Sample records for structural modeling predicted

  1. RNA secondary structure prediction with pseudoknots: Contribution of algorithm versus energy model.

    PubMed

    Jabbari, Hosna; Wark, Ian; Montemagno, Carlo

    2018-01-01

    RNA is a biopolymer with various applications inside the cell and in biotechnology. Structure of an RNA molecule mainly determines its function and is essential to guide nanostructure design. Since experimental structure determination is time-consuming and expensive, accurate computational prediction of RNA structure is of great importance. Prediction of RNA secondary structure is relatively simpler than its tertiary structure and provides information about its tertiary structure, therefore, RNA secondary structure prediction has received attention in the past decades. Numerous methods with different folding approaches have been developed for RNA secondary structure prediction. While methods for prediction of RNA pseudoknot-free structure (structures with no crossing base pairs) have greatly improved in terms of their accuracy, methods for prediction of RNA pseudoknotted secondary structure (structures with crossing base pairs) still have room for improvement. A long-standing question for improving the prediction accuracy of RNA pseudoknotted secondary structure is whether to focus on the prediction algorithm or the underlying energy model, as there is a trade-off on computational cost of the prediction algorithm versus the generality of the method. The aim of this work is to argue when comparing different methods for RNA pseudoknotted structure prediction, the combination of algorithm and energy model should be considered and a method should not be considered superior or inferior to others if they do not use the same scoring model. We demonstrate that while the folding approach is important in structure prediction, it is not the only important factor in prediction accuracy of a given method as the underlying energy model is also as of great value. Therefore we encourage researchers to pay particular attention in comparing methods with different energy models.

  2. CONFOLD2: improved contact-driven ab initio protein structure modeling.

    PubMed

    Adhikari, Badri; Cheng, Jianlin

    2018-01-25

    Contact-guided protein structure prediction methods are becoming more and more successful because of the latest advances in residue-residue contact prediction. To support contact-driven structure prediction, effective tools that can quickly build tertiary structural models of good quality from predicted contacts need to be developed. We develop an improved contact-driven protein modelling method, CONFOLD2, and study how it may be effectively used for ab initio protein structure prediction with predicted contacts as input. It builds models using various subsets of input contacts to explore the fold space under the guidance of a soft square energy function, and then clusters the models to obtain the top five models. CONFOLD2 obtains an average reconstruction accuracy of 0.57 TM-score for the 150 proteins in the PSICOV contact prediction dataset. When benchmarked on the CASP11 contacts predicted using CONSIP2 and CASP12 contacts predicted using Raptor-X, CONFOLD2 achieves a mean TM-score of 0.41 on both datasets. CONFOLD2 allows to quickly generate top five structural models for a protein sequence when its secondary structures and contacts predictions at hand. The source code of CONFOLD2 is publicly available at https://github.com/multicom-toolbox/CONFOLD2/ .

  3. Template-based modeling and ab initio refinement of protein oligomer structures using GALAXY in CAPRI round 30.

    PubMed

    Lee, Hasup; Baek, Minkyung; Lee, Gyu Rie; Park, Sangwoo; Seok, Chaok

    2017-03-01

    Many proteins function as homo- or hetero-oligomers; therefore, attempts to understand and regulate protein functions require knowledge of protein oligomer structures. The number of available experimental protein structures is increasing, and oligomer structures can be predicted using the experimental structures of related proteins as templates. However, template-based models may have errors due to sequence differences between the target and template proteins, which can lead to functional differences. Such structural differences may be predicted by loop modeling of local regions or refinement of the overall structure. In CAPRI (Critical Assessment of PRotein Interactions) round 30, we used recently developed features of the GALAXY protein modeling package, including template-based structure prediction, loop modeling, model refinement, and protein-protein docking to predict protein complex structures from amino acid sequences. Out of the 25 CAPRI targets, medium and acceptable quality models were obtained for 14 and 1 target(s), respectively, for which proper oligomer or monomer templates could be detected. Symmetric interface loop modeling on oligomer model structures successfully improved model quality, while loop modeling on monomer model structures failed. Overall refinement of the predicted oligomer structures consistently improved the model quality, in particular in interface contacts. Proteins 2017; 85:399-407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Dam-Break Flooding and Structural Damage in a Residential Neighborhood: Performance of a coupled hydrodynamic-damage model

    NASA Astrophysics Data System (ADS)

    Sanders, B. F.; Gallegos, H. A.; Schubert, J. E.

    2011-12-01

    The Baldwin Hills dam-break flood and associated structural damage is investigated in this study. The flood caused high velocity flows exceeding 5 m/s which destroyed 41 wood-framed residential structures, 16 of which were completed washed out. Damage is predicted by coupling a calibrated hydrodynamic flood model based on the shallow-water equations to structural damage models. The hydrodynamic and damage models are two-way coupled so building failure is predicted upon exceedance of a hydraulic intensity parameter, which in turn triggers a localized reduction in flow resistance which affects flood intensity predictions. Several established damage models and damage correlations reported in the literature are tested to evaluate the predictive skill for two damage states defined by destruction (Level 2) and washout (Level 3). Results show that high-velocity structural damage can be predicted with a remarkable level of skill using established damage models, but only with two-way coupling of the hydrodynamic and damage models. In contrast, when structural failure predictions have no influence on flow predictions, there is a significant reduction in predictive skill. Force-based damage models compare well with a subset of the damage models which were devised for similar types of structures. Implications for emergency planning and preparedness as well as monetary damage estimation are discussed.

  5. Large-scale model quality assessment for improving protein tertiary structure prediction.

    PubMed

    Cao, Renzhi; Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin

    2015-06-15

    Sampling structural models and ranking them are the two major challenges of protein structure prediction. Traditional protein structure prediction methods generally use one or a few quality assessment (QA) methods to select the best-predicted models, which cannot consistently select relatively better models and rank a large number of models well. Here, we develop a novel large-scale model QA method in conjunction with model clustering to rank and select protein structural models. It unprecedentedly applied 14 model QA methods to generate consensus model rankings, followed by model refinement based on model combination (i.e. averaging). Our experiment demonstrates that the large-scale model QA approach is more consistent and robust in selecting models of better quality than any individual QA method. Our method was blindly tested during the 11th Critical Assessment of Techniques for Protein Structure Prediction (CASP11) as MULTICOM group. It was officially ranked third out of all 143 human and server predictors according to the total scores of the first models predicted for 78 CASP11 protein domains and second according to the total scores of the best of the five models predicted for these domains. MULTICOM's outstanding performance in the extremely competitive 2014 CASP11 experiment proves that our large-scale QA approach together with model clustering is a promising solution to one of the two major problems in protein structure modeling. The web server is available at: http://sysbio.rnet.missouri.edu/multicom_cluster/human/. © The Author 2015. Published by Oxford University Press.

  6. ProTSAV: A protein tertiary structure analysis and validation server.

    PubMed

    Singh, Ankita; Kaushik, Rahul; Mishra, Avinash; Shanker, Asheesh; Jayaram, B

    2016-01-01

    Quality assessment of predicted model structures of proteins is as important as the protein tertiary structure prediction. A highly efficient quality assessment of predicted model structures directs further research on function. Here we present a new server ProTSAV, capable of evaluating predicted model structures based on some popular online servers and standalone tools. ProTSAV furnishes the user with a single quality score in case of individual protein structure along with a graphical representation and ranking in case of multiple protein structure assessment. The server is validated on ~64,446 protein structures including experimental structures from RCSB and predicted model structures for CASP targets and from public decoy sets. ProTSAV succeeds in predicting quality of protein structures with a specificity of 100% and a sensitivity of 98% on experimentally solved structures and achieves a specificity of 88%and a sensitivity of 91% on predicted protein structures of CASP11 targets under 2Å.The server overcomes the limitations of any single server/method and is seen to be robust in helping in quality assessment. ProTSAV is freely available at http://www.scfbio-iitd.res.in/software/proteomics/protsav.jsp. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Exploring Human Diseases and Biological Mechanisms by Protein Structure Prediction and Modeling.

    PubMed

    Wang, Juexin; Luttrell, Joseph; Zhang, Ning; Khan, Saad; Shi, NianQing; Wang, Michael X; Kang, Jing-Qiong; Wang, Zheng; Xu, Dong

    2016-01-01

    Protein structure prediction and modeling provide a tool for understanding protein functions by computationally constructing protein structures from amino acid sequences and analyzing them. With help from protein prediction tools and web servers, users can obtain the three-dimensional protein structure models and gain knowledge of functions from the proteins. In this chapter, we will provide several examples of such studies. As an example, structure modeling methods were used to investigate the relation between mutation-caused misfolding of protein and human diseases including epilepsy and leukemia. Protein structure prediction and modeling were also applied in nucleotide-gated channels and their interaction interfaces to investigate their roles in brain and heart cells. In molecular mechanism studies of plants, rice salinity tolerance mechanism was studied via structure modeling on crucial proteins identified by systems biology analysis; trait-associated protein-protein interactions were modeled, which sheds some light on the roles of mutations in soybean oil/protein content. In the age of precision medicine, we believe protein structure prediction and modeling will play more and more important roles in investigating biomedical mechanism of diseases and drug design.

  8. Designing and benchmarking the MULTICOM protein structure prediction system

    PubMed Central

    2013-01-01

    Background Predicting protein structure from sequence is one of the most significant and challenging problems in bioinformatics. Numerous bioinformatics techniques and tools have been developed to tackle almost every aspect of protein structure prediction ranging from structural feature prediction, template identification and query-template alignment to structure sampling, model quality assessment, and model refinement. How to synergistically select, integrate and improve the strengths of the complementary techniques at each prediction stage and build a high-performance system is becoming a critical issue for constructing a successful, competitive protein structure predictor. Results Over the past several years, we have constructed a standalone protein structure prediction system MULTICOM that combines multiple sources of information and complementary methods at all five stages of the protein structure prediction process including template identification, template combination, model generation, model assessment, and model refinement. The system was blindly tested during the ninth Critical Assessment of Techniques for Protein Structure Prediction (CASP9) in 2010 and yielded very good performance. In addition to studying the overall performance on the CASP9 benchmark, we thoroughly investigated the performance and contributions of each component at each stage of prediction. Conclusions Our comprehensive and comparative study not only provides useful and practical insights about how to select, improve, and integrate complementary methods to build a cutting-edge protein structure prediction system but also identifies a few new sources of information that may help improve the design of a protein structure prediction system. Several components used in the MULTICOM system are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. PMID:23442819

  9. Thermal and structural analysis of the GOES scan mirror's on orbit performance

    NASA Technical Reports Server (NTRS)

    Zurmehly, G. E.; Hookman, R. A.

    1991-01-01

    The on-orbit performance of the GOES satellite's scan mirror has been predicted by means of thermal, structural, and optical models. A simpler-than-conventional thermal model was used to reduce the time required to obtain orbital predictions, and the structural model was used to predict on-earth gravity sag and on-orbit distortions. The transfer of data from the thermal model to the structural model was automated for a given set of thermal nodes and structural grids.

  10. Uncertainty aggregation and reduction in structure-material performance prediction

    NASA Astrophysics Data System (ADS)

    Hu, Zhen; Mahadevan, Sankaran; Ao, Dan

    2018-02-01

    An uncertainty aggregation and reduction framework is presented for structure-material performance prediction. Different types of uncertainty sources, structural analysis model, and material performance prediction model are connected through a Bayesian network for systematic uncertainty aggregation analysis. To reduce the uncertainty in the computational structure-material performance prediction model, Bayesian updating using experimental observation data is investigated based on the Bayesian network. It is observed that the Bayesian updating results will have large error if the model cannot accurately represent the actual physics, and that this error will be propagated to the predicted performance distribution. To address this issue, this paper proposes a novel uncertainty reduction method by integrating Bayesian calibration with model validation adaptively. The observation domain of the quantity of interest is first discretized into multiple segments. An adaptive algorithm is then developed to perform model validation and Bayesian updating over these observation segments sequentially. Only information from observation segments where the model prediction is highly reliable is used for Bayesian updating; this is found to increase the effectiveness and efficiency of uncertainty reduction. A composite rotorcraft hub component fatigue life prediction model, which combines a finite element structural analysis model and a material damage model, is used to demonstrate the proposed method.

  11. A sampling-based method for ranking protein structural models by integrating multiple scores and features.

    PubMed

    Shi, Xiaohu; Zhang, Jingfen; He, Zhiquan; Shang, Yi; Xu, Dong

    2011-09-01

    One of the major challenges in protein tertiary structure prediction is structure quality assessment. In many cases, protein structure prediction tools generate good structural models, but fail to select the best models from a huge number of candidates as the final output. In this study, we developed a sampling-based machine-learning method to rank protein structural models by integrating multiple scores and features. First, features such as predicted secondary structure, solvent accessibility and residue-residue contact information are integrated by two Radial Basis Function (RBF) models trained from different datasets. Then, the two RBF scores and five selected scoring functions developed by others, i.e., Opus-CA, Opus-PSP, DFIRE, RAPDF, and Cheng Score are synthesized by a sampling method. At last, another integrated RBF model ranks the structural models according to the features of sampling distribution. We tested the proposed method by using two different datasets, including the CASP server prediction models of all CASP8 targets and a set of models generated by our in-house software MUFOLD. The test result shows that our method outperforms any individual scoring function on both best model selection, and overall correlation between the predicted ranking and the actual ranking of structural quality.

  12. Methods for evaluating the predictive accuracy of structural dynamic models

    NASA Technical Reports Server (NTRS)

    Hasselman, Timothy K.; Chrostowski, Jon D.

    1991-01-01

    Modeling uncertainty is defined in terms of the difference between predicted and measured eigenvalues and eigenvectors. Data compiled from 22 sets of analysis/test results was used to create statistical databases for large truss-type space structures and both pretest and posttest models of conventional satellite-type space structures. Modeling uncertainty is propagated through the model to produce intervals of uncertainty on frequency response functions, both amplitude and phase. This methodology was used successfully to evaluate the predictive accuracy of several structures, including the NASA CSI Evolutionary Structure tested at Langley Research Center. Test measurements for this structure were within + one-sigma intervals of predicted accuracy for the most part, demonstrating the validity of the methodology and computer code.

  13. Large-scale structure prediction by improved contact predictions and model quality assessment.

    PubMed

    Michel, Mirco; Menéndez Hurtado, David; Uziela, Karolis; Elofsson, Arne

    2017-07-15

    Accurate contact predictions can be used for predicting the structure of proteins. Until recently these methods were limited to very big protein families, decreasing their utility. However, recent progress by combining direct coupling analysis with machine learning methods has made it possible to predict accurate contact maps for smaller families. To what extent these predictions can be used to produce accurate models of the families is not known. We present the PconsFold2 pipeline that uses contact predictions from PconsC3, the CONFOLD folding algorithm and model quality estimations to predict the structure of a protein. We show that the model quality estimation significantly increases the number of models that reliably can be identified. Finally, we apply PconsFold2 to 6379 Pfam families of unknown structure and find that PconsFold2 can, with an estimated 90% specificity, predict the structure of up to 558 Pfam families of unknown structure. Out of these, 415 have not been reported before. Datasets as well as models of all the 558 Pfam families are available at http://c3.pcons.net/ . All programs used here are freely available. arne@bioinfo.se. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  14. A semi-supervised learning approach for RNA secondary structure prediction.

    PubMed

    Yonemoto, Haruka; Asai, Kiyoshi; Hamada, Michiaki

    2015-08-01

    RNA secondary structure prediction is a key technology in RNA bioinformatics. Most algorithms for RNA secondary structure prediction use probabilistic models, in which the model parameters are trained with reliable RNA secondary structures. Because of the difficulty of determining RNA secondary structures by experimental procedures, such as NMR or X-ray crystal structural analyses, there are still many RNA sequences that could be useful for training whose secondary structures have not been experimentally determined. In this paper, we introduce a novel semi-supervised learning approach for training parameters in a probabilistic model of RNA secondary structures in which we employ not only RNA sequences with annotated secondary structures but also ones with unknown secondary structures. Our model is based on a hybrid of generative (stochastic context-free grammars) and discriminative models (conditional random fields) that has been successfully applied to natural language processing. Computational experiments indicate that the accuracy of secondary structure prediction is improved by incorporating RNA sequences with unknown secondary structures into training. To our knowledge, this is the first study of a semi-supervised learning approach for RNA secondary structure prediction. This technique will be useful when the number of reliable structures is limited. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model

    PubMed Central

    Li, Xiaoqing; Wang, Yu

    2018-01-01

    Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing technology. PMID:29351254

  16. Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model.

    PubMed

    Xin, Jingzhou; Zhou, Jianting; Yang, Simon X; Li, Xiaoqing; Wang, Yu

    2018-01-19

    Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing technology.

  17. Three-dimensional (3D) structure prediction of the American and African oil-palms β-ketoacyl-[ACP] synthase-II protein by comparative modelling

    PubMed Central

    Wang, Edina; Chinni, Suresh; Bhore, Subhash Janardhan

    2014-01-01

    Background: The fatty-acid profile of the vegetable oils determines its properties and nutritional value. Palm-oil obtained from the African oil-palm [Elaeis guineensis Jacq. (Tenera)] contains 44% palmitic acid (C16:0), but, palm-oil obtained from the American oilpalm [Elaeis oleifera] contains only 25% C16:0. In part, the b-ketoacyl-[ACP] synthase II (KASII) [EC: 2.3.1.179] protein is responsible for the high level of C16:0 in palm-oil derived from the African oil-palm. To understand more about E. guineensis KASII (EgKASII) and E. oleifera KASII (EoKASII) proteins, it is essential to know its structures. Hence, this study was undertaken. Objective: The objective of this study was to predict three-dimensional (3D) structure of EgKASII and EoKASII proteins using molecular modelling tools. Materials and Methods: The amino-acid sequences for KASII proteins were retrieved from the protein database of National Center for Biotechnology Information (NCBI), USA. The 3D structures were predicted for both proteins using homology modelling and ab-initio technique approach of protein structure prediction. The molecular dynamics (MD) simulation was performed to refine the predicted structures. The predicted structure models were evaluated and root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values were calculated. Results: The homology modelling showed that EgKASII and EoKASII proteins are 78% and 74% similar with Streptococcus pneumonia KASII and Brucella melitensis KASII, respectively. The EgKASII and EoKASII structures predicted by using ab-initio technique approach shows 6% and 9% deviation to its structures predicted by homology modelling, respectively. The structure refinement and validation confirmed that the predicted structures are accurate. Conclusion: The 3D structures for EgKASII and EoKASII proteins were predicted. However, further research is essential to understand the interaction of EgKASII and EoKASII proteins with its substrates. PMID:24748752

  18. Three-dimensional (3D) structure prediction of the American and African oil-palms β-ketoacyl-[ACP] synthase-II protein by comparative modelling.

    PubMed

    Wang, Edina; Chinni, Suresh; Bhore, Subhash Janardhan

    2014-01-01

    The fatty-acid profile of the vegetable oils determines its properties and nutritional value. Palm-oil obtained from the African oil-palm [Elaeis guineensis Jacq. (Tenera)] contains 44% palmitic acid (C16:0), but, palm-oil obtained from the American oilpalm [Elaeis oleifera] contains only 25% C16:0. In part, the b-ketoacyl-[ACP] synthase II (KASII) [EC: 2.3.1.179] protein is responsible for the high level of C16:0 in palm-oil derived from the African oil-palm. To understand more about E. guineensis KASII (EgKASII) and E. oleifera KASII (EoKASII) proteins, it is essential to know its structures. Hence, this study was undertaken. The objective of this study was to predict three-dimensional (3D) structure of EgKASII and EoKASII proteins using molecular modelling tools. The amino-acid sequences for KASII proteins were retrieved from the protein database of National Center for Biotechnology Information (NCBI), USA. The 3D structures were predicted for both proteins using homology modelling and ab-initio technique approach of protein structure prediction. The molecular dynamics (MD) simulation was performed to refine the predicted structures. The predicted structure models were evaluated and root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values were calculated. The homology modelling showed that EgKASII and EoKASII proteins are 78% and 74% similar with Streptococcus pneumonia KASII and Brucella melitensis KASII, respectively. The EgKASII and EoKASII structures predicted by using ab-initio technique approach shows 6% and 9% deviation to its structures predicted by homology modelling, respectively. The structure refinement and validation confirmed that the predicted structures are accurate. The 3D structures for EgKASII and EoKASII proteins were predicted. However, further research is essential to understand the interaction of EgKASII and EoKASII proteins with its substrates.

  19. Structure Prediction of the Second Extracellular Loop in G-Protein-Coupled Receptors

    PubMed Central

    Kmiecik, Sebastian; Jamroz, Michal; Kolinski, Michal

    2014-01-01

    G-protein-coupled receptors (GPCRs) play key roles in living organisms. Therefore, it is important to determine their functional structures. The second extracellular loop (ECL2) is a functionally important region of GPCRs, which poses significant challenge for computational structure prediction methods. In this work, we evaluated CABS, a well-established protein modeling tool for predicting ECL2 structure in 13 GPCRs. The ECL2s (with between 13 and 34 residues) are predicted in an environment of other extracellular loops being fully flexible and the transmembrane domain fixed in its x-ray conformation. The modeling procedure used theoretical predictions of ECL2 secondary structure and experimental constraints on disulfide bridges. Our approach yielded ensembles of low-energy conformers and the most populated conformers that contained models close to the available x-ray structures. The level of similarity between the predicted models and x-ray structures is comparable to that of other state-of-the-art computational methods. Our results extend other studies by including newly crystallized GPCRs. PMID:24896119

  20. Compound Structure-Independent Activity Prediction in High-Dimensional Target Space.

    PubMed

    Balfer, Jenny; Hu, Ye; Bajorath, Jürgen

    2014-08-01

    Profiling of compound libraries against arrays of targets has become an important approach in pharmaceutical research. The prediction of multi-target compound activities also represents an attractive task for machine learning with potential for drug discovery applications. Herein, we have explored activity prediction in high-dimensional target space. Different types of models were derived to predict multi-target activities. The models included naïve Bayesian (NB) and support vector machine (SVM) classifiers based upon compound structure information and NB models derived on the basis of activity profiles, without considering compound structure. Because the latter approach can be applied to incomplete training data and principally depends on the feature independence assumption, SVM modeling was not applicable in this case. Furthermore, iterative hybrid NB models making use of both activity profiles and compound structure information were built. In high-dimensional target space, NB models utilizing activity profile data were found to yield more accurate activity predictions than structure-based NB and SVM models or hybrid models. An in-depth analysis of activity profile-based models revealed the presence of correlation effects across different targets and rationalized prediction accuracy. Taken together, the results indicate that activity profile information can be effectively used to predict the activity of test compounds against novel targets. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Automatically updating predictive modeling workflows support decision-making in drug design.

    PubMed

    Muegge, Ingo; Bentzien, Jörg; Mukherjee, Prasenjit; Hughes, Robert O

    2016-09-01

    Using predictive models for early decision-making in drug discovery has become standard practice. We suggest that model building needs to be automated with minimum input and low technical maintenance requirements. Models perform best when tailored to answering specific compound optimization related questions. If qualitative answers are required, 2-bin classification models are preferred. Integrating predictive modeling results with structural information stimulates better decision making. For in silico models supporting rapid structure-activity relationship cycles the performance deteriorates within weeks. Frequent automated updates of predictive models ensure best predictions. Consensus between multiple modeling approaches increases the prediction confidence. Combining qualified and nonqualified data optimally uses all available information. Dose predictions provide a holistic alternative to multiple individual property predictions for reaching complex decisions.

  2. Predicting nucleic acid binding interfaces from structural models of proteins

    PubMed Central

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2011-01-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared to patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. PMID:22086767

  3. Protein loop modeling using a new hybrid energy function and its application to modeling in inaccurate structural environments.

    PubMed

    Park, Hahnbeom; Lee, Gyu Rie; Heo, Lim; Seok, Chaok

    2014-01-01

    Protein loop modeling is a tool for predicting protein local structures of particular interest, providing opportunities for applications involving protein structure prediction and de novo protein design. Until recently, the majority of loop modeling methods have been developed and tested by reconstructing loops in frameworks of experimentally resolved structures. In many practical applications, however, the protein loops to be modeled are located in inaccurate structural environments. These include loops in model structures, low-resolution experimental structures, or experimental structures of different functional forms. Accordingly, discrepancies in the accuracy of the structural environment assumed in development of the method and that in practical applications present additional challenges to modern loop modeling methods. This study demonstrates a new strategy for employing a hybrid energy function combining physics-based and knowledge-based components to help tackle this challenge. The hybrid energy function is designed to combine the strengths of each energy component, simultaneously maintaining accurate loop structure prediction in a high-resolution framework structure and tolerating minor environmental errors in low-resolution structures. A loop modeling method based on global optimization of this new energy function is tested on loop targets situated in different levels of environmental errors, ranging from experimental structures to structures perturbed in backbone as well as side chains and template-based model structures. The new method performs comparably to force field-based approaches in loop reconstruction in crystal structures and better in loop prediction in inaccurate framework structures. This result suggests that higher-accuracy predictions would be possible for a broader range of applications. The web server for this method is available at http://galaxy.seoklab.org/loop with the PS2 option for the scoring function.

  4. Hill-Climbing search and diversification within an evolutionary approach to protein structure prediction.

    PubMed

    Chira, Camelia; Horvath, Dragos; Dumitrescu, D

    2011-07-30

    Proteins are complex structures made of amino acids having a fundamental role in the correct functioning of living cells. The structure of a protein is the result of the protein folding process. However, the general principles that govern the folding of natural proteins into a native structure are unknown. The problem of predicting a protein structure with minimum-energy starting from the unfolded amino acid sequence is a highly complex and important task in molecular and computational biology. Protein structure prediction has important applications in fields such as drug design and disease prediction. The protein structure prediction problem is NP-hard even in simplified lattice protein models. An evolutionary model based on hill-climbing genetic operators is proposed for protein structure prediction in the hydrophobic - polar (HP) model. Problem-specific search operators are implemented and applied using a steepest-ascent hill-climbing approach. Furthermore, the proposed model enforces an explicit diversification stage during the evolution in order to avoid local optimum. The main features of the resulting evolutionary algorithm - hill-climbing mechanism and diversification strategy - are evaluated in a set of numerical experiments for the protein structure prediction problem to assess their impact to the efficiency of the search process. Furthermore, the emerging consolidated model is compared to relevant algorithms from the literature for a set of difficult bidimensional instances from lattice protein models. The results obtained by the proposed algorithm are promising and competitive with those of related methods.

  5. Quantifying model-structure- and parameter-driven uncertainties in spring wheat phenology prediction with Bayesian analysis

    DOE PAGES

    Alderman, Phillip D.; Stanfill, Bryan

    2016-10-06

    Recent international efforts have brought renewed emphasis on the comparison of different agricultural systems models. Thus far, analysis of model-ensemble simulated results has not clearly differentiated between ensemble prediction uncertainties due to model structural differences per se and those due to parameter value uncertainties. Additionally, despite increasing use of Bayesian parameter estimation approaches with field-scale crop models, inadequate attention has been given to the full posterior distributions for estimated parameters. The objectives of this study were to quantify the impact of parameter value uncertainty on prediction uncertainty for modeling spring wheat phenology using Bayesian analysis and to assess the relativemore » contributions of model-structure-driven and parameter-value-driven uncertainty to overall prediction uncertainty. This study used a random walk Metropolis algorithm to estimate parameters for 30 spring wheat genotypes using nine phenology models based on multi-location trial data for days to heading and days to maturity. Across all cases, parameter-driven uncertainty accounted for between 19 and 52% of predictive uncertainty, while model-structure-driven uncertainty accounted for between 12 and 64%. Here, this study demonstrated the importance of quantifying both model-structure- and parameter-value-driven uncertainty when assessing overall prediction uncertainty in modeling spring wheat phenology. More generally, Bayesian parameter estimation provided a useful framework for quantifying and analyzing sources of prediction uncertainty.« less

  6. Ab Initio structure prediction for Escherichia coli: towards genome-wide protein structure modeling and fold assignment

    PubMed Central

    Xu, Dong; Zhang, Yang

    2013-01-01

    Genome-wide protein structure prediction and structure-based function annotation have been a long-term goal in molecular biology but not yet become possible due to difficulties in modeling distant-homology targets. We developed a hybrid pipeline combining ab initio folding and template-based modeling for genome-wide structure prediction applied to the Escherichia coli genome. The pipeline was tested on 43 known sequences, where QUARK-based ab initio folding simulation generated models with TM-score 17% higher than that by traditional comparative modeling methods. For 495 unknown hard sequences, 72 are predicted to have a correct fold (TM-score > 0.5) and 321 have a substantial portion of structure correctly modeled (TM-score > 0.35). 317 sequences can be reliably assigned to a SCOP fold family based on structural analogy to existing proteins in PDB. The presented results, as a case study of E. coli, represent promising progress towards genome-wide structure modeling and fold family assignment using state-of-the-art ab initio folding algorithms. PMID:23719418

  7. Statistical analysis of modeling error in structural dynamic systems

    NASA Technical Reports Server (NTRS)

    Hasselman, T. K.; Chrostowski, J. D.

    1990-01-01

    The paper presents a generic statistical model of the (total) modeling error for conventional space structures in their launch configuration. Modeling error is defined as the difference between analytical prediction and experimental measurement. It is represented by the differences between predicted and measured real eigenvalues and eigenvectors. Comparisons are made between pre-test and post-test models. Total modeling error is then subdivided into measurement error, experimental error and 'pure' modeling error, and comparisons made between measurement error and total modeling error. The generic statistical model presented in this paper is based on the first four global (primary structure) modes of four different structures belonging to the generic category of Conventional Space Structures (specifically excluding large truss-type space structures). As such, it may be used to evaluate the uncertainty of predicted mode shapes and frequencies, sinusoidal response, or the transient response of other structures belonging to the same generic category.

  8. Hybrid experimental/analytical models of structural dynamics - Creation and use for predictions

    NASA Technical Reports Server (NTRS)

    Balmes, Etienne

    1993-01-01

    An original complete methodology for the construction of predictive models of damped structural vibrations is introduced. A consistent definition of normal and complex modes is given which leads to an original method to accurately identify non-proportionally damped normal mode models. A new method to create predictive hybrid experimental/analytical models of damped structures is introduced, and the ability of hybrid models to predict the response to system configuration changes is discussed. Finally a critical review of the overall methodology is made by application to the case of the MIT/SERC interferometer testbed.

  9. Structure prediction of the second extracellular loop in G-protein-coupled receptors.

    PubMed

    Kmiecik, Sebastian; Jamroz, Michal; Kolinski, Michal

    2014-06-03

    G-protein-coupled receptors (GPCRs) play key roles in living organisms. Therefore, it is important to determine their functional structures. The second extracellular loop (ECL2) is a functionally important region of GPCRs, which poses significant challenge for computational structure prediction methods. In this work, we evaluated CABS, a well-established protein modeling tool for predicting ECL2 structure in 13 GPCRs. The ECL2s (with between 13 and 34 residues) are predicted in an environment of other extracellular loops being fully flexible and the transmembrane domain fixed in its x-ray conformation. The modeling procedure used theoretical predictions of ECL2 secondary structure and experimental constraints on disulfide bridges. Our approach yielded ensembles of low-energy conformers and the most populated conformers that contained models close to the available x-ray structures. The level of similarity between the predicted models and x-ray structures is comparable to that of other state-of-the-art computational methods. Our results extend other studies by including newly crystallized GPCRs. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. A statistical learning approach to the modeling of chromatographic retention of oligonucleotides incorporating sequence and secondary structure data

    PubMed Central

    Sturm, Marc; Quinten, Sascha; Huber, Christian G.; Kohlbacher, Oliver

    2007-01-01

    We propose a new model for predicting the retention time of oligonucleotides. The model is based on ν support vector regression using features derived from base sequence and predicted secondary structure of oligonucleotides. Because of the secondary structure information, the model is applicable even at relatively low temperatures where the secondary structure is not suppressed by thermal denaturing. This makes the prediction of oligonucleotide retention time for arbitrary temperatures possible, provided that the target temperature lies within the temperature range of the training data. We describe different possibilities of feature calculation from base sequence and secondary structure, present the results and compare our model to existing models. PMID:17567619

  11. Critical Features of Fragment Libraries for Protein Structure Prediction

    PubMed Central

    dos Santos, Karina Baptista

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction. PMID:28085928

  12. Critical Features of Fragment Libraries for Protein Structure Prediction.

    PubMed

    Trevizani, Raphael; Custódio, Fábio Lima; Dos Santos, Karina Baptista; Dardenne, Laurent Emmanuel

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction.

  13. Vfold: a web server for RNA structure and folding thermodynamics prediction.

    PubMed

    Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie

    2014-01-01

    The ever increasing discovery of non-coding RNAs leads to unprecedented demand for the accurate modeling of RNA folding, including the predictions of two-dimensional (base pair) and three-dimensional all-atom structures and folding stabilities. Accurate modeling of RNA structure and stability has far-reaching impact on our understanding of RNA functions in human health and our ability to design RNA-based therapeutic strategies. The Vfold server offers a web interface to predict (a) RNA two-dimensional structure from the nucleotide sequence, (b) three-dimensional structure from the two-dimensional structure and the sequence, and (c) folding thermodynamics (heat capacity melting curve) from the sequence. To predict the two-dimensional structure (base pairs), the server generates an ensemble of structures, including loop structures with the different intra-loop mismatches, and evaluates the free energies using the experimental parameters for the base stacks and the loop entropy parameters given by a coarse-grained RNA folding model (the Vfold model) for the loops. To predict the three-dimensional structure, the server assembles the motif scaffolds using structure templates extracted from the known PDB structures and refines the structure using all-atom energy minimization. The Vfold-based web server provides a user friendly tool for the prediction of RNA structure and stability. The web server and the source codes are freely accessible for public use at "http://rna.physics.missouri.edu".

  14. Predicting nucleic acid binding interfaces from structural models of proteins.

    PubMed

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  15. Automated protein structure modeling in CASP9 by I-TASSER pipeline combined with QUARK-based ab initio folding and FG-MD-based structure refinement

    PubMed Central

    Xu, Dong; Zhang, Jian; Roy, Ambrish; Zhang, Yang

    2011-01-01

    I-TASSER is an automated pipeline for protein tertiary structure prediction using multiple threading alignments and iterative structure assembly simulations. In CASP9 experiments, two new algorithms, QUARK and FG-MD, were added to the I-TASSER pipeline for improving the structural modeling accuracy. QUARK is a de novo structure prediction algorithm used for structure modeling of proteins that lack detectable template structures. For distantly homologous targets, QUARK models are found useful as a reference structure for selecting good threading alignments and guiding the I-TASSER structure assembly simulations. FG-MD is an atomic-level structural refinement program that uses structural fragments collected from the PDB structures to guide molecular dynamics simulation and improve the local structure of predicted model, including hydrogen-bonding networks, torsion angles and steric clashes. Despite considerable progress in both the template-based and template-free structure modeling, significant improvements on protein target classification, domain parsing, model selection, and ab initio folding of beta-proteins are still needed to further improve the I-TASSER pipeline. PMID:22069036

  16. RNA-Puzzles Round II: assessment of RNA structure prediction programs applied to three large RNA structures

    PubMed Central

    Miao, Zhichao; Adamiak, Ryszard W.; Blanchet, Marc-Frédérick; Boniecki, Michal; Bujnicki, Janusz M.; Chen, Shi-Jie; Cheng, Clarence; Chojnowski, Grzegorz; Chou, Fang-Chieh; Cordero, Pablo; Cruz, José Almeida; Ferré-D'Amaré, Adrian R.; Das, Rhiju; Ding, Feng; Dokholyan, Nikolay V.; Dunin-Horkawicz, Stanislaw; Kladwang, Wipapat; Krokhotin, Andrey; Lach, Grzegorz; Magnus, Marcin; Major, François; Mann, Thomas H.; Masquida, Benoît; Matelska, Dorota; Meyer, Mélanie; Peselis, Alla; Popenda, Mariusz; Purzycka, Katarzyna J.; Serganov, Alexander; Stasiewicz, Juliusz; Szachniuk, Marta; Tandon, Arpit; Tian, Siqi; Wang, Jian; Xiao, Yi; Xu, Xiaojun; Zhang, Jinwei; Zhao, Peinan; Zok, Tomasz; Westhof, Eric

    2015-01-01

    This paper is a report of a second round of RNA-Puzzles, a collective and blind experiment in three-dimensional (3D) RNA structure prediction. Three puzzles, Puzzles 5, 6, and 10, represented sequences of three large RNA structures with limited or no homology with previously solved RNA molecules. A lariat-capping ribozyme, as well as riboswitches complexed to adenosylcobalamin and tRNA, were predicted by seven groups using RNAComposer, ModeRNA/SimRNA, Vfold, Rosetta, DMD, MC-Fold, 3dRNA, and AMBER refinement. Some groups derived models using data from state-of-the-art chemical-mapping methods (SHAPE, DMS, CMCT, and mutate-and-map). The comparisons between the predictions and the three subsequently released crystallographic structures, solved at diffraction resolutions of 2.5–3.2 Å, were carried out automatically using various sets of quality indicators. The comparisons clearly demonstrate the state of present-day de novo prediction abilities as well as the limitations of these state-of-the-art methods. All of the best prediction models have similar topologies to the native structures, which suggests that computational methods for RNA structure prediction can already provide useful structural information for biological problems. However, the prediction accuracy for non-Watson–Crick interactions, key to proper folding of RNAs, is low and some predicted models had high Clash Scores. These two difficulties point to some of the continuing bottlenecks in RNA structure prediction. All submitted models are available for download at http://ahsoka.u-strasbg.fr/rnapuzzles/. PMID:25883046

  17. Reduced Fragment Diversity for Alpha and Alpha-Beta Protein Structure Prediction using Rosetta.

    PubMed

    Abbass, Jad; Nebel, Jean-Christophe

    2017-01-01

    Protein structure prediction is considered a main challenge in computational biology. The biannual international competition, Critical Assessment of protein Structure Prediction (CASP), has shown in its eleventh experiment that free modelling target predictions are still beyond reliable accuracy, therefore, much effort should be made to improve ab initio methods. Arguably, Rosetta is considered as the most competitive method when it comes to targets with no homologues. Relying on fragments of length 9 and 3 from known structures, Rosetta creates putative structures by assembling candidate fragments. Generally, the structure with the lowest energy score, also known as first model, is chosen to be the "predicted one". A thorough study has been conducted on the role and diversity of 3-mers involved in Rosetta's model "refinement" phase. Usage of the standard number of 3-mers - i.e. 200 - has been shown to degrade alpha and alpha-beta protein conformations initially achieved by assembling 9-mers. Therefore, a new prediction pipeline is proposed for Rosetta where the "refinement" phase is customised according to a target's structural class prediction. Over 8% improvement in terms of first model structure accuracy is reported for alpha and alpha-beta classes when decreasing the number of 3- mers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Towards a chromatographic similarity index to establish localised quantitative structure-retention relationships for retention prediction. II Use of Tanimoto similarity index in ion chromatography.

    PubMed

    Park, Soo Hyun; Talebi, Mohammad; Amos, Ruth I J; Tyteca, Eva; Haddad, Paul R; Szucs, Roman; Pohl, Christopher A; Dolan, John W

    2017-11-10

    Quantitative Structure-Retention Relationships (QSRR) are used to predict retention times of compounds based only on their chemical structures encoded by molecular descriptors. The main concern in QSRR modelling is to build models with high predictive power, allowing reliable retention prediction for the unknown compounds across the chromatographic space. With the aim of enhancing the prediction power of the models, in this work, our previously proposed QSRR modelling approach called "federation of local models" is extended in ion chromatography to predict retention times of unknown ions, where a local model for each target ion (unknown) is created using only structurally similar ions from the dataset. A Tanimoto similarity (TS) score was utilised as a measure of structural similarity and training sets were developed by including ions that were similar to the target ion, as defined by a threshold value. The prediction of retention parameters (a- and b-values) in the linear solvent strength (LSS) model in ion chromatography, log k=a - blog[eluent], allows the prediction of retention times under all eluent concentrations. The QSRR models for a- and b-values were developed by a genetic algorithm-partial least squares method using the retention data of inorganic and small organic anions and larger organic cations (molecular mass up to 507) on four Thermo Fisher Scientific columns (AS20, AS19, AS11HC and CS17). The corresponding predicted retention times were calculated by fitting the predicted a- and b-values of the models into the LSS model equation. The predicted retention times were also plotted against the experimental values to evaluate the goodness of fit and the predictive power of the models. The application of a TS threshold of 0.6 was found to successfully produce predictive and reliable QSRR models (Q ext(F2) 2 >0.8 and Mean Absolute Error<0.1), and hence accurate retention time predictions with an average Mean Absolute Error of 0.2min. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  19. Uncertainty quantification and propagation in dynamic models using ambient vibration measurements, application to a 10-story building

    NASA Astrophysics Data System (ADS)

    Behmanesh, Iman; Yousefianmoghadam, Seyedsina; Nozari, Amin; Moaveni, Babak; Stavridis, Andreas

    2018-07-01

    This paper investigates the application of Hierarchical Bayesian model updating for uncertainty quantification and response prediction of civil structures. In this updating framework, structural parameters of an initial finite element (FE) model (e.g., stiffness or mass) are calibrated by minimizing error functions between the identified modal parameters and the corresponding parameters of the model. These error functions are assumed to have Gaussian probability distributions with unknown parameters to be determined. The estimated parameters of error functions represent the uncertainty of the calibrated model in predicting building's response (modal parameters here). The focus of this paper is to answer whether the quantified model uncertainties using dynamic measurement at building's reference/calibration state can be used to improve the model prediction accuracies at a different structural state, e.g., damaged structure. Also, the effects of prediction error bias on the uncertainty of the predicted values is studied. The test structure considered here is a ten-story concrete building located in Utica, NY. The modal parameters of the building at its reference state are identified from ambient vibration data and used to calibrate parameters of the initial FE model as well as the error functions. Before demolishing the building, six of its exterior walls were removed and ambient vibration measurements were also collected from the structure after the wall removal. These data are not used to calibrate the model; they are only used to assess the predicted results. The model updating framework proposed in this paper is applied to estimate the modal parameters of the building at its reference state as well as two damaged states: moderate damage (removal of four walls) and severe damage (removal of six walls). Good agreement is observed between the model-predicted modal parameters and those identified from vibration tests. Moreover, it is shown that including prediction error bias in the updating process instead of commonly-used zero-mean error function can significantly reduce the prediction uncertainties.

  20. RECURSIVE PROTEIN MODELING: A DIVIDE AND CONQUER STRATEGY FOR PROTEIN STRUCTURE PREDICTION AND ITS CASE STUDY IN CASP9

    PubMed Central

    CHENG, JIANLIN; EICKHOLT, JESSE; WANG, ZHENG; DENG, XIN

    2013-01-01

    After decades of research, protein structure prediction remains a very challenging problem. In order to address the different levels of complexity of structural modeling, two types of modeling techniques — template-based modeling and template-free modeling — have been developed. Template-based modeling can often generate a moderate- to high-resolution model when a similar, homologous template structure is found for a query protein but fails if no template or only incorrect templates are found. Template-free modeling, such as fragment-based assembly, may generate models of moderate resolution for small proteins of low topological complexity. Seldom have the two techniques been integrated together to improve protein modeling. Here we develop a recursive protein modeling approach to selectively and collaboratively apply template-based and template-free modeling methods to model template-covered (i.e. certain) and template-free (i.e. uncertain) regions of a protein. A preliminary implementation of the approach was tested on a number of hard modeling cases during the 9th Critical Assessment of Techniques for Protein Structure Prediction (CASP9) and successfully improved the quality of modeling in most of these cases. Recursive modeling can signicantly reduce the complexity of protein structure modeling and integrate template-based and template-free modeling to improve the quality and efficiency of protein structure prediction. PMID:22809379

  1. Validation of finite element and boundary element methods for predicting structural vibration and radiated noise

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Wu, X. F.; Oswald, Fred B.

    1992-01-01

    Analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise radiated from the box. The FEM was used to predict the vibration, and the surface vibration was used as input to the BEM to predict the sound intensity and sound power. Vibration predicted by the FEM model was validated by experimental modal analysis. Noise predicted by the BEM was validated by sound intensity measurements. Three types of results are presented for the total radiated sound power: (1) sound power predicted by the BEM modeling using vibration data measured on the surface of the box; (2) sound power predicted by the FEM/BEM model; and (3) sound power measured by a sound intensity scan. The sound power predicted from the BEM model using measured vibration data yields an excellent prediction of radiated noise. The sound power predicted by the combined FEM/BEM model also gives a good prediction of radiated noise except for a shift of the natural frequencies that are due to limitations in the FEM model.

  2. PARTS: Probabilistic Alignment for RNA joinT Secondary structure prediction

    PubMed Central

    Harmanci, Arif Ozgun; Sharma, Gaurav; Mathews, David H.

    2008-01-01

    A novel method is presented for joint prediction of alignment and common secondary structures of two RNA sequences. The joint consideration of common secondary structures and alignment is accomplished by structural alignment over a search space defined by the newly introduced motif called matched helical regions. The matched helical region formulation generalizes previously employed constraints for structural alignment and thereby better accommodates the structural variability within RNA families. A probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities is utilized for scoring structural alignments. Maximum a posteriori (MAP) common secondary structures, sequence alignment and joint posterior probabilities of base pairing are obtained from the model via a dynamic programming algorithm called PARTS. The advantage of the more general structural alignment of PARTS is seen in secondary structure predictions for the RNase P family. For this family, the PARTS MAP predictions of secondary structures and alignment perform significantly better than prior methods that utilize a more restrictive structural alignment model. For the tRNA and 5S rRNA families, the richer structural alignment model of PARTS does not offer a benefit and the method therefore performs comparably with existing alternatives. For all RNA families studied, the posterior probability estimates obtained from PARTS offer an improvement over posterior probability estimates from a single sequence prediction. When considering the base pairings predicted over a threshold value of confidence, the combination of sensitivity and positive predictive value is superior for PARTS than for the single sequence prediction. PARTS source code is available for download under the GNU public license at http://rna.urmc.rochester.edu. PMID:18304945

  3. Massive integration of diverse protein quality assessment methods to improve template based modeling in CASP11

    PubMed Central

    Cao, Renzhi; Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin

    2015-01-01

    Model evaluation and selection is an important step and a big challenge in template-based protein structure prediction. Individual model quality assessment methods designed for recognizing some specific properties of protein structures often fail to consistently select good models from a model pool because of their limitations. Therefore, combining multiple complimentary quality assessment methods is useful for improving model ranking and consequently tertiary structure prediction. Here, we report the performance and analysis of our human tertiary structure predictor (MULTICOM) based on the massive integration of 14 diverse complementary quality assessment methods that was successfully benchmarked in the 11th Critical Assessment of Techniques of Protein Structure prediction (CASP11). The predictions of MULTICOM for 39 template-based domains were rigorously assessed by six scoring metrics covering global topology of Cα trace, local all-atom fitness, side chain quality, and physical reasonableness of the model. The results show that the massive integration of complementary, diverse single-model and multi-model quality assessment methods can effectively leverage the strength of single-model methods in distinguishing quality variation among similar good models and the advantage of multi-model quality assessment methods of identifying reasonable average-quality models. The overall excellent performance of the MULTICOM predictor demonstrates that integrating a large number of model quality assessment methods in conjunction with model clustering is a useful approach to improve the accuracy, diversity, and consequently robustness of template-based protein structure prediction. PMID:26369671

  4. Linking models and data on vegetation structure

    NASA Astrophysics Data System (ADS)

    Hurtt, G. C.; Fisk, J.; Thomas, R. Q.; Dubayah, R.; Moorcroft, P. R.; Shugart, H. H.

    2010-06-01

    For more than a century, scientists have recognized the importance of vegetation structure in understanding forest dynamics. Now future satellite missions such as Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI) hold the potential to provide unprecedented global data on vegetation structure needed to reduce uncertainties in terrestrial carbon dynamics. Here, we briefly review the uses of data on vegetation structure in ecosystem models, develop and analyze theoretical models to quantify model-data requirements, and describe recent progress using a mechanistic modeling approach utilizing a formal scaling method and data on vegetation structure to improve model predictions. Generally, both limited sampling and coarse resolution averaging lead to model initialization error, which in turn is propagated in subsequent model prediction uncertainty and error. In cases with representative sampling, sufficient resolution, and linear dynamics, errors in initialization tend to compensate at larger spatial scales. However, with inadequate sampling, overly coarse resolution data or models, and nonlinear dynamics, errors in initialization lead to prediction error. A robust model-data framework will require both models and data on vegetation structure sufficient to resolve important environmental gradients and tree-level heterogeneity in forest structure globally.

  5. Blind prediction of noncanonical RNA structure at atomic accuracy.

    PubMed

    Watkins, Andrew M; Geniesse, Caleb; Kladwang, Wipapat; Zakrevsky, Paul; Jaeger, Luc; Das, Rhiju

    2018-05-01

    Prediction of RNA structure from nucleotide sequence remains an unsolved grand challenge of biochemistry and requires distinct concepts from protein structure prediction. Despite extensive algorithmic development in recent years, modeling of noncanonical base pairs of new RNA structural motifs has not been achieved in blind challenges. We report a stepwise Monte Carlo (SWM) method with a unique add-and-delete move set that enables predictions of noncanonical base pairs of complex RNA structures. A benchmark of 82 diverse motifs establishes the method's general ability to recover noncanonical pairs ab initio, including multistrand motifs that have been refractory to prior approaches. In a blind challenge, SWM models predicted nucleotide-resolution chemical mapping and compensatory mutagenesis experiments for three in vitro selected tetraloop/receptors with previously unsolved structures (C7.2, C7.10, and R1). As a final test, SWM blindly and correctly predicted all noncanonical pairs of a Zika virus double pseudoknot during a recent community-wide RNA-Puzzle. Stepwise structure formation, as encoded in the SWM method, enables modeling of noncanonical RNA structure in a variety of previously intractable problems.

  6. Planning, creating and documenting a NASTRAN finite element model of a modern helicopter

    NASA Technical Reports Server (NTRS)

    Gabal, R.; Reed, D.; Ricks, R.; Kesack, W.

    1985-01-01

    Mathematical models based on the finite element method of structural analysis as embodied in the NASTRAN computer code are widely used by the helicopter industry to calculate static internal loads and vibration of airframe structure. The internal loads are routinely used for sizing structural members. The vibration predictions are not yet relied on during design. NASA's Langley Research Center sponsored a program to conduct an application of the finite element method with emphasis on predicting structural vibration. The Army/Boeing CH-47D helicopter was used as the modeling subject. The objective was to engender the needed trust in vibration predictions using these models and establish a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process.

  7. Prediction of Protein Structure by Template-Based Modeling Combined with the UNRES Force Field.

    PubMed

    Krupa, Paweł; Mozolewska, Magdalena A; Joo, Keehyoung; Lee, Jooyoung; Czaplewski, Cezary; Liwo, Adam

    2015-06-22

    A new approach to the prediction of protein structures that uses distance and backbone virtual-bond dihedral angle restraints derived from template-based models and simulations with the united residue (UNRES) force field is proposed. The approach combines the accuracy and reliability of template-based methods for the segments of the target sequence with high similarity to those having known structures with the ability of UNRES to pack the domains correctly. Multiplexed replica-exchange molecular dynamics with restraints derived from template-based models of a given target, in which each restraint is weighted according to the accuracy of the prediction of the corresponding section of the molecule, is used to search the conformational space, and the weighted histogram analysis method and cluster analysis are applied to determine the families of the most probable conformations, from which candidate predictions are selected. To test the capability of the method to recover template-based models from restraints, five single-domain proteins with structures that have been well-predicted by template-based methods were used; it was found that the resulting structures were of the same quality as the best of the original models. To assess whether the new approach can improve template-based predictions with incorrectly predicted domain packing, four such targets were selected from the CASP10 targets; for three of them the new approach resulted in significantly better predictions compared with the original template-based models. The new approach can be used to predict the structures of proteins for which good templates can be found for sections of the sequence or an overall good template can be found for the entire sequence but the prediction quality is remarkably weaker in putative domain-linker regions.

  8. An elastic-plastic contact model for line contact structures

    NASA Astrophysics Data System (ADS)

    Zhu, Haibin; Zhao, Yingtao; He, Zhifeng; Zhang, Ruinan; Ma, Shaopeng

    2018-06-01

    Although numerical simulation tools are now very powerful, the development of analytical models is very important for the prediction of the mechanical behaviour of line contact structures for deeply understanding contact problems and engineering applications. For the line contact structures widely used in the engineering field, few analytical models are available for predicting the mechanical behaviour when the structures deform plastically, as the classic Hertz's theory would be invalid. Thus, the present study proposed an elastic-plastic model for line contact structures based on the understanding of the yield mechanism. A mathematical expression describing the global relationship between load history and contact width evolution of line contact structures was obtained. The proposed model was verified through an actual line contact test and a corresponding numerical simulation. The results confirmed that this model can be used to accurately predict the elastic-plastic mechanical behaviour of a line contact structure.

  9. Development of Multi-Layered Floating Floor for Cabin Noise Reduction

    NASA Astrophysics Data System (ADS)

    Song, Jee-Hun; Hong, Suk-Yoon; Kwon, Hyun-Wung

    2017-12-01

    Recently, regulations pertaining to the noise and vibration environment of ship cabins have been strengthened. In this paper, a numerical model is developed for multi-layered floating floor to predict the structure-borne noise in ship cabins. The theoretical model consists of multi-panel structures lined with high-density mineral wool. The predicted results for structure-borne noise when multi-layered floating floor is used are compared to the measure-ments made of a mock-up. A comparison of the predicted results and the experimental one shows that the developed model could be an effective tool for predicting structure-borne noise in ship cabins.

  10. CABS-fold: Server for the de novo and consensus-based prediction of protein structure.

    PubMed

    Blaszczyk, Maciej; Jamroz, Michal; Kmiecik, Sebastian; Kolinski, Andrzej

    2013-07-01

    The CABS-fold web server provides tools for protein structure prediction from sequence only (de novo modeling) and also using alternative templates (consensus modeling). The web server is based on the CABS modeling procedures ranked in previous Critical Assessment of techniques for protein Structure Prediction competitions as one of the leading approaches for de novo and template-based modeling. Except for template data, fragmentary distance restraints can also be incorporated into the modeling process. The web server output is a coarse-grained trajectory of generated conformations, its Jmol representation and predicted models in all-atom resolution (together with accompanying analysis). CABS-fold can be freely accessed at http://biocomp.chem.uw.edu.pl/CABSfold.

  11. CABS-fold: server for the de novo and consensus-based prediction of protein structure

    PubMed Central

    Blaszczyk, Maciej; Jamroz, Michal; Kmiecik, Sebastian; Kolinski, Andrzej

    2013-01-01

    The CABS-fold web server provides tools for protein structure prediction from sequence only (de novo modeling) and also using alternative templates (consensus modeling). The web server is based on the CABS modeling procedures ranked in previous Critical Assessment of techniques for protein Structure Prediction competitions as one of the leading approaches for de novo and template-based modeling. Except for template data, fragmentary distance restraints can also be incorporated into the modeling process. The web server output is a coarse-grained trajectory of generated conformations, its Jmol representation and predicted models in all-atom resolution (together with accompanying analysis). CABS-fold can be freely accessed at http://biocomp.chem.uw.edu.pl/CABSfold. PMID:23748950

  12. Evaluation of 3D-Jury on CASP7 models.

    PubMed

    Kaján, László; Rychlewski, Leszek

    2007-08-21

    3D-Jury, the structure prediction consensus method publicly available in the Meta Server http://meta.bioinfo.pl/, was evaluated using models gathered in the 7th round of the Critical Assessment of Techniques for Protein Structure Prediction (CASP7). 3D-Jury is an automated expert process that generates protein structure meta-predictions from sets of models obtained from partner servers. The performance of 3D-Jury was analysed for three aspects. First, we examined the correlation between the 3D-Jury score and a model quality measure: the number of correctly predicted residues. The 3D-Jury score was shown to correlate significantly with the number of correctly predicted residues, the correlation is good enough to be used for prediction. 3D-Jury was also found to improve upon the competing servers' choice of the best structure model in most cases. The value of the 3D-Jury score as a generic reliability measure was also examined. We found that the 3D-Jury score separates bad models from good models better than the reliability score of the original server in 27 cases and falls short of it in only 5 cases out of a total of 38. We report the release of a new Meta Server feature: instant 3D-Jury scoring of uploaded user models. The 3D-Jury score continues to be a good indicator of structural model quality. It also provides a generic reliability score, especially important for models that were not assigned such by the original server. Individual structure modellers can also benefit from the 3D-Jury scoring system by testing their models in the new instant scoring feature http://meta.bioinfo.pl/compare_your_model_example.pl available in the Meta Server.

  13. Sources of Uncertainty in Predicting Land Surface Fluxes Using Diverse Data and Models

    NASA Technical Reports Server (NTRS)

    Dungan, Jennifer L.; Wang, Weile; Michaelis, Andrew; Votava, Petr; Nemani, Ramakrishma

    2010-01-01

    In the domain of predicting land surface fluxes, models are used to bring data from large observation networks and satellite remote sensing together to make predictions about present and future states of the Earth. Characterizing the uncertainty about such predictions is a complex process and one that is not yet fully understood. Uncertainty exists about initialization, measurement and interpolation of input variables; model parameters; model structure; and mixed spatial and temporal supports. Multiple models or structures often exist to describe the same processes. Uncertainty about structure is currently addressed by running an ensemble of different models and examining the distribution of model outputs. To illustrate structural uncertainty, a multi-model ensemble experiment we have been conducting using the Terrestrial Observation and Prediction System (TOPS) will be discussed. TOPS uses public versions of process-based ecosystem models that use satellite-derived inputs along with surface climate data and land surface characterization to produce predictions of ecosystem fluxes including gross and net primary production and net ecosystem exchange. Using the TOPS framework, we have explored the uncertainty arising from the application of models with different assumptions, structures, parameters, and variable definitions. With a small number of models, this only begins to capture the range of possible spatial fields of ecosystem fluxes. Few attempts have been made to systematically address the components of uncertainty in such a framework. We discuss the characterization of uncertainty for this approach including both quantifiable and poorly known aspects.

  14. General overview on structure prediction of twilight-zone proteins.

    PubMed

    Khor, Bee Yin; Tye, Gee Jun; Lim, Theam Soon; Choong, Yee Siew

    2015-09-04

    Protein structure prediction from amino acid sequence has been one of the most challenging aspects in computational structural biology despite significant progress in recent years showed by critical assessment of protein structure prediction (CASP) experiments. When experimentally determined structures are unavailable, the predictive structures may serve as starting points to study a protein. If the target protein consists of homologous region, high-resolution (typically <1.5 Å) model can be built via comparative modelling. However, when confronted with low sequence similarity of the target protein (also known as twilight-zone protein, sequence identity with available templates is less than 30%), the protein structure prediction has to be initiated from scratch. Traditionally, twilight-zone proteins can be predicted via threading or ab initio method. Based on the current trend, combination of different methods brings an improved success in the prediction of twilight-zone proteins. In this mini review, the methods, progresses and challenges for the prediction of twilight-zone proteins were discussed.

  15. All-atom 3D structure prediction of transmembrane β-barrel proteins from sequences.

    PubMed

    Hayat, Sikander; Sander, Chris; Marks, Debora S; Elofsson, Arne

    2015-04-28

    Transmembrane β-barrels (TMBs) carry out major functions in substrate transport and protein biogenesis but experimental determination of their 3D structure is challenging. Encouraged by successful de novo 3D structure prediction of globular and α-helical membrane proteins from sequence alignments alone, we developed an approach to predict the 3D structure of TMBs. The approach combines the maximum-entropy evolutionary coupling method for predicting residue contacts (EVfold) with a machine-learning approach (boctopus2) for predicting β-strands in the barrel. In a blinded test for 19 TMB proteins of known structure that have a sufficient number of diverse homologous sequences available, this combined method (EVfold_bb) predicts hydrogen-bonded residue pairs between adjacent β-strands at an accuracy of ∼70%. This accuracy is sufficient for the generation of all-atom 3D models. In the transmembrane barrel region, the average 3D structure accuracy [template-modeling (TM) score] of top-ranked models is 0.54 (ranging from 0.36 to 0.85), with a higher (44%) number of residue pairs in correct strand-strand registration than in earlier methods (18%). Although the nonbarrel regions are predicted less accurately overall, the evolutionary couplings identify some highly constrained loop residues and, for FecA protein, the barrel including the structure of a plug domain can be accurately modeled (TM score = 0.68). Lower prediction accuracy tends to be associated with insufficient sequence information and we therefore expect increasing numbers of β-barrel families to become accessible to accurate 3D structure prediction as the number of available sequences increases.

  16. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    USGS Publications Warehouse

    Curtis, Gary P.; Lu, Dan; Ye, Ming

    2015-01-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. This study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict the reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. These reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Limitations of applying MLBMA to the synthetic study and future real-world modeling are discussed.

  17. Prediction of biodegradability from chemical structure: Modeling or ready biodegradation test data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loonen, H.; Lindgren, F.; Hansen, B.

    1999-08-01

    Biodegradation data were collected and evaluated for 894 substances with widely varying chemical structures. All data were determined according to the Japanese Ministry of International Trade and Industry (MITI) I test protocol. The MITI I test is a screening test for ready biodegradability and has been described by Organization for Economic Cooperation and Development (OECD) test guideline 301 C and European Union (EU) test guideline C4F. The chemicals were characterized by a set of 127 predefined structural fragments. This data set was used to develop a model for the prediction of the biodegradability of chemicals under standardized OECD and EUmore » ready biodegradation test conditions. Partial least squares (PLS) discriminant analysis was used for the model development. The model was evaluated by means of internal cross-validation and repeated external validation. The importance of various structural fragments and fragment interactions was investigated. The most important fragments include the presence of a long alkyl chain; hydroxy, ester, and acid groups (enhancing biodegradation); and the presence of one or more aromatic rings and halogen substituents (regarding biodegradation). More than 85% of the model predictions were correct for using the complete data set. The not readily biodegradable predictions were slightly better than the readily biodegradable predictions (86 vs 84%). The average percentage of correct predictions from four external validation studies was 83%. Model optimization by including fragment interactions improve the model predicting capabilities to 89%. It can be concluded that the PLS model provides predictions of high reliability for a diverse range of chemical structures. The predictions conform to the concept of readily biodegradable (or not readily biodegradable) as defined by OECD and EU test guidelines.« less

  18. RNA 3D Structure Modeling by Combination of Template-Based Method ModeRNA, Template-Free Folding with SimRNA, and Refinement with QRNAS.

    PubMed

    Piatkowski, Pawel; Kasprzak, Joanna M; Kumar, Deepak; Magnus, Marcin; Chojnowski, Grzegorz; Bujnicki, Janusz M

    2016-01-01

    RNA encompasses an essential part of all known forms of life. The functions of many RNA molecules are dependent on their ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is laborious and challenging, and therefore, the majority of known RNAs remain structurally uncharacterized. To address this problem, computational structure prediction methods were developed that either utilize information derived from known structures of other RNA molecules (by way of template-based modeling) or attempt to simulate the physical process of RNA structure formation (by way of template-free modeling). All computational methods suffer from various limitations that make theoretical models less reliable than high-resolution experimentally determined structures. This chapter provides a protocol for computational modeling of RNA 3D structure that overcomes major limitations by combining two complementary approaches: template-based modeling that is capable of predicting global architectures based on similarity to other molecules but often fails to predict local unique features, and template-free modeling that can predict the local folding, but is limited to modeling the structure of relatively small molecules. Here, we combine the use of a template-based method ModeRNA with a template-free method SimRNA. ModeRNA requires a sequence alignment of the target RNA sequence to be modeled with a template of the known structure; it generates a model that predicts the structure of a conserved core and provides a starting point for modeling of variable regions. SimRNA can be used to fold small RNAs (<80 nt) without any additional structural information, and to refold parts of models for larger RNAs that have a correctly modeled core. ModeRNA can be either downloaded, compiled and run locally or run through a web interface at http://genesilico.pl/modernaserver/ . SimRNA is currently available to download for local use as a precompiled software package at http://genesilico.pl/software/stand-alone/simrna and as a web server at http://genesilico.pl/SimRNAweb . For model optimization we use QRNAS, available at http://genesilico.pl/qrnas .

  19. Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment

    PubMed Central

    2014-01-01

    Background Protein model quality assessment is an essential component of generating and using protein structural models. During the Tenth Critical Assessment of Techniques for Protein Structure Prediction (CASP10), we developed and tested four automated methods (MULTICOM-REFINE, MULTICOM-CLUSTER, MULTICOM-NOVEL, and MULTICOM-CONSTRUCT) that predicted both local and global quality of protein structural models. Results MULTICOM-REFINE was a clustering approach that used the average pairwise structural similarity between models to measure the global quality and the average Euclidean distance between a model and several top ranked models to measure the local quality. MULTICOM-CLUSTER and MULTICOM-NOVEL were two new support vector machine-based methods of predicting both the local and global quality of a single protein model. MULTICOM-CONSTRUCT was a new weighted pairwise model comparison (clustering) method that used the weighted average similarity between models in a pool to measure the global model quality. Our experiments showed that the pairwise model assessment methods worked better when a large portion of models in the pool were of good quality, whereas single-model quality assessment methods performed better on some hard targets when only a small portion of models in the pool were of reasonable quality. Conclusions Since digging out a few good models from a large pool of low-quality models is a major challenge in protein structure prediction, single model quality assessment methods appear to be poised to make important contributions to protein structure modeling. The other interesting finding was that single-model quality assessment scores could be used to weight the models by the consensus pairwise model comparison method to improve its accuracy. PMID:24731387

  20. Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment.

    PubMed

    Cao, Renzhi; Wang, Zheng; Cheng, Jianlin

    2014-04-15

    Protein model quality assessment is an essential component of generating and using protein structural models. During the Tenth Critical Assessment of Techniques for Protein Structure Prediction (CASP10), we developed and tested four automated methods (MULTICOM-REFINE, MULTICOM-CLUSTER, MULTICOM-NOVEL, and MULTICOM-CONSTRUCT) that predicted both local and global quality of protein structural models. MULTICOM-REFINE was a clustering approach that used the average pairwise structural similarity between models to measure the global quality and the average Euclidean distance between a model and several top ranked models to measure the local quality. MULTICOM-CLUSTER and MULTICOM-NOVEL were two new support vector machine-based methods of predicting both the local and global quality of a single protein model. MULTICOM-CONSTRUCT was a new weighted pairwise model comparison (clustering) method that used the weighted average similarity between models in a pool to measure the global model quality. Our experiments showed that the pairwise model assessment methods worked better when a large portion of models in the pool were of good quality, whereas single-model quality assessment methods performed better on some hard targets when only a small portion of models in the pool were of reasonable quality. Since digging out a few good models from a large pool of low-quality models is a major challenge in protein structure prediction, single model quality assessment methods appear to be poised to make important contributions to protein structure modeling. The other interesting finding was that single-model quality assessment scores could be used to weight the models by the consensus pairwise model comparison method to improve its accuracy.

  1. Evaluation of 3D-Jury on CASP7 models

    PubMed Central

    Kaján, László; Rychlewski, Leszek

    2007-01-01

    Background 3D-Jury, the structure prediction consensus method publicly available in the Meta Server , was evaluated using models gathered in the 7th round of the Critical Assessment of Techniques for Protein Structure Prediction (CASP7). 3D-Jury is an automated expert process that generates protein structure meta-predictions from sets of models obtained from partner servers. Results The performance of 3D-Jury was analysed for three aspects. First, we examined the correlation between the 3D-Jury score and a model quality measure: the number of correctly predicted residues. The 3D-Jury score was shown to correlate significantly with the number of correctly predicted residues, the correlation is good enough to be used for prediction. 3D-Jury was also found to improve upon the competing servers' choice of the best structure model in most cases. The value of the 3D-Jury score as a generic reliability measure was also examined. We found that the 3D-Jury score separates bad models from good models better than the reliability score of the original server in 27 cases and falls short of it in only 5 cases out of a total of 38. We report the release of a new Meta Server feature: instant 3D-Jury scoring of uploaded user models. Conclusion The 3D-Jury score continues to be a good indicator of structural model quality. It also provides a generic reliability score, especially important for models that were not assigned such by the original server. Individual structure modellers can also benefit from the 3D-Jury scoring system by testing their models in the new instant scoring feature available in the Meta Server. PMID:17711571

  2. Predicting turns in proteins with a unified model.

    PubMed

    Song, Qi; Li, Tonghua; Cong, Peisheng; Sun, Jiangming; Li, Dapeng; Tang, Shengnan

    2012-01-01

    Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications.

  3. Predicting Turns in Proteins with a Unified Model

    PubMed Central

    Song, Qi; Li, Tonghua; Cong, Peisheng; Sun, Jiangming; Li, Dapeng; Tang, Shengnan

    2012-01-01

    Motivation Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. Results In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i) using newly exploited features of structural evolution information (secondary structure and shape string of protein) based on structure homologies, (ii) considering all types of turns in a unified model, and (iii) practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries) by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications. PMID:23144872

  4. Improved Model for Predicting the Free Energy Contribution of Dinucleotide Bulges to RNA Duplex Stability.

    PubMed

    Tomcho, Jeremy C; Tillman, Magdalena R; Znosko, Brent M

    2015-09-01

    Predicting the secondary structure of RNA is an intermediate in predicting RNA three-dimensional structure. Commonly, determining RNA secondary structure from sequence uses free energy minimization and nearest neighbor parameters. Current algorithms utilize a sequence-independent model to predict free energy contributions of dinucleotide bulges. To determine if a sequence-dependent model would be more accurate, short RNA duplexes containing dinucleotide bulges with different sequences and nearest neighbor combinations were optically melted to derive thermodynamic parameters. These data suggested energy contributions of dinucleotide bulges were sequence-dependent, and a sequence-dependent model was derived. This model assigns free energy penalties based on the identity of nucleotides in the bulge (3.06 kcal/mol for two purines, 2.93 kcal/mol for two pyrimidines, 2.71 kcal/mol for 5'-purine-pyrimidine-3', and 2.41 kcal/mol for 5'-pyrimidine-purine-3'). The predictive model also includes a 0.45 kcal/mol penalty for an A-U pair adjacent to the bulge and a -0.28 kcal/mol bonus for a G-U pair adjacent to the bulge. The new sequence-dependent model results in predicted values within, on average, 0.17 kcal/mol of experimental values, a significant improvement over the sequence-independent model. This model and new experimental values can be incorporated into algorithms that predict RNA stability and secondary structure from sequence.

  5. Massive integration of diverse protein quality assessment methods to improve template based modeling in CASP11.

    PubMed

    Cao, Renzhi; Bhattacharya, Debswapna; Adhikari, Badri; Li, Jilong; Cheng, Jianlin

    2016-09-01

    Model evaluation and selection is an important step and a big challenge in template-based protein structure prediction. Individual model quality assessment methods designed for recognizing some specific properties of protein structures often fail to consistently select good models from a model pool because of their limitations. Therefore, combining multiple complimentary quality assessment methods is useful for improving model ranking and consequently tertiary structure prediction. Here, we report the performance and analysis of our human tertiary structure predictor (MULTICOM) based on the massive integration of 14 diverse complementary quality assessment methods that was successfully benchmarked in the 11th Critical Assessment of Techniques of Protein Structure prediction (CASP11). The predictions of MULTICOM for 39 template-based domains were rigorously assessed by six scoring metrics covering global topology of Cα trace, local all-atom fitness, side chain quality, and physical reasonableness of the model. The results show that the massive integration of complementary, diverse single-model and multi-model quality assessment methods can effectively leverage the strength of single-model methods in distinguishing quality variation among similar good models and the advantage of multi-model quality assessment methods of identifying reasonable average-quality models. The overall excellent performance of the MULTICOM predictor demonstrates that integrating a large number of model quality assessment methods in conjunction with model clustering is a useful approach to improve the accuracy, diversity, and consequently robustness of template-based protein structure prediction. Proteins 2016; 84(Suppl 1):247-259. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  6. [Primary branch size of Pinus koraiensis plantation: a prediction based on linear mixed effect model].

    PubMed

    Dong, Ling-Bo; Liu, Zhao-Gang; Li, Feng-Ri; Jiang, Li-Chun

    2013-09-01

    By using the branch analysis data of 955 standard branches from 60 sampled trees in 12 sampling plots of Pinus koraiensis plantation in Mengjiagang Forest Farm in Heilongjiang Province of Northeast China, and based on the linear mixed-effect model theory and methods, the models for predicting branch variables, including primary branch diameter, length, and angle, were developed. Considering tree effect, the MIXED module of SAS software was used to fit the prediction models. The results indicated that the fitting precision of the models could be improved by choosing appropriate random-effect parameters and variance-covariance structure. Then, the correlation structures including complex symmetry structure (CS), first-order autoregressive structure [AR(1)], and first-order autoregressive and moving average structure [ARMA(1,1)] were added to the optimal branch size mixed-effect model. The AR(1) improved the fitting precision of branch diameter and length mixed-effect model significantly, but all the three structures didn't improve the precision of branch angle mixed-effect model. In order to describe the heteroscedasticity during building mixed-effect model, the CF1 and CF2 functions were added to the branch mixed-effect model. CF1 function improved the fitting effect of branch angle mixed model significantly, whereas CF2 function improved the fitting effect of branch diameter and length mixed model significantly. Model validation confirmed that the mixed-effect model could improve the precision of prediction, as compare to the traditional regression model for the branch size prediction of Pinus koraiensis plantation.

  7. Can Heterosexism Harm Organizations? Predicting the Perceived Organizational Citizenship Behaviors of Gay and Lesbian Employees

    ERIC Educational Resources Information Center

    Brenner, Bradley R.; Lyons, Heather Z.; Fassinger, Ruth E.

    2010-01-01

    An initial test and validation of a model predicting perceived organizational citizenship behaviors (OCBs) of lesbian and gay employees were conducted using structural equation modeling. The proposed structural model demonstrated acceptable goodness of ft and structural invariance across 2 samples (ns = 311 and 295), which suggested that…

  8. The evaluation of different forest structural indices to predict the stand aboveground biomass of even-aged Scotch pine (Pinus sylvestris L.) forests in Kunduz, Northern Turkey.

    PubMed

    Ercanli, İlker; Kahriman, Aydın

    2015-03-01

    We assessed the effect of stand structural diversity, including the Shannon, improved Shannon, Simpson, McIntosh, Margelef, and Berger-Parker indices, on stand aboveground biomass (AGB) and developed statistical prediction models for the stand AGB values, including stand structural diversity indices and some stand attributes. The AGB prediction model, including only stand attributes, accounted for 85 % of the total variance in AGB (R (2)) with an Akaike's information criterion (AIC) of 807.2407, Bayesian information criterion (BIC) of 809.5397, Schwarz Bayesian criterion (SBC) of 818.0426, and root mean square error (RMSE) of 38.529 Mg. After inclusion of the stand structural diversity into the model structure, considerable improvement was observed in statistical accuracy, including 97.5 % of the total variance in AGB, with an AIC of 614.1819, BIC of 617.1242, SBC of 633.0853, and RMSE of 15.8153 Mg. The predictive fitting results indicate that some indices describing the stand structural diversity can be employed as significant independent variables to predict the AGB production of the Scotch pine stand. Further, including the stand diversity indices in the AGB prediction model with the stand attributes provided important predictive contributions in estimating the total variance in AGB.

  9. Structured Set Intra Prediction With Discriminative Learning in a Max-Margin Markov Network for High Efficiency Video Coding

    PubMed Central

    Dai, Wenrui; Xiong, Hongkai; Jiang, Xiaoqian; Chen, Chang Wen

    2014-01-01

    This paper proposes a novel model on intra coding for High Efficiency Video Coding (HEVC), which simultaneously predicts blocks of pixels with optimal rate distortion. It utilizes the spatial statistical correlation for the optimal prediction based on 2-D contexts, in addition to formulating the data-driven structural interdependences to make the prediction error coherent with the probability distribution, which is desirable for successful transform and coding. The structured set prediction model incorporates a max-margin Markov network (M3N) to regulate and optimize multiple block predictions. The model parameters are learned by discriminating the actual pixel value from other possible estimates to maximize the margin (i.e., decision boundary bandwidth). Compared to existing methods that focus on minimizing prediction error, the M3N-based model adaptively maintains the coherence for a set of predictions. Specifically, the proposed model concurrently optimizes a set of predictions by associating the loss for individual blocks to the joint distribution of succeeding discrete cosine transform coefficients. When the sample size grows, the prediction error is asymptotically upper bounded by the training error under the decomposable loss function. As an internal step, we optimize the underlying Markov network structure to find states that achieve the maximal energy using expectation propagation. For validation, we integrate the proposed model into HEVC for optimal mode selection on rate-distortion optimization. The proposed prediction model obtains up to 2.85% bit rate reduction and achieves better visual quality in comparison to the HEVC intra coding. PMID:25505829

  10. Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.

    PubMed

    Legendre, Audrey; Angel, Eric; Tahi, Fariza

    2018-01-15

    RNA structure prediction is an important field in bioinformatics, and numerous methods and tools have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost all existing methods are based on a single model and return one solution, often missing the real structure. An alternative approach would be to combine different models and return a (small) set of solutions, maximizing its quality and diversity in order to increase the probability that it contains the real structure. We propose here an original method for predicting RNA secondary structures with pseudoknots, based on integer programming. We developed a generic bi-objective integer programming algorithm allowing to return optimal and sub-optimal solutions optimizing simultaneously two models. This algorithm was then applied to the combination of two known models of RNA secondary structure prediction, namely MEA and MFE. The resulting tool, called BiokoP, is compared with the other methods in the literature. The results show that the best solution (structure with the highest F 1 -score) is, in most cases, given by BiokoP. Moreover, the results of BiokoP are homogeneous, regardless of the pseudoknot type or the presence or not of pseudoknots. Indeed, the F 1 -scores are always higher than 70% for any number of solutions returned. The results obtained by BiokoP show that combining the MEA and the MFE models, as well as returning several optimal and several sub-optimal solutions, allow to improve the prediction of secondary structures. One perspective of our work is to combine better mono-criterion models, in particular to combine a model based on the comparative approach with the MEA and the MFE models. This leads to develop in the future a new multi-objective algorithm to combine more than two models. BiokoP is available on the EvryRNA platform: https://EvryRNA.ibisc.univ-evry.fr .

  11. Beam-column joint shear prediction using hybridized deep learning neural network with genetic algorithm

    NASA Astrophysics Data System (ADS)

    Mundher Yaseen, Zaher; Abdulmohsin Afan, Haitham; Tran, Minh-Tung

    2018-04-01

    Scientifically evidenced that beam-column joints are a critical point in the reinforced concrete (RC) structure under the fluctuation loads effects. In this novel hybrid data-intelligence model developed to predict the joint shear behavior of exterior beam-column structure frame. The hybrid data-intelligence model is called genetic algorithm integrated with deep learning neural network model (GA-DLNN). The genetic algorithm is used as prior modelling phase for the input approximation whereas the DLNN predictive model is used for the prediction phase. To demonstrate this structural problem, experimental data is collected from the literature that defined the dimensional and specimens’ properties. The attained findings evidenced the efficitveness of the hybrid GA-DLNN in modelling beam-column joint shear problem. In addition, the accurate prediction achived with less input variables owing to the feasibility of the evolutionary phase.

  12. Integrated Modeling Activities for the James Webb Space Telescope: Structural-Thermal-Optical Analysis

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Howard, Joseph M.; Mosier, Gary E.; Parrish, Keith A.; McGinnis, Mark A.; Bluth, Marcel; Kim, Kevin; Ha, Kong Q.

    2004-01-01

    The James Web Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2011. This is a continuation of a series of papers on modeling activities for JWST. The structural-thermal-optical, often referred to as STOP, analysis process is used to predict the effect of thermal distortion on optical performance. The benchmark STOP analysis for JWST assesses the effect of an observatory slew on wavefront error. Temperatures predicted using geometric and thermal math models are mapped to a structural finite element model in order to predict thermally induced deformations. Motions and deformations at optical surfaces are then input to optical models, and optical performance is predicted using either an optical ray trace or a linear optical analysis tool. In addition to baseline performance predictions, a process for performing sensitivity studies to assess modeling uncertainties is described.

  13. Development of Novel Repellents Using Structure - Activity Modeling of Compounds in the USDA Archival Database

    DTIC Science & Technology

    2011-01-01

    used in efforts to develop QSAR models. Measurement of Repellent Efficacy Screening for Repellency of Compounds with Unknown Toxicology In screening...CPT) were used to develop Quantitative Structure Activity Relationship ( QSAR ) models to predict repellency. Successful prediction of novel...acylpiperidine QSAR models employed 4 descriptors to describe the relationship between structure and repellent duration. The ANN model of the carboxamides did not

  14. Computational modeling of membrane proteins

    PubMed Central

    Leman, Julia Koehler; Ulmschneider, Martin B.; Gray, Jeffrey J.

    2014-01-01

    The determination of membrane protein (MP) structures has always trailed that of soluble proteins due to difficulties in their overexpression, reconstitution into membrane mimetics, and subsequent structure determination. The percentage of MP structures in the protein databank (PDB) has been at a constant 1-2% for the last decade. In contrast, over half of all drugs target MPs, only highlighting how little we understand about drug-specific effects in the human body. To reduce this gap, researchers have attempted to predict structural features of MPs even before the first structure was experimentally elucidated. In this review, we present current computational methods to predict MP structure, starting with secondary structure prediction, prediction of trans-membrane spans, and topology. Even though these methods generate reliable predictions, challenges such as predicting kinks or precise beginnings and ends of secondary structure elements are still waiting to be addressed. We describe recent developments in the prediction of 3D structures of both α-helical MPs as well as β-barrels using comparative modeling techniques, de novo methods, and molecular dynamics (MD) simulations. The increase of MP structures has (1) facilitated comparative modeling due to availability of more and better templates, and (2) improved the statistics for knowledge-based scoring functions. Moreover, de novo methods have benefitted from the use of correlated mutations as restraints. Finally, we outline current advances that will likely shape the field in the forthcoming decade. PMID:25355688

  15. Integration of QUARK and I-TASSER for ab initio protein structure prediction in CASP11

    PubMed Central

    Zhang, Wenxuan; Yang, Jianyi; He, Baoji; Walker, Sara Elizabeth; Zhang, Hongjiu; Govindarajoo, Brandon; Virtanen, Jouko; Xue, Zhidong; Shen, Hong-Bin; Zhang, Yang

    2015-01-01

    We tested two pipelines developed for template-free protein structure prediction in the CASP11 experiment. First, the QUARK pipeline constructs structure models by reassembling fragments of continuously distributed lengths excised from unrelated proteins. Five free-modeling (FM) targets have the model successfully constructed by QUARK with a TM-score above 0.4, including the first model of T0837-D1, which has a TM-score=0.736 and RMSD=2.9 Å to the native. Detailed analysis showed that the success is partly attributed to the high-resolution contact map prediction derived from fragment-based distance-profiles, which are mainly located between regular secondary structure elements and loops/turns and help guide the orientation of secondary structure assembly. In the Zhang-Server pipeline, weakly scoring threading templates are re-ordered by the structural similarity to the ab initio folding models, which are then reassembled by I-TASSER based structure assembly simulations; 60% more domains with length up to 204 residues, compared to the QUARK pipeline, were successfully modeled by the I-TASSER pipeline with a TM-score above 0.4. The robustness of the I-TASSER pipeline can stem from the composite fragment-assembly simulations that combine structures from both ab initio folding and threading template refinements. Despite the promising cases, challenges still exist in long-range beta-strand folding, domain parsing, and the uncertainty of secondary structure prediction; the latter of which was found to affect nearly all aspects of FM structure predictions, from fragment identification, target classification, structure assembly, to final model selection. Significant efforts are needed to solve these problems before real progress on FM could be made. PMID:26370505

  16. Integration of QUARK and I-TASSER for Ab Initio Protein Structure Prediction in CASP11.

    PubMed

    Zhang, Wenxuan; Yang, Jianyi; He, Baoji; Walker, Sara Elizabeth; Zhang, Hongjiu; Govindarajoo, Brandon; Virtanen, Jouko; Xue, Zhidong; Shen, Hong-Bin; Zhang, Yang

    2016-09-01

    We tested two pipelines developed for template-free protein structure prediction in the CASP11 experiment. First, the QUARK pipeline constructs structure models by reassembling fragments of continuously distributed lengths excised from unrelated proteins. Five free-modeling (FM) targets have the model successfully constructed by QUARK with a TM-score above 0.4, including the first model of T0837-D1, which has a TM-score = 0.736 and RMSD = 2.9 Å to the native. Detailed analysis showed that the success is partly attributed to the high-resolution contact map prediction derived from fragment-based distance-profiles, which are mainly located between regular secondary structure elements and loops/turns and help guide the orientation of secondary structure assembly. In the Zhang-Server pipeline, weakly scoring threading templates are re-ordered by the structural similarity to the ab initio folding models, which are then reassembled by I-TASSER based structure assembly simulations; 60% more domains with length up to 204 residues, compared to the QUARK pipeline, were successfully modeled by the I-TASSER pipeline with a TM-score above 0.4. The robustness of the I-TASSER pipeline can stem from the composite fragment-assembly simulations that combine structures from both ab initio folding and threading template refinements. Despite the promising cases, challenges still exist in long-range beta-strand folding, domain parsing, and the uncertainty of secondary structure prediction; the latter of which was found to affect nearly all aspects of FM structure predictions, from fragment identification, target classification, structure assembly, to final model selection. Significant efforts are needed to solve these problems before real progress on FM could be made. Proteins 2016; 84(Suppl 1):76-86. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains.

    PubMed

    Lewis, Tony E; Sillitoe, Ian; Andreeva, Antonina; Blundell, Tom L; Buchan, Daniel W A; Chothia, Cyrus; Cuff, Alison; Dana, Jose M; Filippis, Ioannis; Gough, Julian; Hunter, Sarah; Jones, David T; Kelley, Lawrence A; Kleywegt, Gerard J; Minneci, Federico; Mitchell, Alex; Murzin, Alexey G; Ochoa-Montaño, Bernardo; Rackham, Owen J L; Smith, James; Sternberg, Michael J E; Velankar, Sameer; Yeats, Corin; Orengo, Christine

    2013-01-01

    Genome3D, available at http://www.genome3d.eu, is a new collaborative project that integrates UK-based structural resources to provide a unique perspective on sequence-structure-function relationships. Leading structure prediction resources (DomSerf, FUGUE, Gene3D, pDomTHREADER, Phyre and SUPERFAMILY) provide annotations for UniProt sequences to indicate the locations of structural domains (structural annotations) and their 3D structures (structural models). Structural annotations and 3D model predictions are currently available for three model genomes (Homo sapiens, E. coli and baker's yeast), and the project will extend to other genomes in the near future. As these resources exploit different strategies for predicting structures, the main aim of Genome3D is to enable comparisons between all the resources so that biologists can see where predictions agree and are therefore more trusted. Furthermore, as these methods differ in whether they build their predictions using CATH or SCOP, Genome3D also contains the first official mapping between these two databases. This has identified pairs of similar superfamilies from the two resources at various degrees of consensus (532 bronze pairs, 527 silver pairs and 370 gold pairs).

  18. Chemical structure-based predictive model for methanogenic anaerobic biodegradation potential.

    PubMed

    Meylan, William; Boethling, Robert; Aronson, Dallas; Howard, Philip; Tunkel, Jay

    2007-09-01

    Many screening-level models exist for predicting aerobic biodegradation potential from chemical structure, but anaerobic biodegradation generally has been ignored by modelers. We used a fragment contribution approach to develop a model for predicting biodegradation potential under methanogenic anaerobic conditions. The new model has 37 fragments (substructures) and classifies a substance as either fast or slow, relative to the potential to be biodegraded in the "serum bottle" anaerobic biodegradation screening test (Organization for Economic Cooperation and Development Guideline 311). The model correctly classified 90, 77, and 91% of the chemicals in the training set (n = 169) and two independent validation sets (n = 35 and 23), respectively. Accuracy of predictions of fast and slow degradation was equal for training-set chemicals, but fast-degradation predictions were less accurate than slow-degradation predictions for the validation sets. Analysis of the signs of the fragment coefficients for this and the other (aerobic) Biowin models suggests that in the context of simple group contribution models, the majority of positive and negative structural influences on ultimate degradation are the same for aerobic and methanogenic anaerobic biodegradation.

  19. De novo protein structure prediction by dynamic fragment assembly and conformational space annealing.

    PubMed

    Lee, Juyong; Lee, Jinhyuk; Sasaki, Takeshi N; Sasai, Masaki; Seok, Chaok; Lee, Jooyoung

    2011-08-01

    Ab initio protein structure prediction is a challenging problem that requires both an accurate energetic representation of a protein structure and an efficient conformational sampling method for successful protein modeling. In this article, we present an ab initio structure prediction method which combines a recently suggested novel way of fragment assembly, dynamic fragment assembly (DFA) and conformational space annealing (CSA) algorithm. In DFA, model structures are scored by continuous functions constructed based on short- and long-range structural restraint information from a fragment library. Here, DFA is represented by the full-atom model by CHARMM with the addition of the empirical potential of DFIRE. The relative contributions between various energy terms are optimized using linear programming. The conformational sampling was carried out with CSA algorithm, which can find low energy conformations more efficiently than simulated annealing used in the existing DFA study. The newly introduced DFA energy function and CSA sampling algorithm are implemented into CHARMM. Test results on 30 small single-domain proteins and 13 template-free modeling targets of the 8th Critical Assessment of protein Structure Prediction show that the current method provides comparable and complementary prediction results to existing top methods. Copyright © 2011 Wiley-Liss, Inc.

  20. A deep learning framework for modeling structural features of RNA-binding protein targets

    PubMed Central

    Zhang, Sai; Zhou, Jingtian; Hu, Hailin; Gong, Haipeng; Chen, Ligong; Cheng, Chao; Zeng, Jianyang

    2016-01-01

    RNA-binding proteins (RBPs) play important roles in the post-transcriptional control of RNAs. Identifying RBP binding sites and characterizing RBP binding preferences are key steps toward understanding the basic mechanisms of the post-transcriptional gene regulation. Though numerous computational methods have been developed for modeling RBP binding preferences, discovering a complete structural representation of the RBP targets by integrating their available structural features in all three dimensions is still a challenging task. In this paper, we develop a general and flexible deep learning framework for modeling structural binding preferences and predicting binding sites of RBPs, which takes (predicted) RNA tertiary structural information into account for the first time. Our framework constructs a unified representation that characterizes the structural specificities of RBP targets in all three dimensions, which can be further used to predict novel candidate binding sites and discover potential binding motifs. Through testing on the real CLIP-seq datasets, we have demonstrated that our deep learning framework can automatically extract effective hidden structural features from the encoded raw sequence and structural profiles, and predict accurate RBP binding sites. In addition, we have conducted the first study to show that integrating the additional RNA tertiary structural features can improve the model performance in predicting RBP binding sites, especially for the polypyrimidine tract-binding protein (PTB), which also provides a new evidence to support the view that RBPs may own specific tertiary structural binding preferences. In particular, the tests on the internal ribosome entry site (IRES) segments yield satisfiable results with experimental support from the literature and further demonstrate the necessity of incorporating RNA tertiary structural information into the prediction model. The source code of our approach can be found in https://github.com/thucombio/deepnet-rbp. PMID:26467480

  1. A strategy to improve the identification reliability of the chemical constituents by high-resolution mass spectrometry-based isomer structure prediction combined with a quantitative structure retention relationship analysis: Phthalide compounds in Chuanxiong as a test case.

    PubMed

    Zhang, Qingqing; Huo, Mengqi; Zhang, Yanling; Qiao, Yanjiang; Gao, Xiaoyan

    2018-06-01

    High-resolution mass spectrometry (HRMS) provides a powerful tool for the rapid analysis and identification of compounds in herbs. However, the diversity and large differences in the content of the chemical constituents in herbal medicines, especially isomerisms, are a great challenge for mass spectrometry-based structural identification. In the current study, a new strategy for the structural characterization of potential new phthalide compounds was proposed by isomer structure predictions combined with a quantitative structure-retention relationship (QSRR) analysis using phthalide compounds in Chuanxiong as an example. This strategy consists of three steps. First, the structures of phthalide compounds were reasonably predicted on the basis of the structure features and MS/MS fragmentation patterns: (1) the collected raw HRMS data were preliminarily screened by an in-house database; (2) the MS/MS fragmentation patterns of the analogous compounds were summarized; (3) the reported phthalide compounds were identified, and the structures of the isomers were reasonably predicted. Second, the QSRR model was established and verified using representative phthalide compound standards. Finally, the retention times of the predicted isomers were calculated by the QSRR model, and the structures of these peaks were rationally characterized by matching retention times of the detected chromatographic peaks and the predicted isomers. A multiple linear regression QSRR model in which 6 physicochemical variables were screened was built using 23 phthalide standards. The retention times of the phthalide isomers in Chuanxiong were well predicted by the QSRR model combined with reasonable structure predictions (R 2 =0.955). A total of 81 peaks were detected from Chuanxiong and assigned to reasonable structures, and 26 potential new phthalide compounds were structurally characterized. This strategy can improve the identification efficiency and reliability of homologues in complex materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Contact Prediction for Beta and Alpha-Beta Proteins Using Integer Linear Optimization and its Impact on the First Principles 3D Structure Prediction Method ASTRO-FOLD

    PubMed Central

    Rajgaria, R.; Wei, Y.; Floudas, C. A.

    2010-01-01

    An integer linear optimization model is presented to predict residue contacts in β, α + β, and α/β proteins. The total energy of a protein is expressed as sum of a Cα – Cα distance dependent contact energy contribution and a hydrophobic contribution. The model selects contacts that assign lowest energy to the protein structure while satisfying a set of constraints that are included to enforce certain physically observed topological information. A new method based on hydrophobicity is proposed to find the β-sheet alignments. These β-sheet alignments are used as constraints for contacts between residues of β-sheets. This model was tested on three independent protein test sets and CASP8 test proteins consisting of β, α + β, α/β proteins and was found to perform very well. The average accuracy of the predictions (separated by at least six residues) was approximately 61%. The average true positive and false positive distances were also calculated for each of the test sets and they are 7.58 Å and 15.88 Å, respectively. Residue contact prediction can be directly used to facilitate the protein tertiary structure prediction. This proposed residue contact prediction model is incorporated into the first principles protein tertiary structure prediction approach, ASTRO-FOLD. The effectiveness of the contact prediction model was further demonstrated by the improvement in the quality of the protein structure ensemble generated using the predicted residue contacts for a test set of 10 proteins. PMID:20225257

  3. Protein asparagine deamidation prediction based on structures with machine learning methods.

    PubMed

    Jia, Lei; Sun, Yaxiong

    2017-01-01

    Chemical stability is a major concern in the development of protein therapeutics due to its impact on both efficacy and safety. Protein "hotspots" are amino acid residues that are subject to various chemical modifications, including deamidation, isomerization, glycosylation, oxidation etc. A more accurate prediction method for potential hotspot residues would allow their elimination or reduction as early as possible in the drug discovery process. In this work, we focus on prediction models for asparagine (Asn) deamidation. Sequence-based prediction method simply identifies the NG motif (amino acid asparagine followed by a glycine) to be liable to deamidation. It still dominates deamidation evaluation process in most pharmaceutical setup due to its convenience. However, the simple sequence-based method is less accurate and often causes over-engineering a protein. We introduce structure-based prediction models by mining available experimental and structural data of deamidated proteins. Our training set contains 194 Asn residues from 25 proteins that all have available high-resolution crystal structures. Experimentally measured deamidation half-life of Asn in penta-peptides as well as 3D structure-based properties, such as solvent exposure, crystallographic B-factors, local secondary structure and dihedral angles etc., were used to train prediction models with several machine learning algorithms. The prediction tools were cross-validated as well as tested with an external test data set. The random forest model had high enrichment in ranking deamidated residues higher than non-deamidated residues while effectively eliminated false positive predictions. It is possible that such quantitative protein structure-function relationship tools can also be applied to other protein hotspot predictions. In addition, we extensively discussed metrics being used to evaluate the performance of predicting unbalanced data sets such as the deamidation case.

  4. Conformational Transitions upon Ligand Binding: Holo-Structure Prediction from Apo Conformations

    PubMed Central

    Seeliger, Daniel; de Groot, Bert L.

    2010-01-01

    Biological function of proteins is frequently associated with the formation of complexes with small-molecule ligands. Experimental structure determination of such complexes at atomic resolution, however, can be time-consuming and costly. Computational methods for structure prediction of protein/ligand complexes, particularly docking, are as yet restricted by their limited consideration of receptor flexibility, rendering them not applicable for predicting protein/ligand complexes if large conformational changes of the receptor upon ligand binding are involved. Accurate receptor models in the ligand-bound state (holo structures), however, are a prerequisite for successful structure-based drug design. Hence, if only an unbound (apo) structure is available distinct from the ligand-bound conformation, structure-based drug design is severely limited. We present a method to predict the structure of protein/ligand complexes based solely on the apo structure, the ligand and the radius of gyration of the holo structure. The method is applied to ten cases in which proteins undergo structural rearrangements of up to 7.1 Å backbone RMSD upon ligand binding. In all cases, receptor models within 1.6 Å backbone RMSD to the target were predicted and close-to-native ligand binding poses were obtained for 8 of 10 cases in the top-ranked complex models. A protocol is presented that is expected to enable structure modeling of protein/ligand complexes and structure-based drug design for cases where crystal structures of ligand-bound conformations are not available. PMID:20066034

  5. Comparative Protein Structure Modeling Using MODELLER

    PubMed Central

    Webb, Benjamin; Sali, Andrej

    2016-01-01

    Comparative protein structure modeling predicts the three-dimensional structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and how to use the ModBase database of such models, and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. PMID:27322406

  6. Base pair probability estimates improve the prediction accuracy of RNA non-canonical base pairs

    PubMed Central

    2017-01-01

    Prediction of RNA tertiary structure from sequence is an important problem, but generating accurate structure models for even short sequences remains difficult. Predictions of RNA tertiary structure tend to be least accurate in loop regions, where non-canonical pairs are important for determining the details of structure. Non-canonical pairs can be predicted using a knowledge-based model of structure that scores nucleotide cyclic motifs, or NCMs. In this work, a partition function algorithm is introduced that allows the estimation of base pairing probabilities for both canonical and non-canonical interactions. Pairs that are predicted to be probable are more likely to be found in the true structure than pairs of lower probability. Pair probability estimates can be further improved by predicting the structure conserved across multiple homologous sequences using the TurboFold algorithm. These pairing probabilities, used in concert with prior knowledge of the canonical secondary structure, allow accurate inference of non-canonical pairs, an important step towards accurate prediction of the full tertiary structure. Software to predict non-canonical base pairs and pairing probabilities is now provided as part of the RNAstructure software package. PMID:29107980

  7. A scoring function based on solvation thermodynamics for protein structure prediction

    PubMed Central

    Du, Shiqiao; Harano, Yuichi; Kinoshita, Masahiro; Sakurai, Minoru

    2012-01-01

    We predict protein structure using our recently developed free energy function for describing protein stability, which is focused on solvation thermodynamics. The function is combined with the current most reliable sampling methods, i.e., fragment assembly (FA) and comparative modeling (CM). The prediction is tested using 11 small proteins for which high-resolution crystal structures are available. For 8 of these proteins, sequence similarities are found in the database, and the prediction is performed with CM. Fairly accurate models with average Cα root mean square deviation (RMSD) ∼ 2.0 Å are successfully obtained for all cases. For the rest of the target proteins, we perform the prediction following FA protocols. For 2 cases, we obtain predicted models with an RMSD ∼ 3.0 Å as the best-scored structures. For the other case, the RMSD remains larger than 7 Å. For all the 11 target proteins, our scoring function identifies the experimentally determined native structure as the best structure. Starting from the predicted structure, replica exchange molecular dynamics is performed to further refine the structures. However, we are unable to improve its RMSD toward the experimental structure. The exhaustive sampling by coarse-grained normal mode analysis around the native structures reveals that our function has a linear correlation with RMSDs < 3.0 Å. These results suggest that the function is quite reliable for the protein structure prediction while the sampling method remains one of the major limiting factors in it. The aspects through which the methodology could further be improved are discussed. PMID:27493529

  8. Assessment of Protein Side-Chain Conformation Prediction Methods in Different Residue Environments

    PubMed Central

    Peterson, Lenna X.; Kang, Xuejiao; Kihara, Daisuke

    2016-01-01

    Computational prediction of side-chain conformation is an important component of protein structure prediction. Accurate side-chain prediction is crucial for practical applications of protein structure models that need atomic detailed resolution such as protein and ligand design. We evaluated the accuracy of eight side-chain prediction methods in reproducing the side-chain conformations of experimentally solved structures deposited to the Protein Data Bank. Prediction accuracy was evaluated for a total of four different structural environments (buried, surface, interface, and membrane-spanning) in three different protein types (monomeric, multimeric, and membrane). Overall, the highest accuracy was observed for buried residues in monomeric and multimeric proteins. Notably, side-chains at protein interfaces and membrane-spanning regions were better predicted than surface residues even though the methods did not all use multimeric and membrane proteins for training. Thus, we conclude that the current methods are as practically useful for modeling protein docking interfaces and membrane-spanning regions as for modeling monomers. PMID:24619909

  9. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    USGS Publications Warehouse

    Christensen, Nikolaj K; Minsley, Burke J.; Christensen, Steen

    2017-01-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  10. Generation of 3-D hydrostratigraphic zones from dense airborne electromagnetic data to assess groundwater model prediction error

    NASA Astrophysics Data System (ADS)

    Christensen, N. K.; Minsley, B. J.; Christensen, S.

    2017-02-01

    We present a new methodology to combine spatially dense high-resolution airborne electromagnetic (AEM) data and sparse borehole information to construct multiple plausible geological structures using a stochastic approach. The method developed allows for quantification of the performance of groundwater models built from different geological realizations of structure. Multiple structural realizations are generated using geostatistical Monte Carlo simulations that treat sparse borehole lithological observations as hard data and dense geophysically derived structural probabilities as soft data. Each structural model is used to define 3-D hydrostratigraphical zones of a groundwater model, and the hydraulic parameter values of the zones are estimated by using nonlinear regression to fit hydrological data (hydraulic head and river discharge measurements). Use of the methodology is demonstrated for a synthetic domain having structures of categorical deposits consisting of sand, silt, or clay. It is shown that using dense AEM data with the methodology can significantly improve the estimated accuracy of the sediment distribution as compared to when borehole data are used alone. It is also shown that this use of AEM data can improve the predictive capability of a calibrated groundwater model that uses the geological structures as zones. However, such structural models will always contain errors because even with dense AEM data it is not possible to perfectly resolve the structures of a groundwater system. It is shown that when using such erroneous structures in a groundwater model, they can lead to biased parameter estimates and biased model predictions, therefore impairing the model's predictive capability.

  11. Finite Element Model Development For Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.

  12. Analytical Finite Element Simulation Model for Structural Crashworthiness Prediction

    DOT National Transportation Integrated Search

    1974-02-01

    The analytical development and appropriate derivations are presented for a simulation model of vehicle crashworthiness prediction. Incremental equations governing the nonlinear elasto-plastic dynamic response of three-dimensional frame structures are...

  13. Using CV-GLUE procedure in analysis of wetland model predictive uncertainty.

    PubMed

    Huang, Chun-Wei; Lin, Yu-Pin; Chiang, Li-Chi; Wang, Yung-Chieh

    2014-07-01

    This study develops a procedure that is related to Generalized Likelihood Uncertainty Estimation (GLUE), called the CV-GLUE procedure, for assessing the predictive uncertainty that is associated with different model structures with varying degrees of complexity. The proposed procedure comprises model calibration, validation, and predictive uncertainty estimation in terms of a characteristic coefficient of variation (characteristic CV). The procedure first performed two-stage Monte-Carlo simulations to ensure predictive accuracy by obtaining behavior parameter sets, and then the estimation of CV-values of the model outcomes, which represent the predictive uncertainties for a model structure of interest with its associated behavior parameter sets. Three commonly used wetland models (the first-order K-C model, the plug flow with dispersion model, and the Wetland Water Quality Model; WWQM) were compared based on data that were collected from a free water surface constructed wetland with paddy cultivation in Taipei, Taiwan. The results show that the first-order K-C model, which is simpler than the other two models, has greater predictive uncertainty. This finding shows that predictive uncertainty does not necessarily increase with the complexity of the model structure because in this case, the more simplistic representation (first-order K-C model) of reality results in a higher uncertainty in the prediction made by the model. The CV-GLUE procedure is suggested to be a useful tool not only for designing constructed wetlands but also for other aspects of environmental management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms

    PubMed Central

    Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei

    2016-01-01

    Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851

  15. Integrated Modeling Activities for the James Webb Space Telescope (JWST): Structural-Thermal-Optical Analysis

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Parrish, Keith; Howard, Joseph M.; Mosier, Gary E.; McGinnis, Mark; Bluth, Marcel; Kim, Kevin; Ha, Hong Q.

    2004-01-01

    This is a continuation of a series of papers on modeling activities for JWST. The structural-thermal- optical, often referred to as "STOP", analysis process is used to predict the effect of thermal distortion on optical performance. The benchmark STOP analysis for JWST assesses the effect of an observatory slew on wavefront error. The paper begins an overview of multi-disciplinary engineering analysis, or integrated modeling, which is a critical element of the JWST mission. The STOP analysis process is then described. This process consists of the following steps: thermal analysis, structural analysis, and optical analysis. Temperatures predicted using geometric and thermal math models are mapped to the structural finite element model in order to predict thermally-induced deformations. Motions and deformations at optical surfaces are input to optical models and optical performance is predicted using either an optical ray trace or WFE estimation techniques based on prior ray traces or first order optics. Following the discussion of the analysis process, results based on models representing the design at the time of the System Requirements Review. In addition to baseline performance predictions, sensitivity studies are performed to assess modeling uncertainties. Of particular interest is the sensitivity of optical performance to uncertainties in temperature predictions and variations in metal properties. The paper concludes with a discussion of modeling uncertainty as it pertains to STOP analysis.

  16. Molecular Dynamic Simulation and Inhibitor Prediction of Cysteine Synthase Structured Model as a Potential Drug Target for Trichomoniasis

    PubMed Central

    Singh, Satendra; Singh, Atul Kumar; Gautam, Budhayash

    2013-01-01

    In our presented research, we made an attempt to predict the 3D model for cysteine synthase (A2GMG5_TRIVA) using homology-modeling approaches. To investigate deeper into the predicted structure, we further performed a molecular dynamics simulation for 10 ns and calculated several supporting analysis for structural properties such as RMSF, radius of gyration, and the total energy calculation to support the predicted structured model of cysteine synthase. The present findings led us to conclude that the proposed model is stereochemically stable. The overall PROCHECK G factor for the homology-modeled structure was −0.04. On the basis of the virtual screening for cysteine synthase against the NCI subset II molecule, we present the molecule 1-N, 4-N-bis [3-(1H-benzimidazol-2-yl) phenyl] benzene-1,4-dicarboxamide (ZINC01690699) having the minimum energy score (−13.0 Kcal/Mol) and a log P value of 6 as a potential inhibitory molecule used to inhibit the growth of T. vaginalis infection. PMID:24073401

  17. F-RAG: Generating Atomic Coordinates from RNA Graphs by Fragment Assembly.

    PubMed

    Jain, Swati; Schlick, Tamar

    2017-11-24

    Coarse-grained models represent attractive approaches to analyze and simulate ribonucleic acid (RNA) molecules, for example, for structure prediction and design, as they simplify the RNA structure to reduce the conformational search space. Our structure prediction protocol RAGTOP (RNA-As-Graphs Topology Prediction) represents RNA structures as tree graphs and samples graph topologies to produce candidate graphs. However, for a more detailed study and analysis, construction of atomic from coarse-grained models is required. Here we present our graph-based fragment assembly algorithm (F-RAG) to convert candidate three-dimensional (3D) tree graph models, produced by RAGTOP into atomic structures. We use our related RAG-3D utilities to partition graphs into subgraphs and search for structurally similar atomic fragments in a data set of RNA 3D structures. The fragments are edited and superimposed using common residues, full atomic models are scored using RAGTOP's knowledge-based potential, and geometries of top scoring models is optimized. To evaluate our models, we assess all-atom RMSDs and Interaction Network Fidelity (a measure of residue interactions) with respect to experimentally solved structures and compare our results to other fragment assembly programs. For a set of 50 RNA structures, we obtain atomic models with reasonable geometries and interactions, particularly good for RNAs containing junctions. Additional improvements to our protocol and databases are outlined. These results provide a good foundation for further work on RNA structure prediction and design applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The Theory of Planned Behavior as a Model of Heavy Episodic Drinking Among College Students

    PubMed Central

    Collins, Susan E.; Carey, Kate B.

    2008-01-01

    This study provided a simultaneous, confirmatory test of the theory of planned behavior (TPB) in predicting heavy episodic drinking (HED) among college students. It was hypothesized that past HED, drinking attitudes, subjective norms and drinking refusal self-efficacy would predict intention, which would in turn predict future HED. Participants consisted of 131 college drinkers (63% female) who reported having engaged in HED in the previous two weeks. Participants were recruited and completed questionnaires within the context of a larger intervention study (see Collins & Carey, 2005). Latent factor structural equation modeling was used to test the ability of the TPB to predict HED. Chi-square tests and fit indices indicated good fit for the final structural models. Self-efficacy and attitudes but not subjective norms significantly predicted baseline intention, and intention and past HED predicted future HED. Contrary to hypotheses, however, a structural model excluding past HED provided a better fit than a model including it. Although further studies must be conducted before a definitive conclusion is reached, a TPB model excluding past behavior, which is arguably more parsimonious and theory driven, may provide better prediction of HED among college drinkers than a model including past behavior. PMID:18072832

  19. Wave models for turbulent free shear flows

    NASA Technical Reports Server (NTRS)

    Liou, W. W.; Morris, P. J.

    1991-01-01

    New predictive closure models for turbulent free shear flows are presented. They are based on an instability wave description of the dominant large scale structures in these flows using a quasi-linear theory. Three model were developed to study the structural dynamics of turbulent motions of different scales in free shear flows. The local characteristics of the large scale motions are described using linear theory. Their amplitude is determined from an energy integral analysis. The models were applied to the study of an incompressible free mixing layer. In all cases, predictions are made for the development of the mean flow field. In the last model, predictions of the time dependent motion of the large scale structure of the mixing region are made. The predictions show good agreement with experimental observations.

  20. MicroRNAfold: pre-microRNA secondary structure prediction based on modified NCM model with thermodynamics-based scoring strategy.

    PubMed

    Han, Dianwei; Zhang, Jun; Tang, Guiliang

    2012-01-01

    An accurate prediction of the pre-microRNA secondary structure is important in miRNA informatics. Based on a recently proposed model, nucleotide cyclic motifs (NCM), to predict RNA secondary structure, we propose and implement a Modified NCM (MNCM) model with a physics-based scoring strategy to tackle the problem of pre-microRNA folding. Our microRNAfold is implemented using a global optimal algorithm based on the bottom-up local optimal solutions. Our experimental results show that microRNAfold outperforms the current leading prediction tools in terms of True Negative rate, False Negative rate, Specificity, and Matthews coefficient ratio.

  1. Modularity of Protein Folds as a Tool for Template-Free Modeling of Structures.

    PubMed

    Vallat, Brinda; Madrid-Aliste, Carlos; Fiser, Andras

    2015-08-01

    Predicting the three-dimensional structure of proteins from their amino acid sequences remains a challenging problem in molecular biology. While the current structural coverage of proteins is almost exclusively provided by template-based techniques, the modeling of the rest of the protein sequences increasingly require template-free methods. However, template-free modeling methods are much less reliable and are usually applicable for smaller proteins, leaving much space for improvement. We present here a novel computational method that uses a library of supersecondary structure fragments, known as Smotifs, to model protein structures. The library of Smotifs has saturated over time, providing a theoretical foundation for efficient modeling. The method relies on weak sequence signals from remotely related protein structures to create a library of Smotif fragments specific to the target protein sequence. This Smotif library is exploited in a fragment assembly protocol to sample decoys, which are assessed by a composite scoring function. Since the Smotif fragments are larger in size compared to the ones used in other fragment-based methods, the proposed modeling algorithm, SmotifTF, can employ an exhaustive sampling during decoy assembly. SmotifTF successfully predicts the overall fold of the target proteins in about 50% of the test cases and performs competitively when compared to other state of the art prediction methods, especially when sequence signal to remote homologs is diminishing. Smotif-based modeling is complementary to current prediction methods and provides a promising direction in addressing the structure prediction problem, especially when targeting larger proteins for modeling.

  2. Dynameomics: data-driven methods and models for utilizing large-scale protein structure repositories for improving fragment-based loop prediction.

    PubMed

    Rysavy, Steven J; Beck, David A C; Daggett, Valerie

    2014-11-01

    Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼ 25-75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. © 2014 The Protein Society.

  3. Dynameomics: Data-driven methods and models for utilizing large-scale protein structure repositories for improving fragment-based loop prediction

    PubMed Central

    Rysavy, Steven J; Beck, David AC; Daggett, Valerie

    2014-01-01

    Protein function is intimately linked to protein structure and dynamics yet experimentally determined structures frequently omit regions within a protein due to indeterminate data, which is often due protein dynamics. We propose that atomistic molecular dynamics simulations provide a diverse sampling of biologically relevant structures for these missing segments (and beyond) to improve structural modeling and structure prediction. Here we make use of the Dynameomics data warehouse, which contains simulations of representatives of essentially all known protein folds. We developed novel computational methods to efficiently identify, rank and retrieve small peptide structures, or fragments, from this database. We also created a novel data model to analyze and compare large repositories of structural data, such as contained within the Protein Data Bank and the Dynameomics data warehouse. Our evaluation compares these structural repositories for improving loop predictions and analyzes the utility of our methods and models. Using a standard set of loop structures, containing 510 loops, 30 for each loop length from 4 to 20 residues, we find that the inclusion of Dynameomics structures in fragment-based methods improves the quality of the loop predictions without being dependent on sequence homology. Depending on loop length, ∼25–75% of the best predictions came from the Dynameomics set, resulting in lower main chain root-mean-square deviations for all fragment lengths using the combined fragment library. We also provide specific cases where Dynameomics fragments provide better predictions for NMR loop structures than fragments from crystal structures. Online access to these fragment libraries is available at http://www.dynameomics.org/fragments. PMID:25142412

  4. Building a Better Fragment Library for De Novo Protein Structure Prediction

    PubMed Central

    de Oliveira, Saulo H. P.; Shi, Jiye; Deane, Charlotte M.

    2015-01-01

    Fragment-based approaches are the current standard for de novo protein structure prediction. These approaches rely on accurate and reliable fragment libraries to generate good structural models. In this work, we describe a novel method for structure fragment library generation and its application in fragment-based de novo protein structure prediction. The importance of correct testing procedures in assessing the quality of fragment libraries is demonstrated. In particular, the exclusion of homologs to the target from the libraries to correctly simulate a de novo protein structure prediction scenario, something which surprisingly is not always done. We demonstrate that fragments presenting different predominant predicted secondary structures should be treated differently during the fragment library generation step and that exhaustive and random search strategies should both be used. This information was used to develop a novel method, Flib. On a validation set of 41 structurally diverse proteins, Flib libraries presents both a higher precision and coverage than two of the state-of-the-art methods, NNMake and HHFrag. Flib also achieves better precision and coverage on the set of 275 protein domains used in the two previous experiments of the the Critical Assessment of Structure Prediction (CASP9 and CASP10). We compared Flib libraries against NNMake libraries in a structure prediction context. Of the 13 cases in which a correct answer was generated, Flib models were more accurate than NNMake models for 10. “Flib is available for download at: http://www.stats.ox.ac.uk/research/proteins/resources”. PMID:25901595

  5. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    DOE PAGES

    Lu, Dan; Ye, Ming; Curtis, Gary P.

    2015-08-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. Our study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict themore » reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. Moreover, these reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Finally, limitations of applying MLBMA to the synthetic study and future real-world modeling are discussed.« less

  6. Functional insights from proteome-wide structural modeling of Treponema pallidum subspecies pallidum, the causative agent of syphilis.

    PubMed

    Houston, Simon; Lithgow, Karen Vivien; Osbak, Kara Krista; Kenyon, Chris Richard; Cameron, Caroline E

    2018-05-16

    Syphilis continues to be a major global health threat with 11 million new infections each year, and a global burden of 36 million cases. The causative agent of syphilis, Treponema pallidum subspecies pallidum, is a highly virulent bacterium, however the molecular mechanisms underlying T. pallidum pathogenesis remain to be definitively identified. This is due to the fact that T. pallidum is currently uncultivatable, inherently fragile and thus difficult to work with, and phylogenetically distinct with no conventional virulence factor homologs found in other pathogens. In fact, approximately 30% of its predicted protein-coding genes have no known orthologs or assigned functions. Here we employed a structural bioinformatics approach using Phyre2-based tertiary structure modeling to improve our understanding of T. pallidum protein function on a proteome-wide scale. Phyre2-based tertiary structure modeling generated high-confidence predictions for 80% of the T. pallidum proteome (780/978 predicted proteins). Tertiary structure modeling also inferred the same function as primary structure-based annotations from genome sequencing pipelines for 525/605 proteins (87%), which represents 54% (525/978) of all T. pallidum proteins. Of the 175 T. pallidum proteins modeled with high confidence that were not assigned functions in the previously annotated published proteome, 167 (95%) were able to be assigned predicted functions. Twenty-one of the 175 hypothetical proteins modeled with high confidence were also predicted to exhibit significant structural similarity with proteins experimentally confirmed to be required for virulence in other pathogens. Phyre2-based structural modeling is a powerful bioinformatics tool that has provided insight into the potential structure and function of the majority of T. pallidum proteins and helped validate the primary structure-based annotation of more than 50% of all T. pallidum proteins with high confidence. This work represents the first T. pallidum proteome-wide structural modeling study and is one of few studies to apply this approach for the functional annotation of a whole proteome.

  7. SMOQ: a tool for predicting the absolute residue-specific quality of a single protein model with support vector machines

    PubMed Central

    2014-01-01

    Background It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. Results We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. Conclusion SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/. PMID:24776231

  8. SMOQ: a tool for predicting the absolute residue-specific quality of a single protein model with support vector machines.

    PubMed

    Cao, Renzhi; Wang, Zheng; Wang, Yiheng; Cheng, Jianlin

    2014-04-28

    It is important to predict the quality of a protein structural model before its native structure is known. The method that can predict the absolute local quality of individual residues in a single protein model is rare, yet particularly needed for using, ranking and refining protein models. We developed a machine learning tool (SMOQ) that can predict the distance deviation of each residue in a single protein model. SMOQ uses support vector machines (SVM) with protein sequence and structural features (i.e. basic feature set), including amino acid sequence, secondary structures, solvent accessibilities, and residue-residue contacts to make predictions. We also trained a SVM model with two new additional features (profiles and SOV scores) on 20 CASP8 targets and found that including them can only improve the performance when real deviations between native and model are higher than 5Å. The SMOQ tool finally released uses the basic feature set trained on 85 CASP8 targets. Moreover, SMOQ implemented a way to convert predicted local quality scores into a global quality score. SMOQ was tested on the 84 CASP9 single-domain targets. The average difference between the residue-specific distance deviation predicted by our method and the actual distance deviation on the test data is 2.637Å. The global quality prediction accuracy of the tool is comparable to other good tools on the same benchmark. SMOQ is a useful tool for protein single model quality assessment. Its source code and executable are available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/.

  9. Improving link prediction in complex networks by adaptively exploiting multiple structural features of networks

    NASA Astrophysics Data System (ADS)

    Ma, Chuang; Bao, Zhong-Kui; Zhang, Hai-Feng

    2017-10-01

    So far, many network-structure-based link prediction methods have been proposed. However, these methods only highlight one or two structural features of networks, and then use the methods to predict missing links in different networks. The performances of these existing methods are not always satisfied in all cases since each network has its unique underlying structural features. In this paper, by analyzing different real networks, we find that the structural features of different networks are remarkably different. In particular, even in the same network, their inner structural features are utterly different. Therefore, more structural features should be considered. However, owing to the remarkably different structural features, the contributions of different features are hard to be given in advance. Inspired by these facts, an adaptive fusion model regarding link prediction is proposed to incorporate multiple structural features. In the model, a logistic function combing multiple structural features is defined, then the weight of each feature in the logistic function is adaptively determined by exploiting the known structure information. Last, we use the "learnt" logistic function to predict the connection probabilities of missing links. According to our experimental results, we find that the performance of our adaptive fusion model is better than many similarity indices.

  10. Using discharge data to reduce structural deficits in a hydrological model with a Bayesian inference approach and the implications for the prediction of critical source areas

    NASA Astrophysics Data System (ADS)

    Frey, M. P.; Stamm, C.; Schneider, M. K.; Reichert, P.

    2011-12-01

    A distributed hydrological model was used to simulate the distribution of fast runoff formation as a proxy for critical source areas for herbicide pollution in a small agricultural catchment in Switzerland. We tested to what degree predictions based on prior knowledge without local measurements could be improved upon relying on observed discharge. This learning process consisted of five steps: For the prior prediction (step 1), knowledge of the model parameters was coarse and predictions were fairly uncertain. In the second step, discharge data were used to update the prior parameter distribution. Effects of uncertainty in input data and model structure were accounted for by an autoregressive error model. This step decreased the width of the marginal distributions of parameters describing the lower boundary (percolation rates) but hardly affected soil hydraulic parameters. Residual analysis (step 3) revealed model structure deficits. We modified the model, and in the subsequent Bayesian updating (step 4) the widths of the posterior marginal distributions were reduced for most parameters compared to those of the prior. This incremental procedure led to a strong reduction in the uncertainty of the spatial prediction. Thus, despite only using spatially integrated data (discharge), the spatially distributed effect of the improved model structure can be expected to improve the spatially distributed predictions also. The fifth step consisted of a test with independent spatial data on herbicide losses and revealed ambiguous results. The comparison depended critically on the ratio of event to preevent water that was discharged. This ratio cannot be estimated from hydrological data only. The results demonstrate that the value of local data is strongly dependent on a correct model structure. An iterative procedure of Bayesian updating, model testing, and model modification is suggested.

  11. Aerodynamic-structural model of offwind yacht sails

    NASA Astrophysics Data System (ADS)

    Mairs, Christopher M.

    An aerodynamic-structural model of offwind yacht sails was created that is useful in predicting sail forces. Two sails were examined experimentally and computationally at several wind angles to explore a variety of flow regimes. The accuracy of the numerical solutions was measured by comparing to experimental results. The two sails examined were a Code 0 and a reaching asymmetric spinnaker. During experiment, balance, wake, and sail shape data were recorded for both sails in various configurations. Two computational steps were used to evaluate the computational model. First, an aerodynamic flow model that includes viscosity effects was used to examine the experimental flying shapes that were recorded. Second, the aerodynamic model was combined with a nonlinear, structural, finite element analysis (FEA) model. The aerodynamic and structural models were used iteratively to predict final flying shapes of offwind sails, starting with the design shapes. The Code 0 has relatively low camber and is used at small angles of attack. It was examined experimentally and computationally at a single angle of attack in two trim configurations, a baseline and overtrimmed setting. Experimentally, the Code 0 was stable and maintained large flow attachment regions. The digitized flying shapes from experiment were examined in the aerodynamic model. Force area predictions matched experimental results well. When the aerodynamic-structural tool was employed, the predictive capability was slightly worse. The reaching asymmetric spinnaker has higher camber and operates at higher angles of attack than the Code 0. Experimentally and computationally, it was examined at two angles of attack. Like the Code 0, at each wind angle, baseline and overtrimmed settings were examined. Experimentally, sail oscillations and large flow detachment regions were encountered. The computational analysis began by examining the experimental flying shapes in the aerodynamic model. In the baseline setting, the computational force predictions were fair at both wind angles examined. Force predictions were much improved in the overtrimmed setting when the sail was highly stalled and more stable. The same trends in force prediction were seen when employing the aerodynamic-structural model. Predictions were good to fair in the baseline setting but improved in the overtrimmed configuration.

  12. An Integrated Approach Linking Process to Structural Modeling With Microstructural Characterization for Injections-Molded Long-Fiber Thermoplastics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Smith, Mark T.

    2008-09-01

    The objective of our work is to enable the optimum design of lightweight automotive structural components using injection-molded long fiber thermoplastics (LFTs). To this end, an integrated approach that links process modeling to structural analysis with experimental microstructural characterization and validation is developed. First, process models for LFTs are developed and implemented into processing codes (e.g. ORIENT, Moldflow) to predict the microstructure of the as-formed composite (i.e. fiber length and orientation distributions). In parallel, characterization and testing methods are developed to obtain necessary microstructural data to validate process modeling predictions. Second, the predicted LFT composite microstructure is imported into amore » structural finite element analysis by ABAQUS to determine the response of the as-formed composite to given boundary conditions. At this stage, constitutive models accounting for the composite microstructure are developed to predict various types of behaviors (i.e. thermoelastic, viscoelastic, elastic-plastic, damage, fatigue, and impact) of LFTs. Experimental methods are also developed to determine material parameters and to validate constitutive models. Such a process-linked-structural modeling approach allows an LFT composite structure to be designed with confidence through numerical simulations. Some recent results of our collaborative research will be illustrated to show the usefulness and applications of this integrated approach.« less

  13. Protein Structure and Function Prediction Using I-TASSER

    PubMed Central

    Yang, Jianyi; Zhang, Yang

    2016-01-01

    I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets. PMID:26678386

  14. Injection-Molded Long-Fiber Thermoplastic Composites: From Process Modeling to Prediction of Mechanical Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi

    2013-12-18

    This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk® Simulation Moldflow® Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS® via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predictedmore » stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.« less

  15. Simultaneous optimization of biomolecular energy function on features from small molecules and macromolecules

    PubMed Central

    Park, Hahnbeom; Bradley, Philip; Greisen, Per; Liu, Yuan; Mulligan, Vikram Khipple; Kim, David E.; Baker, David; DiMaio, Frank

    2017-01-01

    Most biomolecular modeling energy functions for structure prediction, sequence design, and molecular docking, have been parameterized using existing macromolecular structural data; this contrasts molecular mechanics force fields which are largely optimized using small-molecule data. In this study, we describe an integrated method that enables optimization of a biomolecular modeling energy function simultaneously against small-molecule thermodynamic data and high-resolution macromolecular structural data. We use this approach to develop a next-generation Rosetta energy function that utilizes a new anisotropic implicit solvation model, and an improved electrostatics and Lennard-Jones model, illustrating how energy functions can be considerably improved in their ability to describe large-scale energy landscapes by incorporating both small-molecule and macromolecule data. The energy function improves performance in a wide range of protein structure prediction challenges, including monomeric structure prediction, protein-protein and protein-ligand docking, protein sequence design, and prediction of the free energy changes by mutation, while reasonably recapitulating small-molecule thermodynamic properties. PMID:27766851

  16. Multiple-Instance Regression with Structured Data

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Lane, Terran; Roper, Alex

    2008-01-01

    We present a multiple-instance regression algorithm that models internal bag structure to identify the items most relevant to the bag labels. Multiple-instance regression (MIR) operates on a set of bags with real-valued labels, each containing a set of unlabeled items, in which the relevance of each item to its bag label is unknown. The goal is to predict the labels of new bags from their contents. Unlike previous MIR methods, MI-ClusterRegress can operate on bags that are structured in that they contain items drawn from a number of distinct (but unknown) distributions. MI-ClusterRegress simultaneously learns a model of the bag's internal structure, the relevance of each item, and a regression model that accurately predicts labels for new bags. We evaluated this approach on the challenging MIR problem of crop yield prediction from remote sensing data. MI-ClusterRegress provided predictions that were more accurate than those obtained with non-multiple-instance approaches or MIR methods that do not model the bag structure.

  17. Application of a baseflow filter for evaluating model structure suitability of the IHACRES CMD

    NASA Astrophysics Data System (ADS)

    Kim, H. S.

    2015-02-01

    The main objective of this study was to assess the predictive uncertainty from the rainfall-runoff model structure coupling a conceptual module (non-linear module) with a metric transfer function module (linear module). The methodology was primarily based on the comparison between the outputs of the rainfall-runoff model and those from an alternative model approach. An alternative model approach was used to minimise uncertainties arising from data and the model structure. A baseflow filter was adopted to better understand deficiencies in the forms of the rainfall-runoff model by avoiding the uncertainties related to data and the model structure. The predictive uncertainty from the model structure was investigated for representative groups of catchments having similar hydrological response characteristics in the upper Murrumbidgee Catchment. In the assessment of model structure suitability, the consistency (or variability) of catchment response over time and space in model performance and parameter values has been investigated to detect problems related to the temporal and spatial variability of the model accuracy. The predictive error caused by model uncertainty was evaluated through analysis of the variability of the model performance and parameters. A graphical comparison of model residuals, effective rainfall estimates and hydrographs was used to determine a model's ability related to systematic model deviation between simulated and observed behaviours and general behavioural differences in the timing and magnitude of peak flows. The model's predictability was very sensitive to catchment response characteristics. The linear module performs reasonably well in the wetter catchments but has considerable difficulties when applied to the drier catchments where a hydrologic response is dominated by quick flow. The non-linear module has a potential limitation in its capacity to capture non-linear processes for converting observed rainfall into effective rainfall in both the wetter and drier catchments. The comparative study based on a better quantification of the accuracy and precision of hydrological modelling predictions yields a better understanding for the potential improvement of model deficiencies.

  18. Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots.

    PubMed

    Hajdin, Christine E; Bellaousov, Stanislav; Huggins, Wayne; Leonard, Christopher W; Mathews, David H; Weeks, Kevin M

    2013-04-02

    A pseudoknot forms in an RNA when nucleotides in a loop pair with a region outside the helices that close the loop. Pseudoknots occur relatively rarely in RNA but are highly overrepresented in functionally critical motifs in large catalytic RNAs, in riboswitches, and in regulatory elements of viruses. Pseudoknots are usually excluded from RNA structure prediction algorithms. When included, these pairings are difficult to model accurately, especially in large RNAs, because allowing this structure dramatically increases the number of possible incorrect folds and because it is difficult to search the fold space for an optimal structure. We have developed a concise secondary structure modeling approach that combines SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension) experimental chemical probing information and a simple, but robust, energy model for the entropic cost of single pseudoknot formation. Structures are predicted with iterative refinement, using a dynamic programming algorithm. This melded experimental and thermodynamic energy function predicted the secondary structures and the pseudoknots for a set of 21 challenging RNAs of known structure ranging in size from 34 to 530 nt. On average, 93% of known base pairs were predicted, and all pseudoknots in well-folded RNAs were identified.

  19. Analysis of Free Modeling Predictions by RBO Aleph in CASP11

    PubMed Central

    Mabrouk, Mahmoud; Werner, Tim; Schneider, Michael; Putz, Ines; Brock, Oliver

    2015-01-01

    The CASP experiment is a biannual benchmark for assessing protein structure prediction methods. In CASP11, RBO Aleph ranked as one of the top-performing automated servers in the free modeling category. This category consists of targets for which structural templates are not easily retrievable. We analyze the performance of RBO Aleph and show that its success in CASP was a result of its ab initio structure prediction protocol. A detailed analysis of this protocol demonstrates that two components unique to our method greatly contributed to prediction quality: residue–residue contact prediction by EPC-map and contact–guided conformational space search by model-based search (MBS). Interestingly, our analysis also points to a possible fundamental problem in evaluating the performance of protein structure prediction methods: Improvements in components of the method do not necessarily lead to improvements of the entire method. This points to the fact that these components interact in ways that are poorly understood. This problem, if indeed true, represents a significant obstacle to community-wide progress. PMID:26492194

  20. Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?

    NASA Technical Reports Server (NTRS)

    Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander

    2016-01-01

    Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.

  1. Probabilistic fatigue life prediction of metallic and composite materials

    NASA Astrophysics Data System (ADS)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  2. Coverage of whole proteome by structural genomics observed through protein homology modeling database

    PubMed Central

    Yamaguchi, Akihiro; Go, Mitiko

    2006-01-01

    We have been developing FAMSBASE, a protein homology-modeling database of whole ORFs predicted from genome sequences. The latest update of FAMSBASE (http://daisy.nagahama-i-bio.ac.jp/Famsbase/), which is based on the protein three-dimensional (3D) structures released by November 2003, contains modeled 3D structures for 368,724 open reading frames (ORFs) derived from genomes of 276 species, namely 17 archaebacterial, 130 eubacterial, 18 eukaryotic and 111 phage genomes. Those 276 genomes are predicted to have 734,193 ORFs in total and the current FAMSBASE contains protein 3D structure of approximately 50% of the ORF products. However, cases that a modeled 3D structure covers the whole part of an ORF product are rare. When portion of an ORF with 3D structure is compared in three kingdoms of life, in archaebacteria and eubacteria, approximately 60% of the ORFs have modeled 3D structures covering almost the entire amino acid sequences, however, the percentage falls to about 30% in eukaryotes. When annual differences in the number of ORFs with modeled 3D structure are calculated, the fraction of modeled 3D structures of soluble protein for archaebacteria is increased by 5%, and that for eubacteria by 7% in the last 3 years. Assuming that this rate would be maintained and that determination of 3D structures for predicted disordered regions is unattainable, whole soluble protein model structures of prokaryotes without the putative disordered regions will be in hand within 15 years. For eukaryotic proteins, they will be in hand within 25 years. The 3D structures we will have at those times are not the 3D structure of the entire proteins encoded in single ORFs, but the 3D structures of separate structural domains. Measuring or predicting spatial arrangements of structural domains in an ORF will then be a coming issue of structural genomics. PMID:17146617

  3. GeneSilico protein structure prediction meta-server.

    PubMed

    Kurowski, Michal A; Bujnicki, Janusz M

    2003-07-01

    Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta.

  4. GeneSilico protein structure prediction meta-server

    PubMed Central

    Kurowski, Michal A.; Bujnicki, Janusz M.

    2003-01-01

    Rigorous assessments of protein structure prediction have demonstrated that fold recognition methods can identify remote similarities between proteins when standard sequence search methods fail. It has been shown that the accuracy of predictions is improved when refined multiple sequence alignments are used instead of single sequences and if different methods are combined to generate a consensus model. There are several meta-servers available that integrate protein structure predictions performed by various methods, but they do not allow for submission of user-defined multiple sequence alignments and they seldom offer confidentiality of the results. We developed a novel WWW gateway for protein structure prediction, which combines the useful features of other meta-servers available, but with much greater flexibility of the input. The user may submit an amino acid sequence or a multiple sequence alignment to a set of methods for primary, secondary and tertiary structure prediction. Fold-recognition results (target-template alignments) are converted into full-atom 3D models and the quality of these models is uniformly assessed. A consensus between different FR methods is also inferred. The results are conveniently presented on-line on a single web page over a secure, password-protected connection. The GeneSilico protein structure prediction meta-server is freely available for academic users at http://genesilico.pl/meta. PMID:12824313

  5. ADME evaluation in drug discovery. 1. Applications of genetic algorithms to the prediction of blood-brain partitioning of a large set of drugs.

    PubMed

    Hou, Tingjun; Xu, Xiaojie

    2002-12-01

    In this study, the relationships between the brain-blood concentration ratio of 96 structurally diverse compounds with a large number of structurally derived descriptors were investigated. The linear models were based on molecular descriptors that can be calculated for any compound simply from a knowledge of its molecular structure. The linear correlation coefficients of the models were optimized by genetic algorithms (GAs), and the descriptors used in the linear models were automatically selected from 27 structurally derived descriptors. The GA optimizations resulted in a group of linear models with three or four molecular descriptors with good statistical significance. The change of descriptor use as the evolution proceeds demonstrates that the octane/water partition coefficient and the partial negative solvent-accessible surface area multiplied by the negative charge are crucial to brain-blood barrier permeability. Moreover, we found that the predictions using multiple QSPR models from GA optimization gave quite good results in spite of the diversity of structures, which was better than the predictions using the best single model. The predictions for the two external sets with 37 diverse compounds using multiple QSPR models indicate that the best linear models with four descriptors are sufficiently effective for predictive use. Considering the ease of computation of the descriptors, the linear models may be used as general utilities to screen the blood-brain barrier partitioning of drugs in a high-throughput fashion.

  6. Structural protein descriptors in 1-dimension and their sequence-based predictions.

    PubMed

    Kurgan, Lukasz; Disfani, Fatemeh Miri

    2011-09-01

    The last few decades observed an increasing interest in development and application of 1-dimensional (1D) descriptors of protein structure. These descriptors project 3D structural features onto 1D strings of residue-wise structural assignments. They cover a wide-range of structural aspects including conformation of the backbone, burying depth/solvent exposure and flexibility of residues, and inter-chain residue-residue contacts. We perform first-of-its-kind comprehensive comparative review of the existing 1D structural descriptors. We define, review and categorize ten structural descriptors and we also describe, summarize and contrast over eighty computational models that are used to predict these descriptors from the protein sequences. We show that the majority of the recent sequence-based predictors utilize machine learning models, with the most popular being neural networks, support vector machines, hidden Markov models, and support vector and linear regressions. These methods provide high-throughput predictions and most of them are accessible to a non-expert user via web servers and/or stand-alone software packages. We empirically evaluate several recent sequence-based predictors of secondary structure, disorder, and solvent accessibility descriptors using a benchmark set based on CASP8 targets. Our analysis shows that the secondary structure can be predicted with over 80% accuracy and segment overlap (SOV), disorder with over 0.9 AUC, 0.6 Matthews Correlation Coefficient (MCC), and 75% SOV, and relative solvent accessibility with PCC of 0.7 and MCC of 0.6 (0.86 when homology is used). We demonstrate that the secondary structure predicted from sequence without the use of homology modeling is as good as the structure extracted from the 3D folds predicted by top-performing template-based methods.

  7. Learning to Predict Combinatorial Structures

    NASA Astrophysics Data System (ADS)

    Vembu, Shankar

    2009-12-01

    The major challenge in designing a discriminative learning algorithm for predicting structured data is to address the computational issues arising from the exponential size of the output space. Existing algorithms make different assumptions to ensure efficient, polynomial time estimation of model parameters. For several combinatorial structures, including cycles, partially ordered sets, permutations and other graph classes, these assumptions do not hold. In this thesis, we address the problem of designing learning algorithms for predicting combinatorial structures by introducing two new assumptions: (i) The first assumption is that a particular counting problem can be solved efficiently. The consequence is a generalisation of the classical ridge regression for structured prediction. (ii) The second assumption is that a particular sampling problem can be solved efficiently. The consequence is a new technique for designing and analysing probabilistic structured prediction models. These results can be applied to solve several complex learning problems including but not limited to multi-label classification, multi-category hierarchical classification, and label ranking.

  8. Rosetta Structure Prediction as a Tool for Solving Difficult Molecular Replacement Problems.

    PubMed

    DiMaio, Frank

    2017-01-01

    Molecular replacement (MR), a method for solving the crystallographic phase problem using phases derived from a model of the target structure, has proven extremely valuable, accounting for the vast majority of structures solved by X-ray crystallography. However, when the resolution of data is low, or the starting model is very dissimilar to the target protein, solving structures via molecular replacement may be very challenging. In recent years, protein structure prediction methodology has emerged as a powerful tool in model building and model refinement for difficult molecular replacement problems. This chapter describes some of the tools available in Rosetta for model building and model refinement specifically geared toward difficult molecular replacement cases.

  9. I-TASSER: fully automated protein structure prediction in CASP8.

    PubMed

    Zhang, Yang

    2009-01-01

    The I-TASSER algorithm for 3D protein structure prediction was tested in CASP8, with the procedure fully automated in both the Server and Human sections. The quality of the server models is close to that of human ones but the human predictions incorporate more diverse templates from other servers which improve the human predictions in some of the distant homology targets. For the first time, the sequence-based contact predictions from machine learning techniques are found helpful for both template-based modeling (TBM) and template-free modeling (FM). In TBM, although the accuracy of the sequence based contact predictions is on average lower than that from template-based ones, the novel contacts in the sequence-based predictions, which are complementary to the threading templates in the weakly or unaligned regions, are important to improve the global and local packing in these regions. Moreover, the newly developed atomic structural refinement algorithm was tested in CASP8 and found to improve the hydrogen-bonding networks and the overall TM-score, which is mainly due to its ability of removing steric clashes so that the models can be generated from cluster centroids. Nevertheless, one of the major issues of the I-TASSER pipeline is the model selection where the best models could not be appropriately recognized when the correct templates are detected only by the minority of the threading algorithms. There are also problems related with domain-splitting and mirror image recognition which mainly influences the performance of I-TASSER modeling in the FM-based structure predictions. Copyright 2009 Wiley-Liss, Inc.

  10. The importance of molecular structures, endpoints' values, and predictivity parameters in QSAR research: QSAR analysis of a series of estrogen receptor binders.

    PubMed

    Li, Jiazhong; Gramatica, Paola

    2010-11-01

    Quantitative structure-activity relationship (QSAR) methodology aims to explore the relationship between molecular structures and experimental endpoints, producing a model for the prediction of new data; the predictive performance of the model must be checked by external validation. Clearly, the qualities of chemical structure information and experimental endpoints, as well as the statistical parameters used to verify the external predictivity have a strong influence on QSAR model reliability. Here, we emphasize the importance of these three aspects by analyzing our models on estrogen receptor binders (Endocrine disruptor knowledge base (EDKB) database). Endocrine disrupting chemicals, which mimic or antagonize the endogenous hormones such as estrogens, are a hot topic in environmental and toxicological sciences. QSAR shows great values in predicting the estrogenic activity and exploring the interactions between the estrogen receptor and ligands. We have verified our previously published model for additional external validation on new EDKB chemicals. Having found some errors in the used 3D molecular conformations, we redevelop a new model using the same data set with corrected structures, the same method (ordinary least-square regression, OLS) and DRAGON descriptors. The new model, based on some different descriptors, is more predictive on external prediction sets. Three different formulas to calculate correlation coefficient for the external prediction set (Q2 EXT) were compared, and the results indicated that the new proposal of Consonni et al. had more reasonable results, consistent with the conclusions from regression line, Williams plot and root mean square error (RMSE) values. Finally, the importance of reliable endpoints values has been highlighted by comparing the classification assignments of EDKB with those of another estrogen receptor binders database (METI): we found that 16.1% assignments of the common compounds were opposite (20 among 124 common compounds). In order to verify the real assignments for these inconsistent compounds, we predicted these samples, as a blind external set, by our regression models and compared the results with the two databases. The results indicated that most of the predictions were consistent with METI. Furthermore, we built a kNN classification model using the 104 consistent compounds to predict those inconsistent ones, and most of the predictions were also in agreement with METI database.

  11. Molecular surface area based predictive models for the adsorption and diffusion of disperse dyes in polylactic acid matrix.

    PubMed

    Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi

    2015-11-15

    Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls

    NASA Astrophysics Data System (ADS)

    Arjunan, A.; Wang, C. J.; Yahiaoui, K.; Mynors, D. J.; Morgan, T.; Nguyen, V. B.; English, M.

    2014-11-01

    Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid-structure interaction (FSI) to evaluate their acoustic insulation.

  13. STRUM: structure-based prediction of protein stability changes upon single-point mutation.

    PubMed

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-10-01

    Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability change prediction upon point mutations. http://zhanglab.ccmb.med.umich.edu/STRUM/ CONTACT: qiang@suda.edu.cn and zhng@umich.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. STRUM: structure-based prediction of protein stability changes upon single-point mutation

    PubMed Central

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-01-01

    Motivation: Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. Results: We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability change prediction upon point mutations. Availability and Implementation: http://zhanglab.ccmb.med.umich.edu/STRUM/ Contact: qiang@suda.edu.cn and zhng@umich.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27318206

  15. Predicting the thermal/structural performance of the atmospheric trace molecules spectroscopy /ATMOS/ Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Miller, J. M.

    1980-01-01

    ATMOS is a Fourier transform spectrometer to measure atmospheric trace molecules over a spectral range of 2-16 microns. Assessment of the system performance of ATMOS includes evaluations of optical system errors induced by thermal and structural effects. In order to assess the optical system errors induced from thermal and structural effects, error budgets are assembled during system engineering tasks and line of sight and wavefront deformations predictions (using operational thermal and vibration environments and computer models) are subsequently compared to the error budgets. This paper discusses the thermal/structural error budgets, modelling and analysis methods used to predict thermal/structural induced errors and the comparisons that show that predictions are within the error budgets.

  16. Modelling road accidents: An approach using structural time series

    NASA Astrophysics Data System (ADS)

    Junus, Noor Wahida Md; Ismail, Mohd Tahir

    2014-09-01

    In this paper, the trend of road accidents in Malaysia for the years 2001 until 2012 was modelled using a structural time series approach. The structural time series model was identified using a stepwise method, and the residuals for each model were tested. The best-fitted model was chosen based on the smallest Akaike Information Criterion (AIC) and prediction error variance. In order to check the quality of the model, a data validation procedure was performed by predicting the monthly number of road accidents for the year 2012. Results indicate that the best specification of the structural time series model to represent road accidents is the local level with a seasonal model.

  17. Prediction of blood-brain partitioning: a model based on molecular electronegativity distance vector descriptors.

    PubMed

    Zhang, Yong-Hong; Xia, Zhi-Ning; Qin, Li-Tang; Liu, Shu-Shen

    2010-09-01

    The objective of this paper is to build a reliable model based on the molecular electronegativity distance vector (MEDV) descriptors for predicting the blood-brain barrier (BBB) permeability and to reveal the effects of the molecular structural segments on the BBB permeability. Using 70 structurally diverse compounds, the partial least squares regression (PLSR) models between the BBB permeability and the MEDV descriptors were developed and validated by the variable selection and modeling based on prediction (VSMP) technique. The estimation ability, stability, and predictive power of a model are evaluated by the estimated correlation coefficient (r), leave-one-out (LOO) cross-validation correlation coefficient (q), and predictive correlation coefficient (R(p)). It has been found that PLSR model has good quality, r=0.9202, q=0.7956, and R(p)=0.6649 for M1 model based on the training set of 57 samples. To search the most important structural factors affecting the BBB permeability of compounds, we performed the values of the variable importance in projection (VIP) analysis for MEDV descriptors. It was found that some structural fragments in compounds, such as -CH(3), -CH(2)-, =CH-, =C, triple bond C-, -CH<, =C<, =N-, -NH-, =O, and -OH, are the most important factors affecting the BBB permeability. (c) 2010. Published by Elsevier Inc.

  18. Noise Prediction Models for Elevated Rail Transit Structures

    DOT National Transportation Integrated Search

    1975-08-01

    The report presents the theoretical development of a model for the prediction of noise radiated by elevated structures on rail transit lines. In particular it deals with noise and vibration control for urban rail transit track and elevated noise and ...

  19. Does the covariance structure matter in longitudinal modelling for the prediction of future CD4 counts?

    PubMed

    Taylor, J M; Law, N

    1998-10-30

    We investigate the importance of the assumed covariance structure for longitudinal modelling of CD4 counts. We examine how individual predictions of future CD4 counts are affected by the covariance structure. We consider four covariance structures: one based on an integrated Ornstein-Uhlenbeck stochastic process; one based on Brownian motion, and two derived from standard linear and quadratic random-effects models. Using data from the Multicenter AIDS Cohort Study and from a simulation study, we show that there is a noticeable deterioration in the coverage rate of confidence intervals if we assume the wrong covariance. There is also a loss in efficiency. The quadratic random-effects model is found to be the best in terms of correctly calibrated prediction intervals, but is substantially less efficient than the others. Incorrectly specifying the covariance structure as linear random effects gives too narrow prediction intervals with poor coverage rates. Fitting using the model based on the integrated Ornstein-Uhlenbeck stochastic process is the preferred one of the four considered because of its efficiency and robustness properties. We also use the difference between the future predicted and observed CD4 counts to assess an appropriate transformation of CD4 counts; a fourth root, cube root and square root all appear reasonable choices.

  20. The Large-scale Coronal Structure of the 2017 August 21 Great American Eclipse: An Assessment of Solar Surface Flux Transport Model Enabled Predictions and Observations

    NASA Astrophysics Data System (ADS)

    Nandy, Dibyendu; Bhowmik, Prantika; Yeates, Anthony R.; Panda, Suman; Tarafder, Rajashik; Dash, Soumyaranjan

    2018-01-01

    On 2017 August 21, a total solar eclipse swept across the contiguous United States, providing excellent opportunities for diagnostics of the Sun’s corona. The Sun’s coronal structure is notoriously difficult to observe except during solar eclipses; thus, theoretical models must be relied upon for inferring the underlying magnetic structure of the Sun’s outer atmosphere. These models are necessary for understanding the role of magnetic fields in the heating of the corona to a million degrees and the generation of severe space weather. Here we present a methodology for predicting the structure of the coronal field based on model forward runs of a solar surface flux transport model, whose predicted surface field is utilized to extrapolate future coronal magnetic field structures. This prescription was applied to the 2017 August 21 solar eclipse. A post-eclipse analysis shows good agreement between model simulated and observed coronal structures and their locations on the limb. We demonstrate that slow changes in the Sun’s surface magnetic field distribution driven by long-term flux emergence and its evolution governs large-scale coronal structures with a (plausibly cycle-phase dependent) dynamical memory timescale on the order of a few solar rotations, opening up the possibility for large-scale, global corona predictions at least a month in advance.

  1. Crystal Structure Prediction via Deep Learning.

    PubMed

    Ryan, Kevin; Lengyel, Jeff; Shatruk, Michael

    2018-06-06

    We demonstrate the application of deep neural networks as a machine-learning tool for the analysis of a large collection of crystallographic data contained in the crystal structure repositories. Using input data in the form of multi-perspective atomic fingerprints, which describe coordination topology around unique crystallographic sites, we show that the neural-network model can be trained to effectively distinguish chemical elements based on the topology of their crystallographic environment. The model also identifies structurally similar atomic sites in the entire dataset of ~50000 crystal structures, essentially uncovering trends that reflect the periodic table of elements. The trained model was used to analyze templates derived from the known binary and ternary crystal structures in order to predict the likelihood to form new compounds that could be generated by placing elements into these structural templates in combinatorial fashion. Statistical analysis of predictive performance of the neural-network model, which was applied to a test set of structures never seen by the model during training, indicates its ability to predict known elemental compositions with a high likelihood of success. In ~30% of cases, the known compositions were found among top-10 most likely candidates proposed by the model. These results suggest that the approach developed in this work can be used to effectively guide the synthetic efforts in the discovery of new materials, especially in the case of systems composed of 3 or more chemical elements.

  2. Simplified Models for Accelerated Structural Prediction of Conjugated Semiconducting Polymers

    DOE PAGES

    Henry, Michael M.; Jones, Matthew L.; Oosterhout, Stefan D.; ...

    2017-11-08

    We perform molecular dynamics simulations of poly(benzodithiophene-thienopyrrolodione) (BDT-TPD) oligomers in order to evaluate the accuracy with which unoptimized molecular models can predict experimentally characterized morphologies. The predicted morphologies are characterized using simulated grazing-incidence X-ray scattering (GIXS) and compared to the experimental scattering patterns. We find that approximating the aromatic rings in BDT-TPD with rigid bodies, rather than combinations of bond, angle, and dihedral constraints, results in 14% lower computational cost and provides nearly equivalent structural predictions compared to the flexible model case. The predicted glass transition temperature of BDT-TPD (410 +/- 32 K) is found to be in agreement withmore » experiments. Predicted morphologies demonstrate short-range structural order due to stacking of the chain backbones (p-p stacking around 3.9 A), and long-range spatial correlations due to the self-organization of backbone stacks into 'ribbons' (lamellar ordering around 20.9 A), representing the best-to-date computational predictions of structure of complex conjugated oligomers. We find that expensive simulated annealing schedules are not needed to predict experimental structures here, with instantaneous quenches providing nearly equivalent predictions at a fraction of the computational cost of annealing. We therefore suggest utilizing rigid bodies and fast cooling schedules for high-throughput screening studies of semiflexible polymers and oligomers to utilize their significant computational benefits where appropriate.« less

  3. Simplified Models for Accelerated Structural Prediction of Conjugated Semiconducting Polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, Michael M.; Jones, Matthew L.; Oosterhout, Stefan D.

    We perform molecular dynamics simulations of poly(benzodithiophene-thienopyrrolodione) (BDT-TPD) oligomers in order to evaluate the accuracy with which unoptimized molecular models can predict experimentally characterized morphologies. The predicted morphologies are characterized using simulated grazing-incidence X-ray scattering (GIXS) and compared to the experimental scattering patterns. We find that approximating the aromatic rings in BDT-TPD with rigid bodies, rather than combinations of bond, angle, and dihedral constraints, results in 14% lower computational cost and provides nearly equivalent structural predictions compared to the flexible model case. The predicted glass transition temperature of BDT-TPD (410 +/- 32 K) is found to be in agreement withmore » experiments. Predicted morphologies demonstrate short-range structural order due to stacking of the chain backbones (p-p stacking around 3.9 A), and long-range spatial correlations due to the self-organization of backbone stacks into 'ribbons' (lamellar ordering around 20.9 A), representing the best-to-date computational predictions of structure of complex conjugated oligomers. We find that expensive simulated annealing schedules are not needed to predict experimental structures here, with instantaneous quenches providing nearly equivalent predictions at a fraction of the computational cost of annealing. We therefore suggest utilizing rigid bodies and fast cooling schedules for high-throughput screening studies of semiflexible polymers and oligomers to utilize their significant computational benefits where appropriate.« less

  4. United3D: a protein model quality assessment program that uses two consensus based methods.

    PubMed

    Terashi, Genki; Oosawa, Makoto; Nakamura, Yuuki; Kanou, Kazuhiko; Takeda-Shitaka, Mayuko

    2012-01-01

    In protein structure prediction, such as template-based modeling and free modeling (ab initio modeling), the step that assesses the quality of protein models is very important. We have developed a model quality assessment (QA) program United3D that uses an optimized clustering method and a simple Cα atom contact-based potential. United3D automatically estimates the quality scores (Qscore) of predicted protein models that are highly correlated with the actual quality (GDT_TS). The performance of United3D was tested in the ninth Critical Assessment of protein Structure Prediction (CASP9) experiment. In CASP9, United3D showed the lowest average loss of GDT_TS (5.3) among the QA methods participated in CASP9. This result indicates that the performance of United3D to identify the high quality models from the models predicted by CASP9 servers on 116 targets was best among the QA methods that were tested in CASP9. United3D also produced high average Pearson correlation coefficients (0.93) and acceptable Kendall rank correlation coefficients (0.68) between the Qscore and GDT_TS. This performance was competitive with the other top ranked QA methods that were tested in CASP9. These results indicate that United3D is a useful tool for selecting high quality models from many candidate model structures provided by various modeling methods. United3D will improve the accuracy of protein structure prediction.

  5. SAbPred: a structure-based antibody prediction server

    PubMed Central

    Dunbar, James; Krawczyk, Konrad; Leem, Jinwoo; Marks, Claire; Nowak, Jaroslaw; Regep, Cristian; Georges, Guy; Kelm, Sebastian; Popovic, Bojana; Deane, Charlotte M.

    2016-01-01

    SAbPred is a server that makes predictions of the properties of antibodies focusing on their structures. Antibody informatics tools can help improve our understanding of immune responses to disease and aid in the design and engineering of therapeutic molecules. SAbPred is a single platform containing multiple applications which can: number and align sequences; automatically generate antibody variable fragment homology models; annotate such models with estimated accuracy alongside sequence and structural properties including potential developability issues; predict paratope residues; and predict epitope patches on protein antigens. The server is available at http://opig.stats.ox.ac.uk/webapps/sabpred. PMID:27131379

  6. Predicting RNA 3D structure using a coarse-grain helix-centered model

    PubMed Central

    Kerpedjiev, Peter; Höner zu Siederdissen, Christian; Hofacker, Ivo L.

    2015-01-01

    A 3D model of RNA structure can provide information about its function and regulation that is not possible with just the sequence or secondary structure. Current models suffer from low accuracy and long running times and either neglect or presume knowledge of the long-range interactions which stabilize the tertiary structure. Our coarse-grained, helix-based, tertiary structure model operates with only a few degrees of freedom compared with all-atom models while preserving the ability to sample tertiary structures given a secondary structure. It strikes a balance between the precision of an all-atom tertiary structure model and the simplicity and effectiveness of a secondary structure representation. It provides a simplified tool for exploring global arrangements of helices and loops within RNA structures. We provide an example of a novel energy function relying only on the positions of stems and loops. We show that coupling our model to this energy function produces predictions as good as or better than the current state of the art tools. We propose that given the wide range of conformational space that needs to be explored, a coarse-grain approach can explore more conformations in less iterations than an all-atom model coupled to a fine-grain energy function. Finally, we emphasize the overarching theme of providing an ensemble of predicted structures, something which our tool excels at, rather than providing a handful of the lowest energy structures. PMID:25904133

  7. A Template-Based Protein Structure Reconstruction Method Using Deep Autoencoder Learning.

    PubMed

    Li, Haiou; Lyu, Qiang; Cheng, Jianlin

    2016-12-01

    Protein structure prediction is an important problem in computational biology, and is widely applied to various biomedical problems such as protein function study, protein design, and drug design. In this work, we developed a novel deep learning approach based on a deeply stacked denoising autoencoder for protein structure reconstruction. We applied our approach to a template-based protein structure prediction using only the 3D structural coordinates of homologous template proteins as input. The templates were identified for a target protein by a PSI-BLAST search. 3DRobot (a program that automatically generates diverse and well-packed protein structure decoys) was used to generate initial decoy models for the target from the templates. A stacked denoising autoencoder was trained on the decoys to obtain a deep learning model for the target protein. The trained deep model was then used to reconstruct the final structural model for the target sequence. With target proteins that have highly similar template proteins as benchmarks, the GDT-TS score of the predicted structures is greater than 0.7, suggesting that the deep autoencoder is a promising method for protein structure reconstruction.

  8. External validation of structure-biodegradation relationship (SBR) models for predicting the biodegradability of xenobiotics.

    PubMed

    Devillers, J; Pandard, P; Richard, B

    2013-01-01

    Biodegradation is an important mechanism for eliminating xenobiotics by biotransforming them into simple organic and inorganic products. Faced with the ever growing number of chemicals available on the market, structure-biodegradation relationship (SBR) and quantitative structure-biodegradation relationship (QSBR) models are increasingly used as surrogates of the biodegradation tests. Such models have great potential for a quick and cheap estimation of the biodegradation potential of chemicals. The Estimation Programs Interface (EPI) Suite™ includes different models for predicting the potential aerobic biodegradability of organic substances. They are based on different endpoints, methodologies and/or statistical approaches. Among them, Biowin 5 and 6 appeared the most robust, being derived from the largest biodegradation database with results obtained only from the Ministry of International Trade and Industry (MITI) test. The aim of this study was to assess the predictive performances of these two models from a set of 356 chemicals extracted from notification dossiers including compatible biodegradation data. Another set of molecules with no more than four carbon atoms and substituted by various heteroatoms and/or functional groups was also embodied in the validation exercise. Comparisons were made with the predictions obtained with START (Structural Alerts for Reactivity in Toxtree). Biowin 5 and Biowin 6 gave satisfactorily prediction results except for the prediction of readily degradable chemicals. A consensus model built with Biowin 1 allowed the diminution of this tendency.

  9. In Silico Analysis for the Study of Botulinum Toxin Structure

    NASA Astrophysics Data System (ADS)

    Suzuki, Tomonori; Miyazaki, Satoru

    2010-01-01

    Protein-protein interactions play many important roles in biological function. Knowledge of protein-protein complex structure is required for understanding the function. The determination of protein-protein complex structure by experimental studies remains difficult, therefore computational prediction of protein structures by structure modeling and docking studies is valuable method. In addition, MD simulation is also one of the most popular methods for protein structure modeling and characteristics. Here, we attempt to predict protein-protein complex structure and property using some of bioinformatic methods, and we focus botulinum toxin complex as target structure.

  10. Experimental validation of finite element and boundary element methods for predicting structural vibration and radiated noise

    NASA Technical Reports Server (NTRS)

    Seybert, A. F.; Wu, T. W.; Wu, X. F.

    1994-01-01

    This research report is presented in three parts. In the first part, acoustical analyses were performed on modes of vibration of the housing of a transmission of a gear test rig developed by NASA. The modes of vibration of the transmission housing were measured using experimental modal analysis. The boundary element method (BEM) was used to calculate the sound pressure and sound intensity on the surface of the housing and the radiation efficiency of each mode. The radiation efficiency of each of the transmission housing modes was then compared to theoretical results for a finite baffled plate. In the second part, analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise level radiated from the box. The FEM was used to predict the vibration, while the BEM was used to predict the sound intensity and total radiated sound power using surface vibration as the input data. Vibration predicted by the FEM model was validated by experimental modal analysis; noise predicted by the BEM was validated by measurements of sound intensity. Three types of results are presented for the total radiated sound power: sound power predicted by the BEM model using vibration data measured on the surface of the box; sound power predicted by the FEM/BEM model; and sound power measured by an acoustic intensity scan. In the third part, the structure used in part two was modified. A rib was attached to the top plate of the structure. The FEM and BEM were then used to predict structural vibration and radiated noise respectively. The predicted vibration and radiated noise were then validated through experimentation.

  11. Computational Multi-Scale Modeling of the Microstructure and Segregation of Cast Mg Alloys at Low Superheat

    NASA Astrophysics Data System (ADS)

    Nastac, Laurentiu; El-Kaddah, Nagy

    It is well known that casting at low superheat has a strong influence on the solidification structures of the cast alloy. Recent studies on casting magnesium AZ alloys at low superheat using the Magnetic Suspension Melting (MSM) process have shown that the cast alloy exhibit a fine globular grain structure, and the grain size depend on the cooling rate. This paper describes a stochastic mesoscopic model for predicting the grain structure and segregation in cast alloys at low superheat. This model was applied to predict the globular solidification morphology and solute redistribution of Al in cast Mg AZ31B alloy at different cooling rates. The predictions were found to be in good agreement with the observed grain structure and Al segregation. This makes the model a very useful tool for optimizing the solidification structure of cast magnesium alloys.

  12. A structural model for the osmosensor, transporter, and osmoregulator ProP of Escherichia coli.

    PubMed

    Wood, Janet M; Culham, Doreen E; Hillar, Alexander; Vernikovska, Yaroslava I; Liu, Feng; Boggs, Joan M; Keates, Robert A B

    2005-04-19

    Transporter ProP of Escherichia coli, a member of the major facilitator superfamily (MFS), acts as an osmosensor and an osmoregulator in cells and after purification and reconstitution in proteoliposomes. H(+)-osmoprotectant symport via ProP is activated when medium osmolality is elevated with membrane impermeant osmolytes. The three-dimensional structure of ProP was modeled with the crystal structure of MFS member GlpT as a template. This GlpT structure represents the inward (or cytoplasm)-facing conformation predicted by the alternating access model for transport. LacZ-PhoA fusion analysis and site-directed fluorescence labeling substantiated the membrane topology and orientation predicted by this model and most hydropathy analyses. The model predicts the presence of a proton pathway within the N-terminal six-helix bundle of ProP (as opposed to the corresponding pathway found within the C-terminal helix bundle of its paralogue, LacY). Replacement of residues within the N-terminal helix bundle impaired the osmotic activation of ProP, providing the first indication that residues outside the C-terminal domain are involved in osmosensing. Some residues that were accessible from the periplasmic side, as predicted by the structural model, were more susceptible to covalent labeling in permeabilized membrane fractions than in intact bacteria. These residues may be accessible from the cytoplasmic side in structures not represented by our current model, or their limited exposure in vivo may reflect constraints on transporter structure that are related to its osmosensory mechanism.

  13. Modeling and Analysis of Structural Dynamics for a One-Tenth Scale Model NGST Sunshield

    NASA Technical Reports Server (NTRS)

    Johnston, John; Lienard, Sebastien; Brodeur, Steve (Technical Monitor)

    2001-01-01

    New modeling and analysis techniques have been developed for predicting the dynamic behavior of the Next Generation Space Telescope (NGST) sunshield. The sunshield consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. Modeling the structural dynamic behavior of the sunshield is a challenging aspect of the problem due to the effects of membrane wrinkling. A finite element model of the sunshield was developed using an approximate engineering approach, the cable network method, to account for membrane wrinkling effects. Ground testing of a one-tenth scale model of the NGST sunshield were carried out to provide data for validating the analytical model. A series of analyses were performed to predict the behavior of the sunshield under the ground test conditions. Modal analyses were performed to predict the frequencies and mode shapes of the test article and transient response analyses were completed to simulate impulse excitation tests. Comparison was made between analytical predictions and test measurements for the dynamic behavior of the sunshield. In general, the results show good agreement with the analytical model correctly predicting the approximate frequency and mode shapes for the significant structural modes.

  14. Automated antibody structure prediction using Accelrys tools: Results and best practices

    PubMed Central

    Fasnacht, Marc; Butenhof, Ken; Goupil-Lamy, Anne; Hernandez-Guzman, Francisco; Huang, Hongwei; Yan, Lisa

    2014-01-01

    We describe the methodology and results from our participation in the second Antibody Modeling Assessment experiment. During the experiment we predicted the structure of eleven unpublished antibody Fv fragments. Our prediction methods centered on template-based modeling; potential templates were selected from an antibody database based on their sequence similarity to the target in the framework regions. Depending on the quality of the templates, we constructed models of the antibody framework regions either using a single, chimeric or multiple template approach. The hypervariable loop regions in the initial models were rebuilt by grafting the corresponding regions from suitable templates onto the model. For the H3 loop region, we further refined models using ab initio methods. The final models were subjected to constrained energy minimization to resolve severe local structural problems. The analysis of the models submitted show that Accelrys tools allow for the construction of quite accurate models for the framework and the canonical CDR regions, with RMSDs to the X-ray structure on average below 1 Å for most of these regions. The results show that accurate prediction of the H3 hypervariable loops remains a challenge. Furthermore, model quality assessment of the submitted models show that the models are of quite high quality, with local geometry assessment scores similar to that of the target X-ray structures. Proteins 2014; 82:1583–1598. © 2014 The Authors. Proteins published by Wiley Periodicals, Inc. PMID:24833271

  15. A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.

    PubMed

    Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2017-10-01

    The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.

  16. Biological and functional relevance of CASP predictions.

    PubMed

    Liu, Tianyun; Ish-Shalom, Shirbi; Torng, Wen; Lafita, Aleix; Bock, Christian; Mort, Matthew; Cooper, David N; Bliven, Spencer; Capitani, Guido; Mooney, Sean D; Altman, Russ B

    2018-03-01

    Our goal is to answer the question: compared with experimental structures, how useful are predicted models for functional annotation? We assessed the functional utility of predicted models by comparing the performances of a suite of methods for functional characterization on the predictions and the experimental structures. We identified 28 sites in 25 protein targets to perform functional assessment. These 28 sites included nine sites with known ligand binding (holo-sites), nine sites that are expected or suggested by experimental authors for small molecule binding (apo-sites), and Ten sites containing important motifs, loops, or key residues with important disease-associated mutations. We evaluated the utility of the predictions by comparing their microenvironments to the experimental structures. Overall structural quality correlates with functional utility. However, the best-ranked predictions (global) may not have the best functional quality (local). Our assessment provides an ability to discriminate between predictions with high structural quality. When assessing ligand-binding sites, most prediction methods have higher performance on apo-sites than holo-sites. Some servers show consistently high performance for certain types of functional sites. Finally, many functional sites are associated with protein-protein interaction. We also analyzed biologically relevant features from the protein assemblies of two targets where the active site spanned the protein-protein interface. For the assembly targets, we find that the features in the models are mainly determined by the choice of template. © 2017 The Authors Proteins: Structure, Function and Bioinformatics Published by Wiley Periodicals, Inc.

  17. Assessing the performance of MM/PBSA and MM/GBSA methods. 8. Predicting binding free energies and poses of protein-RNA complexes.

    PubMed

    Chen, Fu; Sun, Huiyong; Wang, Junmei; Zhu, Feng; Liu, Hui; Wang, Zhe; Lei, Tailong; Li, Youyong; Hou, Tingjun

    2018-06-21

    Molecular docking provides a computationally efficient way to predict the atomic structural details of protein-RNA interactions (PRI), but accurate prediction of the three-dimensional structures and binding affinities for PRI is still notoriously difficult, partly due to the unreliability of the existing scoring functions for PRI. MM/PBSA and MM/GBSA are more theoretically rigorous than most scoring functions for protein-RNA docking, but their prediction performance for protein-RNA systems remains unclear. Here, we systemically evaluated the capability of MM/PBSA and MM/GBSA to predict the binding affinities and recognize the near-native binding structures for protein-RNA systems with different solvent models and interior dielectric constants (ϵ in ). For predicting the binding affinities, the predictions given by MM/GBSA based on the minimized structures in explicit solvent and the GBGBn1 model with ϵ in = 2 yielded the highest correlation with the experimental data. Moreover, the MM/GBSA calculations based on the minimized structures in implicit solvent and the GBGBn1 model distinguished the near-native binding structures within the top 10 decoys for 118 out of the 149 protein-RNA systems (79.2%). This performance is better than all docking scoring functions studied here. Therefore, the MM/GBSA rescoring is an efficient way to improve the prediction capability of scoring functions for protein-RNA systems. Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. Predicting loop–helix tertiary structural contacts in RNA pseudoknots

    PubMed Central

    Cao, Song; Giedroc, David P.; Chen, Shi-Jie

    2010-01-01

    Tertiary interactions between loops and helical stems play critical roles in the biological function of many RNA pseudoknots. However, quantitative predictions for RNA tertiary interactions remain elusive. Here we report a statistical mechanical model for the prediction of noncanonical loop–stem base-pairing interactions in RNA pseudoknots. Central to the model is the evaluation of the conformational entropy for the pseudoknotted folds with defined loop–stem tertiary structural contacts. We develop an RNA virtual bond-based conformational model (Vfold model), which permits a rigorous computation of the conformational entropy for a given fold that contains loop–stem tertiary contacts. With the entropy parameters predicted from the Vfold model and the energy parameters for the tertiary contacts as inserted parameters, we can then predict the RNA folding thermodynamics, from which we can extract the tertiary contact thermodynamic parameters from theory–experimental comparisons. These comparisons reveal a contact enthalpy (ΔH) of −14 kcal/mol and a contact entropy (ΔS) of −38 cal/mol/K for a protonated C+•(G–C) base triple at pH 7.0, and (ΔH = −7 kcal/mol, ΔS = −19 cal/mol/K) for an unprotonated base triple. Tests of the model for a series of pseudoknots show good theory–experiment agreement. Based on the extracted energy parameters for the tertiary structural contacts, the model enables predictions for the structure, stability, and folding pathways for RNA pseudoknots with known or postulated loop–stem tertiary contacts from the nucleotide sequence alone. PMID:20100813

  19. Analysis of free modeling predictions by RBO aleph in CASP11.

    PubMed

    Mabrouk, Mahmoud; Werner, Tim; Schneider, Michael; Putz, Ines; Brock, Oliver

    2016-09-01

    The CASP experiment is a biannual benchmark for assessing protein structure prediction methods. In CASP11, RBO Aleph ranked as one of the top-performing automated servers in the free modeling category. This category consists of targets for which structural templates are not easily retrievable. We analyze the performance of RBO Aleph and show that its success in CASP was a result of its ab initio structure prediction protocol. A detailed analysis of this protocol demonstrates that two components unique to our method greatly contributed to prediction quality: residue-residue contact prediction by EPC-map and contact-guided conformational space search by model-based search (MBS). Interestingly, our analysis also points to a possible fundamental problem in evaluating the performance of protein structure prediction methods: Improvements in components of the method do not necessarily lead to improvements of the entire method. This points to the fact that these components interact in ways that are poorly understood. This problem, if indeed true, represents a significant obstacle to community-wide progress. Proteins 2016; 84(Suppl 1):87-104. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  20. DSSTOX WEBSITE LAUNCH: IMPROVING PUBLIC ACCESS TO DATABASES FOR BUILDING STRUCTURE-TOXICITY PREDICTION MODELS

    EPA Science Inventory

    DSSTox Website Launch: Improving Public Access to Databases for Building Structure-Toxicity Prediction Models
    Ann M. Richard
    US Environmental Protection Agency, Research Triangle Park, NC, USA

    Distributed: Decentralized set of standardized, field-delimited databases,...

  1. ORION: a web server for protein fold recognition and structure prediction using evolutionary hybrid profiles

    PubMed Central

    Ghouzam, Yassine; Postic, Guillaume; Guerin, Pierre-Edouard; de Brevern, Alexandre G.; Gelly, Jean-Christophe

    2016-01-01

    Protein structure prediction based on comparative modeling is the most efficient way to produce structural models when it can be performed. ORION is a dedicated webserver based on a new strategy that performs this task. The identification by ORION of suitable templates is performed using an original profile-profile approach that combines sequence and structure evolution information. Structure evolution information is encoded into profiles using structural features, such as solvent accessibility and local conformation —with Protein Blocks—, which give an accurate description of the local protein structure. ORION has recently been improved, increasing by 5% the quality of its results. The ORION web server accepts a single protein sequence as input and searches homologous protein structures within minutes. Various databases such as PDB, SCOP and HOMSTRAD can be mined to find an appropriate structural template. For the modeling step, a protein 3D structure can be directly obtained from the selected template by MODELLER and displayed with global and local quality model estimation measures. The sequence and the predicted structure of 4 examples from the CAMEO server and a recent CASP11 target from the ‘Hard’ category (T0818-D1) are shown as pertinent examples. Our web server is accessible at http://www.dsimb.inserm.fr/ORION/. PMID:27319297

  2. ORION: a web server for protein fold recognition and structure prediction using evolutionary hybrid profiles.

    PubMed

    Ghouzam, Yassine; Postic, Guillaume; Guerin, Pierre-Edouard; de Brevern, Alexandre G; Gelly, Jean-Christophe

    2016-06-20

    Protein structure prediction based on comparative modeling is the most efficient way to produce structural models when it can be performed. ORION is a dedicated webserver based on a new strategy that performs this task. The identification by ORION of suitable templates is performed using an original profile-profile approach that combines sequence and structure evolution information. Structure evolution information is encoded into profiles using structural features, such as solvent accessibility and local conformation -with Protein Blocks-, which give an accurate description of the local protein structure. ORION has recently been improved, increasing by 5% the quality of its results. The ORION web server accepts a single protein sequence as input and searches homologous protein structures within minutes. Various databases such as PDB, SCOP and HOMSTRAD can be mined to find an appropriate structural template. For the modeling step, a protein 3D structure can be directly obtained from the selected template by MODELLER and displayed with global and local quality model estimation measures. The sequence and the predicted structure of 4 examples from the CAMEO server and a recent CASP11 target from the 'Hard' category (T0818-D1) are shown as pertinent examples. Our web server is accessible at http://www.dsimb.inserm.fr/ORION/.

  3. The Theory of Planned Behavior within the Stages of the Transtheoretical Model: Latent Structural Modeling of Stage-Specific Prediction Patterns in Physical Activity

    ERIC Educational Resources Information Center

    Lippke, Sonia; Nigg, Claudio R.; Maddock, Jay E.

    2007-01-01

    This is the first study to test whether the stages of change of the transtheoretical model are qualitatively different through exploring discontinuity patterns in theory of planned behavior (TPB) variables using latent multigroup structural equation modeling (MSEM) with AMOS. Discontinuity patterns in terms of latent means and prediction patterns…

  4. Novel Use of Natural Language Processing (NLP) to Predict Suicidal Ideation and Psychiatric Symptoms in a Text-Based Mental Health Intervention in Madrid.

    PubMed

    Cook, Benjamin L; Progovac, Ana M; Chen, Pei; Mullin, Brian; Hou, Sherry; Baca-Garcia, Enrique

    2016-01-01

    Natural language processing (NLP) and machine learning were used to predict suicidal ideation and heightened psychiatric symptoms among adults recently discharged from psychiatric inpatient or emergency room settings in Madrid, Spain. Participants responded to structured mental and physical health instruments at multiple follow-up points. Outcome variables of interest were suicidal ideation and psychiatric symptoms (GHQ-12). Predictor variables included structured items (e.g., relating to sleep and well-being) and responses to one unstructured question, "how do you feel today?" We compared NLP-based models using the unstructured question with logistic regression prediction models using structured data. The PPV, sensitivity, and specificity for NLP-based models of suicidal ideation were 0.61, 0.56, and 0.57, respectively, compared to 0.73, 0.76, and 0.62 of structured data-based models. The PPV, sensitivity, and specificity for NLP-based models of heightened psychiatric symptoms (GHQ-12 ≥ 4) were 0.56, 0.59, and 0.60, respectively, compared to 0.79, 0.79, and 0.85 in structured models. NLP-based models were able to generate relatively high predictive values based solely on responses to a simple general mood question. These models have promise for rapidly identifying persons at risk of suicide or psychological distress and could provide a low-cost screening alternative in settings where lengthy structured item surveys are not feasible.

  5. Three-Dimensional Molecular Modeling of a Diverse Range of SC Clan Serine Proteases

    PubMed Central

    Laskar, Aparna; Chatterjee, Aniruddha; Chatterjee, Somnath; Rodger, Euan J.

    2012-01-01

    Serine proteases are involved in a variety of biological processes and are classified into clans sharing structural homology. Although various three-dimensional structures of SC clan proteases have been experimentally determined, they are mostly bacterial and animal proteases, with some from archaea, plants, and fungi, and as yet no structures have been determined for protozoa. To bridge this gap, we have used molecular modeling techniques to investigate the structural properties of different SC clan serine proteases from a diverse range of taxa. Either SWISS-MODEL was used for homology-based structure prediction or the LOOPP server was used for threading-based structure prediction. The predicted models were refined using Insight II and SCRWL and validated against experimental structures. Investigation of secondary structures and electrostatic surface potential was performed using MOLMOL. The structural geometry of the catalytic core shows clear deviations between taxa, but the relative positions of the catalytic triad residues were conserved. Evolutionary divergence was also exhibited by large variation in secondary structure features outside the core, differences in overall amino acid distribution, and unique surface electrostatic potential patterns between species. Encompassing a wide range of taxa, our structural analysis provides an evolutionary perspective on SC clan serine proteases. PMID:23213528

  6. MQAPRank: improved global protein model quality assessment by learning-to-rank.

    PubMed

    Jing, Xiaoyang; Dong, Qiwen

    2017-05-25

    Protein structure prediction has achieved a lot of progress during the last few decades and a greater number of models for a certain sequence can be predicted. Consequently, assessing the qualities of predicted protein models in perspective is one of the key components of successful protein structure prediction. Over the past years, a number of methods have been developed to address this issue, which could be roughly divided into three categories: single methods, quasi-single methods and clustering (or consensus) methods. Although these methods achieve much success at different levels, accurate protein model quality assessment is still an open problem. Here, we present the MQAPRank, a global protein model quality assessment program based on learning-to-rank. The MQAPRank first sorts the decoy models by using single method based on learning-to-rank algorithm to indicate their relative qualities for the target protein. And then it takes the first five models as references to predict the qualities of other models by using average GDT_TS scores between reference models and other models. Benchmarked on CASP11 and 3DRobot datasets, the MQAPRank achieved better performances than other leading protein model quality assessment methods. Recently, the MQAPRank participated in the CASP12 under the group name FDUBio and achieved the state-of-the-art performances. The MQAPRank provides a convenient and powerful tool for protein model quality assessment with the state-of-the-art performances, it is useful for protein structure prediction and model quality assessment usages.

  7. Factor Structure and Predictive Utility of the 2 x 2 Achievement Goal Model in a Sample of Taiwan Students

    ERIC Educational Resources Information Center

    Chiang, Yu-Tzu; Yeh, Yu-Chen; Lin, Sunny S. J.; Hwang, Fang-Ming

    2011-01-01

    This study examined structure and predictive utility of the 2 x 2 achievement goal model among Taiwan pre-university school students (ages 10 to 16) who learned Chinese language arts. The confirmatory factor analyses of Achievement Goal Questionnaire-Chinese version provided good fitting between the factorial and dimensional structures with the…

  8. Multiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.

    2012-01-01

    A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.

  9. Biological and functional relevance of CASP predictions

    PubMed Central

    Liu, Tianyun; Ish‐Shalom, Shirbi; Torng, Wen; Lafita, Aleix; Bock, Christian; Mort, Matthew; Cooper, David N; Bliven, Spencer; Capitani, Guido; Mooney, Sean D.

    2017-01-01

    Abstract Our goal is to answer the question: compared with experimental structures, how useful are predicted models for functional annotation? We assessed the functional utility of predicted models by comparing the performances of a suite of methods for functional characterization on the predictions and the experimental structures. We identified 28 sites in 25 protein targets to perform functional assessment. These 28 sites included nine sites with known ligand binding (holo‐sites), nine sites that are expected or suggested by experimental authors for small molecule binding (apo‐sites), and Ten sites containing important motifs, loops, or key residues with important disease‐associated mutations. We evaluated the utility of the predictions by comparing their microenvironments to the experimental structures. Overall structural quality correlates with functional utility. However, the best‐ranked predictions (global) may not have the best functional quality (local). Our assessment provides an ability to discriminate between predictions with high structural quality. When assessing ligand‐binding sites, most prediction methods have higher performance on apo‐sites than holo‐sites. Some servers show consistently high performance for certain types of functional sites. Finally, many functional sites are associated with protein‐protein interaction. We also analyzed biologically relevant features from the protein assemblies of two targets where the active site spanned the protein‐protein interface. For the assembly targets, we find that the features in the models are mainly determined by the choice of template. PMID:28975675

  10. Finite Element Model Development and Validation for Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.

  11. The IntFOLD server: an integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction and ligand binding site prediction.

    PubMed

    Roche, Daniel B; Buenavista, Maria T; Tetchner, Stuart J; McGuffin, Liam J

    2011-07-01

    The IntFOLD server is a novel independent server that integrates several cutting edge methods for the prediction of structure and function from sequence. Our guiding principles behind the server development were as follows: (i) to provide a simple unified resource that makes our prediction software accessible to all and (ii) to produce integrated output for predictions that can be easily interpreted. The output for predictions is presented as a simple table that summarizes all results graphically via plots and annotated 3D models. The raw machine readable data files for each set of predictions are also provided for developers, which comply with the Critical Assessment of Methods for Protein Structure Prediction (CASP) data standards. The server comprises an integrated suite of five novel methods: nFOLD4, for tertiary structure prediction; ModFOLD 3.0, for model quality assessment; DISOclust 2.0, for disorder prediction; DomFOLD 2.0 for domain prediction; and FunFOLD 1.0, for ligand binding site prediction. Predictions from the IntFOLD server were found to be competitive in several categories in the recent CASP9 experiment. The IntFOLD server is available at the following web site: http://www.reading.ac.uk/bioinf/IntFOLD/.

  12. Evaluating bacterial gene-finding HMM structures as probabilistic logic programs.

    PubMed

    Mørk, Søren; Holmes, Ian

    2012-03-01

    Probabilistic logic programming offers a powerful way to describe and evaluate structured statistical models. To investigate the practicality of probabilistic logic programming for structure learning in bioinformatics, we undertook a simplified bacterial gene-finding benchmark in PRISM, a probabilistic dialect of Prolog. We evaluate Hidden Markov Model structures for bacterial protein-coding gene potential, including a simple null model structure, three structures based on existing bacterial gene finders and two novel model structures. We test standard versions as well as ADPH length modeling and three-state versions of the five model structures. The models are all represented as probabilistic logic programs and evaluated using the PRISM machine learning system in terms of statistical information criteria and gene-finding prediction accuracy, in two bacterial genomes. Neither of our implementations of the two currently most used model structures are best performing in terms of statistical information criteria or prediction performances, suggesting that better-fitting models might be achievable. The source code of all PRISM models, data and additional scripts are freely available for download at: http://github.com/somork/codonhmm. Supplementary data are available at Bioinformatics online.

  13. A Bayesian approach to model structural error and input variability in groundwater modeling

    NASA Astrophysics Data System (ADS)

    Xu, T.; Valocchi, A. J.; Lin, Y. F. F.; Liang, F.

    2015-12-01

    Effective water resource management typically relies on numerical models to analyze groundwater flow and solute transport processes. Model structural error (due to simplification and/or misrepresentation of the "true" environmental system) and input forcing variability (which commonly arises since some inputs are uncontrolled or estimated with high uncertainty) are ubiquitous in groundwater models. Calibration that overlooks errors in model structure and input data can lead to biased parameter estimates and compromised predictions. We present a fully Bayesian approach for a complete assessment of uncertainty for spatially distributed groundwater models. The approach explicitly recognizes stochastic input and uses data-driven error models based on nonparametric kernel methods to account for model structural error. We employ exploratory data analysis to assist in specifying informative prior for error models to improve identifiability. The inference is facilitated by an efficient sampling algorithm based on DREAM-ZS and a parameter subspace multiple-try strategy to reduce the required number of forward simulations of the groundwater model. We demonstrate the Bayesian approach through a synthetic case study of surface-ground water interaction under changing pumping conditions. It is found that explicit treatment of errors in model structure and input data (groundwater pumping rate) has substantial impact on the posterior distribution of groundwater model parameters. Using error models reduces predictive bias caused by parameter compensation. In addition, input variability increases parametric and predictive uncertainty. The Bayesian approach allows for a comparison among the contributions from various error sources, which could inform future model improvement and data collection efforts on how to best direct resources towards reducing predictive uncertainty.

  14. A fragmentation and reassembly method for ab initio phasing.

    PubMed

    Shrestha, Rojan; Zhang, Kam Y J

    2015-02-01

    Ab initio phasing with de novo models has become a viable approach for structural solution from protein crystallographic diffraction data. This approach takes advantage of the known protein sequence information, predicts de novo models and uses them for structure determination by molecular replacement. However, even the current state-of-the-art de novo modelling method has a limit as to the accuracy of the model predicted, which is sometimes insufficient to be used as a template for successful molecular replacement. A fragment-assembly phasing method has been developed that starts from an ensemble of low-accuracy de novo models, disassembles them into fragments, places them independently in the crystallographic unit cell by molecular replacement and then reassembles them into a whole structure that can provide sufficient phase information to enable complete structure determination by automated model building. Tests on ten protein targets showed that the method could solve structures for eight of these targets, although the predicted de novo models cannot be used as templates for successful molecular replacement since the best model for each target is on average more than 4.0 Å away from the native structure. The method has extended the applicability of the ab initio phasing by de novo models approach. The method can be used to solve structures when the best de novo models are still of low accuracy.

  15. M3Ag17(SPh)12 Nanoparticles and Their Structure Prediction.

    PubMed

    Wickramasinghe, Sameera; Atnagulov, Aydar; Conn, Brian E; Yoon, Bokwon; Barnett, Robert N; Griffith, Wendell P; Landman, Uzi; Bigioni, Terry P

    2015-09-16

    Although silver nanoparticles are of great fundamental and practical interest, only one structure has been determined thus far: M4Ag44(SPh)30, where M is a monocation, and SPh is an aromatic thiolate ligand. This is in part due to the fact that no other molecular silver nanoparticles have been synthesized with aromatic thiolate ligands. Here we report the synthesis of M3Ag17(4-tert-butylbenzene-thiol)12, which has good stability and an unusual optical spectrum. We also present a rational strategy for predicting the structure of this molecule. First-principles calculations support the structural model, predict a HOMO-LUMO energy gap of 1.77 eV, and predict a new "monomer mount" capping motif, Ag(SR)3, for Ag nanoparticles. The calculated optical absorption spectrum is in good correspondence with the measured spectrum. Heteroatom substitution was also used as a structural probe. First-principles calculations based on the structural model predicted a strong preference for a single Au atom substitution in agreement with experiment.

  16. Model-free and model-based reward prediction errors in EEG.

    PubMed

    Sambrook, Thomas D; Hardwick, Ben; Wills, Andy J; Goslin, Jeremy

    2018-05-24

    Learning theorists posit two reinforcement learning systems: model-free and model-based. Model-based learning incorporates knowledge about structure and contingencies in the world to assign candidate actions with an expected value. Model-free learning is ignorant of the world's structure; instead, actions hold a value based on prior reinforcement, with this value updated by expectancy violation in the form of a reward prediction error. Because they use such different learning mechanisms, it has been previously assumed that model-based and model-free learning are computationally dissociated in the brain. However, recent fMRI evidence suggests that the brain may compute reward prediction errors to both model-free and model-based estimates of value, signalling the possibility that these systems interact. Because of its poor temporal resolution, fMRI risks confounding reward prediction errors with other feedback-related neural activity. In the present study, EEG was used to show the presence of both model-based and model-free reward prediction errors and their place in a temporal sequence of events including state prediction errors and action value updates. This demonstration of model-based prediction errors questions a long-held assumption that model-free and model-based learning are dissociated in the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Comparative Protein Structure Modeling Using MODELLER.

    PubMed

    Webb, Benjamin; Sali, Andrej

    2014-09-08

    Functional characterization of a protein sequence is one of the most frequent problems in biology. This task is usually facilitated by accurate three-dimensional (3-D) structure of the studied protein. In the absence of an experimentally determined structure, comparative or homology modeling can sometimes provide a useful 3-D model for a protein that is related to at least one known protein structure. Comparative modeling predicts the 3-D structure of a given protein sequence (target) based primarily on its alignment to one or more proteins of known structure (templates). The prediction process consists of fold assignment, target-template alignment, model building, and model evaluation. This unit describes how to calculate comparative models using the program MODELLER and discusses all four steps of comparative modeling, frequently observed errors, and some applications. Modeling lactate dehydrogenase from Trichomonas vaginalis (TvLDH) is described as an example. The download and installation of the MODELLER software is also described. Copyright © 2014 John Wiley & Sons, Inc.

  18. Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds.

    PubMed

    Ngo, Trieu-Du; Tran, Thanh-Dao; Le, Minh-Tri; Thai, Khac-Minh

    2016-11-01

    The human P-glycoprotein (P-gp) efflux pump is of great interest for medicinal chemists because of its important role in multidrug resistance (MDR). Because of the high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of this transmembrane protein, ligand-based, and structure-based approaches which were machine learning, homology modeling, and molecular docking were combined for this study. In ligand-based approach, individual two-dimensional quantitative structure-activity relationship models were developed using different machine learning algorithms and subsequently combined into the Ensemble model which showed good performance on both the diverse training set and the validation sets. The applicability domain and the prediction quality of the developed models were also judged using the state-of-the-art methods and tools. In our structure-based approach, the P-gp structure and its binding region were predicted for a docking study to determine possible interactions between the ligands and the receptor. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening using prediction models and molecular docking in an attempt to restore cancer cell sensitivity to cytotoxic drugs.

  19. SHM-Based Probabilistic Fatigue Life Prediction for Bridges Based on FE Model Updating

    PubMed Central

    Lee, Young-Joo; Cho, Soojin

    2016-01-01

    Fatigue life prediction for a bridge should be based on the current condition of the bridge, and various sources of uncertainty, such as material properties, anticipated vehicle loads and environmental conditions, make the prediction very challenging. This paper presents a new approach for probabilistic fatigue life prediction for bridges using finite element (FE) model updating based on structural health monitoring (SHM) data. Recently, various types of SHM systems have been used to monitor and evaluate the long-term structural performance of bridges. For example, SHM data can be used to estimate the degradation of an in-service bridge, which makes it possible to update the initial FE model. The proposed method consists of three steps: (1) identifying the modal properties of a bridge, such as mode shapes and natural frequencies, based on the ambient vibration under passing vehicles; (2) updating the structural parameters of an initial FE model using the identified modal properties; and (3) predicting the probabilistic fatigue life using the updated FE model. The proposed method is demonstrated by application to a numerical model of a bridge, and the impact of FE model updating on the bridge fatigue life is discussed. PMID:26950125

  20. Quantitative structure-activation barrier relationship modeling for Diels-Alder ligations utilizing quantum chemical structural descriptors.

    PubMed

    Nandi, Sisir; Monesi, Alessandro; Drgan, Viktor; Merzel, Franci; Novič, Marjana

    2013-10-30

    In the present study, we show the correlation of quantum chemical structural descriptors with the activation barriers of the Diels-Alder ligations. A set of 72 non-catalysed Diels-Alder reactions were subjected to quantitative structure-activation barrier relationship (QSABR) under the framework of theoretical quantum chemical descriptors calculated solely from the structures of diene and dienophile reactants. Experimental activation barrier data were obtained from literature. Descriptors were computed using Hartree-Fock theory using 6-31G(d) basis set as implemented in Gaussian 09 software. Variable selection and model development were carried out by stepwise multiple linear regression methodology. Predictive performance of the quantitative structure-activation barrier relationship (QSABR) model was assessed by training and test set concept and by calculating leave-one-out cross-validated Q2 and predictive R2 values. The QSABR model can explain and predict 86.5% and 80% of the variances, respectively, in the activation energy barrier training data. Alternatively, a neural network model based on back propagation of errors was developed to assess the nonlinearity of the sought correlations between theoretical descriptors and experimental reaction barriers. A reasonable predictability for the activation barrier of the test set reactions was obtained, which enabled an exploration and interpretation of the significant variables responsible for Diels-Alder interaction between dienes and dienophiles. Thus, studies in the direction of QSABR modelling that provide efficient and fast prediction of activation barriers of the Diels-Alder reactions turn out to be a meaningful alternative to transition state theory based computation.

  1. 3D-quantitative structure-activity relationship studies on benzothiadiazepine hydroxamates as inhibitors of tumor necrosis factor-alpha converting enzyme.

    PubMed

    Murumkar, Prashant R; Giridhar, Rajani; Yadav, Mange Ram

    2008-04-01

    A set of 29 benzothiadiazepine hydroxamates having selective tumor necrosis factor-alpha converting enzyme inhibitory activity were used to compare the quality and predictive power of 3D-quantitative structure-activity relationship, comparative molecular field analysis, and comparative molecular similarity indices models for the atom-based, centroid/atom-based, data-based, and docked conformer-based alignment. Removal of two outliers from the initial training set of molecules improved the predictivity of models. Among the 3D-quantitative structure-activity relationship models developed using the above four alignments, the database alignment provided the optimal predictive comparative molecular field analysis model for the training set with cross-validated r(2) (q(2)) = 0.510, non-cross-validated r(2) = 0.972, standard error of estimates (s) = 0.098, and F = 215.44 and the optimal comparative molecular similarity indices model with cross-validated r(2) (q(2)) = 0.556, non-cross-validated r(2) = 0.946, standard error of estimates (s) = 0.163, and F = 99.785. These models also showed the best test set prediction for six compounds with predictive r(2) values of 0.460 and 0.535, respectively. The contour maps obtained from 3D-quantitative structure-activity relationship studies were appraised for activity trends for the molecules analyzed. The comparative molecular similarity indices models exhibited good external predictivity as compared with that of comparative molecular field analysis models. The data generated from the present study helped us to further design and report some novel and potent tumor necrosis factor-alpha converting enzyme inhibitors.

  2. Correlation of predicted and measured thermal stresses on a truss-type aircraft structure

    NASA Technical Reports Server (NTRS)

    Jenkins, J. M.; Schuster, L. S.; Carter, A. L.

    1978-01-01

    A test structure representing a portion of a hypersonic vehicle was instrumented with strain gages and thermocouples. This test structure was then subjected to laboratory heating representative of supersonic and hypersonic flight conditions. A finite element computer model of this structure was developed using several types of elements with the NASA structural analysis (NASTRAN) computer program. Temperature inputs from the test were used to generate predicted model thermal stresses and these were correlated with the test measurements.

  3. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Nikhar; Tom, Nathan M

    2017-06-03

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less

  4. Utilization of Model Predictive Control to Balance Power Absorption Against Load Accumulation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbas, Nikhar; Tom, Nathan

    Wave energy converter (WEC) control strategies have been primarily focused on maximizing power absorption. The use of model predictive control strategies allows for a finite-horizon, multiterm objective function to be solved. This work utilizes a multiterm objective function to maximize power absorption while minimizing the structural loads on the WEC system. Furthermore, a Kalman filter and autoregressive model were used to estimate and forecast the wave exciting force and predict the future dynamics of the WEC. The WEC's power-take-off time-averaged power and structural loads under a perfect forecast assumption in irregular waves were compared against results obtained from the Kalmanmore » filter and autoregressive model to evaluate model predictive control performance.« less

  5. Molecular Phylogeny and Predicted 3D Structure of Plant beta-D-N-Acetylhexosaminidase

    PubMed Central

    Hossain, Md. Anowar

    2014-01-01

    beta-D-N-Acetylhexosaminidase, a family 20 glycosyl hydrolase, catalyzes the removal of β-1,4-linked N-acetylhexosamine residues from oligosaccharides and their conjugates. We constructed phylogenetic tree of β-hexosaminidases to analyze the evolutionary history and predicted functions of plant hexosaminidases. Phylogenetic analysis reveals the complex history of evolution of plant β-hexosaminidase that can be described by gene duplication events. The 3D structure of tomato β-hexosaminidase (β-Hex-Sl) was predicted by homology modeling using 1now as a template. Structural conformity studies of the best fit model showed that more than 98% of the residues lie inside the favoured and allowed regions where only 0.9% lie in the unfavourable region. Predicted 3D structure contains 531 amino acids residues with glycosyl hydrolase20b domain-I and glycosyl hydrolase20 superfamily domain-II including the (β/α)8 barrel in the central part. The α and β contents of the modeled structure were found to be 33.3% and 12.2%, respectively. Eleven amino acids were found to be involved in ligand-binding site; Asp(330) and Glu(331) could play important roles in enzyme-catalyzed reactions. The predicted model provides a structural framework that can act as a guide to develop a hypothesis for β-Hex-Sl mutagenesis experiments for exploring the functions of this class of enzymes in plant kingdom. PMID:25165734

  6. Characterising RNA secondary structure space using information entropy

    PubMed Central

    2013-01-01

    Comparative methods for RNA secondary structure prediction use evolutionary information from RNA alignments to increase prediction accuracy. The model is often described in terms of stochastic context-free grammars (SCFGs), which generate a probability distribution over secondary structures. It is, however, unclear how this probability distribution changes as a function of the input alignment. As prediction programs typically only return a single secondary structure, better characterisation of the underlying probability space of RNA secondary structures is of great interest. In this work, we show how to efficiently compute the information entropy of the probability distribution over RNA secondary structures produced for RNA alignments by a phylo-SCFG, and implement it for the PPfold model. We also discuss interpretations and applications of this quantity, including how it can clarify reasons for low prediction reliability scores. PPfold and its source code are available from http://birc.au.dk/software/ppfold/. PMID:23368905

  7. Protein model quality assessment prediction by combining fragment comparisons and a consensus Cα contact potential

    PubMed Central

    Zhou, Hongyi; Skolnick, Jeffrey

    2009-01-01

    In this work, we develop a fully automated method for the quality assessment prediction of protein structural models generated by structure prediction approaches such as fold recognition servers, or ab initio methods. The approach is based on fragment comparisons and a consensus Cα contact potential derived from the set of models to be assessed and was tested on CASP7 server models. The average Pearson linear correlation coefficient between predicted quality and model GDT-score per target is 0.83 for the 98 targets which is better than those of other quality assessment methods that participated in CASP7. Our method also outperforms the other methods by about 3% as assessed by the total GDT-score of the selected top models. PMID:18004783

  8. SVM-PB-Pred: SVM based protein block prediction method using sequence profiles and secondary structures.

    PubMed

    Suresh, V; Parthasarathy, S

    2014-01-01

    We developed a support vector machine based web server called SVM-PB-Pred, to predict the Protein Block for any given amino acid sequence. The input features of SVM-PB-Pred include i) sequence profiles (PSSM) and ii) actual secondary structures (SS) from DSSP method or predicted secondary structures from NPS@ and GOR4 methods. There were three combined input features PSSM+SS(DSSP), PSSM+SS(NPS@) and PSSM+SS(GOR4) used to test and train the SVM models. Similarly, four datasets RS90, DB433, LI1264 and SP1577 were used to develop the SVM models. These four SVM models developed were tested using three different benchmarking tests namely; (i) self consistency, (ii) seven fold cross validation test and (iii) independent case test. The maximum possible prediction accuracy of ~70% was observed in self consistency test for the SVM models of both LI1264 and SP1577 datasets, where PSSM+SS(DSSP) input features was used to test. The prediction accuracies were reduced to ~53% for PSSM+SS(NPS@) and ~43% for PSSM+SS(GOR4) in independent case test, for the SVM models of above two same datasets. Using our method, it is possible to predict the protein block letters for any query protein sequence with ~53% accuracy, when the SP1577 dataset and predicted secondary structure from NPS@ server were used. The SVM-PB-Pred server can be freely accessed through http://bioinfo.bdu.ac.in/~svmpbpred.

  9. Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.

    2002-01-01

    The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.

  10. Quantitative structure-retention relationship models for the prediction of the reversed-phase HPLC gradient retention based on the heuristic method and support vector machine.

    PubMed

    Du, Hongying; Wang, Jie; Yao, Xiaojun; Hu, Zhide

    2009-01-01

    The heuristic method (HM) and support vector machine (SVM) were used to construct quantitative structure-retention relationship models by a series of compounds to predict the gradient retention times of reversed-phase high-performance liquid chromatography (HPLC) in three different columns. The aims of this investigation were to predict the retention times of multifarious compounds, to find the main properties of the three columns, and to indicate the theory of separation procedures. In our method, we correlated the retention times of many diverse structural analytes in three columns (Symmetry C18, Chromolith, and SG-MIX) with their representative molecular descriptors, calculated from the molecular structures alone. HM was used to select the most important molecular descriptors and build linear regression models. Furthermore, non-linear regression models were built using the SVM method; the performance of the SVM models were better than that of the HM models, and the prediction results were in good agreement with the experimental values. This paper could give some insights into the factors that were likely to govern the gradient retention process of the three investigated HPLC columns, which could theoretically supervise the practical experiment.

  11. A predictive framework for evaluating models of semantic organization in free recall

    PubMed Central

    Morton, Neal W; Polyn, Sean M.

    2016-01-01

    Research in free recall has demonstrated that semantic associations reliably influence the organization of search through episodic memory. However, the specific structure of these associations and the mechanisms by which they influence memory search remain unclear. We introduce a likelihood-based model-comparison technique, which embeds a model of semantic structure within the context maintenance and retrieval (CMR) model of human memory search. Within this framework, model variants are evaluated in terms of their ability to predict the specific sequence in which items are recalled. We compare three models of semantic structure, latent semantic analysis (LSA), global vectors (GloVe), and word association spaces (WAS), and find that models using WAS have the greatest predictive power. Furthermore, we find evidence that semantic and temporal organization is driven by distinct item and context cues, rather than a single context cue. This finding provides important constraint for theories of memory search. PMID:28331243

  12. Toxicity challenges in environmental chemicals: Prediction of human plasma protein binding through quantitative structure-activity relationship (QSAR) models

    EPA Science Inventory

    The present study explores the merit of utilizing available pharmaceutical data to construct a quantitative structure-activity relationship (QSAR) for prediction of the fraction of a chemical unbound to plasma protein (Fub) in environmentally relevant compounds. Independent model...

  13. A novel method for structure-based prediction of ion channel conductance properties.

    PubMed Central

    Smart, O S; Breed, J; Smith, G R; Sansom, M S

    1997-01-01

    A rapid and easy-to-use method of predicting the conductance of an ion channel from its three-dimensional structure is presented. The method combines the pore dimensions of the channel as measured in the HOLE program with an Ohmic model of conductance. An empirically based correction factor is then applied. The method yielded good results for six experimental channel structures (none of which were included in the training set) with predictions accurate to within an average factor of 1.62 to the true values. The predictive r2 was equal to 0.90, which is indicative of a good predictive ability. The procedure is used to validate model structures of alamethicin and phospholamban. Two genuine predictions for the conductance of channels with known structure but without reported conductances are given. A modification of the procedure that calculates the expected results for the effect of the addition of nonelectrolyte polymers on conductance is set out. Results for a cholera toxin B-subunit crystal structure agree well with the measured values. The difficulty in interpreting such studies is discussed, with the conclusion that measurements on channels of known structure are required. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 6 FIGURE 10 PMID:9138559

  14. Structural features that predict real-value fluctuations of globular proteins

    PubMed Central

    Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke

    2012-01-01

    It is crucial to consider dynamics for understanding the biological function of proteins. We used a large number of molecular dynamics trajectories of non-homologous proteins as references and examined static structural features of proteins that are most relevant to fluctuations. We examined correlation of individual structural features with fluctuations and further investigated effective combinations of features for predicting the real-value of residue fluctuations using the support vector regression. It was found that some structural features have higher correlation than crystallographic B-factors with fluctuations observed in molecular dynamics trajectories. Moreover, support vector regression that uses combinations of static structural features showed accurate prediction of fluctuations with an average Pearson’s correlation coefficient of 0.669 and a root mean square error of 1.04 Å. This correlation coefficient is higher than the one observed for the prediction by the Gaussian network model. An advantage of the developed method over the Gaussian network models is that the former predicts the real-value of fluctuation. The results help improve our understanding of relationships between protein structure and fluctuation. Furthermore, the developed method provides a convienient practial way to predict fluctuations of proteins using easily computed static structural features of proteins. PMID:22328193

  15. Probabilistic Fatigue Damage Prognosis Using a Surrogate Model Trained Via 3D Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo

    2015-01-01

    Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.

  16. Constraint Logic Programming approach to protein structure prediction.

    PubMed

    Dal Palù, Alessandro; Dovier, Agostino; Fogolari, Federico

    2004-11-30

    The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known) secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space.

  17. Modeling and control of flexible space structures

    NASA Technical Reports Server (NTRS)

    Wie, B.; Bryson, A. E., Jr.

    1981-01-01

    The effects of actuator and sensor locations on transfer function zeros are investigated, using uniform bars and beams as generic models of flexible space structures. It is shown how finite element codes may be used directly to calculate transfer function zeros. The impulse response predicted by finite-dimensional models is compared with the exact impulse response predicted by the infinite dimensional models. It is shown that some flexible structures behave as if there were a direct transmission between actuator and sensor (equal numbers of zeros and poles in the transfer function). Finally, natural damping models for a vibrating beam are investigated since natural damping has a strong influence on the appropriate active control logic for a flexible structure.

  18. Social Structure Shapes Cultural Stereotypes and Emotions: A Causal Test of the Stereotype Content Model

    PubMed Central

    Caprariello, Peter A.; Cuddy, Amy J. C.; Fiske, Susan T.

    2013-01-01

    The stereotype content model (SCM) posits that social structure predicts specific cultural stereotypes and associated emotional prejudices. No prior evidence at a societal level has manipulated both structural predictors and measured both stereotypes and prejudices. In the present study, participants (n = 120) responded to an immigration scenario depicting a high- or low-status group, competitive or not competitive, and rated their likely stereotype (on warmth and competence) and elicited emotional prejudices (admiration, contempt, envy, and pity). Seven of eight specific predictions are fully confirmed, supporting the SCM's predicted causality for social structural effects on cultural stereotypes and emotional prejudices. PMID:24285928

  19. Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Sankarasubramanian, A.

    2012-12-01

    Model errors are inevitable in any prediction exercise. One approach that is currently gaining attention in reducing model errors is by combining multiple models to develop improved predictions. The rationale behind this approach primarily lies on the premise that optimal weights could be derived for each model so that the developed multimodel predictions will result in improved predictions. A new dynamic approach (MM-1) to combine multiple hydrological models by evaluating their performance/skill contingent on the predictor state is proposed. We combine two hydrological models, "abcd" model and variable infiltration capacity (VIC) model, to develop multimodel streamflow predictions. To quantify precisely under what conditions the multimodel combination results in improved predictions, we compare multimodel scheme MM-1 with optimal model combination scheme (MM-O) by employing them in predicting the streamflow generated from a known hydrologic model (abcd model orVICmodel) with heteroscedastic error variance as well as from a hydrologic model that exhibits different structure than that of the candidate models (i.e., "abcd" model or VIC model). Results from the study show that streamflow estimated from single models performed better than multimodels under almost no measurement error. However, under increased measurement errors and model structural misspecification, both multimodel schemes (MM-1 and MM-O) consistently performed better than the single model prediction. Overall, MM-1 performs better than MM-O in predicting the monthly flow values as well as in predicting extreme monthly flows. Comparison of the weights obtained from each candidate model reveals that as measurement errors increase, MM-1 assigns weights equally for all the models, whereas MM-O assigns higher weights for always the best-performing candidate model under the calibration period. Applying the multimodel algorithms for predicting streamflows over four different sites revealed that MM-1 performs better than all single models and optimal model combination scheme, MM-O, in predicting the monthly flows as well as the flows during wetter months.

  20. Protein structure modeling and refinement by global optimization in CASP12.

    PubMed

    Hong, Seung Hwan; Joung, InSuk; Flores-Canales, Jose C; Manavalan, Balachandran; Cheng, Qianyi; Heo, Seungryong; Kim, Jong Yun; Lee, Sun Young; Nam, Mikyung; Joo, Keehyoung; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung

    2018-03-01

    For protein structure modeling in the CASP12 experiment, we have developed a new protocol based on our previous CASP11 approach. The global optimization method of conformational space annealing (CSA) was applied to 3 stages of modeling: multiple sequence-structure alignment, three-dimensional (3D) chain building, and side-chain re-modeling. For better template selection and model selection, we updated our model quality assessment (QA) method with the newly developed SVMQA (support vector machine for quality assessment). For 3D chain building, we updated our energy function by including restraints generated from predicted residue-residue contacts. New energy terms for the predicted secondary structure and predicted solvent accessible surface area were also introduced. For difficult targets, we proposed a new method, LEEab, where the template term played a less significant role than it did in LEE, complemented by increased contributions from other terms such as the predicted contact term. For TBM (template-based modeling) targets, LEE performed better than LEEab, but for FM targets, LEEab was better. For model refinement, we modified our CASP11 molecular dynamics (MD) based protocol by using explicit solvents and tuning down restraint weights. Refinement results from MD simulations that used a new augmented statistical energy term in the force field were quite promising. Finally, when using inaccurate information (such as the predicted contacts), it was important to use the Lorentzian function for which the maximal penalty arising from wrong information is always bounded. © 2017 Wiley Periodicals, Inc.

  1. Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models

    NASA Astrophysics Data System (ADS)

    Zho, Chen-Chen; Farr, Erik P.; Glover, William J.; Schwartz, Benjamin J.

    2017-08-01

    We use one-electron non-adiabatic mixed quantum/classical simulations to explore the temperature dependence of both the ground-state structure and the excited-state relaxation dynamics of the hydrated electron. We compare the results for both the traditional cavity picture and a more recent non-cavity model of the hydrated electron and make definite predictions for distinguishing between the different possible structural models in future experiments. We find that the traditional cavity model shows no temperature-dependent change in structure at constant density, leading to a predicted resonance Raman spectrum that is essentially temperature-independent. In contrast, the non-cavity model predicts a blue-shift in the hydrated electron's resonance Raman O-H stretch with increasing temperature. The lack of a temperature-dependent ground-state structural change of the cavity model also leads to a prediction of little change with temperature of both the excited-state lifetime and hot ground-state cooling time of the hydrated electron following photoexcitation. This is in sharp contrast to the predictions of the non-cavity model, where both the excited-state lifetime and hot ground-state cooling time are expected to decrease significantly with increasing temperature. These simulation-based predictions should be directly testable by the results of future time-resolved photoelectron spectroscopy experiments. Finally, the temperature-dependent differences in predicted excited-state lifetime and hot ground-state cooling time of the two models also lead to different predicted pump-probe transient absorption spectroscopy of the hydrated electron as a function of temperature. We perform such experiments and describe them in Paper II [E. P. Farr et al., J. Chem. Phys. 147, 074504 (2017)], and find changes in the excited-state lifetime and hot ground-state cooling time with temperature that match well with the predictions of the non-cavity model. In particular, the experiments reveal stimulated emission from the excited state with an amplitude and lifetime that decreases with increasing temperature, a result in contrast to the lack of stimulated emission predicted by the cavity model but in good agreement with the non-cavity model. Overall, until ab initio calculations describing the non-adiabatic excited-state dynamics of an excess electron with hundreds of water molecules at a variety of temperatures become computationally feasible, the simulations presented here provide a definitive route for connecting the predictions of cavity and non-cavity models of the hydrated electron with future experiments.

  2. Predictive modeling of neuroanatomic structures for brain atrophy detection

    NASA Astrophysics Data System (ADS)

    Hu, Xintao; Guo, Lei; Nie, Jingxin; Li, Kaiming; Liu, Tianming

    2010-03-01

    In this paper, we present an approach of predictive modeling of neuroanatomic structures for the detection of brain atrophy based on cross-sectional MRI image. The underlying premise of applying predictive modeling for atrophy detection is that brain atrophy is defined as significant deviation of part of the anatomy from what the remaining normal anatomy predicts for that part. The steps of predictive modeling are as follows. The central cortical surface under consideration is reconstructed from brain tissue map and Regions of Interests (ROI) on it are predicted from other reliable anatomies. The vertex pair-wise distance between the predicted vertex and the true one within the abnormal region is expected to be larger than that of the vertex in normal brain region. Change of white matter/gray matter ratio within a spherical region is used to identify the direction of vertex displacement. In this way, the severity of brain atrophy can be defined quantitatively by the displacements of those vertices. The proposed predictive modeling method has been evaluated by using both simulated atrophies and MRI images of Alzheimer's disease.

  3. Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com; Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001; Gupta, Shikha

    Robust global models capable of discriminating positive and non-positive carcinogens; and predicting carcinogenic potency of chemicals in rodents were developed. The dataset of 834 structurally diverse chemicals extracted from Carcinogenic Potency Database (CPDB) was used which contained 466 positive and 368 non-positive carcinogens. Twelve non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals and nonlinearity in the data were evaluated using Tanimoto similarity index and Brock–Dechert–Scheinkman statistics. Probabilistic neural network (PNN) and generalized regression neural network (GRNN) models were constructed for classification and function optimization problems using the carcinogenicity end point in rat. Validation of the models wasmore » performed using the internal and external procedures employing a wide series of statistical checks. PNN constructed using five descriptors rendered classification accuracy of 92.09% in complete rat data. The PNN model rendered classification accuracies of 91.77%, 80.70% and 92.08% in mouse, hamster and pesticide data, respectively. The GRNN constructed with nine descriptors yielded correlation coefficient of 0.896 between the measured and predicted carcinogenic potency with mean squared error (MSE) of 0.44 in complete rat data. The rat carcinogenicity model (GRNN) applied to the mouse and hamster data yielded correlation coefficient and MSE of 0.758, 0.71 and 0.760, 0.46, respectively. The results suggest for wide applicability of the inter-species models in predicting carcinogenic potency of chemicals. Both the PNN and GRNN (inter-species) models constructed here can be useful tools in predicting the carcinogenicity of new chemicals for regulatory purposes. - Graphical abstract: Figure (a) shows classification accuracies (positive and non-positive carcinogens) in rat, mouse, hamster, and pesticide data yielded by optimal PNN model. Figure (b) shows generalization and predictive abilities of the interspecies GRNN model to predict the carcinogenic potency of diverse chemicals. - Highlights: • Global robust models constructed for carcinogenicity prediction of diverse chemicals. • Tanimoto/BDS test revealed structural diversity of chemicals and nonlinearity in data. • PNN/GRNN successfully predicted carcinogenicity/carcinogenic potency of chemicals. • Developed interspecies PNN/GRNN models for carcinogenicity prediction. • Proposed models can be used as tool to predict carcinogenicity of new chemicals.« less

  4. UNRES server for physics-based coarse-grained simulations and prediction of protein structure, dynamics and thermodynamics.

    PubMed

    Czaplewski, Cezary; Karczynska, Agnieszka; Sieradzan, Adam K; Liwo, Adam

    2018-04-30

    A server implementation of the UNRES package (http://www.unres.pl) for coarse-grained simulations of protein structures with the physics-based UNRES model, coined a name UNRES server, is presented. In contrast to most of the protein coarse-grained models, owing to its physics-based origin, the UNRES force field can be used in simulations, including those aimed at protein-structure prediction, without ancillary information from structural databases; however, the implementation includes the possibility of using restraints. Local energy minimization, canonical molecular dynamics simulations, replica exchange and multiplexed replica exchange molecular dynamics simulations can be run with the current UNRES server; the latter are suitable for protein-structure prediction. The user-supplied input includes protein sequence and, optionally, restraints from secondary-structure prediction or small x-ray scattering data, and simulation type and parameters which are selected or typed in. Oligomeric proteins, as well as those containing D-amino-acid residues and disulfide links can be treated. The output is displayed graphically (minimized structures, trajectories, final models, analysis of trajectory/ensembles); however, all output files can be downloaded by the user. The UNRES server can be freely accessed at http://unres-server.chem.ug.edu.pl.

  5. A probabilistic framework to infer brain functional connectivity from anatomical connections.

    PubMed

    Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel

    2011-01-01

    We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.

  6. PRISM-EM: template interface-based modelling of multi-protein complexes guided by cryo-electron microscopy density maps.

    PubMed

    Kuzu, Guray; Keskin, Ozlem; Nussinov, Ruth; Gursoy, Attila

    2016-10-01

    The structures of protein assemblies are important for elucidating cellular processes at the molecular level. Three-dimensional electron microscopy (3DEM) is a powerful method to identify the structures of assemblies, especially those that are challenging to study by crystallography. Here, a new approach, PRISM-EM, is reported to computationally generate plausible structural models using a procedure that combines crystallographic structures and density maps obtained from 3DEM. The predictions are validated against seven available structurally different crystallographic complexes. The models display mean deviations in the backbone of <5 Å. PRISM-EM was further tested on different benchmark sets; the accuracy was evaluated with respect to the structure of the complex, and the correlation with EM density maps and interface predictions were evaluated and compared with those obtained using other methods. PRISM-EM was then used to predict the structure of the ternary complex of the HIV-1 envelope glycoprotein trimer, the ligand CD4 and the neutralizing protein m36.

  7. Achilles tendons from decorin- and biglycan-null mouse models have inferior mechanical and structural properties predicted by an image-based empirical damage model

    PubMed Central

    Gordon, J.A.; Freedman, B.R.; Zuskov, A.; Iozzo, R.V.; Birk, D.E.; Soslowsky, L.J.

    2015-01-01

    Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn−/−) and biglycan-null (Bgn−/−) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice. PMID:25888014

  8. Achilles tendons from decorin- and biglycan-null mouse models have inferior mechanical and structural properties predicted by an image-based empirical damage model.

    PubMed

    Gordon, J A; Freedman, B R; Zuskov, A; Iozzo, R V; Birk, D E; Soslowsky, L J

    2015-07-16

    Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn(-/-)) and biglycan-null (Bgn(-/-)) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Assessing the Chemical Accuracy of Protein Structures via Peptide Acidity

    PubMed Central

    Anderson, Janet S.; Hernández, Griselda; LeMaster, David M.

    2012-01-01

    Although the protein native state is a Boltzmann conformational ensemble, practical applications often require a representative model from the most populated region of that distribution. The acidity of the backbone amides, as reflected in hydrogen exchange rates, is exquisitely sensitive to the surrounding charge and dielectric volume distribution. For each of four proteins, three independently determined X-ray structures of differing crystallographic resolution were used to predict exchange for the static solvent-exposed amide hydrogens. The average correlation coefficients range from 0.74 for ubiquitin to 0.93 for Pyrococcus furiosus rubredoxin, reflecting the larger range of experimental exchange rates exhibited by the latter protein. The exchange prediction errors modestly correlate with the crystallographic resolution. MODELLER 9v6-derived homology models at ~60% sequence identity (36% identity for chymotrypsin inhibitor CI2) yielded correlation coefficients that are ~0.1 smaller than for the cognate X-ray structures. The most recently deposited NOE-based ubiquitin structure and the original NMR structure of CI2 fail to provide statistically significant predictions of hydrogen exchange. However, the more recent RECOORD refinement study of CI2 yielded predictions comparable to the X-ray and homology model-based analyses. PMID:23182463

  10. Novel proteases from the genome of the carnivorous plant Drosera capensis: structural prediction and comparative analysis

    PubMed Central

    Butts, Carter T.; Bierma, Jan C.; Martin, Rachel W.

    2016-01-01

    In his 1875 monograph on insectivorous plants, Darwin described the feeding reactions of Drosera flypaper traps and predicted that their secretions contained a “ferment” similar to mammalian pepsin, an aspartic protease. Here we report a high-quality draft genome sequence for the cape sundew, Drosera capensis, the first genome of a carnivorous plant from order Caryophyllales, which also includes the Venus flytrap (Dionaea) and the tropical pitcher plants (Nepenthes). This species was selected in part for its hardiness and ease of cultivation, making it an excellent model organism for further investigations of plant carnivory. Analysis of predicted protein sequences yields genes encoding proteases homologous to those found in other plants, some of which display sequence and structural features that suggest novel functionalities. Because the sequence similarity to proteins of known structure is in most cases too low for traditional homology modeling, 3D structures of representative proteases are predicted using comparative modeling with all-atom refinement. Although the overall folds and active residues for these proteins are conserved, we find structural and sequence differences consistent with a diversity of substrate recognition patterns. Finally, we predict differences in substrate specificities using in silico experiments, providing targets for structure/function studies of novel enzymes with biological and technological significance. PMID:27353064

  11. Model structures amplify uncertainty in predicted soil carbon responses to climate change.

    PubMed

    Shi, Zheng; Crowell, Sean; Luo, Yiqi; Moore, Berrien

    2018-06-04

    Large model uncertainty in projected future soil carbon (C) dynamics has been well documented. However, our understanding of the sources of this uncertainty is limited. Here we quantify the uncertainties arising from model parameters, structures and their interactions, and how those uncertainties propagate through different models to projections of future soil carbon stocks. Both the vertically resolved model and the microbial explicit model project much greater uncertainties to climate change than the conventional soil C model, with both positive and negative C-climate feedbacks, whereas the conventional model consistently predicts positive soil C-climate feedback. Our findings suggest that diverse model structures are necessary to increase confidence in soil C projection. However, the larger uncertainty in the complex models also suggests that we need to strike a balance between model complexity and the need to include diverse model structures in order to forecast soil C dynamics with high confidence and low uncertainty.

  12. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more.

    PubMed

    Rivas, Elena; Lang, Raymond; Eddy, Sean R

    2012-02-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases.

  13. A range of complex probabilistic models for RNA secondary structure prediction that includes the nearest-neighbor model and more

    PubMed Central

    Rivas, Elena; Lang, Raymond; Eddy, Sean R.

    2012-01-01

    The standard approach for single-sequence RNA secondary structure prediction uses a nearest-neighbor thermodynamic model with several thousand experimentally determined energy parameters. An attractive alternative is to use statistical approaches with parameters estimated from growing databases of structural RNAs. Good results have been reported for discriminative statistical methods using complex nearest-neighbor models, including CONTRAfold, Simfold, and ContextFold. Little work has been reported on generative probabilistic models (stochastic context-free grammars [SCFGs]) of comparable complexity, although probabilistic models are generally easier to train and to use. To explore a range of probabilistic models of increasing complexity, and to directly compare probabilistic, thermodynamic, and discriminative approaches, we created TORNADO, a computational tool that can parse a wide spectrum of RNA grammar architectures (including the standard nearest-neighbor model and more) using a generalized super-grammar that can be parameterized with probabilities, energies, or arbitrary scores. By using TORNADO, we find that probabilistic nearest-neighbor models perform comparably to (but not significantly better than) discriminative methods. We find that complex statistical models are prone to overfitting RNA structure and that evaluations should use structurally nonhomologous training and test data sets. Overfitting has affected at least one published method (ContextFold). The most important barrier to improving statistical approaches for RNA secondary structure prediction is the lack of diversity of well-curated single-sequence RNA secondary structures in current RNA databases. PMID:22194308

  14. A predictive structural model for bulk metallic glasses

    PubMed Central

    Laws, K. J.; Miracle, D. B.; Ferry, M.

    2015-01-01

    Great progress has been made in understanding the atomic structure of metallic glasses, but there is still no clear connection between atomic structure and glass-forming ability. Here we give new insights into perhaps the most important question in the field of amorphous metals: how can glass-forming ability be predicted from atomic structure? We give a new approach to modelling metallic glass atomic structures by solving three long-standing problems: we discover a new family of structural defects that discourage glass formation; we impose efficient local packing around all atoms simultaneously; and we enforce structural self-consistency. Fewer than a dozen binary structures satisfy these constraints, but extra degrees of freedom in structures with three or more different atom sizes significantly expand the number of relatively stable, ‘bulk' metallic glasses. The present work gives a new approach towards achieving the long-sought goal of a predictive capability for bulk metallic glasses. PMID:26370667

  15. Does Rational Selection of Training and Test Sets Improve the Outcome of QSAR Modeling?

    EPA Science Inventory

    Prior to using a quantitative structure activity relationship (QSAR) model for external predictions, its predictive power should be established and validated. In the absence of a true external dataset, the best way to validate the predictive ability of a model is to perform its s...

  16. Structure Prediction and Analysis of Neuraminidase Sequence Variants

    ERIC Educational Resources Information Center

    Thayer, Kelly M.

    2016-01-01

    Analyzing protein structure has become an integral aspect of understanding systems of biochemical import. The laboratory experiment endeavors to introduce protein folding to ascertain structures of proteins for which the structure is unavailable, as well as to critically evaluate the quality of the prediction obtained. The model system used is the…

  17. Efficient finite element modelling for the investigation of the dynamic behaviour of a structure with bolted joints

    NASA Astrophysics Data System (ADS)

    Omar, R.; Rani, M. N. Abdul; Yunus, M. A.; Mirza, W. I. I. Wan Iskandar; Zin, M. S. Mohd

    2018-04-01

    A simple structure with bolted joints consists of the structural components, bolts and nuts. There are several methods to model the structures with bolted joints, however there is no reliable, efficient and economic modelling methods that can accurately predict its dynamics behaviour. Explained in this paper is an investigation that was conducted to obtain an appropriate modelling method for bolted joints. This was carried out by evaluating four different finite element (FE) models of the assembled plates and bolts namely the solid plates-bolts model, plates without bolt model, hybrid plates-bolts model and simplified plates-bolts model. FE modal analysis was conducted for all four initial FE models of the bolted joints. Results of the FE modal analysis were compared with the experimental modal analysis (EMA) results. EMA was performed to extract the natural frequencies and mode shapes of the test physical structure with bolted joints. Evaluation was made by comparing the number of nodes, number of elements, elapsed computer processing unit (CPU) time, and the total percentage of errors of each initial FE model when compared with EMA result. The evaluation showed that the simplified plates-bolts model could most accurately predict the dynamic behaviour of the structure with bolted joints. This study proved that the reliable, efficient and economic modelling of bolted joints, mainly the representation of the bolting, has played a crucial element in ensuring the accuracy of the dynamic behaviour prediction.

  18. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction.

    PubMed

    Hamadache, Mabrouk; Benkortbi, Othmane; Hanini, Salah; Amrane, Abdeltif; Khaouane, Latifa; Si Moussa, Cherif

    2016-02-13

    Quantitative Structure Activity Relationship (QSAR) models are expected to play an important role in the risk assessment of chemicals on humans and the environment. In this study, we developed a validated QSAR model to predict acute oral toxicity of 329 pesticides to rats because a few QSAR models have been devoted to predict the Lethal Dose 50 (LD50) of pesticides on rats. This QSAR model is based on 17 molecular descriptors, and is robust, externally predictive and characterized by a good applicability domain. The best results were obtained with a 17/9/1 Artificial Neural Network model trained with the Quasi Newton back propagation (BFGS) algorithm. The prediction accuracy for the external validation set was estimated by the Q(2)ext and the root mean square error (RMS) which are equal to 0.948 and 0.201, respectively. 98.6% of external validation set is correctly predicted and the present model proved to be superior to models previously published. Accordingly, the model developed in this study provides excellent predictions and can be used to predict the acute oral toxicity of pesticides, particularly for those that have not been tested as well as new pesticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships (MCBIOS)

    EPA Science Inventory

    Comparative Analysis of Predictive Models for Liver Toxicity Using ToxCast Assays and Quantitative Structure-Activity Relationships Jie Liu1,2, Richard Judson1, Matthew T. Martin1, Huixiao Hong3, Imran Shah1 1National Center for Computational Toxicology (NCCT), US EPA, RTP, NC...

  20. FINDSITE-metal: Integrating evolutionary information and machine learning for structure-based metal binding site prediction at the proteome level

    PubMed Central

    Brylinski, Michal; Skolnick, Jeffrey

    2010-01-01

    The rapid accumulation of gene sequences, many of which are hypothetical proteins with unknown function, has stimulated the development of accurate computational tools for protein function prediction with evolution/structure-based approaches showing considerable promise. In this paper, we present FINDSITE-metal, a new threading-based method designed specifically to detect metal binding sites in modeled protein structures. Comprehensive benchmarks using different quality protein structures show that weakly homologous protein models provide sufficient structural information for quite accurate annotation by FINDSITE-metal. Combining structure/evolutionary information with machine learning results in highly accurate metal binding annotations; for protein models constructed by TASSER, whose average Cα RMSD from the native structure is 8.9 Å, 59.5% (71.9%) of the best of top five predicted metal locations are within 4 Å (8 Å) from a bound metal in the crystal structure. For most of the targets, multiple metal binding sites are detected with the best predicted binding site at rank 1 and within the top 2 ranks in 65.6% and 83.1% of the cases, respectively. Furthermore, for iron, copper, zinc, calcium and magnesium ions, the binding metal can be predicted with high, typically 70-90%, accuracy. FINDSITE-metal also provides a set of confidence indexes that help assess the reliability of predictions. Finally, we describe the proteome-wide application of FINDSITE-metal that quantifies the metal binding complement of the human proteome. FINDSITE-metal is freely available to the academic community at http://cssb.biology.gatech.edu/findsite-metal/. PMID:21287609

  1. Residue contacts predicted by evolutionary covariance extend the application of ab initio molecular replacement to larger and more challenging protein folds.

    PubMed

    Simkovic, Felix; Thomas, Jens M H; Keegan, Ronan M; Winn, Martyn D; Mayans, Olga; Rigden, Daniel J

    2016-07-01

    For many protein families, the deluge of new sequence information together with new statistical protocols now allow the accurate prediction of contacting residues from sequence information alone. This offers the possibility of more accurate ab initio (non-homology-based) structure prediction. Such models can be used in structure solution by molecular replacement (MR) where the target fold is novel or is only distantly related to known structures. Here, AMPLE, an MR pipeline that assembles search-model ensembles from ab initio structure predictions ('decoys'), is employed to assess the value of contact-assisted ab initio models to the crystallographer. It is demonstrated that evolutionary covariance-derived residue-residue contact predictions improve the quality of ab initio models and, consequently, the success rate of MR using search models derived from them. For targets containing β-structure, decoy quality and MR performance were further improved by the use of a β-strand contact-filtering protocol. Such contact-guided decoys achieved 14 structure solutions from 21 attempted protein targets, compared with nine for simple Rosetta decoys. Previously encountered limitations were superseded in two key respects. Firstly, much larger targets of up to 221 residues in length were solved, which is far larger than the previously benchmarked threshold of 120 residues. Secondly, contact-guided decoys significantly improved success with β-sheet-rich proteins. Overall, the improved performance of contact-guided decoys suggests that MR is now applicable to a significantly wider range of protein targets than were previously tractable, and points to a direct benefit to structural biology from the recent remarkable advances in sequencing.

  2. Residue contacts predicted by evolutionary covariance extend the application of ab initio molecular replacement to larger and more challenging protein folds

    PubMed Central

    Simkovic, Felix; Thomas, Jens M. H.; Keegan, Ronan M.; Winn, Martyn D.; Mayans, Olga; Rigden, Daniel J.

    2016-01-01

    For many protein families, the deluge of new sequence information together with new statistical protocols now allow the accurate prediction of contacting residues from sequence information alone. This offers the possibility of more accurate ab initio (non-homology-based) structure prediction. Such models can be used in structure solution by molecular replacement (MR) where the target fold is novel or is only distantly related to known structures. Here, AMPLE, an MR pipeline that assembles search-model ensembles from ab initio structure predictions (‘decoys’), is employed to assess the value of contact-assisted ab initio models to the crystallographer. It is demonstrated that evolutionary covariance-derived residue–residue contact predictions improve the quality of ab initio models and, consequently, the success rate of MR using search models derived from them. For targets containing β-structure, decoy quality and MR performance were further improved by the use of a β-strand contact-filtering protocol. Such contact-guided decoys achieved 14 structure solutions from 21 attempted protein targets, compared with nine for simple Rosetta decoys. Previously encountered limitations were superseded in two key respects. Firstly, much larger targets of up to 221 residues in length were solved, which is far larger than the previously benchmarked threshold of 120 residues. Secondly, contact-guided decoys significantly improved success with β-sheet-rich proteins. Overall, the improved performance of contact-guided decoys suggests that MR is now applicable to a significantly wider range of protein targets than were previously tractable, and points to a direct benefit to structural biology from the recent remarkable advances in sequencing. PMID:27437113

  3. VITAL NMR: Using Chemical Shift Derived Secondary Structure Information for a Limited Set of Amino Acids to Assess Homology Model Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brothers, Michael C; Nesbitt, Anna E; Hallock, Michael J

    2011-01-01

    Homology modeling is a powerful tool for predicting protein structures, whose success depends on obtaining a reasonable alignment between a given structural template and the protein sequence being analyzed. In order to leverage greater predictive power for proteins with few structural templates, we have developed a method to rank homology models based upon their compliance to secondary structure derived from experimental solid-state NMR (SSNMR) data. Such data is obtainable in a rapid manner by simple SSNMR experiments (e.g., (13)C-(13)C 2D correlation spectra). To test our homology model scoring procedure for various amino acid labeling schemes, we generated a library ofmore » 7,474 homology models for 22 protein targets culled from the TALOS+/SPARTA+ training set of protein structures. Using subsets of amino acids that are plausibly assigned by SSNMR, we discovered that pairs of the residues Val, Ile, Thr, Ala and Leu (VITAL) emulate an ideal dataset where all residues are site specifically assigned. Scoring the models with a predicted VITAL site-specific dataset and calculating secondary structure with the Chemical Shift Index resulted in a Pearson correlation coefficient (-0.75) commensurate to the control (-0.77), where secondary structure was scored site specifically for all amino acids (ALL 20) using STRIDE. This method promises to accelerate structure procurement by SSNMR for proteins with unknown folds through guiding the selection of remotely homologous protein templates and assessing model quality.« less

  4. A Fast Surrogate-facilitated Data-driven Bayesian Approach to Uncertainty Quantification of a Regional Groundwater Flow Model with Structural Error

    NASA Astrophysics Data System (ADS)

    Xu, T.; Valocchi, A. J.; Ye, M.; Liang, F.

    2016-12-01

    Due to simplification and/or misrepresentation of the real aquifer system, numerical groundwater flow and solute transport models are usually subject to model structural error. During model calibration, the hydrogeological parameters may be overly adjusted to compensate for unknown structural error. This may result in biased predictions when models are used to forecast aquifer response to new forcing. In this study, we extend a fully Bayesian method [Xu and Valocchi, 2015] to calibrate a real-world, regional groundwater flow model. The method uses a data-driven error model to describe model structural error and jointly infers model parameters and structural error. In this study, Bayesian inference is facilitated using high performance computing and fast surrogate models. The surrogate models are constructed using machine learning techniques to emulate the response simulated by the computationally expensive groundwater model. We demonstrate in the real-world case study that explicitly accounting for model structural error yields parameter posterior distributions that are substantially different from those derived by the classical Bayesian calibration that does not account for model structural error. In addition, the Bayesian with error model method gives significantly more accurate prediction along with reasonable credible intervals.

  5. Accurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins

    PubMed Central

    Yang, Jing; He, Bao-Ji; Jang, Richard; Zhang, Yang; Shen, Hong-Bin

    2015-01-01

    Abstract Motivation: Cysteine-rich proteins cover many important families in nature but there are currently no methods specifically designed for modeling the structure of these proteins. The accuracy of disulfide connectivity pattern prediction, particularly for the proteins of higher-order connections, e.g. >3 bonds, is too low to effectively assist structure assembly simulations. Results: We propose a new hierarchical order reduction protocol called Cyscon for disulfide-bonding prediction. The most confident disulfide bonds are first identified and bonding prediction is then focused on the remaining cysteine residues based on SVR training. Compared with purely machine learning-based approaches, Cyscon improved the average accuracy of connectivity pattern prediction by 21.9%. For proteins with more than 5 disulfide bonds, Cyscon improved the accuracy by 585% on the benchmark set of PDBCYS. When applied to 158 non-redundant cysteine-rich proteins, Cyscon predictions helped increase (or decrease) the TM-score (or RMSD) of the ab initio QUARK modeling by 12.1% (or 14.4%). This result demonstrates a new avenue to improve the ab initio structure modeling for cysteine-rich proteins. Availability and implementation: http://www.csbio.sjtu.edu.cn/bioinf/Cyscon/ Contact: zhng@umich.edu or hbshen@sjtu.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26254435

  6. RACER a Coarse-Grained RNA Model for Capturing Folding Free Energy in Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Cheng, Sara; Bell, David; Ren, Pengyu

    RACER is a coarse-grained RNA model that can be used in molecular dynamics simulations to predict native structures and sequence-specific variation of free energy of various RNA structures. RACER is capable of accurate prediction of native structures of duplexes and hairpins (average RMSD of 4.15 angstroms), and RACER can capture sequence-specific variation of free energy in excellent agreement with experimentally measured stabilities (r-squared =0.98). The RACER model implements a new effective non-bonded potential and re-parameterization of hydrogen bond and Debye-Huckel potentials. Insights from the RACER model include the importance of treating pairing and stacking interactions separately in order to distinguish folded an unfolded states and identification of hydrogen-bonding, base stacking, and electrostatic interactions as essential driving forces for RNA folding. Future applications of the RACER model include predicting free energy landscapes of more complex RNA structures and use of RACER for multiscale simulations.

  7. Predicting the Structure of the Solar Corona for the Total Solar Eclipse of March 29,2006

    NASA Technical Reports Server (NTRS)

    Mikic, Z.; Linker, J. a.; Lionello, R.; Riley, P.; TItov, V.

    2007-01-01

    We describe the use of a three-dimensional MHD model to predict the s tructure of the corona prior to the total solar eclipse of March 29, 2006. The calculation uses the observed photospheric radial magnetic f ield as a boundary condition. We use a new version of our model that has an improved description of energy transport in the corona. The mo del allows us to predict the emission of X-ray and EUV radiation in t he corona. We compare the predicted polarization brightness in the co rona with four observations of the eclipse from Greece, Egypt, and Li bya, and we demonstrate that the model accurately predicts the largescale structure of the corona. We also compare X-ray emission from the model with GOES/SXI images.

  8. Sound transmission through lightweight double-leaf partitions: theoretical modelling

    NASA Astrophysics Data System (ADS)

    Wang, J.; Lu, T. J.; Woodhouse, J.; Langley, R. S.; Evans, J.

    2005-09-01

    This paper presents theoretical modelling of the sound transmission loss through double-leaf lightweight partitions stiffened with periodically placed studs. First, by assuming that the effect of the studs can be replaced with elastic springs uniformly distributed between the sheathing panels, a simple smeared model is established. Second, periodic structure theory is used to develop a more accurate model taking account of the discrete placing of the studs. Both models treat incident sound waves in the horizontal plane only, for simplicity. The predictions of the two models are compared, to reveal the physical mechanisms determining sound transmission. The smeared model predicts relatively simple behaviour, in which the only conspicuous features are associated with coincidence effects with the two types of structural wave allowed by the partition model, and internal resonances of the air between the panels. In the periodic model, many more features are evident, associated with the structure of pass- and stop-bands for structural waves in the partition. The models are used to explain the effects of incidence angle and of the various system parameters. The predictions are compared with existing test data for steel plates with wooden stiffeners, and good agreement is obtained.

  9. Use of Linear Prediction Uncertainty Analysis to Guide Conditioning of Models Simulating Surface-Water/Groundwater Interactions

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; White, J.; Doherty, J.

    2011-12-01

    Linear prediction uncertainty analysis in a Bayesian framework was applied to guide the conditioning of an integrated surface water/groundwater model that will be used to predict the effects of groundwater withdrawals on surface-water and groundwater flows. Linear prediction uncertainty analysis is an effective approach for identifying (1) raw and processed data most effective for model conditioning prior to inversion, (2) specific observations and periods of time critically sensitive to specific predictions, and (3) additional observation data that would reduce model uncertainty relative to specific predictions. We present results for a two-dimensional groundwater model of a 2,186 km2 area of the Biscayne aquifer in south Florida implicitly coupled to a surface-water routing model of the actively managed canal system. The model domain includes 5 municipal well fields withdrawing more than 1 Mm3/day and 17 operable surface-water control structures that control freshwater releases from the Everglades and freshwater discharges to Biscayne Bay. More than 10 years of daily observation data from 35 groundwater wells and 24 surface water gages are available to condition model parameters. A dense parameterization was used to fully characterize the contribution of the inversion null space to predictive uncertainty and included bias-correction parameters. This approach allows better resolution of the boundary between the inversion null space and solution space. Bias-correction parameters (e.g., rainfall, potential evapotranspiration, and structure flow multipliers) absorb information that is present in structural noise that may otherwise contaminate the estimation of more physically-based model parameters. This allows greater precision in predictions that are entirely solution-space dependent, and reduces the propensity for bias in predictions that are not. Results show that application of this analysis is an effective means of identifying those surface-water and groundwater data, both raw and processed, that minimize predictive uncertainty, while simultaneously identifying the maximum solution-space dimensionality of the inverse problem supported by the data.

  10. A Computational Approach From Gene to Structure Analysis of the Human ABCA4 Transporter Involved in Genetic Retinal Diseases.

    PubMed

    Trezza, Alfonso; Bernini, Andrea; Langella, Andrea; Ascher, David B; Pires, Douglas E V; Sodi, Andrea; Passerini, Ilaria; Pelo, Elisabetta; Rizzo, Stanislao; Niccolai, Neri; Spiga, Ottavia

    2017-10-01

    The aim of this article is to report the investigation of the structural features of ABCA4, a protein associated with a genetic retinal disease. A new database collecting knowledge of ABCA4 structure may facilitate predictions about the possible functional consequences of gene mutations observed in clinical practice. In order to correlate structural and functional effects of the observed mutations, the structure of mouse P-glycoprotein was used as a template for homology modeling. The obtained structural information and genetic data are the basis of our relational database (ABCA4Database). Sequence variability among all ABCA4-deposited entries was calculated and reported as Shannon entropy score at the residue level. The three-dimensional model of ABCA4 structure was used to locate the spatial distribution of the observed variable regions. Our predictions from structural in silico tools were able to accurately link the functional effects of mutations to phenotype. The development of the ABCA4Database gathers all the available genetic and structural information, yielding a global view of the molecular basis of some retinal diseases. ABCA4 modeled structure provides a molecular basis on which to analyze protein sequence mutations related to genetic retinal disease in order to predict the risk of retinal disease across all possible ABCA4 mutations. Additionally, our ABCA4 predicted structure is a good starting point for the creation of a new data analysis model, appropriate for precision medicine, in order to develop a deeper knowledge network of the disease and to improve the management of patients.

  11. Advances in Homology Protein Structure Modeling

    PubMed Central

    Xiang, Zhexin

    2007-01-01

    Homology modeling plays a central role in determining protein structure in the structural genomics project. The importance of homology modeling has been steadily increasing because of the large gap that exists between the overwhelming number of available protein sequences and experimentally solved protein structures, and also, more importantly, because of the increasing reliability and accuracy of the method. In fact, a protein sequence with over 30% identity to a known structure can often be predicted with an accuracy equivalent to a low-resolution X-ray structure. The recent advances in homology modeling, especially in detecting distant homologues, aligning sequences with template structures, modeling of loops and side chains, as well as detecting errors in a model, have contributed to reliable prediction of protein structure, which was not possible even several years ago. The ongoing efforts in solving protein structures, which can be time-consuming and often difficult, will continue to spur the development of a host of new computational methods that can fill in the gap and further contribute to understanding the relationship between protein structure and function. PMID:16787261

  12. 3D Protein structure prediction with genetic tabu search algorithm

    PubMed Central

    2010-01-01

    Background Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively. PMID:20522256

  13. Tertiary model of a plant cellulose synthase

    PubMed Central

    Sethaphong, Latsavongsakda; Haigler, Candace H.; Kubicki, James D.; Zimmer, Jochen; Bonetta, Dario; DeBolt, Seth; Yingling, Yaroslava G.

    2013-01-01

    A 3D atomistic model of a plant cellulose synthase (CESA) has remained elusive despite over forty years of experimental effort. Here, we report a computationally predicted 3D structure of 506 amino acids of cotton CESA within the cytosolic region. Comparison of the predicted plant CESA structure with the solved structure of a bacterial cellulose-synthesizing protein validates the overall fold of the modeled glycosyltransferase (GT) domain. The coaligned plant and bacterial GT domains share a six-stranded β-sheet, five α-helices, and conserved motifs similar to those required for catalysis in other GT-2 glycosyltransferases. Extending beyond the cross-kingdom similarities related to cellulose polymerization, the predicted structure of cotton CESA reveals that plant-specific modules (plant-conserved region and class-specific region) fold into distinct subdomains on the periphery of the catalytic region. Computational results support the importance of the plant-conserved region and/or class-specific region in CESA oligomerization to form the multimeric cellulose–synthesis complexes that are characteristic of plants. Relatively high sequence conservation between plant CESAs allowed mapping of known mutations and two previously undescribed mutations that perturb cellulose synthesis in Arabidopsis thaliana to their analogous positions in the modeled structure. Most of these mutation sites are near the predicted catalytic region, and the confluence of other mutation sites supports the existence of previously undefined functional nodes within the catalytic core of CESA. Overall, the predicted tertiary structure provides a platform for the biochemical engineering of plant CESAs. PMID:23592721

  14. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions

    PubMed Central

    Bryan, Allen W; O’Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie

    2012-01-01

    The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively ‘stitches’ strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer’s amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Proteins 2012. © 2011 Wiley Periodicals, Inc. PMID:22095906

  15. STITCHER: Dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions.

    PubMed

    Bryan, Allen W; O'Donnell, Charles W; Menke, Matthew; Cowen, Lenore J; Lindquist, Susan; Berger, Bonnie

    2012-02-01

    The supersecondary structure of amyloids and prions, proteins of intense clinical and biological interest, are difficult to determine by standard experimental or computational means. In addition, significant conformational heterogeneity is known or suspected to exist in many amyloid fibrils. Previous work has demonstrated that probability-based prediction of discrete β-strand pairs can offer insight into these structures. Here, we devise a system of energetic rules that can be used to dynamically assemble these discrete β-strand pairs into complete amyloid β-structures. The STITCHER algorithm progressively 'stitches' strand-pairs into full β-sheets based on a novel free-energy model, incorporating experimentally observed amino-acid side-chain stacking contributions, entropic estimates, and steric restrictions for amyloidal parallel β-sheet construction. A dynamic program computes the top 50 structures and returns both the highest scoring structure and a consensus structure taken by polling this list for common discrete elements. Putative structural heterogeneity can be inferred from sequence regions that compose poorly. Predictions show agreement with experimental models of Alzheimer's amyloid beta peptide and the Podospora anserina Het-s prion. Predictions of the HET-s homolog HET-S also reflect experimental observations of poor amyloid formation. We put forward predicted structures for the yeast prion Sup35, suggesting N-terminal structural stability enabled by tyrosine ladders, and C-terminal heterogeneity. Predictions for the Rnq1 prion and alpha-synuclein are also given, identifying a similar mix of homogenous and heterogeneous secondary structure elements. STITCHER provides novel insight into the energetic basis of amyloid structure, provides accurate structure predictions, and can help guide future experimental studies. Copyright © 2011 Wiley Periodicals, Inc.

  16. Food-web models predict species abundances in response to habitat change.

    PubMed

    Gotelli, Nicholas J; Ellison, Aaron M

    2006-10-01

    Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss.

  17. Modeling of Triangular Lattice Space Structures with Curved Battens

    NASA Technical Reports Server (NTRS)

    Chen, Tzikang; Wang, John T.

    2005-01-01

    Techniques for simulating an assembly process of lattice structures with curved battens were developed. The shape of the curved battens, the tension in the diagonals, and the compression in the battens were predicted for the assembled model. To be able to perform the assembly simulation, a cable-pulley element was implemented, and geometrically nonlinear finite element analyses were performed. Three types of finite element models were created from assembled lattice structures for studying the effects of design and modeling variations on the load carrying capability. Discrepancies in the predictions from these models were discussed. The effects of diagonal constraint failure were also studied.

  18. QSPR model for bioconcentration factors of nonpolar organic compounds using molecular electronegativity distance vector descriptors.

    PubMed

    Qin, Li-Tang; Liu, Shu-Shen; Liu, Hai-Ling

    2010-02-01

    A five-variable model (model M2) was developed for the bioconcentration factors (BCFs) of nonpolar organic compounds (NPOCs) by using molecular electronegativity distance vector (MEDV) to characterize the structures of NPOCs and variable selection and modeling based on prediction (VSMP) to select the optimum descriptors. The estimated correlation coefficient (r (2)) and the leave-one-out cross-validation correlation coefficients (q (2)) of model M2 were 0.9271 and 0.9171, respectively. The model was externally validated by splitting the whole data set into a representative training set of 85 chemicals and a validation set of 29 chemicals. The results show that the main structural factors influencing the BCFs of NPOCs are -cCc, cCcc, -Cl, and -Br (where "-" refers to a single bond and "c" refers to a conjugated bond). The quantitative structure-property relationship (QSPR) model can effectively predict the BCFs of NPOCs, and the predictions of the model can also extend the current BCF database of experimental values.

  19. Corrosion Prediction with Parallel Finite Element Modeling for Coupled Hygro-Chemo Transport into Concrete under Chloride-Rich Environment

    PubMed Central

    Na, Okpin; Cai, Xiao-Chuan; Xi, Yunping

    2017-01-01

    The prediction of the chloride-induced corrosion is very important because of the durable life of concrete structure. To simulate more realistic durability performance of concrete structures, complex scientific methods and more accurate material models are needed. In order to predict the robust results of corrosion initiation time and to describe the thin layer from concrete surface to reinforcement, a large number of fine meshes are also used. The purpose of this study is to suggest more realistic physical model regarding coupled hygro-chemo transport and to implement the model with parallel finite element algorithm. Furthermore, microclimate model with environmental humidity and seasonal temperature is adopted. As a result, the prediction model of chloride diffusion under unsaturated condition was developed with parallel algorithms and was applied to the existing bridge to validate the model with multi-boundary condition. As the number of processors increased, the computational time decreased until the number of processors became optimized. Then, the computational time increased because the communication time between the processors increased. The framework of present model can be extended to simulate the multi-species de-icing salts ingress into non-saturated concrete structures in future work. PMID:28772714

  20. Human Brain Modeling with Its Anatomical Structure and Realistic Material Properties for Brain Injury Prediction.

    PubMed

    Atsumi, Noritoshi; Nakahira, Yuko; Tanaka, Eiichi; Iwamoto, Masami

    2018-05-01

    Impairments of executive brain function after traumatic brain injury (TBI) due to head impacts in traffic accidents need to be obviated. Finite element (FE) analyses with a human brain model facilitate understanding of the TBI mechanisms. However, conventional brain FE models do not suitably describe the anatomical structure in the deep brain, which is a critical region for executive brain function, and the material properties of brain parenchyma. In this study, for better TBI prediction, a novel brain FE model with anatomical structure in the deep brain was developed. The developed model comprises a constitutive model of brain parenchyma considering anisotropy and strain rate dependency. Validation was performed against postmortem human subject test data associated with brain deformation during head impact. Brain injury analyses were performed using head acceleration curves obtained from reconstruction analysis of rear-end collision with a human whole-body FE model. The difference in structure was found to affect the regions of strain concentration, while the difference in material model contributed to the peak strain value. The injury prediction result by the proposed model was consistent with the characteristics in the neuroimaging data of TBI patients due to traffic accidents.

  1. Predicting strain using forward modelling of restored cross-sections: Application to rollover anticlines over listric normal faults

    NASA Astrophysics Data System (ADS)

    Poblet, Josep; Bulnes, Mayte

    2007-12-01

    A strategy to predict strain across geological structures, based on previous techniques, is modified and evaluated, and a practical application is shown. The technique, which employs cross-section restoration combined with kinematic forward modelling, consists of restoring a section, placing circular strain markers on different domains of the restoration, and forward modelling the restored section with strain markers until the present-day stage is reached. The restoration algorithm employed must be also used to forward model the structure. The ellipses in the forward modelled section allow determining the strain state of the structure and may indirectly predict orientation and distribution of minor structures such as small-scale fractures. The forward model may be frozen at different time steps (different growth stages) allowing prediction of both spatial and temporal variation of strain. The method is evaluated through its application to two stages of a clay experiment, that includes strain markers, and its geometry and deformation history are well documented, providing a strong control on the results. To demonstrate the method's potential, it is successfully applied to a depth-converted seismic profile in the Central Sumatra Basin, Indonesia. This allowed us to gain insight into the deformation undergone by rollover anticlines over listric normal faults.

  2. Protein single-model quality assessment by feature-based probability density functions.

    PubMed

    Cao, Renzhi; Cheng, Jianlin

    2016-04-04

    Protein quality assessment (QA) has played an important role in protein structure prediction. We developed a novel single-model quality assessment method-Qprob. Qprob calculates the absolute error for each protein feature value against the true quality scores (i.e. GDT-TS scores) of protein structural models, and uses them to estimate its probability density distribution for quality assessment. Qprob has been blindly tested on the 11th Critical Assessment of Techniques for Protein Structure Prediction (CASP11) as MULTICOM-NOVEL server. The official CASP result shows that Qprob ranks as one of the top single-model QA methods. In addition, Qprob makes contributions to our protein tertiary structure predictor MULTICOM, which is officially ranked 3rd out of 143 predictors. The good performance shows that Qprob is good at assessing the quality of models of hard targets. These results demonstrate that this new probability density distribution based method is effective for protein single-model quality assessment and is useful for protein structure prediction. The webserver of Qprob is available at: http://calla.rnet.missouri.edu/qprob/. The software is now freely available in the web server of Qprob.

  3. Development of structural and material clavicle response corridors under axial compression and three point bending loading for clavicle finite element model validation.

    PubMed

    Zhang, Qi; Kindig, Matthew; Li, Zuoping; Crandall, Jeff R; Kerrigan, Jason R

    2014-08-22

    Clavicle injuries were frequently observed in automotive side and frontal crashes. Finite element (FE) models have been developed to understand the injury mechanism, although no clavicle loading response corridors yet exist in the literature to ensure the model response biofidelity. Moreover, the typically developed structural level (e.g., force-deflection) response corridors were shown to be insufficient for verifying the injury prediction capacity of FE model, which usually is based on strain related injury criteria. Therefore, the purpose of this study is to develop both the structural (force vs deflection) and material level (strain vs force) clavicle response corridors for validating FE models for injury risk modeling. 20 Clavicles were loaded to failure under loading conditions representative of side and frontal crashes respectively, half of which in axial compression, and the other half in three point bending. Both structural and material response corridors were developed for each loading condition. FE model that can accurately predict structural response and strain level provides a more useful tool in injury risk modeling and prediction. The corridor development method in this study could also be extended to develop corridors for other components of the human body. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Cheminformatics-aided pharmacovigilance: application to Stevens-Johnson Syndrome

    PubMed Central

    Low, Yen S; Caster, Ola; Bergvall, Tomas; Fourches, Denis; Zang, Xiaoling; Norén, G Niklas; Rusyn, Ivan; Edwards, Ralph

    2016-01-01

    Objective Quantitative Structure-Activity Relationship (QSAR) models can predict adverse drug reactions (ADRs), and thus provide early warnings of potential hazards. Timely identification of potential safety concerns could protect patients and aid early diagnosis of ADRs among the exposed. Our objective was to determine whether global spontaneous reporting patterns might allow chemical substructures associated with Stevens-Johnson Syndrome (SJS) to be identified and utilized for ADR prediction by QSAR models. Materials and Methods Using a reference set of 364 drugs having positive or negative reporting correlations with SJS in the VigiBase global repository of individual case safety reports (Uppsala Monitoring Center, Uppsala, Sweden), chemical descriptors were computed from drug molecular structures. Random Forest and Support Vector Machines methods were used to develop QSAR models, which were validated by external 5-fold cross validation. Models were employed for virtual screening of DrugBank to predict SJS actives and inactives, which were corroborated using knowledge bases like VigiBase, ChemoText, and MicroMedex (Truven Health Analytics Inc, Ann Arbor, Michigan). Results We developed QSAR models that could accurately predict if drugs were associated with SJS (area under the curve of 75%–81%). Our 10 most active and inactive predictions were substantiated by SJS reports (or lack thereof) in the literature. Discussion Interpretation of QSAR models in terms of significant chemical descriptors suggested novel SJS structural alerts. Conclusions We have demonstrated that QSAR models can accurately identify SJS active and inactive drugs. Requiring chemical structures only, QSAR models provide effective computational means to flag potentially harmful drugs for subsequent targeted surveillance and pharmacoepidemiologic investigations. PMID:26499102

  5. In silico modeling to predict drug-induced phospholipidosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Sydney S.; Kim, Jae S.; Valerio, Luis G., E-mail: luis.valerio@fda.hhs.gov

    2013-06-01

    Drug-induced phospholipidosis (DIPL) is a preclinical finding during pharmaceutical drug development that has implications on the course of drug development and regulatory safety review. A principal characteristic of drugs inducing DIPL is known to be a cationic amphiphilic structure. This provides evidence for a structure-based explanation and opportunity to analyze properties and structures of drugs with the histopathologic findings for DIPL. In previous work from the FDA, in silico quantitative structure–activity relationship (QSAR) modeling using machine learning approaches has shown promise with a large dataset of drugs but included unconfirmed data as well. In this study, we report the constructionmore » and validation of a battery of complementary in silico QSAR models using the FDA's updated database on phospholipidosis, new algorithms and predictive technologies, and in particular, we address high performance with a high-confidence dataset. The results of our modeling for DIPL include rigorous external validation tests showing 80–81% concordance. Furthermore, the predictive performance characteristics include models with high sensitivity and specificity, in most cases above ≥ 80% leading to desired high negative and positive predictivity. These models are intended to be utilized for regulatory toxicology applied science needs in screening new drugs for DIPL. - Highlights: • New in silico models for predicting drug-induced phospholipidosis (DIPL) are described. • The training set data in the models is derived from the FDA's phospholipidosis database. • We find excellent predictivity values of the models based on external validation. • The models can support drug screening and regulatory decision-making on DIPL.« less

  6. Modeling and dynamic environment analysis technology for spacecraft

    NASA Astrophysics Data System (ADS)

    Fang, Ren; Zhaohong, Qin; Zhong, Zhang; Zhenhao, Liu; Kai, Yuan; Long, Wei

    Spacecraft sustains complex and severe vibrations and acoustic environments during flight. Predicting the resulting structures, including numerical predictions of fluctuating pressure, updating models and random vibration and acoustic analysis, plays an important role during the design, manufacture and ground testing of spacecraft. In this paper, Monotony Integrative Large Eddy Simulation (MILES) is introduced to predict the fluctuating pressure of the fairing. The exact flow structures of the fairing wall surface under different Mach numbers are obtained, then a spacecraft model is constructed using the finite element method (FEM). According to the modal test data, the model is updated by the penalty method. On this basis, the random vibration and acoustic responses of the fairing and satellite are analyzed by different methods. The simulated results agree well with the experimental ones, which shows the validity of the modeling and dynamic environment analysis technology. This information can better support test planning, defining test conditions and designing optimal structures.

  7. Recent advances in the in silico modelling of UDP glucuronosyltransferase substrates.

    PubMed

    Sorich, Michael J; Smith, Paul A; Miners, John O; Mackenzie, Peter I; McKinnon, Ross A

    2008-01-01

    UDP glucurononosyltransferases (UGT) are a superfamily of enzymes that catalyse the conjugation of a range of structurally diverse drugs, environmental and endogenous chemicals with glucuronic acid. This process plays a significant role in the clearance and detoxification of many chemicals. Over the last decade the regulation and substrate profiles of UGT isoforms have been increasingly characterised. The resulting data has facilitated the prototyping of ligand based in silico models capable of predicting, and gaining insights into, binding affinity and the substrate- and regio- selectivity of glucuronidation by UGT isoforms. Pharmacophore modelling has produced particularly insightful models and quantitative structure-activity relationships based on machine learning algorithms result in accurate predictions. Simple structural chemical descriptors were found to capture much of the chemical information relevant to UGT metabolism. However, quantum chemical properties of molecules and the nucleophilic atoms in the molecule can enhance both the predictivity and chemical intuitiveness of structure-activity models. Chemical diversity analysis of known substrates has shown some bias towards chemicals with aromatic and aliphatic hydroxyl groups. Future progress in in silico development will depend on larger and more diverse high quality metabolic datasets. Furthermore, improved protein structure data on UGTs will enable the application of structural modelling techniques likely leading to greater insight into the binding and reactive processes of UGT catalysed glucuronidation.

  8. Structure prediction of Fe(II) 2-oxoglutarate dioxygenase from a psychrophilic yeast Glaciozyma antarctica PI12

    NASA Astrophysics Data System (ADS)

    Yusof, Nik Yusnoraini; Bakar, Farah Diba Abu; Mahadi, Nor Muhammad; Raih, Mohd Firdaus; Murad, Abdul Munir Abdul

    2015-09-01

    A cDNA encoding Fe(II) 2-oxoglutarate (2OG) dependent dioxygenases was isolated from psychrophilic yeast, Glaciozyma antarctica PI12. We have successfully amplified 1,029 bp cDNA sequence that encodes 342 amino acid with predicted molecular weight 38 kDa. The prediction protein was analysed using various bioinformatics tools to explore the properties of the protein. Based on a BLAST search analysis, the Fe2OX amino acid sequence showed 61% identity to the sequence of oxoglutarate/iron-dependent oxygenase from Rhodosporidium toruloides NP11. SignalP prediction showed that the Fe2OX protein contains no putative signal peptide, which suggests that this enzyme most probably localised intracellularly.The structure of Fe2OX was predicted by homology modelling using MODELLER9v11. The model with the lowest objective function was selected from hundred models generated using MODELLER9v11. Analysis of the structure revealed the longer loop at Fe2OX from G.antarctica that might be responsible for the flexibility of the structure, which contributes to its adaptation to low temperatures. Fe2OX hold a highly conserved Fe(II) binding HXD/E…H triad motif. The binding site for 2-oxoglutarate was found conserved for Arg280 among reported studies, however the Phe268 was found to be different in Fe2OX.

  9. Modeling ready biodegradability of fragrance materials.

    PubMed

    Ceriani, Lidia; Papa, Ester; Kovarich, Simona; Boethling, Robert; Gramatica, Paola

    2015-06-01

    In the present study, quantitative structure activity relationships were developed for predicting ready biodegradability of approximately 200 heterogeneous fragrance materials. Two classification methods, classification and regression tree (CART) and k-nearest neighbors (kNN), were applied to perform the modeling. The models were validated with multiple external prediction sets, and the structural applicability domain was verified by the leverage approach. The best models had good sensitivity (internal ≥80%; external ≥68%), specificity (internal ≥80%; external 73%), and overall accuracy (≥75%). Results from the comparison with BIOWIN global models, based on group contribution method, show that specific models developed in the present study perform better in prediction than BIOWIN6, in particular for the correct classification of not readily biodegradable fragrance materials. © 2015 SETAC.

  10. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.

    PubMed

    Zheng, Ce; Kurgan, Lukasz

    2008-10-10

    beta-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of beta-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based beta-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM) values serve as an input to the support vector machine (SVM) predictor. We show that (1) all four predicted secondary structures are useful; (2) the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3) the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential beta-turns, while the remaining four amino acids are useful to predict non-beta-turns. Empirical evaluation using three nonredundant datasets shows favorable Q total, Q predicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Q total barrier and achieves Q total = 80.9%, MCC = 0.47, and Q predicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC) competing methods, respectively. Experiments show that the proposed method constitutes an improvement over the competing prediction methods. The proposed prediction model can better discriminate between beta-turns and non-beta-turns due to obtaining lower numbers of false positive predictions. The prediction model and datasets are freely available at http://biomine.ece.ualberta.ca/BTNpred/BTNpred.html.

  11. Tertiary structure-based analysis of microRNA–target interactions

    PubMed Central

    Gan, Hin Hark; Gunsalus, Kristin C.

    2013-01-01

    Current computational analysis of microRNA interactions is based largely on primary and secondary structure analysis. Computationally efficient tertiary structure-based methods are needed to enable more realistic modeling of the molecular interactions underlying miRNA-mediated translational repression. We incorporate algorithms for predicting duplex RNA structures, ionic strength effects, duplex entropy and free energy, and docking of duplex–Argonaute protein complexes into a pipeline to model and predict miRNA–target duplex binding energies. To ensure modeling accuracy and computational efficiency, we use an all-atom description of RNA and a continuum description of ionic interactions using the Poisson–Boltzmann equation. Our method predicts the conformations of two constructs of Caenorhabditis elegans let-7 miRNA–target duplexes to an accuracy of ∼3.8 Å root mean square distance of their NMR structures. We also show that the computed duplex formation enthalpies, entropies, and free energies for eight miRNA–target duplexes agree with titration calorimetry data. Analysis of duplex–Argonaute docking shows that structural distortions arising from single-base-pair mismatches in the seed region influence the activity of the complex by destabilizing both duplex hybridization and its association with Argonaute. Collectively, these results demonstrate that tertiary structure-based modeling of miRNA interactions can reveal structural mechanisms not accessible with current secondary structure-based methods. PMID:23417009

  12. Quantitative structure-retention relationships for gas chromatographic retention indices of alkylbenzenes with molecular graph descriptors.

    PubMed

    Ivanciuc, O; Ivanciuc, T; Klein, D J; Seitz, W A; Balaban, A T

    2001-02-01

    Quantitative structure-retention relationships (QSRR) represent statistical models that quantify the connection between the molecular structure and the chromatographic retention indices of organic compounds, allowing the prediction of retention indices of novel, not yet synthesized compounds, solely from their structural descriptors. Using multiple linear regression, QSRR models for the gas chromatographic Kováts retention indices of 129 alkylbenzenes are generated using molecular graph descriptors. The correlational ability of structural descriptors computed from 10 molecular matrices is investigated, showing that the novel reciprocal matrices give numerical indices with improved correlational ability. A QSRR equation with 5 graph descriptors gives the best calibration and prediction results, demonstrating the usefulness of the molecular graph descriptors in modeling chromatographic retention parameters. The sequential orthogonalization of descriptors suggests simpler QSRR models by eliminating redundant structural information.

  13. Automatic prediction of facial trait judgments: appearance vs. structural models.

    PubMed

    Rojas, Mario; Masip, David; Todorov, Alexander; Vitria, Jordi

    2011-01-01

    Evaluating other individuals with respect to personality characteristics plays a crucial role in human relations and it is the focus of attention for research in diverse fields such as psychology and interactive computer systems. In psychology, face perception has been recognized as a key component of this evaluation system. Multiple studies suggest that observers use face information to infer personality characteristics. Interactive computer systems are trying to take advantage of these findings and apply them to increase the natural aspect of interaction and to improve the performance of interactive computer systems. Here, we experimentally test whether the automatic prediction of facial trait judgments (e.g. dominance) can be made by using the full appearance information of the face and whether a reduced representation of its structure is sufficient. We evaluate two separate approaches: a holistic representation model using the facial appearance information and a structural model constructed from the relations among facial salient points. State of the art machine learning methods are applied to a) derive a facial trait judgment model from training data and b) predict a facial trait value for any face. Furthermore, we address the issue of whether there are specific structural relations among facial points that predict perception of facial traits. Experimental results over a set of labeled data (9 different trait evaluations) and classification rules (4 rules) suggest that a) prediction of perception of facial traits is learnable by both holistic and structural approaches; b) the most reliable prediction of facial trait judgments is obtained by certain type of holistic descriptions of the face appearance; and c) for some traits such as attractiveness and extroversion, there are relationships between specific structural features and social perceptions.

  14. ABodyBuilder: Automated antibody structure prediction with data–driven accuracy estimation

    PubMed Central

    Leem, Jinwoo; Dunbar, James; Georges, Guy; Shi, Jiye; Deane, Charlotte M.

    2016-01-01

    ABSTRACT Computational modeling of antibody structures plays a critical role in therapeutic antibody design. Several antibody modeling pipelines exist, but no freely available methods currently model nanobodies, provide estimates of expected model accuracy, or highlight potential issues with the antibody's experimental development. Here, we describe our automated antibody modeling pipeline, ABodyBuilder, designed to overcome these issues. The algorithm itself follows the standard 4 steps of template selection, orientation prediction, complementarity-determining region (CDR) loop modeling, and side chain prediction. ABodyBuilder then annotates the ‘confidence’ of the model as a probability that a component of the antibody (e.g., CDRL3 loop) will be modeled within a root–mean square deviation threshold. It also flags structural motifs on the model that are known to cause issues during in vitro development. ABodyBuilder was tested on 4 separate datasets, including the 11 antibodies from the Antibody Modeling Assessment–II competition. ABodyBuilder builds models that are of similar quality to other methodologies, with sub–Angstrom predictions for the ‘canonical’ CDR loops. Its ability to model nanobodies, and rapidly generate models (∼30 seconds per model) widens its potential usage. ABodyBuilder can also help users in decision–making for the development of novel antibodies because it provides model confidence and potential sequence liabilities. ABodyBuilder is freely available at http://opig.stats.ox.ac.uk/webapps/abodybuilder. PMID:27392298

  15. Historical Maps from Modern Images: Using Remote Sensing to Model and Map Century-Long Vegetation Change in a Fire-Prone Region

    PubMed Central

    Callister, Kate E.; Griffioen, Peter A.; Avitabile, Sarah C.; Haslem, Angie; Kelly, Luke T.; Kenny, Sally A.; Nimmo, Dale G.; Farnsworth, Lisa M.; Taylor, Rick S.; Watson, Simon J.; Bennett, Andrew F.; Clarke, Michael F.

    2016-01-01

    Understanding the age structure of vegetation is important for effective land management, especially in fire-prone landscapes where the effects of fire can persist for decades and centuries. In many parts of the world, such information is limited due to an inability to map disturbance histories before the availability of satellite images (~1972). Here, we describe a method for creating a spatial model of the age structure of canopy species that established pre-1972. We built predictive neural network models based on remotely sensed data and ecological field survey data. These models determined the relationship between sites of known fire age and remotely sensed data. The predictive model was applied across a 104,000 km2 study region in semi-arid Australia to create a spatial model of vegetation age structure, which is primarily the result of stand-replacing fires which occurred before 1972. An assessment of the predictive capacity of the model using independent validation data showed a significant correlation (rs = 0.64) between predicted and known age at test sites. Application of the model provides valuable insights into the distribution of vegetation age-classes and fire history in the study region. This is a relatively straightforward method which uses widely available data sources that can be applied in other regions to predict age-class distribution beyond the limits imposed by satellite imagery. PMID:27029046

  16. Prediction models for clustered data: comparison of a random intercept and standard regression model

    PubMed Central

    2013-01-01

    Background When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Methods Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. Results The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. Conclusion The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters. PMID:23414436

  17. Prediction models for clustered data: comparison of a random intercept and standard regression model.

    PubMed

    Bouwmeester, Walter; Twisk, Jos W R; Kappen, Teus H; van Klei, Wilton A; Moons, Karel G M; Vergouwe, Yvonne

    2013-02-15

    When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters.

  18. Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valerio, Luis G., E-mail: luis.valerio@fda.hhs.gov; Cross, Kevin P.

    Control and minimization of human exposure to potential genotoxic impurities found in drug substances and products is an important part of preclinical safety assessments of new drug products. The FDA's 2008 draft guidance on genotoxic and carcinogenic impurities in drug substances and products allows use of computational quantitative structure–activity relationships (QSAR) to identify structural alerts for known and expected impurities present at levels below qualified thresholds. This study provides the information necessary to establish the practical use of a new in silico toxicology model for predicting Salmonella t. mutagenicity (Ames assay outcome) of drug impurities and other chemicals. We describemore » the model's chemical content and toxicity fingerprint in terms of compound space, molecular and structural toxicophores, and have rigorously tested its predictive power using both cross-validation and external validation experiments, as well as case studies. Consistent with desired regulatory use, the model performs with high sensitivity (81%) and high negative predictivity (81%) based on external validation with 2368 compounds foreign to the model and having known mutagenicity. A database of drug impurities was created from proprietary FDA submissions and the public literature which found significant overlap between the structural features of drug impurities and training set chemicals in the QSAR model. Overall, the model's predictive performance was found to be acceptable for screening drug impurities for Salmonella mutagenicity. -- Highlights: ► We characterize a new in silico model to predict mutagenicity of drug impurities. ► The model predicts Salmonella mutagenicity and will be useful for safety assessment. ► We examine toxicity fingerprints and toxicophores of this Ames assay model. ► We compare these attributes to those found in drug impurities known to FDA/CDER. ► We validate the model and find it has a desired predictive performance.« less

  19. Partial unfolding and refolding for structure refinement: A unified approach of geometric simulations and molecular dynamics.

    PubMed

    Kumar, Avishek; Campitelli, Paul; Thorpe, M F; Ozkan, S Banu

    2015-12-01

    The most successful protein structure prediction methods to date have been template-based modeling (TBM) or homology modeling, which predicts protein structure based on experimental structures. These high accuracy predictions sometimes retain structural errors due to incorrect templates or a lack of accurate templates in the case of low sequence similarity, making these structures inadequate in drug-design studies or molecular dynamics simulations. We have developed a new physics based approach to the protein refinement problem by mimicking the mechanism of chaperons that rehabilitate misfolded proteins. The template structure is unfolded by selectively (targeted) pulling on different portions of the protein using the geometric based technique FRODA, and then refolded using hierarchically restrained replica exchange molecular dynamics simulations (hr-REMD). FRODA unfolding is used to create a diverse set of topologies for surveying near native-like structures from a template and to provide a set of persistent contacts to be employed during re-folding. We have tested our approach on 13 previous CASP targets and observed that this method of folding an ensemble of partially unfolded structures, through the hierarchical addition of contact restraints (that is, first local and then nonlocal interactions), leads to a refolding of the structure along with refinement in most cases (12/13). Although this approach yields refined models through advancement in sampling, the task of blind selection of the best refined models still needs to be solved. Overall, the method can be useful for improved sampling for low resolution models where certain of the portions of the structure are incorrectly modeled. © 2015 Wiley Periodicals, Inc.

  20. Multiaxial and Thermomechanical Fatigue of Materials: A Historical Perspective and Some Future Challenges

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh

    2013-01-01

    Structural materials used in engineering applications routinely subjected to repetitive mechanical loads in multiple directions under non-isothermal conditions. Over past few decades, several multiaxial fatigue life estimation models (stress- and strain-based) developed for isothermal conditions. Historically, numerous fatigue life prediction models also developed for thermomechanical fatigue (TMF) life prediction, predominantly for uniaxial mechanical loading conditions. Realistic structural components encounter multiaxial loads and non-isothermal loading conditions, which increase potential for interaction of damage modes. A need exists for mechanical testing and development verification of life prediction models under such conditions.

  1. Structural behavior of composites with progressive fracture

    NASA Technical Reports Server (NTRS)

    Minnetyan, L.; Murthy, P. L. N.; Chamis, C. C.

    1989-01-01

    The objective of the study is to unify several computational tools developed for the prediction of progressive damage and fracture with efforts for the prediction of the overall response of damaged composite structures. In particular, a computational finite element model for the damaged structure is developed using a computer program as a byproduct of the analysis of progressive damage and fracture. Thus, a single computational investigation can predict progressive fracture and the resulting variation in structural properties of angleplied composites.

  2. Computational prediction of kink properties of helices in membrane proteins

    NASA Astrophysics Data System (ADS)

    Mai, T.-L.; Chen, C.-M.

    2014-02-01

    We have combined molecular dynamics simulations and fold identification procedures to investigate the structure of 696 kinked and 120 unkinked transmembrane (TM) helices in the PDBTM database. Our main aim of this study is to understand the formation of helical kinks by simulating their quasi-equilibrium heating processes, which might be relevant to the prediction of their structural features. The simulated structural features of these TM helices, including the position and the angle of helical kinks, were analyzed and compared with statistical data from PDBTM. From quasi-equilibrium heating processes of TM helices with four very different relaxation time constants, we found that these processes gave comparable predictions of the structural features of TM helices. Overall, 95 % of our best kink position predictions have an error of no more than two residues and 75 % of our best angle predictions have an error of less than 15°. Various structure assessments have been carried out to assess our predicted models of TM helices in PDBTM. Our results show that, in 696 predicted kinked helices, 70 % have a RMSD less than 2 Å, 71 % have a TM-score greater than 0.5, 69 % have a MaxSub score greater than 0.8, 60 % have a GDT-TS score greater than 85, and 58 % have a GDT-HA score greater than 70. For unkinked helices, our predicted models are also highly consistent with their crystal structure. These results provide strong supports for our assumption that kink formation of TM helices in quasi-equilibrium heating processes is relevant to predicting the structure of TM helices.

  3. A Feature and Algorithm Selection Method for Improving the Prediction of Protein Structural Class.

    PubMed

    Ni, Qianwu; Chen, Lei

    2017-01-01

    Correct prediction of protein structural class is beneficial to investigation on protein functions, regulations and interactions. In recent years, several computational methods have been proposed in this regard. However, based on various features, it is still a great challenge to select proper classification algorithm and extract essential features to participate in classification. In this study, a feature and algorithm selection method was presented for improving the accuracy of protein structural class prediction. The amino acid compositions and physiochemical features were adopted to represent features and thirty-eight machine learning algorithms collected in Weka were employed. All features were first analyzed by a feature selection method, minimum redundancy maximum relevance (mRMR), producing a feature list. Then, several feature sets were constructed by adding features in the list one by one. For each feature set, thirtyeight algorithms were executed on a dataset, in which proteins were represented by features in the set. The predicted classes yielded by these algorithms and true class of each protein were collected to construct a dataset, which were analyzed by mRMR method, yielding an algorithm list. From the algorithm list, the algorithm was taken one by one to build an ensemble prediction model. Finally, we selected the ensemble prediction model with the best performance as the optimal ensemble prediction model. Experimental results indicate that the constructed model is much superior to models using single algorithm and other models that only adopt feature selection procedure or algorithm selection procedure. The feature selection procedure or algorithm selection procedure are really helpful for building an ensemble prediction model that can yield a better performance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.

    PubMed

    Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali

    2013-09-01

    The research aims to develop global modeling tools capable of categorizing structurally diverse chemicals in various toxicity classes according to the EEC and European Community directives, and to predict their acute toxicity in fathead minnow using set of selected molecular descriptors. Accordingly, artificial intelligence approach based classification and regression models, such as probabilistic neural networks (PNN), generalized regression neural networks (GRNN), multilayer perceptron neural network (MLPN), radial basis function neural network (RBFN), support vector machines (SVM), gene expression programming (GEP), and decision tree (DT) were constructed using the experimental toxicity data. Diversity and non-linearity in the chemicals' data were tested using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. Predictive and generalization abilities of various models constructed here were compared using several statistical parameters. PNN and GRNN models performed relatively better than MLPN, RBFN, SVM, GEP, and DT. Both in two and four category classifications, PNN yielded a considerably high accuracy of classification in training (95.85 percent and 90.07 percent) and validation data (91.30 percent and 86.96 percent), respectively. GRNN rendered a high correlation between the measured and model predicted -log LC50 values both for the training (0.929) and validation (0.910) data and low prediction errors (RMSE) of 0.52 and 0.49 for two sets. Efficiency of the selected PNN and GRNN models in predicting acute toxicity of new chemicals was adequately validated using external datasets of different fish species (fathead minnow, bluegill, trout, and guppy). The PNN and GRNN models showed good predictive and generalization abilities and can be used as tools for predicting toxicities of structurally diverse chemical compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Antibody modeling using the prediction of immunoglobulin structure (PIGS) web server [corrected].

    PubMed

    Marcatili, Paolo; Olimpieri, Pier Paolo; Chailyan, Anna; Tramontano, Anna

    2014-12-01

    Antibodies (or immunoglobulins) are crucial for defending organisms from pathogens, but they are also key players in many medical, diagnostic and biotechnological applications. The ability to predict their structure and the specific residues involved in antigen recognition has several useful applications in all of these areas. Over the years, we have developed or collaborated in developing a strategy that enables researchers to predict the 3D structure of antibodies with a very satisfactory accuracy. The strategy is completely automated and extremely fast, requiring only a few minutes (∼10 min on average) to build a structural model of an antibody. It is based on the concept of canonical structures of antibody loops and on our understanding of the way light and heavy chains pack together.

  6. Predictive modeling: Solubility of C60 and C70 fullerenes in diverse solvents.

    PubMed

    Gupta, Shikha; Basant, Nikita

    2018-06-01

    Solubility of fullerenes imposes a major limitation to further advanced research and technological development using these novel materials. There have been continued efforts to discover better solvents and their properties that influence the solubility of fullerenes. Here, we have developed QSPR (quantitative structure-property relationship) models based on structural features of diverse solvents and large experimental data for predicting the solubility of C 60 and C 70 fullerenes. The developed models identified most relevant features of the solvents that encode the polarizability, polarity and lipophilicity properties which largely influence the solubilizing potential of the solvent for the fullerenes. We also established Inter-moieties solubility correlations (IMSC) based quantitative property-property relationship (QPPR) models for predicting solubility of C 60 and C 70 fullerenes. The QSPR and QPPR models were internally and externally validated deriving the most stringent statistical criteria and predicted C 60 and C 70 solubility values in different solvents were in close agreement with the experimental values. In test sets, the QSPR models yielded high correlations (R 2  > 0.964) and low root mean squared error of prediction errors (RMSEP< 0.25). Results of comparison with other studies indicated that the proposed models could effectively improve the accuracy and ability for predicting solubility of C 60 and C 70 fullerenes in solvents with diverse structures and would be useful in development of more effective solvents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Molecular dynamics simulations of the Bcl-2 protein to predict the structure of its unordered flexible loop domain.

    PubMed

    Raghav, Pawan Kumar; Verma, Yogesh Kumar; Gangenahalli, Gurudutta U

    2012-05-01

    B-cell lymphoma (Bcl-2) protein is an anti-apoptotic member of the Bcl-2 family. It is functionally demarcated into four Bcl-2 homology (BH) domains: BH1, BH2, BH3, BH4, one flexible loop domain (FLD), a transmembrane domain (TM), and an X domain. Bcl-2's BH domains have clearly been elucidated from a structural perspective, whereas the conformation of FLD has not yet been predicted, despite its important role in regulating apoptosis through its interactions with JNK-1, PKC, PP2A phosphatase, caspase 3, MAP kinase, ubiquitin, PS1, and FKBP38. Many important residues that regulate Bcl-2 anti-apoptotic activity are present in this domain, for example Asp34, Thr56, Thr69, Ser70, Thr74, and Ser87. The structural elucidation of the FLD would likely help in attempts to accurately predict the effect of mutating these residues on the overall structure of the protein and the interactions of other proteins in this domain. Therefore, we have generated an increased quality model of the Bcl-2 protein including the FLD through modeling. Further, molecular dynamics (MD) simulations were used for FLD optimization, to predict the flexibility, and to determine the stability of the folded FLD. In addition, essential dynamics (ED) was used to predict the collective motions and the essential subspace relevant to Bcl-2 protein function. The predicted average structure and ensemble of MD-simulated structures were submitted to the Protein Model Database (PMDB), and the Bcl-2 structures obtained exhibited enhanced quality. This study should help to elucidate the structural basis for Bcl-2 anti-apoptotic activity regulation through its binding to other proteins via the FLD.

  8. Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions

    PubMed Central

    Vazquez-Anderson, Jorge; Mihailovic, Mia K.; Baldridge, Kevin C.; Reyes, Kristofer G.; Haning, Katie; Cho, Seung Hee; Amador, Paul; Powell, Warren B.

    2017-01-01

    Abstract Current approaches to design efficient antisense RNAs (asRNAs) rely primarily on a thermodynamic understanding of RNA–RNA interactions. However, these approaches depend on structure predictions and have limited accuracy, arguably due to overlooking important cellular environment factors. In this work, we develop a biophysical model to describe asRNA–RNA hybridization that incorporates in vivo factors using large-scale experimental hybridization data for three model RNAs: a group I intron, CsrB and a tRNA. A unique element of our model is the estimation of the availability of the target region to interact with a given asRNA using a differential entropic consideration of suboptimal structures. We showcase the utility of this model by evaluating its prediction capabilities in four additional RNAs: a group II intron, Spinach II, 2-MS2 binding domain and glgC 5΄ UTR. Additionally, we demonstrate the applicability of this approach to other bacterial species by predicting sRNA–mRNA binding regions in two newly discovered, though uncharacterized, regulatory RNAs. PMID:28334800

  9. Towards Practical Carbonation Prediction and Modelling for Service Life Design of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Ekolu, O. S.

    2015-11-01

    Amongst the scientific community, the interest in durability of concrete structures has been high for quite a long time of over 40 years. Of the various causes of degradation of concrete structures, corrosion is the most widespread durability problem and carbonation is one of the two causes of steel reinforcement corrosion. While much scientific understanding has been gained from the numerous carbonation studies undertaken over the past years, it is still presently not possible to accurately predict carbonation and apply it in design of structures. This underscores the complex nature of the mechanisms as influenced by several interactive factors. Based on critical literature and some experience of the author, it is found that there still exist major challenges in establishing a mathematical constitutive relation for realistic carbonation prediction. While most current models employ permeability /diffusion as the main model property, analysis shows that the most practical material property would be compressive strength, which has a low coefficient of variation of 20% compared to 30 to 50% for permeability. This important characteristic of compressive strength, combined with its merit of simplicity and data availability at all stages of a structure's life, promote its potential use in modelling over permeability. By using compressive strength in carbonation prediction, the need for accelerated testing and permeability measurement can be avoided. This paper attempts to examine the issues associated with carbonation prediction, which could underlie the current lack of a sound established prediction method. Suggestions are then made for possible employment of different or alternative approaches.

  10. eTOXlab, an open source modeling framework for implementing predictive models in production environments.

    PubMed

    Carrió, Pau; López, Oriol; Sanz, Ferran; Pastor, Manuel

    2015-01-01

    Computational models based in Quantitative-Structure Activity Relationship (QSAR) methodologies are widely used tools for predicting the biological properties of new compounds. In many instances, such models are used as a routine in the industry (e.g. food, cosmetic or pharmaceutical industry) for the early assessment of the biological properties of new compounds. However, most of the tools currently available for developing QSAR models are not well suited for supporting the whole QSAR model life cycle in production environments. We have developed eTOXlab; an open source modeling framework designed to be used at the core of a self-contained virtual machine that can be easily deployed in production environments, providing predictions as web services. eTOXlab consists on a collection of object-oriented Python modules with methods mapping common tasks of standard modeling workflows. This framework allows building and validating QSAR models as well as predicting the properties of new compounds using either a command line interface or a graphic user interface (GUI). Simple models can be easily generated by setting a few parameters, while more complex models can be implemented by overriding pieces of the original source code. eTOXlab benefits from the object-oriented capabilities of Python for providing high flexibility: any model implemented using eTOXlab inherits the features implemented in the parent model, like common tools and services or the automatic exposure of the models as prediction web services. The particular eTOXlab architecture as a self-contained, portable prediction engine allows building models with confidential information within corporate facilities, which can be safely exported and used for prediction without disclosing the structures of the training series. The software presented here provides full support to the specific needs of users that want to develop, use and maintain predictive models in corporate environments. The technologies used by eTOXlab (web services, VM, object-oriented programming) provide an elegant solution to common practical issues; the system can be installed easily in heterogeneous environments and integrates well with other software. Moreover, the system provides a simple and safe solution for building models with confidential structures that can be shared without disclosing sensitive information.

  11. Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.

    2001-01-01

    Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.

  12. Modeling and simulation studies of human β3 adrenergic receptor and its interactions with agonists.

    PubMed

    Sahi, Shakti; Tewatia, Parul; Malik, Balwant K

    2012-12-01

    β3 adrenergic receptor (β3AR) is known to mediate various pharmacological and physiological effects such as thermogenesis in brown adipocytes, lipolysis in white adipocytes, glucose homeostasis and intestinal smooth muscle relaxation. Several efforts have been made in this field to understand their function and regulation in different human tissues and they have emerged as potential attractive targets in drug discovery for the treatment of diabetes, depression, obesity etc. Although the crystal structures of Bovine Rhodopsin and β2 adrenergic receptor have been resolved, to date there is no three dimensional structural information on β3AR. Our aim in this study was to model 3D structure of β3AR by various molecular modeling and simulation techniques. In this paper, we describe a refined predicted model of β3AR using different algorithms for structure prediction. The structural refinement and minimization of the generated 3D model of β3AR were done by Schrodinger suite 9.1. Docking studies of β3AR model with the known agonists enabled us to identify specific residues, viz, Asp 117, Ser 208, Ser 209, Ser 212, Arg 315, Asn 332, within the β3AR binding pocket, which might play an important role in ligand binding. Receptor ligand interaction studies clearly indicated that these five residues showed strong hydrogen bonding interactions with the ligands. The results have been correlated with the experimental data available. The predicted ligand binding interactions and the simulation studies validate the methods used to predict the 3D-structure.

  13. Foraging optimally for home ranges

    USGS Publications Warehouse

    Mitchell, Michael S.; Powell, Roger A.

    2012-01-01

    Economic models predict behavior of animals based on the presumption that natural selection has shaped behaviors important to an animal's fitness to maximize benefits over costs. Economic analyses have shown that territories of animals are structured by trade-offs between benefits gained from resources and costs of defending them. Intuitively, home ranges should be similarly structured, but trade-offs are difficult to assess because there are no costs of defense, thus economic models of home-range behavior are rare. We present economic models that predict how home ranges can be efficient with respect to spatially distributed resources, discounted for travel costs, under 2 strategies of optimization, resource maximization and area minimization. We show how constraints such as competitors can influence structure of homes ranges through resource depression, ultimately structuring density of animals within a population and their distribution on a landscape. We present simulations based on these models to show how they can be generally predictive of home-range behavior and the mechanisms that structure the spatial distribution of animals. We also show how contiguous home ranges estimated statistically from location data can be misleading for animals that optimize home ranges on landscapes with patchily distributed resources. We conclude with a summary of how we applied our models to nonterritorial black bears (Ursus americanus) living in the mountains of North Carolina, where we found their home ranges were best predicted by an area-minimization strategy constrained by intraspecific competition within a social hierarchy. Economic models can provide strong inference about home-range behavior and the resources that structure home ranges by offering falsifiable, a priori hypotheses that can be tested with field observations.

  14. Conditioning and Robustness of RNA Boltzmann Sampling under Thermodynamic Parameter Perturbations.

    PubMed

    Rogers, Emily; Murrugarra, David; Heitsch, Christine

    2017-07-25

    Understanding how RNA secondary structure prediction methods depend on the underlying nearest-neighbor thermodynamic model remains a fundamental challenge in the field. Minimum free energy (MFE) predictions are known to be "ill conditioned" in that small changes to the thermodynamic model can result in significantly different optimal structures. Hence, the best practice is now to sample from the Boltzmann distribution, which generates a set of suboptimal structures. Although the structural signal of this Boltzmann sample is known to be robust to stochastic noise, the conditioning and robustness under thermodynamic perturbations have yet to be addressed. We present here a mathematically rigorous model for conditioning inspired by numerical analysis, and also a biologically inspired definition for robustness under thermodynamic perturbation. We demonstrate the strong correlation between conditioning and robustness and use its tight relationship to define quantitative thresholds for well versus ill conditioning. These resulting thresholds demonstrate that the majority of the sequences are at least sample robust, which verifies the assumption of sampling's improved conditioning over the MFE prediction. Furthermore, because we find no correlation between conditioning and MFE accuracy, the presence of both well- and ill-conditioned sequences indicates the continued need for both thermodynamic model refinements and alternate RNA structure prediction methods beyond the physics-based ones. Copyright © 2017. Published by Elsevier Inc.

  15. Computational analysis of histidine mutations on the structural stability of human tyrosinases leading to albinism insurgence.

    PubMed

    Hassan, Mubashir; Abbas, Qamar; Raza, Hussain; Moustafa, Ahmed A; Seo, Sung-Yum

    2017-07-25

    Misfolding and structural alteration in proteins lead to serious malfunctions and cause various diseases in humans. Mutations at the active binding site in tyrosinase impair structural stability and cause lethal albinism by abolishing copper binding. To evaluate the histidine mutational effect, all mutated structures were built using homology modelling. The protein sequence was retrieved from the UniProt database, and 3D models of original and mutated human tyrosinase sequences were predicted by changing the residual positions within the target sequence separately. Structural and mutational analyses were performed to interpret the significance of mutated residues (N 180 , R 202 , Q 202 , R 211 , Y 363 , R 367 , Y 367 and D 390 ) at the active binding site of tyrosinases. CSpritz analysis depicted that 23.25% residues actively participate in the instability of tyrosinase. The accuracy of predicted models was confirmed through online servers ProSA-web, ERRAT score and VERIFY 3D values. The theoretical pI and GRAVY generated results also showed the accuracy of the predicted models. The CCA negative correlation results depicted that the replacement of mutated residues at His within the active binding site disturbs the structural stability of tyrosinases. The predicted CCA scores of Tyr 367 (-0.079) and Q/R 202 (0.032) revealed that both mutations have more potential to disturb the structural stability. MD simulation analyses of all predicted models justified that Gln 202 , Arg 202 , Tyr 367 and D 390 replacement made the protein structures more susceptible to destabilization. Mutational results showed that the replacement of His with Q/R 202 and Y/R 363 has a lethal effect and may cause melanin associated diseases such as OCA1. Taken together, our computational analysis depicts that the mutated residues such as Q/R 202 and Y/R 363 actively participate in instability and misfolding of tyrosinases, which may govern OCA1 through disturbing the melanin biosynthetic pathway.

  16. A feature-based developmental model of the infant brain in structural MRI.

    PubMed

    Toews, Matthew; Wells, William M; Zöllei, Lilla

    2012-01-01

    In this paper, anatomical development is modeled as a collection of distinctive image patterns localized in space and time. A Bayesian posterior probability is defined over a random variable of subject age, conditioned on data in the form of scale-invariant image features. The model is automatically learned from a large set of images exhibiting significant variation, used to discover anatomical structure related to age and development, and fit to new images to predict age. The model is applied to a set of 230 infant structural MRIs of 92 subjects acquired at multiple sites over an age range of 8-590 days. Experiments demonstrate that the model can be used to identify age-related anatomical structure, and to predict the age of new subjects with an average error of 72 days.

  17. Improved prediction of antibody VL–VH orientation

    PubMed Central

    Marze, Nicholas A.; Lyskov, Sergey; Gray, Jeffrey J.

    2016-01-01

    Antibodies are important immune molecules with high commercial value and therapeutic interest because of their ability to bind diverse antigens. Computational prediction of antibody structure can quickly reveal valuable information about the nature of these antigen-binding interactions, but only if the models are of sufficient quality. To achieve high model quality during complementarity-determining region (CDR) structural prediction, one must account for the VL–VH orientation. We developed a novel four-metric VL–VH orientation coordinate frame. Additionally, we extended the CDR grafting protocol in RosettaAntibody with a new method that diversifies VL–VH orientation by using 10 VL–VH orientation templates rather than a single one. We tested the multiple-template grafting protocol on two datasets of known antibody crystal structures. During the template-grafting phase, the new protocol improved the fraction of accurate VL–VH orientation predictions from only 26% (12/46) to 72% (33/46) of targets. After the full RosettaAntibody protocol, including CDR H3 remodeling and VL–VH re-orientation, the new protocol produced more candidate structures with accurate VL–VH orientation than the standard protocol in 43/46 targets (93%). The improved ability to predict VL–VH orientation will bolster predictions of other parts of the paratope, including the conformation of CDR H3, a grand challenge of antibody homology modeling. PMID:27276984

  18. Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements

    DOE PAGES

    Weck, Philippe F.; Kim, Eunja; Wang, Yifeng; ...

    2017-08-01

    Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematicallymore » compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.« less

  19. Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements.

    PubMed

    Weck, Philippe F; Kim, Eunja; Wang, Yifeng; Kruichak, Jessica N; Mills, Melissa M; Matteo, Edward N; Pellenq, Roland J-M

    2017-08-01

    Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.

  20. Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weck, Philippe F.; Kim, Eunja; Wang, Yifeng

    Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematicallymore » compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.« less

  1. High Cycle Fatigue Prediction for Mistuned Bladed Disks with Fully Coupled Fluid-Structural Interaction

    DTIC Science & Technology

    2006-06-01

    response (time domain) structural vibration model for mistuned rotor bladed disk based on the efficient SNM model has been developed. The vi- bration...airfoil and 3D wing, unsteady vortex shedding of a stationary cylinder, induced vibration of a cylinder, forced vibration of a pitching airfoil, induced... vibration and flutter boundary of 2D NACA 64A010 transonic airfoil, 3D plate wing structural response. The predicted results agree well with benchmark

  2. Bio-AIMS Collection of Chemoinformatics Web Tools based on Molecular Graph Information and Artificial Intelligence Models.

    PubMed

    Munteanu, Cristian R; Gonzalez-Diaz, Humberto; Garcia, Rafael; Loza, Mabel; Pazos, Alejandro

    2015-01-01

    The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.

  3. Sound transmission through stiffened double-panel structures lined with elastic porous materials

    NASA Astrophysics Data System (ADS)

    Mathur, Gopal P.; Tran, Boi N.; Bolton, J. S.; Shiau, Nae-Ming

    This paper presents transmission loss prediction models for a periodically stiffened panel and stiffened double-panel structures using the periodic structure theory. The inter-panel cavity in the double-panels structures can be modeled as being separated by an airspace or filled with an elastic porous layer in various configurations. The acoustic behavior of elastic porous layer is described by a theory capable of accounting fully for multi-dimensional wave propagation in such materials. The predicted transmission loss of a single stiffened panel is compared with the measured data.

  4. Evaluation of Inelastic Constitutive Models for Nonlinear Structural Analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1983-01-01

    The influence of inelastic material models on computed stress-strain states, and therefore predicted lives, was studied for thermomechanically loaded structures. Nonlinear structural analyses were performed on a fatigue specimen which was subjected to thermal cycling in fluidized beds and on a mechanically load cycled benchmark notch specimen. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic-kinematic, combined plus transient creep) were exercised. Of the plasticity models, kinematic hardening gave results most consistent with experimental observations. Life predictions using the computed strain histories at the critical location with a Strainrange Partitioning approach considerably overpredicted the crack initiation life of the thermal fatigue specimen.

  5. Food-Web Models Predict Species Abundances in Response to Habitat Change

    PubMed Central

    Gotelli, Nicholas J; Ellison, Aaron M

    2006-01-01

    Plant and animal population sizes inevitably change following habitat loss, but the mechanisms underlying these changes are poorly understood. We experimentally altered habitat volume and eliminated top trophic levels of the food web of invertebrates that inhabit rain-filled leaves of the carnivorous pitcher plant Sarracenia purpurea. Path models that incorporated food-web structure better predicted population sizes of food-web constituents than did simple keystone species models, models that included only autecological responses to habitat volume, or models including both food-web structure and habitat volume. These results provide the first experimental confirmation that trophic structure can determine species abundances in the face of habitat loss. PMID:17002518

  6. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments

    PubMed Central

    Zheng, Ce; Kurgan, Lukasz

    2008-01-01

    Background β-turn is a secondary protein structure type that plays significant role in protein folding, stability, and molecular recognition. To date, several methods for prediction of β-turns from protein sequences were developed, but they are characterized by relatively poor prediction quality. The novelty of the proposed sequence-based β-turn predictor stems from the usage of a window based information extracted from four predicted three-state secondary structures, which together with a selected set of position specific scoring matrix (PSSM) values serve as an input to the support vector machine (SVM) predictor. Results We show that (1) all four predicted secondary structures are useful; (2) the most useful information extracted from the predicted secondary structure includes the structure of the predicted residue, secondary structure content in a window around the predicted residue, and features that indicate whether the predicted residue is inside a secondary structure segment; (3) the PSSM values of Asn, Asp, Gly, Ile, Leu, Met, Pro, and Val were among the top ranked features, which corroborates with recent studies. The Asn, Asp, Gly, and Pro indicate potential β-turns, while the remaining four amino acids are useful to predict non-β-turns. Empirical evaluation using three nonredundant datasets shows favorable Qtotal, Qpredicted and MCC values when compared with over a dozen of modern competing methods. Our method is the first to break the 80% Qtotal barrier and achieves Qtotal = 80.9%, MCC = 0.47, and Qpredicted higher by over 6% when compared with the second best method. We use feature selection to reduce the dimensionality of the feature vector used as the input for the proposed prediction method. The applied feature set is smaller by 86, 62 and 37% when compared with the second and two third-best (with respect to MCC) competing methods, respectively. Conclusion Experiments show that the proposed method constitutes an improvement over the competing prediction methods. The proposed prediction model can better discriminate between β-turns and non-β-turns due to obtaining lower numbers of false positive predictions. The prediction model and datasets are freely available at . PMID:18847492

  7. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.

    PubMed

    Gupta, Shikha; Basant, Nikita; Rai, Premanjali; Singh, Kunwar P

    2015-11-01

    Binding affinity of chemical to carbon is an important characteristic as it finds vast industrial applications. Experimental determination of the adsorption capacity of diverse chemicals onto carbon is both time and resource intensive, and development of computational approaches has widely been advocated. In this study, artificial intelligence (AI)-based ten different qualitative and quantitative structure-property relationship (QSPR) models (MLPN, RBFN, PNN/GRNN, CCN, SVM, GEP, GMDH, SDT, DTF, DTB) were established for the prediction of the adsorption capacity of structurally diverse chemicals to activated carbon following the OECD guidelines. Structural diversity of the chemicals and nonlinear dependence in the data were evaluated using the Tanimoto similarity index and Brock-Dechert-Scheinkman statistics. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation procedures performed employing a wide series of statistical checks. In complete dataset, the qualitative models rendered classification accuracies between 97.04 and 99.93%, while the quantitative models yielded correlation (R(2)) values of 0.877-0.977 between the measured and the predicted endpoint values. The quantitative prediction accuracies for the higher molecular weight (MW) compounds (class 4) were relatively better than those for the low MW compounds. Both in the qualitative and quantitative models, the Polarizability was the most influential descriptor. Structural alerts responsible for the extreme adsorption behavior of the compounds were identified. Higher number of carbon and presence of higher halogens in a molecule rendered higher binding affinity. Proposed QSPR models performed well and outperformed the previous reports. A relatively better performance of the ensemble learning models (DTF, DTB) may be attributed to the strengths of the bagging and boosting algorithms which enhance the predictive accuracies. The proposed AI models can be useful tools in screening the chemicals for their binding affinities toward carbon for their safe management.

  8. RaptorX-Property: a web server for protein structure property prediction.

    PubMed

    Wang, Sheng; Li, Wei; Liu, Shiwang; Xu, Jinbo

    2016-07-08

    RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC) and disorder regions (DISO). DeepCNF not only models complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent property labels. Our experimental results show that, tested on CASP10, CASP11 and the other benchmarks, this server can obtain ∼84% Q3 accuracy for 3-state SS, ∼72% Q8 accuracy for 8-state SS, ∼66% Q3 accuracy for 3-state solvent accessibility, and ∼0.89 area under the ROC curve (AUC) for disorder prediction. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. H2RM: A Hybrid Rough Set Reasoning Model for Prediction and Management of Diabetes Mellitus.

    PubMed

    Ali, Rahman; Hussain, Jamil; Siddiqi, Muhammad Hameed; Hussain, Maqbool; Lee, Sungyoung

    2015-07-03

    Diabetes is a chronic disease characterized by high blood glucose level that results either from a deficiency of insulin produced by the body, or the body's resistance to the effects of insulin. Accurate and precise reasoning and prediction models greatly help physicians to improve diagnosis, prognosis and treatment procedures of different diseases. Though numerous models have been proposed to solve issues of diagnosis and management of diabetes, they have the following drawbacks: (1) restricted one type of diabetes; (2) lack understandability and explanatory power of the techniques and decision; (3) limited either to prediction purpose or management over the structured contents; and (4) lack competence for dimensionality and vagueness of patient's data. To overcome these issues, this paper proposes a novel hybrid rough set reasoning model (H2RM) that resolves problems of inaccurate prediction and management of type-1 diabetes mellitus (T1DM) and type-2 diabetes mellitus (T2DM). For verification of the proposed model, experimental data from fifty patients, acquired from a local hospital in semi-structured format, is used. First, the data is transformed into structured format and then used for mining prediction rules. Rough set theory (RST) based techniques and algorithms are used to mine the prediction rules. During the online execution phase of the model, these rules are used to predict T1DM and T2DM for new patients. Furthermore, the proposed model assists physicians to manage diabetes using knowledge extracted from online diabetes guidelines. Correlation-based trend analysis techniques are used to manage diabetic observations. Experimental results demonstrate that the proposed model outperforms the existing methods with 95.9% average and balanced accuracies.

  10. H2RM: A Hybrid Rough Set Reasoning Model for Prediction and Management of Diabetes Mellitus

    PubMed Central

    Ali, Rahman; Hussain, Jamil; Siddiqi, Muhammad Hameed; Hussain, Maqbool; Lee, Sungyoung

    2015-01-01

    Diabetes is a chronic disease characterized by high blood glucose level that results either from a deficiency of insulin produced by the body, or the body’s resistance to the effects of insulin. Accurate and precise reasoning and prediction models greatly help physicians to improve diagnosis, prognosis and treatment procedures of different diseases. Though numerous models have been proposed to solve issues of diagnosis and management of diabetes, they have the following drawbacks: (1) restricted one type of diabetes; (2) lack understandability and explanatory power of the techniques and decision; (3) limited either to prediction purpose or management over the structured contents; and (4) lack competence for dimensionality and vagueness of patient’s data. To overcome these issues, this paper proposes a novel hybrid rough set reasoning model (H2RM) that resolves problems of inaccurate prediction and management of type-1 diabetes mellitus (T1DM) and type-2 diabetes mellitus (T2DM). For verification of the proposed model, experimental data from fifty patients, acquired from a local hospital in semi-structured format, is used. First, the data is transformed into structured format and then used for mining prediction rules. Rough set theory (RST) based techniques and algorithms are used to mine the prediction rules. During the online execution phase of the model, these rules are used to predict T1DM and T2DM for new patients. Furthermore, the proposed model assists physicians to manage diabetes using knowledge extracted from online diabetes guidelines. Correlation-based trend analysis techniques are used to manage diabetic observations. Experimental results demonstrate that the proposed model outperforms the existing methods with 95.9% average and balanced accuracies. PMID:26151207

  11. Template CoMFA Generates Single 3D-QSAR Models that, for Twelve of Twelve Biological Targets, Predict All ChEMBL-Tabulated Affinities

    PubMed Central

    Cramer, Richard D.

    2015-01-01

    The possible applicability of the new template CoMFA methodology to the prediction of unknown biological affinities was explored. For twelve selected targets, all ChEMBL binding affinities were used as training and/or prediction sets, making these 3D-QSAR models the most structurally diverse and among the largest ever. For six of the targets, X-ray crystallographic structures provided the aligned templates required as input (BACE, cdk1, chk2, carbonic anhydrase-II, factor Xa, PTP1B). For all targets including the other six (hERG, cyp3A4 binding, endocrine receptor, COX2, D2, and GABAa), six modeling protocols applied to only three familiar ligands provided six alternate sets of aligned templates. The statistical qualities of the six or seven models thus resulting for each individual target were remarkably similar. Also, perhaps unexpectedly, the standard deviations of the errors of cross-validation predictions accompanying model derivations were indistinguishable from the standard deviations of the errors of truly prospective predictions. These standard deviations of prediction ranged from 0.70 to 1.14 log units and averaged 0.89 (8x in concentration units) over the twelve targets, representing an average reduction of almost 50% in uncertainty, compared to the null hypothesis of “predicting” an unknown affinity to be the average of known affinities. These errors of prediction are similar to those from Tanimoto coefficients of fragment occurrence frequencies, the predominant approach to side effect prediction, which template CoMFA can augment by identifying additional active structural classes, by improving Tanimoto-only predictions, by yielding quantitative predictions of potency, and by providing interpretable guidance for avoiding or enhancing any specific target response. PMID:26065424

  12. Composite Stress Rupture: A New Reliability Model Based on Strength Decay

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2012-01-01

    A model is proposed to estimate reliability for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures. This new reliability model is generated by assuming a strength degradation (or decay) over time. The model suggests that most of the strength decay occurs late in life. The strength decay model will be shown to predict a response similar to that predicted by a traditional reliability model for stress rupture based on tests at a single stress level. In addition, the model predicts that even though there is strength decay due to proof loading, a significant overall increase in reliability is gained by eliminating any weak vessels, which would fail early. The model predicts that there should be significant periods of safe life following proof loading, because time is required for the strength to decay from the proof stress level to the subsequent loading level. Suggestions for testing the strength decay reliability model have been made. If the strength decay reliability model predictions are shown through testing to be accurate, COPVs may be designed to carry a higher level of stress than is currently allowed, which will enable the production of lighter structures

  13. The Predictive Capability of Conditioned Simulation of Discrete Fracture Networks using Structural and Hydraulic Data from the ONKALO Underground Research Facility, Finland

    NASA Astrophysics Data System (ADS)

    Williams, T. R. N.; Baxter, S.; Hartley, L.; Appleyard, P.; Koskinen, L.; Vanhanarkaus, O.; Selroos, J. O.; Munier, R.

    2017-12-01

    Discrete fracture network (DFN) models provide a natural analysis framework for rock conditions where flow is predominately through a series of connected discrete features. Mechanistic models to predict the structural patterns of networks are generally intractable due to inherent uncertainties (e.g. deformation history) and as such fracture characterisation typically involves empirical descriptions of fracture statistics for location, intensity, orientation, size, aperture etc. from analyses of field data. These DFN models are used to make probabilistic predictions of likely flow or solute transport conditions for a range of applications in underground resource and construction projects. However, there are many instances when the volumes in which predictions are most valuable are close to data sources. For example, in the disposal of hazardous materials such as radioactive waste, accurate predictions of flow-rates and network connectivity around disposal areas are required for long-term safety evaluation. The problem at hand is thus: how can probabilistic predictions be conditioned on local-scale measurements? This presentation demonstrates conditioning of a DFN model based on the current structural and hydraulic characterisation of the Demonstration Area at the ONKALO underground research facility. The conditioned realisations honour (to a required level of similarity) the locations, orientations and trace lengths of fractures mapped on the surfaces of the nearby ONKALO tunnels and pilot drillholes. Other data used as constraints include measurements from hydraulic injection tests performed in pilot drillholes and inflows to the subsequently reamed experimental deposition holes. Numerical simulations using this suite of conditioned DFN models provides a series of prediction-outcome exercises detailing the reliability of the DFN model to make local-scale predictions of measured geometric and hydraulic properties of the fracture system; and provides an understanding of the reduction in uncertainty in model predictions for conditioned DFN models honouring different aspects of this data.

  14. Validation of Accelerometer-Based Energy Expenditure Prediction Models in Structured and Simulated Free-Living Settings

    ERIC Educational Resources Information Center

    Montoye, Alexander H. K.; Conger, Scott A.; Connolly, Christopher P.; Imboden, Mary T.; Nelson, M. Benjamin; Bock, Josh M.; Kaminsky, Leonard A.

    2017-01-01

    This study compared accuracy of energy expenditure (EE) prediction models from accelerometer data collected in structured and simulated free-living settings. Twenty-four adults (mean age 45.8 years, 50% female) performed two sessions of 11 to 21 activities, wearing four ActiGraph GT9X Link activity monitors (right hip, ankle, both wrists) and a…

  15. Structural habitat predicts functional dispersal habitat of a large carnivore: how leopards change spots.

    PubMed

    Fattebert, Julien; Robinson, Hugh S; Balme, Guy; Slotow, Rob; Hunter, Luke

    2015-10-01

    Natal dispersal promotes inter-population linkage, and is key to spatial distribution of populations. Degradation of suitable landscape structures beyond the specific threshold of an individual's ability to disperse can therefore lead to disruption of functional landscape connectivity and impact metapopulation function. Because it ignores behavioral responses of individuals, structural connectivity is easier to assess than functional connectivity and is often used as a surrogate for landscape connectivity modeling. However using structural resource selection models as surrogate for modeling functional connectivity through dispersal could be erroneous. We tested how well a second-order resource selection function (RSF) models (structural connectivity), based on GPS telemetry data from resident adult leopard (Panthera pardus L.), could predict subadult habitat use during dispersal (functional connectivity). We created eight non-exclusive subsets of the subadult data based on differing definitions of dispersal to assess the predictive ability of our adult-based RSF model extrapolated over a broader landscape. Dispersing leopards used habitats in accordance with adult selection patterns, regardless of the definition of dispersal considered. We demonstrate that, for a wide-ranging apex carnivore, functional connectivity through natal dispersal corresponds to structural connectivity as modeled by a second-order RSF. Mapping of the adult-based habitat classes provides direct visualization of the potential linkages between populations, without the need to model paths between a priori starting and destination points. The use of such landscape scale RSFs may provide insight into predicting suitable dispersal habitat peninsulas in human-dominated landscapes where mitigation of human-wildlife conflict should be focused. We recommend the use of second-order RSFs for landscape conservation planning and propose a similar approach to the conservation of other wide-ranging large carnivore species where landscape-scale resource selection data already exist.

  16. Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction.

    PubMed

    Janssen, Stefan; Schudoma, Christian; Steger, Gerhard; Giegerich, Robert

    2011-11-03

    Many bioinformatics tools for RNA secondary structure analysis are based on a thermodynamic model of RNA folding. They predict a single, "optimal" structure by free energy minimization, they enumerate near-optimal structures, they compute base pair probabilities and dot plots, representative structures of different abstract shapes, or Boltzmann probabilities of structures and shapes. Although all programs refer to the same physical model, they implement it with considerable variation for different tasks, and little is known about the effects of heuristic assumptions and model simplifications used by the programs on the outcome of the analysis. We extract four different models of the thermodynamic folding space which underlie the programs RNAFOLD, RNASHAPES, and RNASUBOPT. Their differences lie within the details of the energy model and the granularity of the folding space. We implement probabilistic shape analysis for all models, and introduce the shape probability shift as a robust measure of model similarity. Using four data sets derived from experimentally solved structures, we provide a quantitative evaluation of the model differences. We find that search space granularity affects the computed shape probabilities less than the over- or underapproximation of free energy by a simplified energy model. Still, the approximations perform similar enough to implementations of the full model to justify their continued use in settings where computational constraints call for simpler algorithms. On the side, we observe that the rarely used level 2 shapes, which predict the complete arrangement of helices, multiloops, internal loops and bulges, include the "true" shape in a rather small number of predicted high probability shapes. This calls for an investigation of new strategies to extract high probability members from the (very large) level 2 shape space of an RNA sequence. We provide implementations of all four models, written in a declarative style that makes them easy to be modified. Based on our study, future work on thermodynamic RNA folding may make a choice of model based on our empirical data. It can take our implementations as a starting point for further program development.

  17. Predicting the accuracy of ligand overlay methods with Random Forest models.

    PubMed

    Nandigam, Ravi K; Evans, David A; Erickson, Jon A; Kim, Sangtae; Sutherland, Jeffrey J

    2008-12-01

    The accuracy of binding mode prediction using standard molecular overlay methods (ROCS, FlexS, Phase, and FieldCompare) is studied. Previous work has shown that simple decision tree modeling can be used to improve accuracy by selection of the best overlay template. This concept is extended to the use of Random Forest (RF) modeling for template and algorithm selection. An extensive data set of 815 ligand-bound X-ray structures representing 5 gene families was used for generating ca. 70,000 overlays using four programs. RF models, trained using standard measures of ligand and protein similarity and Lipinski-related descriptors, are used for automatically selecting the reference ligand and overlay method maximizing the probability of reproducing the overlay deduced from X-ray structures (i.e., using rmsd < or = 2 A as the criteria for success). RF model scores are highly predictive of overlay accuracy, and their use in template and method selection produces correct overlays in 57% of cases for 349 overlay ligands not used for training RF models. The inclusion in the models of protein sequence similarity enables the use of templates bound to related protein structures, yielding useful results even for proteins having no available X-ray structures.

  18. Structure and Regulatory Interactions of the Cytoplasmic Terminal Domains of Serotonin Transporter

    PubMed Central

    2014-01-01

    Uptake of neurotransmitters by sodium-coupled monoamine transporters of the NSS family is required for termination of synaptic transmission. Transport is tightly regulated by protein–protein interactions involving the small cytoplasmic segments at the amino- and carboxy-terminal ends of the transporter. Although structures of homologues provide information about the transmembrane regions of these transporters, the structural arrangement of the terminal domains remains largely unknown. Here, we combined molecular modeling, biochemical, and biophysical approaches in an iterative manner to investigate the structure of the 82-residue N-terminal and 30-residue C-terminal domains of human serotonin transporter (SERT). Several secondary structures were predicted in these domains, and structural models were built using the Rosetta fragment-based methodology. One-dimensional 1H nuclear magnetic resonance and circular dichroism spectroscopy supported the presence of helical elements in the isolated SERT N-terminal domain. Moreover, introducing helix-breaking residues within those elements altered the fluorescence resonance energy transfer signal between terminal cyan fluorescent protein and yellow fluorescent protein tags attached to full-length SERT, consistent with the notion that the fold of the terminal domains is relatively well-defined. Full-length models of SERT that are consistent with these and published experimental data were generated. The resultant models predict confined loci for the terminal domains and predict that they move apart during the transport-related conformational cycle, as predicted by structures of homologues and by the “rocking bundle” hypothesis, which is consistent with spectroscopic measurements. The models also suggest the nature of binding to regulatory interaction partners. This study provides a structural context for functional and regulatory mechanisms involving SERT terminal domains. PMID:25093911

  19. Guiding Conformation Space Search with an All-Atom Energy Potential

    PubMed Central

    Brunette, TJ; Brock, Oliver

    2009-01-01

    The most significant impediment for protein structure prediction is the inadequacy of conformation space search. Conformation space is too large and the energy landscape too rugged for existing search methods to consistently find near-optimal minima. To alleviate this problem, we present model-based search, a novel conformation space search method. Model-based search uses highly accurate information obtained during search to build an approximate, partial model of the energy landscape. Model-based search aggregates information in the model as it progresses, and in turn uses this information to guide exploration towards regions most likely to contain a near-optimal minimum. We validate our method by predicting the structure of 32 proteins, ranging in length from 49 to 213 amino acids. Our results demonstrate that model-based search is more effective at finding low-energy conformations in high-dimensional conformation spaces than existing search methods. The reduction in energy translates into structure predictions of increased accuracy. PMID:18536015

  20. Ligand and structure-based methodologies for the prediction of the activity of G protein-coupled receptor ligands

    NASA Astrophysics Data System (ADS)

    Costanzi, Stefano; Tikhonova, Irina G.; Harden, T. Kendall; Jacobson, Kenneth A.

    2009-11-01

    Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered.

  1. The Phyre2 web portal for protein modelling, prediction and analysis

    PubMed Central

    Kelley, Lawrence A; Mezulis, Stefans; Yates, Christopher M; Wass, Mark N; Sternberg, Michael JE

    2017-01-01

    Summary Phyre2 is a suite of tools available on the web to predict and analyse protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a protocol. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites, and analyse the effect of amino-acid variants (e.g. nsSNPs) for a user’s protein sequence. Users are guided through results by a simple interface at a level of detail determined by them. This protocol will guide a user from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2. A typical structure prediction will be returned between 30mins and 2 hours after submission. PMID:25950237

  2. Robustness of atomistic Gō models in predicting native-like folding intermediates

    NASA Astrophysics Data System (ADS)

    Estácio, S. G.; Fernandes, C. S.; Krobath, H.; Faísca, P. F. N.; Shakhnovich, E. I.

    2012-08-01

    Gō models are exceedingly popular tools in computer simulations of protein folding. These models are native-centric, i.e., they are directly constructed from the protein's native structure. Therefore, it is important to understand up to which extent the atomistic details of the native structure dictate the folding behavior exhibited by Gō models. Here we address this challenge by performing exhaustive discrete molecular dynamics simulations of a Gō potential combined with a full atomistic protein representation. In particular, we investigate the robustness of this particular type of Gō models in predicting the existence of intermediate states in protein folding. We focus on the N47G mutational form of the Spc-SH3 folding domain (x-ray structure) and compare its folding pathway with that of alternative native structures produced in silico. Our methodological strategy comprises equilibrium folding simulations, structural clustering, and principal component analysis.

  3. Hidden Markov model-derived structural alphabet for proteins: the learning of protein local shapes captures sequence specificity.

    PubMed

    Camproux, A C; Tufféry, P

    2005-08-05

    Understanding and predicting protein structures depend on the complexity and the accuracy of the models used to represent them. We have recently set up a Hidden Markov Model to optimally compress protein three-dimensional conformations into a one-dimensional series of letters of a structural alphabet. Such a model learns simultaneously the shape of representative structural letters describing the local conformation and the logic of their connections, i.e. the transition matrix between the letters. Here, we move one step further and report some evidence that such a model of protein local architecture also captures some accurate amino acid features. All the letters have specific and distinct amino acid distributions. Moreover, we show that words of amino acids can have significant propensities for some letters. Perspectives point towards the prediction of the series of letters describing the structure of a protein from its amino acid sequence.

  4. Predicting the activity of drugs for a group of imidazopyridine anticoccidial compounds.

    PubMed

    Si, Hongzong; Lian, Ning; Yuan, Shuping; Fu, Aiping; Duan, Yun-Bo; Zhang, Kejun; Yao, Xiaojun

    2009-10-01

    Gene expression programming (GEP) is a novel machine learning technique. The GEP is used to build nonlinear quantitative structure-activity relationship model for the prediction of the IC(50) for the imidazopyridine anticoccidial compounds. This model is based on descriptors which are calculated from the molecular structure. Four descriptors are selected from the descriptors' pool by heuristic method (HM) to build multivariable linear model. The GEP method produced a nonlinear quantitative model with a correlation coefficient and a mean error of 0.96 and 0.24 for the training set, 0.91 and 0.52 for the test set, respectively. It is shown that the GEP predicted results are in good agreement with experimental ones.

  5. Assessment of Template-Based Modeling of Protein Structure in CASP11

    PubMed Central

    Modi, Vivek; Xu, Qifang; Adhikari, Sam; Dunbrack, Roland L.

    2016-01-01

    We present the assessment of predictions submitted in the template-based modeling (TBM) category of CASP11 (Critical Assessment of Protein Structure Prediction). Model quality was judged on the basis of global and local measures of accuracy on all atoms including side chains. The top groups on 39 human-server targets based on model 1 predictions were LEER, Zhang, LEE, MULTICOM, and Zhang-Server. The top groups on 81 targets by server groups based on model 1 predictions were Zhang-Server, nns, BAKER-ROSETTASERVER, QUARK, and myprotein-me. In CASP11, the best models for most targets were equal to or better than the best template available in the Protein Data Bank, even for targets with poor templates. The overall performance in CASP11 is similar to the performance of predictors in CASP10 with slightly better performance on the hardest targets. For most targets, assessment measures exhibited bimodal probability density distributions. Multi-dimensional scaling of an RMSD matrix for each target typically revealed a single cluster with models similar to the target structure, with a mode in the GDT-TS density between 40 and 90, and a wide distribution of models highly divergent from each other and from the experimental structure, with density mode at a GDT-TS value of ~20. The models in this peak in the density were either compact models with entirely the wrong fold, or highly non-compact models. The results argue for a density-driven approach in future CASP TBM assessments that accounts for the bimodal nature of these distributions instead of Z-scores, which assume a unimodal, Gaussian distribution. PMID:27081927

  6. Advanced Computational Modeling Approaches for Shock Response Prediction

    NASA Technical Reports Server (NTRS)

    Derkevorkian, Armen; Kolaini, Ali R.; Peterson, Lee

    2015-01-01

    Motivation: (1) The activation of pyroshock devices such as explosives, separation nuts, pin-pullers, etc. produces high frequency transient structural response, typically from few tens of Hz to several hundreds of kHz. (2) Lack of reliable analytical tools makes the prediction of appropriate design and qualification test levels a challenge. (3) In the past few decades, several attempts have been made to develop methodologies that predict the structural responses to shock environments. (4) Currently, there is no validated approach that is viable to predict shock environments overt the full frequency range (i.e., 100 Hz to 10 kHz). Scope: (1) Model, analyze, and interpret space structural systems with complex interfaces and discontinuities, subjected to shock loads. (2) Assess the viability of a suite of numerical tools to simulate transient, non-linear solid mechanics and structural dynamics problems, such as shock wave propagation.

  7. QSAR, docking and ADMET studies of artemisinin derivatives for antimalarial activity targeting plasmepsin II, a hemoglobin-degrading enzyme from P. falciparum.

    PubMed

    Qidwai, Tabish; Yadav, Dharmendra K; Khan, Feroz; Dhawan, Sangeeta; Bhakuni, R S

    2012-01-01

    This work presents the development of quantitative structure activity relationship (QSAR) model to predict the antimalarial activity of artemisinin derivatives. The structures of the molecules are represented by chemical descriptors that encode topological, geometric, and electronic structure features. Screening through QSAR model suggested that compounds A24, A24a, A53, A54, A62 and A64 possess significant antimalarial activity. Linear model is developed by the multiple linear regression method to link structures to their reported antimalarial activity. The correlation in terms of regression coefficient (r(2)) was 0.90 and prediction accuracy of model in terms of cross validation regression coefficient (rCV(2)) was 0.82. This study indicates that chemical properties viz., atom count (all atoms), connectivity index (order 1, standard), ring count (all rings), shape index (basic kappa, order 2), and solvent accessibility surface area are well correlated with antimalarial activity. The docking study showed high binding affinity of predicted active compounds against antimalarial target Plasmepsins (Plm-II). Further studies for oral bioavailability, ADMET and toxicity risk assessment suggest that compound A24, A24a, A53, A54, A62 and A64 exhibits marked antimalarial activity comparable to standard antimalarial drugs. Later one of the predicted active compound A64 was chemically synthesized, structure elucidated by NMR and in vivo tested in multidrug resistant strain of Plasmodium yoelii nigeriensis infected mice. The experimental results obtained agreed well with the predicted values.

  8. Predictive Modeling of Chemical Hazard by Integrating Numerical Descriptors of Chemical Structures and Short-term Toxicity Assay Data

    PubMed Central

    Rusyn, Ivan; Sedykh, Alexander; Guyton, Kathryn Z.; Tropsha, Alexander

    2012-01-01

    Quantitative structure-activity relationship (QSAR) models are widely used for in silico prediction of in vivo toxicity of drug candidates or environmental chemicals, adding value to candidate selection in drug development or in a search for less hazardous and more sustainable alternatives for chemicals in commerce. The development of traditional QSAR models is enabled by numerical descriptors representing the inherent chemical properties that can be easily defined for any number of molecules; however, traditional QSAR models often have limited predictive power due to the lack of data and complexity of in vivo endpoints. Although it has been indeed difficult to obtain experimentally derived toxicity data on a large number of chemicals in the past, the results of quantitative in vitro screening of thousands of environmental chemicals in hundreds of experimental systems are now available and continue to accumulate. In addition, publicly accessible toxicogenomics data collected on hundreds of chemicals provide another dimension of molecular information that is potentially useful for predictive toxicity modeling. These new characteristics of molecular bioactivity arising from short-term biological assays, i.e., in vitro screening and/or in vivo toxicogenomics data can now be exploited in combination with chemical structural information to generate hybrid QSAR–like quantitative models to predict human toxicity and carcinogenicity. Using several case studies, we illustrate the benefits of a hybrid modeling approach, namely improvements in the accuracy of models, enhanced interpretation of the most predictive features, and expanded applicability domain for wider chemical space coverage. PMID:22387746

  9. Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches.

    PubMed

    Gupta, Shikha; Basant, Nikita; Mohan, Dinesh; Singh, Kunwar P

    2016-07-01

    The persistence and the removal of organic chemicals from the atmosphere are largely determined by their reactions with the OH radical and O3. Experimental determinations of the kinetic rate constants of OH and O3 with a large number of chemicals are tedious and resource intensive and development of computational approaches has widely been advocated. Recently, ensemble machine learning (EML) methods have emerged as unbiased tools to establish relationship between independent and dependent variables having a nonlinear dependence. In this study, EML-based, temperature-dependent quantitative structure-reactivity relationship (QSRR) models have been developed for predicting the kinetic rate constants for OH (kOH) and O3 (kO3) reactions with diverse chemicals. Structural diversity of chemicals was evaluated using a Tanimoto similarity index. The generalization and prediction abilities of the constructed models were established through rigorous internal and external validation performed employing statistical checks. In test data, the EML QSRR models yielded correlation (R (2)) of ≥0.91 between the measured and the predicted reactivities. The applicability domains of the constructed models were determined using methods based on descriptors range, Euclidean distance, leverage, and standardization approaches. The prediction accuracies for the higher reactivity compounds were relatively better than those of the low reactivity compounds. Proposed EML QSRR models performed well and outperformed the previous reports. The proposed QSRR models can make predictions of rate constants at different temperatures. The proposed models can be useful tools in predicting the reactivities of chemicals towards OH radical and O3 in the atmosphere.

  10. Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.

    2008-01-01

    Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.

  11. Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 2: Models for sidewall trim, stiffened structures and cabin acoustics with floor partition

    NASA Technical Reports Server (NTRS)

    Pope, L. D.; Wilby, E. G.

    1982-01-01

    An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify apropriate noise control methods. Models for stiffened structures, and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim. The noise reductions of the three test articles are computed using the heoretical models and compared to measured values. A statistical analysis of the comparison data indicates that there is no bias in the predictions although a substantial random error exists so that a discrepancy of more than five or six dB can be expected for about one out of three predictions.

  12. Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions.

    PubMed

    Shi, Ya-Zhou; Jin, Lei; Feng, Chen-Jie; Tan, Ya-Lan; Tan, Zhi-Jie

    2018-06-01

    RNA pseudoknots are a kind of minimal RNA tertiary structural motifs, and their three-dimensional (3D) structures and stability play essential roles in a variety of biological functions. Therefore, to predict 3D structures and stability of RNA pseudoknots is essential for understanding their functions. In the work, we employed our previously developed coarse-grained model with implicit salt to make extensive predictions and comprehensive analyses on the 3D structures and stability for RNA pseudoknots in monovalent/divalent ion solutions. The comparisons with available experimental data show that our model can successfully predict the 3D structures of RNA pseudoknots from their sequences, and can also make reliable predictions for the stability of RNA pseudoknots with different lengths and sequences over a wide range of monovalent/divalent ion concentrations. Furthermore, we made comprehensive analyses on the unfolding pathway for various RNA pseudoknots in ion solutions. Our analyses for extensive pseudokonts and the wide range of monovalent/divalent ion concentrations verify that the unfolding pathway of RNA pseudoknots is mainly dependent on the relative stability of unfolded intermediate states, and show that the unfolding pathway of RNA pseudoknots can be significantly modulated by their sequences and solution ion conditions.

  13. Quantitative structure-activity relationship (QSAR) for insecticides: development of predictive in vivo insecticide activity models.

    PubMed

    Naik, P K; Singh, T; Singh, H

    2009-07-01

    Quantitative structure-activity relationship (QSAR) analyses were performed independently on data sets belonging to two groups of insecticides, namely the organophosphates and carbamates. Several types of descriptors including topological, spatial, thermodynamic, information content, lead likeness and E-state indices were used to derive quantitative relationships between insecticide activities and structural properties of chemicals. A systematic search approach based on missing value, zero value, simple correlation and multi-collinearity tests as well as the use of a genetic algorithm allowed the optimal selection of the descriptors used to generate the models. The QSAR models developed for both organophosphate and carbamate groups revealed good predictability with r(2) values of 0.949 and 0.838 as well as [image omitted] values of 0.890 and 0.765, respectively. In addition, a linear correlation was observed between the predicted and experimental LD(50) values for the test set data with r(2) of 0.871 and 0.788 for both the organophosphate and carbamate groups, indicating that the prediction accuracy of the QSAR models was acceptable. The models were also tested successfully from external validation criteria. QSAR models developed in this study should help further design of novel potent insecticides.

  14. A Novel Information-Theoretic Approach for Variable Clustering and Predictive Modeling Using Dirichlet Process Mixtures

    PubMed Central

    Chen, Yun; Yang, Hui

    2016-01-01

    In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic perspective that does not require the assumption of data structure for the identification of nonlinear interdependence among variables. Specifically, we propose the use of mutual information to characterize and measure nonlinear correlation structures among variables. Further, we develop Dirichlet process (DP) models to cluster variables based on the mutual-information measures among variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net model to improve the performance of predictive modeling. Both simulation and real-world case studies showed that the proposed methodology not only effectively reveals the nonlinear interdependence structures among variables but also outperforms traditional variable clustering algorithms such as hierarchical clustering. PMID:27966581

  15. A Novel Information-Theoretic Approach for Variable Clustering and Predictive Modeling Using Dirichlet Process Mixtures.

    PubMed

    Chen, Yun; Yang, Hui

    2016-12-14

    In the era of big data, there are increasing interests on clustering variables for the minimization of data redundancy and the maximization of variable relevancy. Existing clustering methods, however, depend on nontrivial assumptions about the data structure. Note that nonlinear interdependence among variables poses significant challenges on the traditional framework of predictive modeling. In the present work, we reformulate the problem of variable clustering from an information theoretic perspective that does not require the assumption of data structure for the identification of nonlinear interdependence among variables. Specifically, we propose the use of mutual information to characterize and measure nonlinear correlation structures among variables. Further, we develop Dirichlet process (DP) models to cluster variables based on the mutual-information measures among variables. Finally, orthonormalized variables in each cluster are integrated with group elastic-net model to improve the performance of predictive modeling. Both simulation and real-world case studies showed that the proposed methodology not only effectively reveals the nonlinear interdependence structures among variables but also outperforms traditional variable clustering algorithms such as hierarchical clustering.

  16. Sequential search leads to faster, more efficient fragment-based de novo protein structure prediction.

    PubMed

    de Oliveira, Saulo H P; Law, Eleanor C; Shi, Jiye; Deane, Charlotte M

    2018-04-01

    Most current de novo structure prediction methods randomly sample protein conformations and thus require large amounts of computational resource. Here, we consider a sequential sampling strategy, building on ideas from recent experimental work which shows that many proteins fold cotranslationally. We have investigated whether a pseudo-greedy search approach, which begins sequentially from one of the termini, can improve the performance and accuracy of de novo protein structure prediction. We observed that our sequential approach converges when fewer than 20 000 decoys have been produced, fewer than commonly expected. Using our software, SAINT2, we also compared the run time and quality of models produced in a sequential fashion against a standard, non-sequential approach. Sequential prediction produces an individual decoy 1.5-2.5 times faster than non-sequential prediction. When considering the quality of the best model, sequential prediction led to a better model being produced for 31 out of 41 soluble protein validation cases and for 18 out of 24 transmembrane protein cases. Correct models (TM-Score > 0.5) were produced for 29 of these cases by the sequential mode and for only 22 by the non-sequential mode. Our comparison reveals that a sequential search strategy can be used to drastically reduce computational time of de novo protein structure prediction and improve accuracy. Data are available for download from: http://opig.stats.ox.ac.uk/resources. SAINT2 is available for download from: https://github.com/sauloho/SAINT2. saulo.deoliveira@dtc.ox.ac.uk. Supplementary data are available at Bioinformatics online.

  17. Mid-frequency Band Dynamics of Large Space Structures

    NASA Technical Reports Server (NTRS)

    Coppolino, Robert N.; Adams, Douglas S.

    2004-01-01

    High and low intensity dynamic environments experienced by a spacecraft during launch and on-orbit operations, respectively, induce structural loads and motions, which are difficult to reliably predict. Structural dynamics in low- and mid-frequency bands are sensitive to component interface uncertainty and non-linearity as evidenced in laboratory testing and flight operations. Analytical tools for prediction of linear system response are not necessarily adequate for reliable prediction of mid-frequency band dynamics and analysis of measured laboratory and flight data. A new MATLAB toolbox, designed to address the key challenges of mid-frequency band dynamics, is introduced in this paper. Finite-element models of major subassemblies are defined following rational frequency-wavelength guidelines. For computational efficiency, these subassemblies are described as linear, component mode models. The complete structural system model is composed of component mode subassemblies and linear or non-linear joint descriptions. Computation and display of structural dynamic responses are accomplished employing well-established, stable numerical methods, modern signal processing procedures and descriptive graphical tools. Parametric sensitivity and Monte-Carlo based system identification tools are used to reconcile models with experimental data and investigate the effects of uncertainties. Models and dynamic responses are exported for employment in applications, such as detailed structural integrity and mechanical-optical-control performance analyses.

  18. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds.

    PubMed

    Engelmayr, George C; Sacks, Michael S

    2006-08-01

    The development of methods to predict the strength and stiffness of biomaterials used in tissue engineering is critical for load-bearing applications in which the essential functional requirements are primarily mechanical. We previously quantified changes in the effective stiffness (E) of needled nonwoven polyglycolic acid (PGA) and poly-L-lactic acid (PLLA) scaffolds due to tissue formation and scaffold degradation under three-point bending. Toward predicting these changes, we present a structural model for E of a needled nonwoven scaffold in flexure. The model accounted for the number and orientation of fibers within a representative volume element of the scaffold demarcated by the needling process. The spring-like effective stiffness of the curved fibers was calculated using the sinusoidal fiber shapes. Structural and mechanical properties of PGA and PLLA fibers and PGA, PLLA, and 50:50 PGA/PLLA scaffolds were measured and compared with model predictions. To verify the general predictive capability, the predicted dependence of E on fiber diameter was compared with experimental measurements. Needled nonwoven scaffolds were found to exhibit distinct preferred (PD) and cross-preferred (XD) fiber directions, with an E ratio (PD/XD) of approximately 3:1. The good agreement between the predicted and experimental dependence of E on fiber diameter (R2 = 0.987) suggests that the structural model can be used to design scaffolds with E values more similar to native soft tissues. A comparison with previous results for cell-seeded scaffolds (Engelmayr, G. C., Jr., et al., 2005, Biomaterials, 26(2), pp. 175-187) suggests, for the first time, that the primary mechanical effect of collagen deposition is an increase in the number of fiber-fiber bond points yielding effectively stiffer scaffold fibers. This finding indicated that the effects of tissue deposition on needled nonwoven scaffold mechanics do not follow a rule-of-mixtures behavior. These important results underscore the need for structural approaches in modeling the effects of engineered tissue formation on nonwoven scaffolds, and their potential utility in scaffold design.

  19. Measuring and modelling the structure of chocolate

    NASA Astrophysics Data System (ADS)

    Le Révérend, Benjamin J. D.; Fryer, Peter J.; Smart, Ian; Bakalis, Serafim

    2015-01-01

    The cocoa butter present in chocolate exists as six different polymorphs. To achieve the desired crystal form (βV), traditional chocolate manufacturers use relatively slow cooling (<2°C/min). A newer generation of rapid cooling systems has been suggested requiring further understanding of fat crystallisation. To allow better control and understanding of these processes and newer rapid cooling processes, it is necessary to understand both heat transfer and crystallization kinetics. The proposed model aims to predict the temperature in the chocolate products during processing as well as the crystal structure of cocoa butter throughout the process. A set of ordinary differential equations describes the kinetics of fat crystallisation. The parameters were obtained by fitting the model to a set of DSC curves. The heat transfer equations were coupled to the kinetic model and solved using commercially available CFD software. A method using single crystal XRD was developed using a novel subtraction method to quantify the cocoa butter structure in chocolate directly and results were compared to the ones predicted from the model. The model was proven to predict phase change temperature during processing accurately (±1°C). Furthermore, it was possible to correctly predict phase changes and polymorphous transitions. The good agreement between the model and experimental data on the model geometry allows a better design and control of industrial processes.

  20. Predicting students' physical activity and health-related well-being: a prospective cross-domain investigation of motivation across school physical education and exercise settings.

    PubMed

    Standage, Martyn; Gillison, Fiona B; Ntoumanis, Nikos; Treasure, Darren C

    2012-02-01

    A three-wave prospective design was used to assess a model of motivation guided by self-determination theory (Ryan & Deci, 2008) spanning the contexts of school physical education (PE) and exercise. The outcome variables examined were health-related quality of life (HRQoL), physical self-concept (PSC), and 4 days of objectively assessed estimates of activity. Secondary school students (n = 494) completed questionnaires at three separate time points and were familiarized with how to use a sealed pedometer. Results of structural equation modeling supported a model in which perceptions of autonomy support from a PE teacher positively predicted PE-related need satisfaction (autonomy, competence, and relatedness). Competence predicted PSC, whereas relatedness predicted HRQoL. Autonomy and competence positively predicted autonomous motivation toward PE, which in turn positively predicted autonomous motivation toward exercise (i.e., 4-day pedometer step count). Autonomous motivation toward exercise positively predicted step count, HRQoL, and PSC. Results of multisample structural equation modeling supported gender invariance. Suggestions for future work are discussed.

  1. Development of an in Silico Model of DPPH• Free Radical Scavenging Capacity: Prediction of Antioxidant Activity of Coumarin Type Compounds.

    PubMed

    Goya Jorge, Elizabeth; Rayar, Anita Maria; Barigye, Stephen J; Jorge Rodríguez, María Elisa; Sylla-Iyarreta Veitía, Maité

    2016-06-07

    A quantitative structure-activity relationship (QSAR) study of the 2,2-diphenyl-l-picrylhydrazyl (DPPH•) radical scavenging ability of 1373 chemical compounds, using DRAGON molecular descriptors (MD) and the neural network technique, a technique based on the multilayer multilayer perceptron (MLP), was developed. The built model demonstrated a satisfactory performance for the training ( R 2 = 0.713 ) and test set ( Q ext 2 = 0.654 ) , respectively. To gain greater insight on the relevance of the MD contained in the MLP model, sensitivity and principal component analyses were performed. Moreover, structural and mechanistic interpretation was carried out to comprehend the relationship of the variables in the model with the modeled property. The constructed MLP model was employed to predict the radical scavenging ability for a group of coumarin-type compounds. Finally, in order to validate the model's predictions, an in vitro assay for one of the compounds (4-hydroxycoumarin) was performed, showing a satisfactory proximity between the experimental and predicted pIC50 values.

  2. Structure and non-structure of centrosomal proteins.

    PubMed

    Dos Santos, Helena G; Abia, David; Janowski, Robert; Mortuza, Gulnahar; Bertero, Michela G; Boutin, Maïlys; Guarín, Nayibe; Méndez-Giraldez, Raúl; Nuñez, Alfonso; Pedrero, Juan G; Redondo, Pilar; Sanz, María; Speroni, Silvia; Teichert, Florian; Bruix, Marta; Carazo, José M; Gonzalez, Cayetano; Reina, José; Valpuesta, José M; Vernos, Isabelle; Zabala, Juan C; Montoya, Guillermo; Coll, Miquel; Bastolla, Ugo; Serrano, Luis

    2013-01-01

    Here we perform a large-scale study of the structural properties and the expression of proteins that constitute the human Centrosome. Centrosomal proteins tend to be larger than generic human proteins (control set), since their genes contain in average more exons (20.3 versus 14.6). They are rich in predicted disordered regions, which cover 57% of their length, compared to 39% in the general human proteome. They also contain several regions that are dually predicted to be disordered and coiled-coil at the same time: 55 proteins (15%) contain disordered and coiled-coil fragments that cover more than 20% of their length. Helices prevail over strands in regions homologous to known structures (47% predicted helical residues against 17% predicted as strands), and even more in the whole centrosomal proteome (52% against 7%), while for control human proteins 34.5% of the residues are predicted as helical and 12.8% are predicted as strands. This difference is mainly due to residues predicted as disordered and helical (30% in centrosomal and 9.4% in control proteins), which may correspond to alpha-helix forming molecular recognition features (α-MoRFs). We performed expression assays for 120 full-length centrosomal proteins and 72 domain constructs that we have predicted to be globular. These full-length proteins are often insoluble: Only 39 out of 120 expressed proteins (32%) and 19 out of 72 domains (26%) were soluble. We built or retrieved structural models for 277 out of 361 human proteins whose centrosomal localization has been experimentally verified. We could not find any suitable structural template with more than 20% sequence identity for 84 centrosomal proteins (23%), for which around 74% of the residues are predicted to be disordered or coiled-coils. The three-dimensional models that we built are available at http://ub.cbm.uam.es/centrosome/models/index.php.

  3. CPHmodels-3.0--remote homology modeling using structure-guided sequence profiles.

    PubMed

    Nielsen, Morten; Lundegaard, Claus; Lund, Ole; Petersen, Thomas Nordahl

    2010-07-01

    CPHmodels-3.0 is a web server predicting protein 3D structure by use of single template homology modeling. The server employs a hybrid of the scoring functions of CPHmodels-2.0 and a novel remote homology-modeling algorithm. A query sequence is first attempted modeled using the fast CPHmodels-2.0 profile-profile scoring function suitable for close homology modeling. The new computational costly remote homology-modeling algorithm is only engaged provided that no suitable PDB template is identified in the initial search. CPHmodels-3.0 was benchmarked in the CASP8 competition and produced models for 94% of the targets (117 out of 128), 74% were predicted as high reliability models (87 out of 117). These achieved an average RMSD of 4.6 A when superimposed to the 3D structure. The remaining 26% low reliably models (30 out of 117) could superimpose to the true 3D structure with an average RMSD of 9.3 A. These performance values place the CPHmodels-3.0 method in the group of high performing 3D prediction tools. Beside its accuracy, one of the important features of the method is its speed. For most queries, the response time of the server is <20 min. The web server is available at http://www.cbs.dtu.dk/services/CPHmodels/.

  4. Model of cohesive properties and structural phase transitions in non-metallic solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, J.A.; Vogl, P.

    1986-01-01

    We have developed a simple, yet microscopic and universal model for cohesive properties of solids. This model explains the physical mechanisms determining the chemical and predicts semiquantitatively static and dynamic cohesive properties. It predicts a substantial softening of the long-wavelength transverse optical phonons across the pressure induced phase transition from the zincblenda to rocksalt structure in II-VI compounds. The origin of this softening is shown to be closely related to ferroelectricity.

  5. Predictive Structure-Based Toxicology Approaches To Assess the Androgenic Potential of Chemicals.

    PubMed

    Trisciuzzi, Daniela; Alberga, Domenico; Mansouri, Kamel; Judson, Richard; Novellino, Ettore; Mangiatordi, Giuseppe Felice; Nicolotti, Orazio

    2017-11-27

    We present a practical and easy-to-run in silico workflow exploiting a structure-based strategy making use of docking simulations to derive highly predictive classification models of the androgenic potential of chemicals. Models were trained on a high-quality chemical collection comprising 1689 curated compounds made available within the CoMPARA consortium from the US Environmental Protection Agency and were integrated with a two-step applicability domain whose implementation had the effect of improving both the confidence in prediction and statistics by reducing the number of false negatives. Among the nine androgen receptor X-ray solved structures, the crystal 2PNU (entry code from the Protein Data Bank) was associated with the best performing structure-based classification model. Three validation sets comprising each 2590 compounds extracted by the DUD-E collection were used to challenge model performance and the effectiveness of Applicability Domain implementation. Next, the 2PNU model was applied to screen and prioritize two collections of chemicals. The first is a small pool of 12 representative androgenic compounds that were accurately classified based on outstanding rationale at the molecular level. The second is a large external blind set of 55450 chemicals with potential for human exposure. We show how the use of molecular docking provides highly interpretable models and can represent a real-life option as an alternative nontesting method for predictive toxicology.

  6. Building proteins from C alpha coordinates using the dihedral probability grid Monte Carlo method.

    PubMed Central

    Mathiowetz, A. M.; Goddard, W. A.

    1995-01-01

    Dihedral probability grid Monte Carlo (DPG-MC) is a general-purpose method of conformational sampling that can be applied to many problems in peptide and protein modeling. Here we present the DPG-MC method and apply it to predicting complete protein structures from C alpha coordinates. This is useful in such endeavors as homology modeling, protein structure prediction from lattice simulations, or fitting protein structures to X-ray crystallographic data. It also serves as an example of how DPG-MC can be applied to systems with geometric constraints. The conformational propensities for individual residues are used to guide conformational searches as the protein is built from the amino-terminus to the carboxyl-terminus. Results for a number of proteins show that both the backbone and side chain can be accurately modeled using DPG-MC. Backbone atoms are generally predicted with RMS errors of about 0.5 A (compared to X-ray crystal structure coordinates) and all atoms are predicted to an RMS error of 1.7 A or better. PMID:7549885

  7. Toward a Time-Domain Fractal Lightning Simulation

    NASA Astrophysics Data System (ADS)

    Liang, C.; Carlson, B. E.; Lehtinen, N. G.; Cohen, M.; Lauben, D.; Inan, U. S.

    2010-12-01

    Electromagnetic simulations of lightning are useful for prediction of lightning properties and exploration of the underlying physical behavior. Fractal lightning models predict the spatial structure of the discharge, but thus far do not provide much information about discharge behavior in time and therefore cannot predict electromagnetic wave emissions or current characteristics. Here we develop a time-domain fractal lightning simulation from Maxwell's equations, the method of moments with the thin wire approximation, an adaptive time-stepping scheme, and a simplified electrical model of the lightning channel. The model predicts current pulse structure and electromagnetic wave emissions and can be used to simulate the entire duration of a lightning discharge. The model can be used to explore the electrical characteristics of the lightning channel, the temporal development of the discharge, and the effects of these characteristics on observable electromagnetic wave emissions.

  8. Modeling aircraft noise induced sleep disturbance

    NASA Astrophysics Data System (ADS)

    McGuire, Sarah M.

    One of the primary impacts of aircraft noise on a community is its disruption of sleep. Aircraft noise increases the time to fall asleep, the number of awakenings, and decreases the amount of rapid eye movement and slow wave sleep. Understanding these changes in sleep may be important as they could increase the risk for developing next-day effects such as sleepiness and reduced performance and long-term health effects such as cardiovascular disease. There are models that have been developed to predict the effect of aircraft noise on sleep. However, most of these models only predict the percentage of the population that is awakened. Markov and nonlinear dynamic models have been developed to predict an individual's sleep structure during the night. However, both of these models have limitations. The Markov model only accounts for whether an aircraft event occurred not the noise level or other sound characteristics of the event that may affect the degree of disturbance. The nonlinear dynamic models were developed to describe normal sleep regulation and do not have a noise effects component. In addition, the nonlinear dynamic models have slow dynamics which make it difficult to predict short duration awakenings which occur both spontaneously and as a result of nighttime noise exposure. The purpose of this research was to examine these sleep structure models to determine how they could be altered to predict the effect of aircraft noise on sleep. Different approaches for adding a noise level dependence to the Markov Model was explored and the modified model was validated by comparing predictions to behavioral awakening data. In order to determine how to add faster dynamics to the nonlinear dynamic sleep models it was necessary to have a more detailed sleep stage classification than was available from visual scoring of sleep data. An automatic sleep stage classification algorithm was developed which extracts different features of polysomnography data including the occurrence of rapid eye movements, sleep spindles, and slow wave sleep. Using these features an approach for classifying sleep stages every one second during the night was developed. From observation of the results of the sleep stage classification, it was determined how to add faster dynamics to the nonlinear dynamic model. Slow and fast REM activity are modeled separately and the activity in the gamma frequency band of the EEG signal is used to model both spontaneous and noise-induced awakenings. The nonlinear model predicts changes in sleep structure similar to those found by other researchers and reported in the sleep literature and similar to those found in obtained survey data. To compare sleep disturbance model predictions, flight operations data from US airports were obtained and sleep disturbance in communities was predicted for different operations scenarios using the modified Markov model, the nonlinear dynamic model, and other aircraft noise awakening models. Similarities and differences in model predictions were evaluated in order to determine if the use of the developed sleep structure model leads to improved predictions of the impact of nighttime noise on communities.

  9. Modelling the effect of structural QSAR parameters on skin penetration using genetic programming

    NASA Astrophysics Data System (ADS)

    Chung, K. K.; Do, D. Q.

    2010-09-01

    In order to model relationships between chemical structures and biological effects in quantitative structure-activity relationship (QSAR) data, an alternative technique of artificial intelligence computing—genetic programming (GP)—was investigated and compared to the traditional method—statistical. GP, with the primary advantage of generating mathematical equations, was employed to model QSAR data and to define the most important molecular descriptions in QSAR data. The models predicted by GP agreed with the statistical results, and the most predictive models of GP were significantly improved when compared to the statistical models using ANOVA. Recently, artificial intelligence techniques have been applied widely to analyse QSAR data. With the capability of generating mathematical equations, GP can be considered as an effective and efficient method for modelling QSAR data.

  10. Fast and reliable prediction of domain-peptide binding affinity using coarse-grained structure models.

    PubMed

    Tian, Feifei; Tan, Rui; Guo, Tailin; Zhou, Peng; Yang, Li

    2013-07-01

    Domain-peptide recognition and interaction are fundamentally important for eukaryotic signaling and regulatory networks. It is thus essential to quantitatively infer the binding stability and specificity of such interaction based upon large-scale but low-accurate complex structure models which could be readily obtained from sophisticated molecular modeling procedure. In the present study, a new method is described for the fast and reliable prediction of domain-peptide binding affinity with coarse-grained structure models. This method is designed to tolerate strong random noises involved in domain-peptide complex structures and uses statistical modeling approach to eliminate systematic bias associated with a group of investigated samples. As a paradigm, this method was employed to model and predict the binding behavior of various peptides to four evolutionarily unrelated peptide-recognition domains (PRDs), i.e. human amph SH3, human nherf PDZ, yeast syh GYF and yeast bmh 14-3-3, and moreover, we explored the molecular mechanism and biological implication underlying the binding of cognate and noncognate peptide ligands to their domain receptors. It is expected that the newly proposed method could be further used to perform genome-wide inference of domain-peptide binding at three-dimensional structure level. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. In Silico Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects

    PubMed Central

    Cronin, Mark T.D.; Enoch, Steven J.; Mellor, Claire L.; Przybylak, Katarzyna R.; Richarz, Andrea-Nicole; Madden, Judith C.

    2017-01-01

    In silico methods to predict toxicity include the use of (Quantitative) Structure-Activity Relationships ((Q)SARs) as well as grouping (category formation) allowing for read-across. A challenging area for in silico modelling is the prediction of chronic toxicity and the No Observed (Adverse) Effect Level (NO(A)EL) in particular. A proposed solution to the prediction of chronic toxicity is to consider organ level effects, as opposed to modelling the NO(A)EL itself. This review has focussed on the use of structural alerts to identify potential liver toxicants. In silico profilers, or groups of structural alerts, have been developed based on mechanisms of action and informed by current knowledge of Adverse Outcome Pathways. These profilers are robust and can be coded computationally to allow for prediction. However, they do not cover all mechanisms or modes of liver toxicity and recommendations for the improvement of these approaches are given. PMID:28744348

  12. In Silico Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects.

    PubMed

    Cronin, Mark T D; Enoch, Steven J; Mellor, Claire L; Przybylak, Katarzyna R; Richarz, Andrea-Nicole; Madden, Judith C

    2017-07-01

    In silico methods to predict toxicity include the use of (Quantitative) Structure-Activity Relationships ((Q)SARs) as well as grouping (category formation) allowing for read-across. A challenging area for in silico modelling is the prediction of chronic toxicity and the No Observed (Adverse) Effect Level (NO(A)EL) in particular. A proposed solution to the prediction of chronic toxicity is to consider organ level effects, as opposed to modelling the NO(A)EL itself. This review has focussed on the use of structural alerts to identify potential liver toxicants. In silico profilers, or groups of structural alerts, have been developed based on mechanisms of action and informed by current knowledge of Adverse Outcome Pathways. These profilers are robust and can be coded computationally to allow for prediction. However, they do not cover all mechanisms or modes of liver toxicity and recommendations for the improvement of these approaches are given.

  13. Model-based analysis of N-glycosylation in Chinese hamster ovary cells

    PubMed Central

    Krambeck, Frederick J.; Bennun, Sandra V.; Betenbaugh, Michael J.

    2017-01-01

    The Chinese hamster ovary (CHO) cell is the gold standard for manufacturing of glycosylated recombinant proteins for production of biotherapeutics. The similarity of its glycosylation patterns to the human versions enable the products of this cell line favorable pharmacokinetic properties and lower likelihood of causing immunogenic responses. Because glycan structures are the product of the concerted action of intracellular enzymes, it is difficult to predict a priori how the effects of genetic manipulations alter glycan structures of cells and therapeutic properties. For that reason, quantitative models able to predict glycosylation have emerged as promising tools to deal with the complexity of glycosylation processing. For example, an earlier version of the same model used in this study was used by others to successfully predict changes in enzyme activities that could produce a desired change in glycan structure. In this study we utilize an updated version of this model to provide a comprehensive analysis of N-glycosylation in ten Chinese hamster ovary (CHO) cell lines that include a wild type parent and nine mutants of CHO, through interpretation of previously published mass spectrometry data. The updated N-glycosylation mathematical model contains up to 50,605 glycan structures. Adjusting the enzyme activities in this model to match N-glycan mass spectra produces detailed predictions of the glycosylation process, enzyme activity profiles and complete glycosylation profiles of each of the cell lines. These profiles are consistent with biochemical and genetic data reported previously. The model-based results also predict glycosylation features of the cell lines not previously published, indicating more complex changes in glycosylation enzyme activities than just those resulting directly from gene mutations. The model predicts that the CHO cell lines possess regulatory mechanisms that allow them to adjust glycosylation enzyme activities to mitigate side effects of the primary loss or gain of glycosylation function known to exist in these mutant cell lines. Quantitative models of CHO cell glycosylation have the potential for predicting how glycoengineering manipulations might affect glycoform distributions to improve the therapeutic performance of glycoprotein products. PMID:28486471

  14. Building protein-protein interaction networks for Leishmania species through protein structural information.

    PubMed

    Dos Santos Vasconcelos, Crhisllane Rafaele; de Lima Campos, Túlio; Rezende, Antonio Mauro

    2018-03-06

    Systematic analysis of a parasite interactome is a key approach to understand different biological processes. It makes possible to elucidate disease mechanisms, to predict protein functions and to select promising targets for drug development. Currently, several approaches for protein interaction prediction for non-model species incorporate only small fractions of the entire proteomes and their interactions. Based on this perspective, this study presents an integration of computational methodologies, protein network predictions and comparative analysis of the protozoan species Leishmania braziliensis and Leishmania infantum. These parasites cause Leishmaniasis, a worldwide distributed and neglected disease, with limited treatment options using currently available drugs. The predicted interactions were obtained from a meta-approach, applying rigid body docking tests and template-based docking on protein structures predicted by different comparative modeling techniques. In addition, we trained a machine-learning algorithm (Gradient Boosting) using docking information performed on a curated set of positive and negative protein interaction data. Our final model obtained an AUC = 0.88, with recall = 0.69, specificity = 0.88 and precision = 0.83. Using this approach, it was possible to confidently predict 681 protein structures and 6198 protein interactions for L. braziliensis, and 708 protein structures and 7391 protein interactions for L. infantum. The predicted networks were integrated to protein interaction data already available, analyzed using several topological features and used to classify proteins as essential for network stability. The present study allowed to demonstrate the importance of integrating different methodologies of interaction prediction to increase the coverage of the protein interaction of the studied protocols, besides it made available protein structures and interactions not previously reported.

  15. Performance of combined fragmentation and retention prediction for the identification of organic micropollutants by LC-HRMS.

    PubMed

    Hu, Meng; Müller, Erik; Schymanski, Emma L; Ruttkies, Christoph; Schulze, Tobias; Brack, Werner; Krauss, Martin

    2018-03-01

    In nontarget screening, structure elucidation of small molecules from high resolution mass spectrometry (HRMS) data is challenging, particularly the selection of the most likely candidate structure among the many retrieved from compound databases. Several fragmentation and retention prediction methods have been developed to improve this candidate selection. In order to evaluate their performance, we compared two in silico fragmenters (MetFrag and CFM-ID) and two retention time prediction models (based on the chromatographic hydrophobicity index (CHI) and on log D). A set of 78 known organic micropollutants was analyzed by liquid chromatography coupled to a LTQ Orbitrap HRMS with electrospray ionization (ESI) in positive and negative mode using two fragmentation techniques with different collision energies. Both fragmenters (MetFrag and CFM-ID) performed well for most compounds, with average ranking the correct candidate structure within the top 25% and 22 to 37% for ESI+ and ESI- mode, respectively. The rank of the correct candidate structure slightly improved when MetFrag and CFM-ID were combined. For unknown compounds detected in both ESI+ and ESI-, generally positive mode mass spectra were better for further structure elucidation. Both retention prediction models performed reasonably well for more hydrophobic compounds but not for early eluting hydrophilic substances. The log D prediction showed a better accuracy than the CHI model. Although the two fragmentation prediction methods are more diagnostic and sensitive for candidate selection, the inclusion of retention prediction by calculating a consensus score with optimized weighting can improve the ranking of correct candidates as compared to the individual methods. Graphical abstract Consensus workflow for combining fragmentation and retention prediction in LC-HRMS-based micropollutant identification.

  16. Impact of observation error structure on satellite soil moisture assimilation into a rainfall-runoff model

    USDA-ARS?s Scientific Manuscript database

    In Ensemble Kalman Filter (EnKF)-based data assimilation, the background prediction of a model is updated using observations and relative weights based on the model prediction and observation uncertainties. In practice, both model and observation uncertainties are difficult to quantify and they have...

  17. THE FUTURE OF COMPUTER-BASED TOXICITY PREDICTION: MECHANISM-BASED MODELS VS. INFORMATION MINING APPROACHES

    EPA Science Inventory


    The Future of Computer-Based Toxicity Prediction:
    Mechanism-Based Models vs. Information Mining Approaches

    When we speak of computer-based toxicity prediction, we are generally referring to a broad array of approaches which rely primarily upon chemical structure ...

  18. Biomacromolecular quantitative structure-activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity.

    PubMed

    Zhou, Peng; Wang, Congcong; Tian, Feifei; Ren, Yanrong; Yang, Chao; Huang, Jian

    2013-01-01

    Quantitative structure-activity relationship (QSAR), a regression modeling methodology that establishes statistical correlation between structure feature and apparent behavior for a series of congeneric molecules quantitatively, has been widely used to evaluate the activity, toxicity and property of various small-molecule compounds such as drugs, toxicants and surfactants. However, it is surprising to see that such useful technique has only very limited applications to biomacromolecules, albeit the solved 3D atom-resolution structures of proteins, nucleic acids and their complexes have accumulated rapidly in past decades. Here, we present a proof-of-concept paradigm for the modeling, prediction and interpretation of the binding affinity of 144 sequence-nonredundant, structure-available and affinity-known protein complexes (Kastritis et al. Protein Sci 20:482-491, 2011) using a biomacromolecular QSAR (BioQSAR) scheme. We demonstrate that the modeling performance and predictive power of BioQSAR are comparable to or even better than that of traditional knowledge-based strategies, mechanism-type methods and empirical scoring algorithms, while BioQSAR possesses certain additional features compared to the traditional methods, such as adaptability, interpretability, deep-validation and high-efficiency. The BioQSAR scheme could be readily modified to infer the biological behavior and functions of other biomacromolecules, if their X-ray crystal structures, NMR conformation assemblies or computationally modeled structures are available.

  19. The Prediction of Consumer Buying Intentions: A Comparative Study of the Predictive Efficacy of Two Attitudinal Models. Faculty Working Paper No. 234.

    ERIC Educational Resources Information Center

    Bhagat, Rabi S.; And Others

    The role of attitudes in the conduct of buyer behavior is examined in the context of two competitive models of attitude structure and attitude-behavior relationship. Specifically, the objectives of the study were to compare the Fishbein and Sheth models on the criteria of predictive as well as cross validities. Data on both the models were…

  20. Prediction of homoprotein and heteroprotein complexes by protein docking and template‐based modeling: A CASP‐CAPRI experiment

    PubMed Central

    Velankar, Sameer; Kryshtafovych, Andriy; Huang, Shen‐You; Schneidman‐Duhovny, Dina; Sali, Andrej; Segura, Joan; Fernandez‐Fuentes, Narcis; Viswanath, Shruthi; Elber, Ron; Grudinin, Sergei; Popov, Petr; Neveu, Emilie; Lee, Hasup; Baek, Minkyung; Park, Sangwoo; Heo, Lim; Rie Lee, Gyu; Seok, Chaok; Qin, Sanbo; Zhou, Huan‐Xiang; Ritchie, David W.; Maigret, Bernard; Devignes, Marie‐Dominique; Ghoorah, Anisah; Torchala, Mieczyslaw; Chaleil, Raphaël A.G.; Bates, Paul A.; Ben‐Zeev, Efrat; Eisenstein, Miriam; Negi, Surendra S.; Weng, Zhiping; Vreven, Thom; Pierce, Brian G.; Borrman, Tyler M.; Yu, Jinchao; Ochsenbein, Françoise; Guerois, Raphaël; Vangone, Anna; Rodrigues, João P.G.L.M.; van Zundert, Gydo; Nellen, Mehdi; Xue, Li; Karaca, Ezgi; Melquiond, Adrien S.J.; Visscher, Koen; Kastritis, Panagiotis L.; Bonvin, Alexandre M.J.J.; Xu, Xianjin; Qiu, Liming; Yan, Chengfei; Li, Jilong; Ma, Zhiwei; Cheng, Jianlin; Zou, Xiaoqin; Shen, Yang; Peterson, Lenna X.; Kim, Hyung‐Rae; Roy, Amit; Han, Xusi; Esquivel‐Rodriguez, Juan; Kihara, Daisuke; Yu, Xiaofeng; Bruce, Neil J.; Fuller, Jonathan C.; Wade, Rebecca C.; Anishchenko, Ivan; Kundrotas, Petras J.; Vakser, Ilya A.; Imai, Kenichiro; Yamada, Kazunori; Oda, Toshiyuki; Nakamura, Tsukasa; Tomii, Kentaro; Pallara, Chiara; Romero‐Durana, Miguel; Jiménez‐García, Brian; Moal, Iain H.; Férnandez‐Recio, Juan; Joung, Jong Young; Kim, Jong Yun; Joo, Keehyoung; Lee, Jooyoung; Kozakov, Dima; Vajda, Sandor; Mottarella, Scott; Hall, David R.; Beglov, Dmitri; Mamonov, Artem; Xia, Bing; Bohnuud, Tanggis; Del Carpio, Carlos A.; Ichiishi, Eichiro; Marze, Nicholas; Kuroda, Daisuke; Roy Burman, Shourya S.; Gray, Jeffrey J.; Chermak, Edrisse; Cavallo, Luigi; Oliva, Romina; Tovchigrechko, Andrey

    2016-01-01

    ABSTRACT We present the results for CAPRI Round 30, the first joint CASP‐CAPRI experiment, which brought together experts from the protein structure prediction and protein–protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact‐sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology‐built subunit models and the smaller pair‐wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. Proteins 2016; 84(Suppl 1):323–348. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27122118

  1. Genetic programming based quantitative structure-retention relationships for the prediction of Kovats retention indices.

    PubMed

    Goel, Purva; Bapat, Sanket; Vyas, Renu; Tambe, Amruta; Tambe, Sanjeev S

    2015-11-13

    The development of quantitative structure-retention relationships (QSRR) aims at constructing an appropriate linear/nonlinear model for the prediction of the retention behavior (such as Kovats retention index) of a solute on a chromatographic column. Commonly, multi-linear regression and artificial neural networks are used in the QSRR development in the gas chromatography (GC). In this study, an artificial intelligence based data-driven modeling formalism, namely genetic programming (GP), has been introduced for the development of quantitative structure based models predicting Kovats retention indices (KRI). The novelty of the GP formalism is that given an example dataset, it searches and optimizes both the form (structure) and the parameters of an appropriate linear/nonlinear data-fitting model. Thus, it is not necessary to pre-specify the form of the data-fitting model in the GP-based modeling. These models are also less complex, simple to understand, and easy to deploy. The effectiveness of GP in constructing QSRRs has been demonstrated by developing models predicting KRIs of light hydrocarbons (case study-I) and adamantane derivatives (case study-II). In each case study, two-, three- and four-descriptor models have been developed using the KRI data available in the literature. The results of these studies clearly indicate that the GP-based models possess an excellent KRI prediction accuracy and generalization capability. Specifically, the best performing four-descriptor models in both the case studies have yielded high (>0.9) values of the coefficient of determination (R(2)) and low values of root mean squared error (RMSE) and mean absolute percent error (MAPE) for training, test and validation set data. The characteristic feature of this study is that it introduces a practical and an effective GP-based method for developing QSRRs in gas chromatography that can be gainfully utilized for developing other types of data-driven models in chromatography science. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Addressing recent docking challenges: A hybrid strategy to integrate template-based and free protein-protein docking.

    PubMed

    Yan, Yumeng; Wen, Zeyu; Wang, Xinxiang; Huang, Sheng-You

    2017-03-01

    Protein-protein docking is an important computational tool for predicting protein-protein interactions. With the rapid development of proteomics projects, more and more experimental binding information ranging from mutagenesis data to three-dimensional structures of protein complexes are becoming available. Therefore, how to appropriately incorporate the biological information into traditional ab initio docking has been an important issue and challenge in the field of protein-protein docking. To address these challenges, we have developed a Hybrid DOCKing protocol of template-based and template-free approaches, referred to as HDOCK. The basic procedure of HDOCK is to model the structures of individual components based on the template complex by a template-based method if a template is available; otherwise, the component structures will be modeled based on monomer proteins by regular homology modeling. Then, the complex structure of the component models is predicted by traditional protein-protein docking. With the HDOCK protocol, we have participated in the CPARI experiment for rounds 28-35. Out of the 25 CASP-CAPRI targets for oligomer modeling, our HDOCK protocol predicted correct models for 16 targets, ranking one of the top algorithms in this challenge. Our docking method also made correct predictions on other CAPRI challenges such as protein-peptide binding for 6 out of 8 targets and water predictions for 2 out of 2 targets. The advantage of our hybrid docking approach over pure template-based docking was further confirmed by a comparative evaluation on 20 CASP-CAPRI targets. Proteins 2017; 85:497-512. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure.

    PubMed

    Baek, Minkyung; Park, Taeyong; Heo, Lim; Park, Chiwook; Seok, Chaok

    2017-07-03

    Homo-oligomerization of proteins is abundant in nature, and is often intimately related with the physiological functions of proteins, such as in metabolism, signal transduction or immunity. Information on the homo-oligomer structure is therefore important to obtain a molecular-level understanding of protein functions and their regulation. Currently available web servers predict protein homo-oligomer structures either by template-based modeling using homo-oligomer templates selected from the protein structure database or by ab initio docking of monomer structures resolved by experiment or predicted by computation. The GalaxyHomomer server, freely accessible at http://galaxy.seoklab.org/homomer, carries out template-based modeling, ab initio docking or both depending on the availability of proper oligomer templates. It also incorporates recently developed model refinement methods that can consistently improve model quality. Moreover, the server provides additional options that can be chosen by the user depending on the availability of information on the monomer structure, oligomeric state and locations of unreliable/flexible loops or termini. The performance of the server was better than or comparable to that of other available methods when tested on benchmark sets and in a recent CASP performed in a blind fashion. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. A Feature-based Developmental Model of the Infant Brain in Structural MRI

    PubMed Central

    Toews, Matthew; Wells, William M.; Zöllei, Lilla

    2014-01-01

    In this paper, anatomical development is modeled as a collection of distinctive image patterns localized in space and time. A Bayesian posterior probability is defined over a random variable of subject age, conditioned on data in the form of scale-invariant image features. The model is automatically learned from a large set of images exhibiting significant variation, used to discover anatomical structure related to age and development, and fit to new images to predict age. The model is applied to a set of 230 infant structural MRIs of 92 subjects acquired at multiple sites over an age range of 8-590 days. Experiments demonstrate that the model can be used to identify age-related anatomical structure, and to predict the age of new subjects with an average error of 72 days. PMID:23286050

  5. Geometric modeling of Plateau borders using the orthographic projection method for closed cell rigid polyurethane foam thermal conductivity prediction

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Wu, Tao; Peng, Chuang; Adegbite, Stephen

    2017-09-01

    The geometric Plateau border model for closed cell polyurethane foam was developed based on volume integrations of approximated 3D four-cusp hypocycloid structure. The tetrahedral structure of convex struts was orthogonally projected into 2D three-cusp deltoid with three central cylinders. The idealized single unit strut was modeled by superposition. The volume of each component was calculated by geometric analyses. The strut solid fraction f s and foam porosity coefficient δ were calculated based on representative elementary volume of Kelvin and Weaire-Phelan structures. The specific surface area Sv derived respectively from packing structures and deltoid approximation model were put into contrast against strut dimensional ratio ɛ. The characteristic foam parameters obtained from this semi-empirical model were further employed to predict foam thermal conductivity.

  6. Consensus models to predict endocrine disruption for all ...

    EPA Pesticide Factsheets

    Humans are potentially exposed to tens of thousands of man-made chemicals in the environment. It is well known that some environmental chemicals mimic natural hormones and thus have the potential to be endocrine disruptors. Most of these environmental chemicals have never been tested for their ability to disrupt the endocrine system, in particular, their ability to interact with the estrogen receptor. EPA needs tools to prioritize thousands of chemicals, for instance in the Endocrine Disruptor Screening Program (EDSP). Collaborative Estrogen Receptor Activity Prediction Project (CERAPP) was intended to be a demonstration of the use of predictive computational models on HTS data including ToxCast and Tox21 assays to prioritize a large chemical universe of 32464 unique structures for one specific molecular target – the estrogen receptor. CERAPP combined multiple computational models for prediction of estrogen receptor activity, and used the predicted results to build a unique consensus model. Models were developed in collaboration between 17 groups in the U.S. and Europe and applied to predict the common set of chemicals. Structure-based techniques such as docking and several QSAR modeling approaches were employed, mostly using a common training set of 1677 compounds provided by U.S. EPA, to build a total of 42 classification models and 8 regression models for binding, agonist and antagonist activity. All predictions were evaluated on ToxCast data and on an exte

  7. Correlation of ground tests and analyses of a dynamically scaled Space Station model configuration

    NASA Technical Reports Server (NTRS)

    Javeed, Mehzad; Edighoffer, Harold H.; Mcgowan, Paul E.

    1993-01-01

    Verification of analytical models through correlation with ground test results of a complex space truss structure is demonstrated. A multi-component, dynamically scaled space station model configuration is the focus structure for this work. Previously established test/analysis correlation procedures are used to develop improved component analytical models. Integrated system analytical models, consisting of updated component analytical models, are compared with modal test results to establish the accuracy of system-level dynamic predictions. Design sensitivity model updating methods are shown to be effective for providing improved component analytical models. Also, the effects of component model accuracy and interface modeling fidelity on the accuracy of integrated model predictions is examined.

  8. Can Student Nurse Critical Thinking Be Predicted from Perceptions of Structural Empowerment within the Undergraduate, Pre-Licensure Learning Environment?

    ERIC Educational Resources Information Center

    Caswell-Moore, Shelley P.

    2013-01-01

    The purpose of this study was to test a model using Rosabeth Kanter's theory (1977; 1993) of structural empowerment to determine if this model can predict student nurses' level of critical thinking. Major goals of nursing education are to cultivate graduates who can think critically with a keen sense of clinical judgment, and who can perform…

  9. Modeling and prediction of peptide drift times in ion mobility spectrometry using sequence-based and structure-based approaches.

    PubMed

    Zhang, Yiming; Jin, Quan; Wang, Shuting; Ren, Ren

    2011-05-01

    The mobile behavior of 1481 peptides in ion mobility spectrometry (IMS), which are generated by protease digestion of the Drosophila melanogaster proteome, is modeled and predicted based on two different types of characterization methods, i.e. sequence-based approach and structure-based approach. In this procedure, the sequence-based approach considers both the amino acid composition of a peptide and the local environment profile of each amino acid in the peptide; the structure-based approach is performed with the CODESSA protocol, which regards a peptide as a common organic compound and generates more than 200 statistically significant variables to characterize the whole structure profile of a peptide molecule. Subsequently, the nonlinear support vector machine (SVM) and Gaussian process (GP) as well as linear partial least squares (PLS) regression is employed to correlate the structural parameters of the characterizations with the IMS drift times of these peptides. The obtained quantitative structure-spectrum relationship (QSSR) models are evaluated rigorously and investigated systematically via both one-deep and two-deep cross-validations as well as the rigorous Monte Carlo cross-validation (MCCV). We also give a comprehensive comparison on the resulting statistics arising from the different combinations of variable types with modeling methods and find that the sequence-based approach can give the QSSR models with better fitting ability and predictive power but worse interpretability than the structure-based approach. In addition, though the QSSR modeling using sequence-based approach is not needed for the preparation of the minimization structures of peptides before the modeling, it would be considerably efficient as compared to that using structure-based approach. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Introducing etch kernels for efficient pattern sampling and etch bias prediction

    NASA Astrophysics Data System (ADS)

    Weisbuch, François; Lutich, Andrey; Schatz, Jirka

    2018-01-01

    Successful patterning requires good control of the photolithography and etch processes. While compact litho models, mainly based on rigorous physics, can predict very well the contours printed in photoresist, pure empirical etch models are less accurate and more unstable. Compact etch models are based on geometrical kernels to compute the litho-etch biases that measure the distance between litho and etch contours. The definition of the kernels, as well as the choice of calibration patterns, is critical to get a robust etch model. This work proposes to define a set of independent and anisotropic etch kernels-"internal, external, curvature, Gaussian, z_profile"-designed to represent the finest details of the resist geometry to characterize precisely the etch bias at any point along a resist contour. By evaluating the etch kernels on various structures, it is possible to map their etch signatures in a multidimensional space and analyze them to find an optimal sampling of structures. The etch kernels evaluated on these structures were combined with experimental etch bias derived from scanning electron microscope contours to train artificial neural networks to predict etch bias. The method applied to contact and line/space layers shows an improvement in etch model prediction accuracy over standard etch model. This work emphasizes the importance of the etch kernel definition to characterize and predict complex etch effects.

  11. Grain growth prediction based on data assimilation by implementing 4DVar on multi-phase-field model

    NASA Astrophysics Data System (ADS)

    Ito, Shin-ichi; Nagao, Hiromichi; Kasuya, Tadashi; Inoue, Junya

    2017-12-01

    We propose a method to predict grain growth based on data assimilation by using a four-dimensional variational method (4DVar). When implemented on a multi-phase-field model, the proposed method allows us to calculate the predicted grain structures and uncertainties in them that depend on the quality and quantity of the observational data. We confirm through numerical tests involving synthetic data that the proposed method correctly reproduces the true phase-field assumed in advance. Furthermore, it successfully quantifies uncertainties in the predicted grain structures, where such uncertainty quantifications provide valuable information to optimize the experimental design.

  12. Automated use of mutagenesis data in structure prediction.

    PubMed

    Nanda, Vikas; DeGrado, William F

    2005-05-15

    In the absence of experimental structural determination, numerous methods are available to indirectly predict or probe the structure of a target molecule. Genetic modification of a protein sequence is a powerful tool for identifying key residues involved in binding reactions or protein stability. Mutagenesis data is usually incorporated into the modeling process either through manual inspection of model compatibility with empirical data, or through the generation of geometric constraints linking sensitive residues to a binding interface. We present an approach derived from statistical studies of lattice models for introducing mutation information directly into the fitness score. The approach takes into account the phenotype of mutation (neutral or disruptive) and calculates the energy for a given structure over an ensemble of sequences. The structure prediction procedure searches for the optimal conformation where neutral sequences either have no impact or improve stability and disruptive sequences reduce stability relative to wild type. We examine three types of sequence ensembles: information from saturation mutagenesis, scanning mutagenesis, and homologous proteins. Incorporating multiple sequences into a statistical ensemble serves to energetically separate the native state and misfolded structures. As a result, the prediction of structure with a poor force field is sufficiently enhanced by mutational information to improve accuracy. Furthermore, by separating misfolded conformations from the target score, the ensemble energy serves to speed up conformational search algorithms such as Monte Carlo-based methods. Copyright 2005 Wiley-Liss, Inc.

  13. Polymer physics predicts the effects of structural variants on chromatin architecture.

    PubMed

    Bianco, Simona; Lupiáñez, Darío G; Chiariello, Andrea M; Annunziatella, Carlo; Kraft, Katerina; Schöpflin, Robert; Wittler, Lars; Andrey, Guillaume; Vingron, Martin; Pombo, Ana; Mundlos, Stefan; Nicodemi, Mario

    2018-05-01

    Structural variants (SVs) can result in changes in gene expression due to abnormal chromatin folding and cause disease. However, the prediction of such effects remains a challenge. Here we present a polymer-physics-based approach (PRISMR) to model 3D chromatin folding and to predict enhancer-promoter contacts. PRISMR predicts higher-order chromatin structure from genome-wide chromosome conformation capture (Hi-C) data. Using the EPHA4 locus as a model, the effects of pathogenic SVs are predicted in silico and compared to Hi-C data generated from mouse limb buds and patient-derived fibroblasts. PRISMR deconvolves the folding complexity of the EPHA4 locus and identifies SV-induced ectopic contacts and alterations of 3D genome organization in homozygous or heterozygous states. We show that SVs can reconfigure topologically associating domains, thereby producing extensive rewiring of regulatory interactions and causing disease by gene misexpression. PRISMR can be used to predict interactions in silico, thereby providing a tool for analyzing the disease-causing potential of SVs.

  14. Protein 8-class secondary structure prediction using conditional neural fields.

    PubMed

    Wang, Zhiyong; Zhao, Feng; Peng, Jian; Xu, Jinbo

    2011-10-01

    Compared with the protein 3-class secondary structure (SS) prediction, the 8-class prediction gains less attention and is also much more challenging, especially for proteins with few sequence homologs. This paper presents a new probabilistic method for 8-class SS prediction using conditional neural fields (CNFs), a recently invented probabilistic graphical model. This CNF method not only models the complex relationship between sequence features and SS, but also exploits the interdependency among SS types of adjacent residues. In addition to sequence profiles, our method also makes use of non-evolutionary information for SS prediction. Tested on the CB513 and RS126 data sets, our method achieves Q8 accuracy of 64.9 and 64.7%, respectively, which are much better than the SSpro8 web server (51.0 and 48.0%, respectively). Our method can also be used to predict other structure properties (e.g. solvent accessibility) of a protein or the SS of RNA. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Model-Based Fatigue Prognosis of Fiber-Reinforced Laminates Exhibiting Concurrent Damage Mechanisms

    NASA Technical Reports Server (NTRS)

    Corbetta, M.; Sbarufatti, C.; Saxena, A.; Giglio, M.; Goebel, K.

    2016-01-01

    Prognostics of large composite structures is a topic of increasing interest in the field of structural health monitoring for aerospace, civil, and mechanical systems. Along with recent advancements in real-time structural health data acquisition and processing for damage detection and characterization, model-based stochastic methods for life prediction are showing promising results in the literature. Among various model-based approaches, particle-filtering algorithms are particularly capable in coping with uncertainties associated with the process. These include uncertainties about information on the damage extent and the inherent uncertainties of the damage propagation process. Some efforts have shown successful applications of particle filtering-based frameworks for predicting the matrix crack evolution and structural stiffness degradation caused by repetitive fatigue loads. Effects of other damage modes such as delamination, however, are not incorporated in these works. It is well established that delamination and matrix cracks not only co-exist in most laminate structures during the fatigue degradation process but also affect each other's progression. Furthermore, delamination significantly alters the stress-state in the laminates and accelerates the material degradation leading to catastrophic failure. Therefore, the work presented herein proposes a particle filtering-based framework for predicting a structure's remaining useful life with consideration of multiple co-existing damage-mechanisms. The framework uses an energy-based model from the composite modeling literature. The multiple damage-mode model has been shown to suitably estimate the energy release rate of cross-ply laminates as affected by matrix cracks and delamination modes. The model is also able to estimate the reduction in stiffness of the damaged laminate. This information is then used in the algorithms for life prediction capabilities. First, a brief summary of the energy-based damage model is provided. Then, the paper describes how the model is embedded within the prognostic framework and how the prognostics performance is assessed using observations from run-to-failure experiments

  16. CADASTER QSPR Models for Predictions of Melting and Boiling Points of Perfluorinated Chemicals.

    PubMed

    Bhhatarai, Barun; Teetz, Wolfram; Liu, Tao; Öberg, Tomas; Jeliazkova, Nina; Kochev, Nikolay; Pukalov, Ognyan; Tetko, Igor V; Kovarich, Simona; Papa, Ester; Gramatica, Paola

    2011-03-14

    Quantitative structure property relationship (QSPR) studies on per- and polyfluorinated chemicals (PFCs) on melting point (MP) and boiling point (BP) are presented. The training and prediction chemicals used for developing and validating the models were selected from Syracuse PhysProp database and literatures. The available experimental data sets were split in two different ways: a) random selection on response value, and b) structural similarity verified by self-organizing-map (SOM), in order to propose reliable predictive models, developed only on the training sets and externally verified on the prediction sets. Individual linear and non-linear approaches based models developed by different CADASTER partners on 0D-2D Dragon descriptors, E-state descriptors and fragment based descriptors as well as consensus model and their predictions are presented. In addition, the predictive performance of the developed models was verified on a blind external validation set (EV-set) prepared using PERFORCE database on 15 MP and 25 BP data respectively. This database contains only long chain perfluoro-alkylated chemicals, particularly monitored by regulatory agencies like US-EPA and EU-REACH. QSPR models with internal and external validation on two different external prediction/validation sets and study of applicability-domain highlighting the robustness and high accuracy of the models are discussed. Finally, MPs for additional 303 PFCs and BPs for 271 PFCs were predicted for which experimental measurements are unknown. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Rtools: a web server for various secondary structural analyses on single RNA sequences.

    PubMed

    Hamada, Michiaki; Ono, Yukiteru; Kiryu, Hisanori; Sato, Kengo; Kato, Yuki; Fukunaga, Tsukasa; Mori, Ryota; Asai, Kiyoshi

    2016-07-08

    The secondary structures, as well as the nucleotide sequences, are the important features of RNA molecules to characterize their functions. According to the thermodynamic model, however, the probability of any secondary structure is very small. As a consequence, any tool to predict the secondary structures of RNAs has limited accuracy. On the other hand, there are a few tools to compensate the imperfect predictions by calculating and visualizing the secondary structural information from RNA sequences. It is desirable to obtain the rich information from those tools through a friendly interface. We implemented a web server of the tools to predict secondary structures and to calculate various structural features based on the energy models of secondary structures. By just giving an RNA sequence to the web server, the user can get the different types of solutions of the secondary structures, the marginal probabilities such as base-paring probabilities, loop probabilities and accessibilities of the local bases, the energy changes by arbitrary base mutations as well as the measures for validations of the predicted secondary structures. The web server is available at http://rtools.cbrc.jp, which integrates software tools, CentroidFold, CentroidHomfold, IPKnot, CapR, Raccess, Rchange and RintD. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Evaluating Predictive Uncertainty of Hyporheic Exchange Modelling

    NASA Astrophysics Data System (ADS)

    Chow, R.; Bennett, J.; Dugge, J.; Wöhling, T.; Nowak, W.

    2017-12-01

    Hyporheic exchange is the interaction of water between rivers and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic fluxes have been attributed to the representation of heterogeneous subsurface properties. This research aims to evaluate which aspect of the subsurface representation - the spatial distribution of hydrofacies or the model for local-scale (within-facies) heterogeneity - most influences the predictive uncertainty. Also, we seek to identify data types that help reduce this uncertainty best. For this investigation, we conduct a modelling study of the Steinlach River meander, in Southwest Germany. The Steinlach River meander is an experimental site established in 2010 to monitor hyporheic exchange at the meander scale. We use HydroGeoSphere, a fully integrated surface water-groundwater model, to model hyporheic exchange and to assess the predictive uncertainty of hyporheic exchange transit times (HETT). A highly parameterized complex model is built and treated as `virtual reality', which is in turn modelled with simpler subsurface parameterization schemes (Figure). Then, we conduct Monte-Carlo simulations with these models to estimate the predictive uncertainty. Results indicate that: Uncertainty in HETT is relatively small for early times and increases with transit times. Uncertainty from local-scale heterogeneity is negligible compared to uncertainty in the hydrofacies distribution. Introducing more data to a poor model structure may reduce predictive variance, but does not reduce predictive bias. Hydraulic head observations alone cannot constrain the uncertainty of HETT, however an estimate of hyporheic exchange flux proves to be more effective at reducing this uncertainty. Figure: Approach for evaluating predictive model uncertainty. A conceptual model is first developed from the field investigations. A complex model (`virtual reality') is then developed based on that conceptual model. This complex model then serves as the basis to compare simpler model structures. Through this approach, predictive uncertainty can be quantified relative to a known reference solution.

  19. QSAR Methods.

    PubMed

    Gini, Giuseppina

    2016-01-01

    In this chapter, we introduce the basis of computational chemistry and discuss how computational methods have been extended to some biological properties and toxicology, in particular. Since about 20 years, chemical experimentation is more and more replaced by modeling and virtual experimentation, using a large core of mathematics, chemistry, physics, and algorithms. Then we see how animal experiments, aimed at providing a standardized result about a biological property, can be mimicked by new in silico methods. Our emphasis here is on toxicology and on predicting properties through chemical structures. Two main streams of such models are available: models that consider the whole molecular structure to predict a value, namely QSAR (Quantitative Structure Activity Relationships), and models that find relevant substructures to predict a class, namely SAR. The term in silico discovery is applied to chemical design, to computational toxicology, and to drug discovery. We discuss how the experimental practice in biological science is moving more and more toward modeling and simulation. Such virtual experiments confirm hypotheses, provide data for regulation, and help in designing new chemicals.

  20. Structural vascular disease in Africans: Performance of ethnic-specific waist circumference cut points using logistic regression and neural network analyses: The SABPA study.

    PubMed

    Botha, J; de Ridder, J H; Potgieter, J C; Steyn, H S; Malan, L

    2013-10-01

    A recently proposed model for waist circumference cut points (RPWC), driven by increased blood pressure, was demonstrated in an African population. We therefore aimed to validate the RPWC by comparing the RPWC and the Joint Statement Consensus (JSC) models via Logistic Regression (LR) and Neural Networks (NN) analyses. Urban African gender groups (N=171) were stratified according to the JSC and RPWC cut point models. Ultrasound carotid intima media thickness (CIMT), blood pressure (BP) and fasting bloods (glucose, high density lipoprotein (HDL) and triglycerides) were obtained in a well-controlled setting. The RPWC male model (LR ROC AUC: 0.71, NN ROC AUC: 0.71) was practically equal to the JSC model (LR ROC AUC: 0.71, NN ROC AUC: 0.69) to predict structural vascular -disease. Similarly, the female RPWC model (LR ROC AUC: 0.84, NN ROC AUC: 0.82) and JSC model (LR ROC AUC: 0.82, NN ROC AUC: 0.81) equally predicted CIMT as surrogate marker for structural vascular disease. Odds ratios supported validity where prediction of CIMT revealed -clinical -significance, well over 1, for both the JSC and RPWC models in African males and females (OR 3.75-13.98). In conclusion, the proposed RPWC model was substantially validated utilizing linear and non-linear analyses. We therefore propose ethnic-specific WC cut points (African males, ≥90 cm; -females, ≥98 cm) to predict a surrogate marker for structural vascular disease. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  1. Multiscale Modeling of PEEK Using Reactive Molecular Dynamics Modeling and Micromechanics

    NASA Technical Reports Server (NTRS)

    Pisani, William A.; Radue, Matthew; Chinkanjanarot, Sorayot; Bednarcyk, Brett A.; Pineda, Evan J.; King, Julia A.; Odegard, Gregory M.

    2018-01-01

    Polyether ether ketone (PEEK) is a high-performance, semi-crystalline thermoplastic that is used in a wide range of engineering applications, including some structural components of aircraft. The design of new PEEK-based materials requires a precise understanding of the multiscale structure and behavior of semi-crystalline PEEK. Molecular Dynamics (MD) modeling can efficiently predict bulk-level properties of single phase polymers, and micromechanics can be used to homogenize those phases based on the overall polymer microstructure. In this study, MD modeling was used to predict the mechanical properties of the amorphous and crystalline phases of PEEK. The hierarchical microstructure of PEEK, which combines the aforementioned phases, was modeled using a multiscale modeling approach facilitated by NASA's MSGMC. The bulk mechanical properties of semi-crystalline PEEK predicted using MD modeling and MSGMC agree well with vendor data, thus validating the multiscale modeling approach.

  2. Comparative Study of Shrinkage and Non-Shrinkage Model of Food Drying

    NASA Astrophysics Data System (ADS)

    Shahari, N.; Jamil, N.; Rasmani, KA.

    2016-08-01

    A single phase heat and mass model has always been used to represent the moisture and temperature distribution during the drying of food. Several effects of the drying process, such as physical and structural changes, have been considered in order to increase understanding of the movement of water and temperature. However, the comparison between the heat and mass equation with and without structural change (in terms of shrinkage), which can affect the accuracy of the prediction model, has been little investigated. In this paper, two mathematical models to describe the heat and mass transfer in food, with and without the assumption of structural change, were analysed. The equations were solved using the finite difference method. The converted coordinate system was introduced within the numerical computations for the shrinkage model. The result shows that the temperature with shrinkage predicts a higher temperature at a specific time compared to that of the non-shrinkage model. Furthermore, the predicted moisture content decreased faster at a specific time when the shrinkage effect was included in the model.

  3. QSAR models for predicting octanol/water and organic carbon/water partition coefficients of polychlorinated biphenyls.

    PubMed

    Yu, S; Gao, S; Gan, Y; Zhang, Y; Ruan, X; Wang, Y; Yang, L; Shi, J

    2016-04-01

    Quantitative structure-property relationship modelling can be a valuable alternative method to replace or reduce experimental testing. In particular, some endpoints such as octanol-water (KOW) and organic carbon-water (KOC) partition coefficients of polychlorinated biphenyls (PCBs) are easier to predict and various models have been already developed. In this paper, two different methods, which are multiple linear regression based on the descriptors generated using Dragon software and hologram quantitative structure-activity relationships, were employed to predict suspended particulate matter (SPM) derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of 209 PCBs. The predictive ability of the derived models was validated using a test set. The performances of all these models were compared with EPI Suite™ software. The results indicated that the proposed models were robust and satisfactory, and could provide feasible and promising tools for the rapid assessment of the SPM derived log KOC and generator column, shake flask and slow stirring method derived log KOW values of PCBs.

  4. Quantitative Structure – Property Relationship Modeling of Remote Liposome Loading Of Drugs

    PubMed Central

    Cern, Ahuva; Golbraikh, Alexander; Sedykh, Aleck; Tropsha, Alexander; Barenholz, Yechezkel; Goldblum, Amiram

    2012-01-01

    Remote loading of liposomes by trans-membrane gradients is used to achieve therapeutically efficacious intra-liposome concentrations of drugs. We have developed Quantitative Structure Property Relationship (QSPR) models of remote liposome loading for a dataset including 60 drugs studied in 366 loading experiments internally or elsewhere. Both experimental conditions and computed chemical descriptors were employed as independent variables to predict the initial drug/lipid ratio (D/L) required to achieve high loading efficiency. Both binary (to distinguish high vs. low initial D/L) and continuous (to predict real D/L values) models were generated using advanced machine learning approaches and five-fold external validation. The external prediction accuracy for binary models was as high as 91–96%; for continuous models the mean coefficient R2 for regression between predicted versus observed values was 0.76–0.79. We conclude that QSPR models can be used to identify candidate drugs expected to have high remote loading capacity while simultaneously optimizing the design of formulation experiments. PMID:22154932

  5. Comparison of prediction methods for octanol-air partition coefficients of diverse organic compounds.

    PubMed

    Fu, Zhiqiang; Chen, Jingwen; Li, Xuehua; Wang, Ya'nan; Yu, Haiying

    2016-04-01

    The octanol-air partition coefficient (KOA) is needed for assessing multimedia transport and bioaccumulability of organic chemicals in the environment. As experimental determination of KOA for various chemicals is costly and laborious, development of KOA estimation methods is necessary. We investigated three methods for KOA prediction, conventional quantitative structure-activity relationship (QSAR) models based on molecular structural descriptors, group contribution models based on atom-centered fragments, and a novel model that predicts KOA via solvation free energy from air to octanol phase (ΔGO(0)), with a collection of 939 experimental KOA values for 379 compounds at different temperatures (263.15-323.15 K) as validation or training sets. The developed models were evaluated with the OECD guidelines on QSAR models validation and applicability domain (AD) description. Results showed that although the ΔGO(0) model is theoretically sound and has a broad AD, the prediction accuracy of the model is the poorest. The QSAR models perform better than the group contribution models, and have similar predictability and accuracy with the conventional method that estimates KOA from the octanol-water partition coefficient and Henry's law constant. One QSAR model, which can predict KOA at different temperatures, was recommended for application as to assess the long-range transport potential of chemicals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Improve the prediction of RNA-binding residues using structural neighbours.

    PubMed

    Li, Quan; Cao, Zanxia; Liu, Haiyan

    2010-03-01

    The interactions between RNA-binding proteins (RBPs) with RNA play key roles in managing some of the cell's basic functions. The identification and prediction of RNA binding sites is important for understanding the RNA-binding mechanism. Computational approaches are being developed to predict RNA-binding residues based on the sequence- or structure-derived features. To achieve higher prediction accuracy, improvements on current prediction methods are necessary. We identified that the structural neighbors of RNA-binding and non-RNA-binding residues have different amino acid compositions. Combining this structure-derived feature with evolutionary (PSSM) and other structural information (secondary structure and solvent accessibility) significantly improves the predictions over existing methods. Using a multiple linear regression approach and 6-fold cross validation, our best model can achieve an overall correct rate of 87.8% and MCC of 0.47, with a specificity of 93.4%, correctly predict 52.4% of the RNA-binding residues for a dataset containing 107 non-homologous RNA-binding proteins. Compared with existing methods, including the amino acid compositions of structure neighbors lead to clearly improvement. A web server was developed for predicting RNA binding residues in a protein sequence (or structure),which is available at http://mcgill.3322.org/RNA/.

  7. Quantum-gravity predictions for the fine-structure constant

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Held, Aaron; Wetterich, Christof

    2018-07-01

    Asymptotically safe quantum fluctuations of gravity can uniquely determine the value of the gauge coupling for a large class of grand unified models. In turn, this makes the electromagnetic fine-structure constant calculable. The balance of gravity and matter fluctuations results in a fixed point for the running of the gauge coupling. It is approached as the momentum scale is lowered in the transplanckian regime, leading to a uniquely predicted value of the gauge coupling at the Planck scale. The precise value of the predicted fine-structure constant depends on the matter content of the grand unified model. It is proportional to the gravitational fluctuation effects for which computational uncertainties remain to be settled.

  8. Evidence for the Continuous Latent Structure of Mania in the Epidemiologic Catchment Area from Multiple Latent Structure and Construct Validation Methodologies

    PubMed Central

    Prisciandaro, James J.; Roberts, John E.

    2011-01-01

    Background Although psychiatric diagnostic systems have conceptualized mania as a discrete phenomenon, appropriate latent structure investigations testing this conceptualization are lacking. In contrast to these diagnostic systems, several influential theories of mania have suggested a continuous conceptualization. The present study examined whether mania has a continuous or discrete latent structure using a comprehensive approach including taxometric, information-theoretic latent distribution modeling (ITLDM), and predictive validity methodologies in the Epidemiologic Catchment Area (ECA) study. Methods Eight dichotomous manic symptom items were submitted to a variety of latent structural analyses; including factor analyses, taxometric procedures, and ITLDM; in 10,105 ECA community participants. Additionally, a variety of continuous and discrete models of mania were compared in terms of their relative abilities to predict outcomes (i.e., health service utilization, internalizing and externalizing disorders, and suicidal behavior). Results Taxometric and ITLDM analyses consistently supported a continuous conceptualization of mania. In ITLDM analyses, a continuous model of mania demonstrated 6:52:1 odds over the best fitting latent class model of mania. Factor analyses suggested that the continuous structure of mania was best represented by a single latent factor. Predictive validity analyses demonstrated a consistent superior ability of continuous models of mania relative to discrete models. Conclusions The present study provided three independent lines of support for a continuous conceptualization of mania. The implications of a continuous model of mania are discussed. PMID:20507671

  9. Exploring tropical forest vegetation dynamics using the FATES model

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Fisher, R.; Knox, R. G.; Chambers, J.; Kueppers, L. M.; Christoffersen, B. O.; Davies, S. J.; Dietze, M.; Holm, J.; Massoud, E. C.; Muller-Landau, H. C.; Powell, T.; Serbin, S.; Shuman, J. K.; Walker, A. P.; Wright, S. J.; Xu, C.

    2017-12-01

    Tropical forest vegetation dynamics represent a critical climate feedback in the Earth system, which is poorly represented in current global modeling approaches. We discuss recent progress on exploring these dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), a demographic vegetation model for the CESM and ACME ESMs. We will discuss benchmarks of FATES predictions for forest structure against inventory sites, sensitivity of FATES predictions of size and age structure to model parameter uncertainty, and experiments using the FATES model to explore PFT competitive dynamics and the dynamics of size and age distributions in responses to changing climate and CO2.

  10. Two-structured solid particle model for predicting and analyzing supercritical extraction performance.

    PubMed

    Samadi, Sara; Vaziri, Behrooz Mahmoodzadeh

    2017-07-14

    Solid extraction process, using the supercritical fluid, is a modern science and technology, which has come in vogue regarding its considerable advantages. In the present article, a new and comprehensive model is presented for predicting the performance and separation yield of the supercritical extraction process. The base of process modeling is partial differential mass balances. In the proposed model, the solid particles are considered twofold: (a) particles with intact structure, (b) particles with destructed structure. A distinct mass transfer coefficient has been used for extraction of each part of solid particles to express different extraction regimes and to evaluate the process accurately (internal mass transfer coefficient was used for the intact-structure particles and external mass transfer coefficient was employed for the destructed-structure particles). In order to evaluate and validate the proposed model, the obtained results from simulations were compared with two series of available experimental data for extraction of chamomile extract with supercritical carbon dioxide, which had an excellent agreement. This is indicative of high potentiality of the model in predicting the extraction process, precisely. In the following, the effect of major parameters on supercritical extraction process, like pressure, temperature, supercritical fluid flow rate, and the size of solid particles was evaluated. The model can be used as a superb starting point for scientific and experimental applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hierarchical kernel mixture models for the prediction of AIDS disease progression using HIV structural gp120 profiles

    PubMed Central

    2010-01-01

    Changes to the glycosylation profile on HIV gp120 can influence viral pathogenesis and alter AIDS disease progression. The characterization of glycosylation differences at the sequence level is inadequate as the placement of carbohydrates is structurally complex. However, no structural framework is available to date for the study of HIV disease progression. In this study, we propose a novel machine-learning based framework for the prediction of AIDS disease progression in three stages (RP, SP, and LTNP) using the HIV structural gp120 profile. This new intelligent framework proves to be accurate and provides an important benchmark for predicting AIDS disease progression computationally. The model is trained using a novel HIV gp120 glycosylation structural profile to detect possible stages of AIDS disease progression for the target sequences of HIV+ individuals. The performance of the proposed model was compared to seven existing different machine-learning models on newly proposed gp120-Benchmark_1 dataset in terms of error-rate (MSE), accuracy (CCI), stability (STD), and complexity (TBM). The novel framework showed better predictive performance with 67.82% CCI, 30.21 MSE, 0.8 STD, and 2.62 TBM on the three stages of AIDS disease progression of 50 HIV+ individuals. This framework is an invaluable bioinformatics tool that will be useful to the clinical assessment of viral pathogenesis. PMID:21143806

  12. Target specific proteochemometric model development for BACE1 - protein flexibility and structural water are critical in virtual screening.

    PubMed

    Manoharan, Prabu; Chennoju, Kiranmai; Ghoshal, Nanda

    2015-07-01

    BACE1 is an attractive target in Alzheimer's disease (AD) treatment. A rational drug design effort for the inhibition of BACE1 is actively pursued by researchers in both academic and pharmaceutical industries. This continued effort led to the steady accumulation of BACE1 crystal structures, co-complexed with different classes of inhibitors. This wealth of information is used in this study to develop target specific proteochemometric models and these models are exploited for predicting the prospective BACE1 inhibitors. The models developed in this study have performed excellently in predicting the computationally generated poses, separately obtained from single and ensemble docking approaches. The simple protein-ligand contact (SPLC) model outperforms other sophisticated high end models, in virtual screening performance, developed during this study. In an attempt to account for BACE1 protein active site flexibility information in predictive models, we included the change in the area of solvent accessible surface and the change in the volume of solvent accessible surface in our models. The ensemble and single receptor docking results obtained from this study indicate that the structural water mediated interactions improve the virtual screening results. Also, these waters are essential for recapitulating bioactive conformation during docking study. The proteochemometric models developed in this study can be used for the prediction of BACE1 inhibitors, during the early stage of AD drug discovery.

  13. A system structure for predictive relations in penetration mechanics

    NASA Astrophysics Data System (ADS)

    Korjack, Thomas A.

    1992-02-01

    The availability of a software system yielding quick numerical models to predict ballistic behavior is a requisite for any research laboratory engaged in material behavior. What is especially true about accessibility of rapid prototyping for terminal impaction is the enhancement of a system structure which will direct the specific material and impact situation towards a specific predictive model. This is of particular importance when the ranges of validity are at stake and the pertinent constraints associated with the impact are unknown. Hence, a compilation of semiempirical predictive penetration relations for various physical phenomena has been organized into a data structure for the purpose of developing a knowledge-based decision aided expert system to predict the terminal ballistic behavior of projectiles and targets. The ranges of validity and constraints of operation of each model were examined and cast into a decision tree structure to include target type, target material, projectile types, projectile materials, attack configuration, and performance or damage measures. This decision system implements many penetration relations, identifies formulas that match user-given conditions, and displays the predictive relation coincident with the match in addition to a numerical solution. The physical regimes under consideration encompass the hydrodynamic, transitional, and solid; the targets are either semi-infinite or plate, and the projectiles include kinetic and chemical energy. A preliminary databases has been constructed to allow further development of inductive and deductive reasoning techniques applied to ballistic situations involving terminal mechanics.

  14. Quantitative structure-activity relationship modeling of rat acute toxicity by oral exposure.

    PubMed

    Zhu, Hao; Martin, Todd M; Ye, Lin; Sedykh, Alexander; Young, Douglas M; Tropsha, Alexander

    2009-12-01

    Few quantitative structure-activity relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity end points. In this study, a comprehensive data set of 7385 compounds with their most conservative lethal dose (LD(50)) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire data set was selected that included all 3472 compounds used in TOPKAT's training set. The remaining 3913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R(2) of linear regression between actual and predicted LD(50) values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R(2) ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD(50) for every compound using all five models. The consensus models afforded higher prediction accuracy for the external validation data set with the higher coverage as compared to individual constituent models. The validated consensus LD(50) models developed in this study can be used as reliable computational predictors of in vivo acute toxicity.

  15. Optimization of a novel biophysical model using large scale in vivo antisense hybridization data displays improved prediction capabilities of structurally accessible RNA regions.

    PubMed

    Vazquez-Anderson, Jorge; Mihailovic, Mia K; Baldridge, Kevin C; Reyes, Kristofer G; Haning, Katie; Cho, Seung Hee; Amador, Paul; Powell, Warren B; Contreras, Lydia M

    2017-05-19

    Current approaches to design efficient antisense RNAs (asRNAs) rely primarily on a thermodynamic understanding of RNA-RNA interactions. However, these approaches depend on structure predictions and have limited accuracy, arguably due to overlooking important cellular environment factors. In this work, we develop a biophysical model to describe asRNA-RNA hybridization that incorporates in vivo factors using large-scale experimental hybridization data for three model RNAs: a group I intron, CsrB and a tRNA. A unique element of our model is the estimation of the availability of the target region to interact with a given asRNA using a differential entropic consideration of suboptimal structures. We showcase the utility of this model by evaluating its prediction capabilities in four additional RNAs: a group II intron, Spinach II, 2-MS2 binding domain and glgC 5΄ UTR. Additionally, we demonstrate the applicability of this approach to other bacterial species by predicting sRNA-mRNA binding regions in two newly discovered, though uncharacterized, regulatory RNAs. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Structure-topology-property correlations of sodium phosphosilicate glasses.

    PubMed

    Hermansen, Christian; Guo, Xiaoju; Youngman, Randall E; Mauro, John C; Smedskjaer, Morten M; Yue, Yuanzheng

    2015-08-14

    In this work, we investigate the correlations among structure, topology, and properties in a series of sodium phosphosilicate glasses with [SiO2]/[SiO2 + P2O5] ranging from 0 to 1. The network structure is characterized by (29)Si and (31)P magic-angle spinning nuclear magnetic resonance and Raman spectroscopy. The results show the formation of six-fold coordinated silicon species in phosphorous-rich glasses. Based on the structural data, we propose a formation mechanism of the six-fold coordinated silicon, which is used to develop a quantitative structural model for predicting the speciation of the network forming units as a function of chemical composition. The structural model is then used to establish a temperature-dependent constraint description of phosphosilicate glass topology that enables prediction of glass transition temperature, liquid fragility, and indentation hardness. The topological constraint model provides insight into structural origin of the mixed network former effect in phosphosilicate glasses.

  17. Experimental Verification of a Progressive Damage Model for IM7/5260 Laminates Subjected to Tension-Tension Fatigue

    NASA Technical Reports Server (NTRS)

    Coats, Timothy W.; Harris, Charles E.

    1995-01-01

    The durability and damage tolerance of laminated composites are critical design considerations for airframe composite structures. Therefore, the ability to model damage initiation and growth and predict the life of laminated composites is necessary to achieve structurally efficient and economical designs. The purpose of this research is to experimentally verify the application of a continuum damage model to predict progressive damage development in a toughened material system. Damage due to monotonic and tension-tension fatigue was documented for IM7/5260 graphite/bismaleimide laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables to predict stiffness loss in unnotched laminates. A damage dependent finite element code predicted the stiffness loss for notched laminates with good agreement to experimental data. It was concluded that the continuum damage model can adequately predict matrix damage progression in notched and unnotched laminates as a function of loading history and laminate stacking sequence.

  18. Four-Phase Dendritic Model for the Prediction of Macrosegregation, Shrinkage Cavity, and Porosity in a 55-Ton Ingot

    NASA Astrophysics Data System (ADS)

    Ge, Honghao; Ren, Fengli; Li, Jun; Han, Xiujun; Xia, Mingxu; Li, Jianguo

    2017-03-01

    A four-phase dendritic model was developed to predict the macrosegregation, shrinkage cavity, and porosity during solidification. In this four-phase dendritic model, some important factors, including dendritic structure for equiaxed crystals, melt convection, crystals sedimentation, nucleation, growth, and shrinkage of solidified phases, were taken into consideration. Furthermore, in this four-phase dendritic model, a modified shrinkage criterion was established to predict shrinkage porosity (microporosity) of a 55-ton industrial Fe-3.3 wt pct C ingot. The predicted macrosegregation pattern and shrinkage cavity shape are in a good agreement with experimental results. The shrinkage cavity has a significant effect on the formation of positive segregation in hot top region, which generally forms during the last stage of ingot casting. The dendritic equiaxed grains also play an important role on the formation of A-segregation. A three-dimensional laminar structure of A-segregation in industrial ingot was, for the first time, predicted by using a 3D case simulation.

  19. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    DOE PAGES

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    2015-01-01

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for stable conditions.« less

  20. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for stable conditions.« less

  1. A benchmark testing ground for integrating homology modeling and protein docking.

    PubMed

    Bohnuud, Tanggis; Luo, Lingqi; Wodak, Shoshana J; Bonvin, Alexandre M J J; Weng, Zhiping; Vajda, Sandor; Schueler-Furman, Ora; Kozakov, Dima

    2017-01-01

    Protein docking procedures carry out the task of predicting the structure of a protein-protein complex starting from the known structures of the individual protein components. More often than not, however, the structure of one or both components is not known, but can be derived by homology modeling on the basis of known structures of related proteins deposited in the Protein Data Bank (PDB). Thus, the problem is to develop methods that optimally integrate homology modeling and docking with the goal of predicting the structure of a complex directly from the amino acid sequences of its component proteins. One possibility is to use the best available homology modeling and docking methods. However, the models built for the individual subunits often differ to a significant degree from the bound conformation in the complex, often much more so than the differences observed between free and bound structures of the same protein, and therefore additional conformational adjustments, both at the backbone and side chain levels need to be modeled to achieve an accurate docking prediction. In particular, even homology models of overall good accuracy frequently include localized errors that unfavorably impact docking results. The predicted reliability of the different regions in the model can also serve as a useful input for the docking calculations. Here we present a benchmark dataset that should help to explore and solve combined modeling and docking problems. This dataset comprises a subset of the experimentally solved 'target' complexes from the widely used Docking Benchmark from the Weng Lab (excluding antibody-antigen complexes). This subset is extended to include the structures from the PDB related to those of the individual components of each complex, and hence represent potential templates for investigating and benchmarking integrated homology modeling and docking approaches. Template sets can be dynamically customized by specifying ranges in sequence similarity and in PDB release dates, or using other filtering options, such as excluding sets of specific structures from the template list. Multiple sequence alignments, as well as structural alignments of the templates to their corresponding subunits in the target are also provided. The resource is accessible online or can be downloaded at http://cluspro.org/benchmark, and is updated on a weekly basis in synchrony with new PDB releases. Proteins 2016; 85:10-16. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Learning To Fold Proteins Using Energy Landscape Theory

    PubMed Central

    Schafer, N.P.; Kim, B.L.; Zheng, W.; Wolynes, P.G.

    2014-01-01

    This review is a tutorial for scientists interested in the problem of protein structure prediction, particularly those interested in using coarse-grained molecular dynamics models that are optimized using lessons learned from the energy landscape theory of protein folding. We also present a review of the results of the AMH/AMC/AMW/AWSEM family of coarse-grained molecular dynamics protein folding models to illustrate the points covered in the first part of the article. Accurate coarse-grained structure prediction models can be used to investigate a wide range of conceptual and mechanistic issues outside of protein structure prediction; specifically, the paper concludes by reviewing how AWSEM has in recent years been able to elucidate questions related to the unusual kinetic behavior of artificially designed proteins, multidomain protein misfolding, and the initial stages of protein aggregation. PMID:25308991

  3. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2.

    PubMed

    de Ávila, Maurício Boff; Xavier, Mariana Morrone; Pintro, Val Oliveira; de Azevedo, Walter Filgueira

    2017-12-09

    Here we report the development of a machine-learning model to predict binding affinity based on the crystallographic structures of protein-ligand complexes. We used an ensemble of crystallographic structures (resolution better than 1.5 Å resolution) for which half-maximal inhibitory concentration (IC 50 ) data is available. Polynomial scoring functions were built using as explanatory variables the energy terms present in the MolDock and PLANTS scoring functions. Prediction performance was tested and the supervised machine learning models showed improvement in the prediction power, when compared with PLANTS and MolDock scoring functions. In addition, the machine-learning model was applied to predict binding affinity of CDK2, which showed a better performance when compared with AutoDock4, AutoDock Vina, MolDock, and PLANTS scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Quantitative self-assembly prediction yields targeted nanomedicines

    NASA Astrophysics Data System (ADS)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  5. T-Epitope Designer: A HLA-peptide binding prediction server.

    PubMed

    Kangueane, Pandjassarame; Sakharkar, Meena Kishore

    2005-05-15

    The current challenge in synthetic vaccine design is the development of a methodology to identify and test short antigen peptides as potential T-cell epitopes. Recently, we described a HLA-peptide binding model (using structural properties) capable of predicting peptides binding to any HLA allele. Consequently, we have developed a web server named T-EPITOPE DESIGNER to facilitate HLA-peptide binding prediction. The prediction server is based on a model that defines peptide binding pockets using information gleaned from X-ray crystal structures of HLA-peptide complexes, followed by the estimation of peptide binding to binding pockets. Thus, the prediction server enables the calculation of peptide binding to HLA alleles. This model is superior to many existing methods because of its potential application to any given HLA allele whose sequence is clearly defined. The web server finds potential application in T cell epitope vaccine design. http://www.bioinformation.net/ted/

  6. Three-dimensional localized coherent structures of surface turbulence: Model validation with experiments and further computations.

    PubMed

    Demekhin, E A; Kalaidin, E N; Kalliadasis, S; Vlaskin, S Yu

    2010-09-01

    We validate experimentally the Kapitsa-Shkadov model utilized in the theoretical studies by Demekhin [Phys. Fluids 19, 114103 (2007)10.1063/1.2793148; Phys. Fluids 19, 114104 (2007)]10.1063/1.2793149 of surface turbulence on a thin liquid film flowing down a vertical planar wall. For water at 15° , surface turbulence typically occurs at an inlet Reynolds number of ≃40 . Of particular interest is to assess experimentally the predictions of the model for three-dimensional nonlinear localized coherent structures, which represent elementary processes of surface turbulence. For this purpose we devise simple experiments to investigate the instabilities and transitions leading to such structures. Our experimental results are in good agreement with the theoretical predictions of the model. We also perform time-dependent computations for the formation of coherent structures and their interaction with localized structures of smaller amplitude on the surface of the film.

  7. In silico prediction of nematic transition temperature for liquid crystals using quantitative structure-property relationship approaches.

    PubMed

    Fatemi, Mohammad Hossein; Ghorbanzad'e, Mehdi

    2009-11-01

    Quantitative structure-property relationship models for the prediction of the nematic transition temperature (T (N)) were developed by using multilinear regression analysis and a feedforward artificial neural network (ANN). A collection of 42 thermotropic liquid crystals was chosen as the data set. The data set was divided into three sets: for training, and an internal and external test set. Training and internal test sets were used for ANN model development, and the external test set was used for evaluation of the predictive power of the model. In order to build the models, a set of six descriptors were selected by the best multilinear regression procedure of the CODESSA program. These descriptors were: atomic charge weighted partial negatively charged surface area, relative negative charged surface area, polarity parameter/square distance, minimum most negative atomic partial charge, molecular volume, and the A component of moment of inertia, which encode geometrical and electronic characteristics of molecules. These descriptors were used as inputs to ANN. The optimized ANN model had 6:6:1 topology. The standard errors in the calculation of T (N) for the training, internal, and external test sets using the ANN model were 1.012, 4.910, and 4.070, respectively. To further evaluate the ANN model, a crossvalidation test was performed, which produced the statistic Q (2) = 0.9796 and standard deviation of 2.67 based on predicted residual sum of square. Also, the diversity test was performed to ensure the model's stability and prove its predictive capability. The obtained results reveal the suitability of ANN for the prediction of T (N) for liquid crystals using molecular structural descriptors.

  8. Hydrological model parameter dimensionality is a weak measure of prediction uncertainty

    NASA Astrophysics Data System (ADS)

    Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.

    2015-04-01

    This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.

  9. A hybrid SEA/modal technique for modeling structural-acoustic interior noise in rotorcraft.

    PubMed

    Jayachandran, V; Bonilha, M W

    2003-03-01

    This paper describes a hybrid technique that combines Statistical Energy Analysis (SEA) predictions for structural vibration with acoustic modal summation techniques to predict interior noise levels in rotorcraft. The method was applied for predicting the sound field inside a mock-up of the interior panel system of the Sikorsky S-92 helicopter. The vibration amplitudes of the frame and panel systems were predicted using a detailed SEA model and these were used as inputs to the model of the interior acoustic space. The spatial distribution of the vibration field on individual panels, and their coupling to the acoustic space were modeled using stochastic techniques. Leakage and nonresonant transmission components were accounted for using space-averaged values obtained from a SEA model of the complete structural-acoustic system. Since the cabin geometry was quite simple, the modeling of the interior acoustic space was performed using a standard modal summation technique. Sound pressure levels predicted by this approach at specific microphone locations were compared with measured data. Agreement within 3 dB in one-third octave bands above 40 Hz was observed. A large discrepancy in the one-third octave band in which the first acoustic mode is resonant (31.5 Hz) was observed. Reasons for such a discrepancy are discussed in the paper. The developed technique provides a method for modeling helicopter cabin interior noise in the frequency mid-range where neither FEA nor SEA is individually effective or accurate.

  10. Prediction of the partitioning behaviour of proteins in aqueous two-phase systems using only their amino acid composition.

    PubMed

    Salgado, J Cristian; Andrews, Barbara A; Ortuzar, Maria Fernanda; Asenjo, Juan A

    2008-01-18

    The prediction of the partition behaviour of proteins in aqueous two-phase systems (ATPS) using mathematical models based on their amino acid composition was investigated. The predictive models are based on the average surface hydrophobicity (ASH). The ASH was estimated by means of models that use the three-dimensional structure of proteins and by models that use only the amino acid composition of proteins. These models were evaluated for a set of 11 proteins with known experimental partition coefficient in four-phase systems: polyethylene glycol (PEG) 4000/phosphate, sulfate, citrate and dextran and considering three levels of NaCl concentration (0.0% w/w, 0.6% w/w and 8.8% w/w). The results indicate that such prediction is feasible even though the quality of the prediction depends strongly on the ATPS and its operational conditions such as the NaCl concentration. The ATPS 0 model which use the three-dimensional structure obtains similar results to those given by previous models based on variables measured in the laboratory. In addition it maintains the main characteristics of the hydrophobic resolution and intrinsic hydrophobicity reported before. Three mathematical models, ATPS I-III, based only on the amino acid composition were evaluated. The best results were obtained by the ATPS I model which assumes that all of the amino acids are completely exposed. The performance of the ATPS I model follows the behaviour reported previously, i.e. its correlation coefficients improve as the NaCl concentration increases in the system and, therefore, the effect of the protein hydrophobicity prevails over other effects such as charge or size. Its best predictive performance was obtained for the PEG/dextran system at high NaCl concentration. An increase in the predictive capacity of at least 54.4% with respect to the models which use the three-dimensional structure of the protein was obtained for that system. In addition, the ATPS I model exhibits high correlation coefficients in that system being higher than 0.88 on average. The ATPS I model exhibited correlation coefficients higher than 0.67 for the rest of the ATPS at high NaCl concentration. Finally, we tested our best model, the ATPS I model, on the prediction of the partition coefficient of the protein invertase. We found that the predictive capacities of the ATPS I model are better in PEG/dextran systems, where the relative error of the prediction with respect to the experimental value is 15.6%.

  11. Assessment of quantitative structure-activity relationship of toxicity prediction models for Korean chemical substance control legislation

    PubMed Central

    Kim, Kwang-Yon; Shin, Seong Eun; No, Kyoung Tai

    2015-01-01

    Objectives For successful adoption of legislation controlling registration and assessment of chemical substances, it is important to obtain sufficient toxicological experimental evidence and other related information. It is also essential to obtain a sufficient number of predicted risk and toxicity results. Particularly, methods used in predicting toxicities of chemical substances during acquisition of required data, ultimately become an economic method for future dealings with new substances. Although the need for such methods is gradually increasing, the-required information about reliability and applicability range has not been systematically provided. Methods There are various representative environmental and human toxicity models based on quantitative structure-activity relationships (QSAR). Here, we secured the 10 representative QSAR-based prediction models and its information that can make predictions about substances that are expected to be regulated. We used models that predict and confirm usability of the information expected to be collected and submitted according to the legislation. After collecting and evaluating each predictive model and relevant data, we prepared methods quantifying the scientific validity and reliability, which are essential conditions for using predictive models. Results We calculated predicted values for the models. Furthermore, we deduced and compared adequacies of the models using the Alternative non-testing method assessed for Registration, Evaluation, Authorization, and Restriction of Chemicals Substances scoring system, and deduced the applicability domains for each model. Additionally, we calculated and compared inclusion rates of substances expected to be regulated, to confirm the applicability. Conclusions We evaluated and compared the data, adequacy, and applicability of our selected QSAR-based toxicity prediction models, and included them in a database. Based on this data, we aimed to construct a system that can be used with predicted toxicity results. Furthermore, by presenting the suitability of individual predicted results, we aimed to provide a foundation that could be used in actual assessments and regulations. PMID:26206368

  12. Combining Structural Modeling with Ensemble Machine Learning to Accurately Predict Protein Fold Stability and Binding Affinity Effects upon Mutation

    PubMed Central

    Garcia Lopez, Sebastian; Kim, Philip M.

    2014-01-01

    Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT) algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases. PMID:25243403

  13. Linear regression crash prediction models : issues and proposed solutions.

    DOT National Transportation Integrated Search

    2010-05-01

    The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...

  14. Predicting total organic halide formation from drinking water chlorination using quantitative structure-property relationships.

    PubMed

    Luilo, G B; Cabaniss, S E

    2011-10-01

    Chlorinating water which contains dissolved organic matter (DOM) produces disinfection byproducts, the majority of unknown structure. Hence, the total organic halide (TOX) measurement is used as a surrogate for toxic disinfection byproducts. This work derives a robust quantitative structure-property relationship (QSPR) for predicting the TOX formation potential of model compounds. Literature data for 49 compounds were used to train the QSPR in moles of chlorine per mole of compound (Cp) (mol-Cl/mol-Cp). The resulting QSPR has four descriptors, calibration [Formula: see text] of 0.72 and standard deviation of estimation of 0.43 mol-Cl/mol-Cp. Internal and external validation indicate that the QSPR has good predictive power and low bias (‰<‰1%). Applying this QSPR to predict TOX formation by DOM surrogates - tannic acid, two model fulvic acids and two agent-based model assemblages - gave a predicted TOX range of 136-184 µg-Cl/mg-C, consistent with experimental data for DOM, which ranged from 78 to 192 µg-Cl/mg-C. However, the limited structural variation in the training data may limit QSPR applicability; studies of more sulfur-containing compounds, heterocyclic compounds and high molecular weight compounds could lead to a more widely applicable QSPR.

  15. Protein Folding and Structure Prediction from the Ground Up: The Atomistic Associative Memory, Water Mediated, Structure and Energy Model.

    PubMed

    Chen, Mingchen; Lin, Xingcheng; Zheng, Weihua; Onuchic, José N; Wolynes, Peter G

    2016-08-25

    The associative memory, water mediated, structure and energy model (AWSEM) is a coarse-grained force field with transferable tertiary interactions that incorporates local in sequence energetic biases using bioinformatically derived structural information about peptide fragments with locally similar sequences that we call memories. The memory information from the protein data bank (PDB) database guides proper protein folding. The structural information about available sequences in the database varies in quality and can sometimes lead to frustrated free energy landscapes locally. One way out of this difficulty is to construct the input fragment memory information from all-atom simulations of portions of the complete polypeptide chain. In this paper, we investigate this approach first put forward by Kwac and Wolynes in a more complete way by studying the structure prediction capabilities of this approach for six α-helical proteins. This scheme which we call the atomistic associative memory, water mediated, structure and energy model (AAWSEM) amounts to an ab initio protein structure prediction method that starts from the ground up without using bioinformatic input. The free energy profiles from AAWSEM show that atomistic fragment memories are sufficient to guide the correct folding when tertiary forces are included. AAWSEM combines the efficiency of coarse-grained simulations on the full protein level with the local structural accuracy achievable from all-atom simulations of only parts of a large protein. The results suggest that a hybrid use of atomistic fragment memory and database memory in structural predictions may well be optimal for many practical applications.

  16. Integration of Harvest and Time-to-Event Data Used to Estimate Demographic Parameters for White-tailed Deer

    NASA Astrophysics Data System (ADS)

    Norton, Andrew S.

    An integral component of managing game species is an understanding of population dynamics and relative abundance. Harvest data are frequently used to estimate abundance of white-tailed deer. Unless harvest age-structure is representative of the population age-structure and harvest vulnerability remains constant from year to year, these data alone are of limited value. Additional model structure and auxiliary information has accommodated this shortcoming. Specifically, integrated age-at-harvest (AAH) state-space population models can formally combine multiple sources of data, and regularization via hierarchical model structure can increase flexibility of model parameters. I collected known fates data, which I evaluated and used to inform trends in survival parameters for an integrated AAH model. I used temperature and snow depth covariates to predict survival outside of the hunting season, and opening weekend temperature and percent of corn harvest covariates to predict hunting season survival. When auxiliary empirical data were unavailable for the AAH model, moderately informative priors provided sufficient information for convergence and parameter estimates. The AAH model was most sensitive to errors in initial abundance, but this error was calibrated after 3 years. Among vital rates, the AAH model was most sensitive to reporting rates (percentage of mortality during the hunting season related to harvest). The AAH model, using only harvest data, was able to track changing abundance trends due to changes in survival rates even when prior models did not inform these changes (i.e. prior models were constant when truth varied). I also compared AAH model results with estimates from the Wisconsin Department of Natural Resources (WIDNR). Trends in abundance estimates from both models were similar, although AAH model predictions were systematically higher than WIDNR estimates in the East study area. When I incorporated auxiliary information (i.e. integrated AAH model) about survival outside the hunting season from known fates data, predicted trends appeared more closely related to what was expected. Disagreements between the AAH model and WIDNR estimates in the East were likely related to biased predictions for reporting and survival rates from the AAH model.

  17. RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme

    PubMed Central

    Biesiada, Marcin; Boniecki, Michał J.; Chou, Fang-Chieh; Ferré-D'Amaré, Adrian R.; Das, Rhiju; Dunin-Horkawicz, Stanisław; Geniesse, Caleb; Kappel, Kalli; Kladwang, Wipapat; Krokhotin, Andrey; Łach, Grzegorz E.; Major, François; Mann, Thomas H.; Pachulska-Wieczorek, Katarzyna; Patel, Dinshaw J.; Piccirilli, Joseph A.; Popenda, Mariusz; Purzycka, Katarzyna J.; Ren, Aiming; Rice, Greggory M.; Santalucia, John; Tandon, Arpit; Trausch, Jeremiah J.; Wang, Jian; Weeks, Kevin M.; Williams, Benfeard; Xiao, Yi; Zhang, Dong; Zok, Tomasz

    2017-01-01

    RNA-Puzzles is a collective experiment in blind 3D RNA structure prediction. We report here a third round of RNA-Puzzles. Five puzzles, 4, 8, 12, 13, 14, all structures of riboswitch aptamers and puzzle 7, a ribozyme structure, are included in this round of the experiment. The riboswitch structures include biological binding sites for small molecules (S-adenosyl methionine, cyclic diadenosine monophosphate, 5-amino 4-imidazole carboxamide riboside 5′-triphosphate, glutamine) and proteins (YbxF), and one set describes large conformational changes between ligand-free and ligand-bound states. The Varkud satellite ribozyme is the most recently solved structure of a known large ribozyme. All puzzles have established biological functions and require structural understanding to appreciate their molecular mechanisms. Through the use of fast-track experimental data, including multidimensional chemical mapping, and accurate prediction of RNA secondary structure, a large portion of the contacts in 3D have been predicted correctly leading to similar topologies for the top ranking predictions. Template-based and homology-derived predictions could predict structures to particularly high accuracies. However, achieving biological insights from de novo prediction of RNA 3D structures still depends on the size and complexity of the RNA. Blind computational predictions of RNA structures already appear to provide useful structural information in many cases. Similar to the previous RNA-Puzzles Round II experiment, the prediction of non-Watson–Crick interactions and the observed high atomic clash scores reveal a notable need for an algorithm of improvement. All prediction models and assessment results are available at http://ahsoka.u-strasbg.fr/rnapuzzles/. PMID:28138060

  18. Convenient QSAR model for predicting the complexation of structurally diverse compounds with beta-cyclodextrins.

    PubMed

    Pérez-Garrido, Alfonso; Morales Helguera, Aliuska; Abellán Guillén, Adela; Cordeiro, M Natália D S; Garrido Escudero, Amalio

    2009-01-15

    This paper reports a QSAR study for predicting the complexation of a large and heterogeneous variety of substances (233 organic compounds) with beta-cyclodextrins (beta-CDs). Several different theoretical molecular descriptors, calculated solely from the molecular structure of the compounds under investigation, and an efficient variable selection procedure, like the Genetic Algorithm, led to models with satisfactory global accuracy and predictivity. But the best-final QSAR model is based on Topological descriptors meanwhile offering a reasonable interpretation. This QSAR model was able to explain ca. 84% of the variance in the experimental activity, and displayed very good internal cross-validation statistics and predictivity on external data. It shows that the driving forces for CD complexation are mainly hydrophobic and steric (van der Waals) interactions. Thus, the results of our study provide a valuable tool for future screening and priority testing of beta-CDs guest molecules.

  19. Evaluating model structure adequacy: The case of the Maggia Valley groundwater system, southern Switzerland

    USGS Publications Warehouse

    Hill, Mary C.; L. Foglia,; S. W. Mehl,; P. Burlando,

    2013-01-01

    Model adequacy is evaluated with alternative models rated using model selection criteria (AICc, BIC, and KIC) and three other statistics. Model selection criteria are tested with cross-validation experiments and insights for using alternative models to evaluate model structural adequacy are provided. The study is conducted using the computer codes UCODE_2005 and MMA (MultiModel Analysis). One recharge alternative is simulated using the TOPKAPI hydrological model. The predictions evaluated include eight heads and three flows located where ecological consequences and model precision are of concern. Cross-validation is used to obtain measures of prediction accuracy. Sixty-four models were designed deterministically and differ in representation of river, recharge, bedrock topography, and hydraulic conductivity. Results include: (1) What may seem like inconsequential choices in model construction may be important to predictions. Analysis of predictions from alternative models is advised. (2) None of the model selection criteria consistently identified models with more accurate predictions. This is a disturbing result that suggests to reconsider the utility of model selection criteria, and/or the cross-validation measures used in this work to measure model accuracy. (3) KIC displayed poor performance for the present regression problems; theoretical considerations suggest that difficulties are associated with wide variations in the sensitivity term of KIC resulting from the models being nonlinear and the problems being ill-posed due to parameter correlations and insensitivity. The other criteria performed somewhat better, and similarly to each other. (4) Quantities with high leverage are more difficult to predict. The results are expected to be generally applicable to models of environmental systems.

  20. Predicting Alumni/ae Gift Giving Behavior: A Structural Equation Model Approach.

    ERIC Educational Resources Information Center

    Mosser, John Wayne

    This dissertation focuses on predicting alumni gift giving behavior at a large public research university (University of Michigan). A conceptual model was developed for predicting alumni giving behavior in order to advance the theoretical understanding of how capacity to give, motivation to give, and their interaction effect gift giving behavior.…

  1. A comparison of different functions for predicted protein model quality assessment.

    PubMed

    Li, Juan; Fang, Huisheng

    2016-07-01

    In protein structure prediction, a considerable number of models are usually produced by either the Template-Based Method (TBM) or the ab initio prediction. The purpose of this study is to find the critical parameter in assessing the quality of the predicted models. A non-redundant template library was developed and 138 target sequences were modeled. The target sequences were all distant from the proteins in the template library and were aligned with template library proteins on the basis of the transformation matrix. The quality of each model was first assessed with QMEAN and its six parameters, which are C_β interaction energy (C_beta), all-atom pairwise energy (PE), solvation energy (SE), torsion angle energy (TAE), secondary structure agreement (SSA), and solvent accessibility agreement (SAE). Finally, the alignment score (score) was also used to assess the quality of model. Hence, a total of eight parameters (i.e., QMEAN, C_beta, PE, SE, TAE, SSA, SAE, score) were independently used to assess the quality of each model. The results indicate that SSA is the best parameter to estimate the quality of the model.

  2. Inductive reasoning about causally transmitted properties.

    PubMed

    Shafto, Patrick; Kemp, Charles; Bonawitz, Elizabeth Baraff; Coley, John D; Tenenbaum, Joshua B

    2008-11-01

    Different intuitive theories constrain and guide inferences in different contexts. Formalizing simple intuitive theories as probabilistic processes operating over structured representations, we present a new computational model of category-based induction about causally transmitted properties. A first experiment demonstrates undergraduates' context-sensitive use of taxonomic and food web knowledge to guide reasoning about causal transmission and shows good qualitative agreement between model predictions and human inferences. A second experiment demonstrates strong quantitative and qualitative fits to inferences about a more complex artificial food web. A third experiment investigates human reasoning about complex novel food webs where species have known taxonomic relations. Results demonstrate a double-dissociation between the predictions of our causal model and a related taxonomic model [Kemp, C., & Tenenbaum, J. B. (2003). Learning domain structures. In Proceedings of the 25th annual conference of the cognitive science society]: the causal model predicts human inferences about diseases but not genes, while the taxonomic model predicts human inferences about genes but not diseases. We contrast our framework with previous models of category-based induction and previous formal instantiations of intuitive theories, and outline challenges in developing a complete model of context-sensitive reasoning.

  3. Integrative Approaches for Predicting in vivo Effects of Chemicals from their Structural Descriptors and the Results of Short-term Biological Assays

    PubMed Central

    Low, Yen S.; Sedykh, Alexander; Rusyn, Ivan; Tropsha, Alexander

    2017-01-01

    Cheminformatics approaches such as Quantitative Structure Activity Relationship (QSAR) modeling have been used traditionally for predicting chemical toxicity. In recent years, high throughput biological assays have been increasingly employed to elucidate mechanisms of chemical toxicity and predict toxic effects of chemicals in vivo. The data generated in such assays can be considered as biological descriptors of chemicals that can be combined with molecular descriptors and employed in QSAR modeling to improve the accuracy of toxicity prediction. In this review, we discuss several approaches for integrating chemical and biological data for predicting biological effects of chemicals in vivo and compare their performance across several data sets. We conclude that while no method consistently shows superior performance, the integrative approaches rank consistently among the best yet offer enriched interpretation of models over those built with either chemical or biological data alone. We discuss the outlook for such interdisciplinary methods and offer recommendations to further improve the accuracy and interpretability of computational models that predict chemical toxicity. PMID:24805064

  4. Accurate prediction of personalized olfactory perception from large-scale chemoinformatic features.

    PubMed

    Li, Hongyang; Panwar, Bharat; Omenn, Gilbert S; Guan, Yuanfang

    2018-02-01

    The olfactory stimulus-percept problem has been studied for more than a century, yet it is still hard to precisely predict the odor given the large-scale chemoinformatic features of an odorant molecule. A major challenge is that the perceived qualities vary greatly among individuals due to different genetic and cultural backgrounds. Moreover, the combinatorial interactions between multiple odorant receptors and diverse molecules significantly complicate the olfaction prediction. Many attempts have been made to establish structure-odor relationships for intensity and pleasantness, but no models are available to predict the personalized multi-odor attributes of molecules. In this study, we describe our winning algorithm for predicting individual and population perceptual responses to various odorants in the DREAM Olfaction Prediction Challenge. We find that random forest model consisting of multiple decision trees is well suited to this prediction problem, given the large feature spaces and high variability of perceptual ratings among individuals. Integrating both population and individual perceptions into our model effectively reduces the influence of noise and outliers. By analyzing the importance of each chemical feature, we find that a small set of low- and nondegenerative features is sufficient for accurate prediction. Our random forest model successfully predicts personalized odor attributes of structurally diverse molecules. This model together with the top discriminative features has the potential to extend our understanding of olfactory perception mechanisms and provide an alternative for rational odorant design.

  5. Predicted facies, sedimentary structures and potential resources of Jurassic petroleum complex in S-E sWestern Siberia (based on well logging data)

    NASA Astrophysics Data System (ADS)

    Prakojo, F.; Lobova, G.; Abramova, R.

    2015-11-01

    This paper is devoted to the current problem in petroleum geology and geophysics- prediction of facies sediments for further evaluation of productive layers. Applying the acoustic method and the characterizing sedimentary structure for each coastal-marine-delta type was determined. The summary of sedimentary structure characteristics and reservoir properties (porosity and permeability) of typical facies were described. Logging models SP, EL and GR (configuration, curve range) in interpreting geophysical data for each litho-facies were identified. According to geophysical characteristics these sediments can be classified as coastal-marine-delta. Prediction models for potential Jurassic oil-gas bearing complexes (horizon J11) in one S-E Western Siberian deposit were conducted. Comparing forecasting to actual testing data of layer J11 showed that the prediction is about 85%.

  6. Prediction of 1-octanol solubilities using data from the Open Notebook Science Challenge.

    PubMed

    Buonaiuto, Michael A; Lang, Andrew S I D

    2015-12-01

    1-Octanol solubility is important in a variety of applications involving pharmacology and environmental chemistry. Current models are linear in nature and often require foreknowledge of either melting point or aqueous solubility. Here we extend the range of applicability of 1-octanol solubility models by creating a random forest model that can predict 1-octanol solubilities directly from structure. We created a random forest model using CDK descriptors that has an out-of-bag (OOB) R 2 value of 0.66 and an OOB mean squared error of 0.34. The model has been deployed for general use as a Shiny application. The 1-octanol solubility model provides reasonably accurate predictions of the 1-octanol solubility of organic solutes directly from structure. The model was developed under Open Notebook Science conditions which makes it open, reproducible, and as useful as possible.Graphical abstract.

  7. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data.

    PubMed

    Golas, Sara Bersche; Shibahara, Takuma; Agboola, Stephen; Otaki, Hiroko; Sato, Jumpei; Nakae, Tatsuya; Hisamitsu, Toru; Kojima, Go; Felsted, Jennifer; Kakarmath, Sujay; Kvedar, Joseph; Jethwani, Kamal

    2018-06-22

    Heart failure is one of the leading causes of hospitalization in the United States. Advances in big data solutions allow for storage, management, and mining of large volumes of structured and semi-structured data, such as complex healthcare data. Applying these advances to complex healthcare data has led to the development of risk prediction models to help identify patients who would benefit most from disease management programs in an effort to reduce readmissions and healthcare cost, but the results of these efforts have been varied. The primary aim of this study was to develop a 30-day readmission risk prediction model for heart failure patients discharged from a hospital admission. We used longitudinal electronic medical record data of heart failure patients admitted within a large healthcare system. Feature vectors included structured demographic, utilization, and clinical data, as well as selected extracts of un-structured data from clinician-authored notes. The risk prediction model was developed using deep unified networks (DUNs), a new mesh-like network structure of deep learning designed to avoid over-fitting. The model was validated with 10-fold cross-validation and results compared to models based on logistic regression, gradient boosting, and maxout networks. Overall model performance was assessed using concordance statistic. We also selected a discrimination threshold based on maximum projected cost saving to the Partners Healthcare system. Data from 11,510 patients with 27,334 admissions and 6369 30-day readmissions were used to train the model. After data processing, the final model included 3512 variables. The DUNs model had the best performance after 10-fold cross-validation. AUCs for prediction models were 0.664 ± 0.015, 0.650 ± 0.011, 0.695 ± 0.016 and 0.705 ± 0.015 for logistic regression, gradient boosting, maxout networks, and DUNs respectively. The DUNs model had an accuracy of 76.4% at the classification threshold that corresponded with maximum cost saving to the hospital. Deep learning techniques performed better than other traditional techniques in developing this EMR-based prediction model for 30-day readmissions in heart failure patients. Such models can be used to identify heart failure patients with impending hospitalization, enabling care teams to target interventions at their most high-risk patients and improving overall clinical outcomes.

  8. Prediction of TF target sites based on atomistic models of protein-DNA complexes

    PubMed Central

    Angarica, Vladimir Espinosa; Pérez, Abel González; Vasconcelos, Ana T; Collado-Vides, Julio; Contreras-Moreira, Bruno

    2008-01-01

    Background The specific recognition of genomic cis-regulatory elements by transcription factors (TFs) plays an essential role in the regulation of coordinated gene expression. Studying the mechanisms determining binding specificity in protein-DNA interactions is thus an important goal. Most current approaches for modeling TF specific recognition rely on the knowledge of large sets of cognate target sites and consider only the information contained in their primary sequence. Results Here we describe a structure-based methodology for predicting sequence motifs starting from the coordinates of a TF-DNA complex. Our algorithm combines information regarding the direct and indirect readout of DNA into an atomistic statistical model, which is used to estimate the interaction potential. We first measure the ability of our method to correctly estimate the binding specificities of eight prokaryotic and eukaryotic TFs that belong to different structural superfamilies. Secondly, the method is applied to two homology models, finding that sampling of interface side-chain rotamers remarkably improves the results. Thirdly, the algorithm is compared with a reference structural method based on contact counts, obtaining comparable predictions for the experimental complexes and more accurate sequence motifs for the homology models. Conclusion Our results demonstrate that atomic-detail structural information can be feasibly used to predict TF binding sites. The computational method presented here is universal and might be applied to other systems involving protein-DNA recognition. PMID:18922190

  9. Factors influencing protein tyrosine nitration – structure-based predictive models

    PubMed Central

    Bayden, Alexander S.; Yakovlev, Vasily A.; Graves, Paul R.; Mikkelsen, Ross B.; Kellogg, Glen E.

    2010-01-01

    Models for exploring tyrosine nitration in proteins have been created based on 3D structural features of 20 proteins for which high resolution X-ray crystallographic or NMR data are available and for which nitration of 35 total tyrosines has been experimentally proven under oxidative stress. Factors suggested in previous work to enhance nitration were examined with quantitative structural descriptors. The role of neighboring acidic and basic residues is complex: for the majority of tyrosines that are nitrated the distance to the heteroatom of the closest charged sidechain corresponds to the distance needed for suspected nitrating species to form hydrogen bond bridges between the tyrosine and that charged amino acid. This suggests that such bridges play a very important role in tyrosine nitration. Nitration is generally hindered for tyrosines that are buried and for those tyrosines where there is insufficient space for the nitro group. For in vitro nitration, closed environments with nearby heteroatoms or unsaturated centers that can stabilize radicals are somewhat favored. Four quantitative structure-based models, depending on the conditions of nitration, have been developed for predicting site-specific tyrosine nitration. The best model, relevant for both in vitro and in vivo cases predicts 30 of 35 tyrosine nitrations (positive predictive value) and has a sensitivity of 60/71 (11 false positives). PMID:21172423

  10. Mass and stiffness estimation using mobile devices for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Le, Viet; Yu, Tzuyang

    2015-04-01

    In the structural health monitoring (SHM) of civil infrastructure, dynamic methods using mass, damping, and stiffness for characterizing structural health have been a traditional and widely used approach. Changes in these system parameters over time indicate the progress of structural degradation or deterioration. In these methods, capability of predicting system parameters is essential to their success. In this paper, research work on the development of a dynamic SHM method based on perturbation analysis is reported. The concept is to use externally applied mass to perturb an unknown system and measure the natural frequency of the system. Derived theoretical expressions for mass and stiffness prediction are experimentally verified by a building model. Dynamic responses of the building model perturbed by various masses in free vibration were experimentally measured by a mobile device (cell phone) to extract the natural frequency of the building model. Single-degreeof- freedom (SDOF) modeling approach was adopted for the sake of using a cell phone. From the experimental result, it is shown that the percentage error of predicted mass increases when the mass ratio increases, while the percentage error of predicted stiffness decreases when the mass ratio increases. This work also demonstrated the potential use of mobile devices in the health monitoring of civil infrastructure.

  11. Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving.

    PubMed

    Zampolli, Mario; Nijhof, Marten J J; de Jong, Christ A F; Ainslie, Michael A; Jansen, Erwin H W; Quesson, Benoit A J

    2013-01-01

    The acoustic radiation from a pile being driven into the sediment by a sequence of hammer strikes is studied with a linear, axisymmetric, structural acoustic frequency domain finite element model. Each hammer strike results in an impulsive sound that is emitted from the pile and then propagated in the shallow water waveguide. Measurements from accelerometers mounted on the head of a test pile and from hydrophones deployed in the water are used to validate the model results. Transfer functions between the force input at the top of the anvil and field quantities, such as acceleration components in the structure or pressure in the fluid, are computed with the model. These transfer functions are validated using accelerometer or hydrophone measurements to infer the structural forcing. A modeled hammer forcing pulse is used in the successive step to produce quantitative predictions of sound exposure at the hydrophones. The comparison between the model and the measurements shows that, although several simplifying assumptions were made, useful predictions of noise levels based on linear structural acoustic models are possible. In the final part of the paper, the model is used to characterize the pile as an acoustic radiator by analyzing the flow of acoustic energy.

  12. Modelling the Tox21 10 K chemical profiles for in vivo toxicity prediction and mechanism characterization

    PubMed Central

    Huang, Ruili; Xia, Menghang; Sakamuru, Srilatha; Zhao, Jinghua; Shahane, Sampada A.; Attene-Ramos, Matias; Zhao, Tongan; Austin, Christopher P.; Simeonov, Anton

    2016-01-01

    Target-specific, mechanism-oriented in vitro assays post a promising alternative to traditional animal toxicology studies. Here we report the first comprehensive analysis of the Tox21 effort, a large-scale in vitro toxicity screening of chemicals. We test ∼10,000 chemicals in triplicates at 15 concentrations against a panel of nuclear receptor and stress response pathway assays, producing more than 50 million data points. Compound clustering by structure similarity and activity profile similarity across the assays reveals structure–activity relationships that are useful for the generation of mechanistic hypotheses. We apply structural information and activity data to build predictive models for 72 in vivo toxicity end points using a cluster-based approach. Models based on in vitro assay data perform better in predicting human toxicity end points than animal toxicity, while a combination of structural and activity data results in better models than using structure or activity data alone. Our results suggest that in vitro activity profiles can be applied as signatures of compound mechanism of toxicity and used in prioritization for more in-depth toxicological testing. PMID:26811972

  13. Charge structure in volcanic plumes: a comparison of plume properties predicted by an integral plume model to observations of volcanic lightning during the 2010 eruption of Eyjafjallajökull, Iceland.

    PubMed

    Woodhouse, Mark J; Behnke, Sonja A

    Observations of volcanic lightning made using a lightning mapping array during the 2010 eruption of Eyjafjallajökull allow the trajectory and growth of the volcanic plume to be determined. The lightning observations are compared with predictions of an integral model of volcanic plumes that includes descriptions of the interaction with wind and the effects of moisture. We show that the trajectory predicted by the integral model closely matches the observational data and the model well describes the growth of the plume downwind of the vent. Analysis of the lightning signals reveals information on the dominant charge structure within the volcanic plume. During the Eyjafjallajökull eruption both monopole and dipole charge structures were observed in the plume. By using the integral plume model, we propose the varying charge structure is connected to the availability of condensed water and low temperatures at high altitudes in the plume, suggesting ice formation may have contributed to the generation of a dipole charge structure via thunderstorm-style ice-based charging mechanisms, though overall this charging mechanism is believed to have had only a weak influence on the production of lightning.

  14. Towards cheminformatics-based estimation of drug therapeutic index: Predicting the protective index of anticonvulsants using a new quantitative structure-index relationship approach.

    PubMed

    Chen, Shangying; Zhang, Peng; Liu, Xin; Qin, Chu; Tao, Lin; Zhang, Cheng; Yang, Sheng Yong; Chen, Yu Zong; Chui, Wai Keung

    2016-06-01

    The overall efficacy and safety profile of a new drug is partially evaluated by the therapeutic index in clinical studies and by the protective index (PI) in preclinical studies. In-silico predictive methods may facilitate the assessment of these indicators. Although QSAR and QSTR models can be used for predicting PI, their predictive capability has not been evaluated. To test this capability, we developed QSAR and QSTR models for predicting the activity and toxicity of anticonvulsants at accuracy levels above the literature-reported threshold (LT) of good QSAR models as tested by both the internal 5-fold cross validation and external validation method. These models showed significantly compromised PI predictive capability due to the cumulative errors of the QSAR and QSTR models. Therefore, in this investigation a new quantitative structure-index relationship (QSIR) model was devised and it showed improved PI predictive capability that superseded the LT of good QSAR models. The QSAR, QSTR and QSIR models were developed using support vector regression (SVR) method with the parameters optimized by using the greedy search method. The molecular descriptors relevant to the prediction of anticonvulsant activities, toxicities and PIs were analyzed by a recursive feature elimination method. The selected molecular descriptors are primarily associated with the drug-like, pharmacological and toxicological features and those used in the published anticonvulsant QSAR and QSTR models. This study suggested that QSIR is useful for estimating the therapeutic index of drug candidates. Copyright © 2016. Published by Elsevier Inc.

  15. BindML/BindML+: Detecting Protein-Protein Interaction Interface Propensity from Amino Acid Substitution Patterns.

    PubMed

    Wei, Qing; La, David; Kihara, Daisuke

    2017-01-01

    Prediction of protein-protein interaction sites in a protein structure provides important information for elucidating the mechanism of protein function and can also be useful in guiding a modeling or design procedures of protein complex structures. Since prediction methods essentially assess the propensity of amino acids that are likely to be part of a protein docking interface, they can help in designing protein-protein interactions. Here, we introduce BindML and BindML+ protein-protein interaction sites prediction methods. BindML predicts protein-protein interaction sites by identifying mutation patterns found in known protein-protein complexes using phylogenetic substitution models. BindML+ is an extension of BindML for distinguishing permanent and transient types of protein-protein interaction sites. We developed an interactive web-server that provides a convenient interface to assist in structural visualization of protein-protein interactions site predictions. The input data for the web-server are a tertiary structure of interest. BindML and BindML+ are available at http://kiharalab.org/bindml/ and http://kiharalab.org/bindml/plus/ .

  16. Prediction-error variance in Bayesian model updating: a comparative study

    NASA Astrophysics Data System (ADS)

    Asadollahi, Parisa; Li, Jian; Huang, Yong

    2017-04-01

    In Bayesian model updating, the likelihood function is commonly formulated by stochastic embedding in which the maximum information entropy probability model of prediction error variances plays an important role and it is Gaussian distribution subject to the first two moments as constraints. The selection of prediction error variances can be formulated as a model class selection problem, which automatically involves a trade-off between the average data-fit of the model class and the information it extracts from the data. Therefore, it is critical for the robustness in the updating of the structural model especially in the presence of modeling errors. To date, three ways of considering prediction error variances have been seem in the literature: 1) setting constant values empirically, 2) estimating them based on the goodness-of-fit of the measured data, and 3) updating them as uncertain parameters by applying Bayes' Theorem at the model class level. In this paper, the effect of different strategies to deal with the prediction error variances on the model updating performance is investigated explicitly. A six-story shear building model with six uncertain stiffness parameters is employed as an illustrative example. Transitional Markov Chain Monte Carlo is used to draw samples of the posterior probability density function of the structure model parameters as well as the uncertain prediction variances. The different levels of modeling uncertainty and complexity are modeled through three FE models, including a true model, a model with more complexity, and a model with modeling error. Bayesian updating is performed for the three FE models considering the three aforementioned treatments of the prediction error variances. The effect of number of measurements on the model updating performance is also examined in the study. The results are compared based on model class assessment and indicate that updating the prediction error variances as uncertain parameters at the model class level produces more robust results especially when the number of measurement is small.

  17. BiPPred: Combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP.

    PubMed

    Schneider, Markus; Rosam, Mathias; Glaser, Manuel; Patronov, Atanas; Shah, Harpreet; Back, Katrin Christiane; Daake, Marina Angelika; Buchner, Johannes; Antes, Iris

    2016-10-01

    Substrate binding to Hsp70 chaperones is involved in many biological processes, and the identification of potential substrates is important for a comprehensive understanding of these events. We present a multi-scale pipeline for an accurate, yet efficient prediction of peptides binding to the Hsp70 chaperone BiP by combining sequence-based prediction with molecular docking and MMPBSA calculations. First, we measured the binding of 15mer peptides from known substrate proteins of BiP by peptide array (PA) experiments and performed an accuracy assessment of the PA data by fluorescence anisotropy studies. Several sequence-based prediction models were fitted using this and other peptide binding data. A structure-based position-specific scoring matrix (SB-PSSM) derived solely from structural modeling data forms the core of all models. The matrix elements are based on a combination of binding energy estimations, molecular dynamics simulations, and analysis of the BiP binding site, which led to new insights into the peptide binding specificities of the chaperone. Using this SB-PSSM, peptide binders could be predicted with high selectivity even without training of the model on experimental data. Additional training further increased the prediction accuracies. Subsequent molecular docking (DynaDock) and MMGBSA/MMPBSA-based binding affinity estimations for predicted binders allowed the identification of the correct binding mode of the peptides as well as the calculation of nearly quantitative binding affinities. The general concept behind the developed multi-scale pipeline can readily be applied to other protein-peptide complexes with linearly bound peptides, for which sufficient experimental binding data for the training of classical sequence-based prediction models is not available. Proteins 2016; 84:1390-1407. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Optimizing finite element predictions of local subchondral bone structural stiffness using neural network-derived density-modulus relationships for proximal tibial subchondral cortical and trabecular bone.

    PubMed

    Nazemi, S Majid; Amini, Morteza; Kontulainen, Saija A; Milner, Jaques S; Holdsworth, David W; Masri, Bassam A; Wilson, David R; Johnston, James D

    2017-01-01

    Quantitative computed tomography based subject-specific finite element modeling has potential to clarify the role of subchondral bone alterations in knee osteoarthritis initiation, progression, and pain. However, it is unclear what density-modulus equation(s) should be applied with subchondral cortical and subchondral trabecular bone when constructing finite element models of the tibia. Using a novel approach applying neural networks, optimization, and back-calculation against in situ experimental testing results, the objective of this study was to identify subchondral-specific equations that optimized finite element predictions of local structural stiffness at the proximal tibial subchondral surface. Thirteen proximal tibial compartments were imaged via quantitative computed tomography. Imaged bone mineral density was converted to elastic moduli using multiple density-modulus equations (93 total variations) then mapped to corresponding finite element models. For each variation, root mean squared error was calculated between finite element prediction and in situ measured stiffness at 47 indentation sites. Resulting errors were used to train an artificial neural network, which provided an unlimited number of model variations, with corresponding error, for predicting stiffness at the subchondral bone surface. Nelder-Mead optimization was used to identify optimum density-modulus equations for predicting stiffness. Finite element modeling predicted 81% of experimental stiffness variance (with 10.5% error) using optimized equations for subchondral cortical and trabecular bone differentiated with a 0.5g/cm 3 density. In comparison with published density-modulus relationships, optimized equations offered improved predictions of local subchondral structural stiffness. Further research is needed with anisotropy inclusion, a smaller voxel size and de-blurring algorithms to improve predictions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Thermo-mechanical simulations of early-age concrete cracking with durability predictions

    NASA Astrophysics Data System (ADS)

    Havlásek, Petr; Šmilauer, Vít; Hájková, Karolina; Baquerizo, Luis

    2017-09-01

    Concrete performance is strongly affected by mix design, thermal boundary conditions, its evolving mechanical properties, and internal/external restraints with consequences to possible cracking with impaired durability. Thermo-mechanical simulations are able to capture those relevant phenomena and boundary conditions for predicting temperature, strains, stresses or cracking in reinforced concrete structures. In this paper, we propose a weakly coupled thermo-mechanical model for early age concrete with an affinity-based hydration model for thermal part, taking into account concrete mix design, cement type and thermal boundary conditions. The mechanical part uses B3/B4 model for concrete creep and shrinkage with isotropic damage model for cracking, able to predict a crack width. All models have been implemented in an open-source OOFEM software package. Validations of thermo-mechanical simulations will be presented on several massive concrete structures, showing excellent temperature predictions. Likewise, strain validation demonstrates good predictions on a restrained reinforced concrete wall and concrete beam. Durability predictions stem from induction time of reinforcement corrosion, caused by carbonation and/or chloride ingress influenced by crack width. Reinforcement corrosion in concrete struts of a bridge will serve for validation.

  20. RCK: accurate and efficient inference of sequence- and structure-based protein-RNA binding models from RNAcompete data.

    PubMed

    Orenstein, Yaron; Wang, Yuhao; Berger, Bonnie

    2016-06-15

    Protein-RNA interactions, which play vital roles in many processes, are mediated through both RNA sequence and structure. CLIP-based methods, which measure protein-RNA binding in vivo, suffer from experimental noise and systematic biases, whereas in vitro experiments capture a clearer signal of protein RNA-binding. Among them, RNAcompete provides binding affinities of a specific protein to more than 240 000 unstructured RNA probes in one experiment. The computational challenge is to infer RNA structure- and sequence-based binding models from these data. The state-of-the-art in sequence models, Deepbind, does not model structural preferences. RNAcontext models both sequence and structure preferences, but is outperformed by GraphProt. Unfortunately, GraphProt cannot detect structural preferences from RNAcompete data due to the unstructured nature of the data, as noted by its developers, nor can it be tractably run on the full RNACompete dataset. We develop RCK, an efficient, scalable algorithm that infers both sequence and structure preferences based on a new k-mer based model. Remarkably, even though RNAcompete data is designed to be unstructured, RCK can still learn structural preferences from it. RCK significantly outperforms both RNAcontext and Deepbind in in vitro binding prediction for 244 RNAcompete experiments. Moreover, RCK is also faster and uses less memory, which enables scalability. While currently on par with existing methods in in vivo binding prediction on a small scale test, we demonstrate that RCK will increasingly benefit from experimentally measured RNA structure profiles as compared to computationally predicted ones. By running RCK on the entire RNAcompete dataset, we generate and provide as a resource a set of protein-RNA structure-based models on an unprecedented scale. Software and models are freely available at http://rck.csail.mit.edu/ bab@mit.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  1. Cosmological structure formation in Decaying Dark Matter models

    NASA Astrophysics Data System (ADS)

    Cheng, Dalong; Chu, M.-C.; Tang, Jiayu

    2015-07-01

    The standard cold dark matter (CDM) model predicts too many and too dense small structures. We consider an alternative model that the dark matter undergoes two-body decays with cosmological lifetime τ into only one type of massive daughters with non-relativistic recoil velocity Vk. This decaying dark matter model (DDM) can suppress the structure formation below its free-streaming scale at time scale comparable to τ. Comparing with warm dark matter (WDM), DDM can better reduce the small structures while being consistent with high redshfit observations. We study the cosmological structure formation in DDM by performing self-consistent N-body simulations and point out that cosmological simulations are necessary to understand the DDM structures especially on non-linear scales. We propose empirical fitting functions for the DDM suppression of the mass function and the concentration-mass relation, which depend on the decay parameters lifetime τ, recoil velocity Vk and redshift. The fitting functions lead to accurate reconstruction of the the non-linear power transfer function of DDM to CDM in the framework of halo model. Using these results, we set constraints on the DDM parameter space by demanding that DDM does not induce larger suppression than the Lyman-α constrained WDM models. We further generalize and constrain the DDM models to initial conditions with non-trivial mother fractions and show that the halo model predictions are still valid after considering a global decayed fraction. Finally, we point out that the DDM is unlikely to resolve the disagreement on cluster numbers between the Planck primary CMB prediction and the Sunyaev-Zeldovich (SZ) effect number count for τ ~ H0-1.

  2. Uncertainty in age-specific harvest estimates and consequences for white-tailed deer management

    USGS Publications Warehouse

    Collier, B.A.; Krementz, D.G.

    2007-01-01

    Age structure proportions (proportion of harvested individuals within each age class) are commonly used as support for regulatory restrictions and input for deer population models. Such use requires critical evaluation when harvest regulations force hunters to selectively harvest specific age classes, due to impact on the underlying population age structure. We used a stochastic population simulation model to evaluate the impact of using harvest proportions to evaluate changes in population age structure under a selective harvest management program at two scales. Using harvest proportions to parameterize the age-specific harvest segment of the model for the local scale showed that predictions of post-harvest age structure did not vary dependent upon whether selective harvest criteria were in use or not. At the county scale, yearling frequency in the post-harvest population increased, but model predictions indicated that post-harvest population size of 2.5 years old males would decline below levels found before implementation of the antler restriction, reducing the number of individuals recruited into older age classes. Across the range of age-specific harvest rates modeled, our simulation predicted that underestimation of age-specific harvest rates has considerable influence on predictions of post-harvest population age structure. We found that the consequence of uncertainty in harvest rates corresponds to uncertainty in predictions of residual population structure, and this correspondence is proportional to scale. Our simulations also indicate that regardless of use of harvest proportions or harvest rates, at either the local or county scale the modeled SHC had a high probability (>0.60 and >0.75, respectively) of eliminating recruitment into >2.5 years old age classes. Although frequently used to increase population age structure, our modeling indicated that selective harvest criteria can decrease or eliminate the number of white-tailed deer recruited into older age classes. Thus, we suggest that using harvest proportions for management planning and evaluation should be viewed with caution. In addition, we recommend that managers focus more attention on estimation of age-specific harvest rates, and modeling approaches which combine harvest rates with information from harvested individuals to further increase their ability to effectively manage deer populations under selective harvest programs. ?? 2006 Elsevier B.V. All rights reserved.

  3. The effect of geographical indices on left ventricular structure in healthy Han Chinese population

    NASA Astrophysics Data System (ADS)

    Cen, Minyi; Ge, Miao; Liu, Yonglin; Wang, Congxia; Yang, Shaofang

    2017-02-01

    The left ventricular posterior wall thickness (LVPWT) and interventricular septum thickness (IVST) are generally regarded as the functional parts of the left ventricular (LV) structure. This paper aims to examine the effects of geographical indices on healthy Han adults' LV structural indices and to offer a scientific basis for developing a unified standard for the reference values of adults' LV structural indices in China. Fifteen terrain, climate, and soil indices were examined as geographical explanatory variables. Statistical analysis was performed using correlation analysis. Moreover, a back propagation neural network (BPNN) and a support vector regression (SVR) were applied to developing models to predict the values of two indices. After the prediction models were built, distribution maps were produced. The results show that LV structural indices are characteristically associated with latitude, longitude, altitude, average temperature, average wind velocity, topsoil sand fraction, topsoil silt fraction, topsoil organic carbon, and topsoil sodicity. The model test analyses show the BPNN model possesses better simulative and predictive ability in comparison with the SVR model. The distribution maps of the LV structural indices show that, in China, the values are higher in the west and lower in the east. These results demonstrate that the reference values of the adults' LV structural indices will be different affected by different geographical environment. The reference values of LV structural indices in one region can be calculated by setting up a BPNN, which showed better applicability in this study. The distribution of the reference values of the LV structural indices can be seen clearly on the geographical distribution map.

  4. The effect of geographical indices on left ventricular structure in healthy Han Chinese population.

    PubMed

    Cen, Minyi; Ge, Miao; Liu, Yonglin; Wang, Congxia; Yang, Shaofang

    2017-02-01

    The left ventricular posterior wall thickness (LVPWT) and interventricular septum thickness (IVST) are generally regarded as the functional parts of the left ventricular (LV) structure. This paper aims to examine the effects of geographical indices on healthy Han adults' LV structural indices and to offer a scientific basis for developing a unified standard for the reference values of adults' LV structural indices in China. Fifteen terrain, climate, and soil indices were examined as geographical explanatory variables. Statistical analysis was performed using correlation analysis. Moreover, a back propagation neural network (BPNN) and a support vector regression (SVR) were applied to developing models to predict the values of two indices. After the prediction models were built, distribution maps were produced. The results show that LV structural indices are characteristically associated with latitude, longitude, altitude, average temperature, average wind velocity, topsoil sand fraction, topsoil silt fraction, topsoil organic carbon, and topsoil sodicity. The model test analyses show the BPNN model possesses better simulative and predictive ability in comparison with the SVR model. The distribution maps of the LV structural indices show that, in China, the values are higher in the west and lower in the east. These results demonstrate that the reference values of the adults' LV structural indices will be different affected by different geographical environment. The reference values of LV structural indices in one region can be calculated by setting up a BPNN, which showed better applicability in this study. The distribution of the reference values of the LV structural indices can be seen clearly on the geographical distribution map.

  5. Ab Initio Protein Structure Assembly Using Continuous Structure Fragments and Optimized Knowledge-based Force Field

    PubMed Central

    Xu, Dong; Zhang, Yang

    2012-01-01

    Ab initio protein folding is one of the major unsolved problems in computational biology due to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 non-homologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score (TM-score) >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in 1/3 cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction (CASP9) experiment, QUARK server outperformed the second and third best servers by 18% and 47% based on the cumulative Z-score of global distance test-total (GDT-TS) scores in the free modeling (FM) category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress towards the solution of the most important problem in the field. PMID:22411565

  6. Special Issue on Uncertainty Quantification in Multiscale System Design and Simulation

    DOE PAGES

    Wang, Yan; Swiler, Laura

    2017-09-07

    The importance of uncertainty has been recognized in various modeling, simulation, and analysis applications, where inherent assumptions and simplifications affect the accuracy of model predictions for physical phenomena. As model predictions are now heavily relied upon for simulation-based system design, which includes new materials, vehicles, mechanical and civil structures, and even new drugs, wrong model predictions could potentially cause catastrophic consequences. Therefore, uncertainty and associated risks due to model errors should be quantified to support robust systems engineering.

  7. Special Issue on Uncertainty Quantification in Multiscale System Design and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Swiler, Laura

    The importance of uncertainty has been recognized in various modeling, simulation, and analysis applications, where inherent assumptions and simplifications affect the accuracy of model predictions for physical phenomena. As model predictions are now heavily relied upon for simulation-based system design, which includes new materials, vehicles, mechanical and civil structures, and even new drugs, wrong model predictions could potentially cause catastrophic consequences. Therefore, uncertainty and associated risks due to model errors should be quantified to support robust systems engineering.

  8. Dynamic Modeling and Very Short-term Prediction of Wind Power Output Using Box-Cox Transformation

    NASA Astrophysics Data System (ADS)

    Urata, Kengo; Inoue, Masaki; Murayama, Dai; Adachi, Shuichi

    2016-09-01

    We propose a statistical modeling method of wind power output for very short-term prediction. The modeling method with a nonlinear model has cascade structure composed of two parts. One is a linear dynamic part that is driven by a Gaussian white noise and described by an autoregressive model. The other is a nonlinear static part that is driven by the output of the linear part. This nonlinear part is designed for output distribution matching: we shape the distribution of the model output to match with that of the wind power output. The constructed model is utilized for one-step ahead prediction of the wind power output. Furthermore, we study the relation between the prediction accuracy and the prediction horizon.

  9. Toxicity of ionic liquids: database and prediction via quantitative structure-activity relationship method.

    PubMed

    Zhao, Yongsheng; Zhao, Jihong; Huang, Ying; Zhou, Qing; Zhang, Xiangping; Zhang, Suojiang

    2014-08-15

    A comprehensive database on toxicity of ionic liquids (ILs) is established. The database includes over 4000 pieces of data. Based on the database, the relationship between IL's structure and its toxicity has been analyzed qualitatively. Furthermore, Quantitative Structure-Activity relationships (QSAR) model is conducted to predict the toxicities (EC50 values) of various ILs toward the Leukemia rat cell line IPC-81. Four parameters selected by the heuristic method (HM) are used to perform the studies of multiple linear regression (MLR) and support vector machine (SVM). The squared correlation coefficient (R(2)) and the root mean square error (RMSE) of training sets by two QSAR models are 0.918 and 0.959, 0.258 and 0.179, respectively. The prediction R(2) and RMSE of QSAR test sets by MLR model are 0.892 and 0.329, by SVM model are 0.958 and 0.234, respectively. The nonlinear model developed by SVM algorithm is much outperformed MLR, which indicates that SVM model is more reliable in the prediction of toxicity of ILs. This study shows that increasing the relative number of O atoms of molecules leads to decrease in the toxicity of ILs. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Bridging the gap between theoretical ecology and real ecosystems: modeling invertebrate community composition in streams.

    PubMed

    Schuwirth, Nele; Reichert, Peter

    2013-02-01

    For the first time, we combine concepts of theoretical food web modeling, the metabolic theory of ecology, and ecological stoichiometry with the use of functional trait databases to predict the coexistence of invertebrate taxa in streams. We developed a mechanistic model that describes growth, death, and respiration of different taxa dependent on various environmental influence factors to estimate survival or extinction. Parameter and input uncertainty is propagated to model results. Such a model is needed to test our current quantitative understanding of ecosystem structure and function and to predict effects of anthropogenic impacts and restoration efforts. The model was tested using macroinvertebrate monitoring data from a catchment of the Swiss Plateau. Even without fitting model parameters, the model is able to represent key patterns of the coexistence structure of invertebrates at sites varying in external conditions (litter input, shading, water quality). This confirms the suitability of the model concept. More comprehensive testing and resulting model adaptations will further increase the predictive accuracy of the model.

  11. Predicting Gene Structure Changes Resulting from Genetic Variants via Exon Definition Features.

    PubMed

    Majoros, William H; Holt, Carson; Campbell, Michael S; Ware, Doreen; Yandell, Mark; Reddy, Timothy E

    2018-04-25

    Genetic variation that disrupts gene function by altering gene splicing between individuals can substantially influence traits and disease. In those cases, accurately predicting the effects of genetic variation on splicing can be highly valuable for investigating the mechanisms underlying those traits and diseases. While methods have been developed to generate high quality computational predictions of gene structures in reference genomes, the same methods perform poorly when used to predict the potentially deleterious effects of genetic changes that alter gene splicing between individuals. Underlying that discrepancy in predictive ability are the common assumptions by reference gene finding algorithms that genes are conserved, well-formed, and produce functional proteins. We describe a probabilistic approach for predicting recent changes to gene structure that may or may not conserve function. The model is applicable to both coding and noncoding genes, and can be trained on existing gene annotations without requiring curated examples of aberrant splicing. We apply this model to the problem of predicting altered splicing patterns in the genomes of individual humans, and we demonstrate that performing gene-structure prediction without relying on conserved coding features is feasible. The model predicts an unexpected abundance of variants that create de novo splice sites, an observation supported by both simulations and empirical data from RNA-seq experiments. While these de novo splice variants are commonly misinterpreted by other tools as coding or noncoding variants of little or no effect, we find that in some cases they can have large effects on splicing activity and protein products, and we propose that they may commonly act as cryptic factors in disease. The software is available from geneprediction.org/SGRF. bmajoros@duke.edu. Supplementary information is available at Bioinformatics online.

  12. Oral LD50 toxicity modeling and prediction of per- and polyfluorinated chemicals on rat and mouse.

    PubMed

    Bhhatarai, Barun; Gramatica, Paola

    2011-05-01

    Quantitative structure-activity relationship (QSAR) analyses were performed using the LD(50) oral toxicity data of per- and polyfluorinated chemicals (PFCs) on rodents: rat and mouse. PFCs are studied under the EU project CADASTER which uses the available experimental data for prediction and prioritization of toxic chemicals for risk assessment by using the in silico tools. The methodology presented here applies chemometrical analysis on the existing experimental data and predicts the toxicity of new compounds. QSAR analyses were performed on the available 58 mouse and 50 rat LD(50) oral data using multiple linear regression (MLR) based on theoretical molecular descriptors selected by genetic algorithm (GA). Training and prediction sets were prepared a priori from available experimental datasets in terms of structure and response. These sets were used to derive statistically robust and predictive (both internally and externally) models. The structural applicability domain (AD) of the models were verified on 376 per- and polyfluorinated chemicals including those in REACH preregistration list. The rat and mouse endpoints were predicted by each model for the studied compounds, and finally 30 compounds, all perfluorinated, were prioritized as most important for experimental toxicity analysis under the project. In addition, cumulative study on compounds within the AD of all four models, including two earlier published models on LC(50) rodent analysis was studied and the cumulative toxicity trend was observed using principal component analysis (PCA). The similarities and the differences observed in terms of descriptors and chemical/mechanistic meaning encoded by descriptors to prioritize the most toxic compounds are highlighted.

  13. Engine-induced structural-borne noise in a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.

    1979-01-01

    Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.

  14. Estimation of Hydrogen-Exchange Protection Factors from MD Simulation Based on Amide Hydrogen Bonding Analysis.

    PubMed

    Park, In-Hee; Venable, John D; Steckler, Caitlin; Cellitti, Susan E; Lesley, Scott A; Spraggon, Glen; Brock, Ansgar

    2015-09-28

    Hydrogen exchange (HX) studies have provided critical insight into our understanding of protein folding, structure, and dynamics. More recently, hydrogen exchange mass spectrometry (HX-MS) has become a widely applicable tool for HX studies. The interpretation of the wealth of data generated by HX-MS experiments as well as other HX methods would greatly benefit from the availability of exchange predictions derived from structures or models for comparison with experiment. Most reported computational HX modeling studies have employed solvent-accessible-surface-area based metrics in attempts to interpret HX data on the basis of structures or models. In this study, a computational HX-MS prediction method based on classification of the amide hydrogen bonding modes mimicking the local unfolding model is demonstrated. Analysis of the NH bonding configurations from molecular dynamics (MD) simulation snapshots is used to determine partitioning over bonded and nonbonded NH states and is directly mapped into a protection factor (PF) using a logistics growth function. Predicted PFs are then used for calculating deuteration values of peptides and compared with experimental data. Hydrogen exchange MS data for fatty acid synthase thioesterase (FAS-TE) collected for a range of pHs and temperatures was used for detailed evaluation of the approach. High correlation between prediction and experiment for observable fragment peptides is observed in the FAS-TE and additional benchmarking systems that included various apo/holo proteins for which literature data were available. In addition, it is shown that HX modeling can improve experimental resolution through decomposition of in-exchange curves into rate classes, which correlate with prediction from MD. Successful rate class decompositions provide further evidence that the presented approach captures the underlying physical processes correctly at the single residue level. This assessment is further strengthened in a comparison of residue resolved protection factor predictions for staphylococcal nuclease with NMR data, which was also used to compare prediction performance with other algorithms described in the literature. The demonstrated transferable and scalable MD based HX prediction approach adds significantly to the available tools for HX-MS data interpretation based on available structures and models.

  15. Estimation of Hydrogen-Exchange Protection Factors from MD Simulation Based on Amide Hydrogen Bonding Analysis

    PubMed Central

    Park, In-Hee; Venable, John D.; Steckler, Caitlin; Cellitti, Susan E.; Lesley, Scott A.; Spraggon, Glen; Brock, Ansgar

    2015-01-01

    Hydrogen exchange (HX) studies have provided critical insight into our understanding of protein folding, structure and dynamics. More recently, Hydrogen Exchange Mass Spectrometry (HX-MS) has become a widely applicable tool for HX studies. The interpretation of the wealth of data generated by HX-MS experiments as well as other HX methods would greatly benefit from the availability of exchange predictions derived from structures or models for comparison with experiment. Most reported computational HX modeling studies have employed solvent-accessible-surface-area based metrics in attempts to interpret HX data on the basis of structures or models. In this study, a computational HX-MS prediction method based on classification of the amide hydrogen bonding modes mimicking the local unfolding model is demonstrated. Analysis of the NH bonding configurations from Molecular Dynamics (MD) simulation snapshots is used to determine partitioning over bonded and non-bonded NH states and is directly mapped into a protection factor (PF) using a logistics growth function. Predicted PFs are then used for calculating deuteration values of peptides and compared with experimental data. Hydrogen exchange MS data for Fatty acid synthase thioesterase (FAS-TE) collected for a range of pHs and temperatures was used for detailed evaluation of the approach. High correlation between prediction and experiment for observable fragment peptides is observed in the FAS-TE and additional benchmarking systems that included various apo/holo proteins for which literature data were available. In addition, it is shown that HX modeling can improve experimental resolution through decomposition of in-exchange curves into rate classes, which correlate with prediction from MD. Successful rate class decompositions provide further evidence that the presented approach captures the underlying physical processes correctly at the single residue level. This assessment is further strengthened in a comparison of residue resolved protection factor predictions for staphylococcal nuclease with NMR data, which was also used to compare prediction performance with other algorithms described in the literature. The demonstrated transferable and scalable MD based HX prediction approach adds significantly to the available tools for HX-MS data interpretation based on available structures and models. PMID:26241692

  16. 3D RNA and functional interactions from evolutionary couplings

    PubMed Central

    Weinreb, Caleb; Riesselman, Adam; Ingraham, John B.; Gross, Torsten; Sander, Chris; Marks, Debora S.

    2016-01-01

    Summary Non-coding RNAs are ubiquitous, but the discovery of new RNA gene sequences far outpaces research on their structure and functional interactions. We mine the evolutionary sequence record to derive precise information about function and structure of RNAs and RNA-protein complexes. As in protein structure prediction, we use maximum entropy global probability models of sequence co-variation to infer evolutionarily constrained nucleotide-nucleotide interactions within RNA molecules, and nucleotide-amino acid interactions in RNA-protein complexes. The predicted contacts allow all-atom blinded 3D structure prediction at good accuracy for several known RNA structures and RNA-protein complexes. For unknown structures, we predict contacts in 160 non-coding RNA families. Beyond 3D structure prediction, evolutionary couplings help identify important functional interactions, e.g., at switch points in riboswitches and at a complex nucleation site in HIV. Aided by accelerating sequence accumulation, evolutionary coupling analysis can accelerate the discovery of functional interactions and 3D structures involving RNA. PMID:27087444

  17. LECTINPred: web Server that Uses Complex Networks of Protein Structure for Prediction of Lectins with Potential Use as Cancer Biomarkers or in Parasite Vaccine Design.

    PubMed

    Munteanu, Cristian R; Pedreira, Nieves; Dorado, Julián; Pazos, Alejandro; Pérez-Montoto, Lázaro G; Ubeira, Florencio M; González-Díaz, Humberto

    2014-04-01

    Lectins (Ls) play an important role in many diseases such as different types of cancer, parasitic infections and other diseases. Interestingly, the Protein Data Bank (PDB) contains +3000 protein 3D structures with unknown function. Thus, we can in principle, discover new Ls mining non-annotated structures from PDB or other sources. However, there are no general models to predict new biologically relevant Ls based on 3D chemical structures. We used the MARCH-INSIDE software to calculate the Markov-Shannon 3D electrostatic entropy parameters for the complex networks of protein structure of 2200 different protein 3D structures, including 1200 Ls. We have performed a Linear Discriminant Analysis (LDA) using these parameters as inputs in order to seek a new Quantitative Structure-Activity Relationship (QSAR) model, which is able to discriminate 3D structure of Ls from other proteins. We implemented this predictor in the web server named LECTINPred, freely available at http://bio-aims.udc.es/LECTINPred.php. This web server showed the following goodness-of-fit statistics: Sensitivity=96.7 % (for Ls), Specificity=87.6 % (non-active proteins), and Accuracy=92.5 % (for all proteins), considering altogether both the training and external prediction series. In mode 2, users can carry out an automatic retrieval of protein structures from PDB. We illustrated the use of this server, in operation mode 1, performing a data mining of PDB. We predicted Ls scores for +2000 proteins with unknown function and selected the top-scored ones as possible lectins. In operation mode 2, LECTINPred can also upload 3D structural models generated with structure-prediction tools like LOMETS or PHYRE2. The new Ls are expected to be of relevance as cancer biomarkers or useful in parasite vaccine design. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Modelling Size Structured Food Webs Using a Modified Niche Model with Two Predator Traits

    PubMed Central

    Klecka, Jan

    2014-01-01

    The structure of food webs is frequently described using phenomenological stochastic models. A prominent example, the niche model, was found to produce artificial food webs resembling real food webs according to a range of summary statistics. However, the size structure of food webs generated by the niche model and real food webs has not yet been rigorously compared. To fill this void, I use a body mass based version of the niche model and compare prey-predator body mass allometry and predator-prey body mass ratios predicted by the model to empirical data. The results show that the model predicts weaker size structure than observed in many real food webs. I introduce a modified version of the niche model which allows to control the strength of size-dependence of predator-prey links. In this model, optimal prey body mass depends allometrically on predator body mass and on a second trait, such as foraging mode. These empirically motivated extensions of the model allow to represent size structure of real food webs realistically and can be used to generate artificial food webs varying in several aspects of size structure in a controlled way. Hence, by explicitly including the role of species traits, this model provides new opportunities for simulating the consequences of size structure for food web dynamics and stability. PMID:25119999

  19. Classification and Prediction of RF Coupling inside A-320 and A-319 Airplanes using Feed Forward Neural Networks

    NASA Technical Reports Server (NTRS)

    Jafri, Madiha; Ely, Jay; Vahala, Linda

    2006-01-01

    Neural Network Modeling is introduced in this paper to classify and predict Interference Path Loss measurements on Airbus 319 and 320 airplanes. Interference patterns inside the aircraft are classified and predicted based on the locations of the doors, windows, aircraft structures and the communication/navigation system-of-concern. Modeled results are compared with measured data and a plan is proposed to enhance the modeling for better prediction of electromagnetic coupling problems inside aircraft.

  20. Modeling and experimental assessment of a buried Leu–Ile mutation in dengue envelope domain III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Manjiri R.; Numoto, Nobutaka; Ito, Nobutoshi

    Envelope protein domain III (ED3) of the dengue virus is important for both antibody binding and host cell interaction. Here, we focused on how a L387I mutation in the protein core could take place in DEN4 ED3, but cannot be accommodated in DEN3 ED3 without destabilizing its structure. To this end, we modeled a DEN4-L387I structure using the Penultimate Rotamer Library and taking the DEN4 ED3 main-chain as a fixed template. We found that three out of seven Ile{sup 387} conformers fit in DEN4 ED3 without introducing the severe atomic clashes that are observed when DEN3 serotype’s ED3 is usedmore » as a template. A more extensive search using 273 side-chain rotamers of the residues surrounding Ile{sup 387} confirmed this prediction. In order to assess the prediction, we determined the crystal structure of DEN4-L387I at 2 Å resolution. Ile{sup 387} indeed adopted one of the three predicted rotamers. Altogether, this study demonstrates that the effects of single mutations are to a large extent successfully predicted by systematically modeling the side-chain structures of the mutated as well as those of its surrounding residues using fixed main-chain structures and assessing inter-atomic steric clashes. More accurate and reliable predictions require considering sub-angstrom main-chain deformation, which remains a challenging task. - Highlights: • We mutated L387I of DEN4 ED3 and examined its effects on structure and stability. • We modeled the side-chain of Ile{sup 387} using DEN4 ED3's structure as a template. • We determined the crystal structure of DEN4-L387I and confirmed the modeling. • Side-chain repacking occurring around Ile{sup 387} involved >3 inter-connected residues. • These results explained why L387I mutation in DEN4 ED3 conserves thermostability.« less

  1. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain–domain interaction prediction

    PubMed Central

    Xu, Dong; Jaroszewski, Lukasz; Li, Zhanwen; Godzik, Adam

    2015-01-01

    Motivation: Most proteins consist of multiple domains, independent structural and evolutionary units that are often reshuffled in genomic rearrangements to form new protein architectures. Template-based modeling methods can often detect homologous templates for individual domains, but templates that could be used to model the entire query protein are often not available. Results: We have developed a fast docking algorithm ab initio domain assembly (AIDA) for assembling multi-domain protein structures, guided by the ab initio folding potential. This approach can be extended to discontinuous domains (i.e. domains with ‘inserted’ domains). When tested on experimentally solved structures of multi-domain proteins, the relative domain positions were accurately found among top 5000 models in 86% of cases. AIDA server can use domain assignments provided by the user or predict them from the provided sequence. The latter approach is particularly useful for automated protein structure prediction servers. The blind test consisting of 95 CASP10 targets shows that domain boundaries could be successfully determined for 97% of targets. Availability and implementation: The AIDA package as well as the benchmark sets used here are available for download at http://ffas.burnham.org/AIDA/. Contact: adam@sanfordburnham.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25701568

  2. Generation, Analysis and Characterization of Anisotropic Engineered Meta Materials

    NASA Astrophysics Data System (ADS)

    Trifale, Ninad T.

    A methodology for a systematic generation of highly anisotropic micro-lattice structures was investigated. Multiple algorithms for generation and validation of engineered structures are developed and evaluated. Set of all possible permutations of structures for an 8-node cubic unit cell were considered and the degree of anisotropy of meta-properties in heat transport and mechanical elasticity were evaluated. Feasibility checks were performed to ensure that the generated unit cell network was repeatable and a continuous lattice structure. Four different strategies for generating permutations of the structures are discussed. Analytical models were developed to predict effective thermal, mechanical and permeability characteristics of these cellular structures.Experimentation and numerical modeling techniques were used to validate the models that are developed. A self-consistent mechanical elasticity model was developed which connects the meso-scale properties to stiffness of individual struts. A three dimensional thermal resistance network analogy was used to evaluate the effective thermal conductivity of the structures. The struts were modeled as a network of one dimensional thermal resistive elements and effective conductivity evaluated. Models were validated against numerical simulations and experimental measurements on 3D printed samples. Model was developed to predict effective permeability of these engineered structures based on Darcy's law. Drag coefficients were evaluated for individual connections in transverse and longitudinal directions and an interaction term was calibrated from the experimental data in literature in order to predict permeability. Generic optimization framework coupled to finite element solver is developed for analyzing any application involving use of porous structures. An objective functions were generated structure to address frequently observed trade-off between the stiffness, thermal conductivity, permeability and porosity. Three application were analyzed for potential use of engineered materials. Heat spreader application involving thermal and mechanical constraints, artificial bone grafts application involving mechanical and permeability constraints and structural materials applications involving mechanical, thermal and porosity constraints is analyzed. Recommendations for optimum topologies for specific operating conditions are provided.

  3. CFD-PBM coupled simulation of a nanobubble generator with honeycomb structure

    NASA Astrophysics Data System (ADS)

    Ren, F.; Noda, N. A.; Ueda, T.; Sano, Y.; Takase, Y.; Umekage, T.; Yonezawa, Y.; Tanaka, H.

    2018-06-01

    In recent years, nanobubble technologies have drawn great attention due to their wide applications in many fields of science and technology. The nitrogen nanobubble water circulation can be used to slow the progressions of oxidation and spoilage for the seafood long- term storage. From previous studies, a kind of honeycomb structure for high-efficiency nanobubble generation has been proposed. In this paper, the bubbly flow in the honeycomb structure was studied. The numerical simulations of honeycomb structure were performed by using a computational fluid dynamics–population balance model (CFD-PBM) coupled model. The numerical model was based on the Eulerian multiphase model and the population balance model (PBM) was used to calculate the gas bubble size distribution. The bubble coalescence and breakage were included. Considering the effect of bubble diameter on the fluid flow, the phase interactions were coupled with the PBM. The bubble size distributions in the honeycomb structure under different work conditions were predicted. The experimental results were compared with the simulation predictions.

  4. MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development (SETAC abstract)

    EPA Science Inventory

    The mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity and as an alternative to chemical class-based predictive toxicity modeling. However, the development of quantitative structure activity relationship (QSAR) and other models has been limit...

  5. MOAtox: A Comprehensive Mode of Action and Acute Aquatic Toxicity Database for Predictive Model Development

    EPA Science Inventory

    tThe mode of toxic action (MOA) has been recognized as a key determinant of chemical toxicity andas an alternative to chemical class-based predictive toxicity modeling. However, the development ofquantitative structure activity relationship (QSAR) and other models has been limite...

  6. Benchmarking hydrological model predictive capability for UK River flows and flood peaks.

    NASA Astrophysics Data System (ADS)

    Lane, Rosanna; Coxon, Gemma; Freer, Jim; Wagener, Thorsten

    2017-04-01

    Data and hydrological models are now available for national hydrological analyses. However, hydrological model performance varies between catchments, and lumped, conceptual models are not able to produce adequate simulations everywhere. This study aims to benchmark hydrological model performance for catchments across the United Kingdom within an uncertainty analysis framework. We have applied four hydrological models from the FUSE framework to 1128 catchments across the UK. These models are all lumped models and run at a daily timestep, but differ in the model structural architecture and process parameterisations, therefore producing different but equally plausible simulations. We apply FUSE over a 20 year period from 1988-2008, within a GLUE Monte Carlo uncertainty analyses framework. Model performance was evaluated for each catchment, model structure and parameter set using standard performance metrics. These were calculated both for the whole time series and to assess seasonal differences in model performance. The GLUE uncertainty analysis framework was then applied to produce simulated 5th and 95th percentile uncertainty bounds for the daily flow time-series and additionally the annual maximum prediction bounds for each catchment. The results show that the model performance varies significantly in space and time depending on catchment characteristics including climate, geology and human impact. We identify regions where models are systematically failing to produce good results, and present reasons why this could be the case. We also identify regions or catchment characteristics where one model performs better than others, and have explored what structural component or parameterisation enables certain models to produce better simulations in these catchments. Model predictive capability was assessed for each catchment, through looking at the ability of the models to produce discharge prediction bounds which successfully bound the observed discharge. These results improve our understanding of the predictive capability of simple conceptual hydrological models across the UK and help us to identify where further effort is needed to develop modelling approaches to better represent different catchment and climate typologies.

  7. Predicting hepatotoxicity using ToxCast in vitro bioactivity and chemical structure

    EPA Science Inventory

    Background: The U.S. EPA ToxCastTM program is screening thousands of environmental chemicals for bioactivity using hundreds of high-throughput in vitro assays to build predictive models of toxicity. We represented chemicals based on bioactivity and chemical structure descriptors ...

  8. Prediction of biodegradability of aromatics in water using QSAR modeling.

    PubMed

    Cvetnic, Matija; Juretic Perisic, Daria; Kovacic, Marin; Kusic, Hrvoje; Dermadi, Jasna; Horvat, Sanja; Bolanca, Tomislav; Marin, Vedrana; Karamanis, Panaghiotis; Loncaric Bozic, Ana

    2017-05-01

    The study was aimed at developing models for predicting the biodegradability of aromatic water pollutants. For that purpose, 36 single-benzene ring compounds, with different type, number and position of substituents, were used. The biodegradability was estimated according to the ratio of the biochemical (BOD 5 ) and chemical (COD) oxygen demand values determined for parent compounds ((BOD 5 /COD) 0 ), as well as for their reaction mixtures in half-life achieved by UV-C/H 2 O 2 process ((BOD 5 /COD) t1/2 ). The models correlating biodegradability and molecular structure characteristics of studied pollutants were derived using quantitative structure-activity relationship (QSAR) principles and tools. Upon derivation of the models and calibration on the training and subsequent testing on the test set, 3- and 5-variable models were selected as the most predictive for (BOD 5 /COD) 0 and (BOD 5 /COD) t1/2 , respectively, according to the values of statistical parameters R 2 and Q 2 . Hence, 3-variable model predicting (BOD 5 /COD) 0 possessed R 2 =0.863 and Q 2 =0.799 for training set, and R 2 =0.710 for test set, while 5-variable model predicting (BOD 5 /COD) 1/2 possessed R 2 =0.886 and Q 2 =0.788 for training set, and R 2 =0.564 for test set. The selected models are interpretable and transparent, reflecting key structural features that influence targeted biodegradability and can be correlated with the degradation mechanisms of studied compounds by UV-C/H 2 O 2 . Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field.

    PubMed

    Xu, Dong; Zhang, Yang

    2012-07-01

    Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Copyright © 2012 Wiley Periodicals, Inc.

  10. Psychological and behavioral consequences of job loss: a covariance structure analysis using Weiner's (1985) attribution model.

    PubMed

    Prussia, G E; Kinicki, A J; Bracker, J S

    1993-06-01

    B. Weiner's (1985) attribution model of achievement motivation and emotion was used as a theoretical foundation to examine the mediating processes between involuntary job loss and employment status. Seventy-nine manufacturing employees were surveyed 1 month prior to permanent displacement, and finding another job was assessed 18 months later. Covariance structure analysis was used to evaluate goodness of fit and to compare the model to alternative measurement and structural representations. Discriminant validity analyses indicated that the causal dimensions underlying the model were not independent. Model predictions were supported in that internal and stable attributions for job loss negatively influenced finding another job through expectations for re-employment. These predictions held up even after controlling for influential unmeasured variables. Practical and theoretical implications are discussed.

  11. A model for the progressive failure of laminated composite structural components

    NASA Technical Reports Server (NTRS)

    Allen, D. H.; Lo, D. C.

    1991-01-01

    Laminated continuous fiber polymeric composites are capable of sustaining substantial load induced microstructural damage prior to component failure. Because this damage eventually leads to catastrophic failure, it is essential to capture the mechanics of progressive damage in any cogent life prediction model. For the past several years the authors have been developing one solution approach to this problem. In this approach the mechanics of matrix cracking and delamination are accounted for via locally averaged internal variables which account for the kinematics of microcracking. Damage progression is predicted by using phenomenologically based damage evolution laws which depend on the load history. The result is a nonlinear and path dependent constitutive model which has previously been implemented to a finite element computer code for analysis of structural components. Using an appropriate failure model, this algorithm can be used to predict component life. In this paper the model will be utilized to demonstrate the ability to predict the load path dependence of the damage and stresses in plates subjected to fatigue loading.

  12. TMDIM: an improved algorithm for the structure prediction of transmembrane domains of bitopic dimers.

    PubMed

    Cao, Han; Ng, Marcus C K; Jusoh, Siti Azma; Tai, Hio Kuan; Siu, Shirley W I

    2017-09-01

    [Formula: see text]-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM . Website is implemented in PHP, MySQL and Apache, with all major browsers supported.

  13. TMDIM: an improved algorithm for the structure prediction of transmembrane domains of bitopic dimers

    NASA Astrophysics Data System (ADS)

    Cao, Han; Ng, Marcus C. K.; Jusoh, Siti Azma; Tai, Hio Kuan; Siu, Shirley W. I.

    2017-09-01

    α-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection. In a test of predicting nine known bitopic dimers, approximately 78% of our predictions achieved a successful fit (RMSD <2.0 Å) and 78% of the cases are better predicted than the two other methods compared. Our method provides an alternative for modeling TM bitopic dimers of unknown structures for further computational studies. TMDIM is freely available on the web at https://cbbio.cis.umac.mo/TMDIM. Website is implemented in PHP, MySQL and Apache, with all major browsers supported.

  14. Warped Linear Prediction of Physical Model Excitations with Applications in Audio Compression and Instrument Synthesis

    NASA Astrophysics Data System (ADS)

    Glass, Alexis; Fukudome, Kimitoshi

    2004-12-01

    A sound recording of a plucked string instrument is encoded and resynthesized using two stages of prediction. In the first stage of prediction, a simple physical model of a plucked string is estimated and the instrument excitation is obtained. The second stage of prediction compensates for the simplicity of the model in the first stage by encoding either the instrument excitation or the model error using warped linear prediction. These two methods of compensation are compared with each other, and to the case of single-stage warped linear prediction, adjustments are introduced, and their applications to instrument synthesis and MPEG4's audio compression within the structured audio format are discussed.

  15. RaptorX server: a resource for template-based protein structure modeling.

    PubMed

    Källberg, Morten; Margaryan, Gohar; Wang, Sheng; Ma, Jianzhu; Xu, Jinbo

    2014-01-01

    Assigning functional properties to a newly discovered protein is a key challenge in modern biology. To this end, computational modeling of the three-dimensional atomic arrangement of the amino acid chain is often crucial in determining the role of the protein in biological processes. We present a community-wide web-based protocol, RaptorX server ( http://raptorx.uchicago.edu ), for automated protein secondary structure prediction, template-based tertiary structure modeling, and probabilistic alignment sampling.Given a target sequence, RaptorX server is able to detect even remotely related template sequences by means of a novel nonlinear context-specific alignment potential and probabilistic consistency algorithm. Using the protocol presented here it is thus possible to obtain high-quality structural models for many target protein sequences when only distantly related protein domains have experimentally solved structures. At present, RaptorX server can perform secondary and tertiary structure prediction of a 200 amino acid target sequence in approximately 30 min.

  16. PconsFold: improved contact predictions improve protein models.

    PubMed

    Michel, Mirco; Hayat, Sikander; Skwark, Marcin J; Sander, Chris; Marks, Debora S; Elofsson, Arne

    2014-09-01

    Recently it has been shown that the quality of protein contact prediction from evolutionary information can be improved significantly if direct and indirect information is separated. Given sufficiently large protein families, the contact predictions contain sufficient information to predict the structure of many protein families. However, since the first studies contact prediction methods have improved. Here, we ask how much the final models are improved if improved contact predictions are used. In a small benchmark of 15 proteins, we show that the TM-scores of top-ranked models are improved by on average 33% using PconsFold compared with the original version of EVfold. In a larger benchmark, we find that the quality is improved with 15-30% when using PconsC in comparison with earlier contact prediction methods. Further, using Rosetta instead of CNS does not significantly improve global model accuracy, but the chemistry of models generated with Rosetta is improved. PconsFold is a fully automated pipeline for ab initio protein structure prediction based on evolutionary information. PconsFold is based on PconsC contact prediction and uses the Rosetta folding protocol. Due to its modularity, the contact prediction tool can be easily exchanged. The source code of PconsFold is available on GitHub at https://www.github.com/ElofssonLab/pcons-fold under the MIT license. PconsC is available from http://c.pcons.net/. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  17. Structural changes and out-of-sample prediction of realized range-based variance in the stock market

    NASA Astrophysics Data System (ADS)

    Gong, Xu; Lin, Boqiang

    2018-03-01

    This paper aims to examine the effects of structural changes on forecasting the realized range-based variance in the stock market. Considering structural changes in variance in the stock market, we develop the HAR-RRV-SC model on the basis of the HAR-RRV model. Subsequently, the HAR-RRV and HAR-RRV-SC models are used to forecast the realized range-based variance of S&P 500 Index. We find that there are many structural changes in variance in the U.S. stock market, and the period after the financial crisis contains more structural change points than the period before the financial crisis. The out-of-sample results show that the HAR-RRV-SC model significantly outperforms the HAR-BV model when they are employed to forecast the 1-day, 1-week, and 1-month realized range-based variances, which means that structural changes can improve out-of-sample prediction of realized range-based variance. The out-of-sample results remain robust across the alternative rolling fixed-window, the alternative threshold value in ICSS algorithm, and the alternative benchmark models. More importantly, we believe that considering structural changes can help improve the out-of-sample performances of most of other existing HAR-RRV-type models in addition to the models used in this paper.

  18. Target and Tissue Selectivity Prediction by Integrated Mechanistic Pharmacokinetic-Target Binding and Quantitative Structure Activity Modeling.

    PubMed

    Vlot, Anna H C; de Witte, Wilhelmus E A; Danhof, Meindert; van der Graaf, Piet H; van Westen, Gerard J P; de Lange, Elizabeth C M

    2017-12-04

    Selectivity is an important attribute of effective and safe drugs, and prediction of in vivo target and tissue selectivity would likely improve drug development success rates. However, a lack of understanding of the underlying (pharmacological) mechanisms and availability of directly applicable predictive methods complicates the prediction of selectivity. We explore the value of combining physiologically based pharmacokinetic (PBPK) modeling with quantitative structure-activity relationship (QSAR) modeling to predict the influence of the target dissociation constant (K D ) and the target dissociation rate constant on target and tissue selectivity. The K D values of CB1 ligands in the ChEMBL database are predicted by QSAR random forest (RF) modeling for the CB1 receptor and known off-targets (TRPV1, mGlu5, 5-HT1a). Of these CB1 ligands, rimonabant, CP-55940, and Δ 8 -tetrahydrocanabinol, one of the active ingredients of cannabis, were selected for simulations of target occupancy for CB1, TRPV1, mGlu5, and 5-HT1a in three brain regions, to illustrate the principles of the combined PBPK-QSAR modeling. Our combined PBPK and target binding modeling demonstrated that the optimal values of the K D and k off for target and tissue selectivity were dependent on target concentration and tissue distribution kinetics. Interestingly, if the target concentration is high and the perfusion of the target site is low, the optimal K D value is often not the lowest K D value, suggesting that optimization towards high drug-target affinity can decrease the benefit-risk ratio. The presented integrative structure-pharmacokinetic-pharmacodynamic modeling provides an improved understanding of tissue and target selectivity.

  19. The VSGB 2.0 Model: A Next Generation Energy Model for High Resolution Protein Structure Modeling

    PubMed Central

    Li, Jianing; Abel, Robert; Zhu, Kai; Cao, Yixiang; Zhao, Suwen; Friesner, Richard A.

    2011-01-01

    A novel energy model (VSGB 2.0) for high resolution protein structure modeling is described, which features an optimized implicit solvent model as well as physics-based corrections for hydrogen bonding, π-π interactions, self-contact interactions and hydrophobic interactions. Parameters of the VSGB 2.0 model were fit to a crystallographic database of 2239 single side chain and 100 11–13 residue loop predictions. Combined with an advanced method of sampling and a robust algorithm for protonation state assignment, the VSGB 2.0 model was validated by predicting 115 super long loops up to 20 residues. Despite the dramatically increasing difficulty in reconstructing longer loops, a high accuracy was achieved: all of the lowest energy conformations have global backbone RMSDs better than 2.0 Å from the native conformations. Average global backbone RMSDs of the predictions are 0.51, 0.63, 0.70, 0.62, 0.80, 1.41, and 1.59 Å for 14, 15, 16, 17, 18, 19, and 20 residue loop predictions, respectively. When these results are corrected for possible statistical bias as explained in the text, the average global backbone RMSDs are 0.61, 0.71, 0.86, 0.62, 1.06, 1.67, and 1.59 Å. Given the precision and robustness of the calculations, we believe that the VSGB 2.0 model is suitable to tackle “real” problems, such as biological function modeling and structure-based drug discovery. PMID:21905107

  20. Molecular modeling of the microstructure evolution during carbon fiber processing

    NASA Astrophysics Data System (ADS)

    Desai, Saaketh; Li, Chunyu; Shen, Tongtong; Strachan, Alejandro

    2017-12-01

    The rational design of carbon fibers with desired properties requires quantitative relationships between the processing conditions, microstructure, and resulting properties. We developed a molecular model that combines kinetic Monte Carlo and molecular dynamics techniques to predict the microstructure evolution during the processes of carbonization and graphitization of polyacrylonitrile (PAN)-based carbon fibers. The model accurately predicts the cross-sectional microstructure of the fibers with the molecular structure of the stabilized PAN fibers and physics-based chemical reaction rates as the only inputs. The resulting structures exhibit key features observed in electron microcopy studies such as curved graphitic sheets and hairpin structures. In addition, computed X-ray diffraction patterns are in good agreement with experiments. We predict the transverse moduli of the resulting fibers between 1 GPa and 5 GPa, in good agreement with experimental results for high modulus fibers and slightly lower than those of high-strength fibers. The transverse modulus is governed by sliding between graphitic sheets, and the relatively low value for the predicted microstructures can be attributed to their perfect longitudinal texture. Finally, the simulations provide insight into the relationships between chemical kinetics and the final microstructure; we observe that high reaction rates result in porous structures with lower moduli.

  1. Modeling workplace contact networks: The effects of organizational structure, architecture, and reporting errors on epidemic predictions.

    PubMed

    Potter, Gail E; Smieszek, Timo; Sailer, Kerstin

    2015-09-01

    Face-to-face social contacts are potentially important transmission routes for acute respiratory infections, and understanding the contact network can improve our ability to predict, contain, and control epidemics. Although workplaces are important settings for infectious disease transmission, few studies have collected workplace contact data and estimated workplace contact networks. We use contact diaries, architectural distance measures, and institutional structures to estimate social contact networks within a Swiss research institute. Some contact reports were inconsistent, indicating reporting errors. We adjust for this with a latent variable model, jointly estimating the true (unobserved) network of contacts and duration-specific reporting probabilities. We find that contact probability decreases with distance, and that research group membership, role, and shared projects are strongly predictive of contact patterns. Estimated reporting probabilities were low only for 0-5 min contacts. Adjusting for reporting error changed the estimate of the duration distribution, but did not change the estimates of covariate effects and had little effect on epidemic predictions. Our epidemic simulation study indicates that inclusion of network structure based on architectural and organizational structure data can improve the accuracy of epidemic forecasting models.

  2. Modeling workplace contact networks: The effects of organizational structure, architecture, and reporting errors on epidemic predictions

    PubMed Central

    Potter, Gail E.; Smieszek, Timo; Sailer, Kerstin

    2015-01-01

    Face-to-face social contacts are potentially important transmission routes for acute respiratory infections, and understanding the contact network can improve our ability to predict, contain, and control epidemics. Although workplaces are important settings for infectious disease transmission, few studies have collected workplace contact data and estimated workplace contact networks. We use contact diaries, architectural distance measures, and institutional structures to estimate social contact networks within a Swiss research institute. Some contact reports were inconsistent, indicating reporting errors. We adjust for this with a latent variable model, jointly estimating the true (unobserved) network of contacts and duration-specific reporting probabilities. We find that contact probability decreases with distance, and that research group membership, role, and shared projects are strongly predictive of contact patterns. Estimated reporting probabilities were low only for 0–5 min contacts. Adjusting for reporting error changed the estimate of the duration distribution, but did not change the estimates of covariate effects and had little effect on epidemic predictions. Our epidemic simulation study indicates that inclusion of network structure based on architectural and organizational structure data can improve the accuracy of epidemic forecasting models. PMID:26634122

  3. Methods for evaluating the predictive accuracy of structural dynamic models

    NASA Technical Reports Server (NTRS)

    Hasselman, T. K.; Chrostowski, Jon D.

    1990-01-01

    Uncertainty of frequency response using the fuzzy set method and on-orbit response prediction using laboratory test data to refine an analytical model are emphasized with respect to large space structures. Two aspects of the fuzzy set approach were investigated relative to its application to large structural dynamics problems: (1) minimizing the number of parameters involved in computing possible intervals; and (2) the treatment of extrema which may occur in the parameter space enclosed by all possible combinations of the important parameters of the model. Extensive printer graphics were added to the SSID code to help facilitate model verification, and an application of this code to the LaRC Ten Bay Truss is included in the appendix to illustrate this graphics capability.

  4. Structured prediction models for RNN based sequence labeling in clinical text.

    PubMed

    Jagannatha, Abhyuday N; Yu, Hong

    2016-11-01

    Sequence labeling is a widely used method for named entity recognition and information extraction from unstructured natural language data. In clinical domain one major application of sequence labeling involves extraction of medical entities such as medication, indication, and side-effects from Electronic Health Record narratives. Sequence labeling in this domain, presents its own set of challenges and objectives. In this work we experimented with various CRF based structured learning models with Recurrent Neural Networks. We extend the previously studied LSTM-CRF models with explicit modeling of pairwise potentials. We also propose an approximate version of skip-chain CRF inference with RNN potentials. We use these methodologies for structured prediction in order to improve the exact phrase detection of various medical entities.

  5. Structured prediction models for RNN based sequence labeling in clinical text

    PubMed Central

    Jagannatha, Abhyuday N; Yu, Hong

    2016-01-01

    Sequence labeling is a widely used method for named entity recognition and information extraction from unstructured natural language data. In clinical domain one major application of sequence labeling involves extraction of medical entities such as medication, indication, and side-effects from Electronic Health Record narratives. Sequence labeling in this domain, presents its own set of challenges and objectives. In this work we experimented with various CRF based structured learning models with Recurrent Neural Networks. We extend the previously studied LSTM-CRF models with explicit modeling of pairwise potentials. We also propose an approximate version of skip-chain CRF inference with RNN potentials. We use these methodologies1 for structured prediction in order to improve the exact phrase detection of various medical entities. PMID:28004040

  6. Predicting Drug-induced Hepatotoxicity Using QSAR and Toxicogenomics Approaches

    PubMed Central

    Low, Yen; Uehara, Takeki; Minowa, Yohsuke; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro; Sedykh, Alexander; Muratov, Eugene; Fourches, Denis; Zhu, Hao; Rusyn, Ivan; Tropsha, Alexander

    2014-01-01

    Quantitative Structure-Activity Relationship (QSAR) modeling and toxicogenomics are used independently as predictive tools in toxicology. In this study, we evaluated the power of several statistical models for predicting drug hepatotoxicity in rats using different descriptors of drug molecules, namely their chemical descriptors and toxicogenomic profiles. The records were taken from the Toxicogenomics Project rat liver microarray database containing information on 127 drugs (http://toxico.nibio.go.jp/datalist.html). The model endpoint was hepatotoxicity in the rat following 28 days of exposure, established by liver histopathology and serum chemistry. First, we developed multiple conventional QSAR classification models using a comprehensive set of chemical descriptors and several classification methods (k nearest neighbor, support vector machines, random forests, and distance weighted discrimination). With chemical descriptors alone, external predictivity (Correct Classification Rate, CCR) from 5-fold external cross-validation was 61%. Next, the same classification methods were employed to build models using only toxicogenomic data (24h after a single exposure) treated as biological descriptors. The optimized models used only 85 selected toxicogenomic descriptors and had CCR as high as 76%. Finally, hybrid models combining both chemical descriptors and transcripts were developed; their CCRs were between 68 and 77%. Although the accuracy of hybrid models did not exceed that of the models based on toxicogenomic data alone, the use of both chemical and biological descriptors enriched the interpretation of the models. In addition to finding 85 transcripts that were predictive and highly relevant to the mechanisms of drug-induced liver injury, chemical structural alerts for hepatotoxicity were also identified. These results suggest that concurrent exploration of the chemical features and acute treatment-induced changes in transcript levels will both enrich the mechanistic understanding of sub-chronic liver injury and afford models capable of accurate prediction of hepatotoxicity from chemical structure and short-term assay results. PMID:21699217

  7. Protein Secondary Structure Prediction Using AutoEncoder Network and Bayes Classifier

    NASA Astrophysics Data System (ADS)

    Wang, Leilei; Cheng, Jinyong

    2018-03-01

    Protein secondary structure prediction is belong to bioinformatics,and it's important in research area. In this paper, we propose a new prediction way of protein using bayes classifier and autoEncoder network. Our experiments show some algorithms including the construction of the model, the classification of parameters and so on. The data set is a typical CB513 data set for protein. In terms of accuracy, the method is the cross validation based on the 3-fold. Then we can get the Q3 accuracy. Paper results illustrate that the autoencoder network improved the prediction accuracy of protein secondary structure.

  8. Orbital maneuvering engine feed system coupled stability investigation

    NASA Technical Reports Server (NTRS)

    Kahn, D. R.; Schuman, M. D.; Hunting, J. K.; Fertig, K. W.

    1975-01-01

    A digital computer model used to analyze and predict engine feed system coupled instabilities over a frequency range of 10 to 1000 Hz was developed and verified. The analytical approach to modeling the feed system hydrodynamics, combustion dynamics, chamber dynamics, and overall engineering model structure is described and the governing equations in each of the technical areas are presented. This is followed by a description of the generalized computer model, including formulation of the discrete subprograms and their integration into an overall engineering model structure. The operation and capabilities of the engineering model were verified by comparing the model's theoretical predictions with experimental data from an OMS-type engine with a known feed system/engine chugging history.

  9. Homology modeling a fast tool for drug discovery: current perspectives.

    PubMed

    Vyas, V K; Ukawala, R D; Ghate, M; Chintha, C

    2012-01-01

    Major goal of structural biology involve formation of protein-ligand complexes; in which the protein molecules act energetically in the course of binding. Therefore, perceptive of protein-ligand interaction will be very important for structure based drug design. Lack of knowledge of 3D structures has hindered efforts to understand the binding specificities of ligands with protein. With increasing in modeling software and the growing number of known protein structures, homology modeling is rapidly becoming the method of choice for obtaining 3D coordinates of proteins. Homology modeling is a representation of the similarity of environmental residues at topologically corresponding positions in the reference proteins. In the absence of experimental data, model building on the basis of a known 3D structure of a homologous protein is at present the only reliable method to obtain the structural information. Knowledge of the 3D structures of proteins provides invaluable insights into the molecular basis of their functions. The recent advances in homology modeling, particularly in detecting and aligning sequences with template structures, distant homologues, modeling of loops and side chains as well as detecting errors in a model contributed to consistent prediction of protein structure, which was not possible even several years ago. This review focused on the features and a role of homology modeling in predicting protein structure and described current developments in this field with victorious applications at the different stages of the drug design and discovery.

  10. Homology Modeling a Fast Tool for Drug Discovery: Current Perspectives

    PubMed Central

    Vyas, V. K.; Ukawala, R. D.; Ghate, M.; Chintha, C.

    2012-01-01

    Major goal of structural biology involve formation of protein-ligand complexes; in which the protein molecules act energetically in the course of binding. Therefore, perceptive of protein-ligand interaction will be very important for structure based drug design. Lack of knowledge of 3D structures has hindered efforts to understand the binding specificities of ligands with protein. With increasing in modeling software and the growing number of known protein structures, homology modeling is rapidly becoming the method of choice for obtaining 3D coordinates of proteins. Homology modeling is a representation of the similarity of environmental residues at topologically corresponding positions in the reference proteins. In the absence of experimental data, model building on the basis of a known 3D structure of a homologous protein is at present the only reliable method to obtain the structural information. Knowledge of the 3D structures of proteins provides invaluable insights into the molecular basis of their functions. The recent advances in homology modeling, particularly in detecting and aligning sequences with template structures, distant homologues, modeling of loops and side chains as well as detecting errors in a model contributed to consistent prediction of protein structure, which was not possible even several years ago. This review focused on the features and a role of homology modeling in predicting protein structure and described current developments in this field with victorious applications at the different stages of the drug design and discovery. PMID:23204616

  11. Quantitative Structure--Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure

    EPA Science Inventory

    Background: Few Quantitative Structure-Activity Relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity endpoints. Objective: In this study, a combinatorial QSAR approach has been employed for the creation of robust and predictive models of acute toxi...

  12. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  13. Predicting acidification recovery at the Hubbard Brook Experimental Forest, New Hampshire: evaluation of four models.

    PubMed

    Tominaga, Koji; Aherne, Julian; Watmough, Shaun A; Alveteg, Mattias; Cosby, Bernard J; Driscoll, Charles T; Posch, Maximilian; Pourmokhtarian, Afshin

    2010-12-01

    The performance and prediction uncertainty (owing to parameter and structural uncertainties) of four dynamic watershed acidification models (MAGIC, PnET-BGC, SAFE, and VSD) were assessed by systematically applying them to data from the Hubbard Brook Experimental Forest (HBEF), New Hampshire, where long-term records of precipitation and stream chemistry were available. In order to facilitate systematic evaluation, Monte Carlo simulation was used to randomly generate common model input data sets (n = 10,000) from parameter distributions; input data were subsequently translated among models to retain consistency. The model simulations were objectively calibrated against observed data (streamwater: 1963-2004, soil: 1983). The ensemble of calibrated models was used to assess future response of soil and stream chemistry to reduced sulfur deposition at the HBEF. Although both hindcast (1850-1962) and forecast (2005-2100) predictions were qualitatively similar across the four models, the temporal pattern of key indicators of acidification recovery (stream acid neutralizing capacity and soil base saturation) differed substantially. The range in predictions resulted from differences in model structure and their associated posterior parameter distributions. These differences can be accommodated by employing multiple models (ensemble analysis) but have implications for individual model applications.

  14. Mapping Plant Diversity and Composition Across North Carolina Piedmont Forest Landscapes Using Lidar-Hyperspectral Remote Sensing

    NASA Astrophysics Data System (ADS)

    Hakkenberg, Christopher R.

    Forest modification, from local stress to global change, has given rise to efforts to model, map, and monitor critical properties of forest communities like structure, composition, and diversity. Predictive models based on data from spatially-nested field plots and LiDAR-hyperspectral remote sensing systems are one particularly effective means towards the otherwise prohibitively resource-intensive task of consistently characterizing forest community dynamics at landscape scales. However, to date, most predictive models fail to account for actual (rather than idealized) species and community distributions, are unsuccessful in predicting understory components in structurally and taxonomically heterogeneous forests, and may suffer from diminished predictive accuracy due to incongruity in scale and precision between field plot samples, remotely-sensed data, and target biota of varying size and density. This three-part study addresses these and other concerns in the modeling and mapping of emergent properties of forest communities by shifting the scope of prediction from the individual or taxon to the whole stand or community. It is, after all, at the stand scale where emergent properties like functional processes, biodiversity, and habitat aggregate and manifest. In the first study, I explore the relationship between forest structure (a proxy for successional demographics and resource competition) and tree species diversity in the North Carolina Piedmont, highlighting the empirical basis and potential for utilizing forest structure from LiDAR in predictive models of tree species diversity. I then extend these conclusions to map landscape pattern in multi-scale vascular plant diversity as well as turnover in community-continua at varying compositional resolutions in a North Carolina Piedmont landscape using remotely-sensed LiDAR-hyperspectral estimates of topography, canopy structure, and foliar biochemistry. Recognizing that the distinction between correlation and causation mirrors that between knowledge and understanding, all three studies distinguish between prediction of pattern and inference of process. Thus, in addition to advancing mapping methodologies relevant to a range of forest ecosystem management and monitoring applications, all three studies are noteworthy for assessing the ecological relationship between environmental predictors and emergent landscape patterns in plant composition and diversity in North Carolina Piedmont forests.

  15. Ages and transit times as important diagnostics of model performance for predicting C allocation in ecosystem models

    NASA Astrophysics Data System (ADS)

    Ceballos-Núñez, Verónika; Richardson, Andrew; Sierra, Carlos

    2017-04-01

    The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. However, it is uncertain how some vegetation dynamics such as the allocation of carbon to different ecosystem compartments should be represented in models. The assumptions behind model structures may result in highly divergent model predictions. Here, we asses model performance by calculating the age of the carbon in the system and in each compartment, and the overall transit time of C in the system. We used these diagnostics to assess the influence of three different carbon allocation schemes on the rates of C cycling in vegetation. First, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find the best set of parameters for the different model structures. Second, we calculated C stocks, respiration fluxes, radiocarbon values, ages, and transit times. We found a good fit of the three model structures to the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed and reduce model equifinality. Differences in model structures had a small impact on predicting ecosystem C compartments, but overall they resulted in very different predictions of age and transit time distributions. In particular, the inclusion of a storage compartment had an important impact on predicting system ages and transit times. In the case of the models with 1 or 2 storage compartments, the age of carbon in the system and in each of the compartments was distributed more towards younger ages than in the model that had no storage; the mean system age of these two models with storage was 80 years younger than in the model without storage. As expected from these age distributions, the mean transit time for the two models with storage compartments was 50 years faster than for the model without storage. These results suggest that ages and transit times, which can be indirectly measured using isotope tracers, serve as important diagnostics of model structure and could largely help to reduce uncertainties in model predictions. Furthermore, by considering age and transit times of C in vegetation compartments as distributions, not only their mean values, we obtain additional insights on the temporal dynamics of carbon use, storage, and allocation to plant parts, which not only depends on the rate at which this C is transferred in and out of the compartments, but also on the stochastic nature of the process itself.

  16. A Model of Young Children's Social Cognition: Linkages Between Latent Structures and Discrete Processing

    ERIC Educational Resources Information Center

    Meece, Darrell

    1999-01-01

    This study proposes a model of associations between young children's social cognition and their social behavior with peers. In this model, two latent structures -children's representations of peer relationships and emotion regulation -- predict children's competent, prosocial, withdrawn, and aggressive behavior. Moreover, the model proposes that…

  17. Modelling biological invasions: species traits, species interactions, and habitat heterogeneity.

    PubMed

    Cannas, Sergio A; Marco, Diana E; Páez, Sergio A

    2003-05-01

    In this paper we explore the integration of different factors to understand, predict and control ecological invasions, through a general cellular automaton model especially developed. The model includes life history traits of several species in a modular structure interacting multiple cellular automata. We performed simulations using field values corresponding to the exotic Gleditsia triacanthos and native co-dominant trees in a montane area. Presence of G. triacanthos juvenile bank was a determinant condition for invasion success. Main parameters influencing invasion velocity were mean seed dispersal distance and minimum reproductive age. Seed production had a small influence on the invasion velocity. Velocities predicted by the model agreed well with estimations from field data. Values of population density predicted matched field values closely. The modular structure of the model, the explicit interaction between the invader and the native species, and the simplicity of parameters and transition rules are novel features of the model.

  18. WRF-TMH: predicting transmembrane helix by fusing composition index and physicochemical properties of amino acids.

    PubMed

    Hayat, Maqsood; Khan, Asifullah

    2013-05-01

    Membrane protein is the prime constituent of a cell, which performs a role of mediator between intra and extracellular processes. The prediction of transmembrane (TM) helix and its topology provides essential information regarding the function and structure of membrane proteins. However, prediction of TM helix and its topology is a challenging issue in bioinformatics and computational biology due to experimental complexities and lack of its established structures. Therefore, the location and orientation of TM helix segments are predicted from topogenic sequences. In this regard, we propose WRF-TMH model for effectively predicting TM helix segments. In this model, information is extracted from membrane protein sequences using compositional index and physicochemical properties. The redundant and irrelevant features are eliminated through singular value decomposition. The selected features provided by these feature extraction strategies are then fused to develop a hybrid model. Weighted random forest is adopted as a classification approach. We have used two benchmark datasets including low and high-resolution datasets. tenfold cross validation is employed to assess the performance of WRF-TMH model at different levels including per protein, per segment, and per residue. The success rates of WRF-TMH model are quite promising and are the best reported so far on the same datasets. It is observed that WRF-TMH model might play a substantial role, and will provide essential information for further structural and functional studies on membrane proteins. The accompanied web predictor is accessible at http://111.68.99.218/WRF-TMH/ .

  19. A new model for approximating RNA folding trajectories and population kinetics

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Bonnie; Hajiaghayi, Monir; Condon, Anne

    2013-01-01

    RNA participates both in functional aspects of the cell and in gene regulation. The interactions of these molecules are mediated by their secondary structure which can be viewed as a planar circle graph with arcs for all the chemical bonds between pairs of bases in the RNA sequence. The problem of predicting RNA secondary structure, specifically the chemically most probable structure, has many useful and efficient algorithms. This leaves RNA folding, the problem of predicting the dynamic behavior of RNA structure over time, as the main open problem. RNA folding is important for functional understanding because some RNA molecules change secondary structure in response to interactions with the environment. The full RNA folding model on at most O(3n) secondary structures is the gold standard. We present a new subset approximation model for the full model, give methods to analyze its accuracy and discuss the relative merits of our model as compared with a pre-existing subset approximation. The main advantage of our model is that it generates Monte Carlo folding pathways with the same probabilities with which they are generated under the full model. The pre-existing subset approximation does not have this property.

  20. Nitrate removal in stream ecosystems measured by 15N addition experiments: Total uptake

    USGS Publications Warehouse

    Hall, R.O.; Tank, J.L.; Sobota, D.J.; Mulholland, P.J.; O'Brien, J. M.; Dodds, W.K.; Webster, J.R.; Valett, H.M.; Poole, G.C.; Peterson, B.J.; Meyer, J.L.; McDowell, W.H.; Johnson, S.L.; Hamilton, S.K.; Grimm, N. B.; Gregory, S.V.; Dahm, Clifford N.; Cooper, L.W.; Ashkenas, L.R.; Thomas, S.M.; Sheibley, R.W.; Potter, J.D.; Niederlehner, B.R.; Johnson, L.T.; Helton, A.M.; Crenshaw, C.M.; Burgin, A.J.; Bernot, M.J.; Beaulieu, J.J.; Arangob, C.P.

    2009-01-01

    We measured uptake length of 15NO-3 in 72 streams in eight regions across the United States and Puerto Rico to develop quantitative predictive models on controls of NO-3 uptake length. As part of the Lotic Intersite Nitrogen eXperiment II project, we chose nine streams in each region corresponding to natural (reference), suburban-urban, and agricultural land uses. Study streams spanned a range of human land use to maximize variation in NO-3 concentration, geomorphology, and metabolism. We tested a causal model predicting controls on NO-3 uptake length using structural equation modeling. The model included concomitant measurements of ecosystem metabolism, hydraulic parameters, and nitrogen concentration. We compared this structural equation model to multiple regression models which included additional biotic, catchment, and riparian variables. The structural equation model explained 79% of the variation in log uptake length (S Wtot). Uptake length increased with specific discharge (Q/w) and increasing NO-3 concentrations, showing a loss in removal efficiency in streams with high NO-3 concentration. Uptake lengths shortened with increasing gross primary production, suggesting autotrophic assimilation dominated NO-3 removal. The fraction of catchment area as agriculture and suburban-urban land use weakly predicted NO-3 uptake in bivariate regression, and did improve prediction in a set of multiple regression models. Adding land use to the structural equation model showed that land use indirectly affected NO-3 uptake lengths via directly increasing both gross primary production and NO-3 concentration. Gross primary production shortened SWtot, while increasing NO-3 lengthened SWtot resulting in no net effect of land use on NO- 3 removal. ?? 2009.

  1. Supplement to The User's Guide for The Stand Prognosis Model-version 5.0

    Treesearch

    William R. Wykoff

    1986-01-01

    Differences between Prognosis Model versions 4.0 and 5.0 are described. Additions to version 5.0 include an event monitor that schedules activities contingent on stand characteristics, a regeneration establishment model that predicts the structure of the regeneration stand following treatment, and a COVER model that predicts shrub development and total canopy cover....

  2. Modelling Complexity: Making Sense of Leadership Issues in 14-19 Education

    ERIC Educational Resources Information Center

    Briggs, Ann R. J.

    2008-01-01

    Modelling of statistical data is a well established analytical strategy. Statistical data can be modelled to represent, and thereby predict, the forces acting upon a structure or system. For the rapidly changing systems in the world of education, modelling enables the researcher to understand, to predict and to enable decisions to be based upon…

  3. Structural Dynamics Modeling of HIRENASD in Support of the Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol; Chwalowski, Pawel; Heeg, Jennifer; Boucke, Alexander; Castro, Jack

    2013-01-01

    An Aeroelastic Prediction Workshop (AePW) was held in April 2012 using three aeroelasticity case study wind tunnel tests for assessing the capabilities of various codes in making aeroelasticity predictions. One of these case studies was known as the HIRENASD model that was tested in the European Transonic Wind Tunnel (ETW). This paper summarizes the development of a standardized enhanced analytical HIRENASD structural model for use in the AePW effort. The modifications to the HIRENASD finite element model were validated by comparing modal frequencies, evaluating modal assurance criteria, comparing leading edge, trailing edge and twist of the wing with experiment and by performing steady and unsteady CFD analyses for one of the test conditions on the same grid, and identical processing of results.

  4. Load Measurement in Structural Members Using Guided Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Wilcox, Paul D.

    2006-03-01

    A non-destructive technique to measure load in structures such as rails and bridge cables by using guided acoustic waves is investigated both theoretically and experimentally. Robust finite element models for predicting the effect of load on guided wave propagation are developed and example results are presented for rods. Reasonably good agreement of experimental results with modelling prediction is obtained. The measurement technique has been developed to perform tests on larger specimens.

  5. First-harmonic nonlinearities can predict unseen third-harmonics in medium-amplitude oscillatory shear (MAOS)

    NASA Astrophysics Data System (ADS)

    Carey-De La Torre, Olivia; Ewoldt, Randy H.

    2018-02-01

    We use first-harmonic MAOS nonlinearities from G 1' and G 1″ to test a predictive structure-rheology model for a transient polymer network. Using experiments with PVA-Borax (polyvinyl alcohol cross-linked by sodium tetraborate (borax)) at 11 different compositions, the model is calibrated to first-harmonic MAOS data on a torque-controlled rheometer at a fixed frequency, and used to predict third-harmonic MAOS on a displacement controlled rheometer at a different frequency three times larger. The prediction matches experiments for decomposed MAOS measures [ e 3] and [ v 3] with median disagreement of 13% and 25%, respectively, across all 11 compositions tested. This supports the validity of this model, and demonstrates the value of using all four MAOS signatures to understand and test structure-rheology relations for complex fluids.

  6. Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

    NASA Astrophysics Data System (ADS)

    Mandal, Sukomal; Rao, Subba; N., Harish; Lokesha

    2012-06-01

    The damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correla-tion coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater.

  7. Sexual risk behavior among youth: modeling the influence of prosocial activities and socioeconomic factors.

    PubMed

    Ramirez-Valles, J; Zimmerman, M A; Newcomb, M D

    1998-09-01

    Sexual activity among high-school-aged youths has steadily increased since the 1970s, emerging as a significant public health concern. Yet, patterns of youth sexual risk behavior are shaped by social class, race, and gender. Based on sociological theories of financial deprivation and collective socialization, we develop and test a model of the relationships among neighborhood poverty; family structure and social class position; parental involvement; prosocial activities; race; and gender as they predict youth sexual risk behavior. We employ structural equation modeling to test this model on a cross-sectional sample of 370 sexually active high-school students from a midwestern city; 57 percent (n = 209) are males and 86 percent are African American. We find that family structure indirectly predicts sexual risk behavior through neighborhood poverty, parental involvement, and prosocial activities. In addition, family class position indirectly predicts sexual risk behavior through neighborhood poverty and prosocial activities. We address implications for theory and health promotion.

  8. CERAPP: Collaborative Estrogen Receptor Activity Prediction ...

    EPA Pesticide Factsheets

    Humans potentially are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Many of these chemicals never have been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for assessment in costly in vivo tests, for instance, within the EPA Endocrine Disruptor Screening Program. Here, we describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) demonstrating the efficacy of using predictive computational models on high-throughput screening data to screen thousands of chemicals against the ER. CERAPP combined multiple models developed in collaboration among 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure-activity relationship models and docking approaches were employed, mostly using a common training set of 1677 compounds provided by EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were tested using an evaluation set of 7522 chemicals collected from the literature. To overcome the limitations of single models, a consensus was built weighting models using a scoring function (0 to 1) based on their accuracies. Individual model scores ranged from 0.69 to 0.85, showing

  9. A mechanism-mediated model for carcinogenicity: Model content and prediction of the outcome of rodent carcinogenicity bioassays currently being conducted on 25 organic chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purdy, R.

    A hierarchical model consisting of quantitative structure-activity relationships based mainly on chemical reactivity was developed to predict the carcinogenicity of organic chemicals to rodents. The model is comprised of quantitative structure-activity relationships, QSARs based on hypothesized mechanisms of action, metabolism, and partitioning. Predictors included octanol/water partition coefficient, molecular size, atomic partial charge, bond angle strain, atomic acceptor delocalizibility, atomic radical superdelocalizibility, the lowest unoccupied molecular orbital (LUMO) energy of hypothesized intermediate nitrenium ion of primary aromatic amines, difference in charge of ionized and unionized carbon-chlorine bonds, substituent size and pattern on polynuclear aromatic hydrocarbons, the distance between lone electron pairsmore » over a rigid structure, and the presence of functionalities such as nitroso and hydrazine. The model correctly classified 96% of the carcinogens in the training set of 306 chemicals, and 90% of the carcinogens in the test set of 301 chemicals. The test set by chance contained 84% of the positive thiocontaining chemicals. A QSAR for these chemicals was developed. This posttest set modified model correctly predicted 94% of the carcinogens in the test set. This model was used to predict the carcinogenicity of the 25 organic chemicals the U.S. National Toxicology Program was testing at the writing of this article. 12 refs., 3 tabs.« less

  10. Analysis of high speed flow, thermal and structural interactions

    NASA Technical Reports Server (NTRS)

    Thornton, Earl A.

    1994-01-01

    Research for this grant focused on the following tasks: (1) the prediction of severe, localized aerodynamic heating for complex, high speed flows; (2) finite element adaptive refinement methodology for multi-disciplinary analyses; (3) the prediction of thermoviscoplastic structural response with rate-dependent effects and large deformations; (4) thermoviscoplastic constitutive models for metals; and (5) coolant flow/structural heat transfer analyses.

  11. De novo prediction of human chromosome structures: Epigenetic marking patterns encode genome architecture.

    PubMed

    Di Pierro, Michele; Cheng, Ryan R; Lieberman Aiden, Erez; Wolynes, Peter G; Onuchic, José N

    2017-11-14

    Inside the cell nucleus, genomes fold into organized structures that are characteristic of cell type. Here, we show that this chromatin architecture can be predicted de novo using epigenetic data derived from chromatin immunoprecipitation-sequencing (ChIP-Seq). We exploit the idea that chromosomes encode a 1D sequence of chromatin structural types. Interactions between these chromatin types determine the 3D structural ensemble of chromosomes through a process similar to phase separation. First, a neural network is used to infer the relation between the epigenetic marks present at a locus, as assayed by ChIP-Seq, and the genomic compartment in which those loci reside, as measured by DNA-DNA proximity ligation (Hi-C). Next, types inferred from this neural network are used as an input to an energy landscape model for chromatin organization [Minimal Chromatin Model (MiChroM)] to generate an ensemble of 3D chromosome conformations at a resolution of 50 kilobases (kb). After training the model, dubbed Maximum Entropy Genomic Annotation from Biomarkers Associated to Structural Ensembles (MEGABASE), on odd-numbered chromosomes, we predict the sequences of chromatin types and the subsequent 3D conformational ensembles for the even chromosomes. We validate these structural ensembles by using ChIP-Seq tracks alone to predict Hi-C maps, as well as distances measured using 3D fluorescence in situ hybridization (FISH) experiments. Both sets of experiments support the hypothesis of phase separation being the driving process behind compartmentalization. These findings strongly suggest that epigenetic marking patterns encode sufficient information to determine the global architecture of chromosomes and that de novo structure prediction for whole genomes may be increasingly possible. Copyright © 2017 the Author(s). Published by PNAS.

  12. Intermolecular shielding contributions studied by modeling the 13C chemical-shift tensors of organic single crystals with plane waves

    PubMed Central

    Johnston, Jessica C.; Iuliucci, Robbie J.; Facelli, Julio C.; Fitzgerald, George; Mueller, Karl T.

    2009-01-01

    In order to predict accurately the chemical shift of NMR-active nuclei in solid phase systems, magnetic shielding calculations must be capable of considering the complete lattice structure. Here we assess the accuracy of the density functional theory gauge-including projector augmented wave method, which uses pseudopotentials to approximate the nodal structure of the core electrons, to determine the magnetic properties of crystals by predicting the full chemical-shift tensors of all 13C nuclides in 14 organic single crystals from which experimental tensors have previously been reported. Plane-wave methods use periodic boundary conditions to incorporate the lattice structure, providing a substantial improvement for modeling the chemical shifts in hydrogen-bonded systems. Principal tensor components can now be predicted to an accuracy that approaches the typical experimental uncertainty. Moreover, methods that include the full solid-phase structure enable geometry optimizations to be performed on the input structures prior to calculation of the shielding. Improvement after optimization is noted here even when neutron diffraction data are used for determining the initial structures. After geometry optimization, the isotropic shift can be predicted to within 1 ppm. PMID:19831448

  13. Protein modeling and molecular dynamics simulation of SlWRKY4 protein cloned from drought tolerant tomato (Solanum habrochaites) line EC520061.

    PubMed

    Karkute, Suhas G; Easwaran, Murugesh; Gujjar, Ranjit Singh; Piramanayagam, Shanmughavel; Singh, Major

    2015-10-01

    WRKY genes are members of one of the largest families of plant transcription factors and play an important role in response to biotic and abiotic stresses, and overall growth and development. Understanding the interaction of WRKY proteins with other proteins/ligands in plant cells is of utmost importance to develop plants having tolerance to biotic and abiotic stresses. The SlWRKY4 gene was cloned from a drought tolerant wild species of tomato (Solanum habrochaites) and the secondary structure and 3D modeling of this protein were predicted using Schrödinger Suite-Prime. Predicted structures were also subjected to plot against Ramachandran's conformation, and the modeled structure was minimized using Macromodel. Finally, the minimized structure was simulated in the water environment to check the protein stability. The behavior of the modeled structure was well-simulated and analyzed through RMSD and RMSF of the protein. The present work provides the modeled 3D structure of SlWRKY4 that will help in understanding the mechanism of gene regulation by further in silico interaction studies.

  14. Predicting multi-wall structural response to hypervelocity impact using the hull code

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.

    1993-01-01

    Previously, multi-wall structures have been analyzed extensively, primarily through experiment, as a means of increasing the meteoroid/space debris impact protection of spacecraft. As structural configurations become more varied, the number of tests required to characterize their response increases dramatically. As an alternative to experimental testing, numerical modeling of high-speed impact phenomena is often being used to predict the response of a variety of structural systems under different impact loading conditions. The results of comparing experimental tests to Hull Hydrodynamic Computer Code predictions are reported. Also, the results of a numerical parametric study of multi-wall structural response to hypervelocity cylindrical projectile impact are presented.

  15. [The use of complex interval models for predicting activity of non-nucleoside reverse transcriptase activity].

    PubMed

    Burliaeva, E V; Tarkhov, A E; Burliaev, V V; Iurkevich, A M; Shvets, V I

    2002-01-01

    Searching of new anti-HIV agents is still crucial now. In general, researches are looking for inhibitors of certain HIV's vital enzymes, especially for reverse transcriptase (RT) inhibitors. Modern generation of anti-HIV agents represents non-nucleoside reverse transcriptase inhibitors (NNRTIs). They are much less toxic than nucleoside analogues and more chemically stable, thus being slower metabolized and emitted from the human body. Thus, search of new NNRTIs is actual today. Synthesis and study of new anti-HIV drugs is very expensive. So employment of the activity prediction techniques for such a search is very beneficial. This technique allows predicting the activities for newly proposed structures. It is based on the property model built by investigation of a series of known compounds with measured activity. This paper presents an approach of activity prediction based on "structure-activity" models designed to form a hypothesis about probably activity interval estimate. This hypothesis formed is based on structure descriptor domains, calculated for all energetically allowed conformers for each compound in the studied sef. Tetrahydroimidazobenzodiazipenone (TIBO) derivatives and phenylethyltiazolyltiourea (PETT) derivatives illustrated the predictive power of this method. The results are consistent with experimental data and allow to predict inhibitory activity of compounds, which were not included into the training set.

  16. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes?

    DOE PAGES

    Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas; ...

    2016-02-24

    In this study, microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of processmore » rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.« less

  17. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas

    In this study, microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of processmore » rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.« less

  18. Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?

    PubMed Central

    Graham, Emily B.; Knelman, Joseph E.; Schindlbacher, Andreas; Siciliano, Steven; Breulmann, Marc; Yannarell, Anthony; Beman, J. M.; Abell, Guy; Philippot, Laurent; Prosser, James; Foulquier, Arnaud; Yuste, Jorge C.; Glanville, Helen C.; Jones, Davey L.; Angel, Roey; Salminen, Janne; Newton, Ryan J.; Bürgmann, Helmut; Ingram, Lachlan J.; Hamer, Ute; Siljanen, Henri M. P.; Peltoniemi, Krista; Potthast, Karin; Bañeras, Lluís; Hartmann, Martin; Banerjee, Samiran; Yu, Ri-Qing; Nogaro, Geraldine; Richter, Andreas; Koranda, Marianne; Castle, Sarah C.; Goberna, Marta; Song, Bongkeun; Chatterjee, Amitava; Nunes, Olga C.; Lopes, Ana R.; Cao, Yiping; Kaisermann, Aurore; Hallin, Sara; Strickland, Michael S.; Garcia-Pausas, Jordi; Barba, Josep; Kang, Hojeong; Isobe, Kazuo; Papaspyrou, Sokratis; Pastorelli, Roberta; Lagomarsino, Alessandra; Lindström, Eva S.; Basiliko, Nathan; Nemergut, Diana R.

    2016-01-01

    Microorganisms are vital in mediating the earth’s biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: ‘When do we need to understand microbial community structure to accurately predict function?’ We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology. PMID:26941732

  19. Microbes as Engines of Ecosystem Function: When Does Community Structure Enhance Predictions of Ecosystem Processes?

    PubMed

    Graham, Emily B; Knelman, Joseph E; Schindlbacher, Andreas; Siciliano, Steven; Breulmann, Marc; Yannarell, Anthony; Beman, J M; Abell, Guy; Philippot, Laurent; Prosser, James; Foulquier, Arnaud; Yuste, Jorge C; Glanville, Helen C; Jones, Davey L; Angel, Roey; Salminen, Janne; Newton, Ryan J; Bürgmann, Helmut; Ingram, Lachlan J; Hamer, Ute; Siljanen, Henri M P; Peltoniemi, Krista; Potthast, Karin; Bañeras, Lluís; Hartmann, Martin; Banerjee, Samiran; Yu, Ri-Qing; Nogaro, Geraldine; Richter, Andreas; Koranda, Marianne; Castle, Sarah C; Goberna, Marta; Song, Bongkeun; Chatterjee, Amitava; Nunes, Olga C; Lopes, Ana R; Cao, Yiping; Kaisermann, Aurore; Hallin, Sara; Strickland, Michael S; Garcia-Pausas, Jordi; Barba, Josep; Kang, Hojeong; Isobe, Kazuo; Papaspyrou, Sokratis; Pastorelli, Roberta; Lagomarsino, Alessandra; Lindström, Eva S; Basiliko, Nathan; Nemergut, Diana R

    2016-01-01

    Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

  20. Cognitive control over learning: Creating, clustering and generalizing task-set structure

    PubMed Central

    Collins, Anne G.E.; Frank, Michael J.

    2013-01-01

    Executive functions and learning share common neural substrates essential for their expression, notably in prefrontal cortex and basal ganglia. Understanding how they interact requires studying how cognitive control facilitates learning, but also how learning provides the (potentially hidden) structure, such as abstract rules or task-sets, needed for cognitive control. We investigate this question from three complementary angles. First, we develop a new computational “C-TS” (context-task-set) model inspired by non-parametric Bayesian methods, specifying how the learner might infer hidden structure and decide whether to re-use that structure in new situations, or to create new structure. Second, we develop a neurobiologically explicit model to assess potential mechanisms of such interactive structured learning in multiple circuits linking frontal cortex and basal ganglia. We systematically explore the link betweens these levels of modeling across multiple task demands. We find that the network provides an approximate implementation of high level C-TS computations, where manipulations of specific neural mechanisms are well captured by variations in distinct C-TS parameters. Third, this synergism across models yields strong predictions about the nature of human optimal and suboptimal choices and response times during learning. In particular, the models suggest that participants spontaneously build task-set structure into a learning problem when not cued to do so, which predicts positive and negative transfer in subsequent generalization tests. We provide evidence for these predictions in two experiments and show that the C-TS model provides a good quantitative fit to human sequences of choices in this task. These findings implicate a strong tendency to interactively engage cognitive control and learning, resulting in structured abstract representations that afford generalization opportunities, and thus potentially long-term rather than short-term optimality. PMID:23356780

Top