providing a benchmark for optimizing P sequestration in the recently restored marshes. Effective P sequestration in the recently restored marshes, however, will depend on re-establishing equilibrium between the P-enriched soils and the P concentration of floodwaters and a hydrologie regime similar to the natural marshes. ?? 2005, The Society of Wetland Scientists.

  4. Avian communities in tidal salt marshes of San Francisco Bay: a review of functional groups by foraging guild and habitat association

    USGS Publications Warehouse

    Takekawa, John Y.; Woo, Isa; Gardiner, Rachel J.; Casazza, Michael L.; Ackerman, Joshua T.; Nur, Nadav; Liu, Leonard; Spautz, Hildie; Palaima, Arnas

    2011-01-01

    The San Francisco Bay estuary is highly urbanized, but it supports the largest remaining extent of tidal salt marshes on the west coast of North America as well as a diverse native bird community. San Francisco Bay tidal marshes are occupied by more than 113 bird species that represent 31 families, including five subspecies from three families that we denote as tidal-marsh obligates. To better identify the niche of bird species in tidal marshes, we present a review of functional groups based on foraging guilds and habitat associations. Foraging guilds describe the method by which species obtain food from tidal marshes, while habitat associations describe broad areas within the marsh that have similar environmental conditions. For example, the ubiquitous song sparrows (Alameda Melospiza melodia pusillula, Suisun M. m. maxillaris, and San Pablo M. m. samuelis) are surface-feeding generalists that consume prey from vegetation and the ground, and they are found across the entire marsh plain into the upland–marsh transition. In contrast, surface-feeding California black rails (Laterallus jamaicensis coturniculus) are cryptic, and generally restricted in their distribution to the mid- and high-marsh plain. Although in the same family, the endangered California clapper rail (Rallus longirostris obsoletus) has become highly specialized, foraging primarily on benthic fauna within marsh channels when they are exposed at low tide. Shorebirds such as the black-necked stilt (Himantopus mexicanus) typically probe in mud flats to consume macroinvertebrate prey, and are generally restricted to foraging on salt pans within the marsh plain, in ponds, or on mud flats during transitional stages of marsh evolution. The abundance and distribution of birds varies widely with changing water depths and vegetation colonization during different stages of restoration. Thus, tidal-marsh birds represent a rich and diverse community in bay marshes, with niches that may be distinguished by the food resources they consume and the habitats that they occupy along the tidal gradient.

  5. Problems, Prescriptions and Potential in Actionable Climate Change Science - A Case Study from California Coastal Marsh Research

    NASA Astrophysics Data System (ADS)

    MacDonald, G. M.; Ambrose, R. F.; Thorne, K.; Takekawa, J.; Brown, L. N.; Fejtek, S.; Gold, M.; Rosencranz, J.

    2015-12-01

    Frustrations regarding the provision of actionable science extend to both producers and consumers. Scientists decry the lack of application of their research in shaping policy and practices while decision makers bemoan the lack of applicability of scientific research to the specific problems at hand or its narrow focus relative to the plethora of engineering, economic and social considerations that they must also consider. Incorporating climate change adds additional complexity due to uncertainties in estimating many facets of future climate, the inherent variability of climate and the decadal scales over which significant changes will develop. Recently a set of guidelines for successful science-policy interaction was derived from the analysis of transboundary water management. These are; 1 recognizing that science is a crucial but bounded input into the decision-making processes, 2 early establishment of conditions for collaboration and shared commitment among participants, 3 understanding that science-policy interactions are enhanced through greater collaboration and social or group-learning processes, 4 accepting that the collaborative production of knowledge is essential to build legitimate decision-making processes, and 5 engaging boundary organizations and informal networks as well as formal stakeholders. Here we present as a case study research on California coastal marshes, climate change and sea-level that is being conducted by university and USGS scientists under the auspices of the Southwest Climate Science Center. We also present research needs identified by a seperate analysis of best practices for coastal marsh restoration in the face of climate change that was conducted in extensive consultation with planners and managers. The initial communication, scientific research and outreach-dissemination of the marsh scientfic study are outlined and compared to best practices needs identified by planners and the science-policy guidelines outlined above. Matches, mismatches, early-stage evidence of applicability and potential improvements of program development and design are considered.

  6. Wetland Loss Patterns and Inundation-Productivity ...

    EPA Pesticide Factsheets

    Tidal salt marsh is a key defense against, yet is especially vulnerable to, the effects of accelerated sea level rise. To determine whether salt marshes in southern New England will be stable given increasing inundation over the coming decades, we examined current loss patterns, inundation-productivity feedbacks, and sustaining processes. A multi-decadal analysis of salt marsh aerial extent using historic imagery and maps revealed that salt marsh vegetation loss is both widespread and accelerating, with vegetation loss rates over the past four decades summing to 17.3 %. Landward retreat of the marsh edge, widening and headward expansion of tidal channel networks, loss of marsh islands, and the development and enlargement of interior depressions found on the marsh platform contributed to vegetation loss. Inundation due to sea level rise is strongly suggested as a primary driver: vegetation loss rates were significantly negatively correlated with marsh elevation (r2 = 0.96; p = 0.0038), with marshes situated below mean high water (MHW) experiencing greater declines than marshes sitting well above MHW. Growth experiments with Spartina alterniflora, the Atlantic salt marsh ecosystem dominant, across a range of elevations and inundation regimes further established that greater inundation decreases belowground biomass production of S. alterniflora and, thus, negatively impacts organic matter accumulation. These results suggest that southern New England salt ma

  7. Seasonal prevalence of Clostridium botulinum type C in the sediments of the northern California wetland

    USGS Publications Warehouse

    Sandler, Renee J.; Rocke, T.E.; Samuel, M.D.; Yuill, Thomas M.

    1993-01-01

    The prevalence of Clostridium botulinum type C (% of positive sediment samples) was determined in 10 marshes at Sacramento National Wildlife Refuge (SNWR), located in the Central Valley of California (USA), where avian botulism epizootics occur regularly. Fifty-two percent of 2,200 sediment samples collected over an 18-mo period contained C. botulinum type C (both neurotoxic and aneurotoxic) which was present throughout the year in all 10 marshes. The prevalence of C. botulinum type C was similar in marshes with either high or low botulism losses in the previous 5 yr. Marshes with avian botulism mortality during the study had similar prevalences as marshes with no mortality. However, the prevalence of C. botulinum type C was higher in marshes that remained flooded all year (permanent) compared with marshes that were drained in the spring and reflooded in the fall (seasonal). The prevalence of C. botulinum type C declined in seasonal marshes during the dry period. Similar declines did not occur in the permanently flooded marshes.

  8. Developing a Self-Sustaining Afghan National Army

    DTIC Science & Technology

    2009-12-03

    Cordesman, Follow the Money : Why the US is Losing the War in Afghanistan, (Center For Strategic & International Studies, Washington DC: September 2008...Adrian Marsh. “Building an Army Program Management in Afghanistan,” Defense AT&L (July-August 2006). Cordesman, Anthony H. Follow the Money : Why

  9. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.

    PubMed

    Yang, Wendy H; Silver, Whendee L

    2016-06-01

    Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2 O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2 O. Measurements of net N2 O fluxes alone yield little insight into the different effects of redox conditions on N2 O production and consumption. We used in situ measurements of gross N2 O fluxes across a salt marsh elevation gradient to determine how soil N2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P < 0.001 for both). In addition, soil oxygen concentrations were lower in the low and mid-marshes relative to the high marsh (P < 0.001). Net N2 O fluxes differed significantly among marsh zones (P = 0.009), averaging 9.8 ± 5.4 μg N m(-2)  h(-1) , -2.2 ± 0.9 μg N m(-2)  h(-1) , and 0.67 ± 0.57 μg N m(-2)  h(-1) in the low, mid, and high marshes, respectively. Both net N2 O release and uptake were observed in the low and high marshes, but the mid-marsh was consistently a net N2 O sink. Gross N2 O production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2 O consumption did not differ among marsh zones. Thus, variability in gross N2 O production rates drove the differences in net N2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2 O in salt marshes to improve our predictions of changes in net N2 O fluxes caused by future sea level rise. © 2015 John Wiley & Sons Ltd.

  10. A dynamic landscape model for fish in the Everglades and its application to restoration

    USGS Publications Warehouse

    Gaff, H.D.; DeAngelis, D.L.; Gross, L.J.; Salinas, R.; Shorrosh, M.

    2000-01-01

    A model (ALFISH) for fish functional groups in freshwater marshes of the greater Everglades area of southern Florida has been developed. Its main objective is to assess the spatial pattern of fish densities through time across freshwater marshes. This model has the capability of providing a dynamic measure of the spatially-explicit food resources available to wading birds. ALFISH simulates two functional groups, large and small fish, where the larger ones can prey on the small fish type. Both functional groups are size-structured. The marsh landscape is modeled as 500×500 m spatial cells on a grid across southern Florida. A hydrology model predicts water levels in the spatial cells on 5-day time steps. Fish populations spread across the marsh during flooded conditions and either retreat into refugia (alligator ponds), move to other spatial cells, or die if their cell dries out. ALFISH has been applied to the evaluation of alternative water regulation scenarios under the Central and South Florida Comprehensive Project Review Study. The objective of this Review Study is to compare alternative methods for restoring historical ecological conditions in southern Florida. ALFISH has provided information on which plans are most are likely to increase fish biomass and its availability to wading bird populations.

  11. Controls on sensible heat and latent energy fluxes from a short-hydroperiod Florida Everglades marsh

    NASA Astrophysics Data System (ADS)

    Schedlbauer, Jessica L.; Oberbauer, Steven F.; Starr, Gregory; Jimenez, Kristine L.

    2011-12-01

    SummaryLittle is known of energy balance in low latitude wetlands where there is a year-round growing season and a climate best defined by wet and dry seasons. The Florida Everglades is a highly managed and extensive subtropical wetland that exerts a substantial influence on the hydrology and climate of the south Florida region. However, the effects of seasonality and active water management on energy balance in the Everglades ecosystem are poorly understood. An eddy covariance and micrometeorological tower was established in a short-hydroperiod Everglades marsh to examine the dominant environmental controls on sensible heat ( H) and latent energy ( LE) fluxes, as well as the effects of seasonality on these parameters. Seasonality differentially affected H and LE fluxes in this marsh, such that H was principally dominant in the dry season and LE was strongly dominant in the wet season. The Bowen ratio was high for much of the dry season (1.5-2.4), but relatively low (<0.7) in the wet season. Net radiation strongly influenced H and LE fluxes across nearly all seasons and years ( Radj2=0.48-0.79). However, the 2009 dry season LE data were not consistent with this relationship ( Radj2=0.08) because of low seasonal variation in LE following a prolonged end to the previous wet season. In addition to net radiation, H and LE fluxes were significantly related to soil volumetric water content (VWC), water depth, air temperature, and occasionally vapor pressure deficit. Given that VWC and water depth were determined in part by water management decisions, it is clear that human actions have the ability to influence the mode of energy dissipation from this ecosystem. Impending modifications to water management under the Comprehensive Everglades Restoration Plan may shift the dominant turbulent flux from this ecosystem further toward LE, and this change will likely affect local hydrology and climate.

  12. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise

    PubMed Central

    Mariotti, Giulio; Fagherazzi, Sergio

    2013-01-01

    High rates of wave-induced erosion along salt marsh boundaries challenge the idea that marsh survival is dictated by the competition between vertical sediment accretion and relative sea-level rise. Because waves pounding marshes are often locally generated in enclosed basins, the depth and width of surrounding tidal flats have a pivoting control on marsh erosion. Here, we show the existence of a threshold width for tidal flats bordering salt marshes. Once this threshold is exceeded, irreversible marsh erosion takes place even in the absence of sea-level rise. This catastrophic collapse occurs because of the positive feedbacks among tidal flat widening by wave-induced marsh erosion, tidal flat deepening driven by wave bed shear stress, and local wind wave generation. The threshold width is determined by analyzing the 50-y evolution of 54 marsh basins along the US Atlantic Coast. The presence of a critical basin width is predicted by a dynamic model that accounts for both horizontal marsh migration and vertical adjustment of marshes and tidal flats. Variability in sediment supply, rather than in relative sea-level rise or wind regime, explains the different critical width, and hence erosion vulnerability, found at different sites. We conclude that sediment starvation of coastlines produced by river dredging and damming is a major anthropogenic driver of marsh loss at the study sites and generates effects at least comparable to the accelerating sea-level rise due to global warming. PMID:23513219

  13. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise.

    PubMed

    Mariotti, Giulio; Fagherazzi, Sergio

    2013-04-02

    High rates of wave-induced erosion along salt marsh boundaries challenge the idea that marsh survival is dictated by the competition between vertical sediment accretion and relative sea-level rise. Because waves pounding marshes are often locally generated in enclosed basins, the depth and width of surrounding tidal flats have a pivoting control on marsh erosion. Here, we show the existence of a threshold width for tidal flats bordering salt marshes. Once this threshold is exceeded, irreversible marsh erosion takes place even in the absence of sea-level rise. This catastrophic collapse occurs because of the positive feedbacks among tidal flat widening by wave-induced marsh erosion, tidal flat deepening driven by wave bed shear stress, and local wind wave generation. The threshold width is determined by analyzing the 50-y evolution of 54 marsh basins along the US Atlantic Coast. The presence of a critical basin width is predicted by a dynamic model that accounts for both horizontal marsh migration and vertical adjustment of marshes and tidal flats. Variability in sediment supply, rather than in relative sea-level rise or wind regime, explains the different critical width, and hence erosion vulnerability, found at different sites. We conclude that sediment starvation of coastlines produced by river dredging and damming is a major anthropogenic driver of marsh loss at the study sites and generates effects at least comparable to the accelerating sea-level rise due to global warming.

  14. Effects of highway runoff on the quality of water and bed sediments of two wetlands in central Florida

    USGS Publications Warehouse

    Schiffer, D.M.

    1989-01-01

    Results of a study of the effects of highway runoff on the chemical quality of water and bed sediments of a cypress wetlands and a freshwater marsh in central Florida indicate that detention of the runoff prior to release into the wetland reduces concentrations of automobile-related chemicals in the water and bed sediments in the wetland. Detention of highway runoff for the cypress wetland occurs in a 68-ft by 139-ft detention pond, and in a 12-ft by 25 ft trash retainer for the freshwater marsh. The analysis of the chemical data for water and bed sediments indicates that many of the observed differences in chemistry are due to the difference in detention facilities. Water quality generally improved from the inlet to the outlet of both wetlands. Only inlet and outlet data were collected at the cypress wetland, and these showed a reduction in concentrations through the wetland. Spatial data collected at the freshwater marsh indicated that constituent concentrations in water generally decreased with distance from the inlet. Results of analysis of variance of grouped data for 40 water quality variables at the freshwater marsh inferred that 26 of the 40 variables tested were significantly different among five general locations within the wetland: inlet, outlet, near, intermediate, and far sites (with respect to the inlet). Results from this study indicate that detention structures, larger than the trash retainer at the freshwater marsh, may cause sufficient sorption and settling of substances contained in highway runoff to minimize the transport and deposition of some undesirable chemicals into wetlands. (USGS)

  15. Oil detection in a coastal marsh with polarimetric Synthetic Aperture Radar (SAR)

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina; Suzuoki, Yukihiro; Jones, Cathleen E.

    2011-01-01

    The National Aeronautics and Space Administration's airborne Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was deployed in June 2010 in response to the Deepwater Horizon oil spill in the Gulf of Mexico. UAVSAR is a fully polarimetric L-band Synthetic Aperture Radar (SAR) sensor for obtaining data at high spatial resolutions. Starting a month prior to the UAVSAR collections, visual observations confirmed oil impacts along shorelines within northeastern Barataria Bay waters in eastern coastal Louisiana. UAVSAR data along several flight lines over Barataria Bay were collected on 23 June 2010, including the repeat flight line for which data were collected in June 2009. Our analysis of calibrated single-look complex data for these flight lines shows that structural damage of shoreline marsh accompanied by oil occurrence manifested as anomalous features not evident in pre-spill data. Freeman-Durden (FD) and Cloude-Pottier (CP) decompositions of the polarimetric data and Wishart classifications seeded with the FD and CP classes also highlighted these nearshore features as a change in dominant scattering mechanism. All decompositions and classifications also identify a class of interior marshes that reproduce the spatially extensive changes in backscatter indicated by the pre- and post-spill comparison of multi-polarization radar backscatter data. FD and CP decompositions reveal that those changes indicate a transform of dominant scatter from primarily surface or volumetric to double or even bounce. Given supportive evidence that oil-polluted waters penetrated into the interior marshes, it is reasonable that these backscatter changes correspond with oil exposure; however, multiple factors prevent unambiguous determination of whether UAVSAR detected oil in interior marshes.

  16. Consumer trait variation influences tritrophic interactions in salt marsh communities.

    PubMed

    Hughes, Anne Randall; Hanley, Torrance C; Orozco, Nohelia P; Zerebecki, Robyn A

    2015-07-01

    The importance of intraspecific variation has emerged as a key question in community ecology, helping to bridge the gap between ecology and evolution. Although much of this work has focused on plant species, recent syntheses have highlighted the prevalence and potential importance of morphological, behavioral, and life history variation within animals for ecological and evolutionary processes. Many small-bodied consumers live on the plant that they consume, often resulting in host plant-associated trait variation within and across consumer species. Given the central position of consumer species within tritrophic food webs, such consumer trait variation may play a particularly important role in mediating trophic dynamics, including trophic cascades. In this study, we used a series of field surveys and laboratory experiments to document intraspecific trait variation in a key consumer species, the marsh periwinkle Littoraria irrorata, based on its host plant species (Spartina alterniflora or Juncus roemerianus) in a mixed species assemblage. We then conducted a 12-week mesocosm experiment to examine the effects of Littoraria trait variation on plant community structure and dynamics in a tritrophic salt marsh food web. Littoraria from different host plant species varied across a suite of morphological and behavioral traits. These consumer trait differences interacted with plant community composition and predator presence to affect overall plant stem height, as well as differentially alter the density and biomass of the two key plant species in this system. Whether due to genetic differences or phenotypic plasticity, trait differences between consumer types had significant ecological consequences for the tritrophic marsh food web over seasonal time scales. By altering the cascading effects of the top predator on plant community structure and dynamics, consumer differences may generate a feedback over longer time scales, which in turn influences the degree of trait divergence in subsequent consumer populations.

  17. The Effect of Source Suspended Sediment Concentration on the Sediment Dynamics of a Macrotidal Creek and Salt Marsh

    NASA Astrophysics Data System (ADS)

    Poirier, E.; van Proosdij, D.; Milligan, T. G.

    2017-12-01

    Seasonal variability in the sediment dynamics of a Bay of Fundy tidal creek and salt marsh system was analyzed to better understand the ecomorphodynamics of a high suspended sediment concentration intertidal habitat. Data were collected over 62 tides for velocity, suspended sediment concentration, deposition, and grain size at four stations from the creek thalweg to the marsh surface. Five topographic surveys were also conducted throughout the 14-month study. Deposition rates per tide varied spatially from 56.4 g·m-2 at the creek thalweg to 15.3 g·m-2 at the marsh surface. Seasonal variations in deposition in the creek and marsh surface were from 38.0 g·m-2 to 97.7 g·m-2 and from 12.2 g·m-2 to 19.6 g·m-2 respectively. Deposition and erosion were greatest in late fall and winter. This seasonal change, led by higher suspended sediment concentrations, was observed in the creek and at the marsh bank but notably absent from the marsh edge and marsh surface. Sediments were predominantly deposited in floc form (76-83%). Because of high floc content, higher suspended sediment concentrations led to more rapid loss of sediment from suspension. With increasing sediment concentration, deposition increased in the tidal creek and at the marsh bank but not at the marsh edge or marsh surface. This suggests that in highly flocculated environments the water column clears fast enough that very little sediment remains in suspension when the water reaches the marsh and that the sediment concentration during marsh inundation is independent of the initial concentration in the creek.

  18. The effect of source suspended sediment concentration on the sediment dynamics of a macrotidal creek and salt marsh

    NASA Astrophysics Data System (ADS)

    Poirier, Emma; van Proosdij, Danika; Milligan, Timothy G.

    2017-09-01

    Seasonal variability in the sediment dynamics of a Bay of Fundy tidal creek and salt marsh system was analyzed to better understand the ecomorphodynamics of a high suspended sediment concentration intertidal habitat. Data were collected over 62 tides for velocity, suspended sediment concentration, deposition, and grain size at four stations from the creek thalweg to the marsh surface. Five topographic surveys were also conducted throughout the 14-month study. Deposition rates per tide varied spatially from 56.4 g m-2 at the creek thalweg to 15.3 g m-2 at the marsh surface. Seasonal variations in deposition in the creek and marsh surface were from 38.0 g m-2 to 97.7 g m-2 and from 12.2 g m-2 to 19.6 g m-2 respectively. Deposition and erosion were greatest in late fall and winter. This seasonal change, led by higher suspended sediment concentrations, was observed in the creek and at the marsh bank but notably absent from the marsh edge and marsh surface. Sediments were predominantly deposited in floc form (76-83%). Because of high floc content, higher suspended sediment concentrations led to more rapid loss of sediment from suspension. With increasing sediment concentration, deposition increased in the tidal creek and at the marsh bank but not at the marsh edge or marsh surface. This suggests that in highly flocculated environments the water column clears fast enough that very little sediment remains in suspension when the water reaches the marsh and that the sediment concentration during marsh inundation is independent of the initial concentration in the creek.

  19. Elevation dynamics in a restored versus a submerging salt marsh in Long Island Sound

    USGS Publications Warehouse

    Anisfeld, Shimon C.; Hill, Troy D.; Cahoon, Donald R.

    2016-01-01

    Accelerated sea-level rise (SLR) poses the threat of salt marsh submergence, especially in marshes that are relatively low-lying. At the same time, restoration efforts are producing new low-lying marshes, many of which are thriving and avoiding submergence. To understand the causes of these different fates, we studied two Long Island Sound marshes: one that is experiencing submergence and mudflat expansion, and one that is undergoing successful restoration. We examined sedimentation using a variety of methods, each of which captures different time periods and different aspects of marsh elevation change: surface-elevation tables, marker horizons, sediment cores, and sediment traps. We also studied marsh hydrology, productivity, respiration, nutrient content, and suspended sediment. We found that, despite the expansion of mudflat in the submerging marsh, the areas that remain vegetated have been gaining elevation at roughly the rate of SLR over the last 10 years. However, this elevation gain was only possible thanks to an increase in belowground volume, which may be a temporary response to waterlogging. In addition, accretion rates in the first half of the twentieth century were much lower than current rates, so century-scale accretion in the submerging marsh was lower than SLR. In contrast, at the restored marsh, accretion rates are now averaging about 10 mm yr−1 (several times the rate of SLR), much higher than before restoration. The main cause of the different trajectories at the two marshes appeared to be the availability of suspended sediment, which was much higher in the restored marsh. We considered and rejected alternative hypotheses, including differences in tidal flooding, plant productivity, and nutrient loading. In the submerging marsh, suspended and deposited sediment had relatively high organic content, which may be a useful indicator of sediment starvation.

  20. The protective role of coastal marshes: a systematic review and meta-analysis.

    PubMed

    Shepard, Christine C; Crain, Caitlin M; Beck, Michael W

    2011-01-01

    Salt marshes lie between many human communities and the coast and have been presumed to protect these communities from coastal hazards by providing important ecosystem services. However, previous characterizations of these ecosystem services have typically been based on a small number of historical studies, and the consistency and extent to which marshes provide these services has not been investigated. Here, we review the current evidence for the specific processes of wave attenuation, shoreline stabilization and floodwater attenuation to determine if and under what conditions salt marshes offer these coastal protection services. We conducted a thorough search and synthesis of the literature with reference to these processes. Seventy-five publications met our selection criteria, and we conducted meta-analyses for publications with sufficient data available for quantitative analysis. We found that combined across all studies (n = 7), salt marsh vegetation had a significant positive effect on wave attenuation as measured by reductions in wave height per unit distance across marsh vegetation. Salt marsh vegetation also had a significant positive effect on shoreline stabilization as measured by accretion, lateral erosion reduction, and marsh surface elevation change (n = 30). Salt marsh characteristics that were positively correlated to both wave attenuation and shoreline stabilization were vegetation density, biomass production, and marsh size. Although we could not find studies quantitatively evaluating floodwater attenuation within salt marshes, there are several studies noting the negative effects of wetland alteration on water quantity regulation within coastal areas. Our results show that salt marshes have value for coastal hazard mitigation and climate change adaptation. Because we do not yet fully understand the magnitude of this value, we propose that decision makers employ natural systems to maximize the benefits and ecosystem services provided by salt marshes and exercise caution when making decisions that erode these services.

  1. Predictors of specialist avifaunal decline in coastal marshes.

    PubMed

    Correll, Maureen D; Wiest, Whitney A; Hodgman, Thomas P; Shriver, W Gregory; Elphick, Chris S; McGill, Brian J; O'Brien, Kathleen M; Olsen, Brian J

    2017-02-01

    Coastal marshes are one of the world's most productive ecosystems. Consequently, they have been heavily used by humans for centuries, resulting in ecosystem loss. Direct human modifications such as road crossings and ditches and climatic stressors such as sea-level rise and extreme storm events have the potential to further degrade the quantity and quality of marsh along coastlines. We used an 18-year marsh-bird database to generate population trends for 5 avian species (Rallus crepitans, Tringa semipalmata semipalmata, Ammodramus nelsonii subvirgatus, Ammodramus caudacutus, and Ammodramus maritimus) that breed almost exclusively in tidal marshes, and are potentially vulnerable to marsh degradation and loss as a result of anthropogenic change. We generated community and species trends across 3 spatial scales and explored possible drivers of the changes we observed, including marsh ditching, tidal restriction through road crossings, local rates of sea-level rise, and potential for extreme flooding events. The specialist community showed negative trends in tidally restricted marshes (-2.4% annually from 1998 to 2012) but was stable in unrestricted marshes across the same period. At the species level, we found negative population trends in 3 of the 5 specialist species, ranging from -4.2% to 9.0% annually. We suggest that tidal restriction may accelerate degradation of tidal marsh resilience to sea-level rise by limiting sediment supply necessary for marsh accretion, resulting in specialist habitat loss in tidally restricted marshes. Based on our findings, we predict a collapse of the global population of Saltmarsh Sparrows (A. caudacutus) within the next 50 years and suggest that immediate conservation action is needed to prevent extinction of this species. We also suggest mitigation actions to restore sediment supply to coastal marshes to help sustain this ecosystem into the future. © 2016 Society for Conservation Biology.

  2. Seasonal Distribution and Abundance of Larval and Juvenile Lost River and Shortnose Suckers in Hanks Marsh, Upper Klamath National Wildlife Refuge, Upper Klamath Lake, Oregon: 2007 Annual Report

    USGS Publications Warehouse

    Anderson, Greer O.; Wilkens, Alexander X.; Burdick, Summer M.; VanderKooi, Scott P.

    2009-01-01

    In the summer of 2007, we undertook an assessment of larval and juvenile sucker use of Hanks Marsh in Upper Klamath Lake, Oregon. This 1,200-acre marsh on the southeastern shoreline of the lake represents part of the last remaining natural emergent wetland habitat in the lake. Because of the suspected importance of this type of habitat to larval and juvenile endangered Lost River and shortnose suckers, it was thought that sucker abundance in the marsh might be comparatively greater than in other non-vegetated areas of the lake. It also was hoped that Hanks Marsh would serve as a reference site for wetland restoration projects occurring in other areas of the lake. Our study had four objectives: to (1) examine seasonal distribution and relative abundance of larval suckers in and adjacent to Hanks Marsh in relation to habitat features such as depth, vegetation, water quality, and relative abundance of non-sucker species; (2) determine the presence or absence and describe the distribution of juvenile suckers [35 to 80 mm standard length (SL)] along the periphery of Hanks Marsh; (3) assess spatial and temporal overlap between larval suckers and their potential predators; and (4) assess suitability of water quality throughout the summer for young-of-the-year suckers. Due to the low number of suckers found in the marsh and our inability to thoroughly sample all marsh habitats due to declining lake levels during the summer, we were unable to completely address these objectives in this pilot study. The results, however, do give some indication of the relative use of Hanks Marsh by sucker and non-sucker species. Through sampling of larval and juvenile suckers in various habitat types within the marsh, we determined that sucker use of Hanks Marsh may be very low in comparison with other areas of the lake. We caught only 42 larval and 19 juvenile suckers during 12 weeks of sampling throughout the marsh. Sucker catches were rare in Hanks Marsh, and were lower than catch rates in other marshes of Upper Klamath Lake and in other nearshore and offshore areas of the lake. Based on the few suckers we did capture in Hanks Marsh, larvae tended to be found more often in vegetated habitats. A modified sampling design and approach may be necessary to address the objectives in this study, given that declining lake-surface elevation prevented us from adequately sampling all portions of the marsh throughout the sampling season. Common non-sucker species in Hanks Marsh included juvenile and adult brown bullhead, larval blue chub, tui chub, fathead minnow, and yellow perch. This species composition was similar to that of other marshes in Upper Klamath Lake but most species were found in lower numbers in Hanks Marsh than other marshes. It may be that use of Hanks Marsh is limited by poor water quality, which we found to exist at many sites after June. It also may be that access to or habitat in the marsh is limited at certain times of the year by low water. Although the results from this initial study of Hanks Marsh indicate that the area may have little direct benefit for sucker species, indirect benefits for these species possibly may come from its positive influence on some aspects of water quality in the lake, such as regulation of pH. It also may be the case that use of Hanks Marsh may vary by year and conditions; however, under the current scope of the study, we were unable to investigate inter-annual variability.

  3. Experimentally simulated global warming and nitrogen enrichment effects on microbial litter decomposers in a marsh.

    PubMed

    Flury, Sabine; Gessner, Mark O

    2011-02-01

    Atmospheric warming and increased nitrogen deposition can lead to changes of microbial communities with possible consequences for biogeochemical processes. We used an enclosure facility in a freshwater marsh to assess the effects on microbes associated with decomposing plant litter under conditions of simulated climate warming and pulsed nitrogen supply. Standard batches of litter were placed in coarse-mesh and fine-mesh bags and submerged in a series of heated, nitrogen-enriched, and control enclosures. They were retrieved later and analyzed for a range of microbial parameters. Fingerprinting profiles obtained by denaturing gradient gel electrophoresis (DGGE) indicated that simulated global warming induced a shift in bacterial community structure. In addition, warming reduced fungal biomass, whereas bacterial biomass was unaffected. The mesh size of the litter bags and sampling date also had an influence on bacterial community structure, with the apparent number of dominant genotypes increasing from spring to summer. Microbial respiration was unaffected by any treatment, and nitrogen enrichment had no clear effect on any of the microbial parameters considered. Overall, these results suggest that microbes associated with decomposing plant litter in nutrient-rich freshwater marshes are resistant to extra nitrogen supplies but are likely to respond to temperature increases projected for this century.

  4. Phosphorus budgets in Everglades wetland ecosystems: The effects of hydrology and nutrient enrichment

    USGS Publications Warehouse

    Noe, G.B.; Childers, D.L.

    2007-01-01

    The Florida Everglades is a naturally oligotrophic hydroscape that has experienced large changes in ecosystem structure and function as the result of increased anthropogenic phosphorus (P) loading and hydrologic changes. We present whole-ecosystem models of P cycling for Everglades wetlands with differing hydrology and P enrichment with the goal of synthesizing existing information into ecosystem P budgets. Budgets were developed for deeper water oligotrophic wet prairie/slough ('Slough'), shallower water oligotrophic Cladium jamaicense ('Cladium'), partially enriched C. jamaicense/Typha spp. mixture ('Cladium/Typha'), and enriched Typha spp. ('Typha') marshes. The majority of ecosystem P was stored in the soil in all four ecosystem types, with the flocculent detrital organic matter (floc) layer at the bottom of the water column storing the next largest proportion of ecosystem P pools. However, most P cycling involved ecosystem components in the water column (periphyton, floc, and consumers) in deeper water, oligotrophic Slough marsh. Fluxes of P associated with macrophytes were more important in the shallower water, oligotrophic Cladium marsh. The two oligotrophic ecosystem types had similar total ecosystem P stocks and cycling rates, and low rates of P cycling associated with soils. Phosphorus flux rates cannot be estimated for ecosystem components residing in the water column in Cladium/Typha or Typha marshes due to insufficient data. Enrichment caused a large increase in the importance of macrophytes to P cycling in Everglades wetlands. The flux of P from soil to the water column, via roots to live aboveground tissues to macrophyte detritus, increased from 0.03 and 0.2 g P m-2 yr-1 in oligotrophic Slough and Cladium marsh, respectively, to 1.1 g P m-2 yr -1 in partially enriched Cladium/Typha, and 1.6 g P m-2 yr-1 in enriched Typha marsh. This macrophyte translocation P flux represents a large source of internal eutrophication to surface waters in P-enriched areas of the Everglades. ?? 2007 Springer Science+Business Media, Inc.

  5. Simulated Sea-Level Rise Effects on the Above and Below-Ground Growth of Two Tidal Marsh Plant Species

    NASA Astrophysics Data System (ADS)

    Schile, L. M.; Callaway, J. C.; Kelly, M.

    2011-12-01

    Sea-level is expected to rise between 55 and 140 cm in the next century and is likely to have significant effects on the distribution and maintenance of tidal wetlands; however, little is known about the effects of increased sea level on Pacific coast tidal marsh vegetation. We initiated a field experiment in March 2011 to examine how increased depth and duration of inundation affect above and below-ground growth of two tidal wetland plant species: Schoenoplectus acutus and S. americanus. PVC planters, referred to as marsh organs, were installed at fixed elevations in channels at two ancient marshes in the San Francisco Bay Estuary: Browns Island and Rush Ranch. Each marsh organ structure is comprised of five rows of three six-inch PVC pipes, with each row 15cm lower than the row above, and was filled with surrounding mudflat sediment. Elevations span 60 cm and were chosen to be lower than the average current elevations of both species at each marsh to reflect projected increases in sea level. Rhizomes were collected from Browns Island, the less-saline site, and were cut to uniform sizes before planting. In every row, each species was grown individually and together. On a monthly basis, plant heights were recorded and pore-water sulfide concentration, salinity, and soil oxidation-reduction potential were measured. Schoenoplectus americanus growth and density significantly decreased with increased inundation at both sites. Schoenoplectus acutus growth was impacted more significantly at lower elevations at Rush Ranch but had little variation in density and growth across elevations at Browns Island. Salinity and sulfide concentrations varied little across elevations within a site but differed between sites. Above and belowground biomass will be collected in September 2011 to measure total annual productivity. The experiment provides basic yet crucial information on the impacts of increased inundation on tidal wetland vegetation and insight into potential changes in plant assemblages with predicted climate change.

  6. Biomass production efficiency controlled by management in temperate and boreal ecosystems

    NASA Astrophysics Data System (ADS)

    Campioli, M.; Vicca, S.; Luyssaert, S.; Bilcke, J.; Ceschia, E.; Chapin, F. S., III; Ciais, P.; Fernández-Martínez, M.; Malhi, Y.; Obersteiner, M.; Olefeldt, D.; Papale, D.; Piao, S. L.; Peñuelas, J.; Sullivan, P. F.; Wang, X.; Zenone, T.; Janssens, I. A.

    2015-11-01

    Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.

  7. Assessing biomass of diverse coastal marsh ecosystems using statistical and machine learning models

    NASA Astrophysics Data System (ADS)

    Mo, Yu; Kearney, Michael S.; Riter, J. C. Alexis; Zhao, Feng; Tilley, David R.

    2018-06-01

    The importance and vulnerability of coastal marshes necessitate effective ways to closely monitor them. Optical remote sensing is a powerful tool for this task, yet its application to diverse coastal marsh ecosystems consisting of different marsh types is limited. This study samples spectral and biophysical data from freshwater, intermediate, brackish, and saline marshes in Louisiana, and develops statistical and machine learning models to assess the marshes' biomass with combined ground, airborne, and spaceborne remote sensing data. It is found that linear models derived from NDVI and EVI are most favorable for assessing Leaf Area Index (LAI) using multispectral data (R2 = 0.7 and 0.67, respectively), and the random forest models are most useful in retrieving LAI and Aboveground Green Biomass (AGB) using hyperspectral data (R2 = 0.91 and 0.84, respectively). It is also found that marsh type and plant species significantly impact the linear model development (P < .05 in both cases). Sensors with coarser spatial resolution yield lower LAI values because the fine water networks are not detected and mixed into the vegetation pixels. The Landsat OLI-derived map shows the LAI of coastal mashes in Louisiana mostly ranges from 0 to 5.0, and is highest for freshwater marshes and for marshes in the Atchafalaya Bay delta. The CASI-derived maps show that LAI of saline marshes at Bay Batiste typically ranges from 0.9 to 1.5, and the AGB is mostly less than 900 g/m2. This study provides solutions for assessing the biomass of Louisiana's coastal marshes using various optical remote sensing techniques, and highlights the impacts of the marshes' species composition on the model development and the sensors' spatial resolution on biomass mapping, thereby providing useful tools for monitoring the biomass of coastal marshes in Louisiana and diverse coastal marsh ecosystems elsewhere.

  8. The ERTS-1 investigation (ER-600). Volume 2: ERTS-1 coastal/estuarine analysis. [Galveston Bay, Texas

    NASA Technical Reports Server (NTRS)

    Erb, R. B.

    1974-01-01

    The Coastal Analysis Team of the Johnson Space Center conducted a 1-year investigation of ERTS-1 MSS data to determine its usefulness in coastal zone management. Galveston Bay, Texas, was the study area for evaluating both conventional image interpretation and computer-aided techniques. There was limited success in detecting, identifying and measuring areal extent of water bodies, turbidity zones, phytoplankton blooms, salt marshes, grasslands, swamps, and low wetlands using image interpretation techniques. Computer-aided techniques were generally successful in identifying these features. Aerial measurement of salt marshes accuracies ranged from 89 to 99 percent. Overall classification accuracy of all study sites was 89 percent for Level 1 and 75 percent for Level 2.

  9. Mechanisms of sediment flux between shallows and marshes

    USGS Publications Warehouse

    Lacy, Jessica R.; Schile, L.M.; Callaway, J.C.; Ferner, M.C.

    2015-01-01

    We conducted a field study to investigate temporal variation and forcing mechanisms of sediment flux between a salt marsh and adjacent shallows in northern San Francisco Bay. Suspended-sediment concentration (SSC), tidal currents, and wave properties were measured over the marsh, in marsh creeks, and in bay shallows. Cumulative sediment flux in the marsh creeks was bayward during the study, and was dominated by large bayward flux during the largest tides of the year. This result was unexpected because extreme high tides with long inundation periods are commonly assumed to supply sediment to marshes, and long-term accretion estimates show that the marsh in the study site is depositional. A water mass-balance shows that some landward transport bypassed the creeks, most likely across the marsh-bay interface. An estimate of transport by this pathway based on observed SSC and inferred volume indicates that it was likely much less than the observed export.

  10. Using Cluster Analysis to Compartmentalize a Large Managed Wetland Based on Physical, Biological, and Climatic Geospatial Attributes.

    PubMed

    Hahus, Ian; Migliaccio, Kati; Douglas-Mankin, Kyle; Klarenberg, Geraldine; Muñoz-Carpena, Rafael

    2018-04-27

    Hierarchical and partitional cluster analyses were used to compartmentalize Water Conservation Area 1, a managed wetland within the Arthur R. Marshall Loxahatchee National Wildlife Refuge in southeast Florida, USA, based on physical, biological, and climatic geospatial attributes. Single, complete, average, and Ward's linkages were tested during the hierarchical cluster analyses, with average linkage providing the best results. In general, the partitional method, partitioning around medoids, found clusters that were more evenly sized and more spatially aggregated than those resulting from the hierarchical analyses. However, hierarchical analysis appeared to be better suited to identify outlier regions that were significantly different from other areas. The clusters identified by geospatial attributes were similar to clusters developed for the interior marsh in a separate study using water quality attributes, suggesting that similar factors have influenced variations in both the set of physical, biological, and climatic attributes selected in this study and water quality parameters. However, geospatial data allowed further subdivision of several interior marsh clusters identified from the water quality data, potentially indicating zones with important differences in function. Identification of these zones can be useful to managers and modelers by informing the distribution of monitoring equipment and personnel as well as delineating regions that may respond similarly to future changes in management or climate.

  11. Chinese mitten crab surveys of San Joaquin River basin and Suisun Marsh, California, 2000

    USGS Publications Warehouse

    May, Jason T.; Brown, Larry R.

    2001-01-01

    Juvenile Chinese mitten crabs (Eriocheir sinensis) are known to use both brackish and freshwater habitats as rearing areas. The objectives of this study were to examine the habitat use and potential effects of mitten crabs in the freshwater habitats of the San Joaquin River drainage up-stream of the Sacramento-San Joaquin Delta. After several unsuccessful attempts to catch or observe mitten crabs by trapping, electrofishing, and visual observations, the study was redirected to determine the presence of crabs in the San Joaquin River (in the vicinity of Mossdale) and Suisun Marsh. Monthly surveys using baited traps in the San Joaquin River were done from June through November 2000 and in the Suisun Marsh from August through October 2000. No mitten crabs were caught in the San Joaquin River Basin and only one mitten crab was caught in Suisun Marsh. Surveys were conducted at 92 locations in the San Joaquin River Basin by deploying 352 traps for 10,752 hours of trapping effort; in Suisun Marsh, 34 locations were investigated by deploying 150 traps for 3,600 hours of trapping effort. The baited traps captured a variety of organisms, including catfishes (Ictularidae), yellowfin gobies (Acantho-gobius flavimanus), and crayfish (Decapoda). It is unclear whether the failure to capture mitten crabs in the San Joaquin River Basin and Suisun Marsh was due to ineffective trapping methods, or repre-sents a general downward trend in populations of juvenile mitten crabs in these potential rearing areas or a temporary decline related to year-class strength. Available data (since 1998) on the number of mitten crabs entrained at federal and state fish salvage facilities indicate a downward trend in the number of crabs, which may indicate a declining trend in use of the San Joaquin River Basin by juvenile mitten crabs. Continued monitoring for juvenile Chinese mitten crabs in brackish and freshwater portions of the Sacramento-San Joaquin River Basins is needed to better assess the potential population variability of this relatively new invasive species and the possible management strategies.

  12. Morphological adaptation with no mitochondrial DNA differentiation in the coastal plain swamp sparrow

    USGS Publications Warehouse

    Greenberg, R.; Cordero, P.J.; Droege, S.; Fleischer, R.C.

    1998-01-01

    We estimated genetic differentiation between morphologically distinct tidal marsh populations of Swamp Sparrows (Melospiza georgiana nigrescens) and the more widespread inland populations (M. g. georgiana and M. g. ericrypta). The tidal marsh populations are consistently grayer with more extensive black markings (particularly in the crown), and their bills are larger. These differences are variously shared with other species of salt marsh birds and small mammals. We analyzed mitochondrial DNA sequences (5′ end of control region, COII/t-lys/ATPase8, and ND2) of Swamp Sparrows and found low levels of genetic variation and no evidence of geographic structure. These results suggest a rapid and recent geographic expansion of Swamp Sparrows from restricted Pleistocene populations. Morphological differentiation has occurred without long-term genetic isolation, suggesting that selection on the divergent traits is intense. The grayer and more melanistic plumage is probably cryptic coloration for foraging on tidal mud, which tends to be grayish as a result of the formation of iron sulfides, rather than iron oxides, under anaerobic conditions.

  13. Arthropod food web restoration following removal of an invasive wetland plant.

    PubMed

    Gratton, Claudio; Denno, Robert F

    2006-04-01

    Restoration of habitats impacted by invasive plants is becoming an increasingly important tool in the management of native biodiversity, though most studies do not go beyond monitoring the abundance of particular taxonomic groups, such as the return of native vegetation. Yet, the reestablishment of trophic interactions among organisms in restored habitats is equally important if we are to monitor and understand how ecosystems recover. This study examined whether food web interactions among arthropods (as inferred by abundance of naturally occurring stable isotopes of C [delta13C] and N [delta15N]) were reestablished in the restoration of a coastal Spartina alterniflora salt marsh that had been invaded by Phragmites australis. From patterns of C and N stable isotopes we infer that trophic interactions among arthropods in the native salt marsh habitats are characterized by reliance on the dominant marsh plant Spartina as a basal resource. Herbivores such as delphacid planthoppers and mirid bugs have isotope signatures characteristic of Spartina, and predatory arthropods such as dolicopodid flies and spiders likewise have delta13C and delta15N signatures typical of Spartina-derived resources (approximately -13 per thousand and 10 per thousand, respectively). Stable isotope patterns also suggest that the invasion of Phragmites into salt marshes and displacement of Spartina significantly alter arthropod food web interactions. Arthropods in Phragmites-dominated sites have delta13C isotope values between -18 per thousand and -20 per thousand, suggesting reliance on detritus and/or benthic microalgae as basal resources and not on Phragmites, which has a delta13C approximately -26 per thousand. Since most Phragmites herbivores are either feeding internally or are rare transients from nearby Spartina, these resources do not provide significant prey resources for other arthropod consumers. Rather, predator isotope signatures in the invaded habitats indicate dependence on detritus/algae as basal resources instead of the dominant vegetation. The reestablishment of Spartina after removal of Phragmites, however, not only returned species assemblages typical of reference (uninvaded) Spartina, but stable isotope signatures suggest that the trophic interactions among the arthropods were also similar in reestablished habitats. Specifically, both herbivores and predators showed characteristic Spartina signatures, suggesting the return of the original grazer-based food web structure in the restored habitats.

  14. Impacts of Deepwater Horizon Oil on Marsh Sediment Biogeochemistry in Barataria Bay, LA, USA

    NASA Astrophysics Data System (ADS)

    Mills, C. T.; Windham-Myers, L.; Waldrop, M. P.; Krabbenhoft, D. P.; Marvin-DiPasquale, M. C.; Orem, W. H.; Piazza, S.; Haw, M.; McFarland, J.; Varonka, M. S.

    2012-12-01

    Oil from the Deepwater Horizon spill came ashore on many salt marsh islands in Barataria Bay, LA in summer 2010, coating plants and settling on the sediment surface. In coordination with a plant community study of affected marshes, we investigated impacts of oiling on marsh sediment microbial biogeochemistry. Sediment samples (upmost 2 cm) were collected along transects perpendicular and parallel to the shore at three oiled and three non-oiled sites in both July and Oct. 2011. Samples from both collections were analyzed for sediment characteristics, total and methylmercury, and microbial membrane phospholipid fatty acids (PLFAs) which are a proxy for viable microbial cell numbers. Sediment DNA collected in Oct. 2011 was analyzed for bacterial, fungal, and archaeal community composition and abundance as well as various enzyme activities. Select Oct. 2011 samples were assayed to determine the rates of terminal electron accepting processes (oxygen demand, denitrification, iron reduction, sulfate reduction, methanogenesis). All sites had similar sediment characteristics. Impacts on sediment biogeochemistry were greatest at marsh edges, and reduced microbial abundance appeared to be more important than changes in microbial community structure. In July 2011, the mean PLFA concentration in oiled marsh edge sediments (0.15±0.03 μmol g-1; 95% CI; n=9) was substantially lower than for non-oiled sites (0.33±0.08 μmol g-1; n=9). Mean PLFA concentrations for interior marsh samples were more similar for oiled (0.30±0.08 μmol g-1; n=8) and non-oiled (0.37±0.04 μmol g-1; n=9) sites. This PLFA pattern was also observed in Oct. 2011 samples, and other measures of microbial abundance and activity showed similar trends. Cellulase, phosphatase, and chitinase mean activities were nearly twice as great in non-oiled versus oiled edge sites. Lower microbial activity in oiled sites was also inferred by somewhat lower denitrification and sulfate reduction potentials. Conversely, both methanogenesis rates and concentrations of methanogen DNA were somewhat greater in oiled edge samples, suggesting an effect of oiling on terminal electron accepting processes. The mean methylmercury concentration was lower in oiled versus non-oiled edge sites, likely as a result of decreased sulfate-reducer activity. The reduced microbial activity in near-edge sediments of the oiled marsh is likely an indirect effect of reduced plant productivity which supports rhizosphere communities. Both mean above- and below-ground live biomass at oiled edge sites were less than half that at non-oiled edge sites. Some marsh edge samples from the oiled site contained relatively large amounts of oil and we are currently quantifying oil-derived hydrocarbons to understand impacts of the oil itself on sediment biogeochemistry.

  15. Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise

    USGS Publications Warehouse

    Day, J.W.; Kemp, G.P.; Reed, D.J.; Cahoon, D.R.; Boumans, R.M.; Suhayda, J.M.; Gambrell, R.

    2011-01-01

    From 1990 to 2004, we carried out a study on accretionary dynamics and wetland loss in salt marshes surrounding two small ponds in the Mississippi delta; Old Oyster Bayou (OB), a sediment-rich area near the mouth of the Atchafalaya River and Bayou Chitigue (BC), a sediment-poor area about 70. km to the east. The OB site was stable, while most of the marsh at BC disappeared within a few years. Measurements were made of short-term sedimentation, vertical accretion, change in marsh surface elevation, pond wave activity, and marsh soil characteristics. The OB marsh was about 10. cm higher than BC; the extremes of the elevation range for Spartina alterniflora in Louisiana. Vertical accretion and short-term sedimentation were about twice as high at BC than at OB, but the OB marsh captured nearly all sediments deposited, while the BC marsh captured <30%. The OB and BC sites flooded about 15% and 85% of the time, respectively. Marsh loss at BC was not due to wave erosion. The mineral content of deposited sediments was higher at OB. Exposure and desiccation of the marsh surface at OB increased the efficiency that deposited sediments were incorporated into the marsh soil, and displaced the marsh surface upward by biological processes like root growth, while also reducing shallow compaction. Once vegetation dies, there is a loss of soil volume due to loss of root turgor and oxidation of root organic matter, which leads to elevation collapse. Revegetation cannot occur because of the low elevation and weak soil strength. The changes in elevation at both marsh sites are punctuated, occurring in steps that can either increase or decrease elevation. When a marsh is low as at BC, a step down can result in an irreversible change. At this point, the option is not restoration but creating a new marsh with massive sediment input either from the river or via dredging. ?? 2010 Elsevier B.V.

  16. EPA SCIENCE FORUM 2005, WASHINGTON, DC: ASSESSING NEW ENGLAND COATAL WETLANDS USING A SYSTEMATIC REFERENCE-BASED APPROACH

    EPA Science Inventory

    The US Environmental Protection Agency, Atlantic Ecology Division is working collaboratively with Massachusetts Coastal Zone Management to implement landscape and rapid assessments of coastal salt marshes in Rhode Island and Massachusetts. Using a 3-tiered approach, the coastal ...

  17. FREE-WATER DEPTH AS A MANAGEMENT TOOL FOR CONSTRUCTED WETLANDS

    EPA Science Inventory

    Marsh plants in constructed wetlands have shown the capacity to remove unwanted pollutants from storm water runoff. The plants can be established at the site from bare roots. However, plant growth from bare roots can be restricted by the elevated water depths. Using several wa...

  18. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean

    USGS Publications Warehouse

    Wang, Zhaohui Aleck; Kroeger, Kevin D.; Ganju, Neil K.; Gonneea, Meagan; Chu, Sophie N.

    2016-01-01

    Dynamic tidal export of dissolved inorganic carbon (DIC) to the coastal ocean from highly productive intertidal marshes and its effects on seawater carbonate chemistry are thoroughly evaluated. The study uses a comprehensive approach by combining tidal water sampling of CO2parameters across seasons, continuous in situ measurements of biogeochemically-relevant parameters and water fluxes, with high-resolution modeling in an intertidal salt marsh of the U.S. northeast region. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and total alkalinity (TA). DIC and TA generation may also be decoupled due to differential effects of marsh aerobic and anaerobic respiration on DIC and TA. As marsh DIC is added to tidal water, the buffering capacity first decreases to a minimum and then increases quickly. Large additions of marsh DIC can result in higher buffering capacity in ebbing tide than incoming tide. Alkalization of tidal water, which mostly occurs in the summer due to anaerobic respiration, can further modify buffering capacity. Marsh exports of DIC and alkalinity may have complex implications for the future, more acidified ocean. Marsh DIC export exhibits high variability over tidal and seasonal cycles, which is modulated by both marsh DIC generation and by water fluxes. The marsh DIC export of 414 g C m−2 yr−1, based on high-resolution measurements and modeling, is more than twice the previous estimates. It is a major term in the marsh carbon budget and translates to one of the largest carbon fluxes along the U.S. East Coast.

  19. Elevation trends and shrink-swell response of wetland soils to flooding and drying

    USGS Publications Warehouse

    Cahoon, Donald R.; Perez, Brian C.; Segura, Bradley D.; Lynch, James C.

    2011-01-01

    Given the potential for a projected acceleration in sea-level rise to impact wetland sustainability over the next century, a better understanding is needed of climate-related drivers that influence the processes controlling wetland elevation. Changes in local hydrology and groundwater conditions can cause short-term perturbations to marsh elevation trends through shrink—swell of marsh soils. To better understand the magnitude of these perturbations and their impacts on marsh elevation trends, we measured vertical accretion and elevation dynamics in microtidal marshes in Texas and Louisiana during and after the extreme drought conditions that existed there from 1998 to 2000. In a Louisiana marsh, elevation was controlled by subsurface hydrologic fluxes occurring below the root zone but above the 4 m depth (i.e., the base of the surface elevation table benchmark) that were related to regional drought and local meteorological conditions, with marsh elevation tracking water level variations closely. In Texas, a rapid decline in marsh elevation was related to severe drought conditions, which lowered local groundwater levels. Unfragmented marshes experienced smaller water level drawdowns and more rapid marsh elevation recovery than fragmented marshes. It appears that extended drawdowns lead to increased substrate consolidation making it less resilient to respond to future favorable conditions. Overall, changes in water storage lead to rapid and large short-term impacts on marsh elevation that are as much as five times greater than the long-term elevation trend, indicating the importance of long-term, high-resolution elevation data sets to understand the prolonged effects of water deficits on marsh elevation change.

  20. Wetland Accretion Rate Model of Ecosystem Resilience (WARMER) and its application to habitat sustainability for endangered species in the San Francisco Estuary

    USGS Publications Warehouse

    Swanson, Kathleen M.; Drexler, Judith Z.; Schoellhamer, David H.; Thorne, Karen M.; Casazza, Michael L.; Overton, Cory T.; Callaway, John C.; Takekawa, John Y.

    2014-01-01

    Salt marsh faunas are constrained by specific habitat requirements for marsh elevation relative to sea level and tidal range. As sea level rises, changes in relative elevation of the marsh plain will have differing impacts on the availability of habitat for marsh obligate species. The Wetland Accretion Rate Model for Ecosystem Resilience (WARMER) is a 1-D model of elevation that incorporates both biological and physical processes of vertical marsh accretion. Here, we use WARMER to evaluate changes in marsh surface elevation and the impact of these elevation changes on marsh habitat for specific species of concern. Model results were compared to elevation-based habitat criteria developed for marsh vegetation, the endangered California clapper rail (Rallus longirostris obsoletus), and the endangered salt marsh harvest mouse (Reithrodontomys raviventris) to determine the response of marsh habitat for each species to predicted >1-m sea-level rise by 2100. Feedback between vertical accretion mechanisms and elevation reduced the effect of initial elevation in the modeled scenarios. Elevation decreased nonlinearly with larger changes in elevation during the latter half of the century when the rate of sea-level rise increased. Model scenarios indicated that changes in elevation will degrade habitat quality within salt marshes in the San Francisco Estuary, and degradation will accelerate in the latter half of the century as the rate of sea-level rise accelerates. A sensitivity analysis of the model results showed that inorganic sediment accumulation and the rate of sea-level rise had the greatest influence over salt marsh sustainability.

  1. Comparison of vesicular-arbuscular mycorrhizae in plants from disturbed and adjacent undisturbed regions of a coastal salt marsh in Clinton, Connecticut, USA

    NASA Astrophysics Data System (ADS)

    Cooke, John C.; Lefor, Michael W.

    1990-01-01

    Roots of salt marsh plant species Spartina alterniflora, S. patens, Distichlis spicata, and others were examined for the presence of vesicular-arbuscular mycorrhizal (VAM) fungi. Samples were taken from introduced planted material in a salt marsh restoration project and from native material in adjacent marsh areas along the Indian River, Clinton, Connecticut, USA. After ten years the replanted area still has sites devoid of vegetation. The salt marsh plants introduced there were devoid of VAM fungi, while high marsh species from the adjacent undisturbed region showed consistent infection, leading the authors to suggest that VAM fungal infection of planting stocks may be a factor in the success of marsh restoration.

  2. Tidal Marsh Outwelling of Dissolved Organic Matter and Resulting Temporal Variability in Coastal Water Optical and Biogeochemical Properties

    NASA Technical Reports Server (NTRS)

    Tzortziou, Maria; Neale, Patrick J.; Megonigal, J. Patrick; Butterworth, Megan; Jaffe, Rudolf; Yamashita, Youhei

    2010-01-01

    Coastal wetlands are highly dynamic environments at the land-ocean interface where human activities, short-term physical forcings and intense episodic events result in high biological and chemical variability. Long being recognized as among the most productive ecosystems in the world, tidally-influenced coastal marshes are hot spots of biogeochemical transformation and exchange. High temporal resolution observations that we performed in several marsh-estuarine systems of the Chesapeake Bay revealed significant variability in water optical and biogeochemical characteristics at hourly time scales, associated with tidally-driven hydrology. Water in the tidal creek draining each marsh was sampled every hour during several semi-diurnal tidal cycles using ISCO automated samplers. Measurements showed that water leaving the marsh during ebbing tide was consistently enriched in dissolved organic carbon (DOC), frequently by more than a factor of two, compared to water entering the marsh during flooding tide. Estimates of DOC fluxes showed a net DOC export from the marsh to the estuary during seasons of both low and high biomass of marsh vegetation. Chlorophyll amounts were typically lower in the water draining the marsh, compared to that entering the marsh during flooding tide, suggesting that marshes act as transformers of particulate to dissolved organic matter. Moreover, detailed optical and compositional analyses demonstrated that marshes are important sources of optically and chemically distinctive, relatively complex, high molecular weight, aromatic-rich and highly colored dissolved organic compounds. Compared to adjacent estuarine waters, marsh-exported colored dissolved organic matter (CDOM) was characterized by considerably stronger absorption (more than a factor of three in some cases), larger DOC-specific absorption, lower exponential spectral slope, larger fluorescence signal, lower fluorescence per unit absorbance, and higher fluorescence at visible wavelengths. Observed patterns in water optical and biogeochemical variables were very consistent among different marsh systems and throughout the year, despite continued tidal exchange, implying rapid transformation of marsh DOM in the estuary through both photochemical and microbial processes. These findings illustrate the importance of tidal marsh ecosystems as sources, sinks and/or transformers of biologically important nutrients, carbon and colored dissolved organic compounds, and their influence on short-term biological, optical and biogeochemical variability in coastal waters.

  3. Peat porewater chloride concentration profiles in the Everglades during wet/dry cycles from January 1996 to June 1998: Field measurements and theoretical analysis

    USGS Publications Warehouse

    Reddy, M.M.; Reddy, M.B.; Kipp, K.L.; Burman, A.; Schuster, P.; Rawlik, P.S.

    2008-01-01

    Water quality is a key aspect of the Everglades Restoration Project, the largest water reclamation and ecosystem management project proposed in the United States. Movement of nutrients and contaminants to and from Everglades peat porewater could have important consequences for Everglades water quality and ecosystem restoration activities. In a study of Everglades porewater, we observed complex, seasonally variable peat porewater chloride concentration profiles at several locations. Analyses and interpretation of these changing peat porewater chloride concentration profiles identifies processes controlling conservative solute movement at the peat-surface water interface, that is, solutes whose transport is minimally affected by chemical and biological reactions. We examine, with an advection-diffusion model, how alternating wet and dry climatic conditions in the Florida Everglades mediate movement of chloride between peat porewater and marsh surface water. Changing surface water-chloride concentrations alter gradients at the interface between peat and overlying water and hence alter chloride flux across that interface. Surface water chloride concentrations at two frequently monitored sites vary with marsh water depth, and a transfer function was developed to describe daily marsh surface water chloride concentration as a function of marsh water depth. Model results demonstrate that porewater chloride concentrations are driven by changing surface water chloride concentrations, and a sensitivity analysis suggests that inclusion of advective transport in the model improves the agreement between the calculated and the observed chloride concentration profiles. Copyright ?? 2007 John Wiley & Sons, Ltd.

  4. ‘Blue Carbon’ and Nutrient Stocks of Salt Marshes at a Temperate Coastal Lagoon (Ria de Aveiro, Portugal)

    PubMed Central

    Sousa, Ana I.; Santos, Danielle B.; Silva, Eduardo Ferreira da; Sousa, Lisa P.; Cleary, Daniel F. R.; Soares, Amadeu M. V. M.; Lillebø, Ana I.

    2017-01-01

    Ria de Aveiro is a mesotidal coastal lagoon with one of the largest continuous salt marshes in Europe. The objective of this work was to assess C, N and P stocks of Spartina maritima (low marsh pioneer halophyte) and Juncus maritimus (representative of mid-high marsh halophytes) combined with the contribution of Halimione portulacoides, Sarcocornia perennis, and Bolbochenous maritimus to the lagoon ≈4400 ha marsh area. A multivariate analysis (PCO), taking into account environmental variables and the annual biomass and nutrient dynamics, showed that there are no clear seasonal or spatial differences within low or mid-high marshes, but clearly separates J. maritimus and S. maritima marshes. Calculations of C, N and P stocks in the biomass of the five most representative halophytes plus the respective rhizosediment (25 cm depth), and taking into account their relative coverage, represents 252053 Mg C, 38100 Mg N and 7563 Mg P. Over 90% of the stocks are found within mid-high marshes. This work shows the importance of this lagoon’s salt marshes on climate and nutrients regulation, and defines the current condition concerning the ‘blue carbon’ and nutrient stocks, as a basis for prospective future scenarios of salt marsh degradation or loss, namely under SLR context. PMID:28120885

  5. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant-soil interactions and ecosystem carbon pools

    USGS Publications Warehouse

    Yando, Erik S.; Osland, Michael J.; Willis, Jonathan M; Day, Richard H.; Krauss, Ken W.; Hester, Mark W.

    2016-01-01

    Synthesis: Our results indicate that the ecological implications of woody plant encroachment in tidal saline wetlands are dependent upon precipitation controls of plant–soil interactions. Although the above-ground effects of mangrove expansion are consistently large, below-ground influences of mangrove expansion appear to be greatest along low-rainfall coasts where salinities are high and marshes being replaced are carbon poor and dominated by succulent plants. Collectively, these findings complement those from terrestrial ecosystems and reinforce the importance of considering rainfall and plant–soil interactions within predictions of the ecological effects of woody plant encroachment.

  6. Import and export fluxes of macrozooplankton are taxa- and season-dependent at Jiuduansha marsh, Yangtze River estuary

    NASA Astrophysics Data System (ADS)

    Qin, Haiming; Sheng, Qiang; Chu, Tianjiang; Wang, Sikai; Wu, Jihua

    2015-09-01

    Macrozooplankton may play important roles in influencing nutrient exchange between salt marsh and nearby estuarine ecosystems through predator-prey interactions and their transport by tidal flows. In this study, macrozooplankton transport through year-round monthly sampling was investigated in a salt marsh creek of the Yangtze River estuary. Twenty-one orders of macrozooplankton were captured. Calanoida and Decapoda were dominant and numerically comprised 59.59% and 37.59% respectively of the total captured macrozooplankton throughout the year. Decapoda mainly occurred in April, May and June. In other months, the Calanoida contributed over 90% of the total individuals. The annual Ferrari index (I) for total individual number of macrozooplankton was 0.27, which generally supports the viewpoint that salt marshes are sources of zooplankton. The salt marsh was mainly a source for decapods and mysids, possibly because of larval release in their breeding seasons. The marsh was also a source for amphipods, probably because some benthic forms became transient planktonic forms during tidal water flushing. Copepods and fish larvae exhibited net import into the salt marsh, which may result from predation from salt marsh settlers or retention in the salt marsh. Monthly Ferrari index (I) estimations revealed that the role of the salt marsh as a sink or source of macrozooplankton was time-dependent, which is related to the life history of animals. This study showed that whether the salt marsh zooplankton act as energy importers or exporters is group/taxa-dependent and time-dependent.

  7. Landsat Detection of the Effects of Hurricane Sandy on New Jersey Coastal Marshes

    NASA Astrophysics Data System (ADS)

    Riter, A.; Kearney, M.; Mo, Y.

    2015-12-01

    Hurricane Sandy, an extremely large (1611 km in diameter) and destructive extratropical storm, made landfall near Brigantine, New Jersey on October 29, 2012. We used twenty Landsat Thematic Mapper data sets collected between 1984 and 2011 and four Landsat Operational Land Imager data sets collected between 2013 and 2015 to examine the effect of Sandy on the New Jersey Atlantic coastal marshes between Sandy Hook and Cape May. Landsat data was unavailable between the 2011 failure of Landsat TM and the launch of Landsat OLI in April of 2013. Preliminary results suggest that most of the New Jersey marshes were relatively stable with some interannual variation between 1984 and 2005. Between 2006 and 2015, marsh area generally declined, with the greatest decline occurring in the small discontinuous marshes north of Barnegat Light. The marshes which were closest to where Sandy made landfall seem to have sustained less damage than the marshes north of Barnegat Light. The marshes west of the lagoon bar systems between Seaside Heights and Sandy Hook, that bore the brunt of Sandy's storm surge (from 1.5 to 2.6 meters) and the greatest wave action (Blake et al, 2013), display an increase in pond area within the marshes. As stated above, recent increases in pond size and area as well as the overall decline in marsh coverage began before Hurricane Sandy. This suggests that the even the most at-risk marshes were not as affected by Sandy's storm surge and waves as the barrier islands.

  8. Zooming in and out: Scale dependence of extrinsic and intrinsic factors affecting salt marsh erosion

    NASA Astrophysics Data System (ADS)

    Wang, Heng; van der Wal, Daphne; Li, Xiangyu; van Belzen, Jim; Herman, Peter M. J.; Hu, Zhan; Ge, Zhenming; Zhang, Liquan; Bouma, Tjeerd J.

    2017-07-01

    Salt marshes are valuable ecosystems that provide important ecosystem services. Given the global scale of marsh loss due to climate change and coastal squeeze, there is a pressing need to identify the critical extrinsic (wind exposure and foreshore morphology) and intrinsic factors (soil and vegetation properties) affecting the erosion of salt marsh edges. In this study, we quantified rates of cliff lateral retreat (i.e., the eroding edge of a salt marsh plateau) using a time series of aerial photographs taken over four salt marsh sites in the Westerschelde estuary, the Netherlands. In addition, we experimentally quantified the erodibility of sediment cores collected from the marsh edge of these four marshes using wave tanks. Our results revealed the following: (i) at the large scale, wind exposure and the presence of pioneer vegetation in front of the cliff were the key factors governing cliff retreat rates; (ii) at the intermediate scale, foreshore morphology was partially related to cliff retreat; (iii) at the local scale, the erodibility of the sediment itself at the marsh edge played a large role in determining the cliff retreat rate; and (iv) at the mesocosm scale, cliff erodibility was determined by soil properties and belowground root biomass. Thus, both extrinsic and intrinsic factors determined the fate of the salt marsh but at different scales. Our study highlights the importance of understanding the scale dependence of the factors driving the evolution of salt marsh landscapes.

  9. Delta-Flux: An eddy covariance network for a climate-smart Lower Mississippi Basin

    USGS Publications Warehouse

    Runkle, Benjamin R. K.; Rigby, James R.; Reba, Michele L.; Anapalli, Saseendran S.; Bhattacharjee, Joydeep; Krauss, Ken W.; Liang, Lu; Locke, Martin A.; Novick, Kimberly A.; Sui, Ruixiu; Suvočarev, Kosana; White, Paul M.

    2017-01-01

    Networks of remotely monitored research sites are increasingly the tool used to study regional agricultural impacts on carbon and water fluxes. However, key national networks such as the National Ecological Observatory Network and AmeriFlux lack contributions from the Lower Mississippi River Basin (LMRB), a highly productive agricultural area with opportunities for soil carbon sequestration through conservation practices. The authors describe the rationale to create the new Delta-Flux network, which will coordinate efforts to quantify carbon and water budgets at seventeen eddy covariance flux tower sites in the LMRB. The network structure will facilitate climate-smart management strategies based on production-scale and continuous measurements of carbon and water fluxes from the landscape to the atmosphere under different soil and water management conditions. The seventeen instrumented field sites are expected to monitor fluxes within the most characteristic landscapes of the target area: row-crop fields, pasture, grasslands, forests, and marshes. The network participants are committed to open collaboration and efficient regionalization of site-level findings to support sustainable agricultural and forestry management and conservation of natural resources.

  10. Guidelines For Rehabilitation and Management of Floodplains - Ecology and Safety Combined

    NASA Astrophysics Data System (ADS)

    Wolters, H. A.; Platteeuw, M.; Schoor, M. M.

    In the first part the focus point is the river landscape in general. This involves some physical characteristics, an overview of relevant policy documents for the river land- scape in the Netherlands is given and a number of aspects in which the interrelations between the different rehabilitation measures come to light. The second part, consist- ing of chapters 4 to 10, defines the actual guidelines and recommendations for the implementation of some of the measures that might be considered in floodplain re- habilitation projects. These are: excavation of stagnant water bodies, construction of secondary channels, lowering of floodplains, removal of minor embankments, encour- agement of the development natural levees, river dunes and marshes. For all of these chapters a similar structure was chosen, in order to secure easy access for users trying to find specific information quickly. The last chapter deals with grazing management, the choices that must be made there, and the consequences these choices have for the further development of the area. A number of points of attention are given that should be addressed when developing a management plan.

  11. Predicting tidal marsh survival or submergence to sea-level rise using Holocene data

    NASA Astrophysics Data System (ADS)

    Horton, B.; Shennan, I.; Bradley, S.; Cahill, N.; Kirwan, M. L.; Kopp, R. E.; Shaw, T.

    2017-12-01

    Rising sea level threatens to permanently submerge tidal marsh environments if they cannot accrete faster than the rate of relative sea-level rise (RSLR). But regional and global model simulations of the future ability of marshes to maintain their elevation with respect to the tidal frame are uncertain. The compilation of empirical data for tidal marsh vulnerability is, therefore, essential to address disparities across these simulations. A hitherto unexplored source of empirical data are Holocene records of tidal marsh evolution. In particular, the marshes of Great Britain have survived and submerged while RSLR varied between -7.7 and 15.2 mm/yr, primarily because of the interplay between global ice-volume changes and regional isostatic processes. Here, we reveal the limits to marsh vulnerability are revealed through the analysis of over 400 reconstructions of tidal marsh submergence and conversion to tidal mud flat or open water from 54 regions in Great Britain during the Holocene. Holocene records indicate a 90% probability of tidal marsh submergence at sites with RSLR exceeding 7.3 mm/yr (95% CI: 6.6-8.6 mm/yr). Although most modern tidal marshes in Great Britain have not yet reached these sea-level rise limits, our empirical data suggest widespread concern over their ability to survive rates of sea-level rise in the 21st century under high emission scenarios. Integrating over the uncertainties in both sea-level rise predictions and the response of tidal marshes to sea-level rise, all of Great Britain has a >80% probability of marsh submergence under RCP 8.5 by 2100, with areas of south and eastern England, where the rate of RSLR is increased by glacio-isostatic subsidence, achieving this probability by 2040.

  12. Tidal salt marsh sediment in California, USA. Part 1: occurrence and sources of organic contaminants.

    PubMed

    Hwang, Hyun-Min; Green, Peter G; Young, Thomas M

    2006-08-01

    Surface sediment samples (0-5 cm) from five tidal marshes along the coast of California, USA were analyzed for organic pollutants to investigate their relationship to land use, current distribution within marshes, and possible sources. Among the study areas, Stege Marsh, located in San Francisco Bay, was the most contaminated. Compared to San Francisco Bay, Stege Marsh had much higher levels of organic contaminants such as PCBs (polychlorinated biphenyls), DDTs, and chlordanes. At reference marshes (Tom's Point and Walker Creek in Tomales Bay), organic contaminants in sediments were very low. While PAHs (polycyclic aromatic hydrocarbons) were found at all of the study areas (22-13,600 ng g(-1)), measurable concentrations of PCBs were found only in the sediments from Stege Marsh (80-9,940 ng g(-1)). Combustion related (pyrogenic) high molecular weight PAHs were dominant in sediments from Stege and Carpinteria Marshes, while in sediments from Tom's Point and Walker Creek petroleum related (petrogenic) low molecular weight PAHs and alkyl-substituted PAHs were much more abundant than pyrogenic PAHs. PCB congener patterns in all of the Stege Marsh samples were the same and revealed that Aroclor 1248 was a predominant source. In all marshes, the sum of DDE and DDD accounted for more than 90% of total DDTs, indicating that DDT has degraded significantly. The ratios of p,p'-DDE to p,p'-DDD in sediments from Stege Marsh provide evidence of possible previous use of technical DDD. Chlordane ratios indicated that chlordanes have degraded slightly. Bis(2-ethylhexyl)phthalate (280-32,000 ng g(-1)) was the most abundant phthalate. The data indicates that Stege Marsh may be a source of contaminants that continue to be discharged into San Francisco Bay.

  13. Middle to Late Holocene Fluctuations of C3 and C4 Vegetation in a Northern New England Salt Marsh, Sprague Marsh, Phippsburg Maine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B J; Moore, K A; Lehmann, C

    2006-05-26

    A 3.1 meter sediment core was analyzed for stable carbon isotope composition of organic matter and higher plant leaf wax (HPLW) lipid biomarkers to determine Holocene shifts in C{sub 3} (higher high marsh) and C{sub 4} (low and/or high marsh) plant deposition at the Sprague River Salt Marsh, Phippsburg, Maine. The carbon isotope composition of the bulk sediment and the HPLW parallel each other throughout most of the core, suggesting that terrestrial plants are an important source of organic matter to the sediments, and diagenetic alteration of the bulk sediments is minimal. The current salt marsh began to form 2500more » cal yr BP. Low and/or high C{sub 4} marsh plants dominated deposition at 2000 cal yr BP, 700 cal yr BP, and for the last 200 cal yr BP. Expansion of higher high marsh C{sub 3} plants occurred at 1300 and 600 cal yr BP. These major vegetation shifts result from a combination of changes in relative sea-level rise and sediment accumulation rates. Average annual carbon sequestration rates for the last 2500 years approximate 40 g C yr{sup -1} m{sup -2}, and are in strong agreement with other values published for the Gulf of Maine. Given that Maine salt marshes cover an area of {approx}79 km{sup 2}, they represent an important component of the terrestrial carbon sink. More detailed isotopic and age records from a network of sediment cores at Sprague Marsh are needed to truly evaluate the long term changes in salt marsh plant communities and the impact of more recent human activity, including global warming, on salt marsh vegetation.« less

  14. Response of Living Shorelines to Wave Energy and Sea Level rise: Short-term Resilience and Long-term Vulnerability in North Carolina

    NASA Astrophysics Data System (ADS)

    Currin, C.; Davis, J.

    2017-12-01

    A decade of research and monitoring of Living Shoreline sites in North Carolina identifies both resilient and vulnerable features of this approach to estuarine shoreline stabilization. We used a wave energy model to calculate representative wave energy along 1500 miles of estuarine shoreline, and observed a linear, negative relationship between wind-wave energy and the width of fringing salt marshes. Proximity to navigation channels (boat wakes) further reduced fringing marsh width. These results provide guidance for Living Shoreline design alternatives. Surface elevation tables (SETs) deployed at the lower edge of both natural fringing marshes and `Living Shoreline' marsh-sill sites demonstrated that while natural marshes were losing surface elevation at an average rate of 6 mm y-1, marsh surface elevation at Living Shoreline sites increased at an average of 3 mm y-1. Marsh vegetation at the lower edge of natural sites exhibited a decline in biomass, while Living Shoreline sites exhibited an increase in upper marsh species and an extension of lower marsh into previous mudflat habitat. These changes provide Living Shoreline (marsh-sill) sites with added resilience to sea level rise, though decreased inundation alters the delivery of other ecosystem services (fish habitat, nutrient cycling). North Carolina lagoonal estuaries have low suspended sediment supply and low topography, and modeling predicts that landward transgression is the primary means by which salt marsh acreage can be maintained under moderate to high sea level rise scenarios. In this region, bank erosion can be important source of sediment to wetland habitats. Further, the association of built infrastructure with Living Shoreline sites portends a future scenario of coastal squeeze, as marsh migration landward will be inhibited.

  15. Investigating the Evolution of Southern California Salt Marshes: A Facies Model to Understand the Influence of Seismic Events on Environmental Resiliency and Sustainability

    NASA Astrophysics Data System (ADS)

    Aranda, A. N.; Carlin, J. A.; Rhodes, B. P.; Kirby, M.

    2016-02-01

    Only 10-20% of the US Pacific coast is estimated to be suitable for marsh development. In southern California specifically, marshes are disappearing ecosystems due to high population and urbanization. The future environmental impacts from climate change on these ecosystems are complicated not only by anthropogenic influences, but also by seismic activity in the region. In general, marsh evolution and response to seismic activity has yet to be fully explored in southern California. This study aims to develop a sediment facies model for salt marsh evolution in southern California by utilizing the salt marshes of the Seal Beach Wetlands (SBW). The SBW is an ideal location to develop the facies model because it straddles the active Newport-Inglewood Fault Zone. We collected sediment cores from the SBW that underwent a variety of sedimentological and geochemical analyses including grain size, X-Ray Fluorescence core scanning, magnetic susceptibility, and loss-on-ignition.. The results show a facies model consisting of sequences of marsh accretion punctuated by seismic events. These seismic events caused the marsh to subside, effectively re-setting marsh development from peat generation at a vegetated marsh state, to subtidal to intertidal mud deposition. The model also allowed us to qualify and quantify marsh recovery as inferred from event intensity, where what we perceived as more intense events resulted in more significant ecosystem disturbances and longer recovery times. Understanding this interplay between seismic activity and marsh development highlights the fragile nature of these ecosystems to climate change and sea level rise, as these stresses will only become amplified by seismic events.

  16. 76 FR 71598 - Pearl Harbor National Wildlife Refuge, Honolulu County, HI; Final Comprehensive Conservation Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... marsh, mudflat, grassland, and shrubland. The units provide important breeding, feeding, and resting... habitat for the endangered `Ewa hinahina plant. The unit contains the largest remnant stand of `Ewa hinahina and a repatriated population of `akoko, another endangered plant. We manage the unit's plant...

  17. Trends in growth rates of Vermont sugar maples from 1953-1992 in relation to stand nutrition

    Treesearch

    Timothy R. Wilmot

    1999-01-01

    Growth of sugar maple (Acer saccharum Marsh.) in 7 northern Vermont stands managed for sap production and 22 unmanaged stands distributed around the state was studied for the period 1953-1992 in relation to stand nutrition and other site factors.

  18. 50 CFR 32.7 - What refuge units are open to hunting and/or sport fishing?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Wildlife Refuge Big Branch Marsh National Wildlife Refuge Black Bayou Lake National Wildlife Refuge Bogue... Northern Tallgrass Prairie National Wildlife Refuge Rice Lake National Wildlife Refuge Rydell National... Management District Black Coulee National Wildlife Refuge Bowdoin National Wildlife Refuge Bowdoin Wetland...

  19. Edge-glued panels from Alaska hardwoods: retail manager perspectives

    Treesearch

    David Nicholls; Matthew Bumgardner; Valerie Barber

    2010-01-01

    In Alaska, red alder (Alnus rubra Bong.) and paper birch (Betula papyrifera Marsh.) are both lesser-known hardwoods grown, harvested, and manufactured into appearance products, with potential for increased utilization. The production of edgeglued panels from red alder and paper birch offers one expansion opportunity for wood...

  20. A FRAMEWORK FOR THE ASSESSMENT OF WILDLIFE HABITAT VALUE OF NEW ENGLAND SALT MARSHES

    EPA Science Inventory

    Resource managers are frequently asked to make decisions that affect the protection and restoration of wetland habitats. The desire is often to base at least some part of this decision process on an assessment of wildlife habitat value, an acknowledged and important wetland func...

  1. Population structure and relatedness among female Northern Pintails in three California wintering regions

    USGS Publications Warehouse

    Fleskes, Joseph P.; Fowler, Ada C.; Casazza, Michael L.; Eadie, John M.

    2010-01-01

    Female Northern Pintails (Anas acuta) were sampled in California's three main Central Valley wintering regions (Sacramento Valley, Suisun Marsh, San Joaquin Valley) during September–October before most regional movements occur and microsatellite and mitochondrial DNA were analyzed to examine population structure and relatedness. Despite reportedly high rates of early-fall pairing and regional fidelity, both sets of markers indicated that there was little overall genetic structuring by region. Pintails from Suisun Marsh did exhibit higher relatedness among individuals and capture groups than in the Sacramento or San Joaquin Valleys, likely reflecting a sample comprised of a greater proportion of local breeders. The lack of genetic structuring among regions indicates that a high degree of movement and interchange occurs among pintails wintering in the Central Valley. Thus, although maintaining the existing distribution of pintails among Central Valley regions is important for other reasons, it does not appear to be critical to retain current patterns of population genetic variation. Because of potential lack of independence among highly related study individuals, researchers should consider regional differences in relatedness when designing sampling schemes and interpreting research findings.

  2. The Influence of Coastal Wetland Zonation on Surface Sediment and Porewater Mercury Speciation

    NASA Astrophysics Data System (ADS)

    Marvin-DiPasquale, M. C.; Windham-Myers, L.; Wilson, A. M.; Buck, T.; Smith, E.

    2014-12-01

    An investigation of mercury (Hg) speciation in saltmarsh surface sediment (top 0-2 cm) and porewater (integrated 0-50 cm) was conducted along two monitoring well transects established within North Inlet Estuary (S. Carolina, USA) as part of the NOAA sponsored National Estuarine Research Reserve (NERR) network. Transects were perpendicular to the shoreline, from the forested uplands to the edge of the tidal channel, and traversed a range of vegetated zones from the high marsh (pickleweed, rush, and salt panne-dominated) to the low marsh (cordgrass dominated), as mediated by elevation and tidal inundation. Sediment grain size and organic content explained 95% of the variability in the distribution of total Hg (THg) in surface sediment. Tin-reducible 'reactive' mercury (HgR) concentration was 10X greater in the high marsh, compared to the low marsh, and increased sharply with decreasing sediment pH values below pH=6. The percentage of THg as HgR decreased as sediment redox conditions became more reducing. There were no significant differences in surface sediment methylmercury (MeHg) concentrations between high and low marsh zones. In contrast, porewater MeHg concentrations were 5X greater in the high marsh compared to the low marsh. As a percentage of THg, mean porewater %MeHg was 23% in the low marsh and 51% in the high marsh, reaching levels of 73-89% in a number of high marsh sites. Calculations of partitioning between porewater and the solid phase suggest stronger binding to particles in the low marsh and a shift towards the dissolved phase in the high marsh for both THg and MeHg. These results are consistent with a conceptual model for coastal wetlands where the less frequently inundated high marsh zone may be important in terms of MeHg production and enhanced subsurface mobilization, partially due to the subsurface mixing of saline estuarine water and freshwater draining in from the uplands area.

  3. Controls on resilience and stability in a sediment-subsidized salt marsh.

    PubMed

    Stagg, Camille L; Mendelssohn, Irving A

    2011-07-01

    Although the concept of self-design is frequently employed in restoration, reestablishment of primary physical drivers does not always result in a restored ecosystem having the desired ecological functions that support system resilience and stability. We investigated the use of a primary environmental driver in coastal salt marshes, sediment availability, as a means of promoting the resilience and stability of submerging deltaic salt marshes, which are rapidly subsiding due to natural and human-induced processes. We conducted a disturbance-recovery experiment across a gradient of sediment slurry addition to assess the roles of sediment elevation and soil physico-chemical characteristics on vegetation resilience and stability in two restored salt marshes of differing age (a 15-year-old site and a 5-year-old site). Salt marshes that received moderate intensities of sediment slurry addition with elevations at the mid to high intertidal zone (2-11 cm above local mean sea level; MSL) were more resilient than natural marshes. The primary regulator of enhanced resilience and stability in the restored marshes was the alleviation of flooding stress observed in the natural, unsubsidized marsh. However, stability reached a sediment addition threshold, at an elevation of 11 cm above MSL, with decreasing stability in marshes above this elevation. Declines in resilience and stability above the sediment addition threshold were principally influenced by relatively dry conditions that resulted from insufficient and infrequent flooding at high elevations. Although the older restored marsh has subsided over time, areas receiving too much sediment still had limited stability 15 years later, emphasizing the importance of applying the appropriate amount of sediment to the marsh. In contrast, treated marshes with elevations 2-11 cm above MSL were still more resilient than the natural marsh 15 years after restoration, illustrating that when performed correctly, sediment slurry addition can be a sustainable restoration technique.

  4. The Protective Role of Coastal Marshes: A Systematic Review and Meta-analysis

    PubMed Central

    Shepard, Christine C.; Crain, Caitlin M.; Beck, Michael W.

    2011-01-01

    Background Salt marshes lie between many human communities and the coast and have been presumed to protect these communities from coastal hazards by providing important ecosystem services. However, previous characterizations of these ecosystem services have typically been based on a small number of historical studies, and the consistency and extent to which marshes provide these services has not been investigated. Here, we review the current evidence for the specific processes of wave attenuation, shoreline stabilization and floodwater attenuation to determine if and under what conditions salt marshes offer these coastal protection services. Methodology/Principal Findings We conducted a thorough search and synthesis of the literature with reference to these processes. Seventy-five publications met our selection criteria, and we conducted meta-analyses for publications with sufficient data available for quantitative analysis. We found that combined across all studies (n = 7), salt marsh vegetation had a significant positive effect on wave attenuation as measured by reductions in wave height per unit distance across marsh vegetation. Salt marsh vegetation also had a significant positive effect on shoreline stabilization as measured by accretion, lateral erosion reduction, and marsh surface elevation change (n = 30). Salt marsh characteristics that were positively correlated to both wave attenuation and shoreline stabilization were vegetation density, biomass production, and marsh size. Although we could not find studies quantitatively evaluating floodwater attenuation within salt marshes, there are several studies noting the negative effects of wetland alteration on water quantity regulation within coastal areas. Conclusions/Significance Our results show that salt marshes have value for coastal hazard mitigation and climate change adaptation. Because we do not yet fully understand the magnitude of this value, we propose that decision makers employ natural systems to maximize the benefits and ecosystem services provided by salt marshes and exercise caution when making decisions that erode these services. PMID:22132099

  5. Vulnerability of Northeastern U.S. Salt Marshes to Climatic and Anthropogenic Stressors (AGU)

    EPA Science Inventory

    In the Northeastern U.S., salt marsh area is in decline. Habitat change analysis has revealed fragmentation, displacement of high marsh by low marsh species, and ecological drowning, while development of adjacent uplands limits upslope migration. Using inundation experiments, fi...

  6. Good Crab, Bad Crab

    EPA Science Inventory

    Are crabs friends or foes of marsh grass, benefit or detriment to the salt marsh system? We examined Uca pugilator (sand fiddler) and Sesarma reticulatum (purple marsh crab) with Spartina patens (salt marsh hay) at two elevations (10 cm below MHW and 10 cm above MHW) in mesocosms...

  7. Long-term Stability and Erosion in Marshes of Three Large Estuarine Basins in Louisiana

    NASA Astrophysics Data System (ADS)

    Kearney, M.; Riter, A.; Mo, Y.; Turner, R. E.

    2016-02-01

    Landsat TM data using a spectral mixture model indicate that marshes in large areas of Terrebonne Bay, Barataria Bay, and Breton Sound have been relatively stable for several decades. Marsh loss has been greatest in the most seaward, saline marshes - at rates of 0.3-1% yr-1 - and these losses are highly correlated with sea level rise. Some interior marshes, especially in the mesohaline parts of the basins, also show some sea level-driven losses, especially where seasonal differences in storm-generated waves greatly enhance the sea level signal. By comparison, oligohaline and tidal freshwater marshes farther inland present a picture of relative stability. The impacts of major hurricanes (e.g., Hurricanes Katrina and Gustav) that tracked over the study area were dramatic, but transient; most marshes rebounded to previous conditions within a few years. Significant marsh losses, other than those from shoreline retreat in more seaward zones, however, were confined to sites of freshwater river diversions.

  8. Carbon Sequestration in Created and Natural Tidal Marshes of the Florida Panhandle

    NASA Astrophysics Data System (ADS)

    Rainville, K. M.; Davis, J.; Currin, C.

    2016-12-01

    Salt marshes are widely understood to be efficient at storing carbon in sediments (aka blue carbon) through the production of roots and rhizomes. These marshes are also able to trap sediments from incoming tides, slowly increasing their elevation over time. These qualities have led to a great deal of interest in creation and preservation of salt marshes for offsetting changes associated with anthropogenic CO2 emissions. Determinations of the value of marshes in terms of CO2 offsets requires detailed knowledge of sediment carbon storage rates, but to date, measured rates of carbon storage in created salt marsh sediments are sparse. We measured carbon storage in natural and created marshes along the Northern Gulf Coast of Florida. The created marshes were in `living shoreline' projects and ranged in age from 8 to 28 years. Dominant plant cover of the marshes included Spartina alterniflora and Juncus spp. At all sites, sediment cores (22-75 cm in depth) were collected, extruded in 5 cm increments, and carbon content was determined by elemental analysis. Measured C storage rates in the created marshes ranged from 60 to 130 g C m-2 yr-1 and decreased with marsh age. A decrease in storage rates over time is evidence of continued decomposition of stored carbon as sediments age, an important factor to consider when estimating the value of a given marsh for CO2 offsets. The rates measured in Florida are well below previously published average values ( 200 g m-2 yr-1) and also below the default value allowed for carbon crediting through the verified carbon standard (146 g m-2 yr), but similar to those measured in created marshes in North Carolina. In addition, factors such as dominant plant type, water inundation, temperature, latitude, biological belowground activity and biomass values can impact carbon storage rates of marshes among geographically distinct regions. This makes it especially important to determine carbon storage rates on a local scale, and not following a verified carbon standard. These data add to the geographic coverage over which documented C storage rates are currently available and suggest that locally determined rates are necessary for accurate carbon accounting.

  9. Experimental salt marsh islands: A model system for novel metacommunity experiments

    NASA Astrophysics Data System (ADS)

    Balke, Thorsten; Lõhmus, Kertu; Hillebrand, Helmut; Zielinski, Oliver; Haynert, Kristin; Meier, Daniela; Hodapp, Dorothee; Minden, Vanessa; Kleyer, Michael

    2017-11-01

    Shallow tidal coasts are characterised by shifting tidal flats and emerging or eroding islands above the high tide line. Salt marsh vegetation colonising new habitats distant from existing marshes are an ideal model to investigate metacommunity theory. We installed a set of 12 experimental salt marsh islands made from metal cages on a tidal flat in the German Wadden Sea to study the assembly of salt marsh communities in a metacommunity context. Experimental plots at the same elevation were established within the adjacent salt marsh on the island of Spiekeroog. For both, experimental islands and salt marsh enclosed plots, the same three elevational levels were realised while creating bare patches open for colonisation and vegetated patches with a defined transplanted community. One year into the experiment, the bare islands were colonised by plant species with high fecundity although with a lower frequency compared to the salt marsh enclosed bare plots. Initial plant community variations due to species sorting along the inundation gradient were evident in the transplanted vegetation. Competitive exclusion was not observed and is only expected to unfold in the coming years. Our study highlights that spatially and temporally explicit metacommunity dynamics should be considered in salt marsh plant community assembly and disassembly.

  10. Deriving spatial and temporal patterns of coastal marsh aggradation from hurricane storm surge marker beds

    NASA Astrophysics Data System (ADS)

    Hodge, Joshua; Williams, Harry

    2016-12-01

    This study uses storm surge sediment beds deposited by Hurricanes Audrey (1957), Carla (1961), Rita (2005) and Ike (2008) to investigate spatial and temporal changes in marsh sedimentation on the McFaddin National Wildlife Refuge in Southeastern Texas. Fourteen sediment cores were collected along a transect extending 1230 m inland from the Gulf coast. Storm-surge-deposited sediment beds were identified by texture, organic content, carbonate content, the presence of marine microfossils and 137Cs dating. The hurricane-derived sediment beds facilitate assessment of changes in marsh sedimentation from nearshore to inland locations and over decadal to annual timescales. Spatial variation along the transect reflects varying contributions from three prevailing sediment sources: flooding, overwash and organic sedimentation from marsh plants. Over about the last decade, hurricane overwash has been the predominant sediment source for nearshore locations because of large sediment inputs from Hurricanes Rita and Ike. Farther inland, hurricane inputs diminish and sedimentation is dominated by deposition from flood waters and a larger organic component. Temporal variations in sedimentation reflect hurricane activity, changes in marsh surface elevation and degree of compaction of marsh sediments, which is time-dependent. There was little to no marsh sedimentation in the period 2008-2014, firstly because no hurricanes impacted the study area and secondly because overwash sedimentation prior to 2008 had increased nearshore marsh surface elevations by up to 0.68 m, reducing subsequent inputs from flooding. Marsh sedimentation rates were relatively high in the period 2005-2008, averaging 2.13 cm/year and possibly reflecting sediment contributions from Hurricanes Humberto and Gustav. However, these marsh sediments are highly organic and largely uncompacted. Older, deeper marsh deposits formed between 1961 and 2005 are less organic-rich, more compacted and have an average annual sedimentation rate of 0.38 cm/year, which is closely comparable to long-term sedimentation rates in similar marsh settings nearby. These results demonstrate the utility of using hurricane storm surge marker beds to investigate marsh sedimentation, provide insights into the sedimentary response of coastal marshes to hurricanes and provide useful guidance to public policy aimed at combating the effects of sea-level rise on coastal marshes along the northern Gulf of Mexico.

  11. Changing tidal hydrodynamics during different stages of eco-geomorphological development of a tidal marsh: A numerical modeling study

    NASA Astrophysics Data System (ADS)

    Stark, J.; Meire, P.; Temmerman, S.

    2017-03-01

    The eco-geomorphological development of tidal marshes, from initially low-elevated bare tidal flats up to a high-elevated marsh and its typical network of channels and creeks, induces long-term changes in tidal hydrodynamics in a marsh, which will have feedback effects on the marsh development. We use a two-dimensional hydrodynamic model of the Saeftinghe marsh (Netherlands) to study tidal hydrodynamics, and tidal asymmetry in particular, for model scenarios with different input bathymetries and vegetation coverages that represent different stages of eco-geomorphological marsh development, from a low elevation stage with low vegetation coverage to a high and fully vegetated marsh platform. Tidal asymmetry is quantified along a 4 km marsh channel by (1) the difference in peak flood and peak ebb velocities, (2) the ratio between duration of the rising tide and the falling tide and (3) the time-integrated dimensionless bed shear stress during flood and ebb. Although spatial variations in tidal asymmetry are large and the different indicators for tidal asymmetry do not always respond similarly to eco-geomorphological changes, some general trends can be obtained. Flood-dominance prevails during the initial bare stage of a low-lying tidal flat. Vegetation establishment and platform expansion lead to marsh-scale flow concentration to the bare channels, causing an increase in tidal prism in the channels along with a less flood-dominant asymmetry of the horizontal tide. The decrease in flood-dominance continues as the platform grows vertically and the sediment-demand of the platform decreases. However, when the platform elevation gets sufficiently high in the tidal frame and part of the spring-neap cycle is confined to the channels, the discharge in the channels decreases and tidal asymmetry becomes more flood-dominant again, indicating an infilling of the marsh channels. Furthermore, model results suggest that hydro-morphodynamic feedbacks based on tidal prism to channel cross-sectional area relationships keep the marsh channels from filling in completely by enhancing ebb-dominance as long as the tidal volume and flow velocities remain sufficiently high. Overall, this study increases insight into the hydro-morphodynamic interactions between tidal flow and marsh geomorphology during various stages of eco-geomorphological development of marshes and marsh channels in particular.

  12. Macroinvertebrate distribution and aquatic ecology in the Ruoergai (Zoige) Wetland, the Yellow River source region

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Xu, Mengzhen; Li, Zhiwei; Wang, Zhaoyin; Zhou, Hanmi

    2017-09-01

    The Ruoergai (Zoige) Wetland, the largest plateau peatland in the world, is located in the Yellow River source region. The discharge of the Yellow River increases greatly after flowing through the Ruoergai Wetland. The aquatic ecosystem of the Ruoergai Wetland is crucial to the whole Yellow River basin. The Ruoergai wetland has three main kinds of water bodies: rivers, oxbow lakes, and marsh wetlands. In this study, macroinvertebrates were used as indicators to assess the aquatic ecological status because their assemblage structures indicate long-term changes in environments with high sensitivity. Field investigations were conducted in July, 2012 and in July, 2013. A total of 72 taxa of macroinvertebrates belonging to 35 families and 67 genera were sampled and identified. Insecta was the dominant group in the Ruoergai Basin. The alpha diversity of macroinvertebrates at any single sampling site was low, while the alpha diversity on a basin-wide scale was much higher. Macroinvertebrate assemblages in rivers, oxbow lakes, and marsh wetlands differ markedly. Hydrological connectivity was a primary factor causing the variance of the bio-community. The river channels had the highest alpha diversity of macroinvertebrates, followed by marsh wetlands and oxbow lakes. The density and biomass of Gastropoda, collector filterers, and scrapers increased from rivers to oxbow lakes and then to marsh wetlands. The river ecology was particular in the Ruoergai Wetland with the high beta diversity of macroinvertebrates, the low alpha diversity of macroinvertebrates, and the low taxa richness, density, and biomass of EPT (Ephemeroptera, Plecoptera, Trichoptera). To maintain high alpha diversity of macroinvertebrates macroinvertebrates in the Ruoergai Wetland, moderate connectivity of oxbow lakes and marsh wetlands with rivers and measures to control headwater erosion are both crucial.

  13. Effects of Emergent Vegetation on Sediment Dynamics within a Retreating Coastal Marshland

    NASA Astrophysics Data System (ADS)

    Stellern, C.; Grossman, E.; Fuller, R.; Wallin, D.; Linneman, S. R.

    2015-12-01

    Coastal emergent vegetation in estuaries physically interrupts flow within the water column, reduces wave energy and increases sediment deposition. Previous workers conclude that wave attenuation rates decrease exponentially with distance from the marsh edge and are dependent on site and species-specific plant characteristics (Yang et al., 2011). Sediment deposition may exhibit similar patterns; however, sediment, geomorphic and habitat models seldom integrate site-specific biophysical plant parameters into change analyses. We paired vegetation and sediment dynamic studies to: (1) characterize vegetation structure, (2) estimate sediment available for deposition, (3) estimate rate, distribution and composition of sediment deposits, (4) determine sediment accumulation on vegetation, (5) compare sediment deposition within dense tidal wetland relative to non-vegetated tidal flat. These studies integrate a variety of monitoring methods, including the use of sediment traps, turbidity sensors, side-on photographs of vegetation and remote sensing image analysis. We compared sedimentation data with vegetation characteristics and spatial distribution data to examine the relative role of vegetation morphologic traits (species, stem density, biomass, distribution, tidal channels, etc.) on sediment dynamics. Our study is focused on Port Susan Bay of Washington State; a protected delta that has experienced up to 1 kilometer of marsh retreat (loss) over the past fifty years. Preliminary results show that the highest winter deposition occurred in the high marsh/mid-marsh boundary, up to 300m inland of the marsh edge, where bulrush species are most dense. These results will inform restoration efforts aimed at reestablishing sediment supply to the retreating marshland. This research is necessary to understand the vulnerability and adaptability of coastal marshlands to climate change related stressors such as, increased water levels (sea-level rise) and wave energy.

  14. The effects of tidal range on saltmarsh morphology

    NASA Astrophysics Data System (ADS)

    Goodwin, Guillaume; Mudd, Simon

    2017-04-01

    Saltmarshes are highly productive coastal ecosystems that act simultaneously as flood barriers, carbon storage, pollutant filters and nurseries. As halophytic plants trap suspended sediment and decay in the settled strata, innervated platforms emerge from the neighbouring tidal flats, forming sub-vertical scarps on their eroding borders and sub-horizontal pioneer zones in areas of seasonal expansion. These evolutions are subject to two contrasting influences: stochastically generated waves erode scarps and scour tidal flats, whereas tidally-generated currents transport sediment to and from the marsh through the channel network. Hence, the relative power of waves and tidal currents strongly influences saltmarsh evolution, and regional variations in tidal range yield marshes of differing morphologies. We analyse several sheltered saltmarshes to determine how their morphology reflects variations in tidal forcing. Using tidal, topographic and spectral data, we implement an algorithm based on the open-source software LSDTopoTools to automatically identify features such as marsh platforms, tidal flats, erosion scarps, pioneer zones and tidal channels on local Digital Elevation Models. Normalised geometric properties are then computed and compared throughout the spectrum of tidal range, highlighting a notable effect on channel networks, platform geometry and wave exposure. We observe that micro-tidal marshes typically display jagged outlines and multiple islands along with wide, shallow channels. As tidal range increases, we note the progressive disappearance of marsh islands and linearization of scarps, both indicative of higher hydrodynamic stress, along with a structuration of channel networks and the increase of levee volume, suggesting higher sediment input on the platform. Future research will lead to observing and modelling the evolution of saltmarshes under various tidal forcing in order to assess their resilience to environmental change.

  15. Molecular characterization of dissolved organic matter in contrasted freshwater environments by electrospray ionization mass spectrometry and EEM-PARAFAC

    NASA Astrophysics Data System (ADS)

    Parot, Jérémie; Parlanti, Edith; Guéguen, Céline

    2015-04-01

    Dissolved organic matter (DOM) is a key parameter in the fate, transport and mobility of inorganic and organic pollutants in natural waters. Excitation emission matrix (EEM) spectra coupled to parallel factor analysis (PARAFAC) provide insights on the main fluorescent DOM constituents. However, the molecular structures associated with PARAFAC DOM remain poorly understood. In this study, DOM from rivers, marshes and algal culture was characterized by EEM-PARAFAC and electrospray ionization Fourier transform mass spectrometry (ESI-FT-MS, Orbitrap Q Exactive). The high resolution of the Orbitrap (i.e. 140,000) allowed us to separate unique molecular species from the complex DOM mixtures. The majority of chemical species were found within the mass to charge ratio (m/z) 200 to 400. Weighted averages of neutral mass were 271.254, 236.480, 213.992Da for river, marsh and algal-derived DOM, respectively, congruent with previous studies. The assigned formula were dominated by CHO in humic-rich river waters whereas N- and S-containing compounds were predominant in marsh and algal samples. Marsh consisted of N and S-containing compounds, which were presumed to be linear alkylbenzene sulfonates. And the double bond equivalent (DBE) was higher in the marsh and in comparison was lower in the algal culture. Kendrick masses, used to identify homologous compounds differing only by a number of base units in high resolution mass spectra, and Van Krevelen diagrams, plot of molar ratio of hydrogen to carbon (H/C) versus oxygen to carbon (O/C), will be discussed in relation to PARAFAC components to further discriminate freshwater systems based on the origin and maturity of DOM. Together, these results showed that ESI-FT-MS has a great potential to distinguish freshwater DOM at the molecular level without any fractionation.

  16. Recent Trends in Bird Abundance on Rhode Island Salt Marshes

    EPA Science Inventory

    Salt marsh habitat is under pressure from development on the landward side, and sea level rise from the seaward side. The resulting loss of habitat is potentially disastrous for salt marsh dependent species. To assess the population status of three species of salt marsh dependent...

  17. VALUING AN INTERVENTION: MARSH MIGRATION AND ECOSYSTEM SERVICES

    EPA Science Inventory

    There is growing interest in valuing ecosystem services provided by marsh systems. Ecosystem services represent a flow of benefits to society from the existence or functioning of the marsh. Therefore, to “put a value on” the marsh itself, or estimate a value of the na...

  18. Laboratory and field investigations of marsh edge erosion

    USDA-ARS?s Scientific Manuscript database

    This chapter presents the laboratory experiments and field observations of marsh edge erosion. The marsh retreat rate in a field study site in Terrebonne Bay, Louisiana, was measured using GPS systems and aerial photographs. The wave environment was also measured in order to correlate the marsh edge...

  19. Relative value of managed wetlands and tidal marshlands for wintering northern pintails

    USGS Publications Warehouse

    Coates, Peter S.; Casazza, Michael L.; Halstead, Brian J.; Fleskes, Joseph P.

    2012-01-01

    Northern pintail Anas acuta (hereafter, pintail) populations have declined substantially throughout the western US since the 1970s, largely as a result of converting wetlands to cropland. Managed wetlands have been developed throughout the San Francisco Bay estuaries to provide wildlife habitat, particularly for waterfowl. Many of these areas were historically tidal baylands and plans are underway to remove dikes and restore tidal action. The relationship between tidal baylands and waterfowl populations is poorly understood. Our objective was to provide information on selection and avoidance of managed and tidal marshland by pintails. During 1991–1993 and 1998–2000, we radio-marked and relocated 330 female pintails (relocations, n =11,574) at Suisun Marsh, the largest brackish water estuary within San Francisco Bay, to estimate resource selection functions during the nonbreeding months (winter). Using a distance-based modeling approach, we calculated selection functions for different ecological communities (e.g., tidal baylands) and investigated variation explained by time of day (day or night hours) to account for differences in pintail behavior (i.e., foraging vs. roosting). We found strong evidence for selection of managed wetlands. Pintails also avoided tidal marshes and bays and channels. We did not detect differences in selection function between day and night hours for managed wetlands but the degree of avoidance of other habitats varied by time of day. We also found that areas subjected to tidal action did not influence the selection of immediately adjacent managed wetlands. If current management goals include providing habitat for wintering waterfowl populations, particularly pintail, then we recommend wildlife managers focus tidal restoration on areas that are not currently managed wetland and/or improve conditions in areas of managed wetlands to increase local carrying capacities

  20. A Study of the Invertebrates and Fishes of Salt Marshes in Two Oregon Estuaries.

    DTIC Science & Technology

    1981-06-01

    TAXON Level Level Debris TAXON Level Level Debris Marsh Marsh Line Marsh Marsh Line Cnidaria Coleopr era Halaoampa s? p. A Carabidae A A A Turbellaria A...HAB ITAT H fAB ITAT TAXON Tidal Tidal Flat Tidal Tidal Flat Lan Creek Sandy Mudd TAXON PA Creek SandyMdd Cnidaria A A Tanaidacea Nemertea A A Pancolus...INVERTEBRATES Phylum Protozoa Subphylum Sarcomastigophora Class Rhizopodea Order Foraminifera Phylum Cnidaria Class Anthozoa Subclass Zoantharia Order

  1. Spatial response of coastal marshes to increased atmospheric CO2.

    PubMed

    Ratliff, Katherine M; Braswell, Anna E; Marani, Marco

    2015-12-22

    The elevation and extent of coastal marshes are dictated by the interplay between the rate of relative sea-level rise (RRSLR), surface accretion by inorganic sediment deposition, and organic soil production by plants. These accretion processes respond to changes in local and global forcings, such as sediment delivery to the coast, nutrient concentrations, and atmospheric CO2, but their relative importance for marsh resilience to increasing RRSLR remains unclear. In particular, marshes up-take atmospheric CO2 at high rates, thereby playing a major role in the global carbon cycle, but the morphologic expression of increasing atmospheric CO2 concentration, an imminent aspect of climate change, has not yet been isolated and quantified. Using the available observational literature and a spatially explicit ecomorphodynamic model, we explore marsh responses to increased atmospheric CO2, relative to changes in inorganic sediment availability and elevated nitrogen levels. We find that marsh vegetation response to foreseen elevated atmospheric CO2 is similar in magnitude to the response induced by a varying inorganic sediment concentration, and that it increases the threshold RRSLR initiating marsh submergence by up to 60% in the range of forcings explored. Furthermore, we find that marsh responses are inherently spatially dependent, and cannot be adequately captured through 0-dimensional representations of marsh dynamics. Our results imply that coastal marshes, and the major carbon sink they represent, are significantly more resilient to foreseen climatic changes than previously thought.

  2. Restoring Ecological Function to a Submerged Salt Marsh

    USGS Publications Warehouse

    Stagg, C.L.; Mendelssohn, I.A.

    2010-01-01

    Impacts of global climate change, such as sea level rise and severe drought, have altered the hydrology of coastal salt marshes resulting in submergence and subsequent degradation of ecosystem function. A potential method of rehabilitating these systems is the addition of sediment-slurries to increase marsh surface elevation, thus ameliorating effects of excessive inundation. Although this technique is growing in popularity, the restoration of ecological function after sediment addition has received little attention. To determine if sediment subsidized salt marshes are functionally equivalent to natural marshes, we examined above- and belowground primary production in replicated restored marshes receiving four levels of sediment addition (29-42 cm North American Vertical Datum of 1988 [NAVD 88]) and in degraded and natural ambient marshes (4-22 cm NAVD 88). Moderate intensities of sediment-slurry addition, resulting in elevations at the mid to high intertidal zone (29-36 cm NAVD 88), restored ecological function to degraded salt marshes. Sediment additions significantly decreased flood duration and frequency and increased bulk density, resulting in greater soil drainage and redox potential and significantly lower phytotoxic sulfide concentrations. However, ecological function in the restored salt marsh showed a sediment addition threshold that was characterized by a decline in primary productivity in areas of excessive sediment addition and high elevation (>36 cm NAVD 88). Hence, the addition of intermediate levels of sediment to submerging salt marshes increased marsh surface elevation, ameliorated impacts of prolonged inundation, and increased primary productivity. However, too much sediment resulted in diminished ecological function that was equivalent to the submerged or degraded system. ?? 2010 Society for Ecological Restoration International.

  3. Understanding the Spatio-Temporal Dynamics of Denitrification in an Oregon Salt Marsh

    NASA Astrophysics Data System (ADS)

    Moon, J. B.; Stecher, H. A.; DeWitt, T.; Nahlik, A.; Fennessy, M. S.; Michael, L.; Regutti, R.; Mckane, R.; Marois, D.; Naithani, K. J.

    2016-12-01

    Salt marshes are highly susceptible to a range of climate change effects (e.g., sea-level rise, salinity changes, storm severity, shifts in vegetation across watershed). It is unclear how these effects will alter the spatial and temporal dynamics of denitrification, a potential pathway of nitrogen interception and removal from adjacent estuaries. Our overall objective is to determine whether salt marshes in the Pacific Northwest act as sources or sinks of nitrogen to estuaries, and to be able to predict changes in these dynamics under future climate scenarios. We have built a probabilistic denitrification model based on observations from a salt marsh in the Yaquina Estuary (Newport, Oregon). We observed a non-linear relationship between denitrification rates and distance to the marsh-upland interface and soil nitrate concentrations, which are indicators of nitrate delivery flow paths from upslope red alder. We also modeled spatial variability in oxygen availability as a function of elevation, which affects inundation period, and distance to channel, which affects the saturation period through the dewatering rate. Simulations suggest denitrification "hot spots" occur in mid-marsh locations, where both nitrate availability and inundation periods are maximized. Once marsh accretion is outpaced, sea level rise will likely reduce salt marsh area due to steep adjacent uplands that limit marsh retreat, and increase inundation duration near the marsh-upland interface. Expansion of red alder cover is concurrently expected to increase nitrate availability to downslope ecosystems. Taking these effects together, our future scenario simulations suggest a movement of "hot-spots" towards the marsh-upland boundary.

  4. Limitations and potential of satellite imagery to monitor environmental response to coastal flooding

    USGS Publications Warehouse

    Ramsey, Elijah W.; Werle, Dirk; Suzuoki, Yukihiro; Rangoonwala, Amina; Lu, Zhong

    2012-01-01

    Storm-surge flooding and marsh response throughout the coastal wetlands of Louisiana were mapped using several types of remote sensing data collected before and after Hurricanes Gustav and Ike in 2008. These included synthetic aperture radar (SAR) data obtained from the (1) C-band advance SAR (ASAR) aboard the Environmental Satellite, (2) phased-array type L-band SAR (PALSAR) aboard the Advanced Land Observing Satellite, and (3) optical data obtained from Thematic Mapper (TM) sensor aboard the Land Satellite (Landsat). In estuarine marshes, L-band SAR and C-band ASAR provided accurate flood extent information when depths averaged at least 80 cm, but only L-band SAR provided consistent subcanopy detection when depths averaged 50 cm or less. Low performance of inundation mapping based on C-band ASAR was attributed to an apparent inundation detection limit (>30 cm deep) in tall Spartina alterniflora marshes, a possible canopy collapse of shoreline fresh marsh exposed to repeated storm-surge inundations, wind-roughened water surfaces where water levels reached marsh canopy heights, and relatively high backscatter in the near-range portion of the SAR imagery. A TM-based vegetation index of live biomass indicated that the severity of marsh dieback was linked to differences in dominant species. The severest impacts were not necessarily caused by longer inundation but rather could be caused by repeated exposure of the palustrine marsh to elevated salinity floodwaters. Differential impacts occurred in estuarine marshes. The more brackish marshes on average suffered higher impacts than the more saline marshes, particularly the nearshore coastal marshes occupied by S. alterniflora.

  5. [Deposition and burial of organic carbon in coastal salt marsh: research progress].

    PubMed

    Cao, Lei; Song, Jin-Ming; Li, Xue-Gang; Yuan, Hua-Mao; Li, Ning; Duan, Li-Qin

    2013-07-01

    Coastal salt marsh has higher potential of carbon sequestration, playing an important role in mitigating global warming, while coastal saline soil is the largest organic carbon pool in the coastal salt marsh carbon budget. To study the carbon deposition and burial in this soil is of significance for clearly understanding the carbon budget of coastal salt marsh. This paper summarized the research progress on the deposition and burial of organic carbon in coastal salt marsh from the aspects of the sources of coastal salt marsh soil organic carbon, soil organic carbon storage and deposition rate, burial mechanisms of soil organic carbon, and the relationships between the carbon sequestration in coastal salt marsh and the global climate change. Some suggestions for the future related researches were put forward: 1) to further study the underlying factors that control the variability of carbon storage in coastal salt marsh, 2) to standardize the methods for measuring the carbon storage and the deposition and burial rates of organic carbon in coastal salt marsh, 3) to quantify the lateral exchange of carbon flux between coastal salt marsh and adjacent ecosystems under the effects of tide, and 4) to approach whether the effects of global warming and the increased productivity could compensate for the increase of the organic carbon decomposition rate resulted from sediment respiration. To make clear the driving factors determining the variability of carbon sequestration rate and how the organic carbon storage is affected by climate change and anthropogenic activities would be helpful to improve the carbon sequestration capacity of coastal salt marshes in China.

  6. The role of Phragmites australis in mediating inland salt marsh migration in a Mid-Atlantic estuary.

    PubMed

    Smith, Joseph A M

    2013-01-01

    Many sea level rise adaptation plans emphasize the protection of adjacent uplands to allow for inland salt marsh migration, but little empirical information exists on this process. Using aerial photos from 1930 and 2006 of Delaware Estuary coastal habitats in New Jersey, I documented the rate of coastal forest retreat and the rate of inland salt marsh migration across 101.1 km of undeveloped salt marsh and forest ecotone. Over this time, the amount of forest edge at this ecotone nearly doubled. In addition, the average amount of forest retreat was 141.2 m while the amount of salt marsh inland migration was 41.9 m. Variation in forest retreat within the study area was influenced by variation in slope. The lag between the amount of forest retreat and salt marsh migration is accounted for by the presence of Phragmites australis which occupies the forest and salt marsh ecotone. Phragmites expands from this edge into forest dieback areas, and the ability of salt marsh to move inland and displace Phragmites is likely influenced by salinity at both an estuary-wide scale and at the scale of local subwatersheds. Inland movement of salt marsh is lowest at lower salinity areas further away from the mouth of the estuary and closer to local heads of tide. These results allow for better prediction of salt marsh migration in estuarine landscapes and provide guidance for adaptation planners seeking to prioritize those places with the highest likelihood of inland salt marsh migration in the near-term.

  7. Diversity and composition of sediment bacteria in subtropical coastal wetlands of North Stradbroke Island, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Chuvochina, Maria; Sampayo, Eugenia; Welti, Nina; Hayes, Matthew; Lu, Yang; Lovelock, Catherine; Lockington, David

    2013-04-01

    Coastal wetlands provide a wide variety of important ecosystem services but continue to suffer disturbance, degradation and deforestation. Sediment bacteria are responsible for major nutrient transformation and recycling in these ecosystems. Insight into microbial community composition and the factors that determine them may improve our understanding of biogeochemical processes, food web dynamics, biodegradation processes and, thus, help to develop the management strategies for preserving the ecosystem health and services. Characterizing shifts in community taxa along environmental gradients has been shown to provide a useful tool for determining the major drivers affecting community structure and function. North Stradbroke Island (NSI) in Southern Queensland presents considerable habitat diversity including variety of groundwater dependent ecosystems such as lakes, swamps, sedge-like salt marshes and mangroves. Ecological responses of continuous groundwater extraction for municipal purposes and sand mining operations on NSI are still need to be assessed in order to protect its unique environment. Changes in coastal hydrology due to either climate change or human activity may directly affect microbial populations and, thus, biogeochemical cycles of nutrients. These may result in altering/losing some ecosystem services provided by coastal wetlands. In this study we examine microbial diversity and determine environmental controls on bacterial community structure along a natural transition from freshwater forested wetland (melaleuca woodland), sedge-like salt marsh and into mangroves located at NSI. The study area is characterized by significant groundwater flow, nutrient limitation and sharp transition from one ecosystem type to another. Sediment cores (0-5 cm and 20-25 cm depth) were collected from three representative sites of each zone (mangroves - salt marsh - freshwater wetland) along the salinity gradient in August 2012. Subsamples were set aside for use in chemical analyses, microbiological analysis and for porewater extraction. Microbial community structure and diversity are assessed using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments and barcoded pyrosequencing. To evaluate the relationships between microbial communities and environmental variables we use bioinformatical and statistical tools. Physico-chemical parameters included measurements of sediment pH, temperature, salinity and nutrients composition. Background information regarding hydrology and vegetation is incorporated in the study. Sediment bacteria play a vital role in wetland ecological function, and they are very sensitive to environmental changes. Considering coastal wetlands of NSI as a model area, our study may contribute to the knowledge of factors shaping microbial diversity in tropical wetlands, help to gain insight into the microbe-nutrient-plant relationships, and also serve as background for conservation plans to safeguard these ecosystems.

  8. From Ecosystem-Scale to Litter Biochemistry: Controls on Carbon Sequestration in Coastal Wetlands of the Western Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Louchouarn, P.; Kaiser, K.; Norwood, M. J.; Sterne, A. M. E.; Armitage, A. R.; HighField, W.; Brody, S.

    2015-12-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the structure and services of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones of the U.S., where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. Here we present the synthesis of 3 years of multidisciplinary work to quantify ecosystem shifts at the regional scale, along the entire Texas (USA) coast of the western Gulf of Mexico, and transcribe these shifts into carbon (C) sequestration mass balances. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify shifts in areal coverage of black mangrove (Avicennia germinans) and salt marsh (Spartina alterniflora and other grass and forb species) over 20 years across the Texas Gulf coast. Between 1990 and 2010, mangrove area expanded by 74% (+16 km2). Concurrently, salt marsh area experienced a net loss of 24% (-78 km2). Most of that loss was due to conversion to tidal flats or water, likely a result of relative sea level rise, with only 6% attributable to mangrove expansion. Although relative carbon load (per surface area) are statistically larger for mangrove wetlands, total C loads are larger for salt marsh wetlands due to their greater aerial coverage. The entire loss of above ground C (~7.0·109 g), was offset by salt marsh expansion (2.0·109 g) and mangrove expansion (5.6·109 g) over the study period. Concurrently, the net loss in salt marsh coverage led to a loss in below ground C accumulation capacity of 2.0·109 g/yr, whereas the net expansion of mangrove wetlands led to an added below ground C accumulation capacity of 0.4·109 g/yr. Biomarker data show that neutral carbohydrates and lignin contributed 30-70% and 10-40% of total C, respectively, in plant litter and surface sediments. Sharp declines of carbohydrate yields with depth occur parallel to increases in lignin degradation ratios, indicating substantial decomposition of both the polysaccharide and lignin components of litter detritus. Further, biomarker data suggest that litter chemistry is the primary control of C preservation in these wetland ecosystems. This study shows that shifts in plant composition influence C sequestration potential from landscape to molecular levels.

  9. TYPES OF SALT MARSH EDGE AND EXPORT OF TROPHIC ENERGY FROM MARSHES TO DEEPER HABITATS

    EPA Science Inventory

    We quantified nekton and estimated trophic export at salt marshes with both erosional and depositional edges at the Goodwin Islands (York River, Virginia, USA). At depositional-edge marshes, we examined trophic flows through quantitative sampling with 1.75 m2 drop rings, and thro...

  10. Assessing the Wildlife Habitat Value of New England Salt Marshes: I. Model and Application

    EPA Science Inventory

    We developed an assessment model to quantify the wildlife habitat value of New England salt marshes based on marsh characteristics and the presence of habitat types that influence habitat use by terrestrial wildlife. Applying the model to12 salt marshes located in Narragansett B...

  11. Free-living spirochetes from Cape Cod microbial mats detected by electron microscopy

    NASA Technical Reports Server (NTRS)

    Teal, T. H.; Chapman, M.; Guillemette, T.; Margulis, L.

    1996-01-01

    Spirochetes from microbial mats and anaerobic mud samples collected in salt marshes were studied by light microscopy, whole mount and thin section transmission electron microscopy. Enriched in cellobiose-rifampin medium, selective for Spirochaeta bajacaliforniensis, seven distinguishable spirochete morphotypes were observed. Their diameters ranged from 0.17 micron to > 0.45 micron. Six of these morphotypes came from southwest Cape Cod, Massachusetts: five from Microcoleus-dominated mat samples collected at Sippewissett salt marsh and one from anoxic mud collected at School Street salt marsh (on the east side of Eel Pond). The seventh morphotype was enriched from anoxic mud sampled from the north central Cape Cod, at the Sandy Neck salt marsh. Five of these morphotypes are similar or identical to previously described spirochetes (Leptospira, Spirochaeta halophila, Spirochaeta bajacaliforniensis, Spirosymplokos deltaeiberi and Treponema), whereas the other two have unique features that suggest they have not been previously described. One of the morphotypes resembles Spirosymplokos deltaeiberi (the largest free-living spirochete described), in its large variable diameter (0.4-3.0 microns), cytoplasmic granules, and spherical (round) bodies with composite structure. This resemblance permits its tentative identification as a Sippewissett strain of Spirosymplokos deltaeiberi. Microbial mats samples collected in sterile Petri dishes and stored dry for more than four years yielded many organisms upon rewetting, including small unidentified spirochetes in at least 4 out of 100 enrichments.

  12. The ecology of intertidal oyster reefs of the South Atlantic Coast: A community profile

    USGS Publications Warehouse

    Bahr, Leonard M.; Lanier, William P.

    1981-01-01

    The functional role of the intertidal oyster reef community in the southeastern Atlantic coastal zone is described. This description is based on a compilation of published data, as well as some unpublished information presented as hypotheses. The profile is organized in a hierarchical manner, such that relevant details of reef oyster biology (autecology) are presented, followed by a description of the reef community level of organization. Then the reef community is described as a subsystem of the coastal marsh-ecosystem (synecoloqy). This information is also synthesized in a series of nested conceptual models of oyster reefs at the regional level, the drainage basin level, and the individual reef level. The final chapter includes a summary overview and a section on management implications and guidelines. Intertidal oyster reefs are relatively persistent features of the salt marsh estuarine ecosystem in the southeastern Atlantic coastal zone. The average areal extent of the oyster reef subsystem in this larger ecosystem is relatively small (about 0.05%). This proportion does not reflect, however, the functional importance of the reef subsystem in stablizing the marsh, providing food for estuarine consumers, mineralizing organic matter, and providing firm substrates in this otherwise soft environment.

  13. Coastwide Reference Monitoring System (CRMS) Vegetation Volume Index: An assessment tool for marsh habitat focused on the three-dimensional structure at CRMS vegetation monitoring stations

    USGS Publications Warehouse

    Wood, William B.; Visser, Jenneke M.; Piazza, Sarai C.; Sharp, Leigh A.; Hundy, Laura C.; McGinnis, Tommy E.

    2015-12-04

    The VV and VVI will be used to establish trends, to make comparisons, and to evaluate restoration projects. Assessments that rely on the VVI will be included in appropriate Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA) project reports and analyses. Implementation of the VVI will give coastal managers a new tool to design, implement, and monitor coastal restoration projects. A yearly trajectory of site, project, basin, and coastwide VVI will be posted on the CRMS Web site as data are collected. The primary purpose of the tool is to assess CWPPRA restoration project effectiveness, but it will also be useful in identifying areas in need of restoration and in coastwide vegetation assessments.

  14. Data-driven modelling of morphological evolution in salt marshes: The role of morphometric system status indices exploiting high resolution spatial datasets

    NASA Astrophysics Data System (ADS)

    Evans, Ben; Moeller, Iris; Smith, Geoff; Spencer, Tom

    2017-04-01

    Saltmarshes provide valuable ecosystem services and are protected. Nevertheless they are generally thought to be declining in extent in North West Europe and beyond. The drivers of this decline and its variability are complex and inadequately described. When considering management for future ecosystem service provision it is important to understand why, where, and to what extent areal decline is likely to occur. Physically-based morphological modelling of fine-sediment systems is in its infancy. The models and necessary expertise and facilities to run and validate them are rarely directly accessible to practitioners. This paper uses an accessible and easily applied data-driven modelling approach for the quantitative estimation of current marsh system status and likely future marsh development. Central to this approach are monitoring datasets providing high resolution spatial data and the recognition that antecedent morphology exerts a principal control on future landform change (morphodynamic feedback). Further, current morphology can also be regarded as an integrated response of the intertidal system to the process environment . It may also, therefore, represent proxy information on historical conditions beyond the period of observational records. Novel methods are developed to extract quantitative morphological information from aerial photographic, LiDAR and satellite datasets. Morphometric indices are derived relating to the functional configuration of landform units that go beyond previous efforts and basic description of extent. The incorporation of morphometric indices derived from existing monitoring datasets is shown to improve the performance of statistical models for predicting salt marsh evolution but wider applications and benefits are expected. The indices are useful landscape descriptors when assessing system status and may provide relatively robust measures for comparison against historical datasets. They are also valuable metrics when considering how the landscape delivers ecosystem services and are essential for the testing and validation of morphological models of salt marshes and other systems.

  15. Carbon Dioxide Emissions Associated with the Restoration of a Tidal Salt Marsh in Boston, MA

    NASA Astrophysics Data System (ADS)

    Bulpett, K.; Chen, R. F.

    2016-02-01

    Decades of land alterations had led to the encroachment of the invasive Phragmites australis in the Neponset River salt marshes in Boston, Massachusetts. An 11 acre area on the west bank of the Neponset River had been underlain by dredge spoil and was several feet higher in elevation than surrounding marsh; contributing to the domination of Phragmites which occurred at high enough densities to virtually exclude native vegetation species and posed as an ecological threat to the remaining marshlands. In 2005, restoration of this section involved excavating approximately 46,700 cubic yards of dredged materials; effectively lowering the marsh platform by 1.5 feet to reestablish tidal flushing. The removed materials were relocated to an area deemed unlikely for future restoration efforts on the northern portion of the site, containing relatively high elevations from previous dredge spoil deposits and dense strands of Phragmites. The mitigation has been considered successful as seawater inundation has promoted the replacement of the Phragmites with native Spartina alterniflora. The excavation and relocation of dredge materials exposed previously buried marsh sediments to the atmosphere. Our research study focuses on determining how much carbon dioxide (CO2) may have been released due to the disturbance of this sequestered carbon. Ten years after the restoration, in 2015, direct measurements of CO2 fluxes from the soils in the remediated site, an unrestored area, and the dredge spoils reveal differing CO2 emission rates between the three sites, measuring at 1.54 ± 0.70 μmol/m2/s, 5.48 ± 2.68 μmol/m2/s, 9.57 ± 2.09 μmol/m2/s respectively. Our measurements suggest that the restoration has resulted in a significant release of previously sequestered carbon to the atmosphere. Estimations of potential emissions and avoided emissions resulting from coastal restoration projects are necessary in evaluating mitigation policies and practices and managing conservation efforts of these essential ecosystems.

  16. Oyster resource zones of the Barataria and Terrebonne estuaries of Louisiana

    USGS Publications Warehouse

    Melancon, E.; Soniat, T.; Cheramie, V.; Dugas, R.; Barras, J.; Lagarde, M.

    1998-01-01

    A 1:100,000 scale map delineating the subtidal oyster resource zones within the Barataria and Terrebonne estuaries was developed. Strategies to accomplish the task included interviews with Louisiana oystermen and state biologists to develop a draft map, field sampling to document oyster (Crassostrea virginica), Dermo (Perkinsus marinus), and oyster drill (Stramonita haemastoma) abundances, use of historical salinity data to aid in map verification, and public meetings to allow comment on a draft before final map preparation. Four oyster resource zones were delineated on the final map: a dry zone where subtidal oysters may be found when salinities increase, a wet zone where subtidal oysters may be found when salinities are suppressed, a wet-dry zone where subtidal oysters may be consistently found due to favorable salinities, and a high-salinity zone where natural oyster populations are predominantly found in intertidal and shallow waters. The dry zone is largely coincident with the brackish-marsh habitat, with some intermediate-type marsh. The wet-dry zone is found at the interface of the brackish and saline marshes, but extends further seaward than up-estuary. The wet zone and the high salinity zones are areas of mostly open water fringed by salt marshes. The dry zone encompasses 91,775 hectares, of which 48,788 hectares are water (53%). The wet zone encompasses 83,525 hectares, of which 66,958 hectares are water (80%). The wet-dry zone encompasses 171,893 hectares, of which 104,733 hectares are water (61%). The high salinity zone encompasses 125,705 hectares, of which 113,369 hectares are water (90%). There is a clear trend of increasing water habitat in the four zones over the past 30 years, and oysters are now cultivated on bottoms that were once marsh. The map should be useful in managing the effects upon oysters of freshwater diversions into the estuaries. It provides a pre-diversion record of the location of oyster resource zones and should prove helpful in the seaward relocation of oysters leases.

  17. The role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of Moreton Bay, Queensland, Australia

    USGS Publications Warehouse

    Lovelock, Catherine E.; Bennion, Vicki; Grinham, Alistair; Cahoon, Donald R.

    2011-01-01

    Increases in the elevation of the soil surfaces of mangroves and salt marshes are key to the maintenance of these habitats with accelerating sea level rise. Understanding the processes that give rise to increases in soil surface elevation provides science for management of landscapes for sustainable coastal wetlands. Here, we tested whether the soil surface elevation of mangroves and salt marshes in Moreton Bay is keeping up with local rates of sea level rise (2.358 mm y-1) and whether accretion on the soil surface was the most important process for keeping up with sea level rise. We found variability in surface elevation gains, with sandy areas in the eastern bay having the highest surface elevation gains in both mangrove and salt marsh (5.9 and 1.9 mm y-1) whereas in the muddier western bay rates of surface elevation gain were lower (1.4 and -0.3 mm y-1 in mangrove and salt marsh, respectively). Both sides of the bay had similar rates of surface accretion (~7–9 mm y-1 in the mangrove and 1–3 mm y-1 in the salt marsh), but mangrove soils in the western bay were subsiding at a rate of approximately 8 mm y-1, possibly due to compaction of organic sediments. Over the study surface elevation increments were sensitive to position in the intertidal zone (higher when lower in the intertidal) and also to variation in mean sea level (higher at high sea level). Although surface accretion was the most important process for keeping up with sea level rise in the eastern bay, subsidence largely negated gains made through surface accretion in the western bay indicating a high vulnerability to sea level rise in these forests.

  18. Reconstructing Late Holocene Relative Sea-level Changes on the Gulf Coast of Florida

    NASA Astrophysics Data System (ADS)

    Gerlach, M. J.; Engelhart, S. E.; Kemp, A.; Moyer, R. P.; Smoak, J. M.; Bernhardt, C. E.

    2015-12-01

    Little is known about late Holocene relative sea-level (RSL) along the Gulf Coast of Florida. A RSL reconstruction from this region is needed to fill a spatial gap in sea-level records which can be used to support coastal management, contribute geologic data for Earth-Ice models estimating late Holocene land-level change and serve as the basis for which future projections of sea-level rise must be superimposed. Further, this dataset is crucial to understanding the presence/absence and non-synchronous timing of small sea-level oscillations (e.g. rise at ~ 1000 A.D.; fall at ~ 1400 A.D.) during the past 2000 years on the Atlantic and Gulf Coasts of the United States that may be linked to climate anomalies. We present the results of a high-resolution RSL reconstruction based on the sediment record of two salt marshes on the eastern margin of the Gulf of Mexico. Two ~1.3m cores primarily composed of Juncus roemeranius peat reveal RSL changes over the past ~2000 years in the southern end of Tampa Bay and in Charlotte Harbor, Florida. Two study sites were used to isolate localized factors affecting RSL at either location. Lithostratigraphic analysis at both sites identifies a transition from sandy-silt layers into salt-marsh peat at the bottom of each core. The two records show continuous accumulation of salt-marsh peat with Juncus roemeranius macrofossils and intermittent sand horizons likely reflecting inundation events. We used vertically zoned assemblages of modern foraminifera to assign the indicative meaning. The high marsh is dominated by Ammoastuta inepta, Haplophragmoides wilberti, and Arenoparella mexicana, with low marsh and tidal flats identified by Ammobaculites spp. and Miliammina fusca. Chronologies for these study sites were established using AMS radiocarbon dating of in-situ plant macrofossils, Cs137, Pb210 and pollen and pollution chronohorizons. Our regional RSL curve will add additional data for constraining the mechanisms causing RSL change.

  19. Modeling the temporal dynamics of intertidal benthic infauna biomass with environmental factors: Impact assessment of land reclamation.

    PubMed

    Yang, Ye; Chui, Ting Fong May; Shen, Ping Ping; Yang, Yang; Gu, Ji Dong

    2018-03-15

    Anthropogenic activities such as land reclamation are threatening tidal marshes worldwide. This study's hypothesis is that land reclamation in a semi-enclosed bay alters the seasonal dynamics of intertidal benthic infauna, which is a key component in the tidal marsh ecosystem. Mai Po Tidal Marsh, Deep Bay, Pearl River Estuary, China was used as a case study to evaluate the hypothesis. Ecological models that simulate benthic biomass dynamics with governing environmental factors were developed, and various scenario experiments were conducted to evaluate the impact of reclamations. Environmental variables, selected from the areas of hydrodynamics, meteorology, and water quality based on correlation analysis, were used to generate Bayesian regression models for biomass prediction. The best-performing model, which considered average water age (i.e., a hydrodynamic indicator of estuarine circulation) in the previous month, salinity variation (i.e., standard deviation of salinity), and the total sunny period in the current month, captured well both seasonal and yearly trends in the benthic infauna observations from 2002 to 2008. This model was then used to simulate biomass dynamics with varying inputs of water age and salinity variation from coastal numerical models of different reclamation scenarios. The simulation results suggest that the reclamation in 2007 decreased the spatial and annual average benthic infauna biomass in the tidal marsh by 20%, which agreed with the 28% biomass decrease recorded by field survey. The range of biomass seasonal variation also decreased significantly from 2.1 to 230.5g/m 2 (without any reclamation) to 1.2 to 131.1g/m 2 (after the 2007 reclamation), which further demonstrates the substantial ecological impact of reclamation. The ecological model developed in this study could simulate seasonal biomass dynamics and evaluate the ecological impact of reclamation projects. It can therefore be applied to evaluate the ecological impact of coastal engineering projects for tidal marsh management, conservation, and restoration. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Salt marsh dieback in coastal Louisiana: survey of plant and soil conditions in Barataria and Terrebonne basins, June 2000-September 2001

    USGS Publications Warehouse

    McKee, Karen L.; Mendelssohn, Irving A.; Materne, Michael D.

    2006-01-01

    Sudden and extensive dieback of the perennial marsh grass, Spartina alterniflora Loisel (smooth cordgrass), which dominates regularly flooded salt marshes along the Gulf of Mexico and Atlantic coastlines, occurred in the coastal zone of Louisiana. The objectives of this study were to assess soil and plant conditions in dieback areas of the Barataria-Terrebonne estuarine system as well as vegetative recovery during and after this dieback event. Multiple dieback sites were examined along 100 km of shoreline from the Atchafalaya River to the Mississippi River during the period from June 2000 through September 2001. The species primarily affected was S. alterniflora; sympatric species such as Avicennia germinans (L.) Stearn (black mangrove) and Juncus roemerianus Scheele (needlegrass rush) showed no visible signs of stress. The pattern of marsh dieback was distinctive with greatest mortality in the marsh interior, suggesting a correlation with local patterns of soil chemistry and/or hydrology. Little or no expansion of dieback occurred subsequent to the initial event, and areas with 50 percent or less mortality in the fall of 2000 had completely recovered by April 2001. Recovery was slower in interior marshes with 90 percent or greater mortality initially. However, regenerating plants in dieback areas showing some recovery were robust, and reproductive output was high, indicating that the causative agent was no longer present and that post-dieback soil conditions were actually promoting plant growth. Stands of other species within or near some dieback sites remained largely unchanged or expanded (A. germinans) into the dead salt marsh. The cause of the dieback is currently unknown. Biotic agents and excessive soil waterlogging/high sulfide were ruled out as primary causes of this acute event, although they could have contributed to overall plant stress and/or interacted with the primary agent to cause plant mortality. Our observations over the 15 month study specifically do not support the contention that dieback was caused by excessive grazing by Littoraria irrorata (marsh periwinkle). Instead, the data show that snails were responding to plant mortality and played an important role in rapid degradation of dead material in some areas. The dieback event was coincident with an extreme drought, low river discharge, and low sea level. These conditions could have caused plant mortality by directly decreasing water availability, increasing salinity, and/or causing oxidation and acidification of soils. The latter scenario was supported by findings of higher pyrite and acid-extractable aluminum and iron, higher acidification potential of dieback soils, and higher concentrations of aluminum and iron in dieback plant tissues (indicating uptake of potentially toxic metals) when compared to reference marshes showing no dieback. The implication of these findings is that periodic weather extremes may play a greater role in shaping coastal plant communities than has previously been recognized. Although such events may not be controlled directly, the resilience and recovery of the system may be altered by management. Such considerations will become increasingly important as global climate changes and human pressures in the coastal zone grow.

  1. Overestimation of marsh vulnerability to sea level rise

    USGS Publications Warehouse

    Kirwan, Matthew L.; Temmerman, Stijn; Skeehan, Emily E.; Guntenspergen, Glenn R.; Fagherazzi, Sergio

    2016-01-01

    Coastal marshes are considered to be among the most valuable and vulnerable ecosystems on Earth, where the imminent loss of ecosystem services is a feared consequence of sea level rise. However, we show with a meta-analysis that global measurements of marsh elevation change indicate that marshes are generally building at rates similar to or exceeding historical sea level rise, and that process-based models predict survival under a wide range of future sea level scenarios. We argue that marsh vulnerability tends to be overstated because assessment methods often fail to consider biophysical feedback processes known to accelerate soil building with sea level rise, and the potential for marshes to migrate inland.

  2. Sea level driven marsh expansion in a coupled model of marsh erosion and migration

    USGS Publications Warehouse

    Kirwan, Matthew L.; Walters, David C.; Reay, William G.; Carr, Joel

    2016-01-01

    Coastal wetlands are among the most valuable ecosystems on Earth, where ecosystem services such as flood protection depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here we propose a simple model of marsh migration into adjacent uplands and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how ecosystem connectivity influences marsh size and response to sea level rise. We find that marsh loss is nearly inevitable where topographic and anthropogenic barriers limit migration. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. This behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise and emphasizes the disparity between coastal response to climate change with and without human intervention.

  3. Sediment transport-based metrics of wetland stability

    USGS Publications Warehouse

    Ganju, Neil K.; Kirwan, Matthew L.; Dickhudt, Patrick J.; Guntenspergen, Glenn R.; Cahoon, Donald R.; Kroeger, Kevin D.

    2015-01-01

    Despite the importance of sediment availability on wetland stability, vulnerability assessments seldom consider spatiotemporal variability of sediment transport. Models predict that the maximum rate of sea level rise a marsh can survive is proportional to suspended sediment concentration (SSC) and accretion. In contrast, we find that SSC and accretion are higher in an unstable marsh than in an adjacent stable marsh, suggesting that these metrics cannot describe wetland vulnerability. Therefore, we propose the flood/ebb SSC differential and organic-inorganic suspended sediment ratio as better vulnerability metrics. The unstable marsh favors sediment export (18 mg L−1 higher on ebb tides), while the stable marsh imports sediment (12 mg L−1 higher on flood tides). The organic-inorganic SSC ratio is 84% higher in the unstable marsh, and stable isotopes indicate a source consistent with marsh-derived material. These simple metrics scale with sediment fluxes, integrate spatiotemporal variability, and indicate sediment sources.

  4. Hurricane Influences on Vegetation Community Change in Coastal Louisiana

    USGS Publications Warehouse

    Steyer, Gregory D.; Cretini, Kari Foster; Piazza, Sarai C.; Sharp, Leigh A.; Snedden, Gregg A.; Sapkota, Sijan

    2010-01-01

    The impacts of Hurricanes Katrina and Rita in 2005 on wetland vegetation were investigated in Louisiana coastal marshes. Vegetation cover, pore-water salinity, and nutrients data from 100 marsh sites covering the entire Louisiana coast were sampled for two consecutive growing seasons after the storms. A mixed-model nested ANOVA with Tukey's HSD test for post-ANOVA multiple comparisons was used to analyze the data. Significantly (p<0.05) lower vegetation cover was observed within brackish and fresh marshes in the west as compared to the east and central regions throughout 2006, but considerable increase in vegetation cover was noticed in fall 2007 data. Marshes in the west were stressed by prolonged saltwater logging and increased sulfide content. High salinity levels persisted throughout the study period for all marsh types, especially in the west. The marshes of coastal Louisiana are still recovering after the hurricanes; however, changes in the species composition have increased in these marshes.

  5. Marshes on the Move: Testing effects of seawater intrusion on vegetation communities of the salt marsh-upland ecotone

    EPA Science Inventory

    The Northeastern United States is a hotspot for sea level rise (SLR), subjecting coastal salt marshes to erosive loss, shifts in vegetation communities, and altered biogeochemistry due to seawater intrusion. Salt marsh plant community zonation is driven by tradeoffs in stress to...

  6. Marsh accretion in Oregon estuaries using the marker horizon method and implications of sea level rise

    EPA Science Inventory

    Sea level rise and the ability of marshes to keep up with this rise have been extensively studied on the Atlantic and Gulf coasts of the US; however, there is limited information available for marshes in the Pacific Northwest. Our research focuses on measuring marsh sediment acc...

  7. Environmental threats to tidal-marsh vertebrates of the San Francisco Bay estuary

    USGS Publications Warehouse

    Takekawa, John Y.; Woo, I.; Spautz, Hildie; Nur, N.; Letitia, Grenier J.; Malamud-Roam, K.; Cully, Nordby J.; Cohen, A.N.; Malamud-Roam, F.; Wainwright-De La Cruz, S.E.; ,

    2006-01-01

    The San Francisco Bay and delta system comprises the largest estuary along the Pacific Coast of the Americas and the largest remaining area for tidal-marsh vertebrates, yet tidal marshes have been dramatically altered since the middle of the 19th century. Although recent efforts to restore ecological functions are notable, numerous threats to both endemic and widespread marsh organisms, including habitat loss, are still present. The historic extent of wetlands in the estuary included 2,200 km2 of tidal marshes, of which only 21% remain, but these tidal marshes comprise >90% of all remaining tidal marshes in California. In this paper, we present the most prominent environmental threats to tidal-marsh vertebrates including habitat loss (fragmentation, reductions in available sediment, and sea-level rise), habitat deterioration (contaminants, water quality, and human disturbance), and competitive interactions (invasive species, predation, mosquito and other vector control, and disease). We discuss these threats in light of the hundreds of proposed and ongoing projects to restore wetlands in the estuary and suggest research needs to support future decisions on restoration planning.

  8. Vegetation Loss Decreases Salt Marsh Denitrification Capacity: Implications for Marsh Erosion.

    PubMed

    Hinshaw, Sarra E; Tatariw, Corianne; Flournoy, Nikaela; Kleinhuizen, Alice; Taylor, Caitlin; Sobecky, Patricia A; Mortazavi, Behzad

    2017-08-01

    Salt marshes play a key role in removing excess anthropogenic nitrogen (N) loads to nearshore marine ecosystems through sediment microbial processes such as denitrification. However, in the Gulf of Mexico, the loss of marsh vegetation because of human-driven disturbances such as sea level rise and oil spills can potentially reduce marsh capacity for N removal. To investigate the effect of vegetation loss on ecosystem N removal, we contrasted denitrification capacity in marsh and subtidal sediments impacted by the Deepwater Horizon oil spill using a combination of 29 N 2 and 30 N 2 production (isotope pairing), denitrification potential measurements (acetylene block), and quantitative polymerase chain reaction (qPCR) of functional genes in the denitrification pathway. We found that, on average, denitrification capacity was 4 times higher in vegetated sediments because of a combination of enhanced nitrification and higher organic carbon availability. The abundance of nirS-type denitrifers indicated that marsh vegetation regulates the activity, rather than the abundance, of denitrifier communities. We estimated that marsh sediments remove an average of 3.6 t N km -2 y -1 compared to 0.9 t N km -2 y -1 in unvegetated sediments. Overall, our findings indicate that marsh loss results in a substantial loss of N removal capacity in coastal ecosystems.

  9. Surface water and groundwater interactions in coastal wetlands

    NASA Astrophysics Data System (ADS)

    Li, Ling; Xin, Pei; Shen, Chengji

    2014-05-01

    Salt marshes are an important wetland system in the upper intertidal zone, interfacing the land and coastal water. Dominated by salt-tolerant plants, these wetlands provide essential eco-environmental services for maintaining coastal biodiversity. They also act as sediment traps and help stabilize the coastline. While they play an active role in moderating greenhouse gas emissions, these wetlands have become increasingly vulnerable to the impact of global climate change. Salt marshes are a complex hydrological system characterized by strong, dynamic interactions between surface water and groundwater, which underpin the wetland's eco-functionality. Bordered with coastal water, the marsh system undergoes cycles of inundation and exposure driven by the tide. This leads to dynamic, complex pore-water flow and solute transport in the marsh soil. Pore-water circulations occur at different spatial and temporal scales with strong link to the marsh topography. These circulations control solute transport between the marsh soil and the tidal creek, and ultimately affect the overall nutrient exchange between the marsh and coastal water. The pore-water flows also dictate the soil aeration conditions, which in turn affect marsh plant growth. This talk presents results and findings from recent numerical and experimental studies, focusing on the pore-water flow behaviour in the marsh soil under the influence of tides and density-gradients.

  10. Differentiating climatic and successional influences on long-term development of a marsh

    USGS Publications Warehouse

    Singer, Darren K.; Jackson, Stephen T.; Madsen, Barbara J.; Wilcox, Douglas A.

    1996-01-01

    Comparison of long—term records of local wetland vegetation dynamics with regional, climate—forced terrestrial vegetation changes can be used to differentiate the rates and effects of autogenic successional processes and allogenic environmental change on wetland vegetation dynamics. We studied Holocene plant macrofossil and pollen sequences from Portage Marsh, a shallow, 18—ha marsh in northeastern Indiana. Between 10 000 and 5700 yr BP the basin was occupied by a shallow, open lake, while upland vegetation consisted of mesic forests of Pinus, Quercus, Ulmus, and Carya. At 5700 yr BP the open lake was replaced rapidly by a shallow marsh, while simultaneously Quercus savanna developed on the surrounding uplands. The marsh was characterized by periodic drawdowns, and the uplands by periodic fires. Species composition of the marsh underwent further changes between 3000 and 2000 yr BP. Upland pollen spectra at Portage Marsh and other sites in the region shifted towards more mesic vegetation during that period. The consistency and temporal correspondence between the changes in upland vegetation and marsh vegetation indicate that the major vegetational changes in the marsh during the Holocene resulted from hydrologic changes forced by regional climate change. Progressive shallowing of the basin by autogenic accumulation of organic sediment constrained vegetational responses to climate change but did not serve as the direct mechanism of change.

  11. Sediment quality assessment in tidal salt marshes in northern California, USA: An evaluation of multiple lines of evidence approach

    USGS Publications Warehouse

    Hwang, Hyun-Min; Carr, Robert S.; Cherr, Gary N.; Green, Peter G.; Grosholz, Edwin G.; Judah, Linda; Morgan, Steven G.; Ogle, Scott; Rashbrook, Vanessa K.; Rose, Wendy L.; Teh, Swee J.; Vines, Carol A.; Anderson, Susan L.

    2013-01-01

    The objective of this study was to evaluate the efficacy of integrating a traditional sediment quality triad approach with selected sublethal chronic indicators in resident species in assessing sediment quality in four salt marshes in northern California, USA. These included the highly contaminated (Stege Marsh) and relatively clean (China Camp) marshes in San Francisco Bay and two reference marshes in Tomales Bay. Toxicity potential of contaminants and benthic macroinvertebrate survey showed significant differences between contaminated and reference marshes. Sublethal responses (e.g., apoptotic DNA fragmentation, lipid accumulation, and glycogen depletion) in livers of longjaw mudsucker (Gillichthys mirabilis) and embryo abnormality in lined shore crab (Pachygrapsus crassipes) also clearly distinguished contaminated and reference marshes, while other responses (e.g., cytochrome P450, metallothionein) did not. This study demonstrates that additional chronic sublethal responses in resident species under field exposure conditions can be readily combined with sediment quality triads for an expanded multiple lines of evidence approach. This confirmatory step may be warranted in environments like salt marshes in which natural variables may affect interpretation of toxicity test data. Qualitative and quantitative integration of the portfolio of responses in resident species and traditional approach can support a more comprehensive and informative sediment quality assessment in salt marshes and possibly other habitat types as well.

  12. New England salt marsh pools: A quantitative analysis of geomorphic and geographic features

    USGS Publications Warehouse

    Adamowicz, S.C.; Roman, C.T.

    2005-01-01

    New England salt marsh pools provide important wildlife habitat and are the object of on-going salt marsh restoration projects; however, they have not been quantified in terms of their basic geomorphic and geographic traits. An examination of 32 ditched and unditched salt marshes from the Connecticut shore of Long Island Sound to southern Maine, USA, revealed that pools from ditched and unditched marshes had similar average sizes of about 200 m2, averaged 29 cm in depth, and were located about 11 m from the nearest tidal flow. Unditched marshes had 3 times the density (13 pools/ha), 2.5 times the pool coverage (83 m pool/km transect), and 4 times the total pool surface area per hectare (913 m2 pool/ha salt marsh) of ditched sites. Linear regression analysis demonstrated that an increasing density of ditches (m ditch/ha salt marsh) was negatively correlated with pool density and total pool surface area per hectare. Creek density was positively correlated with these variables. Thus, it was not the mere presence of drainage channels that were associated with low numbers of pools, but their type (ditch versus creek) and abundance. Tidal range was not correlated with pool density or total pool surface area, while marsh latitude had only a weak relationship to total pool surface area per hectare. Pools should be incorporated into salt marsh restoration planning, and the parameters quantified here may be used as initial design targets.

  13. Revisiting salt marsh resilience to sea level rise: Are ponds responsible for permanent land loss?

    NASA Astrophysics Data System (ADS)

    Mariotti, G.

    2016-12-01

    Ponds are un-vegetated rounded depressions commonly present on marsh platforms. The role of ponds on the long-term morphological evolution of tidal marshes is unclear - at times ponds expand but eventually recover the marsh platform, at other times ponds never recover and lead to permanent marsh loss. Existing field observations indicate that episodic disturbances of the marsh vegetation cause the formation of small (1-10 m) isolated ponds, even if the vegetated platform keeps pace with Relative Sea Level Rise (RSLR), and that isolated ponds tend to deepen and enlarge until they eventually connect to the channel network. Here I implement a simple model to study the vertical and planform evolution of a single connected pond. A newly connected pond recovers if its bed lies above the limit for marsh plant growth, or if the inorganic deposition rate is larger than the RSLR rate. A pond that cannot accrete faster than RSLR will deepen and enlarge, eventually entering a runaway erosion by wave edge retreat. A large tidal range, a large sediment supply, and a low rate of RSLR favor pond recovery. The model suggests that inorganic sediment deposition alone controls pond recovery, even in marshes where organic matter dominates accretion of the vegetated platform. As such, halting permanent marsh loss by pond collapse requires to increase inorganic sediment deposition. Because pond collapse is possible even if the vegetated platform keeps pace with RSLR, I conclude that marsh resilience to RSLR is less than previously quantified.

  14. Biosphere 2's Marsh Biome

    NASA Technical Reports Server (NTRS)

    Molnar, Jennifer; Goodridge, Kelven

    1997-01-01

    The Marsh Biome, which was modeled after the mangroves and marshes of southwest Florida, has an area of 441.2 sq m separated into three hydrologically independent sections: the Freshwater, Oligohaline and Salt Marshes. The divisions are made based on their salinity (approximately 0, 4, and 34 ppt. respectively), but they also contain different biological communities. The Freshwater and Oligohaline Marshes are mostly filled with various grasses and several trees, while the Salt Marsh houses regions of red, black, and white mangroves (Rhizophora mangle, Avicennia germinans, and Languncularia racemosa respectively). Overall, there are an estimated 80 species of plants within the biome. Water in the Salt Marsh follows a meandering stream from the algal turf scrubbers (apparatuses that clean the water of its nutrients and heavy metals while increasing dissolved oxygen levels) which have an outlet in the Salt Marsh section near sites 4 and 5 to the Fringing Red Mangrove section. The sections of the Salt Marsh are separated by walls of concrete with openings to allow the stream to flow through. Throughout this study, conducted through the months of June and July, many conditions within the biome remained fairly constant. The temperature was within a degree or two of 25 C, mostly depending on whether the sample site was in direct sunlight or shaded. The pH throughout the Salt Marsh was 8.0 +/- 0.2, and the lower salinity waters only dropped below this soon after rains. The water rdepth and dissolved oxygen varied, however, between sites.

  15. Radar and optical mapping of surge persistence and marsh dieback along the New Jersey Mid-Atlantic coast after Hurricane Sandy

    USGS Publications Warehouse

    Rangoonwala, Amina; Enwright, Nicholas M.; Ramsey, Elijah W.; Spruce, Joseph P.

    2016-01-01

    This study combined a radar-based time series of Hurricane Sandy surge and estimated persistence with optical sensor-based marsh condition change to assess potential causal linkages of surge persistence and marsh condition change along the New Jersey Atlantic Ocean coast. Results based on processed TerraSAR-X and COSMO-SkyMed synthetic aperture radar (SAR) images indicated that surge flooding persisted for 12 h past landfall in marshes from Great Bay to Great Egg Harbor Bay and up to 59 h after landfall in many back-barrier lagoon marshes. Marsh condition change (i.e. loss of green marsh vegetation) was assessed from optical satellite images (Satellite Pour l’Observation de la Terre and Moderate Resolution Imaging Spectroradiometer) collected before and after Hurricane Sandy. High change in condition often showed spatial correspondence, with high surge persistence in marsh surrounding the lagoon portion of Great Bay, while in contrast, low change and high persistence spatial correspondence dominated the interior marshes of the Great Bay and Great Egg Harbor Bay estuaries. Salinity measurements suggest that these areas were influenced by freshwater discharges after landfall possibly mitigating damage. Back-barrier marshes outside these regions exhibited mixed correspondences. In some cases, topographic features supporting longer surge persistence suggested that non-correspondence between radar and optical data-based results may be due to differential resilience; however, in many cases, reference information was lacking to determine a reason for non-correspondence.

  16. Modelling Watershed and Estuarine Controls on Salt Marsh Distributions

    NASA Astrophysics Data System (ADS)

    Yousefi Lalimi, F.; Marani, M.; Murray, A. B.; D'Alpaos, A.

    2017-12-01

    The formation and evolution of tidal platforms have been extensively studied through observations and models, describing landform dynamics as a result of the local interactions and feedbacks among hydrodynamics, vegetation, and sediment transport. However, existing work mainly focuses on individual marsh platforms and, possibly, their immediate surrounding, such that the influence and controls on marsh dynamics of inland areas (through fluvial inputs) and of exchanges with the ocean have not been comprehensively and simultaneously accounted for. Here, we develop and use a process-based model to evaluate the relative role of watershed, estuarine, and ocean controls on salt marsh accretionary and depositional/erosional dynamics and define how these factors interact to determine salt marsh resilience to environmental change at the whole-estuary scale. Our results, in line with previous work, show that no stable equilibrium exists for the erosional dynamics of the marsh/tidal flat boundary. In addition, we find that under some circumstances, vertical accretion/erosion dynamics can lead to transitions between salt marsh and tidal flat equilibrium states that occur much more rapidly than marsh/tidal flat boundary erosion or accretion could. We further define, in the multidimensional space of estuarine-scale morphodynamic forcings, the basins of attractions leading to marsh-dominated and tidal-flat-dominated estuaries. The relatively slow dynamics asymptotically leading to marsh- or tidal-flat- dominance in many cases suggest that estuaries are likely to be found, at any given time, in a transition state dictated by temporal variations in environmental forcings.

  17. Degradation and resilience in Louisiana salt marshes after the BP–Deepwater Horizon oil spill

    PubMed Central

    Silliman, Brian R.; van de Koppel, Johan; McCoy, Michael W.; Diller, Jessica; Kasozi, Gabriel N.; Earl, Kamala; Adams, Peter N.; Zimmerman, Andrew R.

    2012-01-01

    More than 2 y have passed since the BP–Deepwater Horizon oil spill in the Gulf of Mexico, yet we still have little understanding of its ecological impacts. Examining effects of this oil spill will generate much-needed insight into how shoreline habitats and the valuable ecological services they provide (e.g., shoreline protection) are affected by and recover from large-scale disturbance. Here we report on not only rapid salt-marsh recovery (high resilience) but also permanent marsh area loss after the BP–Deepwater Horizon oil spill. Field observations, experimental manipulations, and wave-propagation modeling reveal that (i) oil coverage was primarily concentrated on the seaward edge of marshes; (ii) there were thresholds of oil coverage that were associated with severity of salt-marsh damage, with heavy oiling leading to plant mortality; (iii) oil-driven plant death on the edges of these marshes more than doubled rates of shoreline erosion, further driving marsh platform loss that is likely to be permanent; and (iv) after 18 mo, marsh grasses have largely recovered into previously oiled, noneroded areas, and the elevated shoreline retreat rates observed at oiled sites have decreased to levels at reference marsh sites. This paper highlights that heavy oil coverage on the shorelines of Louisiana marshes, already experiencing elevated retreat because of intense human activities, induced a geomorphic feedback that amplified this erosion and thereby set limits to the recovery of otherwise resilient vegetation. It thus warns of the enhanced vulnerability of already degraded marshes to heavy oil coverage and provides a clear example of how multiple human-induced stressors can interact to hasten ecosystem decline. PMID:22733752

  18. Balanced sediment fluxes in southern California’s Mediterranean-climate zone salt marshes

    USGS Publications Warehouse

    Rosencranz, Jordan A.; Ganju, Neil K.; Ambrose, Richard F.; Brosnahan, Sandra M.; Dickhudt, Patrick J.; Guntenspergen, Glenn R.; MacDonald, Glen M.; Takekawa, John Y.; Thorne, Karen M.

    2016-01-01

    Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.

  19. Sea Level Driven Marsh Expansion in a Coupled Model of Marsh Erosion, Forest Retreat, and Human Impacts

    NASA Astrophysics Data System (ADS)

    Kirwan, M. L.; Walters, D. C.; Reay, W.; Carr, J.

    2016-12-01

    Salt marsh ecosystem services depend nonlinearly on wetland size and are threatened by sea level rise and coastal development. Here, we present a simple model of marsh migration into adjacent uplands, and couple it with existing models of seaward edge erosion and vertical soil accretion to explore how connectivity between adjacent ecosystems influences marsh size and response to sea level rise. We find that ecogeomorphic feedbacks tend to stabilize soil elevations relative to sea level rise so that changes in marsh size are determined mostly by the competition between ecological transitions at the upland boundary, and physical erosion at the seaward boundary. Salt marsh loss and natural flood protection is nearly inevitable under rapid sea level rise rates where topographic and anthropogenic barriers limit marsh migration into uplands. Where unconstrained by barriers, however, rates of marsh migration are much more sensitive to accelerated sea level rise than rates of edge erosion. Together, this behavior suggests a counterintuitive, natural tendency for marsh expansion with sea level rise, and emphasizes the disparity between coastal response to climate change with and without human intervention. Analysis of 19th century maps and modern photographs from the Chesapeake Bay region confirm that migration rates are more sensitive to sea level rise than erosion rate, and indicate that transgression has thus far allowed marshes to survive the fastest rates of relative sea level rise on the Atlantic Coast. This work suggests that the flux of organisms and sediment across adjacent ecosystems leads to an increase in system resilience that could not be inferred from studies that consider individual components of landscape change.

  20. Effects of Sea Level Rise and Coastal Marsh Transgression on Soil Organic Matter in a Chesapeake Bay Salt Marsh

    NASA Astrophysics Data System (ADS)

    Van Allen, R.; Schreiner, K. M.; Guntenspergen, G. R.

    2016-12-01

    Salt marsh, mangrove swamp, and seagrass bed ecosystems comprise a global carbon stock known as "blue carbon." While vegetated coastal ecosystems have a small global areal extent, their total carbon burial rates are comparable to global marine carbon burial rates. Under global climate change-induced sea level rise, the role of these systems in the global carbon cycle could change significantly. This study aims to develop a more complete view of how coastal marsh transgression into terrestrial upland environments impacts soil organic matter characteristics. A US Geological Survey study site in Blackwater National Wildlife Refuge on the eastern coast of Chesapeake Bay, Maryland was chosen for this study. This marsh has undergone transgression into adjacent upland forest as local relative sea level has risen, making it an ideal location to study the source and stability of organic matter underlying the shifting marsh-forest boundary. Peat cores and vegetation samples were collected from the study site in May 2015 and June 2016. Care was taken to sample marsh soils underlying a range of elevations and vegetation types from the intertidal zone through the transition to upland forest. Radiocarbon and lead-210 dating give age estimates for basal peat layers within the cores. Analysis of stable carbon isotopes in bulk soils in this site suggests a broad shift towards C4-dominated marsh vegetation. Finally, cupric oxide oxidation products of soil organic matter provide information about the changing molecular organic geochemistry of the marsh soils as sea level rises and the marsh transgresses. This represents a novel molecular-level study of the changing organic geochemistry of marsh soils with sea level rise and resulting vegetation changes.

  1. Comparison of Nitrogen Fixation Activity in Tall and Short Spartina alterniflora Salt Marsh Soils 1

    PubMed Central

    Hanson, Roger B.

    1977-01-01

    A comparison of the N2 fixers in the tall Spartina alterniflora and short S. alterniflora marsh soils was investigated. Zero-order kinetics and first-order kinetics of acetylene reduction were used to describe the activity of the N2 fixers in marsh soil slurries. It was found that the Vmax values were approximately 10 times greater for the N2 fixers in the tall Spartina than in the short Spartina marsh when raffinose was used as the energy source. In addition, the (Ks + Sn) values were approximately 4 to 15 times lower for the N2 fixers in the tall Spartina than in short Spartina marsh. First-order kinetics of nitrogen fixation for several substrates indicate that the N2 fixers in the tall Spartina marsh were two to seven times more active than those in the short Spartina marsh. Ammonium chloride (25 μg/ml) did not inhibit nitrogen fixation in the tall Spartina marsh, but there was a 50% inhibition in nitrogen fixation in the short Spartina marsh. On the other hand, sodium nitrate inhibited nitrogen fixation almost 100% at 25 μg/ml in both soil environments. Amino nitrogen (25 to 100 μg/ml) had little or no effect on nitrogen fixation. The results indicate that the N2 fixers in the tall Spartina marsh were physiologically more responsive to nutrient addition than those in the short Spartina marsh. This difference in the two populations may be related to the difference in daily tidal influence in the respective areas and thus provide another explanation for the enhanced S. alterniflora production in the creek bank soil system. PMID:16345213

  2. Mesoscale barrier estuary behaviour in response to sea-level rise, storms and sediment supply.

    NASA Astrophysics Data System (ADS)

    Hamilton, Christine; Kirby, Jason; Plater, Andrew; Lane, Timothy

    2017-04-01

    Future vulnerability and resilience of coastal landscapes, and their associated communities, infrastructure and nature conservation interests, is of increasing concern due to the combined effects of climate change and sea-level rise. The Suffolk coast, UK, characterised by gravel barrier beaches and a spit feature of international geomorphological interest, has changed dramatically. However, existing Holocene research in this respect is limited. Sediments preserved within the enclosed valleys and back-barrier wetlands of Suffolk provide an opportunity to improve understanding of the complex mesoscale (years-decades-centuries) behaviour of coastlines and their geomorphological response to changes in natural forcing. This research aims to reconstruct Holocene changes in coastline behaviour to develop reconstructions of coastal evolution relating to changes in relative sea level, sediment supply and storm incidence. Litho- and bio-stratigraphic analysis (sedimentology, particle size, and diatom analysis) has been undertaken on three marsh and wetland sites in a 5 km section between Walberswick and Dunwich. Though intra-site sediment variability is high, a consistent pattern of interbedded intertidal and freshwater units separated by transitional marsh deposits is seen at all sites. Diatom analysis from two sites (Westwood Marsh and Oldtown Marsh) indicates increased marine and brackish conditions across the organic-minerogenic transitions. The diatom assemblage from Great Dingle Hill, a more seaward site, is dominated by brackish species, with an increase in marine conditions across the main organic-minerogenic stratigraphic transition. Freshwater and salt tolerant species are minimal in this assemblage, indicating a constant saltwater input. The onset of peat deposition has been dated to 6950-6790 cal. BP at the base of the Westwood Marsh sequence. These results contrast with existing research from the Blyth estuary (5 km north) where peat deposition was dated to 7714-7479 cal. BP. Submitted radiocarbon analysis will provide further chronological constraint for the timing of the major coastal behavioural changes identified from the analysis. Combined, these results indicate that this section of the Suffolk coast has been subject to periodic opening and closing during the Holocene. Though currently unresolved, longshore sediment supply, high magnitude-low frequency storm events, sea-level change, and the position of offshore banks are likely causal mechanisms for these changes. These results will improve understanding of the long term (Holocene) natural signal of coastal change and are significant given that the regional Shoreline Management Plan has recommended managed realignment for this section of the Suffolk coast.

  3. Impact of Water Level on Carbon Sequestration at a Sub-tropical Peat Marsh

    NASA Astrophysics Data System (ADS)

    Sumner, D.; Hinkle, C.; Li, J.

    2012-12-01

    The impact of water level on sub-tropical peat marsh atmospheric/landscape carbon exchange was explored through eddy-covariance measurement of carbon dioxide and methane fluxes over a site at Blue Cypress Conservation Area in Florida. This site is vegetated with tall, dense sawgrass (Cladium jamaicense) and a thick accumulation of peat (over 3 m) suggesting a historically high primary productivity and carbon sequestration. Water managers are particularly interested in understanding how water-level controls can be directed to maintain topography through avoidance of excessive drought-induced oxidative losses of peat soil, as well as to minimize releases of greenhouse gases to the atmosphere. Comparison of net ecosystem productivity (NEP) during a wet year of continuous inundation and a drier year with a 9-month hydroperiod (NEP of 710 and 180 g C/m2/yr, respectively) suggests the positive impact of inundation on sequestration of carbon dioxide. These results are counter to previous research in short stature (1 m or less) sawgrass marshes in the Florida Everglades which indicate suppression of productivity during inundation. This seeming contradiction is probably best explained by the tall stature (over 2 m) of sawgrass at the study site in which inundation still does not cover a substantial fraction of the green leaves and the lower canopy is largely composed of brown and decaying leaves. Gross ecosystem productivity (GEP) was suppressed during the dry year (GEP = 1380 and 1030 g C/m2/yr for wet and dry years, respectively), probably as a consequence of canopy moisture stress. Respiration (R) was enhanced the year when water levels were farthest below land surface (R = 670 and 850 g C/m2/yr for wet and dry years, respectively) as a result of soil oxidation. GEP remained suppressed during the dry year even after re-flooding, probably because of relatively low photosynthetic leaf area that was the legacy of reduced canopy growth rates during the drought. Over a seven-month measurement period spanning a dry-to-inundated transition in the marsh, methane flux was negligible during non-inundated periods, but was substantial (averaging 80 g C/m2/yr) during wet periods. The results of this study suggest that water level is a critical control on atmospheric carbon exchanges at this peat marsh with implications for water management and strategic planning under potentially drier conditions that might occur in response to climate change.

  4. Impact of Water Level on Carbon Sequestration at a Sub-tropical Peat Marsh

    NASA Astrophysics Data System (ADS)

    Sumner, D.; Hinkle, C.; Graham, S.; Li, J.

    2013-12-01

    The impact of water level on sub-tropical peat marsh atmospheric/landscape carbon exchange was explored through eddy-covariance measurement of carbon dioxide and methane fluxes over a site at Blue Cypress Conservation Area in Florida. This site is vegetated with tall, dense sawgrass (Cladium jamaicense) and a thick accumulation of peat (over 3 m) suggesting a historically high primary productivity and carbon sequestration. Water managers are particularly interested in understanding how water-level controls can be directed to maintain topography through avoidance of excessive drought-induced oxidative losses of peat soil, as well as to minimize releases of greenhouse gases to the atmosphere. Comparison of net ecosystem productivity (NEP) during a wet year of continuous inundation and a drier year with a 9-month hydroperiod (NEP of 710 and 180 g C/m2/yr, respectively) suggests the positive impact of inundation on sequestration of carbon dioxide. These results are counter to previous research in short stature (1 m or less) sawgrass marshes in the Florida Everglades which indicate suppression of productivity during inundation. This seeming contradiction is probably best explained by the tall stature (over 2 m) of sawgrass at the study site in which inundation still does not cover a substantial fraction of the green leaves and the lower canopy is largely composed of brown and decaying leaves. Gross ecosystem productivity (GEP) was suppressed during the dry year (GEP = 1380 and 1030 g C/m2/yr for wet and dry years, respectively), probably as a consequence of canopy moisture stress. Respiration (R) was enhanced the year when water levels were farthest below land surface (R = 670 and 850 g C/m2/yr for wet and dry years, respectively) as a result of soil oxidation. GEP remained suppressed during the dry year even after re-flooding, probably because of relatively low photosynthetic leaf area that was the legacy of reduced canopy growth rates during the drought. Over a seven-month measurement period spanning a dry-to-inundated transition in the marsh, methane flux was negligible during non-inundated periods, but was substantial (averaging 80 g C/m2/yr) during wet periods. The results of this study suggest that water level is a critical control on atmospheric carbon exchanges at this peat marsh with implications for water management and strategic planning under potentially drier conditions that might occur in response to climate change.

  5. Expansive Tidal Marshes on the North American Eastern Seaboard: Relics of Colonial Deforestation?

    NASA Astrophysics Data System (ADS)

    Murray, A.; Kirwan, M.

    2013-12-01

    Experiments using a numerical model of tidal marsh ecomorphodynamic evolution suggest that changes in sediment supply (suspended sediment concentrations) reaching tidal marshes can play a role as strong as sea-level-rise rate in determining the extent and elevation of coastal wetlands. Testing a model-generated hypothesis, sediment coring and radiocarbon dating in the Plum Island Estuary marshes, Massachusetts, USA, suggested that marshes prograded rapidly and substantially following colonial deforestation (Kirwan et al., Geology, 2011). This controversial claim has been questioned, in part because historical maps from 1780 and 1830 show that the marsh had already attained most of its modern extent by that time--which is earlier than some of the of the radiocarbon mid-point dates (Priestas et al., Geology Forum, Dec. 2012). However, given the uncertainties in the radiocarbon dates, and in identifying the earliest marsh-derived layers in sediment cores, the maps and the dating are broadly consistent (Kirwan and Murray, Geology Forum, Dec. 2012). In addition, previous studies have shown that considerable land-use change had already occurred in this small coastal watershed by the late 17th Century, with local laws against tree cutting in place by 1660, and evidence for regional deforestation by 1700. Our field evidence, combined with the historical maps, indicates that this early colonial development lead to an expansion of marshes by approximately 50 percent within the studied area. Given the widespread and pervasive nature of subsequent land-use changes on the Eastern Seaboard from colonial through civil war periods, many of the currently expansive marshes on the East Coast may be relict. Numerical modeling suggests that when sediment concentrations fall below the values required to form a marsh, the marsh will be metastable, with vegetation feedbacks able to maintain the relict morphology and ecology, but susceptible to irreversible loss in response to disturbances. Thus, the field investigations in one location may have wide reaching implications for explaining and mitigating observed marsh degradation.

  6. Final report (2002-2004): Benthic macroinvertebrate communities of reconstructed freshwater tidal wetlands in the Anacostia River, Washington, D.C

    USGS Publications Warehouse

    Brittingham, K.D.; Hammerschlag, R.S.

    2006-01-01

    Considerable work has been conducted on the benthic communities of inland aquatic systems, but there remains a paucity of effort on freshwater tidal wetlands. This study characterized the benthic macroinvertebrate communities of recently reconstructed urban freshwater tidal wetlands along the Anacostia River in Washington, D.C. The focus of the study was on the two main areas of Kingman Marsh, which were reconstructed by the U.S. Army Corps of Engineers in 2000 using Anacostia dredge material. Populations from this 'new' marsh were compared to those of similarly reconstructed Kenilworth Marsh (1993) just one half mile upstream, the relic reference Dueling Creek Marsh in the upper Anacostia estuary and the outside reference Patuxent freshwater tidal marsh in an adjacent watershed. Benthic macro invertebrate organisms were collected using selected techniques for evaluation including the Ekman bottom grab sampler, sediment corer, D-net and Hester-Dendy sampler. Samples were collected at least seasonally from tidal channels, tidal mudflats, three vegetation/sediment zones (low, middle and high marsh), and pools over a 3-year period (late 2001-2004). The macroinvertebrate communities present at the marsh sites proved to be good indicators of disturbance and stress (Kingman Marsh), pollution, urban vs. rural location (Kenilworth and Patuxent), and similarities between reconstructed and remnant wetlands (Kenilworth and Dueling Creek). Macroinvertebrate density was significantly greater at Kingman Marsh than Kenilworth Marsh due to more numerous chironomids and oligochaetes. This may reflect an increase in unvegetated sediments at Kingman (even at elevations above natural mudflat) due to grazing pressure from over-abundant resident Canada geese. Unvegetated sediments yielded greater macroinvertebrate abundance but lower richness than vegetated marsh sites. Data collected from this study provides information on the extent that benthic macroinvertebrate communities can serve as indicators of the relative success of freshwater tidal marsh reconstruction.

  7. Parasitism and generation cycles in a salt-marsh planthopper

    Treesearch

    John D. Reeve; James T. Cronin; Donald R. Strong

    1994-01-01

    1. In warm climates many insects exhibit discrete generations, in the absence of obvious factors that could synchronize their age structure.It has been hypothesized that parasitoid wasps might be responsible for these oscillations in the host age structure, known as generation cycles. 2. We examine the role of the parasitoid Anagrus delicatus in the dynamics of the...

  8. Modeling storm and sea level rise impacts on marsh transgression

    NASA Astrophysics Data System (ADS)

    Carr, J. A.; Guntenspergen, G. R.; Kirwan, M. L.

    2016-12-01

    Coastal salt marsh systems provide critical ecosystem services, including key habitat and coastal protection. Both lateral extent, and vertical stability of salt marshes to sea level rise have been shown to be functions of both biotic, and abiotic drivers and feedbacks. As a result, the ecogeomorphic evolution of the system can exhibit strong non-linearities, discontinuities and thresholds. We developed a two-dimensional transect model to explore controls on marsh lateral extent, vertical stability and the potential for marsh transgression inland and upland. Salt marsh and upland regions in the model are discretized in 1 m increments with inundation frequency determined by the elevation of the individual cells, organogenic soil formation and mineral deposition rates, and the history of stochastic water levels. The transect extends from an idealized back barrier bay across the salt marsh platform and into the upland forest and is forced with auto and cross correlated synthetic stochastic wind speed, wind direction and water levels. The model incorporates key feedbacks between fetch, wave growth and subsequent lateral erosion rates and sediment supply to the marsh platform. Deposition of mineral sediment from the bay and/or internal ponds onto the marsh platform cells is dependent both on the inundation frequency and distance from a marsh edge. For each element along the transect, a Markov chain successional model was implemented that considers six distinct states, grass/saltmarsh, seedling, sapling, tree, dead standing tree, and bare. A non-static transition probability matrix, dependent on both inundation of the element and the prior vegetation state, was used in order to allow for feedbacks, both positive and negative, among different vegetation states and environmental drivers. The model was used to examine the qualitative behavior of the coupled systems under varied rates of sea level rise, external sediment supply, wind and storm statistics, tidal range, upland slope, and initial bay width. Interestingly, water level statistics had strong controls on rates of lateral marsh erosion, ponding and upland marsh migration with the landward marsh edge controlled by upland slope and the timing and frequency of extreme water events.

  9. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.

    PubMed

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Freeman, Chris; Xiang, Jian; Lin, Yongxin

    2015-04-01

    Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha(-1) for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57-505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (P < 0.001) with net ecosystem CO2 exchange during the growing season in S. alterniflora and P. australis marshes. Annual N2O emissions were 0.24, 0.38, and 0.56 kg N2O ha(-1) in open water, bare tidal flat and S. salsa marsh, respectively, compared with -0.51 kg N2O ha(-1) for S. alterniflora marsh and -0.25 kg N2O ha(-1) for P. australis marsh. The carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha(-1) yr(-1) in the top 100 cm soil profile, a value that was 2.63- to 8.78-fold higher than in native plant marshes. The estimated GWP was 1.78, -0.60, -4.09, and -1.14 Mg CO2 eq ha(-1) yr(-1) in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to -11.30 Mg CO2 eq ha(-1) yr(-1) in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China. © 2014 John Wiley & Sons Ltd.

  10. Assessing the Effects of Sea Level Rise on Plum Island Estuary Marshes Using a Hydrodynamic-marsh Modeling Tool

    NASA Astrophysics Data System (ADS)

    Demissie, H. K.; Bilskie, M. V.; Hagen, S. C.; Morris, J. T.; Alizad, K.

    2015-12-01

    Sea level rise (SLR) can significantly impact both human and ecological habitats in coastal and inland regions. Studies show that coastal estuaries and marsh systems are at the risk of losing their productivity under increasing rates of SLR (Donnelly and Bertness, 2001; Warren and Niering, 1993). The integrated hydrodynamic-marsh model (Hagen et al., 2013 & Alizad et al., 2015) uses a set of parameters and conditions to simulate tidal flow through the salt marsh of Plum Island Estuary, Massachusetts. The hydrodynamic model computes mean high water (MHW) and mean low water (MLW) and is coupled to the zero-dimensional Marsh Equilibrium Model (Morris et al. 2002) to estimate changes in biomass productivity and accretion. The coupled hydrodynamic-marsh model was used to examine the effects of different scenarios of SLR (Parris et al., 2012) on salt marsh productivity for the year 2100 in the Plum Island Estuary. In this particular study, responses of salt marsh production for different scenarios of SLR were compared. The study shows higher productivity of salt marsh under a low SLR scenario and lower productivity under the higher SLR. The study also demonstrates the migration of salt marshes under higher SLR scenarios. References: Alizad, K., S. C. Hagen, Morris, J.T., Bacopoulos, P., Bilskie, M.V., and John, F.W. 2015. A coupled, two-dimensional hydrodynamic-marsh model with biological feedback. Limnology and Oceanography, In review. Donnelly, J.P., and M.D. Bertness. 2001. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. Proceedings of the National Academy of Sciences 98: 14218-14223.Hagen, S.C., J.T. Morris, P. Bacopoulos, and J. Weishampel. 2013. Sea-Level Rise Impact on a Salt Marsh System of the Lower St. Johns River. ASCE Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 139, No. 2, March/April 2013, pp. 118-125.Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83: 2869-2877.Parris, A., P. Bromirski, V. Burkett, D. Cayan, M. Culver, J. Hall, R. Horton, K. Knuuti, R. Moss, J. Obeysekera, A. Sallenger, and J. Weiss. 2012. Global Sea Level Rise Scenarios for the US National Climate Assessment. In NOAA Tech Memo OAR CPO, 1-37.

  11. Surface elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds along the mid-Atlantic coast, USA, with implications to waterbirds

    USGS Publications Warehouse

    Erwin, R. Michael; Cahoon, Donald R.; Prosser, Diann J.; Sanders, Geoffrey; Hensel, Philippe

    2006-01-01

    Mid Atlantic coastal salt marshes contain a matrix of vegetation diversified by tidal pools, pannes, and creeks, providing habitats of varying importance to many species of breeding, migrating, and wintering waterbirds. We hypothesized that changes in marsh elevation were not sufficient to keep pace with those of sea level in both vegetated and unvegetated Spartina alterniflora sites at a number of mid lagoon marsh areas along the Atlantic coast. We also predicted that northern areas would suffer less of a deficit than would southern sites. Beginning in August 1998, we installed surface elevation tables at study sites on Cape Cod, Massachusetts, southern New Jersey, and two locations along Virginia's eastern shore. We compared these elevation changes over the 4-4.5 yr record with the long-term (> 50 yr) tidal records for each locale. We also collected data on waterbird use of these sites during all seasons of the year, based on ground surveys and replicated surveys from observation platforms. Three patterns of marsh elevation change were found. At Nauset Marsh, Cape Cod, the Spartina marsh surface tracked the pond surface, both keeping pace with regional sea-level rise rates. In New Jersey, the ponds are becoming deeper while marsh surface elevation remains unchanged from the initial reading. This may result in a submergence of the marsh in the future, assuming sea-level rise continues at current rates. Ponds at both Virginia sites are filling in, while marsh surface elevation rates do not seem to be keeping pace with local sea-level rise. An additional finding at all sites was that subsidence in the vegetated marsh surfaces was less than in unvegetated areas, reflecting the importance of the root mat in stabilizing sediments. The implications to migratory waterbirds are significant. Submergence of much of the lagoonal marsh area in Virginia and New Jersey over the next century could have major negative (i.e., flooding) effects on nesting populations of marsh-dependent seaside sparrows Ammodramus maritimus, saltmarsh sharp-tailed sparrows A. caudacutus, black rails Laterallus jamaicensis, clapper rails Rallus longirostris, Forster's terns Sterna forsteri, common terns Sterna hirundo, and gull-billed terns Sterna nilotica. Although short-term inundation of many lagoonal marshes may benefit some open-water feeding ducks, geese, and swans during winter, the long-term ecosystem effects may be detrimental, as wildlife resources will be lost or displaced. With the reduction in area of emergent marsh, estuarine secondary productivity and biotic diversity will also be reduced.

  12. How do how internal and external processes affect the behaviors of coupled marsh mudflat systems; infill, stabilize, retreat, or drown?

    NASA Astrophysics Data System (ADS)

    Carr, J. A.; Mariotti, G.; Wiberg, P.; Fagherazzi, S.; McGlathery, K.

    2013-12-01

    Intertidal coastal environments are prone to changes induced by sea level rise, increases in storminess, and anthropogenic disturbances. It is unclear how changes in external drivers may affect the dynamics of low energy coastal environments because their response is non-linear, and characterized by many thresholds and discontinuities. As such, process-based modeling of the ecogeomorphic processes underlying the dynamics of these ecosystems is useful, not only to predict their change through time, but also to generate new hypotheses and research questions. Here, a three-point dynamic model was developed to investigate how internal and external processes affect the behavior of coupled marsh mudflat systems. The model directly incorporates ecogeomorphological feedbacks between wind waves, salt marsh vegetation, allochthonous sediment loading, tidal flat vegetation and sea level rise. The model was applied to examine potential trajectories of salt marshes on the Eastern seaboard of the United States, including those in the Plum Island Ecosystems (PIE), Virginia Coast Reserve (VCR) and Georgia Coastal Ecosystems (GCE) long term ecological research (LTER) sites. While these sites are undergoing similar rates of relative sea level rise (RSLR), they have distinct differences in site specific environmental drivers including tides, wind waves, allochthonous sediment supply and the presence or absence of seagrass. These differences lead to the emergence of altered behaviors in the coupled salt marsh-tidal flat system. For marsh systems without seagrass or significant riverine sediment supply, conditions similar to those at PIE, results indicated that horizontal and vertical marsh evolution respond in opposing ways to wave induced processes. Marsh horizontal retreat is triggered by large mudflats and strong winds, whereas small mudflats and weak winds reduce the sediment supply to the salt marsh, decreasing its capability to keep pace with sea level rise. Marsh expansion and an eventual lateral equilibrium are possible only with large allochthonous sediment supply. Once marshes expanded, marsh retreat can be prevented by a sediment supply smaller than the one that filled the basin. At the GCE, the Altamaha River allows for enhanced allochthonous supply directly to the salt marsh platform, reducing the importance of waves on the tidal flat. As a result, infilling or retreat become the prevalent behaviors. For the VCR, the presence of seagrass decreases near bed shear stresses and sediment flux to the salt marsh platform, however, seagrass also reduces the wave energy acting on the boundary of the marsh reducing boundary erosion. Results indicate that the reduction in wave power allows for seagrass to provide a strong stabilizing affect on the coupled salt marsh tidal flat system, but as external sediment supply increases and light conditions decline the system reverts to that of a bare tidal flat. Across all systems and with current rates of sea level rise, retreat is a more likely marsh loss modality than drowning.

  13. Interannual (1999-2005) morphodynamic evolution of macro-tidal salt marshes in Mont-Saint-Michel Bay (France)

    NASA Astrophysics Data System (ADS)

    Détriché, Sébastien; Susperregui, Anne-Sophie; Feunteun, Eric; Lefeuvre, Jean-Claude; Jigorel, Alain

    2011-04-01

    This paper provides a detailed study on the sedimentation patterns and the recent morphodynamic evolution affecting the macro-tidal salt marshes located west of the Mont-Saint-Michel (France). Twenty-two stations along three transects on the marshes were seasonally monitored for marsh surface level variations from 1999 to 2005, using a sediment erosion bar. The corresponding erosion/accretion rates were obtained together with data on topography, vegetation cover, and grain size of surface sediment. To examine the mechanisms contributing to the salt marsh sedimentation, the data and their evolution were treated with respect to tides, relative mean regional sea level, and wind speed/frequency variations. From 1999 to 2005, the marsh was globally accreting (from 3.45 to 38.11 mm yr -1 in the low marsh, up to 4.91 mm yr -1 in the middle marsh, and up to 1.35 mm yr -1 in the high marsh), while the study was conducted during a window of decreasing trend in mean regional sea level (-2.45 mm yr -1 according to regional-averaged time series). These sedimentation rates are one of the highest recorded worldwide; however, the sedimentation was not found to be continuous over the period in question. This pattern is illustrated by the strong extension of the marshes from 1999 to 2002, and the relative stability observed from 2003 to 2005. The imported and reworked sediments are trapped and fixed by the dense vegetation ( Puccinellia maritima, Halimione portulacoides), inducing the general seaward extension of the marshes. The processes governing sediment budget (accretion/erosion) show annual, seasonal, and spatial variability on the marsh. Spatial variations display contrasted patterns of erosion/sedimentation between the low, middle, and high marsh, and between the different transects. These patterns are a result of distance from sediment sources, strong heterogeneity in vegetation cover (human induced or not), and contrasting topographic and micro-topographic characteristics. The higher accretion rates are observed in distal settings in the low marsh, and strongly decrease toward the middle and high marsh. This evolution results from a decrease in accommodation space/water column thickness, and frequency of inundation coupled with an increase in station elevation, but also from the cumulated effects of vegetation cover and micro-topography. The vegetation cover of the low and middle marsh enhance the settling and fixing of fine sediments imported through tides or dispersed by flood and ebb currents. The seasonal evolution of the marshes is marked by contrasting effects of water storage in the sediment. The overall seasonal sediment budget is controlled by the variation of the frequency of inundation relative to tidal range and marshes topography. Autumns are influenced by the tide (equinoxes), relative mean regional sea level, and variations in wind speed/frequency. Winter wind speed and frequency in relation with tidal variations appear to be the main parameters regulating winter marsh evolution. Summers are predominantly under the influence of local variations in water storage (desiccation) while external parameters generally display a low influence. Although it is not governed by any one parameter, springtime sediment budget seems to result from strong interaction between the above-cited parameters, despite the significant frequency of inundation (equinoxes).

  14. Wetlands postcard

    USGS Publications Warehouse

    Ball, Lianne C.

    2016-05-25

    Research conducted by scientists at the U.S. Geological Survey provides reliable scientific information for the management of wetlands ranging from small freshwater alpine lakes in the Western United States to coastal wetlands of the Great Lakes and salt marshes along the Southeastern coast. Learn more about USGS wetlands research at: http://www.usgs.gov/ecosystems/environments/wetlands.html.

  15. Emergency care. From zero to hero.

    PubMed

    Bevington, Jay; Halligan, Aidan; Cullen, Ron

    2004-07-29

    Essex Ambulance Service trust has achieved a rapid transformation, having last year received the country's worst CHI report. The trust transformed itself through new roles, collaborative working and developing its own model for out-of-hours services. Staff have new confidence in the management team, led by young, relatively inexperienced chief executive Anthony Marsh.

  16. THE BENEFITS OF WETLANDS: THE UPPER HALFWAY CREEK PROJECT

    EPA Science Inventory

    Researchers from the U.S. EPA are working in collaboration with U.S. Geological Survey and the U.S. Fish and Wildlife Services on this project. Upper Halfway Creek marsh is a constructed wetland managed by the U.S. Fish and Wildlife Service. This project will assist the U.S. EP...

  17. Crown size relationships for black willow in the Lower Mississippi Alluvial Valley

    Treesearch

    Jamie L. Schuler; Bradley Woods; Joshua Adams; Ray Souter

    2015-01-01

    Growing space requirements derived from maximum and minimum crown sizes have been identified for many southern hardwood species. These requirements help managers assess stocking levels, schedule intermediate treatments, and even assist in determining planting densities. Throughout the Mississippi Alluvial Valley, black willow (Salix nigra Marsh.) stands are common...

  18. 75 FR 22620 - Upper Klamath, Lower Klamath, Tule Lake, Bear Valley, and Clear Lake National Wildlife Refuges...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    .... In addition to outlining broad management direction on conserving wildlife and their habitats, CCPs... ensure the best possible approach to wildlife, plant, and habitat conservation, while providing for... hardstem-cattail marsh and open water, along with 30 acres of forested uplands. These habitats serve as...

  19. Evaluation of the Factor Structure of the Rosenberg Self-Esteem Scale in Older Adults

    PubMed Central

    Mullen, Sean P.; Gothe, Neha P.; McAuley, Edward

    2012-01-01

    The Rosenberg Self-Esteem Scale is the most utilized measure of global self-esteem. Although psychometric studies have generally supported the uni-dimensionality of this 10-item scale, more recently, a stable, response-bias has been associated with the wording of the items (Marsh, Scalas, & Nagengast, 2010). The purpose of this report was to replicate Marsh et al.’s findings in a sample of older adults and to test for invariance across time, gender and levels of education. Our results indicated that indeed a response-bias does exist in esteem responses. Researchers should investigate ways to meaningfully examine and practically overcome the methodological challenges associated with the RSE scale. PMID:23185099

  20. Evaluation of the Factor Structure of the Rosenberg Self-Esteem Scale in Older Adults.

    PubMed

    Mullen, Sean P; Gothe, Neha P; McAuley, Edward

    2013-01-01

    The Rosenberg Self-Esteem Scale is the most utilized measure of global self-esteem. Although psychometric studies have generally supported the uni-dimensionality of this 10-item scale, more recently, a stable, response-bias has been associated with the wording of the items (Marsh, Scalas, & Nagengast, 2010). The purpose of this report was to replicate Marsh et al.'s findings in a sample of older adults and to test for invariance across time, gender and levels of education. Our results indicated that indeed a response-bias does exist in esteem responses. Researchers should investigate ways to meaningfully examine and practically overcome the methodological challenges associated with the RSE scale.

Top