Sample records for structural material referred

  1. Historical considerations in evaluating timber structures

    Treesearch

    R. L. Tuomi; R. C. Moody

    1979-01-01

    Evaluation, maintenance, and upgrading of timber structures is an area where little printed reference material exists. This paper covers the state-of-the-art on design, material properties, and construction procedures on older buildings. Some guidelines are presented on rehabilitating and upgrading timber structures, along with significant references.

  2. Types of architectural structures and the use of smart materials

    NASA Astrophysics Data System (ADS)

    Tavşan, Cengiz; Sipahi, Serkan

    2017-07-01

    The developments in technology following the industrial revolution had their share of impact on both construction techniques, and material technologies. The change in the materials used by the construction industry brought along numerous innovations, which, in turn, took on an autonomous trend of development given the rise of nano-tech materials. Today, nano-tech materials are used extensively in numerous construction categories. Nano-tech materials, in general, are characterized by their reactionary nature, with the intent of repeating the reactions again and again under certain conditions. That is why nano-tech materials are often called smart materials. In construction industry, smart materials are categorized under 4 major perspectives: Shape-shifting smart materials, power generating smart materials, self-maintenance smart materials, and smart materials providing a high level of insulation. In architecture, various categories of construction often tend to exhibit their own approaches to design, materials, and construction techniques. This is a direct consequence of the need for different solutions for different functions. In this context, the use of technological materials should lead to the use of a set of smart materials for a given category of structures, while another category utilizes yet another set. In the present study, the smart materials used in specific categories of structures were reviewed with reference to nano-tech practices implemented in Europe, with a view to try and reveal the changes in the use of smart materials with reference to categories of structures. The study entails a discussion to test the hypothesis that nano-tech materials vary with reference to structure categories, on the basis of 18 examples from various structure categories, built by the construction firms with the highest level of potential in terms of doing business in Europe. The study comprises 3 major sections: The first section reiterates what the literature has to say about smart materials; the second discusses the types and characteristics of smart materials over the tables detailing their utilization and functions in the structures included in the set of examples. The final section of the study, on the other hand, elaborates on the findings, discussing them with reference to the types of structures.

  3. High rate, long cycle life battery electrode materials with an open framework structure

    DOEpatents

    Wessells, Colin; Huggins, Robert; Cui, Yi; Pasta, Mauro

    2015-02-10

    A battery includes a cathode, an anode, and an aqueous electrolyte disposed between the cathode and the anode and including a cation A. At least one of the cathode and the anode includes an electrode material having an open framework crystal structure into which the cation A is reversibly inserted during operation of the battery. The battery has a reference specific capacity when cycled at a reference rate, and at least 75% of the reference specific capacity is retained when the battery is cycled at 10 times the reference rate.

  4. The role of ion mobility spectrometry-mass spectrometry in the analysis of protein reference standards.

    PubMed

    Pritchard, Caroline; O'Connor, Gavin; Ashcroft, Alison E

    2013-08-06

    To achieve comparability of measurement results of protein amount of substance content between clinical laboratories, suitable reference materials are required. The impact on measurement comparability of potential differences in the tertiary and quaternary structure of protein reference standards is as yet not well understood. With the use of human growth hormone as a model protein, the potential of ion mobility spectrometry-mass spectrometry as a tool to assess differences in the structure of protein reference materials and their interactions with antibodies has been investigated here.

  5. Methods and instruments for materials testing

    NASA Technical Reports Server (NTRS)

    Hansma, Paul (Inventor); Drake, Barney (Inventor); Rehn, Douglas (Inventor); Adams, Jonathan (Inventor); Lulejian, Jason (Inventor)

    2011-01-01

    Methods and instruments for characterizing a material, such as the properties of bone in a living human subject, using a test probe constructed for insertion into the material and a reference probe aligned with the test probe in a housing. The housing is hand held or placed so that the reference probe contacts the surface of the material under pressure applied either by hand or by the weight of the housing. The test probe is inserted into the material to indent the material while maintaining the reference probe substantially under the hand pressure or weight of the housing allowing evaluation of a property of the material related to indentation of the material by the probe. Force can be generated by a voice coil in a magnet structure to the end of which the test probe is connected and supported in the magnet structure by a flexure, opposing flexures, a linear translation stage, or a linear bearing. Optionally, a measurement unit containing the test probe and reference probe is connected to a base unit with a wireless connection, allowing in the field material testing.

  6. Biophysical characterization and structure of the Fab fragment from the NIST reference antibody, RM 8671.

    PubMed

    Karageorgos, Ioannis; Gallagher, Elyssia S; Galvin, Connor; Gallagher, D Travis; Hudgens, Jeffrey W

    2017-11-01

    Monoclonal antibody pharmaceuticals are the fastest-growing class of therapeutics, with a wide range of clinical applications. To assure their safety, these protein drugs must demonstrate highly consistent purity and stability. Key to these objectives is higher order structure measurements validated by calibration to reference materials. We describe preparation, characterization, and crystal structure of the Fab fragment prepared from the NIST Reference Antibody RM 8671 (NISTmAb). NISTmAb is a humanized IgG1κ antibody, produced in murine cell culture and purified by standard biopharmaceutical production methods, developed at the National Institute of Standards and Technology (NIST) to serve as a reference material. The Fab fragment was derived from NISTmAb through papain cleavage followed by protein A based purification. The purified Fab fragment was characterized by SDS-PAGE, capillary gel electrophoresis, multi-angle light scattering, size exclusion chromatography, mass spectrometry, and x-ray crystallography. The crystal structure at 0.2 nm resolution includes four independent Fab molecules with complete light chains and heavy chains through Cys 223, enabling assessment of conformational variability and providing a well-characterized reference structure for research and engineering applications. This nonproprietary, publically available reference material of known higher-order structure can support metrology in biopharmaceutical applications, and it is a suitable platform for validation of molecular modeling studies. Published by Elsevier Ltd.

  7. Military aircraft and missile technology at the Langley Research Center: A selected bibliography

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.

    1980-01-01

    A compilation of reference material is presented on the Langley Research Center's efforts in developing advanced military aircraft and missile technology over the past twenty years. Reference material includes research made in aerodynamics, performance, stability, control, stall-spin, propulsion integration, flutter, materials, and structures.

  8. Correct implementation of polarization constants in wurtzite materials and impact on III-nitrides

    DOE PAGES

    Dreyer, Cyrus E.; Janotti, Anderson; Van de Walle, Chris G.; ...

    2016-06-20

    Here, accurate values for polarization discontinuities between pyroelectric materials are critical for understanding and designing the electronic properties of heterostructures. For wurtzite materials, the zincblende structure has been used in the literature as a reference to determine the effective spontaneous polarization constants. We show that, because the zincblende structure has a nonzero formal polarization, this method results in a spurious contribution to the spontaneous polarization differences between materials. In addition, we address the correct choice of "improper" versus "proper" piezoelectric constants. For the technologically important III-nitride materials GaN, AlN, and InN, we determine polarization discontinuities using a consistent reference basedmore » on the layered hexagonal structure and the correct choice of piezoelectric constants, and discuss the results in light of available experimental data.« less

  9. Standard and reference materials for marine science. Third edition. Technical memo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cantillo, A.Y.

    1992-08-01

    The third edition of the catalog of reference materials suited for use in marine science, originally compiled in 1986 for NOAA, IOC, and UNEP. The catalog lists close to 2,000 reference materials from sixteen producers and contains information about their proper use, sources, availability, and analyte concentrations. Indices are included for elements, isotopes, and organic compounds, as are cross references to CAS registry numbers, alternate names, and chemical structures of selected organic compounds. The catalog is being published independently by both NOAA and IOC/UNEP and is available from NOAA/NOS/ORCA in electronic form.

  10. Agricultural Structures, Volume II.

    ERIC Educational Resources Information Center

    Linhardt, Richard E.; Burhoe, Steve

    This guide to a curriculum unit in agricultural structures is designed to expand the curriculum materials available in vocational agriculture in Missouri. It and Agricultural Structures I (see note) provide reference materials to systematize the curriculum. The six units cover working with concrete (19 lessons, 2 laboratory exercises), drawing and…

  11. Strength Analysis on Ship Ladder Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Budianto; Wahyudi, M. T.; Dinata, U.; Ruddianto; Eko P., M. M.

    2018-01-01

    In designing the ship’s structure, it should refer to the rules in accordance with applicable classification standards. In this case, designing Ladder (Staircase) on a Ferry Ship which is set up, it must be reviewed based on the loads during ship operations, either during sailing or at port operations. The classification rules in ship design refer to the calculation of the structure components described in Classification calculation method and can be analysed using the Finite Element Method. Classification Regulations used in the design of Ferry Ships used BKI (Bureau of Classification Indonesia). So the rules for the provision of material composition in the mechanical properties of the material should refer to the classification of the used vessel. The analysis in this structure used program structure packages based on Finite Element Method. By using structural analysis on Ladder (Ladder), it obtained strength and simulation structure that can withstand load 140 kg both in static condition, dynamic, and impact. Therefore, the result of the analysis included values of safety factors in the ship is to keep the structure safe but the strength of the structure is not excessive.

  12. JOYO-1 Irradiation Test Campaign Technical Close-out, For Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Borges

    2006-01-31

    The JOYO-1 irradiation testing was designed to screen the irradiation performance of candidate cladding, structural and reflector materials in support of space reactor development. The JOYO-1 designation refers to the first of four planned irradiation tests in the JOYO reactor. Limited irradiated material performance data for the candidate materials exists for the expected Prometheus-1 duration, fluences and temperatures. Materials of interest include fuel element cladding and core materials (refractory metal alloys and silicon carbide (Sic)), vessel and plant structural materials (refractory metal alloys and nickel-base superalloys), and control and reflector materials (BeO). Key issues to be evaluated were long termmore » microstructure and material property stability. The JOYO-1 test campaign was initiated to irradiate a matrix of specimens at prototypical temperatures and fluences anticipated for the Prometheus-1 reactor [Reference (1)]. Enclosures 1 through 9 describe the specimen and temperature monitors/dosimetry fabrication efforts, capsule design, disposition of structural material irradiation rigs, and plans for post-irradiation examination. These enclosures provide a detailed overview of Naval Reactors Prime Contractor Team (NRPCT) progress in specific areas; however, efforts were in various states of completion at the termination of NRPCT involvement with and restructuring of Project Prometheus.« less

  13. [Effect of emotional content and self reference of learning materials on recall performance].

    PubMed

    Spies, K

    1994-01-01

    It is assumed that high affective value and high self-reference of learning material help to improve memory performance as these factors allow better memory consolidation (activation hypothesis) or better integration of the new material into existing knowledge structures (extent-of-processing hypothesis). To test this assumption, 60 subjects were shown 16 short advertising films characterized by low vs. high affective value and low vs. high self-reference. Both factors were varied within subjects. After the films had each been presented twice, subjects had to recall the product names and answer two questions to each film. Results showed for both dependent variables that films with high affective values were better remembered than films with low affective values. The same held true--though to a lower extent--with respect to self-reference. According to the expected linear trend, performance was best for material scoring high on affective value as well as on self-reference, while it was worst for material scoring low on both factors.

  14. NASA-UVa Light Aerospace Alloy and Structures Technology Program: Aluminum-Based Materials for High Speed Aircraft

    NASA Technical Reports Server (NTRS)

    Starke, E. A., Jr. (Editor)

    1996-01-01

    This report is concerned with 'Aluminum-Based Materials for High Speed Aircraft' which was initiated to identify the technology needs associated with advanced, low-cost aluminum base materials for use as primary structural materials. Using a reference baseline aircraft, these materials concept will be further developed and evaluated both technically and economically to determine the most attractive combinations of designs, materials, and manufacturing techniques for major structural sections of an HSCT. Once this has been accomplished, the baseline aircraft will be resized, if applicable, and performance objectives and economic evaluations made to determine aircraft operating costs. The two primary objectives of this study are: (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials, and (2) to assess these materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    CRESSWELL,M.W.; ALLEN,R.A.; GHOSHTAGORE,R.N.

    This paper describes the fabrication and measurement of the linewidths of the reference segments of cross-bridge resistors patterned in (100) Bonded and Etched Back Silicon-on-Insulator (BESOI) material. The critical dimensions (CD) of the reference segments of a selection of the cross-bridge resistor test structures were measured both electrically and by Scanning-Electron Microscopy (SEM) cross-section imaging. The reference-segment features were aligned with <110> directions in the BESOI surface material and had drawn linewidths ranging from 0.35 to 3.0 {micro}m. They were defined by a silicon micro-machining process which results in their sidewalls being atomically-planar and smooth and inclined at 54.737{degree} tomore » the surface (100) plane of the substrate. This (100) implementation may usefully complement the attributes of the previously-reported vertical-sidewall one for selected reference-material applications. For example, the non-orthogonal intersection of the sidewalls and top-surface planes of the reference-segment features may alleviate difficulties encountered with atomic-force microscope measurements. In such applications it has been reported that it may be difficult to maintain probe-tip control at the sharp 90{degree} outside corner of the sidewalls and the upper surface. A second application is refining to-down image-processing algorithms and checking instrument performance. Novel aspects of the (100) SOI implementation that are reported here include the cross-bridge resistor test-structure architecture and details of its fabrication. The long-term goal is to develop a technique for the determination of the absolute dimensions of the trapezoidal cross-sections of the cross-bridge resistors' reference segments, as a prelude to developing them for dimensional reference applications. This is believed to be the first report of electrical CD measurements made on test structures of the cross-bridge resistor type that have been patterned in (100) SOI material. The electrical CD results are compared with cross-section SEM measurements made on the same features.« less

  16. 30 CFR 250.901 - What industry standards must your platform meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., (incorporated by reference as specified in § 250.198); (15) American Society for Testing and Materials (ASTM... Welding Code—Steel, including Commentary, (incorporated by reference as specified in § 250.198); (21) AWS D1.4, Structural Welding Code—Reinforcing Steel, (incorporated by reference as specified in § 250.198...

  17. Structural Materials and Fuels for Space Power Plants

    NASA Technical Reports Server (NTRS)

    Bowman, Cheryl; Busby, Jeremy; Porter, Douglas

    2008-01-01

    A fission reactor combined with Stirling convertor power generation is one promising candidate in on-going Fission Surface Power (FSP) studies for future lunar and Martian bases. There are many challenges for designing and qualifying space-rated nuclear power plants. In order to have an affordable and sustainable program, NASA and DOE designers want to build upon the extensive foundation in nuclear fuels and structural materials. This talk will outline the current Fission Surface Power program and outline baseline design options for a lunar power plant with an emphasis on materials challenges. NASA first organized an Affordable Fission Surface Power System Study Team to establish a reference design that could be scrutinized for technical and fiscal feasibility. Previous papers and presentations have discussed this study process in detail. Considerations for the reference design included that no significant nuclear technology, fuels, or material development were required for near term use. The desire was to build upon terrestrial-derived reactor technology including conventional fuels and materials. Here we will present an overview of the reference design, Figure 1, and examine the materials choices. The system definition included analysis and recommendations for power level and life, plant configuration, shielding approach, reactor type, and power conversion type. It is important to note that this is just one concept undergoing refinement. The design team, however, understands that materials selection and improvement must be an integral part of the system development.

  18. Browsing a Database of Multimedia Learning Material.

    ERIC Educational Resources Information Center

    Persico, Donatella; And Others

    1992-01-01

    Describes a project that addressed the problem of courseware reusability by developing a database structure suitable for organizing multimedia learning material in a given content domain. A prototype system that allows browsing a DBLM (Data Base of Learning Material) on earth science is described, and future plans are discussed. (five references)…

  19. Radiation Effects in Fission and Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Odette, G. Robert; Wirth, Brian D.

    Since the prediction of "Wigner disease" [1] and the subsequent observation of anisotropic growth of the graphite used in the Chicago Pile, the effects of radiation on materials has been an important technological concern. The broad field of radiation effects impacts many critical advanced technologies, ranging from semiconductor processing to severe materials degradation in nuclear reactor environments. Radiation effects also occur in many natural environments, ranging from deep space to inside the Earth's crust. As selected examples that involve many basic phenomena that cross-cut and illustrate the broader impacts of radiation exposure on materials, this article focuses on modeling microstructural changes in iron-based ferritic alloys under high-energy neutron irradiation relevant to light water fission reactor pressure vessels. We also touch briefly on radiation effects in structural alloys for fusion reactor first wall and blanket structures; in this case the focus is on modeling the evolution of self-interstitial atom clusters and dislocation loops. Note, since even the narrower topic of structural materials for nuclear energy applications encompass a vast literature dating from 1942, the references included in this article are primarily limited to these two narrower subjects. Thus, the references cited here are presented as examples, rather than comprehensive bibliographies. However, the interested reader is referred to proceedings of continuing symposia series that have been sponsored by several organizations, several monographs [2-4] and key journals (e.g., Journal of Nuclear Materials, Radiation Effects and Defects in Solids).

  20. Advances and trends in computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1986-01-01

    Recent developments in computational structural mechanics are reviewed with reference to computational needs for future structures technology, advances in computational models for material behavior, discrete element technology, assessment and control of numerical simulations of structural response, hybrid analysis, and techniques for large-scale optimization. Research areas in computational structural mechanics which have high potential for meeting future technological needs are identified. These include prediction and analysis of the failure of structural components made of new materials, development of computational strategies and solution methodologies for large-scale structural calculations, and assessment of reliability and adaptive improvement of response predictions.

  1. 46 CFR 92.01-2 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CONSTRUCTION AND ARRANGEMENT Hull Structure § 92.01-2 Incorporation by reference. (a) Certain material is... is also available for inspection at the Coast Guard, Office of Design and Engineering Standards, (CG... listed below. (b) International Maritime Organization (IMO), Publications Section, 4 Albert Embankment...

  2. Bibliography of Testing and Evaluation Reference Material

    DTIC Science & Technology

    1989-08-01

    Society. ** [Basl84a] Basili, V.R., and J. Ramsey . September 1984. Structural Coverage of Functional Testing . University of Maryland. Technical Report TR...r’V1 r~CN <T { L Copy 2 0 of 36 copies N FINAL cc CID It- IDA MEMORANDUM REPORT M-496 BIBLIOGRAPHY OF TESTING AND EVALUATION REFERENCE MATERIAL Bill...blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED August 1989 Final -TITLE AND SUBTITLE 5. FUNDING NUMBERS * Bibliography of Testing and

  3. Fracture control procedures for aircraft structural integrity

    NASA Technical Reports Server (NTRS)

    Wood, H. A.

    1972-01-01

    The application of applied fracture mechanics in the design, analysis, and qualification of aircraft structural systems are reviewed. Recent service experiences are cited. Current trends in high-strength materials application are reviewed with particular emphasis on the manner in which fracture toughness and structural efficiency may affect the material selection process. General fracture control procedures are reviewed in depth with specific reference to the impact of inspectability, structural arrangement, and material on proposed analysis requirements for safe crack growth. The relative impact on allowable design stress is indicated by example. Design criteria, material, and analysis requirements for implementation of fracture control procedures are reviewed together with limitations in current available data techniques. A summary of items which require further study and attention is presented.

  4. Chemical Bonding and Structural Information of Black CarbonReference Materials and Individual Carbonaceous AtmosphericAerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.

    2007-04-25

    The carbon-to-oxygen ratios and graphitic nature of a rangeof black carbon standard reference materials (BC SRMs), high molecularmass humic-like substances (HULIS) and atmospheric particles are examinedusing scanning transmission X-ray microscopy (STXM) coupled with nearedge X-ray absorption fine structure (NEXAFS) spectroscopy. UsingSTXM/NEXAFS, individual particles with diameter>100 nm are studied,thus the diversity of atmospheric particles collected during a variety offield missions is assessed. Applying a semi-quantitative peak fittingmethod to the NEXAFS spectra enables a comparison of BC SRMs and HULIS toparticles originating from anthropogenic combustion and biomass burns,thus allowing determination of the suitability of these materials forrepresenting atmospheric particles. Anthropogenic combustion andmore » biomassburn particles can be distinguished from one another using both chemicalbonding and structural ordering information. While anthropogeniccombustion particles are characterized by a high proportion ofaromatic-C, the presence of benzoquinone and are highly structurallyordered, biomass burn particles exhibit lower structural ordering, asmaller proportion of aromatic-C and contain a much higher proportion ofoxygenated functional groups.« less

  5. Effects of Aeroelastic Tailoring on Anisotropic Composite Material Beam Models of Helicopter Blades

    DTIC Science & Technology

    1989-05-01

    34 means that a layer of material at some distance above a structural midsurface reference location has the identical ply thickness, angular orientation...and material properties as that of a lamina at an identical distance below the midsurface [1]. If the fibers are placed off-axis in the upper and

  6. Thermally Cross-Linkable Hole Transport Materials for Solution Processed Phosphorescent OLEDs

    NASA Astrophysics Data System (ADS)

    Kim, Beom Seok; Kim, Ohyoung; Chin, Byung Doo; Lee, Chil Won

    2018-04-01

    Materials for unique fabrication of a solution-processed, multi-layered organic light-emitting diode (OLED) were developed. Preparation of a hole transport layer with a thermally cross-linkable chemical structure, which can be processed to form a thin film and then transformed into an insoluble film by using an amine-alcohol condensation reaction with heat treatment, was investigated. Functional groups, such as triplenylamine linked with phenylcarbazole or biphenyl, were employed in the chemical structure of the hole transport layer in order to maintain high triplet energy properties. When phenylcarbazole or biphenyl compounds continuously react with triphenylamine under acid catalysis, a chemically stable thin film material with desirable energy-level properties for a blue OLED could be obtained. The prepared hole transport materials showed excellent surface roughness and thermal stability in comparison with the commercial reference material. On the solution-processed model hole transport layer, we fabricated a device with a blue phosphorescent OLED by using sequential vacuum deposition. The maximum external quantum, 19.3%, was improved by more than 40% over devices with the commercial reference material (11.4%).

  7. Alkylaminopyridine-Modified Aluminum Aminoterephthalate Metal-Organic Frameworks as Components of Reactive Self-Detoxifying Materials

    DTIC Science & Technology

    2012-08-07

    was obtained from the Cambridge Structural Database (ref code OCUNAC). Chromium was substituted with aluminum in the reference crystal structure and the...structure when starting from similar synthesis compositions;30 as a result, the MIL-53 structure is encountered with a broader variety of trivalent metals

  8. Composite materials and structures: Science, technology and applications. A compendium of books, review papers, and other sources of information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanovich, A.E.; Sierakowski, R.L.

    A fast growing volume of literature in various fields of composite materials and structures has inspired the authors to attempt to assemble all major books and review papers in a concise compendium presented here. This could give researchers, engineers, designers, and graduate students a rapid access to the vast volume of references on any specific topic in the field of composites and thereby satisfy their research requirements. The compendium includes encyclopedias, handbooks, design guides, textbooks, reference books, review papers and also a few collections of papers. The topics span theory, modeling and analysis of composite materials, processing and manufacturing, propertiesmore » and characterization, theory and analysis of composite structures, joints and connections, designing with composites, and composites applications. The compendium includes over 400 references, which are arranged in alphabetical order within each topic under consideration. Additionally, the reader can find, in this compendium, the lists of major conferences, journals, and ASTM STP publications on composites. The major objective of this work is not critically reviewing or discussing specific research approaches and results. The authors have rather intended to provide extensive bibliographic information that may help the reader to get familiar with the primary literature and, in necessary, undertake further literature search on any particular problem of interest.« less

  9. Bibliography of information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.; Shaffer, R. A.; Smith, D. M.

    1973-01-01

    A bibliography of approximately 1500 reference citations related to six problem areas in the mechanics of failure in aerospace structures is presented. The bibliography represents a search of the literature published in the ten year period 1962-1972 and is largely limited to documents published in the United States. Listings are subdivided into the six problem areas: (1) life prediction of structural materials; (2) fracture toughness data; (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. An author index is included.

  10. The ecoresponsive genome of Daphnia pulex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colbourne, John K.; Pfrender, Michael E.; Gilbert, Donald

    2011-02-04

    This document provides supporting material related to the sequencing of the ecoresponsive genome of Daphnia pulex. This material includes information on materials and methods and supporting text, as well as supplemental figures, tables, and references. The coverage of materials and methods addresses genome sequence, assembly, and mapping to chromosomes, gene inventory, attributes of a compact genome, the origin and preservation of Daphnia pulex genes, implications of Daphnia's genome structure, evolutionary diversification of duplicated genes, functional significance of expanded gene families, and ecoresponsive genes. Supporting text covers chromosome studies, gene homology among Daphnia genomes, micro-RNA and transposable elements and the 46more » Daphnia pulex opsins. 36 figures, 50 tables, 183 references.« less

  11. Development of a candidate reference measurement procedure for the analysis of cortisol in human serum samples by isotope dilution-gas chromatography-mass spectrometry.

    PubMed

    Kawaguchi, Migaku; Takatsu, Akiko

    2009-08-01

    A candidate reference measurement procedure involving isotope dilution coupled with gas chromatography-mass spectrometry (GC-MS) has been developed and critically evaluated. An isotopically labeled internal standard, cortisol-d(2), was added to a serum sample. After equilibration, solid-phase extractions (SPE) for sample preparation and derivatization with heptafluorobutyric anhydride (HFBA) were performed for GC-MS analysis. The limit of detection (LOD) and the limit of quantification (LOQ) were 5 and 20 ng g(-1), respectively. The recovery of the added cortisol ranged from 99.8 to 101.0%. Excellent precision was obtained with a within-day variation (RSD) of 0.7% for GC-MS analysis. The accuracy of the measurement was evaluated by comparing of results of this reference measurement procedure on lyophilized human serum reference materials for cortisol (European Reference Materials (ERM)-DA 192) as Certified Reference Materials (CRMs). The results of this method for total cortisol agreed with the certified values within some uncertainty. This method, which demonstrates simply, easy, good accuracy, high precision, and is free from interferences from structural analogues, qualifies as a reference measurement procedure.

  12. Hoer-Sprech-Uebungen fuer Iraner (Aural-Oral Exercises for Iranians).

    ERIC Educational Resources Information Center

    Scharf, Kurt

    1980-01-01

    Exercises are presented as supplementary material for beginning classes. Many examples illustrate ways to consolidate the learned material, with particular reference to the textbook "Ich lerne Deutsch" and its pictures. Other exercises are designed to compare German and Farsi sentence structure. (IFS/WGA)

  13. [Studies on the growth and reproduction of bacterial communities on structural materials of the international space station].

    PubMed

    Rakova, N M; Svistunova, Iu V; Novikova, N D

    2005-01-01

    Probability of microbial growth and reproduction on the ISS interior and equipment materials varying in chemical composition was studied with the strains of Bacillus subtilis, Staphylococcus epidermidis, Staphylococcus saprophyticus, Pseudomonas putida etc. sampled from the ISS environment. Controls were ground reference strains of same bacterial species. Based on our results, some of the microorganisms are able to survive and proliferate on structural materials; the ability was greater in space isolates as compared with their ground analogs. The greatest ability to grow and proliferate on materials was demonstrated by Bacillus subtilis.

  14. Surviving the space environment - An overview of advanced materials and structures development at the CWRU CCDS

    NASA Technical Reports Server (NTRS)

    Wallace, John F.; Zdankiewicz, Edward M.; Schmidt, Robert N.

    1991-01-01

    The development of advanced materials and structures for long-term use in space is described with specific reference given to applications to the Space Station Freedom and the lunar base. A flight-testing program is described which incorporates experiments regarding the passive effects of space travel such as material degradation with active materials experiments such as the Materials Exposure Flight Experiment. Also described is a research and development program for materials such as organic coatings and polymeric composites, and a simulation laboratory is described which permits the analysis of materials in the laboratory. The methods of investigation indicate that the NASA Center for the Commercial Development of Space facilitates the understanding of material degradation in space.

  15. Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries

    NASA Astrophysics Data System (ADS)

    Kleiner, Karin; Dixon, Ditty; Jakes, Peter; Melke, Julia; Yavuz, Murat; Roth, Christina; Nikolowski, Kristian; Liebau, Verena; Ehrenberg, Helmut

    2015-01-01

    The degradation of LiNi0.8Co0.15Al0.05O2 (LNCAO), a cathode material in lithium-ion-batteries, was studied using in situ powder diffraction and in situ Ni K edge X-ray absorption spectroscopy (XAS). The fatigued material was taken from a 7 Ah battery which was cycled for 34 weeks under defined durability conditions. Meanwhile, a cell was stored, as reference, under controlled conditions without electrochemical treatment. The fatigued LNCAO used in this study showed a capacity loss of 26% ± 9% compared to the non-cycled material. During charge and discharge the local and the overall structure of LNCAO was investigated by X-ray near edge structure (XANES) analysis, the extended X-ray absorption fine structure (EXAFS) analysis and by using Rietveld refinement of in situ powder diffraction patterns. Both powder diffraction and XAS revealed additional, rhombohedral phases which do not change with electrochemical cycling. Moreover, a phase with the lattice parameters of fully lithiated LNCAO was still present in the fatigued material at high potentials, while it was absent in the non-fatigued reference material. The coexistence of these phases is described by domains within the LNCAO particles, in correlation with the observed fatigue.

  16. Reduced chromium in olivine grains from lunar basalt 15555 - X-ray Absorption Near Edge Structure (XANES)

    NASA Technical Reports Server (NTRS)

    Sutton, S. R.; Jones, K. W.; Gordon, B.; Rivers, M. L.; Bajt, S.; Smith, J. V.

    1993-01-01

    The oxidation state of Cr in 200-micron regions within individual lunar olivine and pyroxene grains from lunar basalt 15555 was inferred using X-ray Absorption Near Edge Structure (XANES). Reference materials had previously been studied by optical absorption spectroscopy and included Cr-bearing borosilicate glasses synthesized under controlled oxygen fugacity and Cr-doped olivines. The energy dependence of XANES spectral features defined by these reference materials indicated that Cr is predominantly divalent in the lunar olivine and trivalent in the pyroxene. These results, coupled with the apparent f(02)-independence of partitioning coefficients for Cr into olivine, imply that the source magma was dominated by divalent Cr at the time of olivine crystallization.

  17. Characterization of Nanophase Materials

    NASA Astrophysics Data System (ADS)

    Wang, Zhong Lin

    2000-01-01

    Engineering of nanophase materials and devices is of vital interest in electronics, semiconductors and optics, catalysis, ceramics and magnetism. Research associated with nanoparticles has widely spread and diffused into every field of scientific research, forming a trend of nanocrystal engineered materials. The unique properties of nanophase materials are entirely determined by their atomic scale structures, particularly the structures of interfaces and surfaces. Development of nanotechnology involves several steps, of which characterization of nanoparticles is indespensable to understand the behavior and properties of nanoparticles, aiming at implementing nanotechnolgy, controlling their behavior and designing new nanomaterials systems with super performance. The book will focus on structural and property characterization of nanocrystals and their assemblies, with an emphasis on basic physical approach, detailed techniques, data interpretation and applications. Intended readers of this comprehensive reference work are advanced graduate students and researchers in the field, who are specialized in materials chemistry, materials physics and materials science.

  18. On-chip tunable dispersion in a ring laser gyroscope for enhanced rotation sensing

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Liu, Jiaming; Lin, Jian; Li, Wenxiu; Xue, Xia; Huang, Anping; Xiao, Zhisong

    2016-05-01

    A gyroscope structure with tailored local dispersion profile to enhance sensitivity is proposed, which uses lithium niobate (LiNbO3) thin film as the on-chip material of gyroscope's resonator. A Mach-Zehnder interferometer (MZI) structure as a coupler, which induces a different reference phase shift in each arm, is inserted into the position between ring resonator and output bus waveguide. Through modulating reference phase shift in MZI, theoretical rotation sensitivity enhancement as large as one order of magnitude is presented.

  19. Quantum Chemistry; A concise introduction for students of physics, chemistry, biochemistry and materials science

    NASA Astrophysics Data System (ADS)

    Thakkar, Ajit J.

    2017-09-01

    This book provides non-specialists with a basic understanding of the underlying concepts of quantum chemistry. It is both a text for second- or third-year undergraduates and a reference for researchers who need a quick introduction or refresher. All chemists and many biochemists, materials scientists, engineers, and physicists routinely use spectroscopic measurements and electronic structure computations in their work. The emphasis of Quantum Chemistry on explaining ideas rather than enumerating facts or presenting procedural details makes this an excellent foundation text/reference.

  20. Bibliography of information on mechanics of structural failure (hydrogen embrittlement, protective coatings, composite materials, NDE)

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.

    1976-01-01

    This bibliography is comprised of approximately 1,600 reference citations related to four problem areas in the mechanics of failure in aerospace structures. The bibliography represents a search of the literature published in the period 1962-1976, the effort being largely limited to documents published in the United States. Listings are subdivided into the four problem areas: Hydrogen Embrittlement; Protective Coatings; Composite Materials; and Nondestructive Evaluation. An author index is included.

  1. A magnetic-piezoelectric smart material-structure sensing three axis DC and AC magnetic-fields

    NASA Astrophysics Data System (ADS)

    Hung, Chiao-Fang; Chen, Chin-Chung; Yeh, Po-Chen; Chen, Po-Wen; Chung, Tien-Kan

    2017-12-01

    In this paper, we demonstrate a smart material-structure can sense not only three-axis AC magnetic-fields but also three-axis DC magnetic-fields. Under x-axis and z-axis AC magnetic field ranging from 0.2 to 3.2 gauss, sensing sensitivity of the smart material-structure stimulated at resonant frequency is approximate 8.79 and 2.80 mV/gauss, respectively. In addition, under x-axis and z-axis DC magnetic fields ranging from 2 to 12 gauss, the sensitivity of the smart material-structure is 1.24-1.54 and 1.25-1.41 mV/gauss, respectively. In addition, under x-axis and z-axis DC magnetic fields ranging from 12 to 20 gauss, the sensitivity of the smart material-structure is 5.17-6.2 and 3.97-4.57 mV/gauss, respectively. These experimental results show that the smart material-structure successfully achieves three-axis DC and AC magnetic sensing as we designed. Furthermore, we also compare the results of the AC and DC magnetic-field sensing to investigate discrepancies. Finally, when applying composite magnetic-fields to the smart material-structure, the smart material-structure shows decent outputs as expected (consistent to the sensing principle). In the future, we believe the smart material-structure capable of sensing AC and DC magnetic fields will have more applications than conventional structures capable of sensing only DC or AC magnetic field. Thus, the smart material-structure will be an important design reference for future magnetic-field sensing technologies.

  2. Automated generation and ensemble-learned matching of X-ray absorption spectra

    NASA Astrophysics Data System (ADS)

    Zheng, Chen; Mathew, Kiran; Chen, Chi; Chen, Yiming; Tang, Hanmei; Dozier, Alan; Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Piper, Louis F. J.; Persson, Kristin A.; Ong, Shyue Ping

    2018-12-01

    X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique to determine oxidation states, coordination environment, and other local atomic structure information. Analysis of XAS relies on comparison of measured spectra to reliable reference spectra. However, existing databases of XAS spectra are highly limited both in terms of the number of reference spectra available as well as the breadth of chemistry coverage. In this work, we report the development of XASdb, a large database of computed reference XAS, and an Ensemble-Learned Spectra IdEntification (ELSIE) algorithm for the matching of spectra. XASdb currently hosts more than 800,000 K-edge X-ray absorption near-edge spectra (XANES) for over 40,000 materials from the open-science Materials Project database. We discuss a high-throughput automation framework for FEFF calculations, built on robust, rigorously benchmarked parameters. FEFF is a computer program uses a real-space Green's function approach to calculate X-ray absorption spectra. We will demonstrate that the ELSIE algorithm, which combines 33 weak "learners" comprising a set of preprocessing steps and a similarity metric, can achieve up to 84.2% accuracy in identifying the correct oxidation state and coordination environment of a test set of 19 K-edge XANES spectra encompassing a diverse range of chemistries and crystal structures. The XASdb with the ELSIE algorithm has been integrated into a web application in the Materials Project, providing an important new public resource for the analysis of XAS to all materials researchers. Finally, the ELSIE algorithm itself has been made available as part of veidt, an open source machine-learning library for materials science.

  3. Notional-Functional Syllabus: From Theory to Classroom Applications.

    ERIC Educational Resources Information Center

    Knop, Constance K.

    A notional-functional syllabus is a set of materials to be learned by students of a second language. While learning to perform communicative activities, students practice language structures that refer to certain situations and ideas (notions). The language structures are organized to express different interactions (functions) that are possible…

  4. The Physics and Chemistry of Materials

    NASA Astrophysics Data System (ADS)

    Gersten, Joel I.; Smith, Frederick W.

    2001-06-01

    A comprehensive introduction to the structure, properties, and applications of materials This title provides the first unified treatment for the broad subject of materials. Authors Gersten and Smith use a fundamental approach to define the structure and properties of a wide range of solids on the basis of the local chemical bonding and atomic order present in the material. Emphasizing the physical and chemical origins of material properties, the book focuses on the most technologically important materials being utilized and developed by scientists and engineers. Appropriate for use in advanced materials courses, The Physics and Chemistry of Materials provides the background information necessary to assimilate the current academic and patent literature on materials and their applications. Problem sets, illustrations, and helpful tables complete this well-rounded new treatment. Five sections cover these important topics: * Structure of materials, including crystal structure, bonding in solids, diffraction and the reciprocal lattice, and order and disorder in solids * Physical properties of materials, including electrical, thermal, optical, magnetic, and mechanical properties * Classes of materials, including semiconductors, superconductors, magnetic materials, and optical materials in addition to metals, ceramics, polymers, dielectrics, and ferroelectrics * A section on surfaces, thin films, interfaces, and multilayers discusses the effects of spatial discontinuities in the physical and chemical structure of materials * A section on synthesis and processing examines the effects of synthesis on the structure and properties of various materials This book is enhanced by a Web-based supplement that offers advanced material together with an entire electronic chapter on the characterization of materials. The Physics and Chemistry of Materials is a complete introduction to the structure and properties of materials for students and an excellent reference for scientists and engineers.

  5. CRISPR/Cas9 Technology-Based Xenograft Tumors as Candidate Reference Materials for Multiple EML4-ALK Rearrangements Testing.

    PubMed

    Peng, Rongxue; Zhang, Rui; Lin, Guigao; Yang, Xin; Li, Ziyang; Zhang, Kuo; Zhang, Jiawei; Li, Jinming

    2017-09-01

    The echinoderm microtubule-associated protein-like 4 and anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (EML4-ALK) rearrangement is an important biomarker that plays a pivotal role in therapeutic decision making for non-small-cell lung cancer (NSCLC) patients. Ensuring accuracy and reproducibility of EML4-ALK testing by fluorescence in situ hybridization, immunohistochemistry, RT-PCR, and next-generation sequencing requires reliable reference materials for monitoring assay sensitivity and specificity. Herein, we developed novel reference materials for various kinds of EML4-ALK testing. CRISPR/Cas9 was used to edit various NSCLC cell lines containing EML4-ALK rearrangement variants 1, 2, and 3a/b. After s.c. inoculation, the formalin-fixed, paraffin-embedded (FFPE) samples from xenografts were prepared and tested for suitability as candidate reference materials by fluorescence in situ hybridization, immunohistochemistry, RT-PCR, and next-generation sequencing. Sample validation and commutability assessments showed that all types of FFPE samples derived from xenograft tumors have typical histological structures, and EML4-ALK testing results were similar to the clinical ALK-positive NSCLC specimens. Among the four methods for EML4-ALK detection, the validation test showed 100% concordance. Furthermore, these novel FFPE reference materials showed good stability and homogeneity. Without limitations on variant types and production, our novel FFPE samples based on CRISPR/Cas9 editing and xenografts are suitable as candidate reference materials for the validation, verification, internal quality control, and proficiency testing of EML4-ALK detection. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  6. Atomic Structure of Au 329(SR) 84 Faradaurate Plasmonic Nanomolecules

    DOE PAGES

    Kumara, Chanaka; Zuo, Xiaobing; Ilavsky, Jan; ...

    2015-04-03

    To design novel nanomaterials, it is important to precisely control the composition, determine the atomic structure, and manipulate the structure to tune the materials property. Here we present a comprehensive characterization of the material whose composition is Au 329(SR) 84 precisely, therefore referred to as a nanomolecule. The size homogeneity was shown by electron microscopy, solution X-ray scattering, and mass spectrometry. We proposed its atomic structure to contain the Au 260 core using experiments and modeling of a total-scattering-based atomic-pair distribution functional analysis. HAADF-STEM images shows fcc-like 2.0 ± 0.1 nm diameter nanomolecules.

  7. Design sensitivity analysis of nonlinear structural response

    NASA Technical Reports Server (NTRS)

    Cardoso, J. B.; Arora, J. S.

    1987-01-01

    A unified theory is described of design sensitivity analysis of linear and nonlinear structures for shape, nonshape and material selection problems. The concepts of reference volume and adjoint structure are used to develop the unified viewpoint. A general formula for design sensitivity analysis is derived. Simple analytical linear and nonlinear examples are used to interpret various terms of the formula and demonstrate its use.

  8. Development of Composite Honeycomb and Solid Laminate Reference Standards to Aid Aircraft Inspections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorrell, L.; Roach, D.

    1999-03-04

    The rapidly increasing use of composites on commercial airplanes coupled with the potential for economic savings associated with their use in aircraft structures means that the demand for composite materials technology will continue to increase. Inspecting these composite structures is a critical element in assuring their continued airworthiness. The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee (CACRC), is developing a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDImore » tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft. Two tasks, related to composite laminates and non-metallic composite honeycomb configurations, were addressed. A suite of 64 honeycomb panels, representing the bounding conditions of honeycomb construction on aircraft, were inspected using a wide array of NDI techniques. An analysis of the resulting data determined the variables that play a key role in setting up NDT equipment. This has resulted in a prototype set of minimum honeycomb reference standards that include these key variables. A sequence of subsequent tests determined that this minimum honeycomb reference standard set is able to fully support inspections over the fill range of honeycomb construction scenarios. Current tasks are aimed at optimizing the methods used to engineer realistic flaws into the specimens. In the solid composite laminate arena, we have identified what appears to be an excellent candidate, G11 Phenolic, as a generic solid laminate reference standard material. Testing to date has determined matches in key velocity and acoustic impedance properties, as well as, low attenuation relative to carbon laminates. Furthermore, comparisons of resonance testing response curves from the G11 Phenolic prototype standard was very similar to the resonance response curves measured on the existing carbon and fiberglass laminates. NDI data shows that this material should work for both pulse-echo (velocity-based) and resonance (acoustic impedance-based) inspections. Additional testing and industry review activities are underway to complete the validation of this material.« less

  9. Functional materials based on nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Surov, O. V.; Voronova, M. I.; Zakharov, A. G.

    2017-10-01

    The data on the synthesis of functional materials based on nanocrystalline cellulose (NCC) published over the past 10 years are analyzed. The liquid-crystal properties of NCC suspensions, methods of investigation of NCC suspensions and films, conditions for preserving chiral nematic structure in the NCC films after removal of the solvent and features of templated sol-gel synthesis of functional materials based on NCC are considered. The bibliography includes 106 references.

  10. Quantum Impurity Models as Reference Systems for Strongly Correlated Materials: The Road from the Kondo Impurity Model to First Principles Electronic Structure Calculations with Dynamical Mean-Field Theory

    NASA Astrophysics Data System (ADS)

    Kotliar, Gabriel

    2005-01-01

    Dynamical mean field theory (DMFT) relates extended systems (bulk solids, surfaces and interfaces) to quantum impurity models (QIM) satisfying a self-consistency condition. This mapping provides an economic description of correlated electron materials. It is currently used in practical computations of physical properties of real materials. It has also great conceptual value, providing a simple picture of correlated electron phenomena on the lattice, using concepts derived from quantum impurity models such as the Kondo effect. DMFT can also be formulated as a first principles electronic structure method and is applicable to correlated materials.

  11. 48 CFR 252.215-7009 - Proposal adequacy checklist.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... estimating relationships (labor hours or material) proposed on other than a discrete basis? 10. FAR 15.408... descriptions—(e.g.; Statement of Work reference, applicable CLIN, Work Breakdown Structure, rationale for...

  12. Interdisciplinary optimum design. [of aerospace structures

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw; Haftka, Raphael T.

    1986-01-01

    Problems related to interdisciplinary interactions in the design of a complex engineering systems are examined with reference to aerospace applications. The interdisciplinary optimization problems examined include those dealing with controls and structures, materials and structures, control and stability, structure and aerodynamics, and structure and thermodynamics. The discussion is illustrated by the following specific applications: integrated aerodynamic/structural optimization of glider wing; optimization of an antenna parabolic dish structure for minimum weight and prescribed emitted signal gain; and a multilevel optimization study of a transport aircraft.

  13. A Development Strategy for Creating a Suite of Reference Materials for the in-situ Microanalysis of Non-conventional Raw Materials

    NASA Astrophysics Data System (ADS)

    Renno, A. D.; Merchel, S.; Michalak, P. P.; Munnik, F.; Wiedenbeck, M.

    2010-12-01

    Recent economic trends regarding the supply of rare metals readily justify scientific research into non-conventional raw materials, where a particular need is a better understanding of the relationship between mineralogy, microstructure and the distribution of key metals within ore deposits (geometallurgy). Achieving these goals will require an extensive usage of in-situ microanalytical techniques capable of spatially resolving material heterogeneities which can be key for understanding better resource utilization. The availability of certified reference materials (CRMs) is an essential prerequisite for (1) validating new analytical methods, (2) demonstrating data quality to the contracting authorities, (3) supporting method development and instrument calibration, and (4) establishing traceability between new analytical approaches and existing data sets. This need has led to the granting of funding by the European Union and the German Free State of Saxony for a program to develop such reference materials . This effort will apply the following strategies during the selection of the phases: (1) will use exclusively synthetic minerals, thereby providing large volumes of homogeneous starting material. (2) will focus on matrices which are capable of incorporating many ‘important’ elements while avoid exotic compositions which would not be optimal matrix matches. (3) will emphasise those phases which remain stable during the various microanalytical procedure. This initiative will assess the homogeneity of the reference materials at sampling sizes ranging between 50 and 1 µm; it is also intended to document crystal structural homogeneity too, as this too may potentially impact specific analytical methods. As far as possible both definitive methods as well as methods involving matrix corrections will be used for determining the compositions of the of the individual materials. A critical challenge will be the validation of the determination of analytes concentrations as sub-µg sampling masses. It is planned to cooperate with those who are interested in the development of such reference materials and we invite them to take part in round-robin exercises.

  14. Full depth reclamation : workshop materials.

    DOT National Transportation Integrated Search

    2011-01-01

    Rehabilitating an old pavement by pulverizing and stabilizing the existing pavement is a process referred to as Full Depth Reclamation (FDR). This process shows great potential as an economical rehabilitation alternative that provides deep structural...

  15. Roofing research: a bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, J.N.; Nichols, C.L.

    1981-04-01

    A listing, indexed by subject, primary author, and secondary authors, is presented of some 530 references in the literature related to roofing research - materials, construction, and in-service problems. Structural design of roofing systems is not covered.

  16. How To Use Crystallographic Information in Teaching First-Year Chemistry.

    ERIC Educational Resources Information Center

    Bevan, D. J. M.; And Others

    1988-01-01

    Emphasizes the role that crystallography plays and has played in building up the body of chemical fact. Shows how the teaching of much of this material is illuminated by reference to crystal structures and crystallochemical relationships in all areas of chemistry. Discusses close packing, silicate structures, and salt hydrates. (CW)

  17. ROMPS critical design review. Volume 2: Robot module design documentation

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1992-01-01

    The robot module design documentation for the Remote Operated Materials Processing in Space (ROMPS) experiment is compiled. This volume presents the following information: robot module modifications; Easylab commands definitions and flowcharts; Easylab program definitions and flowcharts; robot module fault conditions and structure charts; and C-DOC flow structure and cross references.

  18. ENGINEERING BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANICS AND INORGANICS

    EPA Science Inventory

    Solidification refers to techniques that encapsulate hazardous waste into a solid material of high structural integrity. Encapsulation involves either fine waste particles (microencapsulation) or a large block or container of wastes (macroencapsulation). Stabilization refe...

  19. Properties of HIPed stainless steel powder

    NASA Astrophysics Data System (ADS)

    Dellis, Ch.; Le Marois, G.; Gentzbittel, J. M.; Robert, G.; Moret, F.

    1996-10-01

    In the current design of ITER primary wall, 316LN stainless steel is the reference structural material. Austenitic stainless steel is used for water-cooling channels and structures. As material data on hot isostatic pressed (HIP) 316LN were not available in open literature and from powder producers, the main properties of unirradiated samples have been measured in CEA/CEREM. Fully dense material without any porosity is obtained when appropriate HIP parameters are applied. Microstructural examination and mechanical properties are confirmed that the HIPed 316LN material is equivalent to a very good fine-grain, isotropic and uniformly forged 316LN. Moreover, ultrasonic inspection showed that this fine and uniform microstructure produced a remarkably low noise, which allow the use of transverse waves at very high frequencies (4 MHz). Defects undetectable in forged material will be easily detected in HIPed material.

  20. Covalent adaptable networks: smart, reconfigurable and responsive network systems.

    PubMed

    Kloxin, Christopher J; Bowman, Christopher N

    2013-09-07

    Covalently crosslinked materials, classically referred to as thermosets, represent a broad class of elastic materials that readily retain their shape and molecular architecture through covalent bonds that are ubiquitous throughout the network structure. These materials, in particular in their swollen gel state, have been widely used as stimuli responsive materials with their ability to change volume in response to changes in temperature, pH, or other solvent conditions and have also been used in shape memory applications. However, the existence of a permanent, unalterable shape and structure dictated by the covalently crosslinked structure has dramatically limited their abilities in this and many other areas. These materials are not generally reconfigurable, recyclable, reprocessable, and have limited ability to alter permanently their stress state, topography, topology, or structure. Recently, a new paradigm has been explored in crosslinked polymers - that of covalent adaptable networks (CANs) in which covalently crosslinked networks are formed such that triggerable, reversible chemical structures persist throughout the network. These reversible covalent bonds can be triggered through molecular triggers, light or other incident radiation, or temperature changes. Upon application of this stimulus, rather than causing a temporary shape change, the CAN structure responds by permanently adjusting its structure through either reversible addition/condensation or through reversible bond exchange mechanisms, either of which allow the material to essentially reequilibrate to its new state and condition. Here, we provide a tutorial review on these materials and their responsiveness to applied stimuli. In particular, we review the broad classification of these materials, the nature of the chemical bonds that enable the adaptable structure, how the properties of these materials depend on the reversible structure, and how the application of a stimulus causes these materials to alter their shape, topography, and properties.

  1. Quantitative Analysis of Plutonium Content in Particles Collected from a Certified Reference Material by Total Nuclear Reaction Energy (Q Value) Spectroscopy

    NASA Astrophysics Data System (ADS)

    Croce, M. P.; Hoover, A. S.; Rabin, M. W.; Bond, E. M.; Wolfsberg, L. E.; Schmidt, D. R.; Ullom, J. N.

    2016-08-01

    Microcalorimeters with embedded radioisotopes are an emerging category of sensor with advantages over existing methods for isotopic analysis of trace-level nuclear materials. For each nuclear decay, the energy of all decay products captured by the absorber (alpha particles, gamma rays, X-rays, electrons, daughter nuclei, etc.) is measured in one pulse. For alpha-decaying isotopes, this gives a measurement of the total nuclear reaction energy (Q value) and the spectra consist of well-separated, narrow peaks. We have demonstrated a simple mechanical alloying process to create an absorber structure consisting of a gold matrix with small inclusions of a radioactive sample. This absorber structure provides an optimized energy thermalization environment, resulting in high-resolution spectra with minimal tailing. We have applied this process to the analysis of particles collected from the surface of a plutonium metal certified reference material (CRM-126A from New Brunswick Laboratory) and demonstrated isotopic analysis by microcalorimeter Q value spectroscopy. Energy resolution from the Gaussian component of a Bortels function fit was 1.3 keV FWHM at 5244 keV. The collected particles were integrated directly into the detector absorber without any chemical processing. The ^{238}Pu/^{239}Pu and ^{240}Pu/^{239}Pu mass ratios were measured and the results confirmed against the certificate of analysis for the reference material. We also demonstrated inter-element analysis capability by measuring the ^{241}Am/^{239}Pu mass ratio.

  2. Impact of nanotechnology on drug delivery.

    PubMed

    Farokhzad, Omid C; Langer, Robert

    2009-01-27

    Nanotechnology is the engineering and manufacturing of materials at the atomic and molecular scale. In its strictest definition from the National Nanotechnology Initiative, nanotechnology refers to structures roughly in the 1-100 nm size regime in at least one dimension. Despite this size restriction, nanotechnology commonly refers to structures that are up to several hundred nanometers in size and that are developed by top-down or bottom-up engineering of individual components. Herein, we focus on the application of nanotechnology to drug delivery and highlight several areas of opportunity where current and emerging nanotechnologies could enable entirely novel classes of therapeutics.

  3. Properties of PMR Polyimides Improved by Preparation of Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi G.; Lee, Andre

    2005-01-01

    The field of hybrid organic-inorganic materials has grown drastically over the last several years. This interest stems from our ever-increasing ability to custom-build and control molecular structure at several length scales. This ability to control both the composition and structure of hybrid materials is sometimes broadly referred to as nanocomposite systems. One class of hybrid (organic-inorganic) nanostructured material is polyhedral oligomeric silsesquioxane (POSS), shown in the preceding diagram. The hybrid composition gives POSS materials dramatically enhanced properties relative to traditional hydrocarbons and inorganics. An important benefit of this technology is that it makes possible the formulations of nanostructured chemicals with excellent thermal and oxidative stability. This is largely due to the inorganic component.

  4. Improving aircraft composite inspections using optimized reference standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, D.; Dorrell, L.; Kollgaard, J.

    1998-10-01

    The rapidly increasing use of composites on commercial airplanes coupled with the potential for economic savings associated with their use in aircraft structures means that the demand for composite materials technology will continue to increase. Inspecting these composite structures is a critical element in assuring this continued airworthiness. The FAA`s Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair committee, is developing a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI testsmore » on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft. Two tasks, related to composite laminates and non-metallic composite honeycomb configurations, were addressed.« less

  5. Harmonised framework for ecological risk assessment of sediments from ports and estuarine zones of North and South Atlantic.

    PubMed

    Choueri, R B; Cesar, A; Abessa, D M S; Torres, R J; Riba, I; Pereira, C D S; Nascimento, M R L; Morais, R D; Mozeto, A A; DelValls, T A

    2010-04-01

    This paper presents a harmonised framework of sediment quality assessment and dredging material characterisation for estuaries and port zones of North and South Atlantic. This framework, based on the weight-of-evidence approach, provides a structure and a process for conducting sediment/dredging material assessment that leads to a decision. The main structure consists of "step 1" (examination of available data); "step 2" (chemical characterisation and toxicity assessment); "decision 1" (any chemical level higher than reference values? are sediments toxic?); "step 3" (assessment of benthic community structure); "step 4" (integration of the results); "decision 2" (are sediments toxic or benthic community impaired?); "step 5" (construction of the decision matrix) and "decision 3" (is there environmental risk?). The sequence of assessments may be interrupted when the information obtained is judged to be sufficient for a correct characterisation of the risk posed by the sediments/dredging material. This framework brought novel features compared to other sediment/dredging material risk assessment frameworks: data integration through multivariate analysis allows the identification of which samples are toxic and/or related to impaired benthic communities; it also discriminates the chemicals responsible for negative biological effects; and the framework dispenses the use of a reference area. We demonstrated the successful application of this framework in different port and estuarine zones of the North (Gulf of Cádiz) and South Atlantic (Santos and Paranaguá Estuarine Systems).

  6. Energy Based Multiscale Modeling with Non-Periodic Boundary Conditions

    DTIC Science & Technology

    2013-05-13

    below in Figure 8. At each incremental step in the analysis , the user material defined subroutine (UMAT) was utilized to perform the communication...initiation and modeling using XFEM. Appropriate localization schemes will be developed to allow for deformations conducive for crack opening...REFERENCES 1. Talreja R., 2006, “Damage analysis for structural integrity and durability of composite materials ,” Fatigue & Fracture of

  7. Assessment of seismic design response factors of concrete wall buildings

    NASA Astrophysics Data System (ADS)

    Mwafy, Aman

    2011-03-01

    To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.

  8. Information Systems for Subject Specialists: A Multi-Modal Approach to Indexing and Classification.

    ERIC Educational Resources Information Center

    Swift, D.F.; And Others

    A fundamental problem in the two broad approaches to indexing in the social sciences--providing structure using preferred terms, cross references, and groupings of sets of materials, or compiling a concordance of an author's terms based on occurrence, leaving users free to impose their own structure--is that different indexers and users focus on…

  9. Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.

    2011-01-01

    This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.

  10. Biodegradable starch-based polymeric materials

    NASA Astrophysics Data System (ADS)

    Suvorova, Anna I.; Tyukova, Irina S.; Trufanova, Elena I.

    2000-05-01

    The effects of low-molecular-weight additives, temperature and mechanical action on the structure and properties of starch are discussed. Special attention is given to mixtures of starch with synthetic polymers, e.g., co-polymers of ethylene with vinyl acetate, vinyl alcohol, acrylic acid, cellulose derivatives and other natural polymers. These mixtures can be used in the development of novel environmentally safe materials (films, coatings, packaging materials) and various articles for short-term use. The bibliography includes 105 references.

  11. References and conference proceedings towards the understanding of fracture mechanics

    NASA Technical Reports Server (NTRS)

    Toor, P. M.; Hudson, C. M.

    1986-01-01

    A list of books, reports, periodicals, and conference proceedings, as well as individual papers, centered on specific aspects of fracture phenomenon has been compiled by the ASTM Committee E-24 on Fracture Testing. A list of basic references includes the articles on the development of fracture toughness, evaluation of stress intensity factors, fatigue crack growth, fracture testing, fracture of brittle materials, and fractography. Special attention is given to the references on application of fracture mechanics to new designs and on reevaluation of failed designs, many of them concerned with naval and aircraft structures.

  12. Machine learning for the structure-energy-property landscapes of molecular crystals.

    PubMed

    Musil, Félix; De, Sandip; Yang, Jack; Campbell, Joshua E; Day, Graeme M; Ceriotti, Michele

    2018-02-07

    Molecular crystals play an important role in several fields of science and technology. They frequently crystallize in different polymorphs with substantially different physical properties. To help guide the synthesis of candidate materials, atomic-scale modelling can be used to enumerate the stable polymorphs and to predict their properties, as well as to propose heuristic rules to rationalize the correlations between crystal structure and materials properties. Here we show how a recently-developed machine-learning (ML) framework can be used to achieve inexpensive and accurate predictions of the stability and properties of polymorphs, and a data-driven classification that is less biased and more flexible than typical heuristic rules. We discuss, as examples, the lattice energy and property landscapes of pentacene and two azapentacene isomers that are of interest as organic semiconductor materials. We show that we can estimate force field or DFT lattice energies with sub-kJ mol -1 accuracy, using only a few hundred reference configurations, and reduce by a factor of ten the computational effort needed to predict charge mobility in the crystal structures. The automatic structural classification of the polymorphs reveals a more detailed picture of molecular packing than that provided by conventional heuristics, and helps disentangle the role of hydrogen bonded and π-stacking interactions in determining molecular self-assembly. This observation demonstrates that ML is not just a black-box scheme to interpolate between reference calculations, but can also be used as a tool to gain intuitive insights into structure-property relations in molecular crystal engineering.

  13. [Evidential value of dental materials identification by infrared spectroscopy in forensic medicine opinionating].

    PubMed

    Wachowiak, Roman; Strach, Bogna

    2007-01-01

    The potential for a release of dental restoration material or a spontaneous loss of a tooth structure fragment in the course of mastication frequently requires a reliable identification of the lost fragment in order to confirm its origin. The consequences of incidental mechanical injuries -- in view of the presence of dangerous solid fragments -- become particularly important in cases of using a chewing gum. The problem involves distinguishing between the structure of a fragment of restoration or a broken tooth structure and incidental contaminants of chewing gum produced in the process of gum manufacturing. The consequences of mechanical injuries or exposure to potential structural tooth damage in the course of gum chewing provide a subject for numerous litigations against manufacturer of chewing gum and require appropriate identification of the material. The studies were conducted using solid phase infrared spectroscopy in the range of 500-4000 wavelength (cm(-1)) for a quick identification of dental materials used in the dental practice. A database of infrared transmission spectra characteristic of commonly employed dental filling materials was prepared to provide a systemic reference system, useful in controversial interpretation cases.

  14. Structural and diffusion characterizations of steam-stable mesostructured zeolitic UL-ZSM-5 materials.

    PubMed

    Vinh-Thang, Hoang; Huang, Qinglin; Ungureanu, Adrian; Eić, Mladen; Trong-On, Do; Kaliaguine, Serge

    2006-05-09

    A series of mesoporous UL-ZSM-5 materials (Si/Al = 50) with different micro- and mesoporosity as well as crystallinity was prepared following the procedure proposed in one of our recent studies (Trong-On, D.; Kaliaguine, S. Angew. Chem. Int. Ed. 2001, 40, 3248-3251. Trong-On, D.; Kaliaguine, S. U.S. Patent 6,669,924, B1, 2003). These materials have zeolitic structure in the form of nanoparticles intergrown in the walls of the amorphous wormhole-like aluminosilicate mesopores of Al-Meso-50, which was used as a precursor in the synthesis. The structure, crystallinity, and textural properties of the synthesized materials, as well as a reference ZSM-5 zeolite sample, were determined by X-ray diffraction (XRD), transmission electron microscopy (TEM)/scanning electron microscoy (SEM) analyses, Fourier transform infrared spectroscopy (FTIR), 27Al magic angle spinning (MAS) nuclear magnetic resonance (NMR), and nitrogen adsorption/desorption techniques. The acid properties were examined by FTIR of adsorbed pyridine. UL-ZSM-5 materials were shown to be highly hydrothermally stable. The diffusion of two C7 hydrocarbons, i.e., n-heptane and toluene, in four UL-ZSM-5 materials with different microporosities, related acidities, and crystallinities were investigated using the zero-length column (ZLC) method. Furthermore, the wormhole-like mesostructured aluminosilicate precursor (Al-Meso-50) and a reference MFI zeolite sample were also investigated using the same technique. A theoretical model considering a combination of mesopore diffusion (with surface slip in the main channels) with an activated, mainly surface diffusion mechanism in the intrawall biporous structure, was proposed and employed to interpret the experimental ZLC results. A classical Knudsen type of diffusion was replaced by an activated surface slip type of diffusion mechanism in the mesopores. The transport of n-heptane in UL-ZSM-5 materials was found to be mainly controlled by mesopore diffusion in the main-channel structure, while that of toluene was dominated by the intrawall diffusion process. Diffusion activation energies of n-heptane are about 2 times higher in comparison to toluene, which has a larger kinetic diameter. The main mesopore channel structure seems to appreciably contribute to the overall mass transport. Furthermore, the effect of hydrothermal treatment (20% steam at 800 degrees C for 24 h) on the diffusion of these two sorbates on UL-ZSM-5 materials was also evaluated.

  15. Proceedings of the Spacecraft Charging Technology Conference: Executive Summary

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Whipple, E. C., Jr.; Stevens, N. J.; Minges, M. L.; Lehn, W. L.; Bunn, M. H.

    1977-01-01

    Aerospace environments are reviewed in reference to spacecraft charging. Modelling, a theoretical scheme which can be used to describe the structure of the sheath around the spacecraft and to calculate the charging currents within, is discussed. Materials characterization is considered for experimental determination of the behavior of typical spacecraft materials when exposed to simulated geomagnetic substorm conditions. Materials development is also examined for controlling and minimizing spacecraft charging or at least for distributing the charge in an equipotential manner, using electrical conductive surfaces for materials exposed to space environment.

  16. Recent advances on polyoxometalate-based molecular and composite materials.

    PubMed

    Song, Yu-Fei; Tsunashima, Ryo

    2012-11-21

    Polyoxometalates (POMs) are a subset of metal oxides with unique physical and chemical properties, which can be reliably modified through various techniques and methods to develop sophisticated materials and devices. In parallel with the large number of new crystal structures reported in the literature, the application of these POMs towards multifunctional materials has attracted considerable attention. This critical review summarizes recent progress on POM-based molecular and composite materials, and particularly highlights the emerging areas that are closely related to surface, electronic, energy, environment, life science, etc. (171 references).

  17. Hybrid bandgap engineering for super-hetero-epitaxial semiconductor materials, and products thereof

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    "Super-hetero-epitaxial" combinations comprise epitaxial growth of one material on a different material with different crystal structure. Compatible crystal structures may be identified using a "Tri-Unity" system. New bandgap engineering diagrams are provided for each class of combination, based on determination of hybrid lattice constants for the constituent materials in accordance with lattice-matching equations. Using known bandgap figures for previously tested materials, new materials with lattice constants that match desired substrates and have the desired bandgap properties may be formulated by reference to the diagrams and lattice matching equations. In one embodiment, this analysis makes it possible to formulate new super-hetero-epitaxial semiconductor systems, such as systems based on group IV alloys on c-plane LaF.sub.3; group IV alloys on c-plane langasite; Group III-V alloys on c-plane langasite; and group II-VI alloys on c-plane sapphire.

  18. An Empirical Study on Information Prominence Reflected in Sentence Structures of Chinese College EFL Argumentative Writing

    ERIC Educational Resources Information Center

    Ningling, Wei

    2015-01-01

    Prominence, as an important dimension of cognitive construal, refers to the capacity to evoke a certain substructure as the focus of attention, which can be materialized in a variety of semantic and grammatical expressions (Langacker, 1987). Subject of a sentence (Zhang, 2011) and specific sentence structures (Lin, 2013) can bring a substructure…

  19. Steel skin - SMC laminate structures for lightweight automotive manufacturing

    NASA Astrophysics Data System (ADS)

    Quagliato, Luca; Jang, Changsoon; Murugesan, Mohanraj; Kim, Naksoo

    2017-09-01

    In the present research work an innovative material, made of steel skin and sheet molding compound core, is presented and is aimed to be utilized for the production of automotive body frames. For a precise description of the laminate structure, the material properties of all the components, including the adhesive utilized as an interlayer, have been carried out, along with the simple tension test of the composite material. The result have shown that the proposed laminate structure has a specific yield strength 114% higher than 6061 T6 aluminum, 34% higher than 7075 T6 aluminum, 186% higher than AISI 304 stainless steel (30HRC) and 42% than SK5 high-strength steel (52HRC), showing its reliability and convenience for the realization of automotive components. After calibrating the material properties of the laminate structure, and utilizing as reference the simple tension results of the laminate structure, the derived material properties have been utilized for the simulation of the mechanical behavior of an automotive B-pillar. The results have been compared with those of a standard B-pillar made of steel, showing that the MS-SMC laminate structure manifests load and impact carry capacity comparable with those of high strength steel, while granting, at least, an 11% weight reduction.

  20. Jumping Genes: The Transposable DNAs of Bacteria.

    ERIC Educational Resources Information Center

    Berg, Claire M.; Berg, Douglas E.

    1984-01-01

    Transposons are transposable elements that carry genes for antibiotic resistance. Provides background information on the structure and organization of these "jumping genes" in bacteria. Also describes the use of transposons in tagging genes and lists pertinent references and resource materials. (DH)

  1. Bibliography on the Design and Performance of Rail Track Structures

    DOT National Transportation Integrated Search

    1974-01-01

    This bibliography was prepared as part of the Rail Supporting Technology Program being sponsored by the Rail Programs Branch of the Urban Mass Transportation Administration. It is based on the reference material that was used to evaluate the technica...

  2. Characteristics of the transmission loss apparatus at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Grosveld, F. W.

    1983-01-01

    A description of the Transmission Loss Apparatus at NASA Langley Research Center, which is specifically designed to accommodate general aviation type aircraft structures, is presented. The measurement methodology, referred to as the Plate Reference Method, is discussed and compared with the classical method as described in the Standard of the American Society for Testing and Materials. This measurement procedure enables reliable and accurate noise transmission loss measurements down to the 50 Hz one-third octave band. The transmission loss characteristics of add-on acoustical treatments, applied to the basic structure, can be established by inclusion of appropriate absorption corrections for the treatment.

  3. Sierra Structural Dynamics Theory Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reese, Garth M.

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas.more » The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.« less

  4. Two dimensional disorder in black phosphorus and layered monochalcogenides

    NASA Astrophysics Data System (ADS)

    Barraza-Lopez, Salvador; Mehboudi, Mehrshad; Kumar, Pradeep; Harriss, Edmund O.; Churchill, Hugh O. H.; Dorio, Alex M.; Zhu, Wenjuan; van der Zande, Arend; Pacheco Sanjuan, Alejandro A.

    The degeneracies of the structural ground state of materials with a layered orthorhombic structure such as black phosphorus and layered monochalcogenides GeS, GeSe, SnS, and SnSe, lead to an order/disorder transition in two dimensions at finite temperature. This transition has consequences on applications based on these materials requiring a crystalline two-dimensional structure. Details including a Potts model that explains the two-dimensional transition, among other results, will be given in this talk. References: M. Mehboudi, A.M. Dorio, W. Zhu, A. van der Zande, H.O.H. Churchill, A.A. Pacheco Sanjuan, E.O.H. Harris, P. Kumar, and S. Barraza-Lopez. arXiv:1510.09153.

  5. Geometry in Biomimetic Network: Double Gyroid to Pseudo-Single Gyroid in Nanohybrid Materials

    NASA Astrophysics Data System (ADS)

    Hsueh, Han-Yu; Ho, Rong-Ming; Hung, Yu-Chueh; Ling, Yi-Chun; Hasegawa, Hirokazu

    2013-03-01

    Biological systems have developed delicately arranged micro- and architectures to produce striking optical effects since millions of years ago. Inspired by the textures of butterfly wings with single gyroid (SG) structure, herein, we aim to fabricate biocompatible and robust materials with SG-like structure in nanometer size so as to give new materials with unprecedented optical properties for applications. Biommicking from the biological photonic structures of butterfly wings, a double gyroid (DG) structure in nanometer size is obtained from the self-assembly of polystyrene-b-poly(L-lactide) (PS-PLLA). To acquire robust backbone networks, inorganic networks in polymer matrix are fabricated by using the hydrolyzed PS-PLLA with DG structure as a template for sol-gel reaction. Owing to the soft polymer matrix, two co-continuous inorganic networks embedded in the polymer matrix can be rearranged by thermal annealing at temperature above the glass transition of the polymer. Consequently, the rearrangement of these inorganic networks leads the formation of SG-like structure possessing unique nanohybrids with ordered texture. This unique nanomaterials with SG-like structure is referred as a pseudo-SG (p-SG) nanohybrids.

  6. Advanced Ceramic Materials for Sharp Hot Structures: Material Development and On-Ground Arc-Jet Qualification Testing on Scaled Demonstrators

    NASA Astrophysics Data System (ADS)

    Scatteia, L.; Tomassetti, G.; Rufolo, G.; De Filippis, F.; Marino, G.

    2005-02-01

    This paper describes the work performed by the Italian Aerospace Research Centre (C.I.R.A. S.c.P.A.) in a technology project focused on the applicability of modified diboride compounds structures to the manufacturing of high performance and slender shaped hot structures for reusable launch vehicles. A prototypal multi-material structure, which couple reinforced diborides to a C/SiC frame, has been built with the aim to demonstrate the applicability of an innovative concept of nose cap to the fabrication of real parts to be installed ant subsequently tested on the flying test bed currently under development at CIRA. Particular relevance is given to the on-ground qualification test of the nose-cap scaled demonstrator which is underway at CIRA Arc-Jet facility SCIROCCO. Considering the specific typology of materials investigated, up to date, a consistent tests campaign at laboratory level has been performed and concluded in order to create a complete materials data base. The measured materials properties have been then used as input for the design phase that also used as inputs the aero-thermal loads associated with a reference re-entry mission. Our major preliminary findings indicate that the structure is thermally fully compliant with the environment requirements and shows local mechanical criticalities in specific areas such as the materials interfaces and hot/cold joining parts.

  7. Effect of Transitioning from Standard Reference Material 2806a to Standard Reference Material 2806b for Light Obscuration Particle Countering

    DTIC Science & Technology

    2016-04-01

    Reference Material 2806b for Light Obscuration Particle Countering April 2016 UNCLASSIFIED UNCLASSIFIED Joel Schmitigal 27809 Standard Form 298 (Rev...Standard Reference Material 2806b for Light Obscuration Particle Countering 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Reference Material 2806a to Standard Reference Material 2806b for Light Obscuration Particle Countering Joel Schmitigal Force Projection

  8. Composite Materials Handbook. Volume 1. Polymer Matrix Composites Guidelines for Characterization of Structural Materials

    DTIC Science & Technology

    2002-06-17

    power law type (References 6.8.6.1(h) and (i)). Various attempts have been made to use fracture mechanics based methods for predicting failure of...participate in the MIL-HDBK-17 coordination activity . 7. All information and data contained in this handbook have been coordinated with industry and the U.S...for statistically- based properties ............................. 6 2.2.3 Issues of data equivalence

  9. Milling induced amorphisation and recrystallization of α-lactose monohydrate.

    PubMed

    Badal Tejedor, Maria; Pazesh, Samaneh; Nordgren, Niklas; Schuleit, Michael; Rutland, Mark W; Alderborn, Göran; Millqvist-Fureby, Anna

    2018-02-15

    Preprocessing of pharmaceutical powders is a common procedure to condition the materials for a better manufacturing performance. However, such operations may induce undesired material properties modifications when conditioning particle size through milling, for example. Modification of both surface and bulk material structure will change the material properties, thus affecting the processability of the powder. Hence it is essential to control the material transformations that occur during milling. Topographical and mechanical changes in surface properties can be a preliminary indication of further material transformations. Therefore a surface evaluation of the α-lactose monohydrate after short and prolonged milling times has been performed. Unprocessed α-lactose monohydrate and spray dried lactose were evaluated in parallel to the milled samples as reference examples of the crystalline and amorphous lactose structure. Morphological differences between unprocessed α-lactose, 1 h and 20 h milled lactose and spray dried lactose were detected from SEM and AFM images. Additionally, AFM was used to simultaneously characterize particle surface amorphicity by measuring energy dissipation. Extensive surface amorphicity was detected after 1 h of milling while prolonged milling times showed only a moderate particle surface amorphisation. Bulk material characterization performed with DSC indicated a partial amorphicity for the 1 h milled lactose and a fully amorphous thermal profile for the 20 h milled lactose. The temperature profiles however, were shifted somewhat in the comparison to the amorphous reference, particularly after extended milling, suggesting a different amorphous state compared to the spray-dried material. Water loss during milling was measured with TGA, showing lower water content for the lactose amorphized through milling compared to spray dried amorphous lactose. The combined results suggest a surface-bulk propagation of the amorphicity during milling in combination with a different amorphous structural conformation to that of the amorphous spray dried lactose. The hardened surface may be due to either surface crystallization of lactose or to formation of a low-water glass transition. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Microscopic Electronic and Mechanical Properties of Ultra-Thin Layered Materials

    DTIC Science & Technology

    2016-07-25

    Graphene single layers grown by chemical vapor deposition on single crystal Cu substrates are subject to nonuniform physisorption strains that...the observed highly nonuniform strains. 4. Connecting dopant bond type with electronic structure in N-doped graphene (reference [4]) Robust methods

  11. Summary of Information Relating to Gust Loads on Airplanes

    NASA Technical Reports Server (NTRS)

    Donely, Philip

    1950-01-01

    Available information on gust structure, airplane reactions, and pertinent operating statistics has been examined. This report attempts to coordinate this information with reference to the prediction of gust loads on airplanes. The material covered represents research up to October 1947. (author)

  12. Determination of mechanical properties of carbon/epoxy plates by tensile stress test

    NASA Astrophysics Data System (ADS)

    Bere, Paul; Krolczyk, Jolanta B.

    2017-10-01

    The polymeric composite materials used in aerospace, military, medical or racing cars manufacturing end up being used in our daily life Whether we refer to the performing vehicles, subassemblies or parts for aircrafts, wind, telegraph poles, or medical prostheses they all are present in our lives and they are made of composite materials (CM). This paper presents research regarding three different composite materials, plates by carbon fiber, in epoxy matrix. Starting with materials presentation, manufacturing methodology and determination of mechanical properties at carbon fiber/epoxy were done. Vacuum bag technology to obtain the composite structure offer opportunity to get a very compact and homogeny composite structure. For the moment this technology are adequate for high performances pieces. The mechanical characteristics of plates made of composite materials reinforced presented indicates closed value like metal materials. Based on the results, a comparative study between the reinforced materials typically used to manufacture the plates of CM is carried out.

  13. Frequency Response of an Aircraft Wing with Discrete Source Damage Using Equivalent Plate Analysis

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, T.; Eldred, Lloyd B.

    2007-01-01

    An equivalent plate procedure is developed to provide a computationally efficient means of matching the stiffness and frequencies of flight vehicle wing structures for prescribed loading conditions. Several new approaches are proposed and studied to match the stiffness and first five natural frequencies of the two reference models with and without damage. One approach divides the candidate reference plate into multiple zones in which stiffness and mass can be varied using a variety of materials including aluminum, graphite-epoxy, and foam-core graphite-epoxy sandwiches. Another approach places point masses along the edge of the stiffness-matched plate to tune the natural frequencies. Both approaches are successful at matching the stiffness and natural frequencies of the reference plates and provide useful insight into determination of crucial features in equivalent plate models of aircraft wing structures.

  14. The quataron concept: a key to solve the problem of the nanostate

    NASA Astrophysics Data System (ADS)

    Askhabov, A. M.

    2003-04-01

    In a number of our works (Askhabov, 1998-2002) we have described a set of ideas and principles dealing with structural organization of substance in the nanorange and its role for formation of crystalline and noncrystalline materials. These ideas have been collectively referred to as the “quataron concept”. Central in this new concept is the idea that there are specific nanosize clusters arising under non-equilibrium conditions. These clusters are understood as a peculiar form of structural organization of substance at the nanolevel and referred to as "hidden" phase clusters or quatarons. As inequilibrium objects, quatarons are capable of self-organization and self-development. With their valencies fully realized (in covalent interactions), they can become large molecules; with a three-dimensional ordering (atom arrangement in a crystal lattice) they will produce crystalline particles. Quatarons are the basis for all kinds of equilibrium nanostructures from ordinary tetra- and octahedral groupings to the widely known fullerenes or dense dodecahedral and icosahedral clusters, colloidal, fractal particles. In particular, the quataron theory offers a very simple solution to the fullerene problem. Quatarons are fullerene predecessors. The fullerene architecture is dictated by hollow quatarons. Besides, it has been found that only clusters more than ~1.2 nm in size can become potenial centers of crystallization. Thus, quatarons seem to be behind all the rest of nanoparticles, including nanocrystals. This theory also broadens our understanding of the amorphous state. If for some reason quatarons or their aggregates fail to crystallize, for example, as a result of the fractal structure of the cluster surface or owing to their non-crystallographic (icosahedral) shape, then in the condensed state they give rise to a special class of solid ultradisperse materials (quatarites) of various degrees of ordering. The closest analogue of such materials is opal, a material made up of one-size spherical silica particles. A well-ordered material composed of carbon fullerenes is known as fullerite. The quataron concept will produce a profound effect on the mineralogical science, physics and chemistry of minerals. Already now we have obviously reached the point where we need to revise some of the fundamental genetic, structural and classificational issues. In particular, what was said above about the structure and formation of noncrystalline materials dictates the necessity of a broader understanding of the mineral. This would result in that a large number of materials now referred to as mineraloids will fall into the area of minerals and will be considered as new mineral species, which would mean that minerals are not only natural objects (chemical compounds) of crystalline structure but also X-ray amorphous solids of certain arrangement of elements (fullerites, quatarites, opals, etc.). The work was done with financial support from RFBI (grant N. 02-05-64688) and INTAS (grant N. 99-0247).

  15. Extensive sequencing of seven human genomes to characterize benchmark reference materials

    PubMed Central

    Zook, Justin M.; Catoe, David; McDaniel, Jennifer; Vang, Lindsay; Spies, Noah; Sidow, Arend; Weng, Ziming; Liu, Yuling; Mason, Christopher E.; Alexander, Noah; Henaff, Elizabeth; McIntyre, Alexa B.R.; Chandramohan, Dhruva; Chen, Feng; Jaeger, Erich; Moshrefi, Ali; Pham, Khoa; Stedman, William; Liang, Tiffany; Saghbini, Michael; Dzakula, Zeljko; Hastie, Alex; Cao, Han; Deikus, Gintaras; Schadt, Eric; Sebra, Robert; Bashir, Ali; Truty, Rebecca M.; Chang, Christopher C.; Gulbahce, Natali; Zhao, Keyan; Ghosh, Srinka; Hyland, Fiona; Fu, Yutao; Chaisson, Mark; Xiao, Chunlin; Trow, Jonathan; Sherry, Stephen T.; Zaranek, Alexander W.; Ball, Madeleine; Bobe, Jason; Estep, Preston; Church, George M.; Marks, Patrick; Kyriazopoulou-Panagiotopoulou, Sofia; Zheng, Grace X.Y.; Schnall-Levin, Michael; Ordonez, Heather S.; Mudivarti, Patrice A.; Giorda, Kristina; Sheng, Ying; Rypdal, Karoline Bjarnesdatter; Salit, Marc

    2016-01-01

    The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference Materials. The pilot genome, NA12878, has been released as NIST RM 8398. We also describe data from two Personal Genome Project trios, one of Ashkenazim Jewish ancestry and one of Chinese ancestry. The data come from 12 technologies: BioNano Genomics, Complete Genomics paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD, 10X Genomics GemCode WGS, and Illumina exome and WGS paired-end, mate-pair, and synthetic long reads. Cell lines, DNA, and data from these individuals are publicly available. Therefore, we expect these data to be useful for revealing novel information about the human genome and improving sequencing technologies, SNP, indel, and structural variant calling, and de novo assembly. PMID:27271295

  16. Adjoint-based optimization of mechanical performance in polycrystalline materials and structures through texture control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Grace; Brown, Judith Alice; Bishop, Joseph E.

    The texture of a polycrystalline material refers to the preferred orientation of the grains within the material. In metallic materials, texture can significantly affect the mechanical properties such as elastic moduli, yield stress, strain hardening, and fracture toughness. Recent advances in additive manufacturing of metallic materials offer the possibility in the not too distant future of controlling the spatial variation of texture. In this work, we investigate the advantages, in terms of mechanical performance, of allowing the texture to vary spatially. We use an adjoint-based gradient optimization algorithm within a finite element solver (COMSOL) to optimize several engineering quantities ofmore » interest in a simple structure (hole in a plate) and loading (uniaxial tension) condition. As a first step to general texture optimization, we consider the idealized case of a pure fiber texture in which the homogenized properties are transversely isotropic. In this special case, the only spatially varying design variables are the three Euler angles that prescribe the orientation of the homogenized material at each point within the structure. This work paves a new way to design metallic materials for tunable mechanical properties at the microstructure level.« less

  17. Recent developments in the field of environmental reference materials at the JRC Ispra.

    PubMed

    Muntau, H

    2001-06-01

    The production of reference materials for environmental analysis started in the Joint Research Centre at Ispra/Italy in 1972 with the objective of later certification by the BCR, but for obvious budget reasons only a fraction of the total production achieved at Ispra ever reached certification level, although all materials were produced according to the severe quality requirements requested for certified reference materials. Therefore, the materials not destinated to certification are in growing demand as inter-laboratory test materials and as laboratory reference materials, for internal quality control, e.g., by control charts. The history of reference material production within the Joint Research Centre is briefly reviewed and the latest additions described. New developments such as micro-scale reference materials intended for analytical methods requiring sample intakes at milligram or sub-milligram level and therefor not finding supply on the reference material market, and "wet" environmental reference materials, which meet more precisely the "real-world" environmental analysis conditions, are presented and the state-of-the-art discussed.

  18. Structural Design and Sizing of a Metallic Cryotank Concept

    NASA Technical Reports Server (NTRS)

    Sleight, David W.; Martin, Robert A.; Johnson, Theodore F.

    2013-01-01

    This paper presents the structural design and sizing details of a 33-foot (10 m) metallic cryotank concept used as the reference design to compare with the composite cryotank concepts developed by industry as part of NASA s Composite Cryotank Technology Development (CCTD) Project. The structural design methodology and analysis results for the metallic cryotank concept are reported in the paper. The paper describes the details of the metallic cryotank sizing assumptions for the baseline and reference tank designs. In particular, the paper discusses the details of the cryotank weld land design and analyses performed to obtain a reduced weight metallic cryotank design using current materials and manufacturing techniques. The paper also discusses advanced manufacturing techniques to spin-form the cryotank domes and compares the potential mass savings to current friction stir-welded technology.

  19. Linking process and structure in the friction stir scribe joining of dissimilar materials: A computational approach with experimental support

    DOE PAGES

    Gupta, Varun; Upadhyay, Piyush; Fifield, Leonard S.; ...

    2018-04-04

    We present that friction stir welding (FSW) is a popular technique to join dissimilar materials in numerous applications. The solid state nature of the process enables joining materials with strikingly different physical properties. For welds in lap configuration, an enhancement to this technology is made by introducing a short, hard insert, referred to as a cutting-scribe, at the bottom of the tool pin. The cutting-scribe induces deformation in the bottom plate which leads to the formation of mechanical interlocks or hook like structures at the interface of two materials. A thermo-mechanical computational model employing a coupled Eulerian-Lagrangian approach is developedmore » to quantitatively capture the morphology of these interlocks during the FSW process. Simulations using this model are validated by experimental observations. In conclusion, the identified interface morphology coupled with the predicted temperature field from this process–structure model can be used to estimate the post-weld microstructure and joint strength.« less

  20. Linking process and structure in the friction stir scribe joining of dissimilar materials: A computational approach with experimental support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Varun; Upadhyay, Piyush; Fifield, Leonard S.

    The friction stir welding (FSW) is a popular technique to join dissimilar materials in numerous applications. The solid state nature of the process enables joining materials with strikingly different physical properties. For the welds in lap configuration, an enhancement to this technology is made by introducing a short hard insert, referred to as cutting-scribe, at the bottom of the tool pin. The cutting-scribe induces deformation in the bottom plate which leads to the formation of mechanical interlocks or hook like structures at the interface of two materials. A thermo-mechanically coupled computational model employing coupled Eulerian-Lagrangian approach is developed to quantitativelymore » capture the morphology of these interlocks during the FSW process. The simulations using developed model are validated by the experimental observations.The identified interface morphology coupled with the predicted temperature field from this process-structure model can then be used to estimate the post-weld microstructure and joint strength.« less

  1. Linking process and structure in the friction stir scribe joining of dissimilar materials: A computational approach with experimental support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Varun; Upadhyay, Piyush; Fifield, Leonard S.

    We present that friction stir welding (FSW) is a popular technique to join dissimilar materials in numerous applications. The solid state nature of the process enables joining materials with strikingly different physical properties. For welds in lap configuration, an enhancement to this technology is made by introducing a short, hard insert, referred to as a cutting-scribe, at the bottom of the tool pin. The cutting-scribe induces deformation in the bottom plate which leads to the formation of mechanical interlocks or hook like structures at the interface of two materials. A thermo-mechanical computational model employing a coupled Eulerian-Lagrangian approach is developedmore » to quantitatively capture the morphology of these interlocks during the FSW process. Simulations using this model are validated by experimental observations. In conclusion, the identified interface morphology coupled with the predicted temperature field from this process–structure model can be used to estimate the post-weld microstructure and joint strength.« less

  2. Analytical characterization of recombinant hCG and comparative studies with reference product

    PubMed Central

    Thennati, Rajamannar; Singh, Sanjay Kumar; Nage, Nitin; Patel, Yena; Bose, Sandip Kumar; Burade, Vinod

    2018-01-01

    Introduction Regulatory agencies recommend a stepwise approach for demonstrating biosimilarity between a proposed biosimilar and reference biological product emphasizing for functional and structural characterization to trace if there is any difference which may impact safety and efficacy. We studied the comparative structural and biological attributes of recombinant human chorionic gonadotropin (rhCG), SB005, with reference product, Ovidrel® and Ovitrelle®. Recombiant hCG was approved in 2000 by the US Food and Drug Administration for the induction of final follicular maturation, early luteinization in infertile women as part of assisted reproductive technology program. It is also indicated for the induction of ovulation and pregnancy in ovulatory infertile patients whose cause of infertility is not due to ovarian failure. Materials and methods Primary structure was studied by intact mass analysis, peptide fingerprinting, peptide mass fingerprinting and sequence coverage analysis. Higher order structure was studied by circular dichroism, ultraviolet-visible spectroscopy, fluorescence spectroscopy, and disulfide bridge analysis. Different isoforms of reference product and SB005 were identified using capillary isoelectric focusing and capillary zone electrophoresis. Glycosylation was studied by N-glycan mapping using LC-ESI-MS, point of glycosylation, released glycan analysis using ultra performance liquid chromatography and sialic acid analysis. Product related impurities such as oligomer content analysis and oxidized impurities were studied using size exclusion chromatography and reverse phase high performance liquid chromatography, respectively. Biological activity in term of potency of reference product and SB005 was studied by in vivo analysis. Results and Conclusion In this study we have compared analytical similarity of recombinant rhCG (SB005) produced at Sun Pharmaceuticals with the reference product with respect to its primary, higher order structure, isoforms, charge variants, glycosylation, sialyation pattern, pharmacodynamic and in vivo efficacy. Our studies show that the in house produced rhCG has a high degree of structural and functional similarity with the reference product available in the market. PMID:29430170

  3. Clean Assembly of Genesis Collector Canister for Flight: Lessons for Planetary Sample Return

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Stansbery, E. K.; Allen, C. C.; Warren, J. L.; Schwartz, C. M.

    2007-01-01

    Measurement of solar composition in the Genesis collectors requires not only high sensitivity but very low blanks; thus, very strict collector contamination minimization was required beginning with mission planning and continuing through hardware design, fabrication, assembly and testing. Genesis started with clean collectors and kept them clean inside of a canister. The mounting hardware and container for the clean collectors were designed to be cleanable, with access to all surfaces for cleaning. Major structural components were made of aluminum and cleaned with megasonically energized ultrapure water (UPW). The UPW purity was >18 M resistivity. Although aluminum is relatively difficult to clean, the Genesis protocol achieved level 25 and level 50 cleanliness on large structural parts; however, the experience suggests that surface treatments may be helpful on future missions. All cleaning was performed in an ISO Class 4 (Class 10) cleanroom immediately adjacent to an ISO Class 4 assembly room; thus, no plastic packaging was required for transport. Persons assembling the canister were totally enclosed in cleanroom suits with face shield and HEPA filter exhaust from suit. Interior canister materials, including fasteners, were installed, untouched by gloves, using tweezers and other stainless steel tools. Sealants/lubricants were not exposed inside the canister, but vented to the exterior and applied in extremely small amounts using special tools. The canister was closed in ISO Class 4, not to be opened until on station at Earth-Sun L1. Throughout the cleaning and assembly, coupons of reference materials that were cleaned at the same time as the flight hardware were archived for future reference and blanks. Likewise reference collectors were archived. Post-mission analysis of collectors has made use of these archived reference materials.

  4. Lightning protection for aircraft

    NASA Technical Reports Server (NTRS)

    Fisher, F. A.; Plumer, J. A.

    1980-01-01

    Reference book summarizes current knowledge concerning potential lightning effects on aircraft and means available to designers and operators to protect against effects. Book is available because of increasing use of nonmetallic materials in aircraft structural components and use of electronic equipment for control of critical flight operations and navigation.

  5. 24 CFR 3280.304 - Materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...—Structural Glued Laminated Timber—ANSI/AITC A190.1-1992. Construction and Industrial Plywood (With Typical... shall comply with these requirements. (3) Engineering analysis and testing methods contained in these references shall be utilized to judge conformance with accepted engineering practices required in § 3280.303...

  6. 24 CFR 3280.304 - Materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...—Structural Glued Laminated Timber—ANSI/AITC A190.1-1992. Construction and Industrial Plywood (With Typical... shall comply with these requirements. (3) Engineering analysis and testing methods contained in these references shall be utilized to judge conformance with accepted engineering practices required in § 3280.303...

  7. Durability of a continuous strand mat polymeric composite for automotive structural applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corum, J.M.; McCoy, H.E. Jr.; Ruggles, M.B.

    1995-12-31

    A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their durability. Major durability issues are the effects of cyclic loadings, creep, automotive environments, and low-energy impacts on dimensional stability, strength, and stiffness. The U.S. Department of Energy is sponsoring a project at Oak Ridge National Laboratory to address these issues and to develop, in cooperation with the Automotive Composites Consortium, experimentally based, durability driven, design guidelines. The initial reference material is an isocyanurate reinforced with a continuous strand, swirl glass mat. This paper describes the basic deformation and failuremore » behavior of the reference material, and it presents test results illustrating the property degradations caused by loading, time, and environmental effects. The importance of characterizing and understanding damage and how it leads to failure is also discussed. The results presented are from the initial phases of an ongoing project. The ongoing effort and plans are briefly described.« less

  8. Achievable flatness in a large microwave power transmitting antenna

    NASA Technical Reports Server (NTRS)

    Ried, R. C.

    1980-01-01

    A dual reference SPS system with pseudoisotropic graphite composite as a representative dimensionally stable composite was studied. The loads, accelerations, thermal environments, temperatures and distortions were calculated for a variety of operational SPS conditions along with statistical considerations of material properties, manufacturing tolerances, measurement accuracy and the resulting loss of sight (LOS) and local slope distributions. A LOS error and a subarray rms slope error of two arc minutes can be achieved with a passive system. Results show that existing materials measurement, manufacturing, assembly and alignment techniques can be used to build the microwave power transmission system antenna structure. Manufacturing tolerance can be critical to rms slope error. The slope error budget can be met with a passive system. Structural joints without free play are essential in the assembly of the large truss structure. Variations in material properties, particularly for coefficient of thermal expansion from part to part, is more significant than actual value.

  9. High-temperature testing of high performance fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Vejmelková, Eva; Pavlíková, Milena; Trník, Anton; Čítek, David; Kolísko, Jiří; Černý, Robert; Pavlík, Zbyšek

    2016-06-01

    The effect of high-temperature exposure on properties of High Performance Fiber Reinforced Concrete (HPFRC) is researched in the paper. At first, reference measurements are done on HPFRC samples without high-temperature loading. Then, the HPFRC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000 °C. For the temperature loaded samples, measurement of residual mechanical and basic physical properties is done. Linear thermal expansion coefficient as function of temperature is accessed on the basis of measured thermal strain data. Additionally, simultaneous difference scanning calorimetry (DSC) and thermogravimetry (TG) analysis is performed in order to observe and explain material changes at elevated temperature. It is found that the applied high temperature loading significantly increases material porosity due to the physical, chemical and combined damage of material inner structure, and negatively affects also the mechanical strength. Linear thermal expansion coefficient exhibits significant dependence on temperature and changes of material structure. The obtained data will find use as input material parameters for modelling the damage of HPFRC structures exposed to the fire and high temperature action.

  10. Porous titanium materials with entangled wire structure for load-bearing biomedical applications.

    PubMed

    He, Guo; Liu, Ping; Tan, Qingbiao

    2012-01-01

    A kind of porous metal-entangled titanium wire material has been investigated in terms of the pore structure (size and distribution), the strength, the elastic modulus, and the mechanical behavior under uniaxial tensile loading. Its functions and potentials for surgical application have been explained. In particular, its advantages over competitors (e.g., conventional porous titanium) have been reviewed. In the study, a group of entangled titanium wire materials with non-woven structure were fabricated by using 12-180 MPa forming pressure, which have porosity in a range of 48%-82%. The pores in the materials are irregular in shape, which have a nearly half-normal distribution in size range. The yield strength, ultimate tensile strength, and elastic modulus are 75 MPa, 108 MPa, and 1.05 GPa, respectively, when its porosity is 44.7%. The mechanical properties decrease significantly as the porosity increases. When the porosity is 57.9%, these values become 24 MPa, 47.5 MPa, and 0.33 GPa, respectively. The low elastic modulus is due to the structural flexibility of the entangled titanium wire materials. For practical reference, a group of detailed data of the porous structure and the mechanical properties are reported. This kind of material is very promising for implant applications because of their very good toughness, perfect flexibility, high strength, adequate elastic modulus, and low cost. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Life prediction of materials exposed to monotonic and cyclic loading: A new technology survey

    NASA Technical Reports Server (NTRS)

    Stuhrke, W. F.; Carpenter, J. L., Jr.

    1975-01-01

    Reviewed and evaluated technical abstracts for about 100 significant documents are reported relating primarily to life prediction for structural materials exposed to monotonic and cyclic loading, particularly in elevated temperature environments. The abstracts in the report are mostly for publications in the period April 1962 through April 1974. The purpose of this report is to provide, in quick reference form, a dependable source for current information

  12. Gravity Effects in Small-Scale Structural Modeling

    DTIC Science & Technology

    1988-12-01

    attenuating material (Reference 23). The materials tested were cellular concrete with fly ash, expanded polystyrene concrete with fly ash, foamed...polyurethane, foamed sulfer and molded expanded polystyrene . The studies showed that with proper adjustments in the cement content, water-cement ratio and foam...Compression (Ou,c) 4000 100 Tension (Ou,t) 400 10 E/Quc 1000 1000 Ou,c/Ou,t 10 10 Further analysis of the properties of expanded polystyrene concrete with

  13. Monitoring the integrity of massive aluminum structures using PZT transducers and the technique of impedance

    NASA Astrophysics Data System (ADS)

    da Costa, Rosalba; Maia, Joaquim M.; Assef, Amauri A.; Pichorim, Sergio F.; Costa, Eduardo T.; L. S. N. Button, Vera

    2015-04-01

    Safety, performance, economy and durability are essential items to qualify materials for the manufacturing of structures used in different areas. Generally, the materials used for this purpose are formed by composites and sometimes they can present failure during the manufacturing process. Such failures can also occur during use due to fatigue and wear, causing damage often difficult to be visually detected. In these cases, the use of non destructive testing (NDT) has proven to be a good choice for assessing the materials quality. The objective of this work was the electromechanical impedance evaluation of massive aluminum structures using ultrasonic transducers to detect discontinuities in the material. The tests have been done using an impedance analyzer (Agilent 4294A), an ultrasound transducer (1.6 MHz of central frequency), two types of PZT ceramics (0.267 mm and 1 mm thickness) and four aluminum samples (250 x 50 x 50 mm) with the transducer placed at three different regions. One sample was kept intact (reference) and the others were drilled in three positions with different sizes of holes (5 mm. 8 mm and 11 mm). The electromechanical impedance was recorded for each sample. The root mean square deviation index (RMSD) between the impedance magnitude of the reference and damaged samples was calculated and it was observed an increase in the RMSD due to the increase of the diameter of the holes (failures) in the samples completely drilled. The results show that the proposed methodology is suitable for monitoring the integrity of aluminum samples. The technique may be evaluated in characterizing other materials to be used in the construction of prostheses and orthoses.

  14. Optimizing soft X-ray NEXAFS spectroscopy in the laboratory

    NASA Astrophysics Data System (ADS)

    Mantouvalou, I.; Jonas, A.; Witte, K.; Jung, R.; Stiel, H.; Kanngießer, B.

    2017-05-01

    Near edge X-ray absorption fine structure (NEXAFS) spectroscopy in the soft X-ray range is feasible in the laboratory using laser-produced plasma sources. We present a study using seven different target materials for optimized data analysis. The emission spectra of the materials with atomic numbers ranging from Z = 6 to Z = 79 show distinct differences, rendering the adapted selection of a suitable target material for specialized experiments feasible. For NEXAFS spectroscopy a 112.5 nm thick polyimide film is investigated as a reference exemplifying the superiority of quasi-continuum like emission spectra.

  15. Data on crystal organization in the structure of the Fab fragment from the NIST reference antibody, RM 8671.

    PubMed

    Gallagher, D T; Karageorgos, I; Hudgens, J W; Galvin, C V

    2018-02-01

    The reported data describe the crystallization, crystal packing, structure determination and twinning of the unliganded Fab (antigen-binding fragment) from the NISTmAb (standard reference material 8671). The raw atomic coordinates are available as Protein Data Bank structure 5K8A and biological aspects are described in the article, (Karageorgos et al., 2017) [1]. Crystal data show that the packing is unique, and show the basis for the crystal's twinned growth. Twinning is a common and often serious problem in protein structure determination by x-ray crystallography [2]. In the present case the twinning is due to a small deviation (about 0.3 nm) from 4-fold symmetry in the primary intermolecular interface. The deviation produces pseudosymmetry, generating slightly different conformations of the protein, and alternating strong and weak forms of key packing interfaces throughout the lattice.

  16. Life prediction of materials exposed to monotonic and cyclic loading: Bibliography

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.; Stuhrke, W. F.

    1975-01-01

    This bibliography is comprised of approximately 1200 reference citations related to the mechanics of failure in aerospace structures. Most of the references are for information on life prediction for materials exposed to monotonic and cyclic loading in elevated temperature environments such as that in the hot end of a gas turbine engine. Additional citations listed are for documents on the thermal and mechanical effects on solar cells in the cryogenic vacuum environment; radiation effects on high temperature mechanical properties; and high cycle fatigue technology as applicable to gas turbine engine bearings. The bibliography represents a search of the literature published in the period April 1962 through April 1974 and is largely limited to documents published in the United States. It is a companion volume to NASA CR-134750, Life Prediction of Materials Exposed to Monotonic and cyclic Loading - A Technology Survey.

  17. JPRS Report, Science & Technology, USSR: Materials Science

    DTIC Science & Technology

    1988-10-25

    POROSHKOVAYA METALLURGIYA No 4, Apr 88] 17 Influence of Sintering Conditions on Structure and Mechanical Properties of Aluminum-Based Powder Alloys [A.B... Mechanics Institute, UkSSR Academy of Sci- ences] [Abstract] An experimental study of the ZhS3DK cast heat-resistant Ni alloy was made concerning the two...References 2: both Russian. 2415/12232 Influence of Sintering Conditions on Structure and Mechanical Properties of Aluminum-Based Powder Alloys

  18. The Emerging Field of Nanotechnology

    ERIC Educational Resources Information Center

    Sabulski, Charles P.

    2004-01-01

    Nanotechnology refers to the research and technology development at the atomic, molecular, or macromolecular levels, in the length scale of approximately 1-100 nanometer range, that provides a fundamental understanding of phenomena and materials at the nanoscale and creates and use structures, devices, and systems that have novel properties and…

  19. Public Health Pest Control.

    ERIC Educational Resources Information Center

    Arizona Univ., Tucson. Cooperative Extension Service.

    This manual supplies information helpful to individuals wishing to become certified in public health pest control. It is designed as a technical reference for vector control workers and as preparatory material for structural applicators of restricted use pesticides to meet the General Standards of Competency required of commercial applicators. The…

  20. Basic Books in the Mass Media.

    ERIC Educational Resources Information Center

    Blum, Eleanor

    References to information on the background, structure, function, contents, and effects of mass communications are provided in this annotated booklist. Material is included on theory, popular culture, the Black press, communications technology, the underground press and film, and mass media violence and the entries are arranged according to the…

  1. Mid-infrared reflectlance spectra (2.3-22 micions) of sulfur, gold, KBr, MgO, and halon

    NASA Technical Reports Server (NTRS)

    Nash, D. B.

    1986-01-01

    Biconical diffuse reflectance spectra in the mid-infrared are presented for powder and other solid forms of sulfur, gold, potassium bromide, magnesium oxide, and halon. Comparisons are made with previously published results of other investigators, and recommendations are made regarding the relative usefulnees of these materials as reflectance standards in the mid-IR. Sulfur has strong intrinsic bands at wavelengths greater than 7 microns that must be taken into account for its use as a reflectance standard. Some sulfur samples have hydrocarbon contaminants and in powder form may have adsorbed water, both of which produce bands in the 3-4-micron region. Potassium bromide has several weak intrinsic bands and is very sensitive to adsorbed water contamination; otherwise it is a good IR reference material. Magnesium oxide and halon have major bands structure and low reflectivity at wavelengths greater than 2.6 microns and thus are unsuitable as reference materials in the mid-IR. Vapor-deposited gold on fine sandpaper (600 grit) is very bright, spectrally flat, and fairly diffuse, so it is the superior material (of those examined) for reflectance reference material throughout the IR. Fine gold powder, on the other hand, is much less bright than evaporated gold, and its reflectivity at wavelengths greater than its particle size is highly sensitive to particle packing density.

  2. New life of recycled rare earth-oxides powders for lighting applications.

    NASA Astrophysics Data System (ADS)

    Carlo Ricci, Pier; Murgia, Massimiliano; Carbonaro, Carlo Maria; Sgariotto, Serena; Stagi, Luigi; Corpino, Riccardo; Chiriu, Daniele; Grilli, Maria Luisa

    2018-03-01

    In this work we analysed the optical and structural properties of Ce:YAG regenerated phosphors. The concentrate resulted as the final product of an industrial recycling process of waste electrical and electronic equipment (WEEE), and in particular fluorescent powders coming from spent lamps treatment plant. The waste pristine materials were re-utilized without any further purification and or separation process as starting materials to obtain a YAG matrix (Y2Al5O12) doped with Cerium ions. We tested out the recovered concentrate against commercial Ce:YAG phosphors comparing their structural and optical properties by means of XRD measurements and steady time and time resolved luminescence. The analysis reveals that the new phosphors obtained by scrap powder have the same crystal structure as the commercial reference sample and comparable optical properties. In particular, the Ce-related emission efficiency has a quantum yield of about 0.75 when excited at 450 nm, in good agreement with our reference sample and with the one of commercial powder presently exploited in white LED. This achievement strongly suggests the possibility of a new life for the exhausted phosphors and a possible step forward to a complete circular process for lighting equipment.

  3. Development of references of anomalies detection on P91 material using Self-Magnetic Leakage Field (SMLF) technique

    NASA Astrophysics Data System (ADS)

    Husin, Shuib; Afiq Pauzi, Ahmad; Yunus, Salmi Mohd; Ghafar, Mohd Hafiz Abdul; Adilin Sekari, Saiful

    2017-10-01

    This technical paper demonstrates the successful of the application of self-magnetic leakage field (SMLF) technique in detecting anomalies in weldment of a thick P91 materials joint (1 inch thickness). Boiler components such as boiler tubes, stub boiler at penthouse and energy piping such as hot reheat pipe (HRP) and H-balance energy piping to turbine are made of P91 material. P91 is ferromagnetic material, therefore the technique of self-magnetic leakage field (SMLF) is applicable for P91 in detecting anomalies within material (internal defects). The technique is categorized under non-destructive technique (NDT). It is the second passive method after acoustic emission (AE), at which the information on structures radiation (magnetic field and energy waves) is used. The measured magnetic leakage field of a product or component is a magnetic leakage field occurring on the component’s surface in the zone of dislocation stable slipbands under the influence of operational (in-service) or residual stresses or in zones of maximum inhomogeneity of metal structure in new products or components. Inter-granular and trans-granular cracks, inclusion, void, cavity and corrosion are considered types of inhomogeneity and discontinuity in material where obviously the output of magnetic leakage field will be shown when using this technique. The technique does not required surface preparation for the component to be inspected. This technique is contact-type inspection, which means the sensor has to touch or in-contact to the component’s surface during inspection. The results of application of SMLF technique on the developed P91 reference blocks have demonstrated that the technique is practical to be used for anomaly inspection and detection as well as identification of anomalies’ location. The evaluation of this passive self-magnetic leakage field (SMLF) technique has been verified by other conventional non-destructive tests (NDTs) on the reference blocks where simulated defects/anomalies have been developed inside at the weldment. The results from the inspection test showed that the signatures of magnetic leakage field gradient distribution prove that the peak is found on the location of defect/anomaly in the reference block. It is in agreement with the evidence of anomaly that seen in the radiography test film (RT).

  4. Investigating Resulting Residual Stresses during Mechanical Forming Process

    NASA Astrophysics Data System (ADS)

    Akinlabi, Stephen A.; Fatoba, Olawale S.; Mashinini, Peter M.; Akinlabi, Esther T.

    2018-03-01

    Most manufacturing processes such as machining, welding, heat treatment, laser forming, laser cladding and, laser metal deposition, etc. are subjected to a form of heat or energy to change the geometrical shape thus changing the inherent engineering and structural properties of the material. These changes often cause the development of locked up stresses referred to as residual stresses as a result of these activities. This study reports on the residual stresses developed due to the mechanical forming process to maintain a suitable structural integrity for the formed components. The result of the analysis through the X-ray diffraction confirmed that residual stresses were induced in the manufactured parts and further revealed that residual stresses were compressive in nature as found in the parent material but with values less than the parent material.

  5. Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles.

    PubMed

    Liu, Zhi; Qiao, Jing; Niu, Zhongwei; Wang, Qian

    2012-09-21

    Viruses belong to a fascinating class of natural supramolecular structures, composed of multiple copies of coat proteins (CPs) that assemble into different shapes with a variety of sizes from tens to hundreds of nanometres. Because of their advantages including simple/economic production, well-defined structural features, unique shapes and sizes, genetic programmability and robust chemistries, recently viruses and virus-like nanoparticles (VLPs) have been used widely in biomedical applications and materials synthesis. In this critical review, we highlight recent advances in the use of virus coat proteins (VCPs) and viral nanoparticles (VNPs) as building blocks in self-assembly studies and materials development. We first discuss the self-assembly of VCPs into VLPs, which can efficiently incorporate a variety of different materials as cores inside the viral protein shells. Then, the self-assembly of VNPs at surfaces or interfaces is summarized. Finally, we discuss the co-assembly of VNPs with different functional materials (178 references).

  6. Integrated optical refractometer based on bend waveguide with air trench structure

    NASA Astrophysics Data System (ADS)

    Ryu, Jin Hwa; Park, Jaehoon; Kang, Chan-mo; Son, Youngdal; Do, Lee-Mi; Baek, Kyu-Ha

    2015-07-01

    This study proposed a novel optical sensor based on a refractometer integrating a bend waveguide and a trench structure. The optical sensor is a planar lightwave circuit (PLC) device involving a bend waveguide with maximum optical loss. A trench structure was aligned with the partially exposed core layer's sidewall of the bend waveguide, providing a quantitative measurement condition. The insertion losses of the proposed 1 x 2 single-mode optical splitter-type sensor were 4.38 dB and 8.67 dB for the reference waveguide and sensing waveguide, respectively, at a wavelength of 1,550 nm. The optical loss of the sensing waveguide depends on the change in the refractive index of the material in contact with the trench, but the reference waveguide had stable optical propagating characteristic regardless of the variations of the refractive index.

  7. Fabrication and Characterization of Hybrid Organic-Inorganic Electron Extraction Layers for Polymer Solar Cells toward Improved Processing Robustness and Air Stability.

    PubMed

    Fredj, Donia; Pourcin, Florent; Alkarsifi, Riva; Kilinc, Volkan; Liu, Xianjie; Ben Dkhil, Sadok; Boudjada, Nassira Chniba; Fahlman, Mats; Videlot-Ackermann, Christine; Margeat, Olivier; Ackermann, Jörg; Boujelbene, Mohamed

    2018-05-23

    Organic-inorganic hybrid materials composed of bismuth and diaminopyridine are studied as novel materials for electron extraction layers in polymer solar cells using regular device structures. The hybrid materials are solution processed on top of two different low band gap polymers (PTB7 or PTB7-Th) as donor materials mixed with fullerene PC 70 BM as the acceptor. The intercalation of the hybrid layer between the photoactive layer and the aluminum cathode leads to solar cells with a power conversion efficiency of 7.8% because of significant improvements in all photovoltaic parameters, that is, short-circuit current density, fill factor, and open-circuit voltage, similar to the reference devices using ZnO as the interfacial layer. However when using thick layers of such hybrid materials for electron extraction, only small losses in photocurrent density are observed in contrast to the reference material ZnO of pronounced losses because of optical spacer effects. Importantly, these hybrid electron extraction layers also strongly improve the device stability in air compared with solar cells processed with ZnO interlayers. Both results underline the high potential of this new class of hybrid materials as electron extraction materials toward robust processing of air stable organic solar cells.

  8. A bill to amend title 46, United States Code, to exempt old vessels that only operate within inland waterways from the fire-retardant materials requirement if the owners of such vessels make annual structural alterations to at least 10 percent of the areas of the vessels that are not constructed of fire-retardant materials.

    THOMAS, 113th Congress

    Sen. Brown, Sherrod [D-OH

    2014-11-13

    Senate - 11/13/2014 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  9. Trait Distinctiveness and Age Specificity in Self-Referent Information Processing.

    ERIC Educational Resources Information Center

    Mueller, John H.; Johnson, W. Calvin

    Research has indicated that certain orienting activities help integrate new experiences with pre-existing cognitive structures. The content specificity hypothesis proposes that if the self-concept is distorted so that certain information is missing, then self-referencing that type of material will be ineffective. This notion of content specificity…

  10. Metrological approaches to organic chemical purity: primary reference materials for vitamin D metabolites.

    PubMed

    Nelson, Michael A; Bedner, Mary; Lang, Brian E; Toman, Blaza; Lippa, Katrice A

    2015-11-01

    Given the critical role of pure, organic compound primary reference standards used to characterize and certify chemical Certified Reference Materials (CRMs), it is essential that associated mass purity assessments be fit-for-purpose, represented by an appropriate uncertainty interval, and metrologically sound. The mass fraction purities (% g/g) of 25-hydroxyvitamin D (25(OH)D) reference standards used to produce and certify values for clinical vitamin D metabolite CRMs were investigated by multiple orthogonal quantitative measurement techniques. Quantitative (1)H-nuclear magnetic resonance spectroscopy (qNMR) was performed to establish traceability of these materials to the International System of Units (SI) and to directly assess the principal analyte species. The 25(OH)D standards contained volatile and water impurities, as well as structurally-related impurities that are difficult to observe by chromatographic methods or to distinguish from the principal 25(OH)D species by one-dimensional NMR. These impurities have the potential to introduce significant biases to purity investigations in which a limited number of measurands are quantified. Combining complementary information from multiple analytical methods, using both direct and indirect measurement techniques, enabled mitigation of these biases. Purities of 25(OH)D reference standards and associated uncertainties were determined using frequentist and Bayesian statistical models to combine data acquired via qNMR, liquid chromatography with UV absorbance and atmospheric pressure-chemical ionization mass spectrometric detection (LC-UV, LC-ACPI-MS), thermogravimetric analysis (TGA), and Karl Fischer (KF) titration.

  11. Titanium oxo-clusters: precursors for a Lego-like construction of nanostructured hybrid materials.

    PubMed

    Rozes, Laurence; Sanchez, Clément

    2011-02-01

    Titanium oxo-clusters, well-defined monodispersed nano-objects, are appropriate nano-building blocks for the preparation of organic-inorganic materials by a bottom up approach. This critical review proposes to present the different structures of titanium oxo-clusters referenced in the literature and the different strategies followed to build up hybrid materials with these versatile building units. In particular, this critical review cites and reports on the most important papers in the literature, concentrating on recent developments in the field of synthesis, characterization, and the use of titanium oxo-clusters for the construction of advanced hybrid materials (137 references).

  12. Nuclear reference materials to meet the changing needs of the global nuclear community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, H.R.; Gradle, C.G.; Narayanan, U.I.

    New Brunswick Laboratory (NBL) serves as the U.S. Government`s certifying authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy complex and at nuclear facilities around the world. New challenges include: environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasismore » on requirements for characterization of waste materials, and difficulties in transporting nuclear materials and international factors, including IAEA influences. During these changing times, it is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less

  13. 40 CFR 1068.95 - What materials does this part reference?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... material from the Society of Automotive Engineers that we have incorporated by reference. The first column... reference it. Anyone may purchase copies of these materials from the Society of Automotive Engineers, 400... Materials Document number and name Part 1068reference SAE J1930, Electrical/Electronic Systems Diagnostic...

  14. 40 CFR 1068.95 - What materials does this part reference?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... material from the Society of Automotive Engineers that we have incorporated by reference. The first column... reference it. Anyone may purchase copies of these materials from the Society of Automotive Engineers, 400... Materials Document number and name Part 1068reference SAE J1930, Electrical/Electronic Systems Diagnostic...

  15. 40 CFR 1042.910 - Reference materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Reference materials. 1042.910 Section... Other Reference Information § 1042.910 Reference materials. Documents listed in this section have been... information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov...

  16. 40 CFR 1042.910 - Reference materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Reference materials. 1042.910 Section... Other Reference Information § 1042.910 Reference materials. Documents listed in this section have been... information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov...

  17. 40 CFR 1043.100 - Reference materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Reference materials. 1043.100 Section... § 1043.100 Reference materials. Documents listed in this section have been incorporated by reference into... the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov...

  18. Structures, Material and Processes Technology in the Future Launchers Preparatory Program

    NASA Astrophysics Data System (ADS)

    Baiocco, P.; Ramusat, G.; Breteau, J.; Bouilly, Th.; Lavelle, Fl.; Cardone, T.; Fischer, H.; Appel, S.; Block, U.

    2014-06-01

    In the frame of the technology / demonstration activity for European launchers developments and evolutions, a top-down / bottom-up approach has been employed to identify promising technologies and alternative conception. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been devoted to structures, material and process technology.Preliminary specifications have been used in order to permit sub-system design with the goal to find the major benefit for the overall launch system. In this respect competitiveness factors have been defined to down- select the technology and the corresponding optimized design. The development cost, non-recurring cost, industrialization and operational aspects have been considered for the identification of the most interesting solutions. The TRL/IRL has been assessed depending on the manufacturing company and a preliminary development plan has been issued for some technology.The reference launch systems for the technology and demonstration programs are mainly Ariane 6 with its evolutions, VEGA C/E and others possible longer term systems. Requirements and reference structures architectures have been considered in order to state requirements for representative subscale or full scale demonstrators. The major sub-systems and structures analyzed are for instance the upper stage structures, the engine thrust frame (ETF), the inter stage structures (ISS), the cryogenic propellant tanks, the feeding lines and their attachments, the pressurization systems, the payload adapters and fairings. A specific analysis has been devoted to the efficiency of production processes associated to technologies and design features.The paper provides an overview of the main results of the technology and demonstration activities with the associated system benefits. The materials used for the main structures are metallic and composite owing to sub-systems or sub-assemblies proposed for the European launch systems in development and their evolutions.

  19. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings.

    PubMed

    Ma, Hongmin; Hao, Jingcheng

    2011-11-01

    Self-assembly is now being intensively studied in chemistry, physics, biology, and materials engineering and has become an important "bottom-up" approach to create intriguing structures for different applications. Self-assembly is not only a practical approach for creating a variety of nanostructures, but also shows great superiority in building hierarchical structures with orders on different length scales. The early work in self-assembly focused on molecular self-assembly in bulk solution, including the resultant dye aggregates, liposomes, vesicles, liquid crystals, gels and so on. Interfacial self-assembly has been a great concern over the last two decades, largely because of the unique and ingenious roles of this method for constructing materials at interfaces, such as self-assembled monolayers, Langmuir-Blodgett films, and capsules. Nanocrystal superlattices, honeycomb films and coffee rings are intriguing structural materials with more complex features and can be prepared by interfacial self-assembly on different length scales. In this critical review, we outline the recent development in the preparation and application of colloidal nanocrystal superlattices, honeycomb-patterned macroporous structures by the breath figure method, and coffee-ring-like patterns (247 references). This journal is © The Royal Society of Chemistry 2011

  20. Porous materials for thermal management under extreme conditions.

    PubMed

    Clyne, T W; Golosnoy, I O; Tan, J C; Markaki, A E

    2006-01-15

    A brief analysis is presented of how heat transfer takes place in porous materials of various types. The emphasis is on materials able to withstand extremes of temperature, gas pressure, irradiation, etc. i.e. metals and ceramics, rather than polymers. A primary aim is commonly to maximize either the thermal resistance (i.e. provide insulation) or the rate of thermal equilibration between the material and a fluid passing through it (i.e. to facilitate heat exchange). The main structural characteristics concern porosity (void content), anisotropy, pore connectivity and scale. The effect of scale is complex, since the permeability decreases as the structure is refined, but the interfacial area for fluid-solid heat exchange is, thereby, raised. The durability of the pore structure may also be an issue, with a possible disadvantage of finer scale structures being poor microstructural stability under service conditions. Finally, good mechanical properties may be required, since the development of thermal gradients, high fluid fluxes, etc. can generate substantial levels of stress. There are, thus, some complex interplays between service conditions, pore architecture/scale, fluid permeation characteristics, convective heat flow, thermal conduction and radiative heat transfer. Such interplays are illustrated with reference to three examples: (i) a thermal barrier coating in a gas turbine engine; (ii) a Space Shuttle tile; and (iii) a Stirling engine heat exchanger. Highly porous, permeable materials are often made by bonding fibres together into a network structure and much of the analysis presented here is oriented towards such materials.

  1. A homogenization-based quasi-discrete method for the fracture of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Berke, P. Z.; Peerlings, R. H. J.; Massart, T. J.; Geers, M. G. D.

    2014-05-01

    The understanding and the prediction of the failure behaviour of materials with pronounced microstructural effects is of crucial importance. This paper presents a novel computational methodology for the handling of fracture on the basis of the microscale behaviour. The basic principles presented here allow the incorporation of an adaptive discretization scheme of the structure as a function of the evolution of strain localization in the underlying microstructure. The proposed quasi-discrete methodology bridges two scales: the scale of the material microstructure, modelled with a continuum type description; and the structural scale, where a discrete description of the material is adopted. The damaging material at the structural scale is divided into unit volumes, called cells, which are represented as a discrete network of points. The scale transition is inspired by computational homogenization techniques; however it does not rely on classical averaging theorems. The structural discrete equilibrium problem is formulated in terms of the underlying fine scale computations. Particular boundary conditions are developed on the scale of the material microstructure to address damage localization problems. The performance of this quasi-discrete method with the enhanced boundary conditions is assessed using different computational test cases. The predictions of the quasi-discrete scheme agree well with reference solutions obtained through direct numerical simulations, both in terms of crack patterns and load versus displacement responses.

  2. Nuclear reference materials to meet the changing needs of the global nuclear community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, H.R.; Gradle, C.G.; Narayanan, U.I.

    New Brunswick Laboratory (NBL) serves as the US Government`s Certifying Authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy (DOE) complex and at nuclear facilities around the world. Environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasis on requirementsmore » for characterization of waste materials, difficulties in transporting nuclear materials, and International factors, including International Atomic Energy Agency (IAEA) inspection of excess US nuclear materials, are all contributing influences. During these changing times, ft is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less

  3. Code qualification of structural materials for AFCI advanced recycling reactors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Li, M.; Majumdar, S.

    2012-05-31

    This report summarizes the further findings from the assessments of current status and future needs in code qualification and licensing of reference structural materials and new advanced alloys for advanced recycling reactors (ARRs) in support of Advanced Fuel Cycle Initiative (AFCI). The work is a combined effort between Argonne National Laboratory (ANL) and Oak Ridge National Laboratory (ORNL) with ANL as the technical lead, as part of Advanced Structural Materials Program for AFCI Reactor Campaign. The report is the second deliverable in FY08 (M505011401) under the work package 'Advanced Materials Code Qualification'. The overall objective of the Advanced Materials Codemore » Qualification project is to evaluate key requirements for the ASME Code qualification and the Nuclear Regulatory Commission (NRC) approval of structural materials in support of the design and licensing of the ARR. Advanced materials are a critical element in the development of sodium reactor technologies. Enhanced materials performance not only improves safety margins and provides design flexibility, but also is essential for the economics of future advanced sodium reactors. Code qualification and licensing of advanced materials are prominent needs for developing and implementing advanced sodium reactor technologies. Nuclear structural component design in the U.S. must comply with the ASME Boiler and Pressure Vessel Code Section III (Rules for Construction of Nuclear Facility Components) and the NRC grants the operational license. As the ARR will operate at higher temperatures than the current light water reactors (LWRs), the design of elevated-temperature components must comply with ASME Subsection NH (Class 1 Components in Elevated Temperature Service). However, the NRC has not approved the use of Subsection NH for reactor components, and this puts additional burdens on materials qualification of the ARR. In the past licensing review for the Clinch River Breeder Reactor Project (CRBRP) and the Power Reactor Innovative Small Module (PRISM), the NRC/Advisory Committee on Reactor Safeguards (ACRS) raised numerous safety-related issues regarding elevated-temperature structural integrity criteria. Most of these issues remained unresolved today. These critical licensing reviews provide a basis for the evaluation of underlying technical issues for future advanced sodium-cooled reactors. Major materials performance issues and high temperature design methodology issues pertinent to the ARR are addressed in the report. The report is organized as follows: the ARR reference design concepts proposed by the Argonne National Laboratory and four industrial consortia were reviewed first, followed by a summary of the major code qualification and licensing issues for the ARR structural materials. The available database is presented for the ASME Code-qualified structural alloys (e.g. 304, 316 stainless steels, 2.25Cr-1Mo, and mod.9Cr-1Mo), including physical properties, tensile properties, impact properties and fracture toughness, creep, fatigue, creep-fatigue interaction, microstructural stability during long-term thermal aging, material degradation in sodium environments and effects of neutron irradiation for both base metals and weld metals. An assessment of modified versions of Type 316 SS, i.e. Type 316LN and its Japanese version, 316FR, was conducted to provide a perspective for codification of 316LN or 316FR in Subsection NH. Current status and data availability of four new advanced alloys, i.e. NF616, NF616+TMT, NF709, and HT-UPS, are also addressed to identify the R&D needs for their code qualification for ARR applications. For both conventional and new alloys, issues related to high temperature design methodology are described to address the needs for improvements for the ARR design and licensing. Assessments have shown that there are significant data gaps for the full qualification and licensing of the ARR structural materials. Development and evaluation of structural materials require a variety of experimental facilities that have been seriously degraded in the past. The availability and additional needs for the key experimental facilities are summarized at the end of the report. Detailed information covered in each Chapter is given.« less

  4. Electroactive materials for organic electronics: preparation strategies, structural aspects and characterization techniques.

    PubMed

    Pron, Adam; Gawrys, Pawel; Zagorska, Malgorzata; Djurado, David; Demadrille, Renaud

    2010-07-01

    This critical review discusses specific chemical and physicochemical requirements which must be met for organic compounds to be considered as promising materials for applications in organic electronics. Although emphasis is put on molecules and macromolecules suitable for fabrication of field effect transistors (FETs), a large fraction of the discussed compounds can also be applied in other organic or hybrid (organic-inorganic) electronic devices such as photodiodes, light emitting diodes, photovoltaic cells, etc. It should be of interest to chemists, physicists, material scientists and electrical engineers working in the domain of organic electronics (423 references).

  5. Reference Materials and Subject Matter Knowledge Codes for Airman Knowledge Testing

    DOT National Transportation Integrated Search

    2004-06-08

    The listings of reference materials and subject matter knowledge codes have been : prepared by the Federal Aviation Administration (FAA) to establish specific : references for all knowledge standards. The listings contain reference materials : to be ...

  6. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliot B. Kennel; Stephen P. Carpenter; Dady Dadyburjor

    2006-03-27

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of continuous processes for hydrogenation as well as continuous production of carbon foam and coke.

  7. Statistical Physics of Rupture in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    The damage and fracture of materials are technologically of enormous interest due to their economic and human cost. They cover a wide range of phenomena like cracking of glass, aging of concrete, the failure of fiber networks in the formation of paper and the breaking of a metal bar subject to an external load. Failure of composite systems is of utmost importance in naval, aeronautics and space industry [1]. By the term composite, we refer to materials with heterogeneous microscopic structures and also to assemblages of macroscopic elements forming a super-structure. Chemical and nuclear plants suffer from cracking due to corrosion either of chemical or radioactive origin, aided by thermal and/or mechanical stress.

  8. Dissipative Structures At Laser-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Nanai, Laszlo

    1989-05-01

    The questions which are discussed in this lecture refer to one of sections of laser-solid interactions, namely: to formation of different dissipative structures on the surface of metals and semiconductors when they are irradiated by intensive laser light in chemically active media (f.e.air). Some particular examples of the development at different spatial and time instabilities, periodic and stochastic structures, auto-wave processes are present-ed using testing materials vanadium metal and semiconducting V205 single crystals and light sources: cw and pulsed CO2 and YAG lasers.

  9. Towards novel organic high-Tc superconductors: Data mining using density of states similarity search

    NASA Astrophysics Data System (ADS)

    Geilhufe, R. Matthias; Borysov, Stanislav S.; Kalpakchi, Dmytro; Balatsky, Alexander V.

    2018-02-01

    Identifying novel functional materials with desired key properties is an important part of bridging the gap between fundamental research and technological advancement. In this context, high-throughput calculations combined with data-mining techniques highly accelerated this process in different areas of research during the past years. The strength of a data-driven approach for materials prediction lies in narrowing down the search space of thousands of materials to a subset of prospective candidates. Recently, the open-access organic materials database OMDB was released providing electronic structure data for thousands of previously synthesized three-dimensional organic crystals. Based on the OMDB, we report about the implementation of a novel density of states similarity search tool which is capable of retrieving materials with similar density of states to a reference material. The tool is based on the approximate nearest neighbor algorithm as implemented in the ANNOY library and can be applied via the OMDB web interface. The approach presented here is wide ranging and can be applied to various problems where the density of states is responsible for certain key properties of a material. As the first application, we report about materials exhibiting electronic structure similarities to the aromatic hydrocarbon p-terphenyl which was recently discussed as a potential organic high-temperature superconductor exhibiting a transition temperature in the order of 120 K under strong potassium doping. Although the mechanism driving the remarkable transition temperature remains under debate, we argue that the density of states, reflecting the electronic structure of a material, might serve as a crucial ingredient for the observed high Tc. To provide candidates which might exhibit comparable properties, we present 15 purely organic materials with similar features to p-terphenyl within the electronic structure, which also tend to have structural similarities with p-terphenyl such as space group symmetries, chemical composition, and molecular structure. The experimental verification of these candidates might lead to a better understanding of the underlying mechanism in case similar superconducting properties are revealed.

  10. Register of experts for information on mechanics of structural failure

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Stuhrke, W. F.

    1975-01-01

    This register is comprised of a list of approximately 300 experts from approximately 90 organizations who have published results of theoretical and/or experimental research related to six problem areas in the mechanics of structural failure: (1) life prediction for structural materials, (2) fracture toughness testing, (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. The criteria for the selection of names for the register are recent contributions to the literature, participation in or support of relevant research programs, and referral by peers. Each author included is listed by organizational affiliation, address, and principal field of expertise. The purpose of the register is to present, in easy reference form, sources for dependable information regarding failure modes and mechanisms of aerospace structures. The register includes two indexes; an alphabetical listing of the experts and an alphabetical listing of the organizations with whom they are affiliated.

  11. Development of terminology for mammographic techniques for radiological technologists.

    PubMed

    Yagahara, Ayako; Yokooka, Yuki; Tsuji, Shintaro; Nishimoto, Naoki; Uesugi, Masahito; Muto, Hiroshi; Ohba, Hisateru; Kurowarabi, Kunio; Ogasawara, Katsuhiko

    2011-07-01

    We are developing a mammographic ontology to share knowledge of the mammographic domain for radiologic technologists, with the aim of improving mammographic techniques. As a first step in constructing the ontology, we used mammography reference books to establish mammographic terminology for identifying currently available knowledge. This study proceeded in three steps: (1) determination of the domain and scope of the terminology, (2) lexical extraction, and (3) construction of hierarchical structures. We extracted terms mainly from three reference books and constructed the hierarchical structures manually. We compared features of the terms extracted from the three reference books. We constructed a terminology consisting of 440 subclasses grouped into 19 top-level classes: anatomic entity, image quality factor, findings, material, risk, breast, histological classification of breast tumors, role, foreign body, mammographic technique, physics, purpose of mammography examination, explanation of mammography examination, image development, abbreviation, quality control, equipment, interpretation, and evaluation of clinical imaging. The number of terms that occurred in the subclasses varied depending on which reference book was used. We developed a terminology of mammographic techniques for radiologic technologists consisting of 440 terms.

  12. Modified Graphene as Electrocatalyst towards Oxygen Reduction Reaction for Fuel Cells

    NASA Astrophysics Data System (ADS)

    Qazzazie, D.; Beckert, M.; Mülhaupt, R.; Yurchenko, O.; Urban, G.

    2014-11-01

    This paper reports modified graphene-based materials as metal-free electrocatalysts for oxygen reduction reaction (ORR) with outstanding electrocatalytic activity in alkaline conditions. Nitrogen-doped graphene samples are synthesized by a novel procedure. The defect density in the structure of the prepared materials is investigated by Raman spectroscopy. Further structural characterization by X-ray photoelectron spectroscopy reveals the successful nitrogen doping of graphene. The electrochemical characterization of graphene and nitrogen-doped graphene in 0.1 M KOH solution demonstrates the material's electrocatalytic activity towards ORR. For graphene an onset potential of - 0.175 V vs. Ag/AgCl reference electrode is determined, while for nitrogen-doped graphene the determined onset potential is - 0.160 V. Thus, the electrocatalytic activity of nitrogen-doped graphene towards ORR is enhanced which can be ascribed to the effect of nitrogen doping.

  13. Workshop on Measurement Needs for Local-Structure Determination in Inorganic Materials

    PubMed Central

    Levin, Igor; Vanderah, Terrell

    2008-01-01

    The functional responses (e.g., dielectric, magnetic, catalytic, etc.) of many industrially-relevant materials are controlled by their local structure—a term that refers to the atomic arrangements on a scale ranging from atomic (sub-nanometer) to several nanometers. Thus, accurate knowledge of local structure is central to understanding the properties of nanostructured materials, thereby placing the problem of determining atomic positions on the nanoscale—the so-called “nanostructure problem”—at the center of modern materials development. Today, multiple experimental techniques exist for probing local atomic arrangements; nonetheless, finding accurate comprehensive, and robust structural solutions for the nanostructured materials still remains a formidable challenge because any one of these methods yields only a partial view of the local structure. The primary goal of this 2-day NIST-sponsored workshop was to bring together experts in the key experimental and theoretical areas relevant to local-structure determination to devise a strategy for the collaborative effort required to develop a comprehensive measurement solution on the local scale. The participants unanimously agreed that solving the nanostructure problem—an ultimate frontier in materials characterization—necessitates a coordinated interdisciplinary effort that transcends the existing capabilities of any single institution, including national laboratories, centers, and user facilities. The discussions converged on an institute dedicated to local structure determination as the most viable organizational platform for successfully addressing the nanostructure problem. The proposed “institute” would provide an intellectual infrastructure for local structure determination by (1) developing and maintaining relevant computer software integrated in an open-source global optimization framework (Fig. 2), (2) connecting industrial and academic users with experts in measurement techniques, (3) developing and maintaining pertinent databases, and (4) providing necessary education and training. PMID:27096131

  14. Near-edge X-ray refraction fine structure microscopy

    DOE PAGES

    Farmand, Maryam; Celestre, Richard; Denes, Peter; ...

    2017-02-06

    We demonstrate a method for obtaining increased spatial resolution and specificity in nanoscale chemical composition maps through the use of full refractive reference spectra in soft x-ray spectro-microscopy. Using soft x-ray ptychography, we measure both the absorption and refraction of x-rays through pristine reference materials as a function of photon energy and use these reference spectra as the basis for decomposing spatially resolved spectra from a heterogeneous sample, thereby quantifying the composition at high resolution. While conventional instruments are limited to absorption contrast, our novel refraction based method takes advantage of the strongly energy dependent scattering cross-section and can seemore » nearly five-fold improved spatial resolution on resonance.« less

  15. Grounded Theory as a Methodology to Design Teaching Strategies for Historically Informed Musical Performance

    ERIC Educational Resources Information Center

    Mateos-Moreno, Daniel; Alcaraz-Iborra, Mario

    2013-01-01

    Our work highlights the necessity of revising the materials employed in instrumental education, which are systematically based on a progressive development of technical abilities and, though only transversely, without a structured sequence of contents, on issues referring to the interpretation of different periods and styles. In order to elaborate…

  16. Magneto-Optical Properties of Hybrid Magnetic Material Semiconductor Nanostructures

    DTIC Science & Technology

    2007-09-14

    Angeles, March 2005, Bull. Am. Phys. Soc. 50 Abstract L10.00012 18. First-principles Study of the Structural and Magnetic Properties of Cobalt Indium...follows. The numbers in brackets refer to the above lists of published paper. " A study was made of transition metal dopants in SiC. This led to two

  17. Orsphere: Physics Measurments For Bare, HEU(93.2)-Metal Sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Margaret A.; Bess, John D.; Briggs, J. Blair

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared withmore » the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files” (Reference 1). While performing the ORSphere experiments care was taken to accurately document component dimensions (±0.0001 inches), masses (±0.01 g), and material data. The experiment was also set up to minimize the amount of structural material in the sphere proximity. Two, correlated spheres were evaluated and judged to be acceptable as criticality benchmark experiments. This evaluation is given in HEU-MET-FAST-100. The second, smaller sphere was used for additional reactor physics measurements. Worth measurements (Reference 1, 2, 3 and 4), the delayed neutron fraction (Reference 3, 4 and 5) and surface material worth coefficient (Reference 1 and 2) are all measured and judged to be acceptable as benchmark data. The prompt neutron decay (Reference 6), relative fission density (Reference 7) and relative neutron importance (Reference 7) were measured, but are not evaluated. Information for the evaluation was compiled from References 1 through 7, the experimental logbooks 8 and 9 ; additional drawings and notes provided by the experimenter; and communication with the lead experimenter, John T. Mihalczo.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Margaret A.

    In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared withmore » the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files” (Reference 1). While performing the ORSphere experiments care was taken to accurately document component dimensions (±0.0001 inches), masses (±0.01 g), and material data. The experiment was also set up to minimize the amount of structural material in the sphere proximity. Two, correlated spheres were evaluated and judged to be acceptable as criticality benchmark experiments. This evaluation is given in HEU-MET-FAST-100. The second, smaller sphere was used for additional reactor physics measurements. Worth measurements (Reference 1, 2, 3 and 4), the delayed neutron fraction (Reference 3, 4 and 5) and surface material worth coefficient (Reference 1 and 2) are all measured and judged to be acceptable as benchmark data. The prompt neutron decay (Reference 6), relative fission density (Reference 7) and relative neutron importance (Reference 7) were measured, but are not evaluated. Information for the evaluation was compiled from References 1 through 7, the experimental logbooks 8 and 9 ; additional drawings and notes provided by the experimenter; and communication with the lead experimenter, John T. Mihalczo.« less

  19. Radiative and convective properties of 316L Stainless Steel fabricated using the Laser Engineered Net Shaping process

    NASA Astrophysics Data System (ADS)

    Knopp, Jonathan

    Temperature evolution of metallic materials during the additive manufacturing process has direct influence in determining the materials microstructure and resultant characteristics. Through the power of Infrared (IR) thermography it is now possible to monitor thermal trends in a build structure, giving the power to adjust building parameters in real time. The IR camera views radiation in the IR wavelengths and determines temperature of an object by the amount of radiation emitted from the object in those wavelengths. Determining the amount of radiation emitted from the material, known as a materials emissivity, can be difficult in that emissivity is affected by both temperature and surface finish. It has been shown that the use of a micro-blackbody cavity can be used as an accurate reference temperature when the sample is held at thermal equilibrium. A micro-blackbody cavity was created in a sample of 316L Stainless Steel after being fabricated during using the Laser Engineered Net Shaping (LENS) process. Holding the sample at thermal equilibrium and using the micro-blackbody cavity as a reference and thermocouple as a second reference emissivity values were able to be obtained. IR thermography was also used to observe the manufacturing of these samples. When observing the IR thermography, patterns in the thermal history of the build were shown to be present as well as distinct cooling rates of the material. This information can be used to find true temperatures of 316L Stainless Steel during the LENS process for better control of desired material properties as well as future work in determining complete energy balance.

  20. Methods for the synthesis of aza(deaza)xanthines as a basis of biologically active compounds

    NASA Astrophysics Data System (ADS)

    Babkov, D. A.; Geisman, A. N.; Khandazhinskaya, A. L.; Novikov, M. S.

    2016-03-01

    The review covers methods for the synthesis of aza(deaza)xanthines, i.e., fused pyrrolo-, pyrazolo- and triazolopyrimidine heterocyclic systems, which are common core structures of various biologically active compounds. The extensive range of modern synthetic approaches is organized according to target structures and starting building blocks. The presented material is intended to benefit broad audience of specialists in the fields of organic, medicinal and pharmaceutical chemistry. The bibliography includes 195 references.

  1. Extraterrestrial processing and manufacturing of large space systems, volume 1, chapters 1-6

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, D. B. S.

    1979-01-01

    Space program scenarios for production of large space structures from lunar materials are defined. The concept of the space manufacturing facility (SMF) is presented. The manufacturing processes and equipment for the SMF are defined and the conceptual layouts are described for the production of solar cells and arrays, structures and joints, conduits, waveguides, RF equipment radiators, wire cables, and converters. A 'reference' SMF was designed and its operation requirements are described.

  2. Method of making a layered composite electrode/electrolyte

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-01-25

    An electrode/electrolyte structure is prepared by a plurality of methods. An unsintered (possibly bisque fired) moderately catalytic electronically-conductive or homogeneous mixed ionic electronic conductive electrode material is deposited on a layer composed of a sintered or unsintered ionically-conductive electrolyte material prior to being sintered. A layer of particulate electrode material is deposited on an unsintered ("green") layer of electrolyte material and the electrode and electrolyte layers are sintered simultaneously, sometimes referred to as "co-firing," under conditions suitable to fully densify the electrolyte while the electrode retains porosity. Or, the layer of particulate electrode material is deposited on a previously sintered layer of electrolyte, and then sintered. Subsequently, a catalytic material is added to the electrode structure by infiltration of an electrolcatalyst precursor (e.g., a metal salt such as a transition metal nitrate). This may be followed by low temperature firing to convert the precursor to catalyst. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in an ionic (electrochemical) device such as fuel cells and electrolytic gas separation systems.

  3. The importance of reference materials in doping-control analysis.

    PubMed

    Mackay, Lindsey G; Kazlauskas, Rymantas

    2011-08-01

    Currently a large range of pure substance reference materials are available for calibration of doping-control methods. These materials enable traceability to the International System of Units (SI) for the results generated by World Anti-Doping Agency (WADA)-accredited laboratories. Only a small number of prohibited substances have threshold limits for which quantification is highly important. For these analytes only the highest quality reference materials that are available should be used. Many prohibited substances have no threshold limits and reference materials provide essential identity confirmation. For these reference materials the correct identity is critical and the methods used to assess identity in these cases should be critically evaluated. There is still a lack of certified matrix reference materials to support many aspects of doping analysis. However, in key areas a range of urine matrix materials have been produced for substances with threshold limits, for example 19-norandrosterone and testosterone/epitestosterone (T/E) ratio. These matrix-certified reference materials (CRMs) are an excellent independent means of checking method recovery and bias and will typically be used in method validation and then regularly as quality-control checks. They can be particularly important in the analysis of samples close to threshold limits, in which measurement accuracy becomes critical. Some reference materials for isotope ratio mass spectrometry (IRMS) analysis are available and a matrix material certified for steroid delta values is currently under production. In other new areas, for example the Athlete Biological Passport, peptide hormone testing, designer steroids, and gene doping, reference material needs still need to be thoroughly assessed and prioritised.

  4. Foreign Trip Report MATGEN-IV Sep 24- Oct 26, 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Caro, M S

    2007-10-30

    Gen-IV activities in France, Japan and US focus on the development of new structural materials for Gen-IV nuclear reactors. Oxide dispersion strengthened (ODS) F/M steels have raised considerable interest in nuclear applications. Promising collaborations can be established seeking fundamental knowledge of relevant Gen-IV ODS steel properties (see attached travel report on MATGEN- IV 'Materials for Generation IV Nuclear Reactors'). Major highlights refer to results on future Ferritic/Martensitic steel cladding candidates (relevant to Gen-IV materials properties for LFR Materials Program) and on thermodynamic and mechanic behavior of metallic FeCr binary alloys, base matrix for future candidate steels (for the LLNL-LDRD projectmore » on Critical Issues on Materials for Gen-IV Reactors).« less

  5. Cargo and Container X-Ray Inspection with Intra-Pulse Multi-Energy Method for Material Discrimination

    NASA Astrophysics Data System (ADS)

    Saverskiy, Aleksandr Y.; Dinca, Dan-Cristian; Rommel, J. Martin

    The Intra-Pulse Multi-Energy (IPME) method of material discrimination mitigates main disadvantages of the traditional "interlaced" approach: ambiguity caused by sampling different regions of cargo and reduction of effective scanning speed. A novel concept of creating multi-energy probing pulses using a standing-wave structure allows maintaining a constant energy spectrum while changing the time duration of each sub-pulse and thus enables adaptive cargo inspection. Depending on the cargo density, the dose delivered to the inspected object is optimized for best material discrimination, maximum material penetration, or lowest dose to cargo. A model based on Monte-Carlo simulation and experimental reference points were developed for the optimization of inspection conditions.

  6. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.

  7. Development of Seismic Isolation Systems Using Periodic Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yiqun; Mo, Yi-Lung; Menq, Farn-Yuh

    Advanced fast nuclear power plants and small modular fast reactors are composed of thin-walled structures such as pipes; as a result, they do not have sufficient inherent strength to resist seismic loads. Seismic isolation, therefore, is an effective solution for mitigating earthquake hazards for these types of structures. Base isolation, on which numerous studies have been conducted, is a well-defined structure protection system against earthquakes. In conventional isolators, such as high-damping rubber bearings, lead-rubber bearings, and friction pendulum bearings, large relative displacements occur between upper structures and foundations. Only isolation in a horizontal direction is provided; these features are notmore » desirable for the piping systems. The concept of periodic materials, based on the theory of solid-state physics, can be applied to earthquake engineering. The periodic material is a material that possesses distinct characteristics that prevent waves with certain frequencies from being transmitted through it; therefore, this material can be used in structural foundations to block unwanted seismic waves with certain frequencies. The frequency band of periodic material that can filter out waves is called the band gap, and the structural foundation made of periodic material is referred to as the periodic foundation. The design of a nuclear power plant, therefore, can be unified around the desirable feature of a periodic foundation, while the continuous maintenance of the structure is not needed. In this research project, three different types of periodic foundations were studied: one-dimensional, two-dimensional, and three-dimensional. The basic theories of periodic foundations are introduced first to find the band gaps; then the finite element methods are used, to perform parametric analysis, and obtain attenuation zones; finally, experimental programs are conducted, and the test data are analyzed to verify the theory. This procedure shows that the periodic foundation is a promising and effective way to mitigate structural damage caused by earthquake excitation.« less

  8. Investigation of a novel approach for the cross-linking characterization of SU-8 photoresist materials by means of optical dispersion measurements

    NASA Astrophysics Data System (ADS)

    Taudt, Ch.; Baselt, T.; Koch, E.; Hartmann, P.

    2014-03-01

    The increase in efficiency and precision in the production of semiconductor structures under the use of polymeric materials like SU-8 is crucial in securing the technological innovation within this industry. The manufacturing of structures on wafers demands a high quality of materials, tools and production processes. In particular, deviations in the materials' parameters (e.g. cross-linking state, density or mechanical properties) could lead to subsequent problems such as a reduced lifetime of structures and systems. In particular problems during the soft and post-exposure bake process can lead to an inhomogeneous distribution of material properties. This paper describes a novel approach for the characterization of SU-8 material properties in relation to a second epoxy-based material of different cross-linking by the measurement of optical dispersion within the material. A white-light interferometer was used. In particular the setup consisted of a white-light source, a Michelson-type interferometer and a spectrometer. The investigation of the dispersion characteristics was carried out by the detection of the equalization wavelength for different positions of the reference arm in a range from 400 to 900 nm. The measured time delay due to dispersion ranges from 850 to 1050 ps/m. For evaluation purposes a 200μm SU-8 sample was characterized in the described setup regarding its dispersion characteristics in relation to bulk epoxy material. The novel measurement approach allowed a fast and high-resolution material characterization for SU-8 micro structures which was suitable for integration in production lines. The outlook takes modifications of the experimental setup regarding on-wafer measurements into account.

  9. Accuracy of ab initio electron correlation and electron densities in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Kylänpää, Ilkka; Balachandran, Janakiraman; Ganesh, Panchapakesan; Heinonen, Olle; Kent, Paul R. C.; Krogel, Jaron T.

    2017-11-01

    Diffusion quantum Monte Carlo results are used as a reference to analyze properties related to phase stability and magnetism in vanadium dioxide computed with various formulations of density functional theory. We introduce metrics related to energetics, electron densities and spin densities that give us insight on both local and global variations in the antiferromagnetic M1 and R phases. Importantly, these metrics can address contributions arising from the challenging description of the 3 d orbital physics in this material. We observe that the best description of energetics between the structural phases does not correspond to the best accuracy in the charge density, which is consistent with observations made recently by Medvedev et al. [Science 355, 371 (2017), 10.1126/science.aag0410] in the context of isolated atoms. However, we do find evidence that an accurate spin density connects to correct energetic ordering of different magnetic states in VO2, although local, semilocal, and meta-GGA functionals tend to erroneously favor demagnetization of the vanadium sites. The recently developed SCAN functional stands out as remaining nearly balanced in terms of magnetization across the M1-R transition and correctly predicting the ground state crystal structure. In addition to ranking current density functionals, our reference energies and densities serve as important benchmarks for future functional development. With our reference data, the accuracy of both the energy and the electron density can be monitored simultaneously, which is useful for functional development. So far, this kind of detailed high accuracy reference data for correlated materials has been absent from the literature.

  10. A Study of the Surface Structure of Polymorphic Graphene and Other Two-Dimensional Materials for Use in Novel Electronics and Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Grady, Maxwell

    For some time there has been interest in the fundamental physical properties of low- dimensional material systems. The discovery of graphene as a stable two-dimensional form of solid carbon lead to an exponential increase in research in two-dimensional and other re- duced dimensional systems. It is now known that there is a wide range of materials which are stable in two-dimensional form. These materials span a large configuration space of struc- tural, mechanical, and electronic properties, which results in the potential to create novel electronic devices from nano-scale heterostructures with exactly tailored device properties. Understanding the material properties at the nanoscale level requires specialized tools to probe materials with atomic precision. Here I present the growth and analysis of a novel graphene-ruthenium system which exhibits unique polymorphism in its surface structure, hereby referred to as polymorphic graphene. Scanning Tunneling Microscopy (STM) investigations of the polymorphic graphene surface reveal a periodically rippled structure with a vast array of domains, each exhibiting xvia unique moire period. The majority of moire domains found in this polymorphic graphene system are previously unreported in past studies of the structure of graphene on ruthenium. To better understand many of the structural properties of this system, characterization methods beyond those available at the UNH surface science lab are employed. Further investigation using Low Energy Electron Microscopy (LEEM) has been carried out at Sandia National Laboratory's Center for Integrated Nanotechnology and the Brookhaven National Laboratory Center for Functional Nanomaterials. To aid in analysis of the LEEM data, I have developed an open source software package to automate extraction of electron reflectivity curves from real space and reciprocal space data sets. This software has been used in the study of numerous other two-dimensional materials beyond graphene. When combined with computational modeling, the analysis of electron I(V) curves presents a method to quantify structural parameters in a material with angstrom level precision. While many materials studied in this thesis offer unique electronic properties, my work focuses primarily on their structural aspects, as well as the instrumentation required to characterize the structure with ultra high resolution.

  11. Nuclear design of a very-low-activation fusion reactor

    NASA Astrophysics Data System (ADS)

    Cheng, E. T.; Hopkins, G. R.

    1983-06-01

    The nuclear design aspects of using very-low-activation materials, such as SiC, MgO, and aluminum for fusion-reactor first wall, blanket, and shield applications were investigated. In addition to the advantage of very-low radioactive inventory, it was found that the very-low-activation fusion reactor can also offer an adequate tritium-breeding ratio and substantial amount of blanket nuclear heating as a conventional-material-structured reactor does. The most-stringent design constraint found in a very-low-activation fusion reactor is the limited space available in the inboard region of a Tokamak concept for shielding to protect the superconducting toroidal field coil. A reference design was developed which mitigates the constraint by adopting a removable tungsten shield design that retains the inboard dimensions and gives the same shield performance as the reference STARFIRE Tokamak reactor design.

  12. Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.

    2016-01-01

    Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.

  13. Structures Division

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1995 are presented.

  14. Structures Division 1994 Annual Report

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1994 are presented.

  15. Determination of Structural Parameters from EXAFS (Extended X-Ray Absorption Fine Structure): Application to Solutions and Catalysts.

    DTIC Science & Technology

    1984-05-23

    the disorder was accurately known. Inverse Transform To isolate the EAFS contribution due to a single feature in the Fourier transform, the inverse ...is associated with setting the "fold" components to 27 zero in r-space. An inverse transform (real part) of the major feature of the Fig. 4 Fourier...phase of the resulting inverse transform represents only any differences between the material being studied and the reference. This residual is

  16. NAVAIR Portable Source Initiative (NPSI) Standard for Material Properties Reference Database (MPRD) V2.2

    DTIC Science & Technology

    2012-09-26

    format; however, the collective identity and structure of the object are lost. In contrast, XML preserves the structure of the object by using custom...2.1.1 Classes  ROCK  SOIL  MINERAL  VEGETATION  COATING  LIQUID  METAL  CONSTRUCTION  PLASTIC  WOOD  GLASS  FABRIC...2.1.2 Subclasses Subclasses are created using relevant taxonomy from the authority in a particular class. Some examples of subclasses nomenclature in

  17. Bisphenol A polycarbonate as a reference material

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.; Williams, J. B.

    1977-01-01

    Test methods require reference materials to standardize and maintain quality control. Various materials have been evaluated as possible reference materials, including a sample of bisphenol A polycarbonate without additives. Screening tests for relative toxicity under various experimental conditions were performed using male mice exposed to pyrolysis effluents over a 200-800 C temperature range. It was found that the bisphenol A polycarbonate served as a suitable reference material as it is available in large quantities, and does not significantly change with time.

  18. Application and future of solid foams

    NASA Astrophysics Data System (ADS)

    Bienvenu, Yves

    2014-10-01

    To conclude this series of chapters on solid foam materials, a review of industrial current applications and of mid-term market perspectives centred on manmade foams is given, making reference to natural cellular materials. Although the polymeric foam industrial development overwhelms the rest and finds applications on many market segments, more attention will be paid to the emerging market of inorganic-especially metallic-foams (and cellular materials) and their applications, present or upcoming. It is shown that the final applications of solid foams are primarily linked to transport and the present-day development of the different classes of solid foams is contrasted between functional applications and structural applications. xml:lang="fr"

  19. Biological and chemical sensors based on graphene materials.

    PubMed

    Liu, Yuxin; Dong, Xiaochen; Chen, Peng

    2012-03-21

    Owing to their extraordinary electrical, chemical, optical, mechanical and structural properties, graphene and its derivatives have stimulated exploding interests in their sensor applications ever since the first isolation of free-standing graphene sheets in year 2004. This article critically and comprehensively reviews the emerging graphene-based electrochemical sensors, electronic sensors, optical sensors, and nanopore sensors for biological or chemical detection. We emphasize on the underlying detection (or signal transduction) mechanisms, the unique roles and advantages of the used graphene materials. Properties and preparations of different graphene materials, their functionalizations are also comparatively discussed in view of sensor development. Finally, the perspective and current challenges of graphene sensors are outlined (312 references).

  20. CIVIL TECHNOLOGY, HIGHWAY AND STRUCTURAL OPTIONS, A SUGGESTED 2-YEAR POST HIGH SCHOOL CURRICULUM. TECHNICAL EDUCATION PROGRAM SERIES, NUMBER 8.

    ERIC Educational Resources Information Center

    BEAUMONT, JOHN A; AND OTHERS

    DESIGNED TO ASSIST ADMINISTRATORS, SUPERVISORS, AND TEACHERS TO PLAN, DEVELOP, AND EVALUATE PROGRAMS, THIS CURRICULUM GUIDE OFFERS COURSE OUTLINES, PROCEDURES, LABORATORY LAYOUTS, TEXTS AND REFERENCES, LISTS OF LABORATORY EQUIPMENT AND ITS COST, AND A SELECTED LIST OF SCIENTIFIC AND TECHNICAL SOCIETIES. BASIC MATERIALS WERE PREPARED AT THE…

  1. Greenhouse Operation and Management. Instructor Guide and Student Reference. Missouri Agricultural Education. Volume 21, Number 3.

    ERIC Educational Resources Information Center

    Wells, Judith A.; And Others

    These student and instructor materials for a one-semester course intended for high school juniors and seniors teach the following 24 lessons: (1) the scope and development of greenhouse production; (2) the economic importance of greenhouse crops; (3) careers in greenhouse operation and management; (4) greenhouse parts, structures, and coverings;…

  2. Deposition and melting behaviors for formation of micro/nano structures from nanostructures with femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Chen, Tong; Wang, Wenjun; Tao, Tao; Mei, Xuesong; Pan, Aifei

    2018-04-01

    This study reported the fabrication of a large area of micro/nano structures with different morphologies and sizes by the deposition of ablated material and melting of material on silicon through a line-shaped femtosecond laser beam irradiation. The evolution of micro/nano structures on the silicon surface was demonstrated with the laser fluence of 0.64 J/cm2. It was found that the melting of material was responsible for the formation of the micro-protrusions from laser-induced periodic surface structures (LIPSSs). Additionally, the deposition fell on the surface of the micro-protrusions in oblique incidence way, causing LIPSSs obscure and even invisible. As a consequence, those micro-protrusions gradually evolved into the micro-spikes with the ladder-like surface. Then, various laser fluences were applied to regulate the deposition and melting behaviors of silicon, to obtain the micro/nano structures with different morphologies and sizes. The formation mechanism of these micro/nano structures was analyzed. On this basis, the optical properties test showed that best anti-reflectivity was referred to the sample full of micro-spikes with the ladder-like surface, and the average reflectance has decreased from ∼38.17% of the planar silicon to∼4.75% in the waveband between 300 and 1000 nm.

  3. Ultrafine Ceramic Grains Embedded in Metallic Glass Matrix: Achieving Superior Wear Resistance via Increase in Both Hardness and Toughness.

    PubMed

    Yang, Lina; Wen, Mao; Dai, Xuan; Cheng, Gang; Zhang, Kan

    2018-05-09

    As structural materials, crystalline or metallic glass materials have attracted scientific and practical interests. However, some mechanisms involving critical size and shear bands have adverse effects on their mechanical properties. Here, we counter these two effects by introducing a special structure with ultrafine ceramic grains (with a diameter of ∼2.0 nm) embedded into a metallic glass matrix, wherein the grains are mainly composed of a Ta-W-N solid solution structure in nature, surrounded by a W-based amorphous matrix that contains Ta and N atoms. Such a structure is in situ formed during preparation, which combines the merits of both phases to achieve simultaneous increase in hardness and toughness relative to references (pure TaN and W) and thus superior wear resistance. Even more remarkable, a favorable variation of increased hardness but reduced elasticity modulus can be induced by this structure. Intrinsically, ultrafine ceramic grains (free of dislocations), embedded in the metallic glass matrix, could prevent shear band propagation within the glass matrix and further improve the hardness of the matrix material. In return, such glass matrix allows for stiffness neutralization and structural relaxation to reduce the elasticity modulus of ceramic grains. This study will offer a new guidance to fabricate ultrahigh-performance metal-based composites.

  4. [Application and outlook of three-dimensional printing in prosthetic dentistry].

    PubMed

    Sun, Y C; Li, R; Zhou, Y S; Wang, Y

    2017-06-09

    At present, three-dimensional (3D) printing has been applied in many aspects in the field of prosthodontics, such as dental models, wax patterns, guide plates, dental restoration and customized implants. The common forming principles include light curing, sintering and melting-condensation, the materials include pure wax, resin, metal and ceramics. However, the printing precision and the strength of multi-material integrated forming, remains to be improved. In addition, as a technology by which the internal structure of a material can be customized manufacturing, further advantage of 3D printing used in the manufacture of dental restoration lies in the customization functional bionic micro-structures, but the related research is still in its infancy. The review briefly summarizes the commonly used 3D printing crafts in prosthetic dentistry, and details clinical applications and evaluations, provides references for clinical decision and further research.

  5. Study design and analysis of automobile bumper for pedestrian safety

    NASA Astrophysics Data System (ADS)

    Kulkarni, Akash; Vora, Rushabh; Ravi, K.

    2017-11-01

    This paper aims to design and analyse the bumper beam structure, in order to ensure the protection of the pedestrians along with the occupants inside the vehicle. The concern shown towards the pedestrian safety is because, each year about 2,70,000 pedestrians are killed in road accidents that accounts to 22% of the total deaths. From the literature review, it was inferred that the mounting position of bumper and material selection play a crucial role in maximising the pedestrian safety. Hence in this paper, the effects of bumper mounting position and the bumper beam material have been studied, with reference to an explicit dynamic collision involving with a dummy human lower leg set-up. The acceptance of a particular mounting position/material was based on the fact that the maximum stress and deformation induced were less than the yield limits of the human leg form structure (representing the skin, femur and tibia).

  6. Improving Communication of Diagnostic Radiology Findings through Structured Reporting

    PubMed Central

    Panicek, David M.; Berk, Alexandra R.; Li, Yuelin; Hricak, Hedvig

    2011-01-01

    Purpose: To compare the content, clarity, and clinical usefulness of conventional (ie, free-form) and structured radiology reports of body computed tomographic (CT) scans, as evaluated by referring physicians, attending radiologists, and radiology fellows at a tertiary care cancer center. Materials and Methods: The institutional review board approved the study as a quality improvement initiative; no written consent was required. Three radiologists, three radiology fellows, three surgeons, and two medical oncologists evaluated 330 randomly selected conventional and structured radiology reports of body CT scans. For nonradiologists, reports were randomly selected from patients with diagnoses relevant to the physician’s area of specialization. Each physician read 15 reports in each format and rated both the content and clarity of each report from 1 (very dissatisfied or very confusing) to 10 (very satisfied or very clear). By using a previously published radiology report grading scale, physicians graded each report’s effectiveness in advancing the patient’s position on the clinical spectrum. Mixed-effects models were used to test differences between report types. Results: Mean content satisfaction ratings were 7.61 (95% confidence interval [CI]: 7.12, 8.16) for conventional reports and 8.33 (95% CI: 7.82, 8.86) for structured reports, and the difference was significant (P < .0001). Mean clarity satisfaction ratings were 7.45 (95% CI: 6.89, 8.02) for conventional reports and 8.25 (95% CI: 7.68, 8.82) for structured reports, and the difference was significant (P < .0001). Grade ratings did not differ significantly between conventional and structured reports. Conclusion: Referring clinicians and radiologists found that structured reports had better content and greater clarity than conventional reports. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101913/-/DC1 PMID:21518775

  7. Giant self-biased magnetoelectric coupling in co-fired textured layered composites

    NASA Astrophysics Data System (ADS)

    Yan, Yongke; Zhou, Yuan; Priya, Shashank

    2013-02-01

    Co-fired magnetostrictive/piezoelectric/magnetostrictive laminate structure with silver inner electrode was synthesized and characterized. We demonstrate integration of textured piezoelectric microstructure with the cost-effective low-temperature co-fired layered structure to achieve strong magnetoelectric coupling. Using the co-fired composite, a strategy was developed based upon the hysteretic response of nickel-copper-zinc ferrite magnetostrictive materials to achieve peak magnetoelectric response at zero DC bias, referred as self-biased magnetoelectric response. Fundamental understanding of self-bias phenomenon in composites with single phase magnetic material was investigated by quantifying the magnetization and piezomagnetic changes with applied DC field. We delineate the contribution arising from the interfacial strain and inherent magnetic hysteretic behavior of copper modified nickel-zinc ferrite towards self-bias response.

  8. Development of High-purity Certified Reference Materials for 17 Proteinogenic Amino Acids by Traceable Titration Methods.

    PubMed

    Kato, Megumi; Yamazaki, Taichi; Kato, Hisashi; Eyama, Sakae; Goto, Mari; Yoshioka, Mariko; Takatsu, Akiko

    2015-01-01

    To ensure the reliability of amino acid analyses, the National Metrology Institute of Japan of the National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) has developed high-purity certified reference materials (CRMs) for 17 proteinogenic amino acids. These CRMs are intended for use as primary reference materials to enable the traceable quantification of amino acids. The purity of the present CRMs was determined based on two traceable methods: nonaqueous acidimetric titration and nitrogen determination by the Kjeldahl method. Since neither method could distinguish compounds with similar structures, such as amino acid-related impurities, impurities were thoroughly quantified by combining several HPLC methods, and subtracted from the obtained purity of each method. The property value of each amino acid was calculated as a weighted mean of the corrected purities by the two methods. The uncertainty of the property value was obtained by combining measurement uncertainties of the two methods, a difference between the two methods, the uncertainty from the contribution of impurities, and the uncertainty derived from inhomogeneity. The uncertainty derived from instability was considered to be negligible based on stability monitoring of some CRMs. The certified value of each amino acid, property value with uncertainty, was given for both with or without enantiomeric separation.

  9. 40 CFR 1045.810 - What materials does this part reference?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Definitions and Other Reference Information § 1045.810 What materials does this part reference? Documents... material. Table 1 to this section lists material from the Society of Automotive Engineers that we have... the Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA 15096 or http://www.sae...

  10. Method and apparatus for assessing material properties of sheet-like materials

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.

    2002-01-01

    Apparatus for producing an indication of a material property of a sheet-like material according to the present invention may comprise an excitation source for vibrating the sheet-like material to produce at least one traveling wave therein. A light source configured to produce an object wavefront and a reference wavefront directs the object wavefront toward the sheet-like material to produce a modulated object wavefront. A modulator operatively associated with the reference wavefront modulates the reference wavefront in synchronization with the traveling wave on the sheet-like material to produce a modulated reference wavefront. A sensing medium positioned to receive the modulated object wavefront and the modulated reference wavefront produces an image of the traveling wave in the sheet-like material, the image of the anti-symmetric traveling wave being related to a displacement amplitude of the anti-symmetric traveling wave over a two-dimensional area of the vibrating sheet-like material. A detector detects the image of the traveling wave in the sheet-like material.

  11. Activation characteristics of candidate structural materials for a near-term Indian fusion reactor and the impact of their impurities on design considerations

    NASA Astrophysics Data System (ADS)

    H, L. SWAMI; C, DANANI; A, K. SHAW

    2018-06-01

    Activation analyses play a vital role in nuclear reactor design. Activation analyses, along with nuclear analyses, provide important information for nuclear safety and maintenance strategies. Activation analyses also help in the selection of materials for a nuclear reactor, by providing the radioactivity and dose rate levels after irradiation. This information is important to help define maintenance activity for different parts of the reactor, and to plan decommissioning and radioactive waste disposal strategies. The study of activation analyses of candidate structural materials for near-term fusion reactors or ITER is equally essential, due to the presence of a high-energy neutron environment which makes decisive demands on material selection. This study comprises two parts; in the first part the activation characteristics, in a fusion radiation environment, of several elements which are widely present in structural materials, are studied. It reveals that the presence of a few specific elements in a material can diminish its feasibility for use in the nuclear environment. The second part of the study concentrates on activation analyses of candidate structural materials for near-term fusion reactors and their comparison in fusion radiation conditions. The structural materials selected for this study, i.e. India-specific Reduced Activation Ferritic‑Martensitic steel (IN-RAFMS), P91-grade steel, stainless steel 316LN ITER-grade (SS-316LN-IG), stainless steel 316L and stainless steel 304, are candidates for use in ITER either in vessel components or test blanket systems. Tungsten is also included in this study because of its use for ITER plasma-facing components. The study is carried out using the reference parameters of the ITER fusion reactor. The activation characteristics of the materials are assessed considering the irradiation at an ITER equatorial port. The presence of elements like Nb, Mo, Co and Ta in a structural material enhance the activity level as well as the dose level, which has an impact on design considerations. IN-RAFMS was shown to be a more effective low-activation material than SS-316LN-IG.

  12. Supramolecular inorganic species: An expedition into a fascinating, rather unknown land mesoscopia with interdisciplinary expectations and discoveries

    NASA Astrophysics Data System (ADS)

    Müller, A.

    1994-09-01

    One of the basic problems in science is the understanding of the potentialities of material systems, a topic which is of relevance for disciplines ranging from natural philosophy over topology and/or structural chemistry, and biology ( morphogenesis) to materials science. Information on this problem can be obtained by studying the different types of linking of basic fragments in self-assembly processes, a type of reaction which has proved to be one of the most important in the biological and material world. The outlined problem can be nicely studied in the case of polyoxometalates with reference to basic organizing principles of material systems like conservative self-organization ( self-assembly), host—guest interactions, complementarity, molecular recognition, emergence vs. reduction ( as a dialectic unit), template-direction, exchange-interactions and, in general, the mesoscopic material world with its unusual properties as well as its topological and/or structural diversity. Science will lose in significance as an interdisciplinary unit — as outlined or maybe predicted here — should not more importance be attached to general aspects in the future.

  13. GTX Reference Vehicle Structural Verification Methods and Weight Summary

    NASA Technical Reports Server (NTRS)

    Hunter, J. E.; McCurdy, D. R.; Dunn, P. W.

    2002-01-01

    The design of a single-stage-to-orbit air breathing propulsion system requires the simultaneous development of a reference launch vehicle in order to achieve the optimal mission performance. Accordingly, for the GTX study a 300-lb payload reference vehicle was preliminary sized to a gross liftoff weight (GLOW) of 238,000 lb. A finite element model of the integrated vehicle/propulsion system was subjected to the trajectory environment and subsequently optimized for structural efficiency. This study involved the development of aerodynamic loads mapped to finite element models of the integrated system in order to assess vehicle margins of safety. Commercially available analysis codes were used in the process along with some internally developed spread-sheets and FORTRAN codes specific to the GTX geometry for mapping of thermal and pressure loads. A mass fraction of 0.20 for the integrated system dry weight has been the driver for a vehicle design consisting of state-of-the-art composite materials in order to meet the rigid weight requirements. This paper summarizes the methodology used for preliminary analyses and presents the current status of the weight optimization for the structural components of the integrated system.

  14. GTX Reference Vehicle Structural Verification Methods and Weight Summary

    NASA Technical Reports Server (NTRS)

    Hunter, J. E.; McCurdy, D. R.; Dunn, P. W.

    2002-01-01

    The design of a single-stage-to-orbit air breathing propulsion system requires the simultaneous development of a reference launch vehicle in order to achieve the optimal mission performance. Accordingly, for the GTX study a 300-lb payload reference vehicle was preliminarily sized to a gross liftoff weight (GLOW) of 238,000 lb. A finite element model of the integrated vehicle/propulsion system was subjected to the trajectory environment and subsequently optimized for structural efficiency. This study involved the development of aerodynamic loads mapped to finite element models of the integrated system in order to assess vehicle margins of safety. Commercially available analysis codes were used in the process along with some internally developed spreadsheets and FORTRAN codes specific to the GTX geometry for mapping of thermal and pressure loads. A mass fraction of 0.20 for the integrated system dry weight has been the driver for a vehicle design consisting of state-of-the-art composite materials in order to meet the rigid weight requirements. This paper summarizes the methodology used for preliminary analyses and presents the current status of the weight optimization for the structural components of the integrated system.

  15. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Mckannan, E. C. (Editor)

    1978-01-01

    A list of active research tasks as of the end of 1978 of the Materials Processing in Space Program of the Office of Space and Terrestrial Applications, involving several NASA Centers and other organizations is reported. An overview of the program scope for managers and scientists in industry, university and government communities is provided. The program, its history, strategy and overall goal; the organizational structures and people involved; and each research task are described. Tasks are categorized by ground based research according to four process areas. Cross references to the performing organizations and principal investigators are provided.

  16. Invited Article: Refractive index matched scanning of dense granular materials

    NASA Astrophysics Data System (ADS)

    Dijksman, Joshua A.; Rietz, Frank; Lőrincz, Kinga A.; van Hecke, Martin; Losert, Wolfgang

    2012-01-01

    We review an experimental method that allows to probe the time-dependent structure of fully three-dimensional densely packed granular materials and suspensions by means of particle recognition. The method relies on submersing a granular medium in a refractive index matched fluid. This makes the resulting suspension transparent. The granular medium is then visualized by exciting, layer by layer, the fluorescent dye in the fluid phase. We collect references and unreported experimental know-how to provide a solid background for future development of the technique, both for new and experienced users.

  17. Chemical aspects of the formation of the solar system

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1978-01-01

    Application of Alfven's theory for the formation of the solar system and the constraints imposed by the chemical composition of space materials are discussed with reference to chemical processes involved in the formation of the solar system. Evidence for the chemical properties of the space medium and the chemical consequences of the postulated physical differentiation processes are outlined, and interpretations based on structure and composition of meteorite material are indicated. A large range of topics, including processes involving chemical differentiation, temperature effects, and isotope fractionation, are examined.

  18. Multilayer Impregnated Fibrous Thermal Insulation Tiles

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Rasky, Daniel J.; Szalai, Christine e.; Hsu, Ming-ta; Carroll, Joseph A.

    2007-01-01

    The term "secondary polymer layered impregnated tile" ("SPLIT") denotes a type of ablative composite-material thermal- insulation tiles having engineered, spatially non-uniform compositions. The term "secondary" refers to the fact that each tile contains at least two polymer layers wherein endothermic reactions absorb considerable amounts of heat, thereby helping to prevent overheating of an underlying structure. These tiles were invented to afford lighter-weight alternatives to the reusable thermal-insulation materials heretofore variously used or considered for use in protecting the space shuttles and other spacecraft from intense atmospheric-entry heating.

  19. On the Mechanical Behavior of Advanced Composite Material Structures

    NASA Astrophysics Data System (ADS)

    Vinson, Jack

    During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.

  20. Reproducibility of polycarbonate reference material in toxicity evaluation

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Huttlinger, P. A.

    1981-01-01

    A specific lot of bisphenol A polycarbonate has been used for almost four years as the reference material for the NASA-USF-PSC toxicity screening test method. The reproducibility of the test results over this period of time indicate that certain plastics may be more suitable reference materials than the more traditional cellulosic materials.

  1. Probabilistic Multi-Scale, Multi-Level, Multi-Disciplinary Analysis and Optimization of Engine Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2000-01-01

    Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.

  2. Hybrid materials for optics and photonics.

    PubMed

    Lebeau, Benedicte; Innocenzi, Plinio

    2011-02-01

    The interest in organic-inorganic hybrids as materials for optics and photonics started more than 25 years ago and since then has known a continuous and strong growth. The high versatility of sol-gel processing offers a wide range of possibilities to design tailor-made materials in terms of structure, texture, functionality, properties and shape modelling. From the first hybrid material with optical functional properties that has been obtained by incorporation of an organic dye in a silica matrix, the research in the field has quickly evolved towards more sophisticated systems, such as multifunctional and/or multicomponent materials, nanoscale and self-assembled hybrids and devices for integrated optics. In the present critical review, we have focused our attention on three main research areas: passive and active optical hybrid sol-gel materials, and integrated optics. This is far from exhaustive but enough to give an overview of the huge potential of these materials in photonics and optics (254 references).

  3. Universal Fragment Descriptors for Predicting Electronic and Mechanical Properties of Inorganic Crystals

    NASA Astrophysics Data System (ADS)

    Oses, Corey; Isayev, Olexandr; Toher, Cormac; Curtarolo, Stefano; Tropsha, Alexander

    Historically, materials discovery is driven by a laborious trial-and-error process. The growth of materials databases and emerging informatics approaches finally offer the opportunity to transform this practice into data- and knowledge-driven rational design-accelerating discovery of novel materials exhibiting desired properties. By using data from the AFLOW repository for high-throughput, ab-initio calculations, we have generated Quantitative Materials Structure-Property Relationship (QMSPR) models to predict critical materials properties, including the metal/insulator classification, band gap energy, and bulk modulus. The prediction accuracy obtained with these QMSPR models approaches training data for virtually any stoichiometric inorganic crystalline material. We attribute the success and universality of these models to the construction of new materials descriptors-referred to as the universal Property-Labeled Material Fragments (PLMF). This representation affords straightforward model interpretation in terms of simple heuristic design rules that could guide rational materials design. This proof-of-concept study demonstrates the power of materials informatics to dramatically accelerate the search for new materials.

  4. Nicotine, acetanilide and urea multi-level2H-,13C- and15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry

    USGS Publications Warehouse

    Schimmelmann, A.; Albertino, A.; Sauer, P.E.; Qi, H.; Molinie, R.; Mesnard, F.

    2009-01-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the S values of these reference materials should bracket the isotopic range of samples with unknown S values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for ??13C and ??13N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: ??2Hnicotine -162 to -45%o, ??13Cnicotine -30.05 to +7.72%, ?? 15Nnicotine -6.03 to +33.62%; ??15N acetanilide +1-18 to +40.57%; ??13Curea -34.13 to +11.71%, ??15Nurea +0.26 to +40.61% (recommended ?? values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different ??13N values. Comparative ??13C and ??15N on-line EA-IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA-IRMS reference materials.

  5. Synthesis of Engineered Zeolitic Materials: From Classical Zeolites to Hierarchical Core-Shell Materials.

    PubMed

    Masoumifard, Nima; Guillet-Nicolas, Rémy; Kleitz, Freddy

    2018-04-01

    The term "engineered zeolitic materials" refers to a class of materials with a rationally designed pore system and active-sites distribution. They are primarily made of crystalline microporous zeolites as the main building blocks, which can be accompanied by other secondary components to form composite materials. These materials are of potential importance in many industrial fields like catalysis or selective adsorption. Herein, critical aspects related to the synthesis and modification of such materials are discussed. The first section provides a short introduction on classical zeolite structures and properties, and their conventional synthesis methods. Then, the motivating rationale behind the growing demand for structural alteration of these zeolitic materials is discussed, with an emphasis on the ongoing struggles regarding mass-transfer issues. The state-of-the-art techniques that are currently available for overcoming these hurdles are reviewed. Following this, the focus is set on core-shell composites as one of the promising pathways toward the creation of a new generation of highly versatile and efficient engineered zeolitic substances. The synthesis approaches developed thus far to make zeolitic core-shell materials and their analogues, yolk-shell, and hollow materials, are also examined and summarized. Finally, the last section concisely reviews the performance of novel core-shell, yolk-shell, and hollow zeolitic materials for some important industrial applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DFT, Its Impact on Condensed Matter and on ``Materials-Genome'' Research

    NASA Astrophysics Data System (ADS)

    Scheffler, Matthias

    About 40 years ago, two seminal works demonstrated the power of density-functional theory (DFT) for real materials. These studies by Moruzzi, Janak, and Williams on metals and Yin and Cohen on semiconductors visualized the spatial distribution of electrons, predicted the equation of state of solids, crystal stability, pressure-induced phase transitions, and more. They also stressed the importance of identifying trends by looking at many systems (e.g. the whole transition-metal series). Since then, the field has seen numerous applications of DFT to solids, liquids, defects, surfaces, and interfaces providing important descriptions and explanations as well as predictions of experimentally not yet identified systems. - ∖ ∖ About 10 years ago, G. Ceder and his group [Ref. 3 and references therein] started with high-throughput screening calculations in the spirit of what in 2011 became the ``Materials Genome Initiative''. The idea of high-throughput screening is old (a key example is the ammonia catalyst found by A. Mittasch at BASF more than 100 years ago), but it is now increasingly becoming clear that big data of materials does not only provide direct information but that the data is structured. This enables interpolation, (modest) extrapolation, and new routes towards understanding [Ref. 5 and references therein]. - ∖ ∖ The amount of data created by ``computational materials science'' is significant. For instance, the NoMaD Repository (which includes also data from other repositories, e.g. AFLOWLIB and OQMD) now holds more than 18 million total-energy calculations. In fact, the amount of data of computational materials science is steadily increasing, and about hundred million CPU core hours are nowadays used every day, worldwide, for DFT calculations for materials. - ∖ ∖ The talk will summarize this enormous impact of DFT on materials science, and it will address the next steps, e.g. the issue how to exploit big data of materials for doing forefront research, how to find (hidden) structure in the data in order to advance materials science, identify new scientific phenomena, and to provide support towards industrial applications. The NOMAD Laboratory Center of Excellence, European Union's Horizon 2020 research and innovation program, Grant agreement no. 676580.

  7. Flexible pavement overlay design procedures. Volume 1: Evaluation and modification of the design methods

    NASA Astrophysics Data System (ADS)

    Majidzadeh, K.; Ilves, G. J.

    1981-08-01

    A ready reference to design procedures for asphaltic concrete overlay of flexible pavements based on elastic layer theory is provided. The design procedures and the analytical techniques presented were formulated to predict the structural fatigue response of asphaltic concrete overlays for various design conditions, including geometrical and material properties, loading conditions and environmental variables.

  8. 29 CFR 1926.6 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....1-1967, Safety in Welding and Cutting, IBR approved for § 1926.350(j). (27) USA Z53.1-1967 (also... approved for § 1926.603(a). (m) The following material is available for purchase from the American Welding...://www.aws.org/: (1) AWS D1.1/D1.1M:2002, Structural Welding Code—Steel, 18th ed., ANSI approved Aug. 31...

  9. 29 CFR 1926.6 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Prevention Tags, IBR approved for § 1926.200(i). (26) ANSI Z49.1-1967, Safety in Welding and Cutting, IBR... approved for § 1926.603(a). (m) The following material is available for purchase from the American Welding...://www.aws.org/: (1) AWS D1.1/D1.1M:2002, Structural Welding Code—Steel, 18th ed., ANSI approved Aug. 31...

  10. MEMS Reliability Assurance Guidelines for Space Applications

    NASA Technical Reports Server (NTRS)

    Stark, Brian (Editor)

    1999-01-01

    This guide is a reference for understanding the various aspects of microelectromechanical systems, or MEMS, with an emphasis on device reliability. Material properties, failure mechanisms, processing techniques, device structures, and packaging techniques common to MEMS are addressed in detail. Design and qualification methodologies provide the reader with the means to develop suitable qualification plans for the insertion of MEMS into the space environment.

  11. The Tutor-Web: An Educational System for Classroom Presentation, Evaluation and Self-Study

    ERIC Educational Resources Information Center

    Stefansson, Gunnar

    2004-01-01

    A general Web-based system for use in education, the tutor-web, has been developed for storage and presentation of electronic slides for classroom use, along with reference material, examples and quizzes. The primary novelty of the system is the structured linkage between the various pieces of information, to maintain coherence and focus on the…

  12. Semiotics, Experience, and the Material Self: An Inquiry into the Subject of the Contemporary Asian Woman Writer.

    ERIC Educational Resources Information Center

    Geok-Lin Lim, Shirley

    1990-01-01

    Examines how twentieth-century Asian women writers have been and continue to be marginalized by gender, by the choice of writing in English, and, when the writer is a member of a minority, by the prevailing majority power structure. The author's recollections of experiences in Malaysia form the basis for discussion. (39 references) (JL)

  13. Rheological properties of soil: a review

    NASA Astrophysics Data System (ADS)

    Zhu, Guangli; Zhu, Long; Yu, Chao

    2017-05-01

    Recently rheological methods have been applied to investigate the mechanical properties of soil micro-structure. Rheological techniques have a number of quantitative physically based measurements and offer a better understanding of how soil micro-structure behaves when subject to stress. Rheological material is refers to deformation properties similar to the solid and flow properties similar to the liquid of bound water and colloidal substances under stress. Soil rheology is divided into fluid rheology and plasticity rheology. Fluid rheology is produced by rheological material. Plasticity rheology mainly refers to the sliding and peristaltic between soil solid particles under shear stress. It is generally believed that the soft soil rheology mainly belongs to fluid rheology, while the rheology of sand and other coarse grained soil mainly belongs to plasticity rheology. Thus, rheology mechanisms of soft soil and sand are different. This paper introduces the methods of the research progress on the rheology of soil, in the soil rheological mechanism, rheological model and rheological numerical aspects of the research at home and abroad were summarized and analysed, discussed the problems existed in related research, and puts forward some suggestions for the future study on the rheology of soil.

  14. Method and apparatus for determining material structural integrity

    DOEpatents

    Pechersky, M.J.

    1994-01-01

    Disclosed are a nondestructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis to determine the damping loss factor. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity vs time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method: if an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the coil current. If a reciprocating transducer is used, the vibrational force is determined by a force gauge in the transducer. Using vibrational analysis, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity data. Damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

  15. Effects of crystal structure and composition on the photocatalytic performance of Ta-O-N functional materials.

    PubMed

    Liu, Qing-Lu; Zhao, Zong-Yan; Yi, Jian-Hong

    2018-05-07

    For photocatalytic applications, the response of a material to the solar spectrum and its redox capabilities are two important factors determined by the band gap and band edge position of the electronic structure of the material. The crystal structure and composition of the photocatalyst are fundamental for determining the above factors. In this article, we examine the functional material Ta-O-N as an example of how to discuss relationships among these factors in detail with the use of theoretical calculations. To explore how the crystal structure and composition influence the photocatalytic performance, two groups of Ta-O-N materials were considered: the first group included ε-Ta 2 O 5 , TaON, and Ta 3 N 5 ; the second group included β-Ta 2 O 5 , δ-Ta 2 O 5 , ε-Ta 2 O 5 , and amorphous-Ta 2 O 5 . Calculation results indicated that the band gap and band edge position are determined by interactions between the atomic core and valence electrons, the overlap of valence electronic states, and the localization of valence states. Ta 3 N 5 and TaON are suitable candidates for efficient photocatalysts owing to their photocatalytic water-splitting ability and good utilization efficiency of solar energy. δ-Ta 2 O 5 has a strong oxidation potential and a band gap suitable for absorbing visible light. Thus, it can be applied to photocatalytic degradation of most pollutants. Although a-Ta 2 O 5 , ε-Ta 2 O 5 , and β-Ta 2 O 5 cannot be directly used as photocatalysts, they can still be applied to modify conventional Ta-O-N photocatalysts, owing to their similar composition and structure. These calculation results will be helpful as reference data for analyzing the photocatalytic performance of more complicated Ta-O-N functional materials. On the basis of these findings, one could design novel Ta-O-N functional materials for specific photocatalytic applications by tuning the composition and crystal structure.

  16. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.

    PubMed

    Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard

    2017-01-01

    Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.

  17. Post-impact alteration of the Manson impact structure

    NASA Technical Reports Server (NTRS)

    Crossey, L. J.; Mccarville, P.

    1993-01-01

    Core materials from the Manson impact site (Manson, Iowa) are examined in order to evaluate post-impact alteration processes. Diagenetic interpretation of post-impact events is based on petrologic, mineralogic, and geochemical investigation of core materials including the following: target strata, disturbed and disrupted strata, ejecta, breccias, microbreccias, and impact melt. The diagenetic study utilizes research cores obtained by the continental scientific drilling project (CSDP) at the Manson structure, as well as core and cuttings of related materials. Samples include impactites (breccias, microbreccias, and melt material), crater fill material (sedimentary clast breccias), disturbed and disrupted target rocks, and reference target material (Amoco Eisheid No. 1 materials). The study of multiple cores will permit development of a regional picture of post-impact thermal history. The specific objectives are as follows: (1) provide a detailed description of authigenic and alteration mineralogy from diverse lithologies encountered in research drill cores at the Manson impact structure, and (2) identify and relate significant post-impact mineral alteration to post-impact thermal regime (extent and duration). Results will provide mineralogical and geochemical constraints on models for post-impact processes including the following: infilling of the crater depression; cooling and hydrothermal alteration of melt rocks; and subsequent long-term, low-temperature alteration of target rocks, breccias, and melt rocks. Preliminary petrologic and x-ray diffraction examination of fracture linings and void fillings from research core M1 indicate the presence of quartz, chlorite, mixed-layer clays, gypsum/anhydrite, calcite, and minor pyrite.

  18. [Development of the certified reference material of mercury in lyophilized human urine].

    PubMed

    Zhao, Wei; Zhang, Fu-gang; DU, Hui-fang; Pan, Ya-juan; Yan, Hui-fang

    2011-02-01

    To develop the certified reference material of mercury in lyophilized human urine. Human urine samples from normal level mercury districts were filtered, homogenized, dispensed, lyophilized and radio-sterilized. Homogeneity test, stability inspection and certification were conducted using a atom fluorescence spectrophotometric method. The physical and chemical stability of the certified reference material were assessed for 18 months. The certified values are based on analysis made by three independent laboratories. The certified values are as follows: low level was (35.6 ± 2.1) µg/L, high level was (50.5 ± 3.0) µg/L. The certified reference material of mercury in lyophilized human urine in this research reached the national certified reference material requirements and could be used for the quality control.

  19. Devices for the Production of Reference Gas Mixtures.

    PubMed

    Fijało, Cyprian; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek

    2016-09-02

    For many years there has been growing demand for gaseous reference materials, which is connected with development in many fields of science and technology. As a result, new methodological and instrumental solutions appear that can be used for this purpose. Appropriate quality assurance/quality control (QA/QC) must be used to make sure that measurement data are a reliable source of information. Reference materials are a significant element of such systems. In the case of gas samples, such materials are generally called reference gas mixtures. This article presents the application and classification of reference gas mixtures, which are a specific type of reference materials, and the methods for obtaining them are described. Construction solutions of devices for the production of reference gas mixtures are detailed, and a description of a prototype device for dynamic production of reference gas mixtures containing aroma compounds is presented.

  20. Decommissioning of offshore oil and gas facilities: a comparative assessment of different scenarios.

    PubMed

    Ekins, Paul; Vanner, Robin; Firebrace, James

    2006-06-01

    A material and energy flow analysis, with corresponding financial flows, was carried out for different decommissioning scenarios for the different elements of an offshore oil and gas structure. A comparative assessment was made of the non-financial (especially environmental) outcomes of the different scenarios, with the reference scenario being to leave all structures in situ, while other scenarios envisaged leaving them on the seabed or removing them to shore for recycling and disposal. The costs of each scenario, when compared with the reference scenario, give an implicit valuation of the non-financial outcomes (e.g. environmental improvements), should that scenario be adopted by society. The paper concludes that it is not clear that the removal of the topsides and jackets of large steel structures to shore, as currently required by regulations, is environmentally justified; that concrete structures should certainly be left in place; and that leaving footings, cuttings and pipelines in place, with subsequent monitoring, would also be justified unless very large values were placed by society on a clear seabed and trawling access.

  1. Development of Active Microwave Thermography for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Foudazi, Ali

    Active Microwave Thermography (AMT) is an integrated nondestructive testing and evaluation (NDT&E) method that incorporates aspects of microwave NDT and thermography techniques. AMT uses a microwave excitation to generate heat and the surface thermal profile of the material or structure under test is subsequently measured using a thermal camera (or IR camera). Utilizing a microwave heat excitation provides advantages over traditional thermal excitations (heat lamps, etc.) including the potential for non-contact, selective and focused heating. During an AMT inspection, two heating mechanisms are possible, referred to as dielectric and induction heating. Dielectric heating occurs as a result of the interaction of microwave energy with lossy dielectric materials which results in dissipated microwave energy and a subsequent increase in temperature. Induction heating is a result of induced surface current on conductive materials with finite conductivity under microwave illumination and subsequently ohmic loss. Due to the unique properties of microwave signals including frequency of operation, power level, and polarization, as well as their interaction with different materials, AMT has strong potential for application in various industries including infrastructure, transportation, aerospace, etc. As such, this Dissertation explores the application of AMT to NDT&E needs in these important industries, including detection and evaluation of defects in single- or multi-layered fiber-reinforced polymer-strengthened cement-based materials, evaluation of steel fiber percentage and distributions in steel fiber reinforced structures, characterization of corrosion ratio on corroded reinforcing steel bars (rebar), and evaluation of covered surface cracks orientation and size in metal structures.

  2. Energy absorption capability and crashworthiness of composite material structures: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carruthers, J.J.; Kettle, A.P.; Robinson, A.M.

    1998-10-01

    The controlled brittle failure of thermosetting fiber-reinforced polymer composites can provide a very efficient energy absorption mechanism. Consequently, the use of these materials in crashworthy vehicle designs has been the subject of considerable interest. In this respect, their more widespread application has been limited by the complexity of their collapse behavior. This article reviews the current level of understanding i this field, including the correlations between failure mode and energy absorption, the principal material, geometric, and physical parameters relevant to crashworthy design and methods of predicting the energy absorption capability of polymer composites. Areas which require further investigation are identified.more » This review article contains 70 references.« less

  3. Liquid crystalline tactoids: ordered structure, defective coalescence and evolution in confined geometries

    NASA Astrophysics Data System (ADS)

    Wang, Pei-Xi; MacLachlan, Mark J.

    2017-12-01

    Tactoids are liquid crystalline microdroplets that spontaneously nucleate from isotropic dispersions, and transform into macroscopic anisotropic phases. These intermediate structures have been found in a range of molecular, polymeric and colloidal liquid crystals. Typically only studied by polarized optical microscopy, these ordered but easily deformable microdroplets are now emerging as interesting components for structural investigations and developing new materials. In this review, we highlight the structure, property and transformation of tactoids in different compositions, but especially cellulose nanocrystals. We have selected references that illustrate the diversity and most exciting developments in tactoid research, while capturing the historical development of this field. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  4. Satellite power system concept development and evaluation program. Volume 1: Technical assessment summary report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Candidate satellite power system (SPS) concepts were identified and evaluated in terms of technical and cost factors. A number of alternative technically feasible approaches and system concepts were investigated. A reference system was defined to facilitate economic, environmental, and societal assessments by the Department of Energy. All elements of the reference system were defined including the satellite and all its subsystems, the orbital construction and maintenance bases, all elements of the space transportation system, the ground receiving station, and the associated industrial facilities for manufacturing the required hardware. The reference conclusions and remaining issues are stated for the following topical areas: system definition; energy conversion and power management; power transmission and reception; structures, controls, and materials; construction and operations; and space transportation.

  5. Atomic-Scale Imaging of Surfaces and Interfaces. Materials Research Society Symposium Proceedings Held in Boston, Massachusetts on November 30-December 2, 1992. Volume 295

    DTIC Science & Technology

    1992-01-01

    basic reference structure, changes to which can be studied as a function of doping and/or processing parameters . and correlated to electrical and...MICROSCOPY CHARACTERIZATION OF EPITAXIAL GROWTH OF Ag DEPOSITED ON MgO MICROCUBES 127 J. Liu, M. Pan, and GE. Spinnler REAL-TIME VIEWING OF DYNAMIC...IMAGING OF GRAIN BOUNDARIES IN Pr- DOPED ZnO CERAMICS 189 I.G. Solorzano, J.B. VanDer Sande, K.K. Baek, and H.L. Tuller ATOMIC STRUCTURES AND DEFECTS OF

  6. Some possible reference materials for fire toxicity tests

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Solis, A. N.

    1977-01-01

    Suitable reference materials need to be selected in order to standardize any test method. The evaluation of cotton, polyethylene, polyether sulfone, polycarbonate, polystyrene, and polyurethane flexible and rigid foams as possible reference materials for the University of San Francisco/NASA toxicity screening test method is discussed.

  7. Dielectric characterization of high-performance spaceflight materials

    NASA Astrophysics Data System (ADS)

    Kleppe, Nathan Alan

    As commercial space travel increases, the need for reliable structural health monitoring to predict possible weaknesses or failures of structural materials also increases. Monitoring of polymer-based materials may be achieved through the use of dielectric spectroscopy by comparing permittivity or conductivity measurements performed on a sample in use to that of a pristine sample. Changes in these measured values or of the relaxation frequencies, if present, can indicate chemical or physical changes occurring within the material and the possible need for maintenance/replacement. In this work, we established indicative trends that occur in the dielectric spectra during accelerated aging of various high-performance polymeric materials (EVOH, PEEK, PPS, and UHMWPE). Uses for these materials range from electrical insulation and protective coatings to windows and air- or space-craft parts that may be subject to environmental damage over long-term operation. Accelerated thermal aging and ultraviolet/water-spray cyclic aging were performed in order to investigate the degradation of the aforementioned material. The Havriliak-Negami model was used in the analysis of the measured dielectric spectra in order to obtain the characteristic fit parameters from which aging-related trends were identified. With reference to the literature and from measured FTIR spectra, observations were connected to the underlying mechanisms causing the dielectric relaxations.

  8. On the use of electrical and optical strain gauges paired to magnetostrictive patch actuators

    NASA Astrophysics Data System (ADS)

    Braghin, Francesco; Cinquemani, Simone; Cazzulani, Gabriele; Comolli, Lorenzo

    2014-04-01

    Giant Magnetostrictive Actuators (GMA) can be profitably used in application of vibration control on smart structures. In this field, the use of inertial actuators based on magnetostrictive materials has been consolidate. Such devices turn out to be very effective in applications of vibration control, since they can be easily paired with sensors able to ensure the feedback signal necessary to perform the control action. Unlike most widespread applications, this paper studies the use of patch magnetostrictive actuators. They are made of a sheet of magnetostrictive material, rigidly constrained to the structure, and wrapped in a solenoid whose purpose is to change the intensity of the magnetic field within the material itself. The challenge in the use of such devices resides in the impossibility of having co-located sensors. This limit may be exceeded by using strain gauge sensors to measure the deformation of the structure at the actuator. This work analyzes experimentally the opportunity of introducing, inside a composite material structure, both the conventional electric strain gauges and the less conventional optical sensors based on Bragg's gratings. The performance of both solutions are analyzed with particular reference to the signal to noise ratio, the resolution of the sensors, the sensitivity to variations of the electric and magnetic fields and the temperature change associated with the operation of the actuator.

  9. Odd–even structural sensitivity on dynamics in network-forming ionic liquids

    DOE PAGES

    Yang, Ke; Cai, Zhikun; Tyagi, Madhusudan; ...

    2016-04-13

    Understanding structural sensitivity on properties of materials is an important step toward the rational design of materials. As a compelling case of sensitive structure-property relationship, an odd-even effect refers to the alternating trend of physical or chemical properties on odd/even number of repeating structural units. In crystalline or semi-crystalline materials, such odd-even variations of macroscopic properties emerge as manifestations of differences in the periodic packing patterns of molecules. Therefore, due to the lack of long-range order, such odd-even phenomenon is not expected in liquids. Herein, we report the discovery of a remarkable odd-even effect of the dynamical properties in themore » liquid phase, which challenges the traditional periodic packing explanations. In a class of network-forming ionic liquid (NIL), using incoherent quasi-elastic neutron scattering measurements, we measured the dynamical properties including the diffusion coefficient and the rotational relaxation time. These dynamical properties showed pronounced alternating trends with increased number of methylene (–CH 2– ) groups in the backbone. Meanwhile, the structure factor S(Q) showed no long-range periodic packing of molecules, while the pair distribution function g(r) revealed subtle differences in the local molecular morphology. As a result, the observed dynamical odd-even phenomenon in liquids showed that profound dynamical changes originate from subtle local structural differences.« less

  10. Study on safety level of RC beam bridges under earthquake

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Lin, Junqi; Liu, Jinlong; Li, Jia

    2017-08-01

    This study considers uncertainties in material strengths and the modeling which have important effects on structural resistance force based on reliability theory. After analyzing the destruction mechanism of a RC bridge, structural functions and the reliability were given, then the safety level of the piers of a reinforced concrete continuous girder bridge with stochastic structural parameters against earthquake was analyzed. Using response surface method to calculate the failure probabilities of bridge piers under high-level earthquake, their seismic reliability for different damage states within the design reference period were calculated applying two-stage design, which describes seismic safety level of the built bridges to some extent.

  11. Probabilistic Analysis of Structural Member from Recycled Aggregate Concrete

    NASA Astrophysics Data System (ADS)

    Broukalová, I.; Šeps, K.

    2017-09-01

    The paper aims at the topic of sustainable building concerning recycling of waste rubble concrete from demolition. Considering demands of maximising recycled aggregate use and minimising of cement consumption, composite from recycled concrete aggregate was proposed. The objective of the presented investigations was to verify feasibility of the recycled aggregate cement based fibre reinforced composite in a structural member. Reliability of wall from recycled aggregate fibre reinforced composite was assessed in a probabilistic analysis of a load-bearing capacity of the wall. The applicability of recycled aggregate fibre reinforced concrete in structural applications was demonstrated. The outcomes refer to issue of high scatter of material parameters of recycled aggregate concretes.

  12. Compression Strength of Composite Primary Structural Components

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.

    1998-01-01

    Research conducted under NASA Grant NAG-1-537 focussed on the response and failure of advanced composite material structures for application to aircraft. Both experimental and analytical methods were utilized to study the fundamental mechanics of the response and failure of selected structural components subjected to quasi-static loads. Most of the structural components studied were thin-walled elements subject to compression, such that they exhibited buckling and postbuckling responses prior to catastrophic failure. Consequently, the analyses were geometrically nonlinear. Structural components studied were dropped-ply laminated plates, stiffener crippling, pressure pillowing of orthogonally stiffened cylindrical shells, axisymmetric response of pressure domes, and the static crush of semi-circular frames. Failure of these components motivated analytical studies on an interlaminar stress postprocessor for plate and shell finite element computer codes, and global/local modeling strategies in finite element modeling. These activities are summarized in the following section. References to literature published under the grant are listed on pages 5 to 10 by a letter followed by a number under the categories of journal publications, conference publications, presentations, and reports. These references are indicated in the text by their letter and number as a superscript.

  13. 10 CFR 431.105 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Storage Tanks Test Procedures § 431.105 Materials incorporated by reference. (a) The Department... Water Supply Boilers, and Unfired Hot Water Storage Tanks,” Docket No. EE-RM/TP-99-480, Forrestal... 10 Energy 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 431.105 Section 431...

  14. NBS/EPA (NATIONAL BUREAU OF STANDARDS/ENVIRONMENTAL PROTECTION AGENCY) CERTIFIED REFERENCE MATERIAL PERFORMANCE AUDIT PROGRAM: STATUS REPORT 1

    EPA Science Inventory

    A traceability procedure has been established which allows specialty gas producers to prepare gaseous pollutant Certified Reference Materials (CRMs). The accuracy, stability and homogeneity of the CRMs approach those of NBS Standard Reference Materials (SRMs). Part of this proced...

  15. NBS/EPA (NATIONAL BUREAU OF STANDARDS/ENVIRONMENTAL PROTECTION AGENCY) CERTIFIED REFERENCE MATERIAL PERFORMANCE AUDIT PROGRAM: STATUS REPORT 2

    EPA Science Inventory

    A traceability procedure has been established which allows specialty gas producers to prepare gaseous pollutant Certified Reference Materials (CRM's). The accuracy, stability and homogeneity of the CRM's approach those of NBS Standard Reference Materials (SRM's). As of October 19...

  16. Nicotine, acetanilide and urea multi-level 2H-, 13C- and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry.

    PubMed

    Schimmelmann, Arndt; Albertino, Andrea; Sauer, Peter E; Qi, Haiping; Molinie, Roland; Mesnard, François

    2009-11-01

    Accurate determinations of stable isotope ratios require a calibration using at least two reference materials with different isotopic compositions to anchor the isotopic scale and compensate for differences in machine slope. Ideally, the delta values of these reference materials should bracket the isotopic range of samples with unknown delta values. While the practice of analyzing two isotopically distinct reference materials is common for water (VSMOW-SLAP) and carbonates (NBS 19 and L-SVEC), the lack of widely available organic reference materials with distinct isotopic composition has hindered the practice when analyzing organic materials by elemental analysis/isotope ratio mass spectrometry (EA-IRMS). At present only L-glutamic acids USGS40 and USGS41 satisfy these requirements for delta13C and delta15N, with the limitation that L-glutamic acid is not suitable for analysis by gas chromatography (GC). We describe the development and quality testing of (i) four nicotine laboratory reference materials for on-line (i.e. continuous flow) hydrogen reductive gas chromatography-isotope ratio mass-spectrometry (GC-IRMS), (ii) five nicotines for oxidative C, N gas chromatography-combustion-isotope ratio mass-spectrometry (GC-C-IRMS, or GC-IRMS), and (iii) also three acetanilide and three urea reference materials for on-line oxidative EA-IRMS for C and N. Isotopic off-line calibration against international stable isotope measurement standards at Indiana University adhered to the 'principle of identical treatment'. The new reference materials cover the following isotopic ranges: delta2H(nicotine) -162 to -45 per thousand, delta13C(nicotine) -30.05 to +7.72 per thousand, delta15N(nicotine) -6.03 to +33.62 per thousand; delta15N(acetanilide) +1.18 to +40.57 per thousand; delta13C(urea) -34.13 to +11.71 per thousand, delta15N(urea) +0.26 to +40.61 per thousand (recommended delta values refer to calibration with NBS 19, L-SVEC, IAEA-N-1, and IAEA-N-2). Nicotines fill a gap as the first organic nitrogen stable isotope reference materials for GC-IRMS that are available with different delta15N values. Comparative delta13C and delta15N on-line EA-IRMS data from 14 volunteering laboratories document the usefulness and reliability of acetanilides and ureas as EA-IRMS reference materials. Copyright 2009 John Wiley & Sons, Ltd.

  17. Geometrically nonlinear analysis of laminated elastic structures

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.; Chandrashekhara, K.; Chao, W. C.

    1993-01-01

    This final technical report contains three parts: Part 1 deals with the 2-D shell theory and its element formulation and applications. Part 2 deals with the 3-D degenerated element. These two parts constitute the two major tasks that were completed under the grant. Another related topic that was initiated during the present investigation is the development of a nonlinear material model. This topic is briefly discussed in Part 3. To make each part self-contained, conclusions and references are included in each part. In the interest of brevity, the discussions presented are relatively brief. The details and additional topics are described in the references cited.

  18. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Smith, Carl H. (Inventor); Nordman, Catherine A. (Inventor); Jander, Albrecht (Inventor); Qian, Zhenghong (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  19. Machine learning for the structure–energy–property landscapes of molecular crystals† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04665k

    PubMed Central

    Yang, Jack; Campbell, Joshua E.; Day, Graeme M.; Ceriotti, Michele

    2017-01-01

    Molecular crystals play an important role in several fields of science and technology. They frequently crystallize in different polymorphs with substantially different physical properties. To help guide the synthesis of candidate materials, atomic-scale modelling can be used to enumerate the stable polymorphs and to predict their properties, as well as to propose heuristic rules to rationalize the correlations between crystal structure and materials properties. Here we show how a recently-developed machine-learning (ML) framework can be used to achieve inexpensive and accurate predictions of the stability and properties of polymorphs, and a data-driven classification that is less biased and more flexible than typical heuristic rules. We discuss, as examples, the lattice energy and property landscapes of pentacene and two azapentacene isomers that are of interest as organic semiconductor materials. We show that we can estimate force field or DFT lattice energies with sub-kJ mol–1 accuracy, using only a few hundred reference configurations, and reduce by a factor of ten the computational effort needed to predict charge mobility in the crystal structures. The automatic structural classification of the polymorphs reveals a more detailed picture of molecular packing than that provided by conventional heuristics, and helps disentangle the role of hydrogen bonded and π-stacking interactions in determining molecular self-assembly. This observation demonstrates that ML is not just a black-box scheme to interpolate between reference calculations, but can also be used as a tool to gain intuitive insights into structure–property relations in molecular crystal engineering. PMID:29675175

  20. Baseline Assessment of 25-Hydroxyvitamin D Reference Material and Proficiency Testing/External Quality Assurance Material Commutability: A Vitamin D Standardization Program Study.

    PubMed

    Phinney, Karen W; Sempos, Christopher T; Tai, Susan S-C; Camara, Johanna E; Wise, Stephen A; Eckfeldt, John H; Hoofnagle, Andrew N; Carter, Graham D; Jones, Julia; Myers, Gary L; Durazo-Arvizu, Ramon; Miller, W Greg; Bachmann, Lorin M; Young, Ian S; Pettit, Juanita; Caldwell, Grahame; Liu, Andrew; Brooks, Stephen P J; Sarafin, Kurtis; Thamm, Michael; Mensink, Gert B M; Busch, Markus; Rabenberg, Martina; Cashman, Kevin D; Kiely, Mairead; Galvin, Karen; Zhang, Joy Y; Kinsella, Michael; Oh, Kyungwon; Lee, Sun-Wha; Jung, Chae L; Cox, Lorna; Goldberg, Gail; Guberg, Kate; Meadows, Sarah; Prentice, Ann; Tian, Lu; Brannon, Patsy M; Lucas, Robyn M; Crump, Peter M; Cavalier, Etienne; Merkel, Joyce; Betz, Joseph M

    2017-09-01

    The Vitamin D Standardization Program (VDSP) coordinated a study in 2012 to assess the commutability of reference materials and proficiency testing/external quality assurance materials for total 25-hydroxyvitamin D [25(OH)D] in human serum, the primary indicator of vitamin D status. A set of 50 single-donor serum samples as well as 17 reference and proficiency testing/external quality assessment materials were analyzed by participating laboratories that used either immunoassay or LC-MS methods for total 25(OH)D. The commutability test materials included National Institute of Standards and Technology Standard Reference Material 972a Vitamin D Metabolites in Human Serum as well as materials from the College of American Pathologists and the Vitamin D External Quality Assessment Scheme. Study protocols and data analysis procedures were in accordance with Clinical and Laboratory Standards Institute guidelines. The majority of the test materials were found to be commutable with the methods used in this commutability study. These results provide guidance for laboratories needing to choose appropriate reference materials and select proficiency or external quality assessment programs and will serve as a foundation for additional VDSP studies.

  1. Materials Informatics: Statistical Modeling in Material Science.

    PubMed

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Characterization of fulvic acid fractions of dissolved organic matter during ice-out in a hyper-eutrophic, coastal pond in Antarctica

    NASA Astrophysics Data System (ADS)

    Cawley, Kaelin M.; McKnight, Diane M.; Miller, Penney; Cory, Rose; Fimmen, Ryan L.; Guerard, Jennifer; Dieser, Markus; Jaros, Christopher; Chin, Yu-Ping; Foreman, Christine

    2013-12-01

    Dissolved humic material (HDOM) is ubiquitous to all natural waters and its source material influences its chemical structure, reactivity, and bioavailability. While terrestrially derived HDOM reference materials distributed by the International Humic Substances Society (IHSS) have been readily available to engineering and scientific communities, a microbially derived reference HDOM was not, despite the well-characterized differences in the chemistry and reactivity of HDOM derived from terrestrial versus microbial sources. To address this gap, we collected a microbial reference fulvic acid from Pony Lake (PLFA) for distribution through the IHSS. Pony Lake is a saline coastal pond on Ross Island, Antarctica, where the landscape is devoid of terrestrial plants. Sample collection occurred over a 17-day period in the summer season at Pony Lake. During this time, the dissolved organic carbon (DOC) concentrations increased nearly two-fold, and the fulvic acid fraction (collected using the XAD-8 method) accounted for 14.6% of the DOC. During the re-concentration and desalting procedures we isolated two other chemically distinct fulvic acid fractions: (1) PLFA-2, which was high in carbohydrates and (2) PLFA-CER, which was high in nitrogen. The chemical characteristics (elemental analysis, optical characterization with UV-vis and fluorescence spectroscopy, and 13C NMR spectroscopy) of the three fulvic acid fractions helped to explain their behavior during isolation.

  3. Structured Course Objects in a Digital Library

    NASA Technical Reports Server (NTRS)

    Maly, K.; Zubair, M.; Liu, X.; Nelson, M.; Zeil, S.

    1999-01-01

    We are developing an Undergraduate Digital Library Framework (UDLF) that will support creation/archiving of courses and reuse of existing course material to evolve courses. UDLF supports the publication of course materials for later instantiation for a specific offering and allows the addition of time-dependent and student-specific information and structures. Instructors and, depending on permissions, students can access the general course materials or the materials for a specific offering. We are building a reference implementation based on NCSTRL+, a digital library derived from NCSTRL. Digital objects in NCSTRL+ are called buckets, self-contained entities that carry their own methods for access and display. Current bucket implementations have a two level structure of packages and elements. This is not a rich enough structure for course objects in UDLF. Typically, courses can only be modeled as a multilevel hierarchy and among different courses, both the syntax and semantics of terms may vary. Therefore, we need a mechanism to define, within a particular library, course models, their constituent objects, and the associated semantics in a flexible, extensible way. In this paper, we describe our approach to define and implement these multilayered course objects. We use XML technology to emulate complex data structures within the NCSTRL+ buckets. We have developed authoring and browsing tools to manipulate these course objects. In our current implementation a user downloading an XML based course bucket also downloads the XML-aware tools: an applet that enables the user to edit or browse the bucket. We claim that XML provides an effective means to represent multi-level structure of a course bucket.

  4. Evaluation of droplet digital PCR for characterizing plasmid reference material used for quantifying ammonia oxidizers and denitrifiers.

    PubMed

    Dong, Lianhua; Meng, Ying; Wang, Jing; Liu, Yingying

    2014-02-01

    DNA reference materials of certified value have a critical function in many analytical processes of DNA measurement. Quantification of amoA genes in ammonia oxidizing bacteria (AOB) and archaea (AOA), and of nirS and nosZ genes in the denitrifiers is very important for determining their distribution and abundance in the natural environment. A plasmid reference material containing nirS, nosZ, amoA-AOB, and amoA-AOA is developed to provide a DNA standard with copy number concentration for ensuring comparability and reliability of quantification of these genes. Droplet digital PCR (ddPCR) was evaluated for characterization of the plasmid reference material. The result revealed that restriction endonuclease digestion of plasmids can improve amplification efficiency and minimize the measurement bias of ddPCR. Compared with the conformation of the plasmid, the size of the DNA fragment containing the target sequence and the location of the restriction site relative to the target sequence are not significant factors affecting plasmid quantification by ddPCR. Liquid chromatography-isotope dilution mass spectrometry (LC-IDMS) was used to provide independent data for quantifying the plasmid reference material. The copy number concentration of the digested plasmid determined by ddPCR agreed well with that determined by LC-IDMS, improving both the accuracy and reliability of the plasmid reference material. The reference value, with its expanded uncertainty (k = 2), of the plasmid reference material was determined to be (5.19 ± 0.41) × 10(9) copies μL(-1) by averaging the results of two independent measurements. Consideration of the factors revealed in this study can improve the reliability and accuracy of ddPCR; thus, this method has the potential to accurately quantify DNA reference materials.

  5. Laminates and reinforced metals

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1980-01-01

    A selective review is presented of the state of the art of metallic laminates and fiber reinforced metals called metallic matrix laminates (MMLs). Design and analysis procedures that are used for, and typical structural components that have been made from MMLs are emphasized. Selected MMLs, constituent materials, typical material properties and fabrication procedures are briefly described, including hybrids and superhybrids. Advantages, disadvantages, and special considerations required during design, analysis, and fabrication of MMLs are examined. Tabular and graphical data are included to illustrate key aspects of MMLs. Appropriate references are cited to provide a selective bibliography of a rapidly expanding and very promising research and development field.

  6. Damping Goes the Distance in Golf

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the late 1980s, Dr. Benjamin Dolgin of NASA s Jet Propulsion Laboratory developed a concept for a high-damping graphite/viscoelastic material for the Strategic Defense Initiative (popularly referred to as "Star Wars"), as part of a space-based laser anti-missile program called "Asterix." Dolgin drummed up this concept with the intention of stabilizing weapons launch platforms in space, where there is no solid ground to firmly support these structures. Without the inclusion of high-damping material, the orbital platforms were said to vibrate for 20 minutes after force was applied - a rate deemed "unacceptable" by leaders of the Strategic Defense Initiative.

  7. The application of epoxy resin coating in grounding grid

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Chen, Z. R.; Xi, L. J.; Wang, X. Y.; Wang, H. F.

    2018-01-01

    Epoxy resin anticorrosion coating is widely used in grounding grid corrosion protection because of its wide range of materials, good antiseptic effect and convenient processing. Based on the latest research progress, four kinds of epoxy anticorrosive coatings are introduced, which are structural modified epoxy coating, inorganic modified epoxy coating, organic modified epoxy coating and polyaniline / epoxy resin composite coating. In this paper, the current research progress of epoxy base coating is analyzed, and prospected the possible development direction of the anti-corrosion coating in the grounding grid, which provides a reference for coating corrosion prevention of grounding materials.

  8. Extragalactic astronomy: The universe beyond our galaxy

    NASA Technical Reports Server (NTRS)

    Jacobs, K. C.

    1976-01-01

    This single-topic brochure is for high school physical science teachers to use in introducing students to extragalactic astronomy. The material is presented in three parts: the fundamental content of extragalactic astronomy; modern discoveries delineated in greater detail; and a summary of the earlier discussions within the structure of the Big-Bang Theory of evolution. Each of the three sections is followed by student exercises (activities, laboratory projects, and questions-and-answers). The unit close with a glossary which explains unfamilar terms used in the text and a collection of teacher aids (literature references and audiovisual materials for utilization in further study).

  9. 49 CFR 572.30 - Incorporated materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Incorporated materials. 572.30 Section 572.30....30 Incorporated materials. (a) The drawings and specifications referred to in this regulation that... Federal Register has approved the materials incorporated by reference. For materials subject to change...

  10. 49 CFR 572.30 - Incorporated materials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Incorporated materials. 572.30 Section 572.30....30 Incorporated materials. (a) The drawings and specifications referred to in this regulation that... Federal Register has approved the materials incorporated by reference. For materials subject to change...

  11. 49 CFR 572.30 - Incorporated materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Incorporated materials. 572.30 Section 572.30....30 Incorporated materials. (a) The drawings and specifications referred to in this regulation that... Federal Register has approved the materials incorporated by reference. For materials subject to change...

  12. 49 CFR 572.30 - Incorporated materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Incorporated materials. 572.30 Section 572.30....30 Incorporated materials. (a) The drawings and specifications referred to in this regulation that... Federal Register has approved the materials incorporated by reference. For materials subject to change...

  13. Nanocrystalline hydroxyapatite enriched in selenite and manganese ions: physicochemical and antibacterial properties

    NASA Astrophysics Data System (ADS)

    Kolmas, Joanna; Groszyk, Ewa; Piotrowska, Urszula

    2015-07-01

    In this work, we used the co-precipitation method to synthesize hydroxyapatite (Mn-SeO3-HA) containing both selenium IV (approximately 3.60 wt.%) and manganese II (approximately 0.29 wt.%). Pure hydroxyapatite (HA), hydroxyapatite-containing manganese (II) ions (Mn-HA), and hydroxyapatite-containing selenite ions alone (SeO3-HA), prepared with the same method, were used as reference materials. The structures and physicochemical properties of all the obtained samples were investigated. PXRD studies showed that the obtained materials were homogeneous and consisted of apatite phase. Introducing selenites into the hydroxyapatite crystals considerably affects the size and degree of ordering. Experiments with transmission electron microscopy (TEM) showed that Mn-SeO3-HA crystals are very small, needle-like, and tend to form agglomerates. Fourier transform infrared spectroscopy (FT-IR) and solid-state nuclear magnetic resonance (ssNMR) were used to analyze the structure of the obtained material. Preliminary microbiological tests showed that the material demonstrated antibacterial activity against Staphylococcus aureus, yet such properties were not confirmed regarding Escherichia coli. PACS codes: 61, 76, 81

  14. Mechanics of the Cell

    NASA Astrophysics Data System (ADS)

    Boal, David

    2012-01-01

    Preface; List of symbols; 1. Introduction to the cell; 2. Soft materials and fluids; Part I. Rods and Ropes: 3. Polymers; 4. Complex filaments; 5. Two-dimensional networks; 6. Three-dimensional networks; Part II. Membranes: 7. Biomembranes; 8. Membrane undulations; 9. Intermembrane and electrostatic forces; Part III. The Whole Cell: 10. Structure of the simplest cells; 11. Dynamic filaments; 12. Growth and division; 13. Signals and switches; Appendixes; Glossary; References; Index.

  15. Controlled polymer synthesis--from biomimicry towards synthetic biology.

    PubMed

    Pasparakis, George; Krasnogor, Natalio; Cronin, Leroy; Davis, Benjamin G; Alexander, Cameron

    2010-01-01

    The controlled assembly of synthetic polymer structures is now possible with an unprecedented range of functional groups and molecular architectures. In this critical review we consider how the ability to create artificial materials over lengthscales ranging from a few nm to several microns is generating systems that not only begin to mimic those in nature but also may lead to exciting applications in synthetic biology (139 references).

  16. [Development and application of reference materials containing mixed degradation products of amoxicillin and ampicillin].

    PubMed

    Li, Wei; Zhang, Wei-Qing; Li, Xiang; Hu, Chang-Qin

    2014-09-01

    Reference materials containing mixed degradation products of amoxicillin and ampicillin were developed after optimization of preparation processes. The target impurities were obtained by controlled stress testing, and each major component was identified with HPLC-MS and compared with single traceable reference standard each. The developed reference materials were applied to system suitability test for verifying HPLC system performed in accordance with set forth in China Pharmacopeia and identification of major impurities in samples based on retention and spectra information, which have advantages over the methods put forth in foreign pharmacopoeias. The development and application of the reference materials offer an effective way for rapid identification of impurities in chromatograms, and provide references for analyzing source of impurities and evaluation of drug quality.

  17. Nonlinear Optical Materials for the Smart Filtering of Optical Radiation.

    PubMed

    Dini, Danilo; Calvete, Mário J F; Hanack, Michael

    2016-11-23

    The control of luminous radiation has extremely important implications for modern and future technologies as well as in medicine. In this Review, we detail chemical structures and their relevant photophysical features for various groups of materials, including organic dyes such as metalloporphyrins and metallophthalocyanines (and derivatives), other common organic materials, mixed metal complexes and clusters, fullerenes, dendrimeric nanocomposites, polymeric materials (organic and/or inorganic), inorganic semiconductors, and other nanoscopic materials, utilized or potentially useful for the realization of devices able to filter in a smart way an external radiation. The concept of smart is referred to the characteristic of those materials that are capable to filter the radiation in a dynamic way without the need of an ancillary system for the activation of the required transmission change. In particular, this Review gives emphasis to the nonlinear optical properties of photoactive materials for the function of optical power limiting. All known mechanisms of optical limiting have been analyzed and discussed for the different types of materials.

  18. Ultrasonic Fingerprinting of Structural Materials: Spent Nuclear Fuel Containers Case-Study

    NASA Astrophysics Data System (ADS)

    Sednev, D.; Lider, A.; Demyanuk, D.; Kroening, M.; Salchak, Y.

    Nowadays, NDT is mainly focused on safety purposes, but it seems possible to apply those methods to provide national and IAEA safeguards. The containment of spent fuel in storage casks could be dramatically improved in case of development of so-called "smart" spent fuel storage and transfer casks. Such casks would have tamper indicating and monitoring/tracking features integrated directly into the cask design. The microstructure of the containers material as well as of the dedicated weld seam is applied to the lid and the cask body and provides a unique fingerprint of the full container, which can be reproducibly scanned by using an appropriate technique. The echo-sounder technique, which is the most commonly used method for material inspection, was chosen for this project. The main measuring parameter is acoustic noise, reflected from material's artefacts. The purpose is to obtain structural fingerprinting. Reference measurement and additional measurement results were compared. Obtained results have verified the appliance of structural fingerprint and the chosen control method. The successful authentication demonstrates the levels of the feature points' compliance exceeding the given threshold which differs considerably from the percentage of the concurrent points during authentication from other points. Since reproduction or doubling of the proposed unique identification characteristics is impossible at the current state science and technology, application of this technique is considered to identify the interference into the nuclear materials displacement with high accuracy.

  19. Certified reference materials and reference methods for nuclear safeguards and security.

    PubMed

    Jakopič, R; Sturm, M; Kraiem, M; Richter, S; Aregbe, Y

    2013-11-01

    Confidence in comparability and reliability of measurement results in nuclear material and environmental sample analysis are established via certified reference materials (CRMs), reference measurements, and inter-laboratory comparisons (ILCs). Increased needs for quality control tools in proliferation resistance, environmental sample analysis, development of measurement capabilities over the years and progress in modern analytical techniques are the main reasons for the development of new reference materials and reference methods for nuclear safeguards and security. The Institute for Reference Materials and Measurements (IRMM) prepares and certifices large quantities of the so-called "large-sized dried" (LSD) spikes for accurate measurement of the uranium and plutonium content in dissolved nuclear fuel solutions by isotope dilution mass spectrometry (IDMS) and also develops particle reference materials applied for the detection of nuclear signatures in environmental samples. IRMM is currently replacing some of its exhausted stocks of CRMs with new ones whose specifications are up-to-date and tailored for the demands of modern analytical techniques. Some of the existing materials will be re-measured to improve the uncertainties associated with their certified values, and to enable laboratories to reduce their combined measurement uncertainty. Safeguards involve the quantitative verification by independent measurements so that no nuclear material is diverted from its intended peaceful use. Safeguards authorities pay particular attention to plutonium and the uranium isotope (235)U, indicating the so-called 'enrichment', in nuclear material and in environmental samples. In addition to the verification of the major ratios, n((235)U)/n((238)U) and n((240)Pu)/n((239)Pu), the minor ratios of the less abundant uranium and plutonium isotopes contain valuable information about the origin and the 'history' of material used for commercial or possibly clandestine purposes, and have therefore reached high level of attention for safeguards authorities. Furthermore, IRMM initiated and coordinated the development of a Modified Total Evaporation (MTE) technique for accurate abundance ratio measurements of the "minor" isotope-amount ratios of uranium and plutonium in nuclear material and, in combination with a multi-dynamic measurement technique and filament carburization, in environmental samples. Currently IRMM is engaged in a study on the development of plutonium reference materials for "age dating", i.e. determination of the time elapsed since the last separation of plutonium from its daughter nuclides. The decay of a radioactive parent isotope and the build-up of a corresponding amount of daughter nuclide serve as chronometer to calculate the age of a nuclear material. There are no such certified reference materials available yet. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Strength and Durability of Fly Ash-Based Fiber-Reinforced Geopolymer Concrete in a Simulated Marine Environment

    NASA Astrophysics Data System (ADS)

    Martinez Rivera, Francisco Javier

    This research is aimed at investigating the corrosion durability of polyolefin fiberreinforced fly ash-based geopolymer structural concrete (hereafter referred to as GPC, in contradistinction to unreinforced geopolymer concrete referred to as simply geopolymer concrete), where cement is completely replaced by fly ash, that is activated by alkalis, sodium hydroxide and sodium silicate. The durability in a marine environment is tested through an electrochemical method for accelerated corrosion. The GPC achieved compressive strengths in excess of 6,000 psi. Fiber reinforced beams contained polyolefin fibers in the amounts of 0.1%, 0.3%, and 0.5% by volume. After being subjected to corrosion damage, the GPC beams were analyzed through a method of crack scoring, steel mass loss, and residual flexural strength testing. Fiber reinforced GPC beams showed greater resistance to corrosion damage with higher residual flexural strength. This makes GPC an attractive material for use in submerged marine structures.

  1. Zero Launch Mass Three Dimensional Print Head

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.; Gelino, Nathan J.; Smith, Jonathan D.; Buckles, Brad C.; Lippitt, Thomas; Schuler, Jason M.; Nick, Andrew J.; Nugent, Matt W.; Townsend, Ivan I.

    2018-01-01

    NASA's strategic goal is to put humans on Mars in the 2030's. The NASA Human Spaceflight Architecture Team (HAT) and NASA Mars Design Reference Architecture (DRA) 5.0 has determined that in-situ resource utilization (ISRU) is an essential technology to accomplish this mission. Additive construction technology using in-situ materials from planetary surfaces will reduce launch mass, allow structures to be three dimensionally (3D) printed on demand, and will allow building designs to be transmitted digitally from Earth and printed in space. This will ultimately lead to elimination of reliance on structural materials launched from Earth (zero launch mass of construction consumables). The zero launch mass (ZLM) 3D print head project addressed this need by developing a system that 3D prints using a mixture of in-situ regolith and polymer as feedstock, determining the optimum mixture ratio and regolith particle size distribution, developing software to convert g-code into motion instructions for a FANUC robotic arm, printing test samples, performing materials testing, and printing a reduced scale habitable structure concept. This paper will focus on the ZLM 3D Print Head design, materials selection, software development, and lessons learned from operating the system in the NASA KSC Swamp Works Granular Mechanics & Regolith Operations (GMRO) Laboratory.

  2. Method and apparatus for determining material structural integrity

    DOEpatents

    Pechersky, Martin

    1996-01-01

    A non-destructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis techniques to determine the damping loss factor of a material. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity as a function of time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method. If an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the amount of coil current used in vibrating the magnet. If a reciprocating transducer is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by a force gauge in the reciprocating transducer. Using known vibrational analysis methods, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity measurements. The damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

  3. Progress and Opportunities in Soft Photonics and Biologically Inspired Optics.

    PubMed

    Kolle, Mathias; Lee, Seungwoo

    2018-01-01

    Optical components made fully or partially from reconfigurable, stimuli-responsive, soft solids or fluids-collectively referred to as soft photonics-are poised to form the platform for tunable optical devices with unprecedented functionality and performance characteristics. Currently, however, soft solid and fluid material systems still represent an underutilized class of materials in the optical engineers' toolbox. This is in part due to challenges in fabrication, integration, and structural control on the nano- and microscale associated with the application of soft components in optics. These challenges might be addressed with the help of a resourceful ally: nature. Organisms from many different phyla have evolved an impressive arsenal of light manipulation strategies that rely on the ability to generate and dynamically reconfigure hierarchically structured, complex optical material designs, often involving soft or fluid components. A comprehensive understanding of design concepts, structure formation principles, material integration, and control mechanisms employed in biological photonic systems will allow this study to challenge current paradigms in optical technology. This review provides an overview of recent developments in the fields of soft photonics and biologically inspired optics, emphasizes the ties between the two fields, and outlines future opportunities that result from advancements in soft and bioinspired photonics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. History of reference materials for food and nutrition metrology: As represented in the series of BERM Symposia

    USDA-ARS?s Scientific Manuscript database

    Establishment of a metrology-based measurement system requires the solid foundation of traceability of measurements to available, appropriate certified reference materials (CRM). In the early 1970s the first “biological” Reference Material (RM) of Bowens Kale, Orchard Leaves, and Bovine Liver from ...

  5. 40 CFR 89.6 - Reference materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... set forth the material that has been incorporated by reference in this part. (1) ASTM material. The... 19428-2959. Document number and name 40 CFR part 89 reference ASTM D86-97: “Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure” Appendix A to Subpart D. ASTM D93-97: “Standard...

  6. National Nutrition Education Clearing House Reference List, Secondary Teaching Materials and Teacher References.

    ERIC Educational Resources Information Center

    National Nutrition Education Clearing House, Berkeley, CA.

    A reference list of teaching materials and teacher guides in the field of nutrition is compiled in this pamphlet. Primary emphasis is on resources for secondary grades. The section on teaching materials includes books, pamphlets, leaflets, posters, charts, transparencies, ditto masters, kits, games, films, filmstrips, records, TV videotapes, and…

  7. Neutron Radiation Damage Estimation in the Core Structure Base Metal of RSG GAS

    NASA Astrophysics Data System (ADS)

    Santa, S. A.; Suwoto

    2018-02-01

    Radiation damage in core structure of the Indonesian RGS GAS multi purpose reactor resulting from the reaction of fast and thermal neutrons with core material structure was investigated for the first time after almost 30 years in operation. The aim is to analyze the degradation level of the critical components of the RSG GAS reactor so that the remaining life of its component can be estimated. Evaluation results of critical components remaining life will be used as data ccompleteness for submission of reactor operating permit extension. Material damage analysis due to neutron radiation is performed for the core structure components made of AlMg3 material and bolts reinforcement of core structure made of SUS304. Material damage evaluation was done on Al and Fe as base metal of AlMg3 and SUS304, respectively. Neutron fluences are evaluated based on the assumption that neutron flux calculations of U3Si8-Al equilibrium core which is operated on power rated of 15 MW. Calculation result using SRAC2006 code of CITATION module shows the maximum total neutron flux and flux >0.1 MeV are 2.537E+14 n/cm2/s and 3.376E+13 n/cm2/s, respectively. It was located at CIP core center close to the fuel element. After operating up to the end of #89 core formation, the total neutron fluence and fluence >0.1 MeV were achieved 9.063E+22 and 1.269E+22 n/cm2, respectively. Those are related to material damage of Al and Fe as much as 17.91 and 10.06 dpa, respectively. Referring to the life time of Al-1100 material irradiated in the neutron field with thermal flux/total flux=1.7 which capable of accepting material damage up to 250 dpa, it was concluded that RSG GAS reactor core structure underwent 7.16% of its operating life span. It means that core structure of RSG GAS reactor is still capable to receive the total neutron fluence of 9.637E+22 n/cm2 or fluence >0.1 MeV of 5.672E+22 n/cm2.

  8. Carbon phosphide monolayers with superior carrier mobility

    NASA Astrophysics Data System (ADS)

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P.

    2016-04-01

    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics.Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics. Electronic supplementary information (ESI) available: Fig. S1 cohesive energy and structure of the CP monolayer with various stoichiometric compositions obtained using CALYPSO, Fig. S2 history of CALYPSO steps and structure of the CP monolayer, Fig. S3 phonon dispersion with DFT-D2 functional, Fig. S4 band structure for β-CP using the DFT-PBE and DFT-D2 functional forms, Fig. S5 strain energy curves, Fig. S6 projected band structure for α-CP, Fig. S7 projected band structure for β-CP, Fig. S8 projected band structure for γ-CP, Fig. S9 band structures obtained with the GGA-PBE and HSE06 functional; Table S1 lattice parameters with the DFT-D2 functional form; Video S1 AIMD simulation of α-CP at 300 K, Video S2 AIMD simulation of β-CP at 300 K, Video S3 AIMD simulation of γ-CP at 300 K. See DOI: 10.1039/c6nr00498a

  9. Statistical and Graphical Assessment of Circumferential and Radial Hardness Variation of AISI 4140, AISI 1020 and AA 6082 Aluminum Alloy

    PubMed Central

    Al-Khalid, Hamad; Alaskari, Ayman; Oraby, Samy

    2011-01-01

    Hardness homogeneity of the commonly used structural ferrous and nonferrous engineering materials is of vital importance in the design stage, therefore, reliable information regarding material properties homogeneity should be validated and any deviation should be addressed. In the current study the hardness variation, over wide spectrum radial locations of some ferrous and nonferrous structural engineering materials, was investigated. Measurements were performed over both faces (cross-section) of each stock bar according to a pre-specified stratified design, ensuring the coverage of the entire area both in radial and circumferential directions. Additionally the credibility of the apparatus and measuring procedures were examined through a statistically based calibration process of the hardness reference block. Statistical and response surface graphical analysis are used to examine the nature, adequacy and significance of the measured hardness values. Calibration of the apparatus reference block proved the reliability of the measuring system, where no strong evidence was found against the stochastic nature of hardness measures over the various stratified locations. Also, outlier elimination procedures were proved to be beneficial only at fewer measured points. Hardness measurements showed a dispersion domain that is within the acceptable confidence interval. For AISI 4140 and AISI 1020 steels, hardness is found to have a slight decrease trend as the diameter is reduced, while an opposite behavior is observed for AA 6082 aluminum alloy. However, no definite significant behavior was noticed regarding the effect of the sector sequence (circumferential direction). PMID:28817030

  10. Statistical and Graphical Assessment of Circumferential and Radial Hardness Variation of AISI 4140, AISI 1020 and AA 6082 Aluminum Alloy.

    PubMed

    Al-Khalid, Hamad; Alaskari, Ayman; Oraby, Samy

    2011-12-23

    Hardness homogeneity of the commonly used structural ferrous and nonferrous engineering materials is of vital importance in the design stage, therefore, reliable information regarding material properties homogeneity should be validated and any deviation should be addressed. In the current study the hardness variation, over wide spectrum radial locations of some ferrous and nonferrous structural engineering materials, was investigated. Measurements were performed over both faces (cross-section) of each stock bar according to a pre-specified stratified design, ensuring the coverage of the entire area both in radial and circumferential directions. Additionally the credibility of the apparatus and measuring procedures were examined through a statistically based calibration process of the hardness reference block. Statistical and response surface graphical analysis are used to examine the nature, adequacy and significance of the measured hardness values. Calibration of the apparatus reference block proved the reliability of the measuring system, where no strong evidence was found against the stochastic nature of hardness measures over the various stratified locations. Also, outlier elimination procedures were proved to be beneficial only at fewer measured points. Hardness measurements showed a dispersion domain that is within the acceptable confidence interval. For AISI 4140 and AISI 1020 steels, hardness is found to have a slight decrease trend as the diameter is reduced, while an opposite behavior is observed for AA 6082 aluminum alloy. However, no definite significant behavior was noticed regarding the effect of the sector sequence (circumferential direction).

  11. Preparation of an in-house reference material containing fumonisins in Thai rice and matrix extension of the analytical method for Japanese rice.

    PubMed

    Awaludin, Norhafniza; Nagata, Reiko; Kawasaki, Tomomi; Kushiro, Masayo

    2009-12-01

    Mycotoxin contamination in rice is less reported, compared to that in wheat or maize, however, some Fusarium fungi occasionally infect rice in the paddy field. Fumonisins are mycotoxins mainly produced by Fusarium verticillioides, which often ruins maize. Rice adherent fungus Gibberella fujikuroi is taxonomically near to F. verticillioides, and there are sporadic reports of fumonisin contamination in rice from Asia, Europe and the United States. Therefore, there exists the potential risk of fumonisin contamination in rice as well as the need for the validated analytical method for fumonisins in rice. Although both natural and spiked reference materials are available for some Fusarium mycotoxins in matrices of wheat and maize, there are no reference materials for Fusarium mycotoxins in rice. In this study, we have developed a method for the preparation of a reference material containing fumonisins in Thai rice. A ShakeMaster grinding machine was used for the preparation of a mixed material of blank Thai rice and F. verticillioides-infected Thai rice. The homogeneity of the mixed material was confirmed by one-way analysis of variance, which led this material to serve as an in-house reference material. Using this reference material, several procedures to extract fumonisins from Thai rice were compared. Accordingly, we proved the applicability of an effective extraction procedure for the determination of fumonisins in Japanese rice.

  12. Preparation of an In-House Reference Material Containing Fumonisins in Thai Rice and Matrix Extension of the Analytical Method for Japanese Rice

    PubMed Central

    Awaludin, Norhafniza; Nagata, Reiko; Kawasaki, Tomomi; Kushiro, Masayo

    2009-01-01

    Mycotoxin contamination in rice is less reported, compared to that in wheat or maize, however, some Fusarium fungi occasionally infect rice in the paddy field. Fumonisins are mycotoxins mainly produced by Fusarium verticillioides, which often ruins maize. Rice adherent fungus Gibberella fujikuroi is taxonomically near to F. verticillioides, and there are sporadic reports of fumonisin contamination in rice from Asia, Europe and the United States. Therefore, there exists the potential risk of fumonisin contamination in rice as well as the need for the validated analytical method for fumonisins in rice. Although both natural and spiked reference materials are available for some Fusarium mycotoxins in matrices of wheat and maize, there are no reference materials for Fusarium mycotoxins in rice. In this study, we have developed a method for the preparation of a reference material containing fumonisins in Thai rice. A ShakeMaster grinding machine was used for the preparation of a mixed material of blank Thai rice and F. verticillioides-infected Thai rice. The homogeneity of the mixed material was confirmed by one-way analysis of variance, which led this material to serve as an in-house reference material. Using this reference material, several procedures to extract fumonisins from Thai rice were compared. Accordingly, we proved the applicability of an effective extraction procedure for the determination of fumonisins in Japanese rice. PMID:22069540

  13. Composite material pedestrian bridge for the Port of Bilbao

    NASA Astrophysics Data System (ADS)

    Gorrochategui, I.; Manteca, C.; Yedra, A.; Miguel, R.; del Valle, F. J.

    2012-09-01

    Composite materials in comparison to traditional ones, steel and concrete, present advantages in civil works construction: lower weight, higher corrosion resistance (especially in the marine environment), and ease of installation. On the other hand, fabrication costs are generally higher. This is the reason why this technology is not widely used. This work illustrates the process followed for the design, fabrication and installation of a composite material pedestrian bridge in the Port of Bilbao (Northern Spain). In order to reduce the price of the bridge, the use of low cost materials was considered, therefore polyester resin was selected as the polymeric matrix, and glass fibres as reinforcement. Two material choices were studied. Currently in the market there is high availability of carbon nanoparticles: carbon nanotubes (CNT) and carbon nanofibres (CNF), so it was decided to add this kind of nanoparticles to the reference material with the objective of improving its mechanical properties. The main challenge was to transfer the CNT and CNF excellent properties to the polymeric matrix. This requires dispersing the nanoreinforcements as individual particles in the polymeric matrix to avoid agglomerates. For this reason, an advanced high shear forces dispersion technique (called "three roll mills") was studied and implemented. Also surface functionalization of the nanoreinforcements by chemical treatment was carried out. Herein, a comparison is performed between both materials studied, the explanation of the employment of the reference material (without nanoreinforcement) as the one used in the fabrication of the pedestrian bridge is justified and, finally, the main characteristics of the final design of the structural element are described.

  14. 49 CFR 193.2013 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL... incorporated materials are available for inspection in the Pipeline and Hazardous Materials Safety... referenced material 49 CFR Reference A. American Gas Association (AGA): (1) “Purging Principles and Practices...

  15. A new thorium-229 reference material

    DOE PAGES

    Essex, Richard M.; Mann, Jaqueline L.; Williams, Ross W.; ...

    2017-07-27

    A new reference material was characterized for 229Th molality and thorium isotope amount ratios. This reference material is intended for use in nuclear forensic analyses as an isotope dilution mass spectrometry spike. The reference material value and expanded uncertainty (k = 2) for the 229Th molality is (1.1498 ± 0.0016)×10 -10 mol g -1 solution. The value and expanded uncertainty (k = 2) for the n( 230Th)/n( 229Th) ratio is (5.18 ± 0.26)×10 -5 and the n( 232Th)/n( 229Th) ratio is (3.815 ± 0.092)×10 -4.

  16. A new thorium-229 reference material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essex, Richard M.; Mann, Jaqueline L.; Williams, Ross W.

    A new reference material was characterized for 229Th molality and thorium isotope amount ratios. This reference material is intended for use in nuclear forensic analyses as an isotope dilution mass spectrometry spike. The reference material value and expanded uncertainty (k = 2) for the 229Th molality is (1.1498 ± 0.0016)×10 -10 mol g -1 solution. The value and expanded uncertainty (k = 2) for the n( 230Th)/n( 229Th) ratio is (5.18 ± 0.26)×10 -5 and the n( 232Th)/n( 229Th) ratio is (3.815 ± 0.092)×10 -4.

  17. Laser-induced Forward Transfer of Ag Nanopaste.

    PubMed

    Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C Y; Piqué, Alberto

    2016-03-31

    Over the past decade, there has been much development of non-lithographic methods(1-3) for printing metallic inks or other functional materials. Many of these processes such as inkjet(3) and laser-induced forward transfer (LIFT)(4) have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)(5-9), has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip.

  18. Laser-induced Forward Transfer of Ag Nanopaste

    PubMed Central

    Breckenfeld, Eric; Kim, Heungsoo; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-01-01

    Over the past decade, there has been much development of non-lithographic methods1-3 for printing metallic inks or other functional materials. Many of these processes such as inkjet3 and laser-induced forward transfer (LIFT)4 have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)5-9, has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro- and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip. PMID:27077645

  19. Termites Facilitate Methane Oxidation and Shape the Methanotrophic Community

    PubMed Central

    Erens, Hans; Mujinya, Basile Bazirake; Boeckx, Pascal; Baert, Geert; Schneider, Bellinda; Frenzel, Peter; Van Ranst, Eric

    2013-01-01

    Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population. PMID:24038691

  20. Termites facilitate methane oxidation and shape the methanotrophic community.

    PubMed

    Ho, Adrian; Erens, Hans; Mujinya, Basile Bazirake; Boeckx, Pascal; Baert, Geert; Schneider, Bellinda; Frenzel, Peter; Boon, Nico; Van Ranst, Eric

    2013-12-01

    Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population.

  1. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs.

    PubMed

    Saini, Vipin K; Pires, João

    2017-05-01

    Reticulated foam shaped adsorbents are more efficient for the removal of volatile organic compounds (VOCs), particularly from low VOC-concentration indoor air streams. In this study composite structure of zeolite and metal organic frameworks (MOFs), referred as ZMF, has been fabricated by immobilization of fine MOF-199 powder on foam shaped Zeolite Socony Mobil-5 (ZSM-5) Zeolitic structure, referred as ZF. The ZMF possess a uniform and well-dispersed coating of MOF-199 on the porous framework of ZF. It shows higher surface area, pore volume, and VOCs adsorption capacity, as compared to ZF-structure. Post-fabrication changes in selective adsorption properties of ZMF were studied with three common indoor VOCs (benzene, n-hexane, and cyclohexane), using gravimetric adsorption technique. The adsorption capacity of ZMF with different VOCs follow the order of benzene>n-hexane>cyclohexane. In comparison with MOF-199 and ZF, the composite structure ZMF shows improvement in selectivity for benzene from other two VOCs. Further, improvement in efficiency and stability of prepared ZMF was found to be associated with its high MOF loading capacity and unique morphological and structural properties. The developed composite structure with improved VOCs removal and recyclability could be a promising material for small to limited scale air pollution treatment units. Copyright © 2016. Published by Elsevier B.V.

  2. 15 CFR 200.104 - Standard reference materials.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the NIST National Measurement Laboratory administers a program to provide many types of well... be readily referred to a common base. NIST SP 260 is a catalog of Standard Reference Materials available from NIST. ...

  3. 15 CFR 200.104 - Standard reference materials.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the NIST National Measurement Laboratory administers a program to provide many types of well... be readily referred to a common base. NIST SP 260 is a catalog of Standard Reference Materials available from NIST. ...

  4. 15 CFR 200.104 - Standard reference materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the NIST National Measurement Laboratory administers a program to provide many types of well... be readily referred to a common base. NIST SP 260 is a catalog of Standard Reference Materials available from NIST. ...

  5. 15 CFR 200.104 - Standard reference materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the NIST National Measurement Laboratory administers a program to provide many types of well... be readily referred to a common base. NIST SP 260 is a catalog of Standard Reference Materials available from NIST. ...

  6. 15 CFR 200.104 - Standard reference materials.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the NIST National Measurement Laboratory administers a program to provide many types of well... be readily referred to a common base. NIST SP 260 is a catalog of Standard Reference Materials available from NIST. ...

  7. Requirements for the Development of Bacillus Anthracis Spore Reference Materials Used to Test Detection Systems

    PubMed Central

    Almeida, Jamie L.; Wang, Lili; Morrow, Jayne B.; Cole, Kenneth D.

    2006-01-01

    Bacillus anthracis spores have been used as biological weapons and the possibility of their further use requires surveillance systems that can accurately and reliably detect their presence in the environment. These systems must collect samples from a variety of matrices, process the samples, and detect the spores. The processing of the sample may include removal of inhibitors, concentration of the target, and extraction of the target in a form suitable for detection. Suitable reference materials will allow the testing of each of these steps to determine the sensitivity and specificity of the detection systems. The development of uniform and well-characterized reference materials will allow the comparison of different devices and technologies as well as assure the continued performance of detection systems. This paper discusses the special requirements of reference materials for Bacillus anthracis spores that could be used for testing detection systems. The detection of Bacillus anthracis spores is based on recognition of specific characteristics (markers) on either the spore surface or in the nucleic acids (DNA). We have reviewed the specific markers and their relevance to characterization of reference materials. We have also included the approach for the characterization of candidate reference materials that we are developing at the NIST laboratories. Additional applications of spore reference materials would include testing sporicidal treatments, techniques for sampling the environment, and remediation of spore-contaminated environments. PMID:27274929

  8. Layered nanocomposites inspired by the structure and mechanical properties of nacre.

    PubMed

    Wang, Jianfeng; Cheng, Qunfeng; Tang, Zhiyong

    2012-02-07

    Nacre (mother-of-pearl), made of inorganic and organic constituents (95 vol% aragonite calcium carbonate (CaCO(3)) platelets and 5 vol% elastic biopolymers), possesses a unique combination of remarkable strength and toughness, which is compatible for conventional high performance materials. The excellent mechanical properties are related to its hierarchical structure and precisely designed organic-inorganic interface. The rational design of aragonite platelet strength, aspect ratio of aragonite platelets, and interface strength ensures that the strength of nacre is maximized under platelet pull-out failure mode. At the same time, the synergy of strain hardening mechanisms acting over multiple scales results in platelets sliding on one another, and thus maximizes the energy dissipation of viscoplastic biopolymers. The excellent integrated mechanical properties with hierarchical structure have inspired chemists and materials scientists to develop biomimetic strategies for artificial nacre materials. This critical review presents a broad overview of the state-of-the-art work on the preparation of layered organic-inorganic nanocomposites inspired by nacre, in particular, the advantages and disadvantages of various biomimetic strategies. Discussion is focused on the effect of the layered structure, interface, and component loading on strength and toughness of nacre-mimic layered nanocomposites (148 references). This journal is © The Royal Society of Chemistry 2012

  9. Creep of oxide dispersion strengthened materials /with special reference to T-D nichrome/

    NASA Technical Reports Server (NTRS)

    Lin, J.; Sherby, O. D.

    1981-01-01

    Analyses of oxide dispersion strengthened (ODS) alloys shows that their characteristics are mainly due to the creep behavior of the matrix material. Diffusion-controlled slip creep is established as the rate-controlling process in the alloys investigated, with the glide and climb of edge dislocations associated with the subgrain structure as barriers being the specific rate-controlling step. It is found that the stable subgrain size in ODS alloys is usually associated with the spacing between particles 500-1000 A in size, and that their creep behavior is distinguished from that of the matrix material by the existence of a threshold stress that is not well defined microscopically but appears to be related to particles of less than 500 A size.

  10. [Simultaneous separation and detection of principal component isomer and related substances of raw material drug of ammonium glycyrrhizinate by RP-HPLC and structure confirmation].

    PubMed

    Zhao, Yan-Yan; Liu, Li-Yan; Han, Yuan-Yuan; Li, Yue-Qiu; Wang, Yan; Shi, Min-Jian

    2013-08-01

    A simple, fast and sensitive analytical method for the simultaneous separation and detection of 18alpha-glycyrrhizinic acid, 18beta-glycyrrhizinic acid, related substance A and related substance B by RP-HPLC and drug quality standard was established. The structures of principal component isomer and related substances of raw material drug of ammonium glycyrrhizinate have been confirmed. Reference European Pharmacopoeia EP7.0 version, British Pharmacopoeia 2012 version, National Drug Standards of China (WS 1-XG-2002), domestic and international interrelated literature were referred to select the composition of mobile phase. The experimental parameters including salt concentration, pH, addition quantities of organic solvent, column temperature and flow rate were optimized. Finally, the assay was conducted on a Durashell-C18 column (250 mm x 4.6 mm, 5 microm) with 0.01 mol x mL(-1) ammonium perchlorate (add ammonia to adjust the pH value to 8.2) -methanol (48 : 52) as mobile phase at the flow rate of 0.8 mL x min(-1), and the detection wavelength was set at 254 nm. The column temperature was 50 degrees C and the injection volume was 10 microL. The MS, NMR, UV and RP-HPLC were used to confirm the structures of principal component isomer and related substances of raw material drug of ammonium glycyrrhizinate. Under the optimized separation conditions, the calibration curves of 18 alpha-glycyrrhizinic acid, 18beta-glycyrrhizinic acid, related substance A and related substance B showed good linearity within the concentration of 0.50-100 microg x mL(-1) (r = 0.999 9). The detection limits for 18alpha-glycyrrhizinic acid, 18beta-glycyrrhizinic acid, related substance A and related substance B were 0.15, 0.10, 0.10, 0.15 microg x mL(-1) respectively. The method is sensitive, reproducible and the results are accurate and reliable. It can be used for chiral resolution of 18alpha-glycyrrhizinic acid, 18Pbeta-glycyrrhizinic acid, and detection content of principal component and related substances of raw material drug of ammonium glycyrrhizinate. It is concluded that the separation of principal component isomer of raw material drug of ammonium glycyrrhizinate and the validity of the substance's structure assignments of retention time being 1.2 in the European pharmacopoeia EP7.0 version, British pharmacopoeia 2012 version remains open to question. It may be of practical value for the quality control of raw material drug, preparation, and Chinese herbal medicine of ammonium glycyrrhizinate.

  11. Reference Materials: Significance, General Requirements, and Demand.

    PubMed

    Kiełbasa, Anna; Gadzała-Kopciuch, Renata; Buszewski, Bogusław

    2016-05-03

    Reference materials play an important part in the quality control of measurements. Rapid development of such new scientific disciplines as proteomics, metabolomics, and genomics also necessitates development of new reference materials. This is a great challenge due to the complexity of the production of new reference materials and difficulties associated with achieving their homogeneity and stability. CRMs of tissue are of particular importance. They can be counted among the matrices that are most complex and time consuming in preparation. Tissue is the place of transformation and accumulation of many substances (e.g., metabolites, which are intermediate or end products resulting from metabolic processes). Trace amounts of many substances in tissues must be determined with adequate precision and accuracy. To meet the needs stemming from research and from problems and challenges faced by chemists, analysts, and toxicologists, the number of certified reference materials should be continuously increased.

  12. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Weis, Dominique; Kieffer, Bruno; Maerschalk, Claude; Barling, Jane; de Jong, Jeroen; Williams, Gwen A.; Hanano, Diane; Pretorius, Wilma; Mattielli, Nadine; Scoates, James S.; Goolaerts, Arnaud; Friedman, Richard M.; Mahoney, J. Brian

    2006-08-01

    The Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the University of British Columbia has undertaken a systematic analysis of the isotopic (Sr, Nd, and Pb) compositions and concentrations of a broad compositional range of U.S. Geological Survey (USGS) reference materials, including basalt (BCR-1, 2; BHVO-1, 2), andesite (AGV-1, 2), rhyolite (RGM-1, 2), syenite (STM-1, 2), granodiorite (GSP-2), and granite (G-2, 3). USGS rock reference materials are geochemically well characterized, but there is neither a systematic methodology nor a database for radiogenic isotopic compositions, even for the widely used BCR-1. This investigation represents the first comprehensive, systematic analysis of the isotopic composition and concentration of USGS reference materials and provides an important database for the isotopic community. In addition, the range of equipment at the PCIGR, including a Nu Instruments Plasma MC-ICP-MS, a Thermo Finnigan Triton TIMS, and a Thermo Finnigan Element2 HR-ICP-MS, permits an assessment and comparison of the precision and accuracy of isotopic analyses determined by both the TIMS and MC-ICP-MS methods (e.g., Nd isotopic compositions). For each of the reference materials, 5 to 10 complete replicate analyses provide coherent isotopic results, all with external precision below 30 ppm (2 SD) for Sr and Nd isotopic compositions (27 and 24 ppm for TIMS and MC-ICP-MS, respectively). Our results also show that the first- and second-generation USGS reference materials have homogeneous Sr and Nd isotopic compositions. Nd isotopic compositions by MC-ICP-MS and TIMS agree to within 15 ppm for all reference materials. Interlaboratory MC-ICP-MS comparisons show excellent agreement for Pb isotopic compositions; however, the reproducibility is not as good as for Sr and Nd. A careful, sequential leaching experiment of three first- and second-generation reference materials (BCR, BHVO, AGV) indicates that the heterogeneity in Pb isotopic compositions, and concentrations, could be directly related to contamination by the steel (mortar/pestle) used to process the materials. Contamination also accounts for the high concentrations of certain other trace elements (e.g., Li, Mo, Cd, Sn, Sb, W) in various USGS reference materials.

  13. Linear solutions to metamaterial volume hologram design using a variational approach.

    PubMed

    Marks, Daniel L; Smith, David R

    2018-04-01

    Multiplex volume holograms are conventionally constructed by the repeated exposure of a photosensitive medium to a sequence of external fields, each field typically being the superposition of a reference wave that reconstructs the hologram and the other being a desired signal wave. Because there are no sources of radiation internal to the hologram, the pattern of material modulation is limited to the solutions to Helmholtz's equation in the medium. If the three-dimensional structure of the medium could be engineered at each point rather than limited to the patterns produced by standing waves, more versatile structures may result that can overcome the typical limitations to hologram dynamic range imposed by sequentially superimposing holograms. Metamaterial structures and other synthetic electromagnetic materials offer the possibility of achieving high medium contrast engineered at the subwavelength scale. By posing the multiplex volume holography problem as a linear medium design problem, we explore the potential improvements that such engineered synthetic media may provide over conventional multiplex volume holograms.

  14. Use of Fiber Reinforced Plastics in the Marine Industry

    DTIC Science & Technology

    1990-09-06

    surface should be molded or machined into the hull. 129 Design of Detais Marine Composites With single skin laminates, holes are normally drilled...SH), FIre and Toxicity Test Methods and Qualification Procedure for Composite Material Systems Used In Hull, Machinely and Structural Applications...date on the state of the marine composites industry and should for many years serve as an excellent reference and source book for designers and

  15. Castable and High Modulus Acoustic Dampening Material

    DTIC Science & Technology

    2007-02-22

    high impact strength and high dampening laminate structures (e.g., fiberglass parts, etc.). It appears that a carboxy-terminated butadiene nitrile ( CTBN ...Sanjana reference also states that the preferred glass transition temperature for the CTBNs is "<-200". The greater the difference from room...temperature (or the temperature of interest) that the glass transition of the CTBN is, the less acoustic or vibrational energy will be absorbed/dampened

  16. Optical sensor in planar configuration based on multimode interference

    NASA Astrophysics Data System (ADS)

    Blahut, Marek

    2017-08-01

    In the paper a numerical analysis of optical sensors based on multimode interference in planar one-dimensional step-index configuration is presented. The structure consists in single-mode input and output waveguides and multimode waveguide which guide only few modes. Material parameters discussed refer to a SU8 polymer waveguide on SiO2 substrate. The optical system described will be designed to the analysis of biological substances.

  17. Depth of processing and recall of threat material in fearful and nonfearful individuals.

    PubMed

    Wenzel, Amy; Zetocha, Kimberlee; Ferraro, F Richard

    2007-09-01

    Although many studies have examined the nature of memory distortions in anxious individuals, few have considered biases in specific memory processes, such as encoding or retrieval. To investigate whether the presentation of threat material facilitates encoding biases, spider fearful (n=63), blood fearful (n=73), and nonfearful (n=75) participants encoded spider related, blood related, and neutral words as a function of three levels of processing (i.e., structural, semantic, and self referent). Participants subsequently completed either a free recall or a recognition task. All participants demonstrated a partial depth of processing effect, such that they recalled more words encoded in the self referent condition than in the other two conditions, but groups did not differ in their recall of stimuli as a function of word type. Relative to participants in the other groups, spider fearful participants had fewer spider related intrusions in the recall condition, and they made fewer errors in responding to structural and semantic encoding questions when spider related words were presented. These results contribute to an increasingly large body of literature suggesting that anxious individuals are not characterized by a memory bias toward threat, and they raise the possibility that individuals with spider fears process threat-relevant information differently than individuals with blood fears.

  18. The 3D Reference Earth Model: Status and Preliminary Results

    NASA Astrophysics Data System (ADS)

    Moulik, P.; Lekic, V.; Romanowicz, B. A.

    2017-12-01

    In the 20th century, seismologists constructed models of how average physical properties (e.g. density, rigidity, compressibility, anisotropy) vary with depth in the Earth's interior. These one-dimensional (1D) reference Earth models (e.g. PREM) have proven indispensable in earthquake location, imaging of interior structure, understanding material properties under extreme conditions, and as a reference in other fields, such as particle physics and astronomy. Over the past three decades, new datasets motivated more sophisticated efforts that yielded models of how properties vary both laterally and with depth in the Earth's interior. Though these three-dimensional (3D) models exhibit compelling similarities at large scales, differences in the methodology, representation of structure, and dataset upon which they are based, have prevented the creation of 3D community reference models. As part of the REM-3D project, we are compiling and reconciling reference seismic datasets of body wave travel-time measurements, fundamental mode and overtone surface wave dispersion measurements, and normal mode frequencies and splitting functions. These reference datasets are being inverted for a long-wavelength, 3D reference Earth model that describes the robust long-wavelength features of mantle heterogeneity. As a community reference model with fully quantified uncertainties and tradeoffs and an associated publically available dataset, REM-3D will facilitate Earth imaging studies, earthquake characterization, inferences on temperature and composition in the deep interior, and be of improved utility to emerging scientific endeavors, such as neutrino geoscience. Here, we summarize progress made in the construction of the reference long period dataset and present a preliminary version of REM-3D in the upper-mantle. In order to determine the level of detail warranted for inclusion in REM-3D, we analyze the spectrum of discrepancies between models inverted with different subsets of the reference dataset. This procedure allows us to evaluate the extent of consistency in imaging heterogeneity at various depths and between spatial scales.

  19. Three-dimensional multiscale analysis of degradation of nano- and micro-structure in direct methanol fuel cell electrodes after methanol starvation

    NASA Astrophysics Data System (ADS)

    Netzeband, Christian; Arlt, Tobias; Wippermann, Klaus; Lehnert, Werner; Manke, Ingo

    2016-09-01

    This study investigates the ageing effects on the microstructure of the anode catalyst layer of direct methanol fuel cells (DMFC) after complete methanol starvation. To this end the samples of two methanol-depleted membrane electrode assemblies (MEA) have been compared with a pristine reference sample. A three-dimensional characterization of the anode catalyst layer (ACL) structure on a nanometer scale has been conducted by focused ion beam (FIB)/scanning electron microscope (SEM) tomography. The FIB/SEM tomography allows for a detailed analysis of statistic parameters of micro-structured materials, such as porosity, tortuosity and pore size distributions. Furthermore, the SEM images displayed a high material contrast between the heavy catalyst metals (Pt/Ru) and the relatively light carbon support, which made it possible to map the catalyst distribution in the acquired FIB/SEM tomographies. Additional synchrotron X-ray tomographies have been conducted in order to obtain an overview of the structural changes of all the components of a section of the MEAs after methanol depletion.

  20. Advances in Ultra High Temperature Ceramics for Hot Structures

    NASA Astrophysics Data System (ADS)

    Scatteia, Luigi; Monteverde, Federico; Alfano, Davide; Cantoni, Stefania

    The objective of this paper is to describe the current state of the art of the research on Ultra High Temperature Ceramic materials with particular reference to their space applications, and also to report on the activities performed on UHTC in the past decade by the Italian Aerospace Research Centre in the specific technological field of structural thermal protection systems. Within several internal research project, various UHTC composition, mainly based upon Zirconium Diboride and Hafnium Diboride with added secondary phases and sintering aid were examined characterized in their mechanical properties and oxidation resistance. Two main composition were selected as the most promising for hot structure manufacturing: these materials were extensively characterized in order to obtain a comprehensive database of properties to feed the thermomechanical design of prototype hot structures. Technological demonstrators were manufactured by hot pressing followed by further fine machining with Electrical Discharge methods, and then tested at high temperature for long times in a plasma torch facility. The main outstanding results obtained are discussed in this paper. Future outlooks related to the UHTC technology and its further development are also provided.

  1. [Report of the NEDO project "Research and development to promote the creation and utilization of an intellectual infrastructure: development of reference materials for laboratory medicine" "Development of pure substance-type certified reference materials"].

    PubMed

    Takatsu, Akiko

    2009-06-01

    There is an increasing demand to establish a metrological traceability system for in vitro diagnostics and medical devices. Pure substance-type reference materials are playing key roles in metrological traceability, because they form the basis for many traceability chains in chemistry. The National Metrology Institute of Japan (NMIJ), in the National Institute of Advanced Industrial Science and Technology (AIST), has been developing purity-certified reference materials (CRMs) in this field, such as cholesterol, creatinine, and urea. In the New Energy and Industrial Technology Development Organization (NEDO) project, entitled: "Research and Development to Promote the Creation and Utilization of an Intellectual Infrastructure: Development of Reference Materials for Laboratory Medicine", several pure substance-type CRMs were developed. For a pure protein solution CRM, amino acid analysis and nitrogen determination were chosen as the certification methods. The development and certification processes for the C-reactive protein (CRP) solution CRM were completed, with the recombinant human CRP solution as a candidate material. This CRP solution CRM is now available as NMIJ CRM. For cortisol CRM, a purified candidate material and highly pure primary reference material were prepared. Each impure compound in the materials was identified and quantified. The pure cortisol CRM will be available in 2009. These two CRMs provide a traceability link between routine clinical methods and the SI unit.

  2. DOE research and development report. Progress report, October 1980-September 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bingham, Carleton D.

    The DOE New Brunswick Laboratory (NBL) is the US Government's Nuclear Materials Standards and Measurement Laboratory. NBL is assigned the mission to provide and maintain, as an essential part of federal statutory responsibilities related to national and international safeguards of nuclear materials for USA defense and energy programs, an ongoing capability for: the development, preparation, certification, and distribution of reference materials for the calibration and standardization of nuclear materials measurements; the development, improvement, and evaluation of nuclear materials measurement technology; the assessment and evaluation of the practice and application of nuclear materials measurement technology; expert and reliable specialized nuclear materialsmore » measurement services for the government; and technology exchange and training in nuclear materials measurement and standards. Progress reports for this fiscal year are presented under the following sections: (1) development or evaluation of measurement technology (elemental assay of uranium plutonium; isotope composition); (2) standards and reference materials (NBL standards and reference materials; NBS reference materials); and (3) evaluation programs (safeguards analytical laboratory evaluation; general analytical evaluation program; other evaluation programs).« less

  3. Identification and accurate quantification of structurally related peptide impurities in synthetic human C-peptide by liquid chromatography-high resolution mass spectrometry.

    PubMed

    Li, Ming; Josephs, Ralf D; Daireaux, Adeline; Choteau, Tiphaine; Westwood, Steven; Wielgosz, Robert I; Li, Hongmei

    2018-06-04

    Peptides are an increasingly important group of biomarkers and pharmaceuticals. The accurate purity characterization of peptide calibrators is critical for the development of reference measurement systems for laboratory medicine and quality control of pharmaceuticals. The peptides used for these purposes are increasingly produced through peptide synthesis. Various approaches (for example mass balance, amino acid analysis, qNMR, and nitrogen determination) can be applied to accurately value assign the purity of peptide calibrators. However, all purity assessment approaches require a correction for structurally related peptide impurities in order to avoid biases. Liquid chromatography coupled to high resolution mass spectrometry (LC-hrMS) has become the key technique for the identification and accurate quantification of structurally related peptide impurities in intact peptide calibrator materials. In this study, LC-hrMS-based methods were developed and validated in-house for the identification and quantification of structurally related peptide impurities in a synthetic human C-peptide (hCP) material, which served as a study material for an international comparison looking at the competencies of laboratories to perform peptide purity mass fraction assignments. More than 65 impurities were identified, confirmed, and accurately quantified by using LC-hrMS. The total mass fraction of all structurally related peptide impurities in the hCP study material was estimated to be 83.3 mg/g with an associated expanded uncertainty of 3.0 mg/g (k = 2). The calibration hierarchy concept used for the quantification of individual impurities is described in detail. Graphical abstract ᅟ.

  4. Interfacial structure of soft matter probed by SFG spectroscopy.

    PubMed

    Ye, Shen; Tong, Yujin; Ge, Aimin; Qiao, Lin; Davies, Paul B

    2014-10-01

    Sum frequency generation (SFG) vibrational spectroscopy, an interface-specific technique in contrast to, for example, attenuated total reflectance spectroscopy, which is only interface sensitive, has been employed to investigate the surface and interface structure of soft matter on a molecular scale. The experimental arrangement required to carry out SFG spectroscopy, with particular reference to soft matter, and the analytical methods developed to interpret the spectra are described. The elucidation of the interfacial structure of soft matter systems is an essential prerequisite in order to understand and eventually control the surface properties of these important functional materials. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Shuttle considerations for the design of large space structures

    NASA Technical Reports Server (NTRS)

    Roebuck, J. A., Jr.

    1980-01-01

    Shuttle related considerations (constraints and guidelines) are compiled for use by designers of a potential class of large space structures which are transported to orbit and, deployed, fabricated or assembled in space using the Space Shuttle Orbiter. Considerations of all phases of shuttle operations from launch to ground turnaround operations are presented. Design of large space structures includes design of special construction fixtures and support equipment, special stowage cradles or pallets, special checkout maintenance, and monitoring equipment, and planning for packaging into the orbiter of all additional provisions and supplies chargeable to payload. Checklists of design issues, Shuttle capabilities constraints and guidelines, as well as general explanatory material and references to source documents are included.

  6. Use of Bayesian Inference in Crystallographic Structure Refinement via Full Diffraction Profile Analysis

    PubMed Central

    Fancher, Chris M.; Han, Zhen; Levin, Igor; Page, Katharine; Reich, Brian J.; Smith, Ralph C.; Wilson, Alyson G.; Jones, Jacob L.

    2016-01-01

    A Bayesian inference method for refining crystallographic structures is presented. The distribution of model parameters is stochastically sampled using Markov chain Monte Carlo. Posterior probability distributions are constructed for all model parameters to properly quantify uncertainty by appropriately modeling the heteroskedasticity and correlation of the error structure. The proposed method is demonstrated by analyzing a National Institute of Standards and Technology silicon standard reference material. The results obtained by Bayesian inference are compared with those determined by Rietveld refinement. Posterior probability distributions of model parameters provide both estimates and uncertainties. The new method better estimates the true uncertainties in the model as compared to the Rietveld method. PMID:27550221

  7. High Speed Research Program Structural Acoustics Multi-Year Summary Report

    NASA Technical Reports Server (NTRS)

    Beier, Theodor H.; Bhat, Waman V.; Rizzi, Stephen A.; Silcox, Richard J.; Simpson, Myles A.

    2005-01-01

    This report summarizes the work conducted by the Structural Acoustics Integrated Technology Development (ITD) Team under NASA's High Speed Research (HSR) Phase II program from 1993 to 1999. It is intended to serve as a reference for future researchers by documenting the results of the interior noise and sonic fatigue technology development activities conducted during this period. For interior noise, these activities included excitation modeling, structural acoustic response modeling, development of passive treatments and active controls, and prediction of interior noise. For sonic fatigue, these activities included loads prediction, materials characterization, sonic fatigue code development, development of response reduction techniques, and generation of sonic fatigue design requirements. Also included are lessons learned and recommendations for future work.

  8. delta 15N and non-carbonate delta 13C values for two petroleum source rock reference materials and a marine sediment reference material

    USGS Publications Warehouse

    Dennen, Kristin O.; Johnson, Craig A.; Otter, Marshall L.; Silva, Steven R.; Wandless, Gregory A.

    2006-01-01

    Samples of United States Geological Survey (USGS) Certified Reference Materials USGS Devonian Ohio Shale (SDO-1), and USGS Eocene Green River Shale (SGR-1), and National Research Council Canada (NRCC) Certified Marine Sediment Reference Material (PACS-2), were sent for analysis to four separate analytical laboratories as blind controls for organic rich sedimentary rock samples being analyzed from the Red Dog mine area in Alaska. The samples were analyzed for stable isotopes of carbon (delta13Cncc) and nitrogen (delta15N), percent non-carbonate carbon (Wt % Cncc) and percent nitrogen (Wt % N). SDO-1, collected from the Huron Member of the Ohio Shale, near Morehead, Kentucky, and SGR-1, collected from the Mahogany zone of the Green River Formation are petroleum source rocks used as reference materials for chemical analyses of sedimentary rocks. PACS-2 is modern marine sediment collected from the Esquimalt, British Columbia harbor. The results presented in this study are, with the exceptions noted below, the first published for these reference materials. There are published information values for the elemental concentrations of 'organic' carbon (Wt % Corg measured range is 8.98 - 10.4) and nitrogen (Wt % Ntot 0.347 with SD 0.043) only for SDO-1. The suggested values presented here should be considered 'information values' as defined by the NRCC Institute for National Measurement Reference Materials and should be useful for the analysis of 13C, 15N, C and N in organic material in sedimentary rocks.

  9. Enhanced fluorescence from CdSe/ZnS quantum dot nanophosphors embedded in a one-dimensional photonic crystal backbone structure.

    PubMed

    Min, Kyungtaek; Choi, Serok; Choi, Yunkyoung; Jeon, Heonsu

    2014-11-06

    A nano-engineered phosphor structure that produces enhanced fluorescence is reported. Two kinds of polymer materials with different refractive indices are spin-coated alternately to realize a one-dimensional (1D) photonic crystal (PC) phosphor platform, in which CdSe/ZnS core-shell quantum dots (QDs) were embedded as a fluorescence agent. The 1D PC phosphor structure is designed to match the pump photon energy with one of the photonic band-edges (PBEs), where the photon group velocity becomes zero, and thus the interaction between pump photons and fluorescent centres strengthened. A reference phosphor structure is also designed and fabricated; however, it has no PBE and exhibited bulk-like photonic properties. The fluorescence intensity from the 1D PC phosphors is examined during the pump photon energy scanning across the PBE. It is found that fluorescence from the 1D PC phosphor reaches its maximum when the pump photon energy coincides with the PBE, which is consistent with the theoretical prediction. In comparison with the reference phosphor, the fluorescence from the 1D PC phosphor is measured to be enhanced by a factor of 1.36.

  10. Biscayne aquifer drinking water (USGS45): a new isotopic reference material for δ2H and δ18O measurements of water

    USGS Publications Warehouse

    Lorenz, Jennifer M.; Tarbox, Lauren V.; Buck, Bryan; Qi, Haiping; Coplen, Tyler B.

    2014-01-01

    RATIONALE As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from drinking water collected from the Biscayne aquifer in Ft. Lauderdale, Florida. METHODS This isotopic reference water was filtered, homogenized, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and measured by dual-inlet isotope-ratio mass spectrometry. This reference material is available by the case of 144 glass ampoules containing either 4 mL or 5 mL of water in each ampoule. RESULTS The δ2H and δ18O values of this reference material are –10.3 ± 0.4 ‰ and –2.238 ± 0.011 ‰, respectively, relative to VSMOW, on scales normalized such that the δ2H and δ18O values of SLAP reference water are, respectively, –428 and –55.5 ‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc) about the reference value that provides an interval that has about a 95 % probability of encompassing the true value. CONCLUSIONS This isotopic reference material, designated as USGS45, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer. 

  11. The assessment of ultrasonic tests as a tool for qualification and diagnostic study of traditional highly porous and soft stone materials used in the built heritage of the past.

    NASA Astrophysics Data System (ADS)

    Calia, A.; Sileo, M.; Leucci, G.

    2012-04-01

    Ultrasonic tests are performing tools for the quality assessment and selection of stone as building materials, as well as for the detection of faults within architectural and structural elements. The use of the non destructive and non invasive diagnostic techniques has always advantages in the activities on pre-existing buildings, in terms of sustainability; moreover, it is a need with respect to the conservation constraints when we act on the historical-architectural heritage. Ultrasonic technique is widely and successfully performed in the diagnosis and control of the restoration works on concrete and compact stone artefacts. Specific problems arise from its use with reference to highly porous and soft stones, in particular bi-component materials with grains-cement binder structure, such as calcarenites. Low ultrasonic propagation velocity, typically associated to the soft and porous materials can be easily affected by disturbing factors, in primis water (in vapour or liquid state), that can easily and frequently penetrates inside them and in significant amounts, due to their high open porosity. The analysis and interpretation of the data acquired by in situ investigations have to take into account this additional contribution. In the same way, on site structures and materials can be easily interested by salt presence and deposition within the pores, that can furtherly interfere on the data significance, as well as it is important to know the variability of data due to the different state of conservation of the stones. The influence of all these factors on the response to the ultrasonic tests needs to be investigated by laboratory controlled conditions, preliminarily to the in situ application. The present work refers to the experimental activity devoted to investigate the critical aspects that have been mentioned above and the results obtained. It is a part of a larger activity with the final aim to set up non invasive diagnostic procedures for the analysis and qualification of ancient masonries, realised with traditional soft stones, used as building materials in the Southern Italy. This activity is carried out within the AITECH network (Applied Innovation Technologies for Diagnosis and Conservation of Built Heritage), a regional research laboratory infrastructure (Apulian region, Southern Italy) funded within the FSE and FESR programs and realised by the contribution of the Italian CNR and Salento University. In particular, ultrasonic velocity propagation have been measured on different petrographic kinds of calcarenitic materials. The influence of the sample size -the scale effect- has also been investigated. Velocity data have been recorded on the samples in the following conditions: a) dry, wet and different rates of the humidity content b) salt saturation c) after ageing by salt crystallisation cycles. Finally, ultrasonic tests have been performed on some samples treated by inorganic silica consolidant. This experimental laboratory investigation is the preliminary activity to assess the performance potential of the ultrasonic tests as effective tool for the qualification and diagnosis before and after treatments, with reference to the specific critical aspects related to highly porous and soft stone materials, traditionally used in the built heritage of the past.

  12. Quantum Interactive Dualism: An Alternative to Materialism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, Henry P

    2005-06-01

    Materialism rest implicitly upon the general conception of nature promoted by Galileo and Newton during the seventeenth century. It features the causal closure of the physical: The course of physically described events for all time is fixed by laws that refer exclusively to the physically describeable features of nature, and initial conditions on these feature. No reference to subjective thoughts or feeling of human beings enter. That simple conception of nature was found during the first quarter of the twentieth century to be apparently incompatible with the empirical facts. The founders of quantum theory created a new fundamental physical theory,more » quantum theory, which introduced crucially into the causal structure certain conscious choices made by human agents about how they will act. These conscious human choices are ''free'' in the sense that they are not fixed by the known laws. But they can influence the course of physically described events. Thus the principle of the causal closure of the physical fails. Applications in psycho-neuro-dynamics are described.« less

  13. The nameless father in the poetry and life of Francis Webb.

    PubMed

    Powell, C

    1998-08-01

    A brief biographical review of the poet Francis Webb was carried out, with reference to his mental illness and recurring themes in his poetry. Material is drawn from a recent biography and the author's personal encounters with the poet. Reference is also made to Lacan's theory of psychosis and Winnicott's construct of the 'transitional object'. The poetry may be seen in part as a transitional object whereby the poet sought to repair deficits in the structure of the self and contain psychotic chaos. The poems have a beauty and power beyond any psychoanalytic theorising, but may also be read as a vital striving toward self-healing on the part of the poet.

  14. Acid precipitation; an annotated bibliography

    USGS Publications Warehouse

    Wiltshire, Denise A.; Evans, Margaret L.

    1984-01-01

    This collection of 1660 bibliographies references on the causes and environmental effects of acidic atmospheric deposition was compiled from computerized literature searches of earth-science and chemistry data bases. Categories of information are (1) atmospheric chemistry (gases and aerosols), (2) precipitation chemistry, (3) transport and deposition (wet and dry), (4) aquatic environments (biological and hydrological), (5) terrestrial environments, (6) effects on materials and structures, (7) air and precipitation monitoring and data collection, and (8) modeling studies. References date from the late 1800 's through December 1981. The bibliography includes short summaries of most documents. Omitted are unpublished manuscripts, publications in press, master 's theses and doctoral dissertations, newspaper articles, and book reviews. Coauthors and subject indexes are included. (USGS)

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roach, Dennis Patrick; Rackow, Kirk A.

    The FAA's Airworthiness Assurance NDI Validation Center, in conjunction with the Commercial Aircraft Composite Repair Committee, developed a set of composite reference standards to be used in NDT equipment calibration for accomplishment of damage assessment and post-repair inspection of all commercial aircraft composites. In this program, a series of NDI tests on a matrix of composite aircraft structures and prototype reference standards were completed in order to minimize the number of standards needed to carry out composite inspections on aircraft. Two tasks, related to composite laminates and non-metallic composite honeycomb configurations, were addressed. A suite of 64 honeycomb panels, representingmore » the bounding conditions of honeycomb construction on aircraft, was inspected using a wide array of NDI techniques. An analysis of the resulting data determined the variables that play a key role in setting up NDT equipment. This has resulted in a set of minimum honeycomb NDI reference standards that include these key variables. A sequence of subsequent tests determined that this minimum honeycomb reference standard set is able to fully support inspections over the full range of honeycomb construction scenarios found on commercial aircraft. In the solid composite laminate arena, G11 Phenolic was identified as a good generic solid laminate reference standard material. Testing determined matches in key velocity and acoustic impedance properties, as well as, low attenuation relative to carbon laminates. Furthermore, comparisons of resonance testing response curves from the G11 Phenolic NDI reference standard was very similar to the resonance response curves measured on the existing carbon and fiberglass laminates. NDI data shows that this material should work for both pulse-echo (velocity-based) and resonance (acoustic impedance-based) inspections.« less

  16. 33 CFR 140.7 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... materials are incorporated by reference into this subchapter with the approval of the Director of the... material made available to the public. All approved material is available for inspection at U.S. Coast... National Archives and Records Administration (NARA). For information on the availability of this material...

  17. 33 CFR 140.7 - Incorporation by reference.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... materials are incorporated by reference into this subchapter with the approval of the Director of the... material made available to the public. All approved material is available for inspection at U.S. Coast... National Archives and Records Administration (NARA). For information on the availability of this material...

  18. 33 CFR 140.7 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... materials are incorporated by reference into this subchapter with the approval of the Director of the... material made available to the public. All approved material is available for inspection at U.S. Coast... National Archives and Records Administration (NARA). For information on the availability of this material...

  19. 33 CFR 140.7 - Incorporation by reference.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... materials are incorporated by reference into this subchapter with the approval of the Director of the... material made available to the public. All approved material is available for inspection at U.S. Coast... National Archives and Records Administration (NARA). For information on the availability of this material...

  20. 33 CFR 140.7 - Incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... materials are incorporated by reference into this subchapter with the approval of the Director of the... material made available to the public. All approved material is available for inspection at U.S. Coast... National Archives and Records Administration (NARA). For information on the availability of this material...

  1. On 3-D inelastic analysis methods for hot section components (base program)

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Bak, M. J.; Nakazawa, S.; Banerjee, P. K.

    1986-01-01

    A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report.

  2. Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields approach

    PubMed Central

    Calzolari, Arrigo; Nardelli, Marco Buongiorno

    2013-01-01

    Using first principles calculations based on density functional theory and a coupled finite-fields/finite-differences approach, we study the dielectric properties, phonon dispersions and Raman spectra of ZnO, a material whose internal polarization fields require special treatment to correctly reproduce the ground state electronic structure and the coupling with external fields. Our results are in excellent agreement with existing experimental measurements and provide an essential reference for the characterization of crystallinity, composition, piezo- and thermo-electricity of the plethora of ZnO-derived nanostructured materials used in optoelectronics and sensor devices. PMID:24141391

  3. Precision Mechanical Measurement Using the Levitation Mass Method (LMM)

    NASA Astrophysics Data System (ADS)

    Fujii, Yusaku; Jin, Tao; Maru, Koichi

    2010-12-01

    The present status and the future prospects of a method for precision mass and force measurement, the levitation mass method (LMM), are reviewed. The LMM has been proposed and improved by the authors. In the LMM, the inertial force of a mass levitated using a pneumatic linear bearing is used as the reference force applied to the objects under test, such as force transducers, materials or structures. The inertial force of the levitated mass is measured using an optical interferometer. The three typical applications of the LMM, i.e. the dynamic force calibration, the micro force material tester and the space scale, are reviewed in this paper.

  4. Assessment of Dredged Material Toxicity in San Francisco Bay

    DTIC Science & Technology

    1990-11-01

    reference sediment. When compared to the fine-grain Sequim Bay refer- ence material, no statistically significant mortalities were detected. R...Oakland Harbor. Sequim Bay material was used as the refer- ence. The hierarchy of interspecific sensitivity was oyster larvae > juvenile sand dabs...in San Francisco Bay 6. AUTHOR(S) Thomas M. Dillon, David W. Moore 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) - 8. PERFORMING ORGANIZATION

  5. Ultrasonic angle beam standard reflector. [ultrasonic nondestructive inspection

    NASA Technical Reports Server (NTRS)

    Berry, R. F., Jr. (Inventor)

    1985-01-01

    A method that provides an impression profile in a reference standard material utilized in inspecting critically stressed components with pulsed ultrasound is described. A die stamp having an I letter is used to impress the surface of a reference material. The die stamp is placed against the surface and struck with an inertia imparting member to impress the I in the reference standard material. Upset may appear on the surface as a result of the impression and is removed to form a smooth surface. The stamping and upset removal is repeated until the entire surface area of a depth control platform on the die stamp uniformly contacts the material surface. The I impression profile in the reference standard material is utilized for reflecting pulsed ultrasonic beams for inspection purposes.

  6. 15 CFR 230.7 - Description of services and list of fees, incorporation by reference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARD REFERENCE MATERIALS STANDARD REFERENCE MATERIALS Description of Services and List of Fees § 230.7 Description of services and list of fees, incorporation by reference. (a) The text of NIST Special Publication... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Description of services and list of...

  7. National Nutrition Education Clearing House Reference List, Preschool, Primary and Intermediate Teaching Materials and Teacher References.

    ERIC Educational Resources Information Center

    National Nutrition Education Clearing House, Berkeley, CA.

    This is a reference list of teaching materials and teacher references of importance to teachers in the field of nutrition and nutrition education. It emphasizes resources for preschool, primary and intermediate grades. Although not a comprehensive list, resources include books, pamphlets, curriculum guides, article reprints, films and filmstrips,…

  8. Interlaboratory Reproducibility of Droplet Digital Polymerase Chain Reaction Using a New DNA Reference Material Format.

    PubMed

    Pinheiro, Leonardo B; O'Brien, Helen; Druce, Julian; Do, Hongdo; Kay, Pippa; Daniels, Marissa; You, Jingjing; Burke, Daniel; Griffiths, Kate; Emslie, Kerry R

    2017-11-07

    Use of droplet digital PCR technology (ddPCR) is expanding rapidly in the diversity of applications and number of users around the world. Access to relatively simple and affordable commercial ddPCR technology has attracted wide interest in use of this technology as a molecular diagnostic tool. For ddPCR to effectively transition to a molecular diagnostic setting requires processes for method validation and verification and demonstration of reproducible instrument performance. In this study, we describe the development and characterization of a DNA reference material (NMI NA008 High GC reference material) comprising a challenging methylated GC-rich DNA template under a novel 96-well microplate format. A scalable process using high precision acoustic dispensing technology was validated to produce the DNA reference material with a certified reference value expressed in amount of DNA molecules per well. An interlaboratory study, conducted using blinded NA008 High GC reference material to assess reproducibility among seven independent laboratories demonstrated less than 4.5% reproducibility relative standard deviation. With the exclusion of one laboratory, laboratories had appropriate technical competency, fully functional instrumentation, and suitable reagents to perform accurate ddPCR based DNA quantification measurements at the time of the study. The study results confirmed that NA008 High GC reference material is fit for the purpose of being used for quality control of ddPCR systems, consumables, instrumentation, and workflow.

  9. The Kjeldahl method as a primary reference procedure for total protein in certified reference materials used in clinical chemistry. II. Selection of direct Kjeldahl analysis and its preliminary performance parameters.

    PubMed

    Vinklárková, Bára; Chromý, Vratislav; Šprongl, Luděk; Bittová, Miroslava; Rikanová, Milena; Ohnútková, Ivana; Žaludová, Lenka

    2015-01-01

    To select a Kjeldahl procedure suitable for the determination of total protein in reference materials used in laboratory medicine, we reviewed in our previous article Kjeldahl methods adopted by clinical chemistry and found an indirect two-step analysis by total Kjeldahl nitrogen corrected for its nonprotein nitrogen and a direct analysis made on isolated protein precipitates. In this article, we compare both procedures on various reference materials. An indirect Kjeldahl method gave falsely lower results than a direct analysis. Preliminary performance parameters qualify the direct Kjeldahl analysis as a suitable primary reference procedure for the certification of total protein in reference laboratories.

  10. Water-equivalent fiber radiation dosimeter with two scintillating materials

    PubMed Central

    Qin, Zhuang; Hu, Yaosheng; Ma, Yu; Lin, Wei; Luo, Xianping; Zhao, Wenhui; Sun, Weimin; Zhang, Daxin; Chen, Ziyin; Wang, Boran; Lewis, Elfed

    2016-01-01

    An inorganic scintillating material plastic optical fiber (POF) dosimeter for measuring ionizing radiation during radiotherapy applications is reported. It is necessary that an ideal dosimeter exhibits many desirable qualities, including water equivalence, energy independence, reproducibility, dose linearity. There has been much recent research concerning inorganic dosimeters. However, little reference has been made to date of the depth-dose characteristics of dosimeter materials. In the case of inorganic scintillating materials, they are predominantly non water-equivalent, with their effective atomic weight (Zeff) being typically much greater than that of water. This has been a barrier in preventing inorganic scintillating material dosimeter from being used in actual clinical applications. In this paper, we propose a parallel-paired fiber light guide structure to solve this problem. Two different inorganic scintillating materials are embedded separately in the parallel-paired fiber. It is shown that the information of water depth and absorbed dose at the point of measurement can be extracted by utilizing their different depth-dose properties. PMID:28018715

  11. Influences of strain rate on yield strength aluminum alloys

    NASA Astrophysics Data System (ADS)

    Rizal, Samsul; Firdaus, Hamdani Teuku; Thaib, Razali; Homma, Hiroomi

    2005-04-01

    The simulation of aircraft has often been performing by implementing finite element code on supercomputers. The reliability an accuracy of simulation depends mainly on the material model as well as on structural model used in calculations. Consequently, an accurate knowledge of mechanical behavior of materials under impact loading is essential for safety performance evaluation of structure. Impact tension tests on specimens for aircrafts and automotive structural applications are conduct by means of the split Hopkinson bar apparatus. Small specimens having diameter 4 mm are use in the test. Tensile stress-strain relations at strain rates of 102 s-1 to over 103 s-1 are present and compared with those obtained at quasi-static strain rates. The limitations on the applicability of apparatus are also discusses. The other importance of the reference of strain, while studying void growth in elastic-viscoplastic material, is emphasized. In the present paper, a simplified plane-symmetrical two-dimensional finite element model for a SHPB with a plate specimen made of an elastic material is first established. The used of strain gage mounted at the specimens to be monitored strain during the course of impact test. Comparisons may then be made between the numerical predicted and experimentally observed of load and a specimen strain. This report also describes the apparatus and instrumentation, and also be discusses the advantages and limitations of experimental technique. Fractograph is taken by scanning electron microscope on the center of the specimens for judgment of the fracture mechanism and strain rates influences on the materials.

  12. Synthesis optimisation and characterisation of the organic-inorganic layered materials ZnS(m-xylylenediamine){sub 1/2} and ZnS(p-xylylenediamine){sub 1/2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luberda-Durnaś, K.; Guillén, A. González; Łasocha, W., E-mail: lasocha@chemia.uj.edu.pl

    2016-06-15

    Hybrid organic-inorganic layered materials of the type ZnS(amine){sub 1/2}, where amine=m-xylylenediamine (MXDA) or p-xylylenediamine (PXDA), were synthesised using a simple solvothermal method. Since the samples crystallised in the form of very fine powder, X-ray powder diffraction techniques were used for structural characterisation. The crystal structure studies, involving direct methods, show that both compounds crystallised in the orthorhombic crystal system, but in different space groups: ZnS(MXDA){sub 1/2} in non-centrosymmetric Ccm2{sub 1}, ZnS(PXDA){sub 1/2} in centrosymmetric Pcab. The obtained materials are built according to similar orders: semiconducting monolayers with the formula ZnS, parallel to the (010) plane, are separated by diamines. Themore » organic and inorganic fragments are connected by covalent bonds between metal atoms of the layers and nitrogen atoms of the amino groups. The optical properties of the hybrid materials differ from those of their bulk counterpart. In both compounds a blue-shift of about 0.8 or 0.9 eV was observed with reference to the bulk phase of ZnS. - Highlights: • New hybrid compounds: ZnS(MXDA){sub 1/2} and ZnS(PXDA){sub 1/2} were obtained. • Hybrids were studied using XRD, TG/DSC, XRK, SEM, UV–vis spectroscopy. • Structures of both materials were solved by powder diffraction methods.« less

  13. 49 CFR 572.80 - Incorporated materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 7 2011-10-01 2011-10-01 false Incorporated materials. 572.80 Section 572.80... Incorporated materials. The drawings and specifications referred to in § 572.81(a) that are not set forth in full are hereby incorporated in this part by reference. These materials are thereby made part of this...

  14. 10 CFR 431.15 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... approval, and a notice of any change in the material will be published in the Federal Register. All... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.15 Section 431.15... INDUSTRIAL EQUIPMENT Electric Motors Test Procedures, Materials Incorporated and Methods of Determining...

  15. 49 CFR 572.80 - Incorporated materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Incorporated materials. 572.80 Section 572.80... Incorporated materials. The drawings and specifications referred to in § 572.81(a) that are not set forth in full are hereby incorporated in this part by reference. These materials are thereby made part of this...

  16. 49 CFR 572.80 - Incorporated materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 7 2013-10-01 2013-10-01 false Incorporated materials. 572.80 Section 572.80... Incorporated materials. The drawings and specifications referred to in § 572.81(a) that are not set forth in full are hereby incorporated in this part by reference. These materials are thereby made part of this...

  17. 49 CFR 572.40 - Incorporated materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Register has approved the materials incorporated by reference. For materials subject to change, only the... incorporated. A notice of any change will be published in the Federal Register. As a convenience to the reader... volume of the Code of Federal Regulations. (b) The materials incorporated in this part by reference are...

  18. Development of potential candidate reference materials for drugs in bottom sediment, cod and herring tissues.

    PubMed

    Baranowska, Irena; Buszewski, Bogusław; Namieśnik, Jacek; Konieczka, Piotr; Magiera, Sylwia; Polkowska-Motrenko, Halina; Kościelniak, Paweł; Gadzała-Kopciuch, Renata; Woźniakiewicz, Aneta; Samczyński, Zbigniew; Kochańska, Kinga; Rutkowska, Małgorzata

    2017-02-01

    Regular use of a reference material and participation in a proficiency testing program can improve the reliability of analytical data. This paper presents the preparation of candidate reference materials for the drugs metoprolol, propranolol, carbamazepine, naproxen, and acenocoumarol in freshwater bottom sediment and cod and herring tissues. These reference materials are not available commercially. Drugs (between 7 ng/g and 32 ng/g) were added to the samples, and the spiked samples were freeze-dried, pulverized, sieved, homogenized, bottled, and sterilized by γ-irradiation to prepare the candidate materials. Procedures for extraction and liquid chromatography coupled with tandem mass spectrometry were developed to determine the drugs of interest in the studied material. Each target drug was quantified using two analytical procedures, and the results obtained from these two procedures were in good agreement with each other. Stability and homogeneity assessments were performed, and the relative uncertainties due to instability (for an expiration date of 12 months) and inhomogeneity were 10-25% and 4.0-6.8%, respectively. These procedures will be useful in the future production of reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report)

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, Tyler B.; Vogl, Jochen; Rosner, Martin; Prohaska, Thomas

    2014-01-01

    Since the early 1950s, the number of international measurement standards for anchoring stable isotope delta scales has mushroomed from 3 to more than 30, expanding to more than 25 chemical elements. With the development of new instrumentation, along with new and improved measurement procedures for studying naturally occurring isotopic abundance variations in natural and technical samples, the number of internationally distributed, secondary isotopic reference materials with a specified delta value has blossomed in the last six decades to more than 150 materials. More than half of these isotopic reference materials were produced for isotope-delta measurements of seven elements: H, Li, B, C, N, O, and S. The number of isotopic reference materials for other, heavier elements has grown considerably over the last decade. Nevertheless, even primary international measurement standards for isotope-delta measurements are still needed for some elements, including Mg, Fe, Te, Sb, Mo, and Ge. It is recommended that authors publish the delta values of internationally distributed, secondary isotopic reference materials that were used for anchoring their measurement results to the respective primary stable isotope scale.

  20. Referred Pain Patterns Provoked on Intra-Pelvic Structures among Women with and without Chronic Pelvic Pain: A Descriptive Study

    PubMed Central

    Butler, Stephen; Peterson, Magnus; Eriksson, Margaretha

    2015-01-01

    Objectives To describe referred pain patterns provoked from intra-pelvic structures in women with chronic pelvic pain (CPP) persisting after childbirth with the purpose to improve diagnostics and give implications for treatment. Materials and Methods In this descriptive and comparative study 36 parous women with CPP were recruited from a physiotherapy department waiting list and by advertisements in newspapers. A control group of 29 parous women without CPP was consecutively assessed for eligibility from a midwifery surgery. Inclusion criterion for CPP was: moderate pain in the sacral region persisting at least six months after childbirth confirmed by pelvic pain provocation tests. Exclusion criteria in groups with and without CPP were: persistent back or pelvic pain with onset prior to pregnancy, previous back surgery and positive neurological signs. Pain was provoked by palpation of 13 predetermined intra-pelvic anatomical landmarks. The referred pain distribution was expressed in pain drawings and described in pain maps and calculated referred pain areas. Results Pain provoked by palpation of the posterior intra-pelvic landmarks was mostly referred to the sacral region and pain provoked by palpation of the ischial and pubic bones was mostly referred to the groin and pubic regions, with or without pain referred down the ipsilateral leg. The average pain distribution area provoked by palpation of all 13 anatomical landmarks was 30.3 mm² (19.2 to 53.7) in women with CPP as compared to 3.2 mm² (1.0 to 5.1) in women without CPP, p< 0.0001. Conclusions Referred pain patterns provoked from intra-pelvic landmarks in women with CPP are consistent with sclerotomal sensory innervation. Magnification of referred pain patterns indicates allodynia and central sensitization. The results suggest that pain mapping can be used to evaluate and confirm the pain experience among women with CPP and contribute to diagnosis. PMID:25793999

  1. Determination of tungsten in geochemical reference material basalt Columbia River 2 by radiochemical neutron activation analysis and inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, Samuel S.; Beck, Chelsie L.; Bowen, James M.

    Environmental tungsten (W) analyses are inhibited by a lack of reference materials and practical methods to remove isobaric and radiometric interferences. We present a method that evaluates the potential use of commercially available sediment, Basalt Columbia River-2 (BCR-2), as a reference material using neutron activation analysis (NAA) and mass spectrometry. Tungsten concentrations using both methods are in statistical agreement at the 95% confidence interval (92 ± 4 ng/g for NAA and 100 ±7 ng/g for mass spectrometry) with recoveries greater than 95%. These results indicate that BCR-2 may be suitable as a reference material for future studies.

  2. Diffusion-controlled reference material for VOC emissions testing: proof of concept.

    PubMed

    Cox, S S; Liu, Z; Little, J C; Howard-Reed, C; Nabinger, S J; Persily, A

    2010-10-01

    Because of concerns about indoor air quality, there is growing awareness of the need to reduce the rate at which indoor materials and products emit volatile organic compounds (VOCs). To meet consumer demand for low emitting products, manufacturers are increasingly submitting materials to independent laboratories for emissions testing. However, the same product tested by different laboratories can result in very different emissions profiles because of a general lack of test validation procedures. There is a need for a reference material that can be used as a known emissions source and that will have the same emission rate when tested by different laboratories under the same conditions. A reference material was created by loading toluene into a polymethyl pentene film. A fundamental emissions model was used to predict the toluene emissions profile. Measured VOC emissions profiles using small-chamber emissions tests compared reasonably well to the emissions profile predicted using the emissions model, demonstrating the feasibility of the proposed approach to create a diffusion-controlled reference material. To calibrate emissions test chambers and improve the reproducibility of VOC emission measurements among different laboratories, a reference material has been created using a polymer film loaded with a representative VOC. Initial results show that the film's VOC emission profile measured in a conventional test chamber compares well to predictions based on independently determined material/chemical properties and a fundamental emissions model. The use of such reference materials has the potential to build consensus and confidence in emissions testing as well as 'level the playing field' for product testing laboratories and manufacturers.

  3. Certification of biological candidates reference materials by neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Kabanov, Denis V.; Nesterova, Yulia V.; Merkulov, Viktor G.

    2018-03-01

    The paper gives the results of interlaboratory certification of new biological candidate reference materials by neutron activation analysis recommended by the Institute of Nuclear Chemistry and Technology (Warsaw, Poland). The correctness and accuracy of the applied method was statistically estimated for the determination of trace elements in candidate reference materials. The procedure of irradiation in the reactor thermal fuel assembly without formation of fast neutrons was carried out. It excluded formation of interfering isotopes leading to false results. The concentration of more than 20 elements (e.g., Ba, Br, Ca, Co, Ce, Cr, Cs, Eu, Fe, Hf, La, Lu, Rb, Sb, Sc, Ta, Th, Tb, Yb, U, Zn) in candidate references of tobacco leaves and bottom sediment compared to certified reference materials were determined. It was shown that the average error of the applied method did not exceed 10%.

  4. Quality assurance and quality control in light stable isotope laboratories: A case study of Rio Grande, Texas, water samples

    USGS Publications Warehouse

    Coplen, T.B.; Qi, H.

    2009-01-01

    New isotope laboratories can achieve the goal of reporting the same isotopic composition within analytical uncertainty for the same material analysed decades apart by (1) writing their own acceptance testing procedures and putting them into their mass spectrometric or laser-based isotope-ratio equipment procurement contract, (2) requiring a manufacturer to demonstrate acceptable performance using all sample ports provided with the instrumentation, (3) for each medium to be analysed, prepare two local reference materials substantially different in isotopic composition to encompass the range in isotopic composition expected in the laboratory and calibrated them with isotopic reference materials available from the International Atomic Energy Agency (IAEA) or the US National Institute of Standards and Technology (NIST), (4) using the optimum storage containers (for water samples, sealing in glass ampoules that are sterilised after sealing is satisfactory), (5) interspersing among sample unknowns local laboratory isotopic reference materials daily (internationally distributed isotopic reference materials can be ordered at three-year intervals, and can be used for elemental analyser analyses and other analyses that consume less than 1 mg of material) - this process applies to H, C, N, O, and S isotope ratios, (6) calculating isotopic compositions of unknowns by normalising isotopic data to that of local reference materials, which have been calibrated to internationally distributed isotopic reference materials, (7) reporting results on scales normalised to internationally distributed isotopic reference materials (where they are available) and providing to sample submitters the isotopic compositions of internationally distributed isotopic reference materials of the same substance had they been analysed with unknowns, (8) providing an audit trail in the laboratory for analytical results - this trail commonly will be in electronic format and might include a laboratory information management system, (9) making at regular intervals a complete backup of laboratory analytical data (both of samples logged into the laboratory and of mass spectrometric analyses), being sure to store one copy of this backup offsite, and (10) participating in interlaboratory comparison exercises sponsored by the IAEA and other agencies at regular intervals. ?? Taylor & Francis.

  5. Prediction and verification of creep behavior in metallic materials and components, for the space shuttle thermal protection system. Volume 1, phase 1: Cyclic materials creep predictions

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1974-01-01

    Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.

  6. A Unified Model for Predicting the Open Hole Tensile and Compressive Strengths of Composite Laminates for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Davidson, Paul; Pineda, Evan J.; Heinrich, Christian; Waas, Anthony M.

    2013-01-01

    The open hole tensile and compressive strengths are important design parameters in qualifying fiber reinforced laminates for a wide variety of structural applications in the aerospace industry. In this paper, we present a unified model that can be used for predicting both these strengths (tensile and compressive) using the same set of coupon level, material property data. As a prelude to the unified computational model that follows, simplified approaches, referred to as "zeroth order", "first order", etc. with increasing levels of fidelity are first presented. The results and methods presented are practical and validated against experimental data. They serve as an introductory step in establishing a virtual building block, bottom-up approach to designing future airframe structures with composite materials. The results are useful for aerospace design engineers, particularly those that deal with airframe design.

  7. The Boeing 747 fatigue integrity program

    NASA Technical Reports Server (NTRS)

    Spencer, M. M.

    1972-01-01

    The fatigue integrity program which was established to insure economic operations and to provide foundation data for inspection and maintenance is discussed. Significant features of the 747 fatigue integrity program are: (1) fatigue analyses which are continually updated to reflect design changes, fatigue test results, and static and flight load survey measurements; (2) material selection and detail design by using initial fatigue analyses, service experience, and testing; and (3) fatigue testing to check detail design quality and to verify the analyses, culminated by the test of a structurally complete airframe. Fatigue stress analyses were performed with the aid of experimental as well as analytical procedures. Extensive application was made of the stress severity factor, developed at Boeing, for evaluating peak stresses in complex joints. A frame of reference was established by families of structural fatigue performance curves (S-N curves) encompassing the range of materials and fatigue qualities anticipated for the 747 airplane design.

  8. Development of Lentivirus-Based Reference Materials for Ebola Virus Nucleic Acid Amplification Technology-Based Assays.

    PubMed

    Mattiuzzo, Giada; Ashall, James; Doris, Kathryn S; MacLellan-Gibson, Kirsty; Nicolson, Carolyn; Wilkinson, Dianna E; Harvey, Ruth; Almond, Neil; Anderson, Robert; Efstathiou, Stacey; Minor, Philip D; Page, Mark

    2015-01-01

    The 2013-present Ebola virus outbreak in Western Africa has prompted the production of many diagnostic assays, mostly based on nucleic acid amplification technologies (NAT). The calibration and performance assessment of established assays and those under evaluation requires reference materials that can be used in parallel with the clinical sample to standardise or control for every step of the procedure, from extraction to the final qualitative/quantitative result. We have developed safe and stable Ebola virus RNA reference materials by encapsidating anti sense viral RNA into HIV-1-like particles. The lentiviral particles are replication-deficient and non-infectious due to the lack of HIV-1 genes and Envelope protein. Ebola virus genes were subcloned for encapsidation into two lentiviral preparations, one containing NP-VP35-GP and the other VP40 and L RNA. Each reference material was formulated as a high-titre standard for use as a calibrator for secondary or internal standards, and a 10,000-fold lower titre preparation to serve as an in-run control. The preparations have been freeze-dried to maximise stability. These HIV-Ebola virus RNA reference materials were suitable for use with in-house and commercial quantitative RT-PCR assays and with digital RT-PCR. The HIV-Ebola virus RNA reference materials are stable at up to 37°C for two weeks, allowing the shipment of the material worldwide at ambient temperature. These results support further evaluation of the HIV-Ebola virus RNA reference materials as part of an International collaborative study for the establishment of the 1st International Standard for Ebola virus RNA.

  9. Understanding Solidification Based Grain Refinement in Steels

    DTIC Science & Technology

    2014-12-18

    sulfide.^^"^^ Another approach would be to react a sample of misch metal or rare earth silicide at elevated temperatures to form the desired oxide or...dislocation can travel through a metal crystal before being blocked by a grain boundary. Since the dislocation is impeded sooner, the material cannot...in the melt; 3) be wetted by the liquid metal ; and 4) have a similar crystallographic structure to the host metal . Using reference data and

  10. USSR and Eastern Europe Scientific Abstracts, Physics and Mathematics, Number 40

    DTIC Science & Technology

    1978-01-25

    the meteorite material with cosmic muons , and due to instrument noise. This phenomenon is attributed to the presence of some spontaneously fissile...references 4: 2 Russian, 2 Western. USSR AN INSTRUMENT FOR VISUALIZING THE X- RAY TOPOGRAPHIC PATTERNS IN P-N STRUCTURES DURING THE FABRICATION PROCESS...Special Design and Engineering Office of Industrial Television [Abstract] The x- ray topographic method according to A. P. Lang or G. Borrman is

  11. Universal Zero Specular Reflection Curves for MetaMaterials

    DTIC Science & Technology

    2012-09-01

    with their handedness, RH or LH. r   5 According to Holloway [7], we find that metasurfaces (or metafilms) can be used in place of MTMs in many...applications. Metafilm refers to thin metamaterial that is only one unit-cell thick. “ Metasurfaces have the advantage of taking up less physical space...than do full three-dimensional MTM structures.” [7] Further studies were conducted on metasurface characterization, various applications, and how

  12. Thermal model for impact breccia lithification - Manicouagan and the moon

    NASA Technical Reports Server (NTRS)

    Simonds, C. H.; Warner, J. L.; Phinney, W. C.; Mcgee, P. E.

    1976-01-01

    The thermal model of Simonds (1975) is extended to the full spectrum of impact-produced rocks ranging from fragmental breccias to impact melts, with reference to the Manicouagan impact structure in Quebec. This is done by relating the basic textural features of impact-lithified rocks to variations in the mixture of superheated impact-fused material originating near the point of impact and much cooler fragmented debris originating farther from the point of impact.

  13. Fracture Characteristics of Structural Steels: Reference Manual

    DTIC Science & Technology

    1979-04-01

    materials were fractured undcr tensile, fatigue, and impact loading con- ditions. The effects of hydrogen embrittlement on the steels ’ behavior when...years after paint failure. The composition and the heat treatment of 4160 steel results in a steel extremely susceptible to stress corrosion cracking and...A35 Fracture Surface of Tensile Specimen No. 3 322 22 IL TABLES Number Page 1 Chemical Composition of Steels and Weld Metal 32 2 Welding Parameters 33

  14. Embrittlement and Flow Localization in Reactor Structural Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xianglin Wu; Xiao Pan; James Stubbins

    2006-10-06

    Many reactor components and structural members are made from metal alloys due, in large part, to their strength and ability to resist brittle fracture by plastic deformation. However, brittle fracture can occur when structural material cannot undergo extensive, or even limited, plastic deformation due to irradiation exposure. Certain irradiation conditions lead to the development of a damage microstructure where plastic flow is limited to very small volumes or regions of material, as opposed to the general plastic flow in unexposed materials. This process is referred to as flow localization or plastic instability. The true stress at the onset of neckingmore » is a constant regardless of the irradiation level. It is called 'critical stress' and this critical stress has strong temperature dependence. Interrupted tensile testes of 316L SS have been performed to investigate the microstructure evolution and competing mechanism between mechanic twinning and planar slip which are believed to be the controlling mechanism for flow localization. Deformation twinning is the major contribution of strain hardening and good ductility for low temperatures, and the activation of twinning system is determined by the critical twinning stress. Phases transform and texture analyses are also discussed in this study. Finite element analysis is carried out to complement the microstructural analysis and for the prediction of materaials performance with and without stress concentration and irradiation.« less

  15. In-situ Production of High Density Polyethylene and Other Useful Materials on Mars

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2005-01-01

    This paper describes a revolutionary materials structure and power storage concept based on the in-situ production of abiotic carbon 4 compounds. One of the largest single mass penalties required to support the human exploration of Mars is the surface habitat. This proposal will use physical chemical technologies to produce high density polyethylene (HDPE) inflatable structures and construction materials from Mars atmospheric CO2. The formation of polyethylene from Mars CO2 is based on the use of the Sabatier and modified Fischer Tropsch reactions. The proposed system will fully integrate with existing in-situ propellant production concepts. The technology will also be capable of supplementing human caloric requirements, providing solid and liquid fuels for energy storage, and providing significant reduction in mission risk. The NASA Mars Reference Mission Definition Team estimated that a conventional Mars surface habitat structure would weigh 10 tonnes. It is estimated that this technology could reduce this mass by 80%. This reduction in mass will significantly contribute to the reduction in total mission cost need to make a Mars mission a reality. In addition the potential reduction of risk provided by the ability to produce C4 and potentially higher carbon based materials in-situ on Mars is significant. Food, fuel, and shelter are only three of many requirements that would be impacted by this research.

  16. [Establishment of prescription research technology system in Chinese medicine secondary exploitation based on "component structure" theory].

    PubMed

    Cheng, Xu-Dong; Feng, Liang; Gu, Jun-Fei; Zhang, Ming-Hua; Jia, Xiao-Bin

    2014-11-01

    Chinese medicine prescriptions are the wisdom outcomes of traditional Chinese medicine (TCM) clinical treatment determinations which based on differentiation of symptoms and signs. Chinese medicine prescriptions are also the basis of secondary exploitation of TCM. The study on prescription helps to understand the material basis of its efficacy, pharmacological mechanism, which is an important guarantee for the modernization of traditional Chinese medicine. Currently, there is not yet dissertation n the method and technology system of basic research on the prescription of Chinese medicine. This paper focuses on how to build an effective system of prescription research technology. Based on "component structure" theory, a technology system contained four-step method that "prescription analysis, the material basis screening, the material basis of analysis and optimization and verify" was proposed. The technology system analyzes the material basis of the three levels such as Chinese medicine pieces, constituents and the compounds which could respect the overall efficacy of Chinese medicine. Ideas of prescription optimization, remodeling are introduced into the system. The technology system is the combination of the existing research and associates with new techniques and methods, which used for explore the research thought suitable for material basis research and prescription remodeling. The system provides a reference for the secondary development of traditional Chinese medicine, and industrial upgrading.

  17. Study of mould design and forming process on advanced polymer-matrix composite complex structure

    NASA Astrophysics Data System (ADS)

    Li, S. J.; Zhan, L. H.; Bai, H. M.; Chen, X. P.; Zhou, Y. Q.

    2015-07-01

    Advanced carbon fibre-reinforced polymer-matrix composites are widely applied to aviation manufacturing field due to their outstanding performance. In this paper, the mould design and forming process of the complex composite structure were discussed in detail using the hat stiffened structure as an example. The key issues of the moulddesign were analyzed, and the corresponding solutions were also presented. The crucial control points of the forming process such as the determination of materials and stacking sequence, the temperature and pressure route of the co-curing process were introduced. In order to guarantee the forming quality of the composite hat stiffened structure, a mathematical model about the aperture of rubber mandrel was introduced. The study presented in this paper may provide some actual references for the design and manufacture of the important complex composite structures.

  18. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess

    DOE PAGES

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; ...

    2015-02-10

    In this study, the design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memorymore » alloy to transcribe the "J-curve'' mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti 3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials.« less

  19. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess

    PubMed Central

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; Liu, Yinong; Hao, Shijie; Ren, Yang; Han, Xiaodong; Liu, Zhenyang; Wang, Yunzhi; Yu, Cun; Huan, Yong; Zhao, Xinqing; Zheng, Yanjun; Xu, Huibin; Ren, Xiaobing; Li, Xiaodong

    2015-01-01

    The design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memory alloy to transcribe the “J-curve” mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials. PMID:25665501

  20. A biopolymer-like metal enabled hybrid material with exceptional mechanical prowess.

    PubMed

    Zhang, Junsong; Cui, Lishan; Jiang, Daqiang; Liu, Yinong; Hao, Shijie; Ren, Yang; Han, Xiaodong; Liu, Zhenyang; Wang, Yunzhi; Yu, Cun; Huan, Yong; Zhao, Xinqing; Zheng, Yanjun; Xu, Huibin; Ren, Xiaobing; Li, Xiaodong

    2015-02-10

    The design principles for naturally occurring biological materials have inspired us to develop next-generation engineering materials with remarkable performance. Nacre, commonly referred to as nature's armor, is renowned for its unusual combination of strength and toughness. Nature's wisdom in nacre resides in its elaborate structural design and the judicious placement of a unique organic biopolymer with intelligent deformation features. However, up to now, it is still a challenge to transcribe the biopolymer's deformation attributes into a stronger substitute in the design of new materials. In this study, we propose a new design strategy that employs shape memory alloy to transcribe the "J-curve" mechanical response and uniform molecular/atomic level deformation of the organic biopolymer in the design of high-performance hybrid materials. This design strategy is verified in a TiNi-Ti3Sn model material system. The model material demonstrates an exceptional combination of mechanical properties that are superior to other high-performance metal-based lamellar composites known to date. Our design strategy creates new opportunities for the development of high-performance bio-inspired materials.

  1. Fast mix table construction for material discretization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, S. R.

    2013-07-01

    An effective hybrid Monte Carlo-deterministic implementation typically requires the approximation of a continuous geometry description with a discretized piecewise-constant material field. The inherent geometry discretization error can be reduced somewhat by using material mixing, where multiple materials inside a discrete mesh voxel are homogenized. Material mixing requires the construction of a 'mix table,' which stores the volume fractions in every mixture so that multiple voxels with similar compositions can reference the same mixture. Mix table construction is a potentially expensive serial operation for large problems with many materials and voxels. We formulate an efficient algorithm to construct a sparse mixmore » table in O(number of voxels x log number of mixtures) time. The new algorithm is implemented in ADVANTG and used to discretize continuous geometries onto a structured Cartesian grid. When applied to an end-of-life MCNP model of the High Flux Isotope Reactor with 270 distinct materials, the new method improves the material mixing time by a factor of 100 compared to a naive mix table implementation. (authors)« less

  2. Fast Mix Table Construction for Material Discretization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Seth R

    2013-01-01

    An effective hybrid Monte Carlo--deterministic implementation typically requires the approximation of a continuous geometry description with a discretized piecewise-constant material field. The inherent geometry discretization error can be reduced somewhat by using material mixing, where multiple materials inside a discrete mesh voxel are homogenized. Material mixing requires the construction of a ``mix table,'' which stores the volume fractions in every mixture so that multiple voxels with similar compositions can reference the same mixture. Mix table construction is a potentially expensive serial operation for large problems with many materials and voxels. We formulate an efficient algorithm to construct a sparse mix table inmore » $$O(\\text{number of voxels}\\times \\log \\text{number of mixtures})$$ time. The new algorithm is implemented in ADVANTG and used to discretize continuous geometries onto a structured Cartesian grid. When applied to an end-of-life MCNP model of the High Flux Isotope Reactor with 270 distinct materials, the new method improves the material mixing time by a factor of 100 compared to a naive mix table implementation.« less

  3. Development, preparation, and characterization of high-performance superconducting materials for space applications

    NASA Technical Reports Server (NTRS)

    Thorpe, Arthur N.; Barkatt, Aaron

    1991-01-01

    The preparation of high-temperature superconducting ceramics in bulk form is a major challenge in materials science. The current status of both partial melting and melt quenching techniques, with or without an intermediate powder processing stage, is described in detail, and the problems associated with each of the methods are discussed. Results of studies performed on melt-processed materials are reported and discussed. The discussion places emphasis on magnetization and on other physical properties associated with it, such as critical current density, levitation force, and flux creep. The nature of structural features which give rise to flux pinning, including both small and large defects, is discussed with reference to theoretical considerations. The rates of flux creep and the factors involved in attempting to retard the decay of the magnetization are surveyed.

  4. [Nursing teaching in middle level of a technical course: the use of a facilitator strategy with recyclable material].

    PubMed

    Tobase, Lucia; Takahashi, Regina Toshie

    2004-06-01

    The objective of this study was developing facilitator strategies in the teaching and learning process, using recyclable materials in the medical-surgical nursing discipline for 31 students in a middle level course on the formation of nursing assistants. After studying bibliographical references related to Anatomy, Physiology and most common Pathologies in the several systems of the human body, the students selected the disposable recyclable materials for the confection of the main anatomical structures, which made it possible the visualization of the morphologic alterations, facilitating the understanding of the clinic-surgical diseases. The use of these strategies enabled the acquisition of knowledge when they projected in something concrete, result of the exchange of suggestions and experiences among the students, favored by group work.

  5. Certification of caffeine reference material purity by ultraviolet/visible spectrophotometry and high-performance liquid chromatography with diode-array detection as two independent analytical methods.

    PubMed

    Shehata, A B; Rizk, M S; Rend, E A

    2016-10-01

    Caffeine reference material certified for purity is produced worldwide, but no research work on the details of the certification process has been published in the literature. In this paper, we report the scientific details of the preparation and certification of pure caffeine reference materials. Caffeine was prepared by extraction from roasted and ground coffee by dichloromethane after heating in deionized water mixed with magnesium oxide. The extract was purified, dried, and bottled in dark glass vials. Stratified random selection was applied to select a number of vials for homogeneity and stability studies, which revealed that the prepared reference material is homogeneous and sufficiently stable. Quantification of caffeine purity % was carried out using a calibrated UV/visible spectrophotometer and a calibrated high-performance liquid chromatography with diode-array detection method. The results obtained from both methods were combined to drive the certified value and its associated uncertainty. The certified value of the reference material purity was found to be 99.86% and its associated uncertainty was ±0.65%, which makes the candidate reference material a very useful calibrant in food and drug chemical analysis. Copyright © 2016. Published by Elsevier B.V.

  6. [Printed material distributed by pharmaceutical propaganda agents].

    PubMed

    Mejía, R; Avalos, A

    2001-01-01

    Pharmaceutical sales representatives (drug reps) frequently visit 70% to 90% of physicians during their daily clinical practice and many consider the promotional printed material to be a major source of clinical information. We evaluated samples of the promotional printed material distributed to physicians by drug reps in order to determine whether the data contained in the promotional material is correct and supported by references accessible in Argentina. A consecutive sample of all the promotional material distributed by drug reps in the general internal medicine program (Hospital de Clínicas) was collected between March 15 and April 15, 2000. Reprints and monographs were excluded. Clinical information was reviewed by two general internists and compared to information in a major pharmacology textbook and in an electronic medical information program. References cited were reviewed for correct listing and accessibility in any of the four major medical libraries in Buenos Aires. Of the sixty-four pieces of promotional material collected, thirty were randomly selected and evaluated. In twenty one (70%) the therapeutic effect promoted in advertisement appeared in Goodman & Gilman's 9th edition textbook of pharmacology, in the pharmacology section of the Up-to-Date version 8.1 or in both. Only eighteen (60%) of the thirty promotional printed material evaluated had statements supported by cited references. From a total of 131 references cited in promotional materials, sixty (46%) were incorrectly listed according to the International Committee of Medical Journal Editors. These references were inaccessible. Of the 71 references correctly cited, 49 (69%) were not available in any of the four major medical libraries in Buenos Aires and 8 were available in only two of the libraries. Twenty-two references were reviewed, and in twelve of these (54%), the objective of the research study concurred with the statement of the promotional printed material. Adverse reactions, warnings about drug interactions and contraindications were absent from all promotional printed material. It can be concluded that the promotional printed material distributed by the drug reps in Buenos Aires are biased and provide misinformation more often than not. We recommend that practicing physicians routinely disregard promotional printed material as a source of clinical information.

  7. Real-time sonoelastography using an external reference material: test-retest reliability of healthy Achilles tendons.

    PubMed

    Schneebeli, Alessandro; Del Grande, Filippo; Vincenzo, Gabriele; Cescon, Corrado; Clijsen, Ron; Biordi, Fulvio; Barbero, Marco

    2016-08-01

    To establish the test-retest reliability of sonoelastography (SE) on healthy Achilles tendons in contracted and relaxed states using an external reference system. Forty-eight Achilles tendons from 24 healthy volunteers were assessed using ultrasound and real-time SE with an external reference material. Tendons were analyzed under relaxed and contracted conditions. Strain ratios between the tendons and the reference material were calculated. The intraclass correlation coefficient (ICC2.k) and Bland-Altman plot were used to assess test-retest reliability. The reliability of SE measurements under relaxed conditions ranged from high to very high, with an ICC2.k of 0.84 (95 % CI: 0.64-0.92) for reference material, 0.91 (95 % CI: 0.83-0.95) for Achilles tendons and 0.95 (95 % CI: 0.91-0.97) for Kager fat pads (KFP). The ICC2.k value for skin was 0.30 (95 % CI: -0.26 to 0.61). Reliability for measurements in the contracted state ranged from high to very high, with an ICC2.k of 0.93 (95 % CI: 0.87-0.96) for reference material, 0.72 (95 % CI: 0.50-0.84) for skin, 0.93 (95 % CI: 0.87-0.96) for Achilles tendons, and 0.81 (95 % CI: 0.66-0.89) for KFP. Reliability of the strain ratio (tendon/reference) under relaxed conditions was high with an ICC2.k of 0.87 (95 % CI: 0.75-0.93), and in the contracted state, it was very high with an ICC2.k of 0.94 (95 % CI: 0.90-0.97). Sonoelastography using an external reference material is a reliable and simple technique for the assessment of the elasticity of healthy Achilles tendons. The use of an external material as a reference, along with strain ratios, could provide a quantitative measure of elasticity.

  8. 40 CFR 94.5 - Reference materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .../code_of_federal_regulations/ibr_locations.html. (a) ASTM material. Table 1 of § 94.5 lists material... of § 94.5—ASTM Materials Document No. and name Part 94 reference ASTM D 86-01, Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure 94.108 ASTM D 93-02, Standard Test...

  9. 10 CFR 431.443 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the date of the approval and a notice of any change in the material will be published in the Federal... 10 Energy 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 431.443 Section 431... AND INDUSTRIAL EQUIPMENT Small Electric Motors Test Procedures § 431.443 Materials incorporated by...

  10. STANDARD REFERENCE MATERIALS FOR THE POLYMERS INDUSTRY.

    PubMed

    McDonough, Walter G; Orski, Sara V; Guttman, Charles M; Migler, Kalman D; Beers, Kathryn L

    2016-01-01

    The National Institute of Standards and Technology (NIST) provides science, industry, and government with a central source of well-characterized materials certified for chemical composition or for some chemical or physical property. These materials are designated Standard Reference Materials ® (SRMs) and are used to calibrate measuring instruments, to evaluate methods and systems, or to produce scientific data that can be referred readily to a common base. In this paper, we discuss the history of polymer based SRMs, their current status, and challenges and opportunities to develop new standards to address industrial measurement challenges.

  11. Transportation research synthesis : ADA compliance reference and training materials.

    DOT National Transportation Integrated Search

    2010-03-01

    Our findings are presented in three categories: Reference Materials, Training Materials and State DOT Current : Practices. Appendix A to this report contains an updated list of ADA contacts for all 50 states and the District of : Columbia, and Append...

  12. Carroll County Competency Based Teacher Certification Project. Librarian's Report.

    ERIC Educational Resources Information Center

    Coker, Homer; Coker, Joan G.

    Reference materials, slides, cassettes, books, pamphlets, materials from other states, and articles used in the Carroll County, Georgia, Competency Based Teacher Certification Project, 1973-74, are listed. Brief annotations are included for both the reference materials and articles. (MJM)

  13. Polyfluorinated substances in abiotic standard reference materials

    EPA Science Inventory

    The National Institute of Standards and Technology (NIST) has a wide range of Standard Reference Materials (SRMs) which have values assigned for legacy organic pollutants and toxic elements. Existing SRMs serve as homogenous materials that can be used for method development, meth...

  14. Achieving Excellence in Library Instruction.

    ERIC Educational Resources Information Center

    Gilbert, Betty; And Others

    The materials included in this document supporting library instruction are divided into two chapters. The first chapter contains bibliographies of instructional materials, professional periodicals, general reference tools, and religious reference tools. Throughout the bibliographies, the approximate cost of the materials is indicated by dollar…

  15. Highly Conducting Molecular Crystals.

    NASA Astrophysics Data System (ADS)

    Whitehead, Roger James

    Available from UMI in association with The British Library. Requires signed TDF. As the result of a wide ranging effort towards the preparation of new electrically conducting molecular crystals, high quality samples were prepared of the organic radical-ion salt (TMTSF)_2SbCl _2F_4 {bis-tetramethyltetraselenafulvalene-dichlorotetrafluoroantimonate(V) }. A collaborative effort to investigate the electronic and structural properties of this material has yielded the necessary depth of information required to give a satisfactory understanding of its rather complicated behaviour. The combination of x-ray structural studies with d.c. transport, reflectance and magnetic measurements has served to underline the importance of crystalline perfection, electronic dimensionality and conduction electron correlation in determining the materials overall behaviour. This thesis describes the method of preparation and characterization of (TMTSF)_2SbCl _2F_4 and the experimental arrangements used to determine the temperature dependence of its ambient pressure electrical conductivity, thermopower and electron spin resonance spectra. The crystal structure and optical reflectance measurements at room temperature are also presented. The results into a study of the low temperature diffraction pattern are described along with the temperature dependence in the static magnetic susceptibility and in the conductivity behaviour under elevated hydrostatic pressures. These findings are rationalized by reference to other materials which show similar behaviour in their electronic and/or structural properties, and also to the various theoretical models currently enjoying favour.

  16. Structural Technology and Analysis Program (STAP) Delivery Order 0004: Durability Patch

    NASA Astrophysics Data System (ADS)

    Ikegami, Roy; Haugse, Eric; Trego, Angela; Rogers, Lynn; Maly, Joe

    2001-06-01

    Structural cracks in secondary structure, resulting from a high cycle fatigue (HCF) environment, are often referred to as nuisance cracks. This type of damage can result in costly inspections and repair. The repairs often do not last long because the repaired structure continues to respond in a resonant fashion to the environment. Although the use of materials for passive damping applications is well understood, there are few applications to high-cycle fatigue problems. This is because design information characterization temperature, resonant response frequency and strain levels are difficult to determine. The Durability Patch and Damage Dosimeter Program addressed these problems by: (1) Developing a damped repair design process which includes a methodology for designing the material and application characteristics required to optimally damp the repair. (2) Designing and developing a rugged, small, and lightweight data acquisition unit called the damage dosimeter. This is a battery operated, single board computer, capable of collecting three channels of strain and one channel of temperature, processing this data by user developed algorithms written in the C programming language, and storing the processed data in resident memory. The dosimeter is used to provide flight data needed to characterize the vibration environment. The vibration environment is then used to design the damping material characteristics and repair. The repair design methodology and dosimeter were demonstrated on B-52, C-130, and F-15 aircraft applications.

  17. Method for crystal growth control

    DOEpatents

    Yates, Douglas A.; Hatch, Arthur E.; Goldsmith, Jeff M.

    1981-01-01

    The growth of a crystalline body of a selected material is controlled so that the body has a selected cross-sectional shape. The apparatus is of the type which includes the structure normally employed in known capillary die devices as well as means for observing at least the portion of the surfaces of the growing crystalline body and the meniscus (of melt material from which the body is being pulled) including the solid/liquid/vapor junction in a direction substantially perpendicular to the meniscus surface formed at the junction when the growth of the crystalline body is under steady state conditions. The cross-sectional size of the growing crystalline body can be controlled by determining which points exhibit a sharp change in the amount of reflected radiation of a preselected wavelength and controlling the speed at which the body is being pulled or the temperature of the growth pool of melt so as to maintain those points exhibiting a sharp change at a preselected spatial position relative to a predetermined reference position. The improvement comprises reference object means positioned near the solid/liquid/vapor junction and capable of being observed by the means for observing so as to define said reference position so that the problems associated with convection current jitter are overcome.

  18. The characterization and certification of a quantitative reference material for Legionella detection and quantification by qPCR.

    PubMed

    Baume, M; Garrelly, L; Facon, J P; Bouton, S; Fraisse, P O; Yardin, C; Reyrolle, M; Jarraud, S

    2013-06-01

    The characterization and certification of a Legionella DNA quantitative reference material as a primary measurement standard for Legionella qPCR. Twelve laboratories participated in a collaborative certification campaign. A candidate reference DNA material was analysed through PCR-based limiting dilution assays (LDAs). The validated data were used to statistically assign both a reference value and an associated uncertainty to the reference material. This LDA method allowed for the direct quantification of the amount of Legionella DNA per tube in genomic units (GU) and the determination of the associated uncertainties. This method could be used for the certification of all types of microbiological standards for qPCR. The use of this primary standard will improve the accuracy of Legionella qPCR measurements and the overall consistency of these measurements among different laboratories. The extensive use of this certified reference material (CRM) has been integrated in the French standard NF T90-471 (April 2010) and in the ISO Technical Specification 12 869 (Anon 2012 International Standardisation Organisation) for validating qPCR methods and ensuring the reliability of these methods. © 2013 The Society for Applied Microbiology.

  19. USGS reference materials

    USGS Publications Warehouse

    ,

    1995-01-01

    Every year in the United States, millions of measurements are made on the chemical composition of items that affect us on a daily basis. Determining the accuracy of these measurements is based on the analysis of appropriate reference materials whose composition was previously determined through rigorous testing. Today, reference materials help us evaluate the composition of the food we eat, medicine we use, soil we grow our crops in, and hundreds of other products that affect our everyday lives.

  20. Development of tritium permeation barriers on Al base in Europe

    NASA Astrophysics Data System (ADS)

    Benamati, G.; Chabrol, C.; Perujo, A.; Rigal, E.; Glasbrenner, H.

    The development of the water cooled lithium lead (WCLL) DEMO fusion reactor requires the production of a material capable of acting as a tritium permeation barrier (TPB). In the DEMO blanket reactor permeation barriers on the structural material are required to reduce the tritium permeation from the Pb-17Li or the plasma into the cooling water to acceptable levels (<1 g/d). Because of experimental work previously performed, one of the most promising TPB candidates is A1 base coatings. Within the EU a large R&D programme is in progress to develop a TPB fabrication technique, compatible with the structural materials requirements and capable of producing coatings with acceptable performances. The research is focused on chemical vapour deposition (CVD), hot dipping, hot isostatic pressing (HIP) technology and spray (this one developed also for repair) deposition techniques. The final goal is to select a reference technique to be used in the blanket of the DEMO reactor and in the ITER test module fabrication. The activities performed in four European laboratories are summarised here.

  1. Experimental and quantum chemical studies of a new organic proton transfer compound, 1H-imidazole-3-ium-3-hydroxy-2,4,6-trinitrophenolate

    NASA Astrophysics Data System (ADS)

    Dhamodharan, P.; Sathya, K.; Dhandapani, M.

    2018-02-01

    A new proton transfer compound, 1H-imidazole-3-ium-3-hydroxy-2,4,6-trinitrophenolate (IMHTP), was crystallized by slow evaporation-solution growth technique. 1H and 13C NMR spectral studies confirm the molecular structure of the grown crystal. Single crystal X-ray diffraction study confirms that IMHTP crystallizes in monoclinic system with space group P21/c. Thermal curves (TG/DTA) show that the material is thermally stable up to 198 °C. The crystal emits fluorescence at 510 nm, proving its utility in making green light emitting materials in optical applications. The stable molecular structure was optimized by Gaussian 09 program with B3LYP/6-311++G(d,p) level of basis set. The frontier molecular orbital study shows that the charge transfer interaction occurs within the complex. The calculated first-order hyperpolarizability value of IMHTP is 44 times higher than that the reference material, urea. The electrostatic potential map was used to probe into electrophilic and nucleophilic reactive sites present in the molecule.

  2. Towards Lead-Free Piezoceramics: Facing a Synthesis Challenge

    PubMed Central

    Villafuerte-Castrejón, María Elena; Morán, Emilio; Reyes-Montero, Armando; Vivar-Ocampo, Rodrigo; Peña-Jiménez, Jesús-Alejandro; Rea-López, Salvador-Oliver; Pardo, Lorena

    2016-01-01

    The search for electroceramic materials with enhanced ferro-pyro-piezoelectric properties and revealing the perovskite type structure has been the objective of a significant number of manuscripts reported in the literature. This has been usually carried out by proposing the synthesis and processing of new compounds and solid solution series. In this work, several methods to obtain ferro-pyro-piezoelectric families of materials featuring the well-known ABO3 perovskite structure (or related) such as BaTiO3, Ba1–xCaxTi1–yZryO3, (Bi0.5Na0.5)TiO3, (K0.5Na0.5)NbO3 and their solid solutions with different cations either in the A or B positions, are presented. For this kind of materials, the challenge for obtaining a single phase compound with a specific grain size and morphology and, most importantly, with the adequate stoichiometry, will also be discussed. The results reviewed herein will be discussed in terms of the tendency of working with softer conditions, i.e., lower temperature and shorter reaction times, also referred to as soft-chemistry. PMID:28787822

  3. Encyclopedia of Smart Materials, 2 Volume Set

    NASA Astrophysics Data System (ADS)

    Schwartz, Mel

    2002-03-01

    Smart materials--materials and structures that can impart information about their environment to an observer or monitoring device--are revolutionizing fields as diverse as engineering, optics, and medical technology. Advances in smart materials are impacting disciplines across the scientific and technological landscape. Now, practictioners and researchers have an authoritative source to go to for answers about this emerging new area. Encyclopedia of Smart Materials provides A-to-Z coverage of the entire field of intelligent materials. Discussions of theory, fabrication, processing, applications, and uses of these unique materials are presented here in a collection of concise entries from the world's foremost experts in the field--including scientists, educators and engineers. This encyclopedia is as broad in scope as the technology itself, addressing daily, commercial applications as well as sophisticated units designed to operate in space, underwater, underground, and within the human body. Extensively cross-referenced and generously supplemented with bibliographies and indexes, this book's treatment also broaches the specialized properties and coatings that are required for the use of materials in extreme conditions. Illustrated with photographs, tables, line drawings, and equations, Encyclopedia of Smart Materials is the premier reference for material scientists, chemists, chemical engineers, process engineers, consultants, patent attorneys and students in these areas. An essential resource on the shelves of laboratories, government facilities, and academic libraries. Editor-in-Chief, Mel Schwartz has over forty years of experience with metals, ceramics, and composites, with special expertise in brazing. The holder of five patents, he has authored thirteen books and more than one hundred technical papers and articles. Reach the information you need rapidly and easily with the ONLINE edition of the Encyclopedia of Smart Materials. The online edition delivers all the rich content of the print edition with the added benefits of an advanced search engine and the desktop convenience of web access. For more information or to license the online edition (beginning July 2002) please visit: www.interscience.wiley.com/reference/esm

  4. Determination of Perfluorinated Alkyl Acid Concentrations in Biological Standard Reference Materials

    EPA Science Inventory

    Standard reference materials (SRMs) are homogeneous, well-characterized materials used to validate measurements and improve the quality of analytical data. The National Institute of Standards and Technology (NIST) has a wide range of SRMs that have mass fraction values assigned ...

  5. Building Trades. Block VIII. Interior Trim.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This curriculum for interior trim provides instructional materials for 18 informational and manipulative lessons. A list of 11 references precedes the course materials. The instructor's plan for each informational lesson begins by providing this information: subject, aim, required teaching aids, required materials, references, and prerequisite…

  6. 40 CFR 1048.810 - What materials does this part reference?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....org. Table 1 follows: Table 1 of § 1048.810—SAE Materials Document number and name Part 1048reference..., Switzerland or http://www.iso.org. Table 2 follows: Table 2 of § 1048.810—ISO Materials Document number and...

  7. 14 CFR 171.71 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Headquarters. An historical file of these materials is maintained at Headquarters, Federal Aviation... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Materials incorporated by reference. 171.71 Section 171.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  8. 14 CFR 171.71 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Headquarters. An historical file of these materials is maintained at Headquarters, Federal Aviation... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Materials incorporated by reference. 171.71 Section 171.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  9. 14 CFR 171.71 - Materials incorporated by reference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Headquarters. An historical file of these materials is maintained at Headquarters, Federal Aviation... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Materials incorporated by reference. 171.71 Section 171.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  10. 14 CFR 171.71 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Headquarters. An historical file of these materials is maintained at Headquarters, Federal Aviation... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Materials incorporated by reference. 171.71 Section 171.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  11. 14 CFR 171.71 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Headquarters. An historical file of these materials is maintained at Headquarters, Federal Aviation... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Materials incorporated by reference. 171.71 Section 171.71 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION...

  12. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOEpatents

    Langlois, Gary N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  13. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOEpatents

    Langlois, G.N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are disclosed. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material. 6 figs.

  14. Preparation of canine C-reactive protein serum reference material: A feasibility study.

    PubMed

    Canalias, Francesca; Piñeiro, Matilde; Pato, Raquel; Peña, Raquel; Bosch, Lluís; Soler, Lourdes; García, Natalia; Lampreave, Fermín; Saco, Yolanda; Bassols, Anna

    2018-03-01

    The availability of a species-specific reference material is essential for the harmonization of results obtained in different laboratories by different methods. We describe the preparation of a canine C-reactive protein (cCRP) serum reference material containing purified cCRP stabilized in a serum matrix. The material can be used by manufacturers to assign values to their calibrator and control materials. The serum matrix was obtained using blood collected from healthy dogs, stabilized and submitted for a delipidation process. The reference material was prepared by diluting purified cCRP in the serum matrix containing 1.0 mol/L HEPES buffer, 3.0 mmol/L calcium chloride, 80,000 kUI/L aprotinin, and 1.0 mmol/L benzamidine hydrochloride monohydrate at a pH of 7.2, and dispensing (0.5 mL) the matrix into vials that were then frozen. The pilot batch of 200 vials was shown to be homogeneous and stable after a stability study at various temperatures and over a total time of 110 days. The prepared material was submitted to an assignment value study. Eight laboratories from different European countries participated by using the same reagents for an immunoturbidimetric method adapted for different analyzers. The obtained cCRP concentration in the reference material was 78.5 mg/L with an expanded uncertainty (k = 2) of 4.2 mg/L. Canine C-reactive protein serum reference material has been produced that allows harmonization of results obtained by different methods and different laboratories, thus reducing the possibility of errors and misunderstandings. © 2018 American Society for Veterinary Clinical Pathology.

  15. Critical conditions for particle motion in coarse bed materials of nonuniform size distribution

    NASA Astrophysics Data System (ADS)

    Bathurst, James C.

    2013-09-01

    Initiation of particle motion in a bed material of nonuniform size distribution may be quantified by (qci/qcr) = (Di/Dr)b, where qci is the critical unit discharge at which particle size Di enters motion, qcr is the critical condition for a reference size Dr unaffected by the hiding/exposure effects associated with nonuniform size distributions, i and r refer to percentiles of the distribution and b varies from 0 (equal mobility in entrainment of all particle sizes) to 1.5-2.5 (full size selective transport). Currently there is no generally accepted method for predicting the value of b. Flume and field data are therefore combined to investigate the above relationship. Thirty-seven sets of flume data quantify the relationship between critical unit discharge and particle size for bed materials with uniform size distributions (used here to approximate full size selective transport). Field data quantify the relationship for bed materials of nonuniform size distribution at 24 sites, with b ranging from 0.15 to 1.3. Intersection of the two relationships clearly demonstrates the hiding/exposure effect; in some but not all cases, Dr is close to the median size D50. The exponent has two clusters of values: b > 1 for sites subject to episodic rain-fed floods and data collected by bedload pit trap and tracers; and b < 0.7 for sites with seasonal snowmelt/glacial melt flow regimes and data collected by bedload sampler and large aperture trap. Field technique appears unlikely to cause variations in b of more than about 0.25. However, the clustering is consistent with possible variations in bed structure distinguishing: for b > 1, sites with relatively infrequent bedload transport where particle embedding and consolidation could reduce the mobility of coarser particles; and, for b < 0.7, a looser bed structure with frequent transport events allowing hiding/exposure and size selection effects to achieve their balance. As yet there is no firm evidence for such a dependency on bed structure but variations in b could potentially be caused by factors outside those determining equal mobility or size selection but appearing to affect b in the same way.

  16. Bibliography for the Hospitality Industry.

    ERIC Educational Resources Information Center

    Nelson, Elizabeth A.

    This annotated bibliography is a sample collection of reference materials in the hospitality industry suitable for a small academic library. It is assumed that the library has a general reference collection. Publication dates range from 1992-96, with two publication dates in the 1980s. No periodicals are included. The 41 reference materials are…

  17. 49 CFR 511.53 - Appeal from initial decision.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... position taken on each question, with specific page references to the record and legal or other material... matters in the brief, with page references, and a table of cases (alphabetically arranged), textbooks, statutes, and other material cited, with page references thereto; (2) A concise statement of the case; (3...

  18. 49 CFR 511.53 - Appeal from initial decision.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... position taken on each question, with specific page references to the record and legal or other material... matters in the brief, with page references, and a table of cases (alphabetically arranged), textbooks, statutes, and other material cited, with page references thereto; (2) A concise statement of the case; (3...

  19. 49 CFR 511.53 - Appeal from initial decision.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... position taken on each question, with specific page references to the record and legal or other material... matters in the brief, with page references, and a table of cases (alphabetically arranged), textbooks, statutes, and other material cited, with page references thereto; (2) A concise statement of the case; (3...

  20. 40 CFR 91.6 - Reference materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES General § 91.6 Reference materials. (a) Incorporation by... the Research Method Appendix A to Subpart D. ASTM D2700-92: Standard Test Method for Knock... 40 CFR part 91 reference SAE J1228/ISO 8665 November 1991 Small Craft-Marine Propulsion Engine and...

  1. 40 CFR 91.6 - Reference materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES General § 91.6 Reference materials. (a) Incorporation by... the Research Method Appendix A to Subpart D. ASTM D2700-92: Standard Test Method for Knock... 40 CFR part 91 reference SAE J1228/ISO 8665 November 1991 Small Craft-Marine Propulsion Engine and...

  2. 40 CFR 91.6 - Reference materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EMISSIONS FROM MARINE SPARK-IGNITION ENGINES General § 91.6 Reference materials. (a) Incorporation by... the Research Method Appendix A to Subpart D. ASTM D2700-92: Standard Test Method for Knock... 40 CFR part 91 reference SAE J1228/ISO 8665 November 1991 Small Craft-Marine Propulsion Engine and...

  3. Certification of elements in and use of standard reference material 3280 multivitamin/multielement tablets

    USDA-ARS?s Scientific Manuscript database

    Standard Reference Material (SRM) 3280 Multivitamin/Multielement Tablets was issued by the National Institute of Standards and Technology (NIST) in 2009 and has certified and reference mass fraction values for 13 vitamins, 26 elements, and 2 carotenoids. Elements were measured using two or more ana...

  4. Teaching about Asia: Professional Materials and Reference Books.

    ERIC Educational Resources Information Center

    Hantula, James N.

    This two-part document serves as a guide to basic materials on Asia. The first part provides the teacher of Asian studies with nonserial examples of pertinent professional materials and reference books in print since 1979. Criteria used in selecting the items are given and a brief comparison between materials available in 1969 and 1985 is made.…

  5. 40 CFR 1060.810 - What materials does this part reference?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (a) ASTM material. Table 1 to this section lists material from the American Society for Testing and..., West Conshohocken, PA 19428 or http://www.astm.com. Table 1 follows: Table 1 to § 1060.810—ASTM Materials Document number and name Part 1060reference ASTM D471-06, Standard Test Method for Rubber Property...

  6. Structural and functional biological materials: Abalone nacre, sharp materials, and abalone foot adhesion

    NASA Astrophysics Data System (ADS)

    Lin, Albert Yu-Min

    A three-part study of lessons from nature is presented through the examination of various biological materials, with an emphasis on materials from the mollusk Haliotis rufescens, commonly referred to as the red abalone. The three categories presented are: structural hierarchy, self-assembly, and functionality. Ocean mollusk shells are composed of aragonite/calcite crystals interleaved with layers of a visco-elastic protein, having dense, tailored structures with excellent mechanical properties. The complex nano-laminate structure of this bio-composite material is characterized and related to its mechanical properties. Three levels of structural hierarchy are identified: macroscale mesolayers separating larger regions of tiled aragonite, microscale organization of 0.5 mum by 10 mum aragonite bricks; nanoscale mineral bridges passing through 30 nm layers of organic matrix separating individual aragonite tiles. Composition and growth mechanisms of this nanostructure were observed through close examination of laboratory-grown samples using scanning electron microscopy (SEM), Raman spectroscopy, and transmission electron microscopy (TEM). Glass slides and nacre pucks were implanted onto the growth surface of living abalone and removed periodically to observe trends in nacre deposition. Various deproteinization and demineralization experiments are used to explore the inorganic and organic components of the nacre's structure. The organic component of the shell is characterized by atomic force microscopy (AFM). The functionality of various biological materials is described and investigated. Two specific types of functionality are characterized, the ability of some materials to cut and puncture through sharp designs, and the ability for some materials to be used as attachment devices. Aspects of cutting materials employed by a broad range of animals were characterized and compared. In respect to the attachment mechanisms the foot of the abalone and the tree frog were investigated. It is discovered that the foot of the abalone applies similar mechanics as that of the gecko foot to adhere to surfaces. Approximately 1011 100 nm diameter fibers found at the base of the foot pedal are found to create Van der Waals interactions along with capillary and suction mechanisms to enable attachment. This reusable adhesive is found to exhibit strength of ˜0.14 MPa. This represents an evolutionary convergence of design from two independent species (the gecko and the abalone) living in extremely dissimilar environments. The presented work provides a summary of an effort to investigate materials found in nature with the hope of inspiring novel technological advances in design.

  7. Spatio-structural granularity of biological material entities

    PubMed Central

    2010-01-01

    Background With the continuously increasing demands on knowledge- and data-management that databases have to meet, ontologies and the theories of granularity they use become more and more important. Unfortunately, currently used theories and schemes of granularity unnecessarily limit the performance of ontologies due to two shortcomings: (i) they do not allow the integration of multiple granularity perspectives into one granularity framework; (ii) they are not applicable to cumulative-constitutively organized material entities, which cover most of the biomedical material entities. Results The above mentioned shortcomings are responsible for the major inconsistencies in currently used spatio-structural granularity schemes. By using the Basic Formal Ontology (BFO) as a top-level ontology and Keet's general theory of granularity, a granularity framework is presented that is applicable to cumulative-constitutively organized material entities. It provides a scheme for granulating complex material entities into their constitutive and regional parts by integrating various compositional and spatial granularity perspectives. Within a scale dependent resolution perspective, it even allows distinguishing different types of representations of the same material entity. Within other scale dependent perspectives, which are based on specific types of measurements (e.g. weight, volume, etc.), the possibility of organizing instances of material entities independent of their parthood relations and only according to increasing measures is provided as well. All granularity perspectives are connected to one another through overcrossing granularity levels, together forming an integrated whole that uses the compositional object perspective as an integrating backbone. This granularity framework allows to consistently assign structural granularity values to all different types of material entities. Conclusions The here presented framework provides a spatio-structural granularity framework for all domain reference ontologies that model cumulative-constitutively organized material entities. With its multi-perspectives approach it allows querying an ontology stored in a database at one's own desired different levels of detail: The contents of a database can be organized according to diverse granularity perspectives, which in their turn provide different views on its content (i.e. data, knowledge), each organized into different levels of detail. PMID:20509878

  8. Surgical treatment of dacryocystitis caused by cystic dilatation of the nasolacrimal system in three dogs.

    PubMed

    van der Woerdt, A; Wilkie, D A; Gilger, B C; Smeak, D D; Kerpsack, S J

    1997-08-15

    A 4-year-old castrated male Golden Retriever was referred for evaluation of intermittent purulent discharge from the right eye of 4-months' duration. A radiolucent area in the maxillary bone was detected on examination of skull radiographs. Dacryocystorhinography revealed pooling of contrast material in the radiolucent area. A rhinotomy was performed, and a large opening between the cystic structure of the nasolacrimal system and the nasal cavity was created. Epiphora resolved after surgery and had not recurred by 9 months after surgery. Two other dogs had cystic structures of the nasolacrimal system and were treated surgically to allow drainage into the nasal cavity.

  9. Assessment and selection of materials for ITER in-vessel components

    NASA Astrophysics Data System (ADS)

    Kalinin, G.; Barabash, V.; Cardella, A.; Dietz, J.; Ioki, K.; Matera, R.; Santoro, R. T.; Tivey, R.; ITER Home Teams

    2000-12-01

    During the international thermonuclear experimental reactor (ITER) engineering design activities (EDA) significant progress has been made in the selection of materials for the in-vessel components of the reactor. This progress is a result of the worldwide collaboration of material scientists and industries which focused their effort on the optimisation of material and component manufacturing and on the investigation of the most critical material properties. Austenitic stainless steels 316L(N)-IG and 316L, nickel-based alloys Inconel 718 and Inconel 625, Ti-6Al-4V alloy and two copper alloys, CuCrZr-IG and CuAl25-IG, have been proposed as reference structural materials, and ferritic steel 430, and austenitic steel 304B7 with the addition of boron have been selected for some specific parts of the ITER in-vessel components. Beryllium, tungsten and carbon fibre composites are considered as plasma facing armour materials. The data base on the properties of all these materials is critically assessed and briefly reviewed in this paper together with the justification of the material selection (e.g., effect of neutron irradiation on the mechanical properties of materials, effect of manufacturing cycle, etc.).

  10. Dosimetry and image quality assessment in a direct radiography system

    PubMed Central

    Oliveira, Bruno Beraldo; de Oliveira, Marcio Alves; Paixão, Lucas; Teixeira, Maria Helena Araújo; Nogueira, Maria do Socorro

    2014-01-01

    Objective To evaluate the mean glandular dose with a solid state detector and the image quality in a direct radiography system, utilizing phantoms. Materials and Methods Irradiations were performed with automatic exposure control and polymethyl methacrylate slabs with different thicknesses to calculate glandular dose values. The image quality was evaluated by means of the structures visualized on the images of the phantoms. Results Considering the uncertainty of the measurements, the mean glandular dose results are in agreement with the values provided by the equipment and with internationally adopted reference levels. Results obtained from images of the phantoms were in agreement with the reference values. Conclusion The present study contributes to verify the equipment conformity as regards dose values and image quality. PMID:25741119

  11. LipidQC: Method Validation Tool for Visual Comparison to SRM 1950 Using NIST Interlaboratory Comparison Exercise Lipid Consensus Mean Estimate Values.

    PubMed

    Ulmer, Candice Z; Ragland, Jared M; Koelmel, Jeremy P; Heckert, Alan; Jones, Christina M; Garrett, Timothy J; Yost, Richard A; Bowden, John A

    2017-12-19

    As advances in analytical separation techniques, mass spectrometry instrumentation, and data processing platforms continue to spur growth in the lipidomics field, more structurally unique lipid species are detected and annotated. The lipidomics community is in need of benchmark reference values to assess the validity of various lipidomics workflows in providing accurate quantitative measurements across the diverse lipidome. LipidQC addresses the harmonization challenge in lipid quantitation by providing a semiautomated process, independent of analytical platform, for visual comparison of experimental results of National Institute of Standards and Technology Standard Reference Material (SRM) 1950, "Metabolites in Frozen Human Plasma", against benchmark consensus mean concentrations derived from the NIST Lipidomics Interlaboratory Comparison Exercise.

  12. Shift current bulk photovoltaic effect in polar materials—hybrid and oxide perovskites and beyond

    DOE PAGES

    Tan, Liang Z.; Zheng, Fan; Young, Steve M.; ...

    2016-08-26

    Here, the bulk photovoltaic effect (BPVE) refers to the generation of a steady photocurrent and above-bandgap photovoltage in a single-phase homogeneous material lacking inversion symmetry. The mechanism of BPVE is decidedly different from the typical p–n junction-based photovoltaic mechanism in heterogeneous materials. Recently, there has been renewed interest in ferroelectric materials for solar energy conversion, inspired by the discovery of above-bandgap photovoltages in ferroelectrics, the invention of low bandgap ferroelectric materials and the rapidly improving power conversion efficiency of metal halide perovskites. However, as long as the nature of the BPVE and its dependence on composition and structure remain poorlymore » understood, materials engineering and the realisation of its true potential will be hampered. In this review article, we survey the history, development and recent progress in understanding the mechanisms of BPVE, with a focus on the shift current mechanism, an intrinsic BPVE that is universal to all materials lacking inversion symmetry. In addition to explaining the theory of shift current, materials design opportunities and challenges will be discussed for future applications of the BPVE.« less

  13. Biscayne aquifer drinking water (USGS45): a new isotopic reference material for δ2H and δ18O measurements of water.

    PubMed

    Lorenz, Jennifer M; Tarbox, Lauren; Buck, Bryan; Qi, Haiping; Coplen, Tyler B

    2014-10-15

    As a result of the scarcity of isotopic reference waters for daily use, a new secondary isotopic reference material for international distribution has been prepared from drinking water collected from the Biscayne aquifer in Ft. Lauderdale, Florida. This isotopic reference water was filtered, homogenized, loaded into glass ampoules, sealed with a torch, autoclaved to eliminate biological activity, and measured by dual-inlet isotope-ratio mass spectrometry. This reference material is available by the case of 144 glass ampoules containing either 4 mL or 5 mL of water in each ampoule. The δ(2)H and δ(18)O values of this reference material are -10.3 ± 0.4‰ and -2.238 ± 0.011‰, respectively, relative to VSMOW, on scales normalized such that the δ(2)H and δ(18)O values of SLAP reference water are, respectively, -428 and -55.5‰. Each uncertainty is an estimated expanded uncertainty (U = 2uc ) about the reference value that provides an interval that has about a 95% probability of encompassing the true value. This isotopic reference material, designated as USGS45, is intended as one of two isotopic reference waters for daily normalization of stable hydrogen and oxygen isotopic analysis of water with an isotope-ratio mass spectrometer or a laser absorption spectrometer. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA. Published in 2014. This article is a U.S. Government work and is in the public domain in the USA.

  14. Critical outlook and trends for environmental reference materials at the Measurements & Testing Generic Activity (European Commission).

    PubMed

    Quevauviller, P; Bennink, D; Bøwadt, S

    2001-05-01

    It is now well recognised that the quality control (QC) of all types of analyses, including environmental analyses depends on the appropriate use of reference materials. One of the ways to check the accuracy of methods is based on the use of Certified Reference Materials (CRMs), whereas other types of (not certified) Reference Materials (RMs) are used for routine quality control (establishment of control charts) and interlaboratory testing (e.g. proficiency testing). The perception of these materials, in particular with respect to their production and use, differs widely according to various perspectives (e.g. RM producers, routine laboratories, researchers). This review discusses some critical aspects of RM use and production for the QC of environmental analyses and describes the new approach followed by the Measurements & Testing Generic Activity (European Commission) to tackle new research and production needs.

  15. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliot B. Kennel; Chong Chen; Dady Dadyburjor

    2005-04-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. Table 1 provides an overview of the major markets for carbon products. Current sources of materials for these processes generally rely on petroleum distillation products or coal tar distillates obtained as a byproduct of metcoke production facilities. In the former case, the American materials industry, just asmore » the energy industry, is dependent upon foreign sources of petroleum. In the latter case, metcoke production is decreasing every year due to the combined difficulties associated with poor economics and a significant environmental burden. Thus, a significant need exists for an environmentally clean process which can used domestically obtained raw materials and which can still be very competitive economically.« less

  16. A new basaltic glass microanalytical reference material for multiple techniques

    USGS Publications Warehouse

    Wilson, Steve; Koenig, Alan; Lowers, Heather

    2012-01-01

    The U.S. Geological Survey (USGS) has been producing reference materials since the 1950s. Over 50 materials have been developed to cover bulk rock, sediment, and soils for the geological community. These materials are used globally in geochemistry, environmental, and analytical laboratories that perform bulk chemistry and/or microanalysis for instrument calibration and quality assurance testing. To answer the growing demand for higher spatial resolution and sensitivity, there is a need to create a new generation of microanalytical reference materials suitable for a variety of techniques, such as scanning electron microscopy/X-ray spectrometry (SEM/EDS), electron probe microanalysis (EPMA), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS). As such, the microanalytical reference material (MRM) needs to be stable under the beam, be homogeneous at scales of better than 10–25 micrometers for the major to ultra-trace element level, and contain all of the analytes (elements or isotopes) of interest. Previous development of basaltic glasses intended for LA-ICP-MS has resulted in a synthetic basaltic matrix series of glasses (USGS GS-series) and a natural basalt series of glasses (BCR-1G, BHVO-2G, and NKT-1G). These materials have been useful for the LA-ICP-MS community but were not originally intended for use by the electron or ion beam community. A material developed from start to finish with intended use in multiple microanalytical instruments would be useful for inter-laboratory and inter-instrument platform comparisons. This article summarizes the experiments undertaken to produce a basalt glass reference material suitable for distribution as a multiple-technique round robin material. The goal of the analytical work presented here is to demonstrate that the elemental homogeneity of the new glass is acceptable for its use as a reference material. Because the round robin exercise is still underway, only nominal compositional ranges for each element are given in the article.

  17. Manufacturing Energy Intensity and Opportunity Analysis for Fiber-Reinforced Polymer Composites and Other Lightweight Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liddell, Heather; Brueske, Sabine; Carpenter, Alberta

    With their high strength-to-weight ratios, fiber-reinforced polymer (FRP) composites are important materials for lightweighting in structural applications; however, manufacturing challenges such as low process throughput and poor quality control can lead to high costs and variable performance, limiting their use in commercial applications. One of the most significant challenges for advanced composite materials is their high manufacturing energy intensity. This study explored the energy intensities of two lightweight FRP composite materials (glass- and carbon-fiber-reinforced polymers), with three lightweight metals (aluminum, magnesium, and titanium) and structural steel (as a reference material) included for comparison. Energy consumption for current typical and state-of-the-artmore » manufacturing processes were estimated for each material, deconstructing manufacturing process energy use by sub-process and manufacturing pathway in order to better understand the most energy intensive steps. Energy saving opportunities were identified and quantified for each production step based on a review of applied R&D technologies currently under development in order to estimate the practical minimum energy intensity. Results demonstrate that while carbon fiber reinforced polymer (CFRP) composites have the highest current manufacturing energy intensity of all materials considered, the large differences between current typical and state-of-the-art energy intensity levels (the 'current opportunity') and between state-of-the-art and practical minimum energy intensity levels (the 'R&D opportunity') suggest that large-scale energy savings are within reach.« less

  18. Current density distributions and sputter marks in electron cyclotron resonance ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panitzsch, Lauri; Peleikis, Thies; Boettcher, Stephan

    2013-01-15

    Most electron cyclotron resonance ion sources use hexapolar magnetic fields for the radial confinement of the plasma. The geometry of this magnetic structure is then-induced by charged particles-mapped onto the inner side of the plasma electrode via sputtering and deposition. The resulting structures usually show two different patterns: a sharp triangular one in the central region which in some cases is even sputtered deep into the material (referred to as thin groove or sharp structure), and a blurred but still triangular-like one in the surroundings (referred to as broad halo). Therefore, both patterns seem to have different sources. To investigatemore » their origins we replaced the standard plasma electrode by a custom-built plasma electrode acting as a planar, multi-segment current-detector. For different biased disc voltages, detector positions, and source biases (referred to the detector) we measured the electrical current density distributions in the plane of the plasma electrode. The results show a strong and sharply confined electron population with triangular shape surrounded by less intense and spatially less confined ions. Observed sputter- and deposition marks are related to the analysis of the results. Our measurements suggest that the two different patterns (thin and broad) indeed originate from different particle populations. The thin structures seem to be caused by the hot electron population while the broad marks seem to stem from the medium to highly charged ions. In this paper we present our measurements together with theoretical considerations and substantiate the conclusions drawn above. The validity of these results is also discussed.« less

  19. Aircraft Dynamic Loads due to Flow Separation (Les Contraintes Aerodynamiques Imposees aux Aeronefs par le Decollement de l’Ecoulement)

    DTIC Science & Technology

    1990-09-01

    the 70th meeting of the AGARD Structures and Materials Panel. Some conclusions are drawn and recommendations made for future research. 1. INTRODUCTION ...angle of incidence INTRODUCTION Modern combat aircraft must be capable of flying under conditions of separated flows in order to achieve high...symbol means PSD. Background an Introduction One of the earliest buffet investigations, by Frazer and Duncan, Reference 1, concerned an accident that

  20. Axial-Compressive Behavior, Including Kink-Band Formation and Propagation, of Single p-Phenylene Terephthalamide (PPTA) Fibers

    DTIC Science & Technology

    2013-01-01

    material models to describe the behavior of fibers and structures under high -rate loading conditions. With the utility of the CAE methods and tools largely...phenylene terephthalamide (PPTA), available commercially as Kevlar, Twaron, Technora, and so forth, are characterized by high specific axial stiffness...and high specific tensile strength. These fibers are often referred to as “ballistic fibers” since they are commonly used in different ballistic- and

  1. Optical and optomechanical ultralightweight C/SiC components

    NASA Astrophysics Data System (ADS)

    Papenburg, Ulrich; Pfrang, Wilhelm; Kutter, G. S.; Mueller, Claus E.; Kunkel, Bernd P.; Deyerler, Michael; Bauereisen, Stefan

    1999-11-01

    Optical and optomechanical structures based on silicon carbide (SiC) ceramics are becoming increasingly important for ultra- lightweight optical systems that must work in adverse environments. At IABG and Dornier Satellite Systems (DSS) in Munich, a special form of SiC ceramics carbon fiber reinforced silicon carbide (C/SiCR) has been developed partly under ESA and NASA contracts. C/SiCR is a light-weight, high- strength engineering material that features tunable mechanical and thermal properties. It offers exceptional design freedom due to its reduced brittleness and negligible volume shrinkage during processing in comparison to traditional, powder-based ceramics. Furthermore, its rapid fabrication process produces near-net-shape components using conventional NC machining/milling equipment and, thus, provides substantial schedule, cost, and risk savings. These characteristics allow C/SiCR to overcome many of the problems associated with more traditional optical materials. To date, C/SiCR has been used to produce ultra-lightweight mirrors and reflectors, antennas, optical benches, and monolithic and integrated reference structures for a variety of space and terrestrial applications. This paper describes the material properties, optical system and structural design aspects, the forming and manufacturing process including high-temperature joining technology, precision grinding and cladding techniques, and the performance results of a number of C/SiCR optical components we have built.

  2. Comparison Of Flat-Knitted Structures Made Of Poly(P-Phenylene-2,6-Benzobisoxazole) And Para-Aramid Referring To Their Stab Resistance

    NASA Astrophysics Data System (ADS)

    Obermann, M.; Aumann, S.; Heimlich, F.; Weber, M. O.; Schwarz-Pfeiffer, A.

    2016-07-01

    In the field of protective gear, developers always aim for lighter and more flexible material in order to increase the wearing comfort. Suppliers now work on knitted garments in the sports-sector as well as in workwear and protective gear for policemen or security-agents. In a recent project different knitted structures made of a poly(p-phenylene-2,6-benzobisoxazole) (PBO)-multifilament were compared to their counterparts made of para-aramid. In focus of the comparison stood the stab-resistance linked to either the mass per unit area or the stitch density. The tested fabrics were produced on hand flat knitting machines as well as on electronical flat knitting machines of the type Stoll CMS 330TC4, in order to analyse fabrics with different tightness factor and machine gauges. The stab resistance of the different knitted fabrics was examined according to the standard of the Association of Test Laboratories for Bullet, Stab or Pike Resistant Materials and Construction Standards. The presentation includes the depiction of the results of the test series and their interpretation. Furthermore it will give an outlook on most suitable combinations of materials and structures to be used in protective gear.

  3. Compatibility of Elastomeric Seal Compounds with MIL-H-6083 and MIL-H- 46170 Hydraulic Fluid

    DTIC Science & Technology

    1990-06-01

    are also made with results obtained using NBR -L, a reference material cited in AMS 3217. 20. DISTRIBUTION/AVAILABILJTY OF ABSTRACT 21. ABSTRACT...Concurrent comparative studies were conducted using NBR -L, a standard reference compound cited in Aerospace Materials Specification (AMS) 3217. Volume...of a standard reference material such as NBR -L, cited in AMS 3217. Obviously, requirements for fluids and for seals are both dictated by the needs of

  4. Field Demonstration and Validation of a New Device for Measuring Water and Solute Fluxes at CFB Borden

    DTIC Science & Technology

    2006-11-01

    All Quality Control Reference Materials are acquired only from authorized vendors or sources commonly used by U.S. EPA Regional Laboratories...Institue of Standards and Testing (NITS) Standard Reference Materials (SRM) or to the U.S. EPA Reference Standards. Working Standards The commercial...contaminants from clothing or equipment by blowing, shaking or any other means that may disperse material into the air is prohibited. 7.1.3. All disposable

  5. Homogeneity study of a corn flour laboratory reference material candidate for inorganic analysis.

    PubMed

    Dos Santos, Ana Maria Pinto; Dos Santos, Liz Oliveira; Brandao, Geovani Cardoso; Leao, Danilo Junqueira; Bernedo, Alfredo Victor Bellido; Lopes, Ricardo Tadeu; Lemos, Valfredo Azevedo

    2015-07-01

    In this work, a homogeneity study of a corn flour reference material candidate for inorganic analysis is presented. Seven kilograms of corn flour were used to prepare the material, which was distributed among 100 bottles. The elements Ca, K, Mg, P, Zn, Cu, Fe, Mn and Mo were quantified by inductively coupled plasma optical emission spectrometry (ICP OES) after acid digestion procedure. The method accuracy was confirmed by analyzing the rice flour certified reference material, NIST 1568a. All results were evaluated by analysis of variance (ANOVA) and principal component analysis (PCA). In the study, a sample mass of 400mg was established as the minimum mass required for analysis, according to the PCA. The between-bottle test was performed by analyzing 9 bottles of the material. Subsamples of a single bottle were analyzed for the within-bottle test. No significant differences were observed for the results obtained through the application of both statistical methods. This fact demonstrates that the material is homogeneous for use as a laboratory reference material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Inflatable Space Structures Technology Development for Large Radar Antennas

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Helms, Richard G.; Willis, Paul B.; Mikulas, M. M.; Stuckey, Wayne; Steckel, Gary; Watson, Judith

    2004-01-01

    There has been recent interest in inflatable space-structures technology for possible applications on U.S. Department of Defense (DOD) missions because of the technology's potential for high mechanical-packaging efficiency, variable stowed geometry, and deployment reliability. In recent years, the DOD sponsored Large Radar Antenna (LRA) Program applied this new technology to a baseline concept: a rigidizable/inflatable (RI) perimeter-truss structure supporting a mesh/net parabolic reflector antenna. The program addressed: (a) truss concept development, (b) regidizable materials concepts assessment, (c) mesh/net concept selection and integration, and (d) developed potential mechanical-system performance estimates. Critical and enabling technologies were validated, most notably the orbital radiation durable regidized materials and the high modulus, inflatable-deployable truss members. These results in conjunction with conclusions from previous mechanical-packaging studies by the U.S. Defense Advanced Research Projects Agency (DARPA) Special Program Office (SPO) were the impetus for the initiation of the DARPA/SPO Innovative Space-based Antenna Technology (ISAT) Program. The sponsor's baseline concept consisted of an inflatable-deployable truss structure for support of a large number of rigid, active radar panels. The program's goal was to determine the risk associated with the application of these new RI structures to the latest in radar technologies. The approach used to define the technology maturity level of critical structural elements was to: (a) develop truss concept baseline configurations (s), (b) assess specific inflatable-rigidizable materials technologies, and (c) estimate potential mechanical performance. The results of the structures portion of the program indicated there was high risk without the essential materials technology flight experiments, but only moderate risk if the appropriate on-orbit demonstrations were performed. This paper covers both programs (LRA and ISAT) in two sections, Parts 1 and 2 respectively. Please note that the terms strut, tube, and column are all used interchangeably and refer to the basic strut element of a truss. Also, the paper contains a mix of English and metric dimensional descriptions that reflect prevailing technical discipline conventions and common usage.

  7. Interlaboratory comparison of reference materials for nitrogen-isotope-ratio measurements

    USGS Publications Warehouse

    Böhlke, John Karl; Coplen, Tyler B.

    1995-01-01

    Aliquots of seven different reference materials were distributed for an interlaboratory comparison of stable nitrogen-isotope-ratio measurements. Results from 15 laboratories were compiled and evaluated selectively to yield provisional values of 515N for each material, i, with respect to atmospheric N2 (o1SN,7air). The 515N values reported by the different laboratories are correlated in such a way that some of the major discrepancies may be removed by normalization (/. e., by altering the length of the ô N scale for each laboratory by an amount defined by local measurements of reference materials with extreme values).

  8. [Intervening factors in attention flow of professionals injured by biological material].

    PubMed

    Ribeiro, Luana Cássia Miranda; Souza, Adenícia Custódia Silva E; Tipple, Anaclara Ferreira Veiga; Melo, Dulcelene Sousa; Peixoto, Myrian Karla Ayres Veronez; Munari, Denize Bouttelet

    2014-06-01

    To describe the barriers and facilitator factors to follow the attention flow of professionals injured by biological material in the worker perspective. Qualitative descriptive study with data collected through individual interviews with 18 injured workers, assisted in reference public units in the city of Goiânia. The content analysis was carried out with assistance of the ATLAS.ti 6.2 software, under the work organization and subjective perspectives. From the interviews regarding the barriers and facilitator factors emerged the categories: organizational structure, Support from close people, and Knowledge influence. The organized services have enabled more qualified consultations and the workers follow-up, which caused a satisfaction feeling in relation to the working environment.

  9. Shell Biorefinery: Dream or Reality?

    PubMed

    Chen, Xi; Yang, Huiying; Yan, Ning

    2016-09-12

    Shell biorefinery, referring to the fractionation of crustacean shells into their major components and the transformation of each component into value-added chemicals and materials, has attracted growing attention in recent years. Since the large quantities of waste shells remain underexploited, their valorization can potentially bring both ecological and economic benefits. This Review provides an overview of the current status of shell biorefinery. It first describes the structural features of crustacean shells, including their composition and their interactions. Then, various fractionation methods for the shells are introduced. The last section is dedicated to the valorization of chitin and its derivatives for chemicals, porous carbon materials and functional polymers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. ALT-114 and ALT-118 Alternative Approaches to NIST ...

    EPA Pesticide Factsheets

    In 2016, US EPA approved two separate alternatives (ALT 114 and ALT 118) for the preparation and certification of Hydrogen Chloride (HCl) and Mercury (Hg) cylinder reference gas standards that can serve as EPA Protocol gases where EPA Protocol are required, but unavailable. The alternatives were necessary due to the unavailability of NIST reference materials (SRM, NTRM, CRM or RGM) or VSL reference materials (VSL PRM or VSL CRM), reference materials identified in EPA’s Green Book as necessary to establish the traceability of EPA protocol gases. ALT 114 and ALT 118 provides a pathway for gas vendors to prepare and certify traceable gas cylinder standards for use in certifying Hg and HCl CEMS. In this presentation, EPA will describe the mechanics and requirements of the performance-based approach, provide an update on the availability of these gas standards and also discuss the potential for producing and certifying gas standards for other compounds using this approach. This presentation discusses the importance of NIST-traceable reference gases relative to regulatory source compliance emissions monitoring. Specifically this presentation discusses 2 new approaches for making necessary reference gases available in the absence of NIST reference materials. Moreover, these approaches provide an alternative approach to rapidly make available new reference gases for additional HAPS regulatory compliance emissions measurement and monitoring.

  11. Development of a reference material of a single DNA molecule for the quality control of PCR testing.

    PubMed

    Mano, Junichi; Hatano, Shuko; Futo, Satoshi; Yoshii, Junji; Nakae, Hiroki; Naito, Shigehiro; Takabatake, Reona; Kitta, Kazumi

    2014-09-02

    We developed a reference material of a single DNA molecule with a specific nucleotide sequence. The double-strand linear DNA which has PCR target sequences at the both ends was prepared as a reference DNA molecule, and we named the PCR targets on each side as confirmation sequence and standard sequence. The highly diluted solution of the reference molecule was dispensed into 96 wells of a plastic PCR plate to make the average number of molecules in a well below one. Subsequently, the presence or absence of the reference molecule in each well was checked by real-time PCR targeting for the confirmation sequence. After an enzymatic treatment of the reaction mixture in the positive wells for the digestion of PCR products, the resultant solution was used as the reference material of a single DNA molecule with the standard sequence. PCR analyses revealed that the prepared samples included only one reference molecule with high probability. The single-molecule reference material developed in this study will be useful for the absolute evaluation of a detection limit of PCR-based testing methods, the quality control of PCR analyses, performance evaluations of PCR reagents and instruments, and the preparation of an accurate calibration curve for real-time PCR quantitation.

  12. Fraud Education for Accounting Students.

    ERIC Educational Resources Information Center

    Peterson, Bonita K.

    2003-01-01

    Reports that limited fraud education takes place in accounting due to a crowded curriculum and misunderstanding of the extent of fraud. Suggests ways to develop content on the topic and provides a list of teaching materials (textbooks, workbooks, trade books, case materials, videos, and reference materials). (Contains 16 references.) (SK)

  13. Acoustic imaging microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-10-17

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  14. Clay pigment structure characterisation as a guide for provenance determination--a comparison between laboratory powder micro-XRD and synchrotron radiation XRD.

    PubMed

    Švarcová, Silvie; Bezdička, Petr; Hradil, David; Hradilová, Janka; Žižak, Ivo

    2011-01-01

    Application of X-ray diffraction (XRD)-based techniques in the analysis of painted artworks is not only beneficial for indisputable identification of crystal constituents in colour layers, but it can also bring insight in material crystal structure, which can be affected by their geological formation, manufacturing procedure or secondary changes. This knowledge might be helpful for art historic evaluation of an artwork as well as for its conservation. By way of example of kaolinite, we show that classification of its crystal structure order based on XRD data is useful for estimation of its provenance. We found kaolinite in the preparation layer of a Gothic wall painting in a Czech church situated near Karlovy Vary, where there are important kaolin deposits. Comparing reference kaolin materials from eight various Czech deposits, we found that these can be differentiated just according to the kaolinite crystallinity. Within this study, we compared laboratory powder X-ray micro-diffraction (micro-XRD) with synchrotron radiation X-ray diffraction analysing the same real sample. We found that both techniques led to the same results.

  15. Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents.

    PubMed

    Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Donat, Felix; Schäublin, Robin; Kierzkowska, Agnieszka; Müller, Christoph R

    2018-06-19

    Calcium looping, a CO 2 capture technique, may offer a mid-term if not near-term solution to mitigate climate change, triggered by the yet increasing anthropogenic CO 2 emissions. A key requirement for the economic operation of calcium looping is the availability of highly effective CaO-based CO 2 sorbents. Here we report a facile synthesis route that yields hollow, MgO-stabilized, CaO microspheres featuring highly porous multishelled morphologies. As a thermal stabilizer, MgO minimized the sintering-induced decay of the sorbents' CO 2 capacity and ensured a stable CO 2 uptake over multiple operation cycles. Detailed electron microscopy-based analyses confirm a compositional homogeneity which is identified, together with the characteristics of its porous structure, as an essential feature to yield a high-performance sorbent. After 30 cycles of repeated CO 2 capture and sorbent regeneration, the best performing material requires as little as 11 wt.% MgO for structural stabilization and exceeds the CO 2 uptake of the limestone-derived reference material by ~500%.

  16. Application of outlier analysis for baseline-free damage diagnosis

    NASA Astrophysics Data System (ADS)

    Kim, Seung Dae; In, Chi Won; Cronin, Kelly E.; Sohn, Hoon; Harries, Kent

    2006-03-01

    As carbon fiber-reinforced polymer (CFRP) laminates have been widely accepted as valuable materials for retrofitting civil infrastructure systems, an appropriate assessment of bonding conditions between host structures and CFRP laminates becomes a critical issue to guarantee the performance of CFRP strengthened structures. This study attempts to develop a continuous performance monitoring system for CFRP strengthened structures by autonomously inspecting the bonding conditions between the CFRP layers and the host structure. The uniqueness of this study is to develop a new concept and theoretical framework of nondestructive testing (NDT), in which debonding is detected "without using past baseline data." The proposed baseline-free damage diagnosis is achieved in two stages. In the first step, features sensitive to debonding of the CFPR layers but insensitive to loading conditions are extracted based on a concept referred to as a time reversal process. This time reversal process allows extracting damage-sensitive features without direct comparison with past baseline data. Then, a statistical damage classifier will be developed in the second step to make a decision regarding the bonding condition of the CFRP layers. The threshold necessary for decision making will be adaptively determined without predetermined threshold values. Monotonic and fatigue load tests of full-scale CFRP strengthened RC beams are conducted to demonstrate the potential of the proposed reference-free debonding monitoring system.

  17. Introducing double polar heads to highly fluorescent Thiazoles: Influence on supramolecular structures and photonic properties.

    PubMed

    Kaufmann, M; Hupfer, M L; Sachse, T; Herrmann-Westendorf, F; Weiß, D; Dietzek, B; Beckert, R; Presselt, M

    2018-04-30

    Supramolecular structures determine properties of optoelectronically active materials and can be tailored via the Langmuir-Blodgett (LB) technique. Interactions between dyes can cause high crystallinities of Langmuir monolayers, thus rendering retaining their integrity during the LB-deposition challenging. However, increasing degrees of freedom exclusively at the polar anchoring moieties of dyes might improve processability without perturbing the dye's optoelectronic properties nor the function-determining crystallinity of the layer. (Amphiphilic) thiazole dyes without, with a mono-polar, and with a double-polar anchor were synthesized, whereas the two constituting polar moieties of the latter derivate are separated by a flexible alkyl chain. The supramolecular structures and crystallinities of Langmuir and LB monolayers were characterized by means of LB isotherms, atomic force microscopy and polarization-resolved fluorescence spectroscopy. As compared to the mono-polar reference the introduction of a flexible double-polar head did not deteriorate UV-vis absorption, emission or electrochemical properties of the thiazole but significantly extended the range of constant compressibility modulus, thus indicating improved processability of the Langmuir monolayers. Indeed, AFM studies revealed that the integrity of the monolayers could be retained during LB-deposition. Additionally, also the underlying supramolecular structure of the chromophore moieties is largely identical to those obtained from the mono-polar reference thiazoles. Copyright © 2018. Published by Elsevier Inc.

  18. Measuring Thermal Conductivity at LH2 Temperatures

    NASA Technical Reports Server (NTRS)

    Selvidge, Shawn; Watwood, Michael C.

    2004-01-01

    For many years, the National Institute of Standards and Technology (NIST) produced reference materials for materials testing. One such reference material was intended for use with a guarded hot plate apparatus designed to meet the requirements of ASTM C177-97, "Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus." This apparatus can be used to test materials in various gaseous environments from atmospheric pressure to a vacuum. It allows the thermal transmission properties of insulating materials to be measured from just above ambient temperature down to temperatures below liquid hydrogen. However, NIST did not generate data below 77 K temperature for the reference material in question. This paper describes a test method used at NASA's Marshall Space Flight Center (MSFC) to optimize thermal conductivity measurements during the development of thermal protection systems. The test method extends the usability range of this reference material by generating data at temperatures lower than 77 K. Information provided by this test is discussed, as are the capabilities of the MSFC Hydrogen Test Facility, where advanced methods for materials testing are routinely developed and optimized in support of aerospace applications.

  19. Perspective: Structural fluctuation of protein and Anfinsen's thermodynamic hypothesis

    NASA Astrophysics Data System (ADS)

    Hirata, Fumio; Sugita, Masatake; Yoshida, Masasuke; Akasaka, Kazuyuki

    2018-01-01

    The thermodynamics hypothesis, casually referred to as "Anfinsen's dogma," is described theoretically in terms of a concept of the structural fluctuation of protein or the first moment (average structure) and the second moment (variance and covariance) of the structural distribution. The new theoretical concept views the unfolding and refolding processes of protein as a shift of the structural distribution induced by a thermodynamic perturbation, with the variance-covariance matrix varying. Based on the theoretical concept, a method to characterize the mechanism of folding (or unfolding) is proposed. The transition state, if any, between two stable states is interpreted as a gap in the distribution, which is created due to an extensive reorganization of hydrogen bonds among back-bone atoms of protein and with water molecules in the course of conformational change. Further perspective to applying the theory to the computer-aided drug design, and to the material science, is briefly discussed.

  20. Vibroacoustic Characterization of Corrugated-Core and Honeycomb-Core Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Allen, Albert; Schiller, Noah

    2016-01-01

    The vibroacoustic characteristics of two candidate launch vehicle fairing structures, corrugated- core and honeycomb-core sandwich designs, were studied. The study of these structures has been motivated by recent risk reduction efforts focused on mitigating high noise levels within the payload bays of large launch vehicles during launch. The corrugated-core sandwich concept is of particular interest as a dual purpose structure due to its ability to harbor resonant noise control systems without appreciably adding mass or taking up additional volume. Specifically, modal information, wavelength dispersion, and damping were determined from a series of vibrometer measurements and subsequent analysis procedures carried out on two test panels. Numerical and analytical modeling techniques were also used to assess assumed material properties and to further illuminate underlying structural dynamic aspects. Results from the tests and analyses described herein may serve as a reference for additional vibroacoustic studies involving these or similar structures.

  1. Toward Worldwide Hepcidin Assay Harmonization: Identification of a Commutable Secondary Reference Material.

    PubMed

    van der Vorm, Lisa N; Hendriks, Jan C M; Laarakkers, Coby M; Klaver, Siem; Armitage, Andrew E; Bamberg, Alison; Geurts-Moespot, Anneke J; Girelli, Domenico; Herkert, Matthias; Itkonen, Outi; Konrad, Robert J; Tomosugi, Naohisa; Westerman, Mark; Bansal, Sukhvinder S; Campostrini, Natascia; Drakesmith, Hal; Fillet, Marianne; Olbina, Gordana; Pasricha, Sant-Rayn; Pitts, Kelly R; Sloan, John H; Tagliaro, Franco; Weykamp, Cas W; Swinkels, Dorine W

    2016-07-01

    Absolute plasma hepcidin concentrations measured by various procedures differ substantially, complicating interpretation of results and rendering reference intervals method dependent. We investigated the degree of equivalence achievable by harmonization and the identification of a commutable secondary reference material to accomplish this goal. We applied technical procedures to achieve harmonization developed by the Consortium for Harmonization of Clinical Laboratory Results. Eleven plasma hepcidin measurement procedures (5 mass spectrometry based and 6 immunochemical based) quantified native individual plasma samples (n = 32) and native plasma pools (n = 8) to assess analytical performance and current and achievable equivalence. In addition, 8 types of candidate reference materials (3 concentrations each, n = 24) were assessed for their suitability, most notably in terms of commutability, to serve as secondary reference material. Absolute hepcidin values and reproducibility (intrameasurement procedure CVs 2.9%-8.7%) differed substantially between measurement procedures, but all were linear and correlated well. The current equivalence (intermeasurement procedure CV 28.6%) between the methods was mainly attributable to differences in calibration and could thus be improved by harmonization with a common calibrator. Linear regression analysis and standardized residuals showed that a candidate reference material consisting of native lyophilized plasma with cryolyoprotectant was commutable for all measurement procedures. Mathematically simulated harmonization with this calibrator resulted in a maximum achievable equivalence of 7.7%. The secondary reference material identified in this study has the potential to substantially improve equivalence between hepcidin measurement procedures and contributes to the establishment of a traceability chain that will ultimately allow standardization of hepcidin measurement results. © 2016 American Association for Clinical Chemistry.

  2. Certification of elements in and use of standard reference material 3280 multivitamin/multielement tablets.

    PubMed

    Turk, Gregory C; Sharpless, Katherine E; Cleveland, Danielle; Jongsma, Candice; Mackey, Elizabeth A; Marlow, Anthony F; Oflaz, Rabia; Paul, Rick L; Sieber, John R; Thompson, Robert Q; Wood, Laura J; Yu, Lee L; Zeisler, Rolf; Wise, Stephen A; Yen, James H; Christopher, Steven J; Day, Russell D; Long, Stephen E; Greene, Ella; Harnly, James; Ho, I-Pin; Betz, Joseph M

    2013-01-01

    Standard Reference Material 3280 Multivitamin/ Multielement Tablets was issued by the National Institute of Standards and Technology in 2009, and has certified and reference mass fraction values for 13 vitamins, 26 elements, and two carotenoids. Elements were measured using two or more analytical methods at NIST with additional data contributed by collaborating laboratories. This reference material is expected to serve a dual purpose: to provide quality assurance in support of a database of dietary supplement products and to provide a means for analysts, dietary supplement manufacturers, and researchers to assess the appropriateness and validity of their analytical methods and the accuracy of their results.

  3. 40 CFR 92.5 - Reference materials.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: (1) ASTM material. The following table sets forth material from the American Society for Testing and...., Philadelphia, PA 19103. The table follows: Document number and name 40 CFR part 92 reference ASTM D 86-95, Standard Test Method for Distillation of Petroleum Products § 92.113 ASTM D 93-94, Standard Test Methods...

  4. 40 CFR 1060.810 - What materials does this part reference?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY... Speciation, December 2003 1060.801 (c) California Air Resources Board material. Table 3 to this section lists material from the California Air Resources Board that we have incorporated by reference. The first column...

  5. 40 CFR 1060.810 - What materials does this part reference?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY... Speciation, December 2003 1060.801 (c) California Air Resources Board material. Table 3 to this section lists material from the California Air Resources Board that we have incorporated by reference. The first column...

  6. 40 CFR 1060.810 - What materials does this part reference?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS CONTROL OF EVAPORATIVE EMISSIONS FROM NEW AND IN-USE NONROAD AND STATIONARY... Speciation, December 2003 1060.801 (c) California Air Resources Board material. Table 3 to this section lists material from the California Air Resources Board that we have incorporated by reference. The first column...

  7. Field Demonstration and Validation of a New Device for Measuring Water and Solute Fluxes at Naval Base Ventura County (NBVC), Port Hueneme, CA

    DTIC Science & Technology

    2006-07-01

    All Quality Control Reference Materials are acquired only from authorized vendors or sources commonly used by U.S. EPA Regional Laboratories...are traceable to the National Institue of Standards and Testing (NITS) Standard Reference Materials (SRM) or to the U.S. EPA Reference Standards... clothing or equipment by blowing, shaking or any other means that may disperse material into the air is prohibited. 7.1.3. All disposable personal

  8. Development of Advanced 9Cr Ferritic-Martensitic Steels and Austenitic Stainless Steels for Sodium-Cooled Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sham, Sam; Tan, Lizhen; Yamamoto, Yukinori

    2013-01-01

    Ferritic-martensitic (FM) steel Grade 92, with or without thermomechanical treatment (TMT), and austenitic stainless steels HT-UPS (high-temperature ultrafine precipitate strengthening) and NF709 were selected as potential candidate structural materials in the U.S. Sodium-cooled Fast Reactor (SFR) program. The objective is to develop advanced steels with improved properties as compared with reference materials such as Grade 91 and Type 316H steels that are currently in nuclear design codes. Composition modification and/or processing optimization (e.g., TMT and cold-work) were performed to improve properties such as resistance to thermal aging, creep, creep-fatigue, fracture, and sodium corrosion. Testings to characterize these properties for themore » advanced steels were conducted by the Idaho National Laboratory, the Argonne National Laboratory and the Oak Ridge National Laboratory under the U.S. SFR program. This paper focuses on the resistance to thermal aging and creep of the advanced steels. The advanced steels exhibited up to two orders of magnitude increase in creep life compared to the reference materials. Preliminary results on the weldment performance of the advanced steels are also presented. The superior performance of the advanced steels would improve reactor design flexibility, safety margins and economics.« less

  9. Microwelding of various metallic materials under ultravacuum (AO 138-10)

    NASA Technical Reports Server (NTRS)

    Assie, Jean Pierre; Conde, Eric

    1991-01-01

    The first finding from the AO 138-10 is that cold welding never occurred, and that microwelds didn't even affect the reference (presumably microweld prone) pairs of metals consisting of gold, silver, and chromium. The scientific disappointment from these results must be tempered by the notion of a static AO 138-10 experiment, reflecting the passive character of the global Long Duration Exposure Facility (LDEF) flight. Thus far, it has been theorized that cold welding results from the peeling of the oxide layer, that is formed in an earth environment, by the space environment since such a layer no longer grows in space. In fact, such stripping of the oxide layer supposes relative motion of the contacting materials. In the absence of such motion, as in this experiment, oxidation will preserve its integrity and continue to prevent microwelding. More bewildering is that there was no microwelding of the reference pairs. Even though AO 138-10 failed scientific expectations, as did the LDEF structure with cold welding, the positive, functional aspect to keep in mind is the safe operation of single-shot (appendage releasing and/or latching) mechanisms, unhindered by microwelding in a space vacuum, as now demonstrated by the statically representative pairs of materials. Other aspects of the experiment are discussed.

  10. On the geometrically nonlinear elastic response of class θ = 1 tensegrity prisms

    NASA Astrophysics Data System (ADS)

    Mascolo, Ida; Amendola, Ada; Zuccaro, Giulio; Feo, Luciano; Fraternali, Fernando

    2018-03-01

    The present work studies the geometrically nonlinear response of class ϑ=1 tensegrity prisms modeled as a collection of elastic springs reacting in tension (strings or cables) or compression (bars), under uniform uniaxial loading. The incremental equilibrium equations of the structure are numerically solved through a path-following procedure, with the aim of modeling the mechanical behavior of the structure in the large displacement regime. Several numerical results are presented with reference to a variety of physical models, which use two different materials for the cables and the bars, and show different aspect ratios associated with either 'standard' or 'expanded' configurations. An experimental validation of the predicted constitutive response is conducted with reference to a 'thick' and a 'slender' model, observing rather good theory vs. experiment matching. The given numerical and experimental results highlight that the elastic response of the examined structures may switch from stiffening to softening, depending on the geometry of the system, the magnitude of the external load, and the applied prestress. The outcomes of the current study confirm previous literature results on the elastic response of minimal tensegrity prisms, and pave the way to the use of tensegrity systems as nonlinear spring units forming tunable mechanical metamaterials.

  11. Ionic Conductivity and its Role in Oxidation Reactions

    NASA Astrophysics Data System (ADS)

    Tamimi, Mazin Abdulla

    In the field of solid oxide fuel cells (SOFCs), a substantial portion of research is focused on the ability of some oxide materials to conduct oxygen anions through their structure. For electrolytes, the benefits of improving bulk transport of ions are obvious: decrease the resistive losses of the electrolyte, and device efficiency goes up and higher power densities are possible. Even for cathode materials, better bulk ion transport leads to an increase in the oxygen exchange rate at the cathode surface, and the oxygen reduction reaction at the cathode surface is the rate limiting step for SOFC operation at intermediate temperatures (500-700ºC). As operation in this regime is a key step towards lowering the manufacturing cost and increasing the lifetime of devices, much effort is spent searching for new, more conductive materials, and analyzing existing materials to discover the structure-activity relationships that influence ionic conductivity. In the first part of this work, an overview is given of the neutron powder diffraction (NPD) techniques that are used to probe the structure of the materials in later parts. In the second part, NPD was used to analyze the structures of perovskite-type cathode materials, and show that increases in bulk conductivity led to increases in the surface oxygen exchange rate of these materials. In the final part, the methods used for SOFC cathode design were applied towards the design of oxide catalysts used for certain hydrocarbon partial oxidation reactions. The reactions studied follow the Mars van Krevelen mechanism, where oxygen atoms in the catalyst are consumed as part of the reaction and are subsequently replenished by oxygen in the gas phase. Similar to SOFC cathode operation, these processes include an oxygen reduction step, so it was hypothesized that increasing the ionic conductivity of the catalysts would improve their performance, just as it does for SOFC cathode materials. While the results are preliminary, the combination of a reference catalyst for the oxidative coupling of methane with a support with very high oxygen conductivity demonstrated a small increase in performance at low temperatures.

  12. Mechanically Strong, Polymer Cross-linked Aerogels (X-Aerogels)

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas

    2006-01-01

    Aerogels comprise a class of low-density, high porous solid objects consisting of dimensionally quasi-stable self-supported three-dimensional assemblies of nanoparticles. Aerogels are pursued because of properties above and beyond those of the individual nanoparticles, including low thermal conductivity, low dielectric constant and high acoustic impedance. Possible applications include thermal and vibration insulation, dielectrics for fast electronics, and hosting of functional guests for a wide variety of optical, chemical and electronic applications. Aerogels, however, are extremely fragile materials, hence they have found only limited application in some very specialized environments, for example as Cerenkov radiation detectors in certain types of nuclear reactors, aboard spacecraft as collectors of hypervelocity particles (refer to NASA's Stardust program) and as thermal insulators on planetary vehicles on Mars (refer to Sojourner Rover in 1997 and Spirit and Opportunity in 2004). Along these lines, the X-Aerogel is a new NASA-developed strong lightweight material that has resolved the fragility problem of traditional (native) aerogels. X-Aerogels are made by applying a conformal polymer coating on the surfaces of the skeletal nanoparticles of native aerogels (see Scanning Electron Micrographs). Since the relative amounts of the polymeric crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by the templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by remplated casting of polymer on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralighweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the the thermal conductivity of styrofoam. X-Aerogels have been demonstrated with several polymers such as polyurethanes/polyureas, epoxies and polyolefins, while crosslinking of approximately 35 different oxide aerogels yields a range of dimensionally stable, porous lightweight materials with unique combinations of structural, magnetic and optical properties. The main theme in materials development for space exploration is multifunction. For example, use of one material for thermal insulation/structural component will free weight for useful payload. In that regard, X-aerogels are evaluated at NASA for cryogenic fuel storage tanks and for spacesuits. Along the same lines, major impact fro X-Aerogels is also expected in commercial applications for thermal/acoustic insulation, in catalytic reformers and converters, in filtration membranes and membranes for fuel cells, as platforms for optical, electrical and magnetic sensors, and as lightweight structural component for aircraft and satellites.

  13. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, H.J.; Stoner, R.J.

    1998-12-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined. 14 figs.

  14. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J.

    1998-01-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined.

  15. Definition of a 5MW/61.5m wind turbine blade reference model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resor, Brian Ray

    2013-04-01

    A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigationsmore » such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.« less

  16. Lipases as biocatalysts for the synthesis of structured lipids.

    PubMed

    Jala, Ram Chandra Reddy; Hu, Peng; Yang, Tiankui; Jiang, Yuanrong; Zheng, Yan; Xu, Xuebing

    2012-01-01

    Structured lipids (SL) are broadly referred to as modified or synthetic oils and fats or lipids with functional or pharmaceutical applications. Some structured lipids, such as triglycerides that contain both long-chain (mainly essential) fatty acids and medium- or short-chain fatty acids and also artificial products that mimic the structure of natural materials, namely human milk fat substitutes and cocoa butter equivalents, have been discussed. Further, other modified or synthetic lipids, such as structured phospholipids and synthetic phenolic lipids are also included in this chapter. For all the products described in this chapter, enzymatic production in industry has been already conducted in one way or another. Cocoa butter equivalents, healthy oil containing medium-chain fatty acids, phosphatidyl serine, and phenol lipids from enzyme technology have been reported for commercial operation. As the demand for better quality functional lipids is increasing, the production of structured lipids becomes an interesting area. Thus, in this chapter we have discussed latest developments as well as present industrial situation of all commercially important structured lipids.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyse, J.; Becker, B.; Kopecky, S.

    Neutrons can be used as a tool to study properties of materials and objects. An evolving activity in this field focusses on neutron induced reaction cross sections. The probability that a neutron interacts with nuclei strongly depends on the energy of the neutron. The cross sections reveal the presence of resonance structures, the energy and width of which are isotope specific. As such, these resonance structures can be used as fingerprints to determine the elemental and isotopic composition of materials and objects. They are the basis of two analytical methods which have been developed at Institute for Reference Materials andmore » Measurements of the European Commission's Joint Research Centre (EC-JRC-IRMM): Neutron Resonance Capture Analysis (NRCA) and Neutron Resonance Transmission Analysis (NRTA). The first technique is based on the detection of gamma rays emitted during a neutron capture reaction in the sample being studied; the latter determines the fraction of neutrons transmitted through a sample positioned in a neutron beam. In the past both techniques have been applied to determine the composition of archaeological objects and to characterize nuclear reference materials. More recently a combination of NRTA and NRCA is being studied as a non-destructive method to determine the heavy metal content of particle-like debris of melted fuel that is formed in severe nuclear accidents such as the one which occurred at the Fukushima Daiichi nuclear power plant in Japan. This study is part of a collaboration between the Japan Atomic Energy Agency (JAEA) and ECJRC- IRMM and is a spin-off from the core activity of IRMM, i.e. the production of nuclear data for nuclear technology applications. This contribution focusses on a newly developed NRTA measurement station that has been set up recently at one of the flight paths of the neutron time-of-flight facility GELINA at the EC-JRC-IRMM. The basic principles of NRTA and first results of measurements at the new set up will be discussed. (authors)« less

  18. Ultra high frequency imaging acoustic microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-05-23

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  19. [The water content reference material of water saturated octanol].

    PubMed

    Wang, Haifeng; Ma, Kang; Zhang, Wei; Li, Zhanyuan

    2011-03-01

    The national standards of biofuels specify the technique specification and analytical methods. A water content certified reference material based on the water saturated octanol was developed in order to satisfy the needs of the instrument calibration and the methods validation, assure the accuracy and consistency of results in water content measurements of biofuels. Three analytical methods based on different theories were employed to certify the water content of the reference material, including Karl Fischer coulometric titration, Karl Fischer volumetric titration and quantitative nuclear magnetic resonance. The consistency of coulometric and volumetric titration was achieved through the improvement of methods. The accuracy of the certified result was improved by the introduction of the new method of quantitative nuclear magnetic resonance. Finally, the certified value of reference material is 4.76% with an expanded uncertainty of 0.09%.

  20. A structural SVM approach for reference parsing.

    PubMed

    Zhang, Xiaoli; Zou, Jie; Le, Daniel X; Thoma, George R

    2011-06-09

    Automated extraction of bibliographic data, such as article titles, author names, abstracts, and references is essential to the affordable creation of large citation databases. References, typically appearing at the end of journal articles, can also provide valuable information for extracting other bibliographic data. Therefore, parsing individual reference to extract author, title, journal, year, etc. is sometimes a necessary preprocessing step in building citation-indexing systems. The regular structure in references enables us to consider reference parsing a sequence learning problem and to study structural Support Vector Machine (structural SVM), a newly developed structured learning algorithm on parsing references. In this study, we implemented structural SVM and used two types of contextual features to compare structural SVM with conventional SVM. Both methods achieve above 98% token classification accuracy and above 95% overall chunk-level accuracy for reference parsing. We also compared SVM and structural SVM to Conditional Random Field (CRF). The experimental results show that structural SVM and CRF achieve similar accuracies at token- and chunk-levels. When only basic observation features are used for each token, structural SVM achieves higher performance compared to SVM since it utilizes the contextual label features. However, when the contextual observation features from neighboring tokens are combined, SVM performance improves greatly, and is close to that of structural SVM after adding the second order contextual observation features. The comparison of these two methods with CRF using the same set of binary features show that both structural SVM and CRF perform better than SVM, indicating their stronger sequence learning ability in reference parsing.

  1. Piezoelectric Lead Zirconate Titanate (PZT) Ring Shaped Contour-Mode MEMS Resonators

    NASA Astrophysics Data System (ADS)

    Kasambe, P. V.; Asgaonkar, V. V.; Bangera, A. D.; Lokre, A. S.; Rathod, S. S.; Bhoir, D. V.

    2018-02-01

    Flexibility in setting fundamental frequency of resonator independent of its motional resistance is one of the desired criteria in micro-electromechanical (MEMS) resonator design. It is observed that ring-shaped piezoelectric contour-mode MEMS resonators satisfy this design criterion than in case of rectangular plate MEMS resonators. Also ring-shaped contour-mode piezoelectric MEMS resonator has an advantage that its fundamental frequency is defined by in-plane dimensions, but they show variation of fundamental frequency with different Platinum (Pt) thickness referred as change in ratio of fNEW /fO . This paper presents the effects of variation in geometrical parameters and change in piezoelectric material on the resonant frequencies of Platinum piezoelectric-Aluminium ring-shaped contour-mode MEMS resonators and its electrical parameters. The proposed structure with Lead Zirconate Titanate (PZT) as the piezoelectric material was observed to be a piezoelectric material with minimal change in fundamental resonant frequency due to Platinum thickness variation. This structure was also found to exhibit extremely low motional resistance of 0.03 Ω as compared to the 31-35 Ω range obtained when using AlN as the piezoelectric material. CoventorWare 10 is used for the design, simulation and corresponding analysis of resonators which is Finite Element Method (FEM) analysis and design tool for MEMS devices.

  2. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.

    PubMed

    Cheng, Fangyi; Chen, Jun

    2012-03-21

    Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).

  3. Fatigue and Fracture Branch: A compendium of recently completed and on-going research projects

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1984-01-01

    This compendium of recently completed and ongoing research projects from the Fatigue and Fracture Branch at NASA Langley Research Center provides technical descriptions and key results of all such projects expected to lead to publication of significant findings. The common thread to all these studies is the application of fracture mechanics analyses to engineering problems in metals and composites, with particular emphasis on airframe structural materials. References to recent publications are included where appropriate.

  4. Evaluation and Repair of Concrete Structures: Annotated Bibliography 1978 - 1988. Volume 1. (Repair, Evaluation, Maintenance and Rehabilitation Research Program)

    DTIC Science & Technology

    1991-06-01

    32303, "Application of New Technology to Maintenance and Minor Repair," for which Mr. James E. McDonald (CEWES-SC-R) was Principal Investigator. Dr. Tony...materials, shotcrete, and silica-fume concrete. 6. Section -D contains 710 references-on maintenance and repair tech- niques including bonding new concrote to...sys- -tem. The process problems have been resolved-by introduction of new instrumentation, static mixers, elimination of washers and high density

  5. Development of Interference Lithography Capability Using a Helium Cadmium Ultraviolet Multimode Laser for the Fabrication of Sub-Micron-Structured Optical Materials

    DTIC Science & Technology

    2011-03-01

    into separate parts, transmitted into different directions , and then recombined upon a surface to produce interference. The concern with this type of...photoresist (PR), is a radiation sensitive compound that is classified as positive or negative, depending on how it responds to radiation . Each is designed...emerging waves, and are referred to as diffraction gratings. Upon reflection from these kinds of gratings, light scattered from the periodic surface

  6. Performance evaluation on cool roofs for green remodeling

    NASA Astrophysics Data System (ADS)

    Yun, Yosun; Cho, Dongwoo; Cho, Kyungjoo

    2018-06-01

    Cool roofs refer that maximize heat emission, and minimize the absorption of solar radiation energy, by applying high solar reflectance paints, or materials to roofs or rooftops. The application of cool roofs to existing buildings does not need to take structural issues into consideration, as rooftop greening, is an alternative that can be applied to existing buildings easily. This study installed a cool roofs on existing buildings, and evaluated the performances, using the results to propose certification standards for green remodeling, considering the cool roof-related standards.

  7. WWW database of optical constants for astronomy

    NASA Astrophysics Data System (ADS)

    Henning, Th.; Il'In, V. B.; Krivova, N. A.; Michel, B.; Voshchinnikov, N. V.

    1999-04-01

    The database we announce contains references to the papers, data files and links to the Internet resources related to measurements and calculations of the optical constants of the materials of astronomical interest: different silicates, ices, oxides, sulfides, carbides, carbonaceous species from amorphous carbon to graphite and diamonds, etc. We describe the general structure and content of the database which has now free access via Internet: http://www.astro.spbu.ru/JPDOC/entry.html\\ or \\ http:// www. astro.uni-jena.de/Users/database/entry.html

  8. Curiosity's Mars Hand Lens Imager (MAHLI): Inital Observations and Activities

    NASA Technical Reports Server (NTRS)

    Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Robinson, M. L.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Bean, K. M.; Beegle, L. W.; hide

    2013-01-01

    MAHLI (Mars Hand Lens Imager) is a 2-megapixel focusable macro lens color camera on the turret on Curiosity's robotic arm. The investigation centers on stratigraphy, grain-scale texture, structure, mineralogy, and morphology of geologic materials at Curiosity's Gale robotic field site. MAHLI acquires focused images at working distances of 2.1 cm to infinity; for reference, at 2.1 cm the scale is 14 microns/pixel; at 6.9 cm it is 31 microns/pixel, like the Spirit and Opportunity Microscopic Imager (MI) cameras.

  9. Reading Materials in Large Print: A Resource Guide. Reference Circular No. 97-02.

    ERIC Educational Resources Information Center

    Mendle, Gillian, Comp.

    This reference circular contains information about large-print materials. Section 1 is an annotated list of selected sources of large-print materials available for purchase or loan. The sources are publishers or distributors, specialized libraries, and associations for persons with visual impairments. Several of these sources also provide general…

  10. 40 CFR 1060.810 - What materials does this part reference?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., July 26, 2004 1060.105, 1060.240 (d) American Boat and Yacht Council Material. Table 4 to this section lists material from the American Boat and Yacht Council that we have incorporated by reference. The... Yacht Council, 613 Third Street, Suite 10, Annapolis, MD 21403 or http://www.abycinc.org/. Table 4...

  11. Development of candidate reference materials for the measurement of lead in bone

    PubMed Central

    Hetter, Katherine M.; Bellis, David J.; Geraghty, Ciaran; Todd, Andrew C.; Parsons, Patrick J.

    2010-01-01

    The production of modest quantities of candidate bone lead (Pb) reference materials is described, and an optimized production procedure is presented. The reference materials were developed to enable an assessment of the interlaboratory agreement of laboratories measuring Pb in bone; method validation; and for calibration of solid sampling techniques such as laser ablation ICP-MS. Long bones obtained from Pb-dosed and undosed animals were selected to produce four different pools of a candidate powdered bone reference material. The Pb concentrations of these pools reflect both environmental and occupational exposure levels in humans. The animal bones were harvested post mortem, cleaned, defatted, and broken into pieces using the brittle fracture technique at liquid nitrogen temperature. The bone pieces were then ground in a knife mill to produce fragments of 2-mm size. These were further ground in an ultra-centrifugal mill, resulting in finely powdered bone material that was homogenized and then sampled-scooped into vials. Testing for contamination and homogeneity was performed via instrumental methods of analysis. PMID:18421443

  12. Shape optimization of solid-air porous phononic crystal slabs with widest full 3D bandgap for in-plane acoustic waves

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Luca; Bahr, Bichoy; Daniel, Luca; Weinstein, Dana; Ardito, Raffaele

    2017-09-01

    The use of Phononic Crystals (PnCs) as smart materials in structures and microstructures is growing due to their tunable dynamical properties and to the wide range of possible applications. PnCs are periodic structures that exhibit elastic wave scattering for a certain band of frequencies (called bandgap), depending on the geometric and material properties of the fundamental unit cell of the crystal. PnCs slabs can be represented by plane-extruded structures composed of a single material with periodic perforations. Such a configuration is very interesting, especially in Micro Electro-Mechanical Systems industry, due to the easy fabrication procedure. A lot of topologies can be found in the literature for PnCs with square-symmetric unit cell that exhibit complete 2D bandgaps; however, due to the application demand, it is desirable to find the best topologies in order to guarantee full bandgaps referred to in-plane wave propagation in the complete 3D structure. In this work, by means of a novel and fast implementation of the Bidirectional Evolutionary Structural Optimization technique, shape optimization is conducted on the hole shape obtaining several topologies, also with non-square-symmetric unit cell, endowed with complete 3D full bandgaps for in-plane waves. Model order reduction technique is adopted to reduce the computational time in the wave dispersion analysis. The 3D features of the PnC unit cell endowed with the widest full bandgap are then completely analyzed, paying attention to engineering design issues.

  13. Activity measurements of a suite of radionuclides (241Am, 239,240Pu, 238Pu, 238U, 234U, 235U, 232Th, 230Th, 228Th, 228Ra, 137Cs, 210Pb, 90Sr and 40K) in biota reference material (Ocean Shellfish): CCRI(II)-S3

    NASA Astrophysics Data System (ADS)

    Nour, S.; Karam, L. R.; Inn, K. G. W.

    2012-01-01

    In 2005, the CCRI decided that a comparison undertaken from 2002 to 2008 by the NIST (under the auspices of the Inter-America Metrology System [SIM]) in the development of a new biota (Ocean Shellfish) standard reference material (SRM) was sufficiently well constructed that it could be converted into a supplementary comparison under CCRI(II), with comparison identifier CCRI(II)-S3. This would enable the comparison to be used to support calibration and measurement capability (CMC) claims for radionuclide measurements in reference materials (specifically, animal-based organic materials). Previous comparisons of radionuclides have been of single or multiple nuclides in non-complex matrices and results of such could not be extended to support capabilities to measure the same nuclides in reference materials. The results of this comparison have been used to determine the certified reference value of the SRM. The key comparison working group (KCWG) of the CCRI(II) has approved this approach as a mechanism to link all the results to certified 'reference values' in lieu of the key comparison reference value (KCRV) of these specified radionuclides in this type of matrix (shellfish) so as to support CMCs of similar materials submitted by the present participants. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  14. 40 CFR 90.7 - Reference materials.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS General § 90.7 Reference materials... Fuels by the Research Method Appendix A to subpart D, Table 3. ASTM D2700-92: Standard Test Method for...

  15. 40 CFR 90.7 - Reference materials.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS General § 90.7 Reference materials... Fuels by the Research Method Appendix A to subpart D, Table 3. ASTM D2700-92: Standard Test Method for...

  16. 40 CFR 90.7 - Reference materials.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS General § 90.7 Reference materials... Fuels by the Research Method Appendix A to subpart D, Table 3. ASTM D2700-92: Standard Test Method for...

  17. The strength of compressed structures with CFRP materials reinforcement when exceeding the cross-section size

    NASA Astrophysics Data System (ADS)

    Polskoy, Petr; Mailyan, Dmitry; Georgiev, Sergey; Muradyan, Viktor

    2018-03-01

    The increase of high-rise construction volume or «High-Rise Construction» requires the use of high-strength concrete and that leads to the reduction in section size of structures and to the decrease in material consumption. First of all, it refers to the compressed elements for which, when the transverse dimensions are reduced, their flexibility and deformation increase but the load bearing capacity decreases. Growth in construction also leads to the increase of repair and restoration works or to the strengthening of structures. The most effective method of their strengthening in buildings of «High-Rise Construction» is the use of composite materials which reduces the weight of reinforcement elements and labour costs on execution of works. In this article the results of experimental research on strength and deformation of short compressed reinforced concrete structures, reinforced with external carbon fiber reinforcement, are presented. Their flexibility is λh=10, and the cross-section dimensions ratio b/h is 2, that is 1,5 times more, than recommended by standards in Russia. The following research was being done for three kinds of strained and deformed conditions with different variants of composite reinforcement. The results of the experiment proved the real efficiency of composite reinforcement of the compressed elements with sides ratio equal to 2, increasing the bearing capacity of pillars till 1,5 times. These results can be used for designing the buildings of different number of storeys.

  18. Selectivity of similar compounds' identification using IR spectrometry: β-Lactam antibiotics

    NASA Astrophysics Data System (ADS)

    Sadlej-Sosnowska, Nina; Ocios, Agnieszka; Fuks, Leon

    2006-07-01

    The study aims to develop a reliable, quantitative method for positive identification or discrimination of a substance, when it is compared to a set of similar ones. In the course of the study a group of structurally related compounds, namely a set of β-lactam antimicrobial agents has been explored. Identification of a substance was based on the comparison of its spectrum with that of a reference material by using two functional algorithms. The algorithm based on the calculation of correlation coefficient between the first derivatives of the spectra has been proved more powerful than that using the original spectra. Then the results in a few spectral regions were likened. Limiting values were proposed for correlation coefficients that allow for qualification of a substance as identical to the reference one.

  19. PolySac3DB: an annotated data base of 3 dimensional structures of polysaccharides.

    PubMed

    Sarkar, Anita; Pérez, Serge

    2012-11-14

    Polysaccharides are ubiquitously present in the living world. Their structural versatility makes them important and interesting components in numerous biological and technological processes ranging from structural stabilization to a variety of immunologically important molecular recognition events. The knowledge of polysaccharide three-dimensional (3D) structure is important in studying carbohydrate-mediated host-pathogen interactions, interactions with other bio-macromolecules, drug design and vaccine development as well as material science applications or production of bio-ethanol. PolySac3DB is an annotated database that contains the 3D structural information of 157 polysaccharide entries that have been collected from an extensive screening of scientific literature. They have been systematically organized using standard names in the field of carbohydrate research into 18 categories representing polysaccharide families. Structure-related information includes the saccharides making up the repeat unit(s) and their glycosidic linkages, the expanded 3D representation of the repeat unit, unit cell dimensions and space group, helix type, diffraction diagram(s) (when applicable), experimental and/or simulation methods used for structure description, link to the abstract of the publication, reference and the atomic coordinate files for visualization and download. The database is accompanied by a user-friendly graphical user interface (GUI). It features interactive displays of polysaccharide structures and customized search options for beginners and experts, respectively. The site also serves as an information portal for polysaccharide structure determination techniques. The web-interface also references external links where other carbohydrate-related resources are available. PolySac3DB is established to maintain information on the detailed 3D structures of polysaccharides. All the data and features are available via the web-interface utilizing the search engine and can be accessed at http://polysac3db.cermav.cnrs.fr.

  20. Material instabilities and their role for the initiation of boudinage and folding structures

    NASA Astrophysics Data System (ADS)

    Veveakis, Manolis; Peters, Max; Poulet, Thomas; Karrech, Ali; Herwegh, Marco; Regenauer-Lieb, Klaus

    2015-04-01

    Localized phenomena, such as pinch-and-swell boudinage or localized folds, are usually interpreted to arise from viscosity contrasts. These are caused by structural heterogeneities, such as geometric or material imperfections. An alternative possibility for strain localization exists in material science, where dynamic localization emerges out of a steady state for a given critical set of material parameters and loading rates (Montési and Zuber, 2002). In our contribution, we will investigate the conditions under which this type of instabilities triggers localized deformation. Moreover, we discuss whether geological materials necessarily require structural heterogeneities, such as weak seeds, in order to generate aforementioned localized structures. We set up a random distribution of grain sizes in a layer embedded in a matrix with a diffusion creep rheology. Deformation within the layer is accommodated by dislocation and diffusion creep as end member deformation mechanism. The grain size evolution follows the paleowattmeter scaling relationship for calcite creep (Austin and Evans, 2007), which is controlled by thermo-mechanical feedbacks (Herwegh et al., 2014). During the first strain increments in the numerical simulation, the layer establishes a viscous steady state, which is the systems' response to optimize energy following the paleowattmeter (Herwegh et al., 2014). With further loading, localization interestingly arises out of a homogeneous state. We will demonstrate the robustness of this numerical solution by identifying the natural mode shapes and frequencies of the simulated structure and material parameters, including geometric imperfections (Rudnicki and Rice, 1975). This technique aims at the determination of the spatial manifestation of the instability pattern (Peters et al., in review). The eigenvalues are thought to represent the nodal points, where the onset of (visco)-elasto-plastic localization can initiate in the structure (Rudnicki and Rice, 1975). The eigenmodes appear as sinusoidal vibrations with geometry- and material parameter-specific natural modal frequencies and shapes. In a next step, the eigenmodes are perturbed and superposed to the initial conditions. We observe that this pattern of perturbations guides the ultimate material bifurcation. Boudinage and folding can therefore be seen as either a pure geometric problem or a fundamental material bifurcation, which evolves out of homogeneous state. The latter class offers the great possibility to extract fundamental material parameters out of localized structures directly from field observations. REFERENCES Herwegh, M., Poulet, T., Karrech, A. and Regenauer-Lieb, K. (2014). From transient to steady state deformation and grain size: A thermodynamic approach using elasto-visco-plastic numerical modeling. Journal of Geophysical Research, 119. Montési, L.G.J. and Zuber, M.T. (2002). A unified description of localization for application to large-scale tectonics. Journal of Geophysical Research, 107. Peters, M., Veveakis, M., Poulet, T., Karrech, A., Herwegh, M. and Regenauer-Lieb Klaus (in review). Boudinage as a material instability of elasto-visco-plastic rocks. Submitted to Journal of Structural Geology. Rudnicki, J. W., Rice, J. R. (1975). Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of Mechanics and Physics of Solids, 23.

  1. The 3D Reference Earth Model (REM-3D): Update and Outlook

    NASA Astrophysics Data System (ADS)

    Lekic, V.; Moulik, P.; Romanowicz, B. A.; Dziewonski, A. M.

    2016-12-01

    Elastic properties of the Earth's interior (e.g. density, rigidity, compressibility, anisotropy) vary spatially due to changes in temperature, pressure, composition, and flow. In the 20th century, seismologists have constructed reference models of how these quantities vary with depth, notably the PREM model of Dziewonski and Anderson (1981). These 1D reference earth models have proven indispensable in earthquake location, imaging of interior structure, understanding material properties under extreme conditions, and as a reference in other fields, such as particle physics and astronomy. Over the past three decades, more sophisticated efforts by seismologists have yielded several generations of models of how properties vary not only with depth, but also laterally. Yet, though these three-dimensional (3D) models exhibit compelling similarities at large scales, differences in the methodology, representation of structure, and dataset upon which they are based, have prevented the creation of 3D community reference models. We propose to overcome these challenges by compiling, reconciling, and distributing a long period (>15 s) reference seismic dataset, from which we will construct a 3D seismic reference model (REM-3D) for the Earth's mantle, which will come in two flavors: a long wavelength smoothly parameterized model and a set of regional profiles. Here, we summarize progress made in the construction of the reference long period dataset, and present preliminary versions of the REM-3D in order to illustrate the two flavors of REM-3D and their relative advantages and disadvantages. As a community reference model and with fully quantified uncertainties and tradeoffs, REM-3D will facilitate Earth imaging studies, earthquake characterization, inferences on temperature and composition in the deep interior, and be of improved utility to emerging scientific endeavors, such as neutrino geoscience. In this presentation, we outline the outlook for setting up advisory community working groups and the community workshop that would assess progress, evaluate model and dataset performance, identify avenues for improvement, and recommend strategies for maximizing model adoption in and utility for the deep Earth community.

  2. Evaluation of the 34S/32S ratio of Soufre de Lacq elemental sulfur isotopic reference material by continuous flow isotope-ratio mass spectrometry

    USGS Publications Warehouse

    Qi, H.P.; Coplen, T.B.

    2003-01-01

    Soufre de Lacq elemental sulfur reference material (IAEA-S-4) isotopically is homogeneous in amounts as small as 41 ??g as determined by continuous flow isotope-ratio mass spectrometry. The ??34S value for this reference material is +16.90 ?? 0.12??? (1??) on a scale (Vienna Can??on Diablo troilite, VCDT) where IAEA-S-1 Ag2S is -0.3??? and IAEA-S-2 Ag2S is +22.67???. Published by Elsevier Science B.V.

  3. A difference in using atomic layer deposition or physical vapour deposition TiN as electrode material in metal-insulator-metal and metal-insulator-silicon capacitors.

    PubMed

    Groenland, A W; Wolters, R A M; Kovalgin, A Y; Schmitz, J

    2011-09-01

    In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the MIM capacitors the bottom electrode is a patterned 100 nm TiN layer (called BE type 1), deposited via sputtering, while MIS capacitors have a flat bottom electrode (called BE type 2-silicon substrate). A high quality 50-100 nm thick SiO2 layer, made by inductively-coupled plasma CVD at 150 degrees C, is deposited as a dielectric on top of both types of bottom electrodes. BE type 1 (MIM) capacitors have a varying from low to high concentration of structural defects in the SiO2 layer. BE type 2 (MIS) capacitors have a low concentration of structural defects and are used as a reference. Two sets of each capacitor design are fabricated with the TiN top electrode deposited either via physical vapour deposition (PVD, i.e., sputtering) or atomic layer deposition (ALD). The MIM and MIS capacitors are electrically characterized in terms of the leakage current at an electric field of 0.1 MV/cm (I leak) and for different structural defect concentrations. It is shown that the structural defects only show up in the electrical characteristics of BE type 1 capacitors with an ALD TiN-based top electrode. This is due to the excellent step coverage of the ALD process. This work clearly demonstrates the sensitivity to process-induced structural defects, when ALD is used as a step in process integration of conductors on insulation materials.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koponen, Kati; Soimakallio, Sampo; Kline, Keith L.

    In order to understand the climate effects of a bioenergy system, a comparison between the bioenergy system and a reference system is required. The reference system describes the situation that occurs in the absence of the bioenergy system with respect to the use of land, energy, and materials. The importance of reference systems is discussed in the literature but guidance on choosing suitable reference systems for assessing climate effects of bioenergy is limited. The reference system should align with the purpose of the study. Transparency of reference system assumptions is essential for proper interpretation of bioenergy assessments. This paper presentsmore » guidance for selecting suitable reference systems. Particular attention is given to choosing the land reference. If the goal is to study the climate effects of bioenergy as a part of total anthropogenic activity the reference system should illustrate what is expected in the absence of human activities. In such a case the suitable land reference is natural regeneration, and energy or material reference systems are not relevant. If the goal is to assess the effect of a change in bioenergy use, the reference system should incorporate human activities. In this case suitable reference systems describe the most likely alternative uses of the land, energy and materials in the absence of the change in bioenergy use. The definition of the reference system is furthermore subject to the temporal scope of the study. In practice, selecting and characterizing reference systems will involve various choices and uncertainties which should be considered carefully. As a result, it can be instructive to consider how alternative reference systems influence the results and conclusions drawn from bioenergy assessments.« less

  5. Accuracy of magnetic resonance based susceptibility measurements

    NASA Astrophysics Data System (ADS)

    Erdevig, Hannah E.; Russek, Stephen E.; Carnicka, Slavka; Stupic, Karl F.; Keenan, Kathryn E.

    2017-05-01

    Magnetic Resonance Imaging (MRI) is increasingly used to map the magnetic susceptibility of tissue to identify cerebral microbleeds associated with traumatic brain injury and pathological iron deposits associated with neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Accurate measurements of susceptibility are important for determining oxygen and iron content in blood vessels and brain tissue for use in noninvasive clinical diagnosis and treatment assessments. Induced magnetic fields with amplitude on the order of 100 nT, can be detected using MRI phase images. The induced field distributions can then be inverted to obtain quantitative susceptibility maps. The focus of this research was to determine the accuracy of MRI-based susceptibility measurements using simple phantom geometries and to compare the susceptibility measurements with magnetometry measurements where SI-traceable standards are available. The susceptibilities of paramagnetic salt solutions in cylindrical containers were measured as a function of orientation relative to the static MRI field. The observed induced fields as a function of orientation of the cylinder were in good agreement with simple models. The MRI susceptibility measurements were compared with SQUID magnetometry using NIST-traceable standards. MRI can accurately measure relative magnetic susceptibilities while SQUID magnetometry measures absolute magnetic susceptibility. Given the accuracy of moment measurements of tissue mimicking samples, and the need to look at small differences in tissue properties, the use of existing NIST standard reference materials to calibrate MRI reference structures is problematic and better reference materials are required.

  6. Analytical Bias Exceeding Desirable Quality Goal in 4 out of 5 Common Immunoassays: Results of a Native Single Serum Sample External Quality Assessment Program for Cobalamin, Folate, Ferritin, Thyroid-Stimulating Hormone, and Free T4 Analyses.

    PubMed

    Kristensen, Gunn B B; Rustad, Pål; Berg, Jens P; Aakre, Kristin M

    2016-09-01

    We undertook this study to evaluate method differences for 5 components analyzed by immunoassays, to explore whether the use of method-dependent reference intervals may compensate for method differences, and to investigate commutability of external quality assessment (EQA) materials. Twenty fresh native single serum samples, a fresh native serum pool, Nordic Federation of Clinical Chemistry Reference Serum X (serum X) (serum pool), and 2 EQA materials were sent to 38 laboratories for measurement of cobalamin, folate, ferritin, free T4, and thyroid-stimulating hormone (TSH) by 5 different measurement procedures [Roche Cobas (n = 15), Roche Modular (n = 4), Abbott Architect (n = 8), Beckman Coulter Unicel (n = 2), and Siemens ADVIA Centaur (n = 9)]. The target value for each component was calculated based on the mean of method means or measured by a reference measurement procedure (free T4). Quality specifications were based on biological variation. Local reference intervals were reported from all laboratories. Method differences that exceeded acceptable bias were found for all components except folate. Free T4 differences from the uncommonly used reference measurement procedure were large. Reference intervals differed between measurement procedures but also within 1 measurement procedure. The serum X material was commutable for all components and measurement procedures, whereas the EQA materials were noncommutable in 13 of 50 occasions (5 components, 5 methods, 2 EQA materials). The bias between the measurement procedures was unacceptably large in 4/5 tested components. Traceability to reference materials as claimed by the manufacturers did not lead to acceptable harmonization. Adjustment of reference intervals in accordance with method differences and use of commutable EQA samples are not implemented commonly. © 2016 American Association for Clinical Chemistry.

  7. Characterization of Low-Symmetry Structures from Phase Equilibrium of Fe-Al System-Microstructures and Mechanical Properties.

    PubMed

    Matysik, Piotr; Jóźwiak, Stanisław; Czujko, Tomasz

    2015-03-04

    Fe-Al intermetallic alloys with aluminum content over 60 at% are in the area of the phase equilibrium diagram that is considerably less investigated in comparison to the high-symmetry Fe₃Al and FeAl phases. Ambiguous crystallographic information and incoherent data referring to the phase equilibrium diagrams placed in a high-aluminum range have caused confusions and misinformation. Nowadays unequivocal material properties description of FeAl₂, Fe₂Al₅ and FeAl₃ intermetallic alloys is still incomplete. In this paper, the influence of aluminum content and processing parameters on phase composition is presented. The occurrence of low-symmetry FeAl₂, Fe₂Al₅ and FeAl₃ structures determined by chemical composition and phase transformations was defined by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) examinations. These results served to verify diffraction investigations (XRD) and to explain the mechanical properties of cast materials such as: hardness, Young's modulus and fracture toughness evaluated using the nano-indentation technique.

  8. Analysis of building envelope insulation performance utilizing integrated temperature and humidity sensors.

    PubMed

    Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei

    2012-01-01

    A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments.

  9. Analysis of Building Envelope Insulation Performance Utilizing Integrated Temperature and Humidity Sensors

    PubMed Central

    Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei

    2012-01-01

    A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments. PMID:23012529

  10. Effect of doping on the modification of polycrystalline silicon by spontaneous reduction of diazonium salts

    NASA Astrophysics Data System (ADS)

    Girard, A.; Coulon, N.; Cardinaud, C.; Mohammed-Brahim, T.; Geneste, F.

    2014-09-01

    The chemical modification of doped polycrystalline silicon materials (N+, N++ and P++) and silicon (1 0 0) and (1 1 1) used as references is investigated by spontaneous reduction of diazonium salts. The effectiveness of the grafting process on all polySi surfaces is shown by AFM and XPS analyses. The effect of substrate doping on the efficiency of the electrografting process is compared by using the thicknesses of the deposited organic films. For a better accuracy, two methods are used to estimate the thicknesses: XPS and the coupling of a O2 plasma etching with AFM measurement. Structural characteristics of the poly-Si films were investigated by Scanning Electron Microscopy and X-ray diffraction to find a correlation between the structure of the material and its reactivity. Different parameters that could have an impact on the efficiency of the grafting procedure are discussed. The observed differences between differently doped silicon surfaces is rather limited, this is in agreement with the radical character of the reacting species.

  11. Selected Bibliography on Culture and Cultural Materials, Preliminary Edition. Series A: Reference Materials, Human Relations in Cultural Context.

    ERIC Educational Resources Information Center

    Condon, E. C.; And Others

    Included in this bibliography are references to resources and materials available to the teacher and educator on human relations and cultural education. The bibliography is divided into three sections on culture, specific culture, and adult bilingual-bicultural education. The section on culture presents background information on the relation of…

  12. River bottom sediment from the Vistula as matrix of candidate for a new reference material.

    PubMed

    Kiełbasa, Anna; Buszewski, Bogusław

    2017-08-01

    Bottom sediments are very important in aquatic ecosystems. The sediments accumulate heavy metals and compounds belonging to the group of persistent organic pollutants. The accelerated solvent extraction (ASE) was used for extraction of 16 compounds from PAH group from bottom sediment of Vistula. For the matrix of candidate of a new reference material, moisture content, particle size, loss on ignition, pH, and total organic carbon were determined. A gas chromatograph with a selective mass detector (GC/MS) was used for the final analysis. The obtained recoveries were from 86% (SD=6.9) for anthracene to 119% (SD=5.4) for dibenzo(ah)anthracene. For the candidate for a new reference material, homogeneity and analytes content were determined using a validated method. The results are a very important part of the development and certification of a new reference materials. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Certification of reference materials for the determination of alkylphenols.

    PubMed

    Hanari, Nobuyasu; Ishikawa, Keiichiro; Shimizu, Yoshitaka; Otsuka, Satoko; Iwasawa, Ryoko; Fujiki, Naomi; Numata, Masahiko; Yarita, Takashi; Kato, Kenji

    2015-04-01

    Certified reference materials (CRMs) are playing an increasingly important role in national and international standardizing activities. In Japan, primary standard solutions for analyses of endocrine disrupters are supplied under the national standards dissemination system named the Japan Calibration Service System (JCSS). For the traceability on reference materials used for preparation of the primary standard solutions based on the JCSS, the National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (NMIJ/AIST) has developed and certified high-purity reference materials of alkylphenols as NMIJ CRMs, such as 4-n-nonylphenol, 4-tert-octylphenol, 4-n-heptylphenol, 4-tert-butylphenol, and 2,4-dichlorophenol. Thereafter, it is essential to determine the alkylphenols by using these solutions based on the JCSS for environmental monitoring and risk assessments because analytical values obtained by using the solutions can ensure the reliability and traceability of the chemical analyses.

  14. A feasibility study for producing an egg matrix candidate reference material for the polyether ionophore salinomycin.

    PubMed

    Ferreira, Rosana Gomes; Monteiro, Mychelle Alves; Pereira, Mararlene Ulberg; da Costa, Rafaela Pinto; Spisso, Bernardete Ferraz; Calado, Veronica

    2016-08-01

    The aim of this work was to study the feasibility of producing an egg matrix candidate reference material for salinomycin. Preservation techniques investigated were freeze-drying and spray drying dehydration. Homogeneity and stability studies of the produced batches were conducted according to ISO Guides 34 and 35. The results showed that all produced batches were homogeneous and both freeze-drying and spray drying techniques were suitable for matrix dehydrating, ensuring the material stability. In order to preserve the material integrity, it must be transported within the temperature range of -20 up to 25°C. The results constitute an important step towards the development of an egg matrix reference material for salinomycin is possible. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Accessing genetic diversity for crop improvement.

    PubMed

    Glaszmann, J C; Kilian, B; Upadhyaya, H D; Varshney, R K

    2010-04-01

    Vast germplasm collections are accessible but their use for crop improvement is limited-efficiently accessing genetic diversity is still a challenge. Molecular markers have clarified the structure of genetic diversity in a broad range of crops. Recent developments have made whole-genome surveys and gene-targeted surveys possible, shedding light on population dynamics and on the impact of selection during domestication. Thanks to this new precision, germplasm description has gained analytical power for resolving the genetic basis of trait variation and adaptation in crops such as major cereals, chickpea, grapevine, cacao, or banana. The challenge now is to finely characterize all the facets of plant behavior in carefully chosen materials. We suggest broadening the use of 'core reference sets' so as to facilitate material sharing within the scientific community.

  16. Growth, piezoelectric study and particle size dependent SHG of an 80 mm long SR grown imidazolium l-tartrate single crystals

    NASA Astrophysics Data System (ADS)

    Jauhar, RO MU; Era, Paavai; Murugakoothan, P.

    2018-05-01

    Single crystal of imidazolium l-tartrate (IMLT), an organic nonlinear optical material, was successfully grown by slow evaporation solution growth technique (SEST) and Sankaranarayanan - Ramasamy (SR) method. The crystal structure and its lattice parameters were confirmed by single crystal X-ray diffraction study. The IMLT crystal belongs to monoclinic crystal system having a = 7.579(6) Å, b = 6.911(4) Å, c = 8.9281(5) Å, β = 101.45(8)°, volume, V = 458.33 Å3. The d33 coefficient found from the the piezoelectric study is 23 pC/N. The relative second harmonic generation efficiency of IMLT was found to be 3.16 times that of reference KDP material.

  17. Evaluation of accuracy of complete-arch multiple-unit abutment-level dental implant impressions using different impression and splinting materials.

    PubMed

    Buzayan, Muaiyed; Baig, Mirza Rustum; Yunus, Norsiah

    2013-01-01

    This in vitro study evaluated the accuracy of multiple-unit dental implant casts obtained from splinted or nonsplinted direct impression techniques using various splinting materials by comparing the casts to the reference models. The effect of two different impression materials on the accuracy of the implant casts was also evaluated for abutment-level impressions. A reference model with six internal-connection implant replicas placed in the completely edentulous mandibular arch and connected to multi-base abutments was fabricated from heat-curing acrylic resin. Forty impressions of the reference model were made, 20 each with polyether (PE) and polyvinylsiloxane (PVS) impression materials using the open tray technique. The PE and PVS groups were further subdivided into four subgroups of five each on the bases of splinting type: no splinting, bite registration PE, bite registration addition silicone, or autopolymerizing acrylic resin. The positional accuracy of the implant replica heads was measured on the poured casts using a coordinate measuring machine to assess linear differences in interimplant distances in all three axes. The collected data (linear and three-dimensional [3D] displacement values) were compared with the measurements calculated on the reference resin model and analyzed with nonparametric tests (Kruskal-Wallis and Mann-Whitney). No significant differences were found between the various splinting groups for both PE and PVS impression materials in terms of linear and 3D distortions. However, small but significant differences were found between the two impression materials (PVS, 91 μm; PE, 103 μm) in terms of 3D discrepancies, irrespective of the splinting technique employed. Casts obtained from both impression materials exhibited differences from the reference model. The impression material influenced impression inaccuracy more than the splinting material for multiple-unit abutment-level impressions.

  18. Certified reference materials for testing of the presence/absence of Staphylococcus aureus enterotoxin A (SEA) in cheese.

    PubMed

    Zeleny, Reinhard; Nia, Yacine; Schimmel, Heinz; Mutel, Isabelle; Hennekinne, Jacques-Antoine; Emteborg, Håkan; Charoud-Got, Jean; Auvray, Frédéric

    2016-08-01

    Staphylococcal enterotoxins (SEs) account for a substantial number of food-poisoning outbreaks. European legislation (Commission Regulation 1441/2007) stipulates the reference procedure for SE analysis in milk and dairy products, which is based on extraction, dialysis concentration and immunochemical detection using one of two approved assays (VIDAS(®) SET2, Ridascreen(®) SET Total). However, certified reference materials (CRMs) are lacking to support laboratories in performing reliable detection of Staphylococcus aureus enterotoxin A (SEA) in relevant matrices at sub-nanogram per gram levels. The certification of a set of three reference materials (blank and two SEA-containing materials) for testing of the presence/absence of SEA in cheese is described. The reference procedure was applied in an intercomparison with 15 laboratories, and results were reported in a qualitative manner (presence or absence of SEA in the sample). No false-negative or false-positive results were obtained. The certified values were stated as diagnostic specificity (blank material) or diagnostic sensitivity (SEA-containing materials) and were 100 % in all cases. Stability studies demonstrated suitable material stability when stored cooled or frozen. An in-house study on the recovery of SEA in the cheese materials using a double-sandwich enzyme-linked immunosorbent assay (ELISA) revealed comparable recovery values of around 45 % at the two spiking levels and in both the SEA-containing CRMs as well as blank CRM freshly spiked prior to analysis. The values were also comparable over time and among different analysts. The materials provide valuable support to laboratories for method validation and method performance verification and will increase the reliability of measuring SEA in cheese.

  19. Experimental Study on Reaction Characteristics of PTFE/Ti/W Energetic Materials under Explosive Loading

    PubMed Central

    Li, Yan; Jiang, Chunlan; Wang, Zaicheng; Luo, Puguang

    2016-01-01

    Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene)/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature. PMID:28774056

  20. Agriculture on Mars: Soils for Plant Growth

    NASA Technical Reports Server (NTRS)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

Top