Redefining the modular organization of the core Mediator complex.
Wang, Xuejuan; Sun, Qianqian; Ding, Zhenrui; Ji, Jinhua; Wang, Jianye; Kong, Xiao; Yang, Jianghong; Cai, Gang
2014-07-01
The Mediator complex plays an essential role in the regulation of eukaryotic transcription. The Saccharomyces cerevisiae core Mediator comprises 21 subunits, which are organized into Head, Middle and Tail modules. Previously, the Head module was assigned to a distinct dense domain at the base, and the Middle and Tail modules were identified to form a tight structure above the Head module, which apparently contradicted findings from many biochemical and functional studies. Here, we compared the structures of the core Mediator and its subcomplexes, especially the first 3D structure of the Head + Middle modules, which permitted an unambiguous assignment of the three modules. Furthermore, nanogold labeling pinpointing four Mediator subunits from different modules conclusively validated the modular assignment, in which the Head and Middle modules fold back on one another and form the upper portion of the core Mediator, while the Tail module forms a distinct dense domain at the base. The new modular model of the core Mediator has reconciled the previous inconsistencies between the structurally and functionally defined Mediator modules. Collectively, these analyses completely redefine the modular organization of the core Mediator, which allow us to integrate the structural and functional information into a coherent mechanism for the Mediator's modularity and regulation in transcription initiation.
Redefining the modular organization of the core Mediator complex
Wang, Xuejuan; Sun, Qianqian; Ding, Zhenrui; Ji, Jinhua; Wang, Jianye; Kong, Xiao; Yang, Jianghong; Cai, Gang
2014-01-01
The Mediator complex plays an essential role in the regulation of eukaryotic transcription. The Saccharomyces cerevisiae core Mediator comprises 21 subunits, which are organized into Head, Middle and Tail modules. Previously, the Head module was assigned to a distinct dense domain at the base, and the Middle and Tail modules were identified to form a tight structure above the Head module, which apparently contradicted findings from many biochemical and functional studies. Here, we compared the structures of the core Mediator and its subcomplexes, especially the first 3D structure of the Head + Middle modules, which permitted an unambiguous assignment of the three modules. Furthermore, nanogold labeling pinpointing four Mediator subunits from different modules conclusively validated the modular assignment, in which the Head and Middle modules fold back on one another and form the upper portion of the core Mediator, while the Tail module forms a distinct dense domain at the base. The new modular model of the core Mediator has reconciled the previous inconsistencies between the structurally and functionally defined Mediator modules. Collectively, these analyses completely redefine the modular organization of the core Mediator, which allow us to integrate the structural and functional information into a coherent mechanism for the Mediator's modularity and regulation in transcription initiation. PMID:24810298
USDA-ARS?s Scientific Manuscript database
Polyamines (PA) involve in the gene regulation by interacting with various anionic macromolecules such as DNA, RNA and proteins and modulating their structure and function. Previous studies have showed that changing in polyamine biosynthesis alters plant response to different abiotic stresses. Here,...
Koyama, Fernanda C; Carvalho, Thais L G; Alves, Eduardo; da Silva, Henrique B; de Azevedo, Mauro F; Hemerly, Adriana S; Garcia, Célia R S
2013-01-01
Indole compounds are involved in a range of functions in many organisms. In the human malaria parasite Plasmodium falciparum, melatonin and other tryptophan derivatives are able to modulate its intraerythrocytic cycle, increasing the schizont population as well as parasitemia, likely through ubiquitin-proteasome system (UPS) gene regulation. In plants, melatonin regulates root development, in a similar way to that described for indoleacetic acid, suggesting that melatonin and indoleacetic acid could co-participate in some physiological processes due to structural similarities. In the present work, we evaluate whether the chemical structure similarity found in indoleacetic acid and melatonin can lead to similar effects in Arabidopsis thaliana lateral root formation and P. falciparum cell cycle modulation, as well as in the UPS of gene regulation, by qRT-PCR. Our data show that P. falciparum is not able to respond to indoleacetic acid either in the modulation of the intraerythrocytic cycle or in the gene regulation mediated by the UPS as observed for melatonin. The similarities of these indole compounds are not sufficient to confer synergistic functions in P. falciparum cell cycle modulation, but could interplay in A. thaliana lateral root formation. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.
Lambert, Matthias; Richard, Elodie; Duban-Deweer, Sophie; Krzewinski, Frederic; Deracinois, Barbara; Dupont, Erwan; Bastide, Bruno; Cieniewski-Bernard, Caroline
2016-09-01
The sarcomere structure of skeletal muscle is determined through multiple protein-protein interactions within an intricate sarcomeric cytoskeleton network. The molecular mechanisms involved in the regulation of this sarcomeric organization, essential to muscle function, remain unclear. O-GlcNAcylation, a post-translational modification modifying several key structural proteins and previously described as a modulator of the contractile activity, was never considered to date in the sarcomeric organization. C2C12 skeletal myotubes were treated with Thiamet-G (OGA inhibitor) in order to increase the global O-GlcNAcylation level. Our data clearly showed a modulation of the O-GlcNAc level more sensitive and dynamic in the myofilament-enriched fraction than total proteome. This fine O-GlcNAc level modulation was closely related to changes of the sarcomeric morphometry. Indeed, the dark-band and M-line widths increased, while the I-band width and the sarcomere length decreased according to the myofilament O-GlcNAc level. Some structural proteins of the sarcomere such as desmin, αB-crystallin, α-actinin, moesin and filamin-C have been identified within modulated protein complexes through O-GlcNAc level variations. Their interactions seemed to be changed, especially for desmin and αB-crystallin. For the first time, our findings clearly demonstrate that O-GlcNAcylation, through dynamic regulations of the structural interactome, could be an important modulator of the sarcomeric structure and may provide new insights in the understanding of molecular mechanisms of neuromuscular diseases characterized by a disorganization of the sarcomeric structure. In the present study, we demonstrated a role of O-GlcNAcylation in the sarcomeric structure modulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Osmotic modulation of chromatin impacts on efficiency and kinetics of cell fate modulation.
Lima, A F; May, G; Colunga, J; Pedreiro, S; Paiva, A; Ferreira, L; Enver, T; Iborra, F J; Pires das Neves, R
2018-05-08
Chromatin structure is a major regulator of transcription and gene expression. Herein we explore the use of osmotic modulation to modify the chromatin structure and reprogram gene expression. In this study we use the extracellular osmotic pressure as a chromatin structure and transcriptional modulator. Hyposmotic modulation promotes chromatin loosening and induces changes in RNA polymerase II (Pol II) activity. The chromatin decondensation opens space for higher amounts of DNA engaged RNA Pol II. Hyposmotic modulation constitutes an alternative route to manipulate cell fate decisions. This technology was tested in model protocols of induced pluripotency and transdifferentiation in cells growing in suspension and adherent to substrates, CD34 + umbilical-cord-blood (UCB), fibroblasts and B-cells. The efficiency and kinetics of these cell fate modulation processes were improved by transient hyposmotic modulation of the cell environment.
Structural basis of AMPK regulation by adenine nucleotides and glycogen
Li, Xiaodan; Wang, Lili; Zhou, X. Edward; ...
2014-11-21
AMP-activated protein kinase (AMPK) is a central cellular energy sensor and regulator of energy homeostasis, and a promising drug target for the treatment of diabetes, obesity, and cancer. Here we present low-resolution crystal structures of the human α1β2γ1 holo-AMPK complex bound to its allosteric modulators AMP and the glycogen-mimic cyclodextrin, both in the phosphorylated (4.05 Å) and non-phosphorylated (4.60 Å) state. In addition, we have solved a 2.95 Å structure of the human kinase domain (KD) bound to the adjacent autoinhibitory domain (AID) and have performed extensive biochemical and mutational studies. Altogether, these studies illustrate an underlying mechanism of allostericmore » AMPK modulation by AMP and glycogen, whose binding changes the equilibria between alternate AID (AMP) and carbohydrate-binding module (glycogen) interactions.« less
SnoN Stabilizes the SMAD3/SMAD4 Protein Complex
Walldén, Karin; Nyman, Tomas; Hällberg, B. Martin
2017-01-01
TGF-β signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-β signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-β signaling. PMID:28397834
SnoN Stabilizes the SMAD3/SMAD4 Protein Complex.
Walldén, Karin; Nyman, Tomas; Hällberg, B Martin
2017-04-11
TGF-β signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-β signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-β signaling.
Structure of Zebrafish IRBP Reveals Fatty Acid Binding
Ghosh, Debashis; Haswell, Karen M.; Sprada, Molly; Gonzalez-Fernandez, Federico
2015-01-01
Interphotoreceptor retinoid-binding protein (IRBP) has a remarkable role in targeting and protecting all-trans and 11-cis retinol, and 11-cis retinal during the rod and cone visual cycles. Little is known about how the correct retinoid is efficiently delivered and removed from the correct cell at the required time. It has been proposed that different fatty composition at that the outer-segments and retinal-pigmented epithelium could have an important role is regulating the delivery and uptake of the visual cycle retinoids at the cell-interphotoreceptor-matrix interface. Although this suggests intriguing mechanisms for the role of local fatty acids in visual-cycle retinoid trafficking, nothing is known about the structural basis of IRBP-fatty acid interactions. Such regulation may be mediated through IRBP’s unusual repeating homologous modules, each containing about 300 amino acids. We have been investigating structure-function relationships of Zebrafish IRBP (zIRBP), which has only two tandem modules (z1 and z2), as a model for the more complex four-module mammalian IRBP’s. Here we report the first X-ray crystal structure of a teleost IRBP, and the only structure with a bound ligand. The X-ray structure of z1, determined at 1.90Å resolution, reveals a two-domain organization of the module (domains A and B). A deep hydrophobic pocket was identified within the N-terminal domain A. In fluorescence titrations assays, oleic acid displaced all-trans retinol from zIRBP. Our study, which provides the first structure of an IRBP with bound ligand, supports a potential role for fatty acids in regulating retinoid binding. PMID:26344741
A protein interaction mechanism for suppressing the mechanosensitive Piezo channels.
Zhang, Tingxin; Chi, Shaopeng; Jiang, Fan; Zhao, Qiancheng; Xiao, Bailong
2017-11-27
Piezo proteins are bona fide mammalian mechanotransduction channels for various cell types including endothelial cells. The mouse Piezo1 of 2547 residues forms a three-bladed, propeller-like homo-trimer comprising a central pore-module and three propeller-structures that might serve as mechanotransduction-modules. However, the mechanogating and regulation of Piezo channels remain unclear. Here we identify the sarcoplasmic /endoplasmic-reticulum Ca 2+ ATPase (SERCA), including the widely expressed SERCA2, as Piezo interacting proteins. SERCA2 strategically suppresses Piezo1 via acting on a 14-residue-constituted intracellular linker connecting the pore-module and mechanotransduction-module. Mutating the linker impairs mechanogating and SERCA2-mediated modulation of Piezo1. Furthermore, the synthetic linker-peptide disrupts the modulatory effects of SERCA2, demonstrating the key role of the linker in mechanogating and regulation. Importantly, the SERCA2-mediated regulation affects Piezo1-dependent migration of endothelial cells. Collectively, we identify SERCA-mediated regulation of Piezos and the functional significance of the linker, providing important insights into the mechanogating and regulation mechanisms of Piezo channels.
A Structural Perspective on the Regulation of the EGF Receptor
Kovacs, Erika; Zorn, Julie Anne; Huang, Yongjian; Barros, Tiago; Kuriyan, John
2015-01-01
The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that plays a critical role in the pathogenesis of many cancers. EGFR is unique in that its ligand-induced dimerization is established solely by contacts between regions of the receptor that are occluded within the monomeric, unliganded state. Activation of EGFR depends on the formation of an asymmetric dimer of the intracellular module of two receptor molecules, a configuration observed in crystal structures of the EGFR kinase domain in the active state. Coupling between the extracellular and intracellular modules is achieved by a switch between alternative geometries of the transmembrane and juxtamembrane segments within the receptor dimer. As the structure of the full-length receptor is yet to be determined, here we review recent structural studies on isolated modules of EGFR and molecular dynamics simulations that have provided much of our current understanding of its signaling mechanism, including how its regulation is compromised by oncogenic mutations. PMID:25621509
Curtis, Ross E; Kim, Seyoung; Woolford, John L; Xu, Wenjie; Xing, Eric P
2013-03-21
Association analysis using genome-wide expression quantitative trait locus (eQTL) data investigates the effect that genetic variation has on cellular pathways and leads to the discovery of candidate regulators. Traditional analysis of eQTL data via pairwise statistical significance tests or linear regression does not leverage the availability of the structural information of the transcriptome, such as presence of gene networks that reveal correlation and potentially regulatory relationships among the study genes. We employ a new eQTL mapping algorithm, GFlasso, which we have previously developed for sparse structured regression, to reanalyze a genome-wide yeast dataset. GFlasso fully takes into account the dependencies among expression traits to suppress false positives and to enhance the signal/noise ratio. Thus, GFlasso leverages the gene-interaction network to discover the pleiotropic effects of genetic loci that perturb the expression level of multiple (rather than individual) genes, which enables us to gain more power in detecting previously neglected signals that are marginally weak but pleiotropically significant. While eQTL hotspots in yeast have been reported previously as genomic regions controlling multiple genes, our analysis reveals additional novel eQTL hotspots and, more interestingly, uncovers groups of multiple contributing eQTL hotspots that affect the expression level of functional gene modules. To our knowledge, our study is the first to report this type of gene regulation stemming from multiple eQTL hotspots. Additionally, we report the results from in-depth bioinformatics analysis for three groups of these eQTL hotspots: ribosome biogenesis, telomere silencing, and retrotransposon biology. We suggest candidate regulators for the functional gene modules that map to each group of hotspots. Not only do we find that many of these candidate regulators contain mutations in the promoter and coding regions of the genes, in the case of the Ribi group, we provide experimental evidence suggesting that the identified candidates do regulate the target genes predicted by GFlasso. Thus, this structured association analysis of a yeast eQTL dataset via GFlasso, coupled with extensive bioinformatics analysis, discovers a novel regulation pattern between multiple eQTL hotspots and functional gene modules. Furthermore, this analysis demonstrates the potential of GFlasso as a powerful computational tool for eQTL studies that exploit the rich structural information among expression traits due to correlation, regulation, or other forms of biological dependencies.
A new multi-scale method to reveal hierarchical modular structures in biological networks.
Jiao, Qing-Ju; Huang, Yan; Shen, Hong-Bin
2016-11-15
Biological networks are effective tools for studying molecular interactions. Modular structure, in which genes or proteins may tend to be associated with functional modules or protein complexes, is a remarkable feature of biological networks. Mining modular structure from biological networks enables us to focus on a set of potentially important nodes, which provides a reliable guide to future biological experiments. The first fundamental challenge in mining modular structure from biological networks is that the quality of the observed network data is usually low owing to noise and incompleteness in the obtained networks. The second problem that poses a challenge to existing approaches to the mining of modular structure is that the organization of both functional modules and protein complexes in networks is far more complicated than was ever thought. For instance, the sizes of different modules vary considerably from each other and they often form multi-scale hierarchical structures. To solve these problems, we propose a new multi-scale protocol for mining modular structure (named ISIMB) driven by a node similarity metric, which works in an iteratively converged space to reduce the effects of the low data quality of the observed network data. The multi-scale node similarity metric couples both the local and the global topology of the network with a resolution regulator. By varying this resolution regulator to give different weightings to the local and global terms in the metric, the ISIMB method is able to fit the shape of modules and to detect them on different scales. Experiments on protein-protein interaction and genetic interaction networks show that our method can not only mine functional modules and protein complexes successfully, but can also predict functional modules from specific to general and reveal the hierarchical organization of protein complexes.
Bo, Lijuan; Wei, Bo; Wang, Zhanfeng; Kong, Daliang; Gao, Zheng; Miao, Zhuang
2017-09-20
BACKGROUND This study aimed to identify more potential genes and miRNAs associated with the pathogenesis of intracranial aneurysms (IAs). MATERIAL AND METHODS The dataset of GSE36791 (accession number) was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened for in the blood samples from patients with ruptured IAs and controls, followed by functional and pathway enrichment analyses. In addition, gene co-expression network was constructed and significant modules were extracted from the network by WGCNA R package. Screening for miRNAs that could regulate DEGs in the modules was performed and an analysis of regulatory relationships was conducted. RESULTS A total of 304 DEGs (167 up-regulated and 137 down-regulated genes) were screened for in blood samples from patients with ruptured IAs compared with those from controls. Functional enrichment analysis showed that the up-regulated genes were mainly associated with immune response and the down-regulated DEGs were mainly concerned with the structure of ribosome and translation. Besides, six functional modules were significantly identified, including four modules enriched by up-regulated genes and two modules enriched by down-regulated genes. Thereinto, the blue, yellow, and turquoise modules of up-regulated genes were all linked with immune response. Additionally, 16 miRNAs were predicted to regulate DEGs in the three modules associated with immune response, such as hsa-miR-1304, hsa-miR-33b, hsa-miR-125b, and hsa-miR-125a-5p. CONCLUSIONS Several genes and miRNAs (such as miR-1304, miR-33b, IRS2 and KCNJ2) may take part in the pathogenesis of IAs.
A New Algorithm for Identifying Cis-Regulatory Modules Based on Hidden Markov Model
2017-01-01
The discovery of cis-regulatory modules (CRMs) is the key to understanding mechanisms of transcription regulation. Since CRMs have specific regulatory structures that are the basis for the regulation of gene expression, how to model the regulatory structure of CRMs has a considerable impact on the performance of CRM identification. The paper proposes a CRM discovery algorithm called ComSPS. ComSPS builds a regulatory structure model of CRMs based on HMM by exploring the rules of CRM transcriptional grammar that governs the internal motif site arrangement of CRMs. We test ComSPS on three benchmark datasets and compare it with five existing methods. Experimental results show that ComSPS performs better than them. PMID:28497059
Xie, Zhengzhi; Gang, David R.
2009-01-01
Turmeric is an excellent example of a plant that produces large numbers of metabolites from diverse metabolic pathways or networks. It is hypothesized that these metabolic pathways or networks contain biosynthetic modules, which lead to the formation of metabolite modules—groups of metabolites whose production is co-regulated and biosynthetically linked. To test whether such co-regulated metabolite modules do exist in this plant, metabolic profiling analysis was performed on turmeric rhizome samples that were collected from 16 different growth and development treatments, which had significant impacts on the levels of 249 volatile and non-volatile metabolites that were detected. Importantly, one of the many co-regulated metabolite modules that were indeed readily detected in this analysis contained the three major curcuminoids, whereas many other structurally related diarylheptanoids belonged to separate metabolite modules, as did groups of terpenoids. The existence of these co-regulated metabolite modules supported the hypothesis that the 3-methoxyl groups on the aromatic rings of the curcuminoids are formed before the formation of the heptanoid backbone during the biosynthesis of curcumin and also suggested the involvement of multiple polyketide synthases with different substrate selectivities in the formation of the array of diarylheptanoids detected in turmeric. Similar conclusions about terpenoid biosynthesis could also be made. Thus, discovery and analysis of metabolite modules can be a powerful predictive tool in efforts to understand metabolism in plants. PMID:19073964
Abiotic regulation: a common way for proteins to modulate their functions.
Zou, Zhi; Fu, Xinmiao
2015-01-01
Modulation of protein intrinsic activity in cells is generally carried out via a combination of four common ways, i.e., allosteric regulation, covalent modification, proteolytic cleavage and association of other regulatory proteins. Accumulated evidence indicate that changes of certain abiotic factors (e.g., temperature, pH, light and mechanical force) within or outside the cells directly influence protein structure and thus profoundly modulate the functions of a wide range of proteins, termed as abiotic regulatory proteins (e.g., heat shock factor, small heat shock protein, hemoglobin, zymogen, integrin, rhodopsin). Such abiotic regulation apparently differs from the four classic ways in perceiving and response to the signals. Importantly, it enables cells to directly and also immediately response to extracellular stimuli, thus facilitating the ability of organisms to resist against and adapt to the abiotic stress and thereby playing crucial roles in life evolution. Altogether, abiotic regulation may be considered as a common way for proteins to modulate their functions.
Physiological, biochemical and molecular processes associated with gravitropism in roots of maize
NASA Astrophysics Data System (ADS)
Biermann, B.; Feldman, L. J.
1994-08-01
This research aims to characterize regulation of the principal cytosolic protein kinases in maize, cultivar `Merit' root tips, since much evidence indicates that stimuli which modulate the gravitropic response in this system act through regulation of activity of these enzymes. To this end, we have cloned a maize protein kinase belonging to a group of plant protein kinases with a catalytic domain similar in primary structure to the second messenger-regulated protein kinases known in animal and fungal systems. However, both the unique structural features conserved among plant protein kinases in this group, and lack of evidence for cyclic nucleotide signalling in plants point to operation of a novel protein kinase regulatory mechanism in plants. In order to test effects of possible regulators on protein kinase activity, we developed a sensitive method for detecting regulation of autophosphoryl labelling of protein kinases in unfractionated maize protein extracts. Regulation of protein kinase autophosphorylation in these extracts was different from that known in animals and fungi, further suggesting operation of unique protein kinase regulatory mechanisms in plants. Previous research has shown that light, or factors modulated by light, regulate plant protein kinase activity. We found that protein kinase activity was co-immunoprecipitated with the plant photoreceptor phytochrome, and was associated with phytochrome by high-affinity chemical interactions. Far-red reversibility of red-light regulation of phytochrome phosphorylation by the associated protein kinase indicates that it may modulate or transduce the light signals which lead to gravitropic sensitivity in `Merit' maize.
NMDA receptor modulators: an updated patent review (2013-2014).
Strong, Katie L; Jing, Yao; Prosser, Anthony R; Traynelis, Stephen F; Liotta, Dennis C
2014-12-01
The NMDA receptor mediates a slow component of excitatory synaptic transmission, and NMDA receptor dysfunction has been implicated in numerous neurological disorders. Thus, interest in developing modulators that are capable of regulating the channel continues to be strong. Recent research has led to the discovery of a number of compounds that hold therapeutic and clinical value. Deeper insight into the NMDA intersubunit interactions and structural motifs gleaned from the recently solved crystal structures of the NMDA receptor should facilitate a deeper understanding of how these compounds modulate the receptor. This article discusses the known pharmacology of NMDA receptors. A discussion of the patent literature since 2012 is also included, with an emphasis on those that claimed new chemical entities as regulators of the NMDA receptor. The number of patents involving novel NMDA receptor modulators suggests a renewed interest in the NMDA receptor as a therapeutic target. Subunit-selective modulators continue to show promise, and the development of new subunit-selective NMDA receptor modulators appears poised for continued growth. Although a modest number of channel blocker patents were published, successful clinical outcomes involving ketamine have led to a resurgent interest in low-affinity channel blockers as therapeutics.
The metabotropic glutamate receptors: structure, activation mechanism and pharmacology.
Pin, Jean-Philippe; Acher, Francine
2002-06-01
The metabotropic glutamate receptors are G-protein coupled receptors (GPCR) involved in the regulation of many synapses, including most glutamatergic fast excitatory synapses. Eight subtypes have been identified that can be classified into three groups. The molecular characterization of these receptors revealed proteins much more complex than any other GPCRs. They are composed of a Venus Flytrap (VFT) module where glutamate binds, connected to a heptahelical domain responsible for G-protein coupling. Recent data including the structure of the VFT module determined with and without glutamate, indicate that these receptors function as dimers. Moreover a number of intracellular proteins can regulate their targeting and transduction mechanism. Such structural features of mGlu receptors offer multiple possibilities for synthetic compounds to modulate their activity. In addition to agonists and competitive antagonists acting at the glutamate binding site, a number of non-competitive antagonists with inverse agonist activity, and positive allosteric modulators have been discovered. These later compounds share specific properties that make them good candidates for therapeutic applications. First, their non-amino acid structure makes them pass more easily the blood brain barrier. Second, they are much more selective than any other compound identified so far, being the first subtype selective molecules. Third, for the negative modulators, their non competitive mechanism of action makes them relatively unaffected by high concentrations of glutamate that may be present in disease states (e.g. stroke, epilepsy, neuropathic pain, etc.). Fourth, like the benzodiazepines acting at the GABA(A) receptors, the positive modulators offer a new way to increase the activity of these receptors in vivo, with a low risk of inducing their desensitization. The present review article focuses on the specific structural features of these receptors and highlights the various possibilities these offer for drug development.
Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway
Wang, Renhou; Estelle, Mark
2014-07-15
Auxin is a versatile plant hormone that plays an essential role in most aspects of plant growth and development. Auxin regulates various growth processes by modulating gene transcription through a SCF TIR1/AFB-Aux/IAA-ARF nuclear signaling module. Recent work has generated clues as to how multiple layers of regulation of the auxin signaling components may result in diverse and specific response outputs. Finally, in particular, interaction and structural studies of key auxin signaling proteins have produced novel insights into the molecular basis of auxin-regulated transcription and may lead to a refined auxin signaling model.
Zou, Juan; Jiang, Jason Y.; Yang, Jenny J.
2017-01-01
Metabotropic glutamate receptors (mGluRs) associated with the slow phase of the glutamatergic signaling pathway in neurons of the central nervous system have gained importance as drug targets for chronic neurodegenerative diseases. While extracellular Ca2+ was reported to exhibit direct activation and modulation via an allosteric site, the identification of those binding sites was challenged by weak binding. Herein, we review the discovery of extracellular Ca2+ in regulation of mGluRs, summarize the recent developments in probing Ca2+ binding and its co-regulation of the receptor based on structural and biochemical analysis, and discuss the molecular basis for Ca2+ to regulate various classes of drug action as well as its importance as an allosteric modulator in mGluRs. PMID:28335551
Dingal, P.C. Dave P.; Discher, Dennis E.
2014-01-01
Mechanotransduction pathways convert forces that stress and strain structures within cells into gene expression levels that impact development, homeostasis, and disease. The levels of some key structural proteins in the nucleus, cytoskeleton, or extracellular matrix have been recently reported to scale with tissue- and cell-level forces or mechanical properties such as stiffness, and so the mathematics of mechanotransduction becomes important to understand. Here, we show that if a given structural protein positively regulates its own gene expression, then stresses need only inhibit degradation of that protein to achieve stable, mechanosensitive gene expression. This basic use-it-or-lose-it module is illustrated by application to meshworks of nuclear lamin A, minifilaments of myosin II, and extracellular matrix collagen fibers—all of which possess filamentous coiled-coil/supercoiled structures. Past experiments not only suggest that tension suppresses protein degradation mediated and/or initiated by various enzymes but also that transcript levels vary with protein levels because key transcription factors are regulated by these structural proteins. Coupling between modules occurs within single cells and between cells in tissue, as illustrated during embryonic heart development where cardiac fibroblasts make collagen that cardiomyocytes contract. With few additional assumptions, the basic module has sufficient physics to control key structural genes in both development and disease. PMID:25468352
Attitude control of the space construction base: A modular approach
NASA Technical Reports Server (NTRS)
Oconnor, D. A.
1982-01-01
A planar model of a space base and one module is considered. For this simplified system, a feedback controller which is compatible with the modular construction method is described. The systems dynamics are decomposed into two parts corresponding to base and module. The information structure of the problem is non-classical in that not all system information is supplied to each controller. The base controller is designed to accommodate structural changes that occur as the module is added and the module controller is designed to regulate its own states and follow commands from the base. Overall stability of the system is checked by Liapunov analysis and controller effectiveness is verified by computer simulation.
Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders.
Wilcox, Claire E; Pommy, Jessica M; Adinoff, Bryon
2016-04-01
Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders than treatments that dampen reactivity.
Neural Circuitry of Impaired Emotion Regulation in Substance Use Disorders
Wilcox, Claire E.; Pommy, Jessica M.; Adinoff, Bryon
2016-01-01
Impaired emotion regulation contributes to the development and severity of substance use disorders (substance disorders). This review summarizes the literature on alterations in emotion regulation neural circuitry in substance disorders, particularly in relation to disorders of negative affect (without substance disorder), and it presents promising areas of future research. Emotion regulation paradigms during functional magnetic resonance imaging are conceptualized into four dimensions: affect intensity and reactivity, affective modulation, cognitive modulation, and behavioral control. The neural circuitry associated with impaired emotion regulation is compared in individuals with and without substance disorders, with a focus on amygdala, insula, and prefrontal cortex activation and their functional and structural connectivity. Hypoactivation of the rostral anterior cingulate cortex/ventromedial prefrontal cortex (rACC/vmPFC) is the most consistent finding across studies, dimensions, and clinical populations (individuals with and without substance disorders). The same pattern is evident for regions in the cognitive control network (anterior cingulate and dorsal and ventrolateral prefrontal cortices) during cognitive modulation and behavioral control. These congruent findings are possibly related to attenuated functional and/or structural connectivity between the amygdala and insula and between the rACC/vmPFC and cognitive control network. Although increased amygdala and insula activation is associated with impaired emotion regulation in individuals without substance disorders, it is not consistently observed in substance disorders. Emotion regulation disturbances in substance disorders may therefore stem from impairments in prefrontal functioning, rather than excessive reactivity to emotional stimuli. Treatments for emotion regulation in individuals without substance disorders that normalize prefrontal functioning may offer greater efficacy for substance disorders than treatments that dampen reactivity. PMID:26771738
Thie, Holger
2017-01-01
ABSTRACT Antibody single-chain variable fragments (scFvs) are used in a variety of applications, such as for research, diagnosis and therapy. Essential for these applications is the extraordinary specificity, selectivity and affinity of antibody paratopes, which can also be used for efficient protein purification. However, this use is hampered by the high affinity for the protein to be purified because harsh elution conditions, which may impair folding, integrity or viability of the eluted biomaterials, are typically required. In this study, we developed a strategy to obtain structural elements that provide allosteric modulation of the affinities of different antibody scFvs for their antigen. To identify suitable allosteric modules, a complete set of cyclic permutations of calmodulin variants was generated and tested for modulation of the affinity when substituting the linker between VH and VL. Modulation of affinity induced by addition of different calmodulin-binding peptides at physiologic conditions was demonstrated for 5 of 6 tested scFvs of different specificities and antigens ranging from cell surface proteins to haptens. In addition, a variety of different modulator peptides were tested. Different structural solutions were found in respect of the optimal calmodulin permutation, the optimal peptide and the allosteric effect for scFvs binding to different antigen structures. Significantly, effective linker modules were identified for scFvs with both VH-VL and VL-VH architecture. The results suggest that this approach may offer a rapid, paratope-independent strategy to provide allosteric regulation of affinity for many other antibody scFvs. PMID:28055297
Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol
Manna, Moutusi; Niemelä, Miia; Tynkkynen, Joona; Javanainen, Matti; Kulig, Waldemar; Müller, Daniel J; Rog, Tomasz; Vattulainen, Ilpo
2016-01-01
There is evidence that lipids can be allosteric regulators of membrane protein structure and activation. However, there are no data showing how exactly the regulation emerges from specific lipid-protein interactions. Here we show in atomistic detail how the human β2-adrenergic receptor (β2AR) – a prototypical G protein-coupled receptor – is modulated by cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates β2AR by limiting its conformational variability. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites located near the transmembrane helices 5–7 of the receptor. The alternative mechanism, where the β2AR conformation would be modulated by membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to cholesterol binding sites and impede the structural flexibility of β2AR, however cholesterol generates the strongest effect. The results highlight the capacity of lipids to regulate the conformation of membrane receptors through specific interactions. DOI: http://dx.doi.org/10.7554/eLife.18432.001 PMID:27897972
Hampton, Cara M.; Sakata, Jon T.; Brainard, Michael S.
2009-01-01
Behavioral variability is important for motor skill learning but continues to be present and actively regulated even in well-learned behaviors. In adult songbirds, two types of song variability can persist and are modulated by social context: variability in syllable structure and variability in syllable sequencing. The degree to which the control of both types of adult variability is shared or distinct remains unknown. The output of a basal ganglia-forebrain circuit, LMAN (the lateral magnocellular nucleus of the anterior nidopallium), has been implicated in song variability. For example, in adult zebra finches, neurons in LMAN actively control the variability of syllable structure. It is unclear, however, whether LMAN contributes to variability in adult syllable sequencing because sequence variability in adult zebra finch song is minimal. In contrast, Bengalese finches retain variability in both syllable structure and syllable sequencing into adulthood. We analyzed the effects of LMAN lesions on the variability of syllable structure and sequencing and on the social modulation of these forms of variability in adult Bengalese finches. We found that lesions of LMAN significantly reduced the variability of syllable structure but not of syllable sequencing. We also found that LMAN lesions eliminated the social modulation of the variability of syllable structure but did not detect significant effects on the modulation of sequence variability. These results show that LMAN contributes differentially to syllable versus sequence variability of adult song and suggest that these forms of variability are regulated by distinct neural pathways. PMID:19357331
Abend, Rany; Sar-El, Roy; Gonen, Tal; Jalon, Itamar; Vaisvaser, Sharon; Bar-Haim, Yair; Hendler, Talma
2018-05-09
Implicit regulation of emotions involves medial-prefrontal cortex (mPFC) regions exerting regulatory control over limbic structures. Diminished regulation relates to aberrant mPFC functionality and psychopathology. Establishing means of modulating mPFC functionality could benefit research on emotion and its dysregulation. Here, we tested the capacity of transcranial direct current stimulation (tDCS) targeting mPFC to modulate subjective emotional states by facilitating implicit emotion regulation. Stimulation was applied concurrently with functional magnetic resonance imaging to validate its neurobehavioral effect. Sixteen participants were each scanned twice, counterbalancing active and sham tDCS application, while undergoing negative mood induction (clips featuring negative vs. neutral contents). Effects of stimulation on emotional experience were assessed using subjective and neural measures. Subjectively, active stimulation led to significant reduction in reported intensity of experienced emotions to negatively valenced (p = 0.005) clips but not to neutral clips (p > 0.99). Active stimulation further mitigated a rise in stress levels from pre- to post-induction (sham: p = 0.004; active: p = 0.15). Neurally, stimulation increased activation in mPFC regions associated with implicit emotion regulation (ventromedial-prefrontal cortex; subgenual anterior-cingulate cortex, sgACC), and in ventral striatum, a core limbic structure (all ps < 0.05). Stimulation also altered functional connectivity (assessed using whole-brain psycho-physiological interaction) between these regions, and with additional limbic regions. Stimulation-induced sgACC activation correlated with reported emotion intensity and depressive symptoms (rs > 0.64, ps < 0.018), suggesting individual differences in stimulation responsivity. Results of this study indicate the potential capacity of tDCS to facilitate brain activation in mPFC regions underlying implicit regulation of emotion and accordingly modulate subjective emotional experiences. © 2018 International Neuromodulation Society.
Druggability of methyl-lysine binding sites
NASA Astrophysics Data System (ADS)
Santiago, C.; Nguyen, K.; Schapira, M.
2011-12-01
Structural modules that specifically recognize—or read—methylated or acetylated lysine residues on histone peptides are important components of chromatin-mediated signaling and epigenetic regulation of gene expression. Deregulation of epigenetic mechanisms is associated with disease conditions, and antagonists of acetyl-lysine binding bromodomains are efficacious in animal models of cancer and inflammation, but little is known regarding the druggability of methyl-lysine binding modules. We conducted a systematic structural analysis of readers of methyl marks and derived a predictive druggability landscape of methyl-lysine binding modules. We show that these target classes are generally less druggable than bromodomains, but that some proteins stand as notable exceptions.
Crawley, Oliver; Barroso, Consuelo; Testori, Sarah; Ferrandiz, Nuria; Silva, Nicola; Castellano-Pozo, Maikel; Jaso-Tamame, Angel Luis; Martinez-Perez, Enrique
2016-01-01
Wapl induces cohesin dissociation from DNA throughout the mitotic cell cycle, modulating sister chromatid cohesion and higher-order chromatin structure. Cohesin complexes containing meiosis-specific kleisin subunits govern most aspects of meiotic chromosome function, but whether Wapl regulates these complexes remains unknown. We show that during C. elegans oogenesis WAPL-1 antagonizes binding of cohesin containing COH-3/4 kleisins, but not REC-8, demonstrating that sensitivity to WAPL-1 is dictated by kleisin identity. By restricting the amount of chromosome-associated COH-3/4 cohesin, WAPL-1 controls chromosome structure throughout meiotic prophase. In the absence of REC-8, WAPL-1 inhibits COH-3/4-mediated cohesion, which requires crossover-fated events formed during meiotic recombination. Thus, WAPL-1 promotes functional specialization of meiotic cohesin: WAPL-1-sensitive COH-3/4 complexes modulate higher-order chromosome structure, while WAPL-1-refractory REC-8 complexes provide stable cohesion. Surprisingly, a WAPL-1-independent mechanism removes cohesin before metaphase I. Our studies provide insight into how meiosis-specific cohesin complexes are regulated to ensure formation of euploid gametes. DOI: http://dx.doi.org/10.7554/eLife.10851.001 PMID:26841696
Liu, Xu; Shepherd, Tyson R; Murray, Ann M; Xu, Zhen; Fuentes, Ernesto J
2013-03-05
PDZ (PSD-95/Dlg/ZO-1) domains are protein-protein interaction modules often regulated by ligand phosphorylation. Here, we investigated the specificity, structure, and dynamics of Tiam1 PDZ domain/ligand interactions. We show that the PDZ domain specifically binds syndecan1 (SDC1), phosphorylated SDC1 (pSDC1), and SDC3 but not other syndecan isoforms. The crystal structure of the PDZ/SDC1 complex indicates that syndecan affinity is derived from amino acids beyond the four C-terminal residues. Remarkably, the crystal structure of the PDZ/pSDC1 complex reveals a binding pocket that accommodates the phosphoryl group. Methyl relaxation experiments of PDZ/SCD1 and PDZ/pSDC1 complexes reveal that PDZ-phosphoryl interactions dampen dynamic motions in a distal region of the PDZ domain by decoupling them from the ligand-binding site. Our data are consistent with a selection model by which specificity and phosphorylation regulate PDZ/syndecan interactions and signaling events. Importantly, our relaxation data demonstrate that PDZ/phospho-ligand interactions regulate protein dynamics and their coupling to distal sites. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mediator kinase module and human tumorigenesis.
Clark, Alison D; Oldenbroek, Marieke; Boyer, Thomas G
2015-01-01
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.
Mediator kinase module and human tumorigenesis
Clark, Alison D.; Oldenbroek, Marieke; Boyer, Thomas G.
2016-01-01
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit “kinase” module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways. PMID:26182352
Chang, Xiao; Liu, Shuai; Yu, Yong-Tao; Li, Yi-Xue; Li, Yuan-Yuan
2010-08-12
The Saccharopolyspora erythraea genome sequence was released in 2007. In order to look at the gene regulations at whole transcriptome level, an expression microarray was specifically designed on the S. erythraea strain NRRL 2338 genome sequence. Based on these data, we set out to investigate the potential transcriptional regulatory networks and their organization. In view of the hierarchical structure of bacterial transcriptional regulation, we constructed a hierarchical coexpression network at whole transcriptome level. A total of 27 modules were identified from 1255 differentially expressed transcript units (TUs) across time course, which were further classified in to four groups. Functional enrichment analysis indicated the biological significance of our hierarchical network. It was indicated that primary metabolism is activated in the first rapid growth phase (phase A), and secondary metabolism is induced when the growth is slowed down (phase B). Among the 27 modules, two are highly correlated to erythromycin production. One contains all genes in the erythromycin-biosynthetic (ery) gene cluster and the other seems to be associated with erythromycin production by sharing common intermediate metabolites. Non-concomitant correlation between production and expression regulation was observed. Especially, by calculating the partial correlation coefficients and building the network based on Gaussian graphical model, intrinsic associations between modules were found, and the association between those two erythromycin production-correlated modules was included as expected. This work created a hierarchical model clustering transcriptome data into coordinated modules, and modules into groups across the time course, giving insight into the concerted transcriptional regulations especially the regulation corresponding to erythromycin production of S. erythraea. This strategy may be extendable to studies on other prokaryotic microorganisms.
Jin, Lily L.; Wybenga-Groot, Leanne E.; Tong, Jiefei; Taylor, Paul; Minden, Mark D.; Trudel, Suzanne; McGlade, C. Jane; Moran, Michael F.
2015-01-01
Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y194 impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y194 on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. PMID:25587033
The Drosophila transcriptional network is structured by microbiota.
Dobson, Adam J; Chaston, John M; Douglas, Angela E
2016-11-25
Resident microorganisms (microbiota) have far-reaching effects on the biology of their animal hosts, with major consequences for the host's health and fitness. A full understanding of microbiota-dependent gene regulation requires analysis of the overall architecture of the host transcriptome, by identifying suites of genes that are expressed synchronously. In this study, we investigated the impact of the microbiota on gene coexpression in Drosophila. Our transcriptomic analysis, of 17 lines representative of the global genetic diversity of Drosophila, yielded a total of 11 transcriptional modules of co-expressed genes. For seven of these modules, the strength of the transcriptional network (defined as gene-gene coexpression) differed significantly between flies bearing a defined gut microbiota (gnotobiotic flies) and flies reared under microbiologically sterile conditions (axenic flies). Furthermore, gene coexpression was uniformly stronger in these microbiota-dependent modules than in both the microbiota-independent modules in gnotobiotic flies and all modules in axenic flies, indicating that the presence of the microbiota directs gene regulation in a subset of the transcriptome. The genes constituting the microbiota-dependent transcriptional modules include regulators of growth, metabolism and neurophysiology, previously implicated in mediating phenotypic effects of microbiota on Drosophila phenotype. Together these results provide the first evidence that the microbiota enhances the coexpression of specific and functionally-related genes relative to the animal's intrinsic baseline level of coexpression. Our system-wide analysis demonstrates that the presence of microbiota enhances gene coexpression, thereby structuring the transcriptional network in the animal host. This finding has potentially major implications for understanding of the mechanisms by which microbiota affect host health and fitness, and the ways in which hosts and their resident microbiota coevolve.
The conservation and function of RNA secondary structure in plants
Vandivier, Lee E.; Anderson, Stephen J.; Foley, Shawn W.; Gregory, Brian D.
2016-01-01
RNA transcripts fold into secondary structures via intricate patterns of base pairing. These secondary structures impart catalytic, ligand binding, and scaffolding functions to a wide array of RNAs, forming a critical node of biological regulation. Among their many functions, RNA structural elements modulate epigenetic marks, alter mRNA stability and translation, regulate alternative splicing, transduce signals, and scaffold large macromolecular complexes. Thus, the study of RNA secondary structure is critical to understanding the function and regulation of RNA transcripts. Here, we review the origins, form, and function of RNA secondary structure, focusing on plants. We then provide an overview of methods for probing secondary structure, from physical methods such as X-ray crystallography and nuclear magnetic resonance imaging (NMR) to chemical and nuclease probing methods. Marriage with high-throughput sequencing has enabled these latter methods to scale across whole transcriptomes, yielding tremendous new insights into the form and function of RNA secondary structure. PMID:26865341
Savoi, Stefania; Wong, Darren C J; Degu, Asfaw; Herrera, Jose C; Bucchetti, Barbara; Peterlunger, Enrico; Fait, Aaron; Mattivi, Fulvio; Castellarin, Simone D
2017-01-01
Grapes are one of the major fruit crops and they are cultivated in many dry environments. This study comprehensively characterizes the metabolic response of grape berries exposed to water deficit at different developmental stages. Increases of proline, branched-chain amino acids, phenylpropanoids, anthocyanins, and free volatile organic compounds have been previously observed in grape berries exposed to water deficit. Integrating RNA-sequencing analysis of the transcriptome with large-scale analysis of central and specialized metabolites, we reveal that these increases occur via a coordinated regulation of key structural pathway genes. Water deficit-induced up-regulation of flavonoid genes is also coordinated with the down-regulation of many stilbene synthases and a consistent decrease in stilbenoid concentration. Water deficit activated both ABA-dependent and ABA-independent signal transduction pathways by modulating the expression of several transcription factors. Gene-gene and gene-metabolite network analyses showed that water deficit-responsive transcription factors such as bZIPs, AP2/ERFs, MYBs, and NACs are implicated in the regulation of stress-responsive metabolites. Enrichment of known and novel cis -regulatory elements in the promoters of several ripening-specific/water deficit-induced modules further affirms the involvement of a transcription factor cross-talk in the berry response to water deficit. Together, our integrated approaches show that water deficit-regulated gene modules are strongly linked to key fruit-quality metabolites and multiple signal transduction pathways may be critical to achieve a balance between the regulation of the stress-response and the berry ripening program. This study constitutes an invaluable resource for future discoveries and comparative studies, in grapes and other fruits, centered on reproductive tissue metabolism under abiotic stress.
Crystal structures of a GABAA-receptor chimera reveal new endogenous neurosteroid-binding sites.
Laverty, Duncan; Thomas, Philip; Field, Martin; Andersen, Ole J; Gold, Matthew G; Biggin, Philip C; Gielen, Marc; Smart, Trevor G
2017-11-01
γ-Aminobutyric acid receptors (GABA A Rs) are vital for controlling excitability in the brain. This is emphasized by the numerous neuropsychiatric disorders that result from receptor dysfunction. A critical component of most native GABA A Rs is the α subunit. Its transmembrane domain is the target for many modulators, including endogenous brain neurosteroids that impact anxiety, stress and depression, and for therapeutic drugs, such as general anesthetics. Understanding the basis for the modulation of GABA A R function requires high-resolution structures. Here we present the first atomic structures of a GABA A R chimera at 2.8-Å resolution, including those bound with potentiating and inhibitory neurosteroids. These structures define new allosteric binding sites for these modulators that are associated with the α-subunit transmembrane domain. Our findings will enable the exploitation of neurosteroids for therapeutic drug design to regulate GABA A Rs in neurological disorders.
A conserved Mediator–CDK8 kinase module association regulates Mediator–RNA polymerase II interaction
Tsai, Kuang-Lei; Sato, Shigeo; Tomomori-Sato, Chieri; Conaway, Ronald C.; Conaway, Joan W.; Asturias, Francisco J.
2013-01-01
The CDK8 kinase module (CKM) is a conserved, dissociable Mediator subcomplex whose component subunits were genetically linked to the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and individually recognized as transcriptional repressors before Mediator was identified as a preeminent complex in eukaryotic transcription regulation. We used macromolecular electron microscopy and biochemistry to investigate the subunit organization, structure, and Mediator interaction of the Saccharomyces cerevisiae CKM. We found that interaction of the CKM with Mediator’s Middle module interferes with CTD-dependent RNAPII binding to a previously unknown Middle module CTD-binding site targeted early on in a multi-step holoenzyme formation process. Taken together, our results reveal the basis for CKM repression, clarify the origin of the connection between CKM subunits and the CTD, and suggest that a combination of competitive interactions and conformational changes that facilitate holoenzyme formation underlie the Mediator mechanism. PMID:23563140
Gonçalves, Joana P; Aires, Ricardo S; Francisco, Alexandre P; Madeira, Sara C
2012-01-01
Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules) under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1) apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2) ignore local patterns, abundant in most interesting cases of transcriptional activity; (3) neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4) limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots). Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in functionally enriched processes related to these biological events were identified. Ranking scores further suggested ability to discern the primary role of a gene (target or regulator). Prototype is available at: http://kdbio.inesc-id.pt/software/regulatorysnapshots.
Gonçalves, Joana P.; Aires, Ricardo S.; Francisco, Alexandre P.; Madeira, Sara C.
2012-01-01
Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules) under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1) apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2) ignore local patterns, abundant in most interesting cases of transcriptional activity; (3) neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4) limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots). Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in functionally enriched processes related to these biological events were identified. Ranking scores further suggested ability to discern the primary role of a gene (target or regulator). Prototype is available at: http://kdbio.inesc-id.pt/software/regulatorysnapshots. PMID:22563474
Xu, Juan; Li, Chuan-Xing; Li, Yong-Sheng; Lv, Jun-Ying; Ma, Ye; Shao, Ting-Ting; Xu, Liang-De; Wang, Ying-Ying; Du, Lei; Zhang, Yun-Peng; Jiang, Wei; Li, Chun-Quan; Xiao, Yun; Li, Xia
2011-02-01
Synergistic regulations among multiple microRNAs (miRNAs) are important to understand the mechanisms of complex post-transcriptional regulations in humans. Complex diseases are affected by several miRNAs rather than a single miRNA. So, it is a challenge to identify miRNA synergism and thereby further determine miRNA functions at a system-wide level and investigate disease miRNA features in the miRNA-miRNA synergistic network from a new view. Here, we constructed a miRNA-miRNA functional synergistic network (MFSN) via co-regulating functional modules that have three features: common targets of corresponding miRNA pairs, enriched in the same gene ontology category and close proximity in the protein interaction network. Predicted miRNA synergism is validated by significantly high co-expression of functional modules and significantly negative regulation to functional modules. We found that the MFSN exhibits a scale free, small world and modular architecture. Furthermore, the topological features of disease miRNAs in the MFSN are distinct from non-disease miRNAs. They have more synergism, indicating their higher complexity of functions and are the global central cores of the MFSN. In addition, miRNAs associated with the same disease are close to each other. The structure of the MFSN and the features of disease miRNAs are validated to be robust using different miRNA target data sets.
Past Strategies and Future Directions for Identifying AMP-Activated Protein Kinase (AMPK) Modulators
Sinnett, Sarah E.; Brenman, Jay E.
2014-01-01
AMP-activated protein kinase (AMPK) is a promising therapeutic target for cancer, type II diabetes, and other illnesses characterized by abnormal energy utilization. During the last decade, numerous labs have published a range of methods for identifying novel AMPK modulators. The current understanding of AMPK structure and regulation, however, has propelled a paradigm shift in which many researchers now consider ADP to be an additional regulatory nucleotide of AMPK. How can the AMPK community apply this new understanding of AMPK signaling to translational research? Recent insights into AMPK structure, regulation, and holoenzyme-sensitive signaling may provide the hindsight needed to clearly evaluate the strengths and weaknesses of past AMPK drug discovery efforts. Improving future strategies for AMPK drug discovery will require pairing the current understanding of AMPK signaling with improved experimental designs. PMID:24583089
Modulation of chromatin structure by the FACT histone chaperone complex regulates HIV-1 integration.
Matysiak, Julien; Lesbats, Paul; Mauro, Eric; Lapaillerie, Delphine; Dupuy, Jean-William; Lopez, Angelica P; Benleulmi, Mohamed Salah; Calmels, Christina; Andreola, Marie-Line; Ruff, Marc; Llano, Manuel; Delelis, Olivier; Lavigne, Marc; Parissi, Vincent
2017-07-28
Insertion of retroviral genome DNA occurs in the chromatin of the host cell. This step is modulated by chromatin structure as nucleosomes compaction was shown to prevent HIV-1 integration and chromatin remodeling has been reported to affect integration efficiency. LEDGF/p75-mediated targeting of the integration complex toward RNA polymerase II (polII) transcribed regions ensures optimal access to dynamic regions that are suitable for integration. Consequently, we have investigated the involvement of polII-associated factors in the regulation of HIV-1 integration. Using a pull down approach coupled with mass spectrometry, we have selected the FACT (FAcilitates Chromatin Transcription) complex as a new potential cofactor of HIV-1 integration. FACT is a histone chaperone complex associated with the polII transcription machinery and recently shown to bind LEDGF/p75. We report here that a tripartite complex can be formed between HIV-1 integrase, LEDGF/p75 and FACT in vitro and in cells. Biochemical analyzes show that FACT-dependent nucleosome disassembly promotes HIV-1 integration into chromatinized templates, and generates highly favored nucleosomal structures in vitro. This effect was found to be amplified by LEDGF/p75. Promotion of this FACT-mediated chromatin remodeling in cells both increases chromatin accessibility and stimulates HIV-1 infectivity and integration. Altogether, our data indicate that FACT regulates HIV-1 integration by inducing local nucleosomes dissociation that modulates the functional association between the incoming intasome and the targeted nucleosome.
Structural insight to mutation effects uncover a common allosteric site in class C GPCRs.
Harpsøe, Kasper; Boesgaard, Michael W; Munk, Christian; Bräuner-Osborne, Hans; Gloriam, David E
2017-04-15
Class C G protein-coupled receptors (GPCRs) regulate important physiological functions and allosteric modulators binding to the transmembrane domain constitute an attractive and, due to a lack of structural insight, a virtually unexplored potential for therapeutics and the food industry. Combining pharmacological site-directed mutagenesis data with the recent class C GPCR experimental structures will provide a foundation for rational design of new therapeutics. We uncover one common site for both positive and negative modulators with different amino acid layouts that can be utilized to obtain selectivity. Additionally, we show a large potential for structure-based modulator design, especially for four orphan receptors with high similarity to the crystal structures. All collated mutagenesis data is available in the GPCRdb mutation browser at http://gpcrdb.org/mutations/ and can be analyzed online or downloaded in excel format. david.gloriam@sund.ku.dk. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Cura, Vincent; Troffer-Charlier, Nathalie; Wurtz, Jean Marie; Bonnefond, Luc; Cavarelli, Jean
2014-09-01
Protein arginine methyltransferase 7 (PRMT7) is a type III arginine methyltransferase which has been implicated in several biological processes such as transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation and metastasis. PRMT7 is a unique but less characterized member of the family of PRMTs. The crystal structure of full-length PRMT7 from Mus musculus refined at 1.7 Å resolution is described. The PRMT7 structure is composed of two catalytic modules in tandem forming a pseudo-dimer and contains only one AdoHcy molecule bound to the N-terminal module. The high-resolution crystal structure presented here revealed several structural features showing that the second active site is frozen in an inactive state by a conserved zinc finger located at the junction between the two PRMT modules and by the collapse of two degenerated AdoMet-binding loops.
Schrader, Laura A; Anderson, Anne E; Mayne, Amber; Pfaffinger, Paul J; Sweatt, John David
2002-12-01
A-type channels, encoded by the pore-forming alpha-subunits of the Kv4.x family, are particularly important in regulating membrane excitability in the CNS and the heart. Given the key role of modulation of A currents by kinases, we sought to investigate the protein structure-function relationships underlying the regulation of these currents by PKA. We have previously shown the existence of two PKA phosphorylation sites in the Kv4.2 sequence; therefore, we focused this study on the Kv4.2 primary subunit. In the present studies we made the surprising finding that PKA phosphorylation of the Kv4.2 alpha-subunit is necessary but not sufficient for channel modulation; channel modulation by PKA required the presence of an ancillary subunit, the K+ channel interacting protein (KChIP3). Therefore, these findings indicate a surprising complexity to kinase regulation of A currents, in that an interaction of two separate molecular events, alpha-subunit phosphorylation and the association of an ancillary subunit (KChIP3), are necessary for phosphorylation-dependent regulation of Kv4.2-encoded A channels by PKA. Overall, our studies indicate that PKA must of necessity act on a supramolecular complex of pore-forming alpha-subunits plus ancillary subunits to alter channel properties.
Xia, Hongwei; Fu, Hailin; Zhang, Yanfeng; Shih, Kuo-Chih; Ren, Yuan; Anuganti, Murali; Nieh, Mu-Ping; Cheng, Jianjun; Lin, Yao
2017-08-16
Supramolecular polymerization or assembly of proteins or large macromolecular units by a homogeneous nucleation mechanism can be quite slow and require specific solution conditions. In nature, protein assembly is often regulated by molecules that modulate the electrostatic interactions of the protein subunits for various association strengths. The key to this regulation is the coupling of the assembly process with a reversible or irreversible chemical reaction that occurs within the constituent subunits. However, realizing this complex process by the rational design of synthetic molecules or macromolecules remains a challenge. Herein, we use a synthetic polypeptide-grafted comb macromolecule to demonstrate how the in situ modulation of interactions between the charged macromolecules affects their resulting supramolecular structures. The kinetics of structural formation was studied and can be described by a generalized model of nucleated polymerization containing secondary pathways. Basic thermodynamic analysis indicated the delicate role of the electrostatic interactions between the charged subunits in the reaction-induced assembly process. This approach may be applicable for assembling a variety of ionic soft matters that are amenable to chemical reactions in situ.
Jin, Lily L; Wybenga-Groot, Leanne E; Tong, Jiefei; Taylor, Paul; Minden, Mark D; Trudel, Suzanne; McGlade, C Jane; Moran, Michael F
2015-03-01
Src homology 2 (SH2) domains are modular protein structures that bind phosphotyrosine (pY)-containing polypeptides and regulate cellular functions through protein-protein interactions. Proteomics analysis showed that the SH2 domains of Src family kinases are themselves tyrosine phosphorylated in blood system cancers, including acute myeloid leukemia, chronic lymphocytic leukemia, and multiple myeloma. Using the Src family kinase Lyn SH2 domain as a model, we found that phosphorylation at the conserved SH2 domain residue Y(194) impacts the affinity and specificity of SH2 domain binding to pY-containing peptides and proteins. Analysis of the Lyn SH2 domain crystal structure supports a model wherein phosphorylation of Y(194) on the EF loop modulates the binding pocket that engages amino acid side chains at the pY+2/+3 position. These data indicate another level of regulation wherein SH2-mediated protein-protein interactions are modulated by SH2 kinases and phosphatases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Dutta, Aditya; Choudhary, Pratibha; Caruana, Julie; Raina, Ramesh
2017-09-01
Histone methylation is known to dynamically regulate diverse developmental and physiological processes. Histone methyl marks are written by methyltransferases and erased by demethylases, and result in modification of chromatin structure to repress or activate transcription. However, little is known about how histone methylation may regulate defense mechanisms and flowering time in plants. Here we report characterization of JmjC DOMAIN-CONTAINING PROTEIN 27 (JMJ27), an Arabidopsis JHDM2 (JmjC domain-containing histone demethylase 2) family protein, which modulates defense against pathogens and flowering time. JMJ27 is a nuclear protein containing a zinc-finger motif and a catalytic JmjC domain with conserved Fe(II) and α-ketoglutarate binding sites, and displays H3K9me1/2 demethylase activity both in vitro and in vivo. JMJ27 is induced in response to virulent Pseudomonas syringae pathogens and is required for resistance against these pathogens. JMJ27 is a negative modulator of WRKY25 (a repressor of defense) and a positive modulator of several pathogenesis-related (PR) proteins. Additionally, loss of JMJ27 function leads to early flowering. JMJ27 negatively modulates the major flowering regulator CONSTANS (CO) and positively modulates FLOWERING LOCUS C (FLC). Taken together, our results indicate that JMJ27 functions as a histone demethylase to modulate both physiological (defense) and developmental (flowering time) processes in Arabidopsis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Gao, Xin; Chen, Min; Snyder, G. Jeffrey; Andreasen, Søren Juhl; Kær, Søren Knudsen
2013-07-01
To better manage the magnitude and direction of the heat flux in an exchanger-based methanol evaporator of a fuel cell system, thermoelectric (TE) modules can be deployed as TE heat flux regulators (TERs). The performance of the TE-integrated evaporator is strongly influenced by its heat exchange structure. The structure transfers the fuel cell exhaust heat to the evaporation chamber to evaporate the methanol, where TE modules are installed in between to facilitate the heat regulation. In this work, firstly, a numerical study is conducted to determine the working currents and working modes of the TERs under the system working condition fluctuations and during the system cold start. A three-dimensional evaporator model is generated in ANSYS FLUENT® by combining a compact TE model with various heat exchange structure geometries. The compact TE model can dramatically improve the computational efficiency, and uses a different material property acquisition method based on module manufacturers' datasheets. Secondly, a simulation study is carried out on the novel evaporator to minimize its thermal resistance and to assess the evaporator pressure drop. The factors studied include the type of fins in the heat exchange structure, the thickness of the fins, the axial conduction penalty, etc. Results show that the TE-integrated evaporator can work more efficiently and smoothly during both load fluctuations and system cold start, offering superior performance.
Entropy and information in flagellar axoneme cybernetics: a radial spokes integrative function.
Cibert, Christian
2003-04-01
Radial spokes and the consequences of their relationships with the central apparatus seem to play a very important role in the regulation of axonemal activity. We modeled their behavior and observed that it appears to differ in the cilium and the flagellum with respect to the development of bending as a function of time. Specifically, our calculation raises the question of the real function of the radial spokes in the regulation of the axoneme, because a given curvature of the flagellar axoneme may correspond to two opposite of their tilts. The stable nil/low amplitude shear points that we had characterized along the flagellum allowed us to describe their axoneme as a series of modules [Cibert, 2002: Cell Motil. Cytoskeleton 51:89-111]. We observed that a nil/low shearing point moves along each module during beating when a new bend is created at the base of the flagellum [Cibert, 2001: Cell Motil. Cytoskeleton 49:161-175]. We propose that the structural gradients of isoforms of tubulin could be basic verniers that act as structural references for the axonemal machinery during the beating. This allowed us to interpret the axonemal organization as a segmented structure, that could be analyzed according to the complexion(1) theory and Shannon's information theory, which associate entropy and probability in the creation of information. The important consequence of this interpretation is that regulation of the axonemal machinery appears to be due to the upstream and downstream cross-talk between the axonemal segments that do not involve any dedicated integrative structure but depend on the energy level of the entire length of each module. Copyright 2003 Wiley-Liss, Inc.(1)Complexion was defined by Boltzman in 1877 and used by Planck in 1900 to calculate the energy distribution of a normal spectrum [Morowitz, 1970].
Kraus, W. Lee
2008-01-01
Summary The regulation of gene expression requires a wide array of protein factors that can modulate chromatin structure, act at enhancers, function as transcriptional coregulators, or regulate insulator function. Poly(ADP-ribose) polymerase-1 (PARP-1), an abundant and ubiquitous nuclear enzyme that catalyzes the NAD+-dependent addition of ADP-ribose polymers on a variety of nuclear proteins, has been implicated in all of these functions. Recent biochemical, genomic, proteomic, and cell-based studies have highlighted the role of PARP-1 in each of these processes and provided new insights about the molecular mechanisms governing PARP-1-dependent regulation of gene expression. In addition, these studies have demonstrated how PARP-1 functions as an integral part of cellular signaling pathways that culminate in gene regulatory outcomes. PMID:18450439
ASD: a comprehensive database of allosteric proteins and modulators
Huang, Zhimin; Zhu, Liang; Cao, Yan; Wu, Geng; Liu, Xinyi; Chen, Yingyi; Wang, Qi; Shi, Ting; Zhao, Yaxue; Wang, Yuefei; Li, Weihua; Li, Yixue; Chen, Haifeng; Chen, Guoqiang; Zhang, Jian
2011-01-01
Allostery is the most direct, rapid and efficient way of regulating protein function, ranging from the control of metabolic mechanisms to signal-transduction pathways. However, an enormous amount of unsystematic allostery information has deterred scientists who could benefit from this field. Here, we present the AlloSteric Database (ASD), the first online database that provides a central resource for the display, search and analysis of structure, function and related annotation for allosteric molecules. Currently, ASD contains 336 allosteric proteins from 101 species and 8095 modulators in three categories (activators, inhibitors and regulators). Proteins are annotated with a detailed description of allostery, biological process and related diseases, and modulators with binding affinity, physicochemical properties and therapeutic area. Integrating the information of allosteric proteins in ASD should allow for the identification of specific allosteric sites of a given subtype among proteins of the same family that can potentially serve as ideal targets for experimental validation. In addition, modulators curated in ASD can be used to investigate potent allosteric targets for the query compound, and also help chemists to implement structure modifications for novel allosteric drug design. Therefore, ASD could be a platform and a starting point for biologists and medicinal chemists for furthering allosteric research. ASD is freely available at http://mdl.shsmu.edu.cn/ASD/. PMID:21051350
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yong; Choi, Mihwa; Cavey, Greg
The orphan nuclear receptor steroidogenic factor 1 (SF-1) regulates the differentiation and function of endocrine glands. Although SF-1 is constitutively active in cell-based assays, it is not known whether this transcriptional activity is modulated by ligands. Here, we describe the 1.5 {angstrom} crystal structure of the SF-1 ligand binding domain in complex with an LXXLL motif from a coregulator protein. The structure reveals the presence of a phospholipid ligand in a surprisingly large pocket ({approx}1600 {angstrom}{sup 3}), with the receptor adopting the canonical active conformation. The bound phospholipid is readily exchanged and modulates SF-1 interactions with coactivators. Mutations designed tomore » reduce the size of the SF-1 pocket or to disrupt hydrogen bonds with the phospholipid abolish SF-1/coactivator interactions and significantly reduce SF-1 transcriptional activity. These findings provide evidence that SF-1 is regulated by endogenous ligands and suggest an unexpected relationship between phospholipids and endocrine development and function.« less
Allosteric mechanism of water channel gating by Ca2+–calmodulin
Reichow, Steve L.; Clemens, Daniel M.; Freites, J. Alfredo; Németh-Cahalan, Karin L.; Heyden, Matthias; Tobias, Douglas J.; Hall, James E.; Gonen, Tamir
2013-01-01
Calmodulin (CaM) is a universal regulatory protein that communicates the presence of calcium to its molecular targets and correspondingly modulates their function. This key signaling protein is important for controlling the activity of hundreds of membrane channels and transporters. However, our understanding of the structural mechanisms driving CaM regulation of full-length membrane proteins has remained elusive. In this study, we determined the pseudo-atomic structure of full-length mammalian aquaporin-0 (AQP0, Bos Taurus) in complex with CaM using electron microscopy to understand how this signaling protein modulates water channel function. Molecular dynamics and functional mutation studies reveal how CaM binding inhibits AQP0 water permeability by allosterically closing the cytoplasmic gate of AQP0. Our mechanistic model provides new insight, only possible in the context of the fully assembled channel, into how CaM regulates multimeric channels by facilitating cooperativity between adjacent subunits. PMID:23893133
HEMD: an integrated tool of human epigenetic enzymes and chemical modulators for therapeutics.
Huang, Zhimin; Jiang, Haiming; Liu, Xinyi; Chen, Yingyi; Wong, Jiemin; Wang, Qi; Huang, Wenkang; Shi, Ting; Zhang, Jian
2012-01-01
Epigenetic mechanisms mainly include DNA methylation, post-translational modifications of histones, chromatin remodeling and non-coding RNAs. All of these processes are mediated and controlled by enzymes. Abnormalities of the enzymes are involved in a variety of complex human diseases. Recently, potent natural or synthetic chemicals are utilized to establish the quantitative contributions of epigenetic regulation through the enzymes and provide novel insight for developing new therapeutics. However, the development of more specific and effective epigenetic therapeutics requires a more complete understanding of the chemical epigenomic landscape. Here, we present a human epigenetic enzyme and modulator database (HEMD), the database which provides a central resource for the display, search, and analysis of the structure, function, and related annotation for human epigenetic enzymes and chemical modulators focused on epigenetic therapeutics. Currently, HEMD contains 269 epigenetic enzymes and 4377 modulators in three categories (activators, inhibitors, and regulators). Enzymes are annotated with detailed description of epigenetic mechanisms, catalytic processes, and related diseases, and chemical modulators with binding sites, pharmacological effect, and therapeutic uses. Integrating the information of epigenetic enzymes in HEMD should allow for the prediction of conserved features for proteins and could potentially classify them as ideal targets for experimental validation. In addition, modulators curated in HEMD can be used to investigate potent epigenetic targets for the query compound and also help chemists to implement structural modifications for the design of novel epigenetic drugs. HEMD could be a platform and a starting point for biologists and medicinal chemists for furthering research on epigenetic therapeutics. HEMD is freely available at http://mdl.shsmu.edu.cn/HEMD/.
NASA Astrophysics Data System (ADS)
Beck, Michael W.; Derrick, Jeffrey S.; Kerr, Richard A.; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C.; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D.; Kim, Kwang S.; Lee, Joo-Yong; Ruotolo, Brandon T.; Lim, Mi Hee
2016-10-01
The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.
Beck, Michael W; Derrick, Jeffrey S; Kerr, Richard A; Oh, Shin Bi; Cho, Woo Jong; Lee, Shin Jung C; Ji, Yonghwan; Han, Jiyeon; Tehrani, Zahra Aliakbar; Suh, Nayoung; Kim, Sujeong; Larsen, Scott D; Kim, Kwang S; Lee, Joo-Yong; Ruotolo, Brandon T; Lim, Mi Hee
2016-10-13
The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal-Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs.
Oldenburg, Joppe; van der Krogt, Gerard; Twiss, Floor; Bongaarts, Annika; Habani, Yasmin; Slotman, Johan A; Houtsmuller, Adriaan; Huveneers, Stephan; de Rooij, Johan
2015-11-27
Mechanical forces are integrated at cadherin-based adhesion complexes to regulate morphology and strength of cell-cell junctions and organization of associated F-actin. A central mechanosensor at the cadherin complex is α-catenin, whose stretching recruits vinculin to regulate adhesion strength. The identity of the F-actin regulating signals that are also activated by mechanical forces at cadherin-based junctions has remained elusive. Here we identify the actin-regulators VASP, zyxin and TES as members of punctate, tensile cadherin-based junctions called Focal Adherens Junctions (FAJ) and show that they display mechanosensitive recruitment similar to that of vinculin. However, this recruitment is not altered by destroying or over-activating the α-catenin/vinculin module. Structured Illumination Microscopy (SIM) indicates that these tension sensitive proteins concentrate at locations within FAJs that are distinct from the core cadherin complex proteins. Furthermore, localization studies using mutated versions of VASP and zyxin indicate that these two proteins require binding to each other in order to localize to the FAJs. We conclude that there are multiple force sensitive modules present at the FAJ that are activated at distinct locations along the cadherin-F-actin axis and regulate specific aspects of junction dynamics.
Oldenburg, Joppe; van der Krogt, Gerard; Twiss, Floor; Bongaarts, Annika; Habani, Yasmin; Slotman, Johan A.; Houtsmuller, Adriaan; Huveneers, Stephan; de Rooij, Johan
2015-01-01
Mechanical forces are integrated at cadherin-based adhesion complexes to regulate morphology and strength of cell-cell junctions and organization of associated F-actin. A central mechanosensor at the cadherin complex is α-catenin, whose stretching recruits vinculin to regulate adhesion strength. The identity of the F-actin regulating signals that are also activated by mechanical forces at cadherin-based junctions has remained elusive. Here we identify the actin-regulators VASP, zyxin and TES as members of punctate, tensile cadherin-based junctions called Focal Adherens Junctions (FAJ) and show that they display mechanosensitive recruitment similar to that of vinculin. However, this recruitment is not altered by destroying or over-activating the α-catenin/vinculin module. Structured Illumination Microscopy (SIM) indicates that these tension sensitive proteins concentrate at locations within FAJs that are distinct from the core cadherin complex proteins. Furthermore, localization studies using mutated versions of VASP and zyxin indicate that these two proteins require binding to each other in order to localize to the FAJs. We conclude that there are multiple force sensitive modules present at the FAJ that are activated at distinct locations along the cadherin-F-actin axis and regulate specific aspects of junction dynamics. PMID:26611125
Sgourakis, Nikolaos G; Natarajan, Kannan; Ying, Jinfa; Vogeli, Beat; Boyd, Lisa F; Margulies, David H; Bax, Ad
2014-09-02
Immunoevasins are key proteins used by viruses to subvert host immune responses. Determining their high-resolution structures is key to understanding virus-host interactions toward the design of vaccines and other antiviral therapies. Mouse cytomegalovirus encodes a unique set of immunoevasins, the m02-m06 family, that modulates major histocompatibility complex class I (MHC-I) antigen presentation to CD8+ T cells and natural killer cells. Notwithstanding the large number of genetic and functional studies, the structural biology of immunoevasins remains incompletely understood, largely because of crystallization bottlenecks. Here we implement a technology using sparse nuclear magnetic resonance data and integrative Rosetta modeling to determine the structure of the m04/gp34 immunoevasin extracellular domain. The structure reveals a β fold that is representative of the m02-m06 family of viral proteins, several of which are known to bind MHC-I molecules and interfere with antigen presentation, suggesting its role as a diversified immune regulation module. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vascular remodeling: A redox-modulated mechanism of vessel caliber regulation.
Tanaka, Leonardo Y; Laurindo, Francisco R M
2017-08-01
Vascular remodeling, i.e. whole-vessel structural reshaping, determines lumen caliber in (patho)physiology. Here we review mechanisms underlying vessel remodeling, with emphasis in redox regulation. First, we discuss confusing terminology and focus on strictu sensu remodeling. Second, we propose a mechanobiological remodeling paradigm based on the concept of tensional homeostasis as a setpoint regulator. We first focus on shear-mediated models as prototypes of remodeling closely dominated by highly redox-sensitive endothelial function. More detailed discussions focus on mechanosensors, integrins, extracellular matrix, cytoskeleton and inflammatory pathways as potential of mechanisms potentially coupling tensional homeostasis to redox regulation. Further discussion of remodeling associated with atherosclerosis and injury repair highlights important aspects of redox vascular responses. While neointima formation has not shown consistent responsiveness to antioxidants, vessel remodeling has been more clearly responsive, indicating that despite the multilevel redox signaling pathways, there is a coordinated response of the whole vessel. Among mechanisms that may orchestrate redox pathways, we discuss roles of superoxide dismutase activity and extracellular protein disulfide isomerase. We then discuss redox modulation of aneurysms, a special case of expansive remodeling. We propose that the redox modulation of vascular remodeling may reflect (1) remodeling pathophysiology is dominated by a particularly redox-sensitive cell type, e.g., endothelial cells (2) redox pathways are temporospatially coordinated at an organ level across distinct cellular and acellular structures or (3) the tensional homeostasis setpoint is closely connected to redox signaling. The mechanobiological/redox model discussed here can be a basis for improved understanding of remodeling and helps clarifying mechanisms underlying prevalent hard-to-treat diseases. Copyright © 2017 Elsevier Inc. All rights reserved.
Structure and mechanisms of Escherichia coli aspartate transcarbamoylase.
Lipscomb, William N; Kantrowitz, Evan R
2012-03-20
Enzymes catalyze a particular reaction in cells, but only a few control the rate of this reaction and the metabolic pathway that follows. One specific mechanism for such enzymatic control of a metabolic pathway involves molecular feedback, whereby a metabolite further down the pathway acts at a unique site on the control enzyme to alter its activity allosterically. This regulation may be positive or negative (or both), depending upon the particular system. Another method of enzymatic control involves the cooperative binding of the substrate, which allows a large change in enzyme activity to emanate from only a small change in substrate concentration. Allosteric regulation and homotropic cooperativity are often known to involve significant conformational changes in the structure of the protein. Escherichia coli aspartate transcarbamoylase (ATCase) is the textbook example of an enzyme that regulates a metabolic pathway, namely, pyrimidine nucleotide biosynthesis, by feedback control and by the cooperative binding of the substrate, L-aspartate. The catalytic and regulatory mechanisms of this enzyme have been extensively studied. A series of X-ray crystal structures of the enzyme in the presence and absence of substrates, products, and analogues have provided details, at the molecular level, of the conformational changes that the enzyme undergoes as it shifts between its low-activity, low-affinity form (T state) to its high-activity, high-affinity form (R state). These structural data provide insights into not only how this enzyme catalyzes the reaction between l-aspartate and carbamoyl phosphate to form N-carbamoyl-L-aspartate and inorganic phosphate, but also how the allosteric effectors modulate this activity. In this Account, we summarize studies on the structure of the enzyme and describe how these structural data provide insights into the catalytic and regulatory mechanisms of the enzyme. The ATCase-catalyzed reaction is regulated by nucleotide binding some 60 Å from the active site, inducing structural alterations that modulate catalytic activity. The delineation of the structure and function in this particular model system will help in understanding the molecular basis of cooperativity and allosteric regulation in other systems as well.
Vitamin E: A Role in Signal Transduction.
Zingg, Jean-Marc
2015-01-01
Vitamin E modulates the activity of several signal transduction enzymes with consequent alterations of gene expression. At the molecular level, vitamin E may directly bind to these enzymes and compete with their substrates, or it may change their activity by redox regulation. The translocation of several of these enzymes to the plasma membrane is regulated by vitamin E, suggesting the modulation of protein-membrane interactions as a common mechanism for vitamin E action. Enzyme-membrane interactions can be affected by vitamin E by interference with binding to specific membrane lipids or by altering cellular structures such as membrane microdomains (lipid rafts). Moreover, competition by vitamin E for common binding sites within lipid transport proteins may alter the traffic of lipid mediators and thus affect their signaling and enzymatic conversion. In this review, the main effects of vitamin E on enzymes involved in signal transduction are summarized and possible molecular mechanisms leading to enzyme modulation are evaluated.
Core Mediator structure at 3.4 Å extends model of transcription initiation complex.
Nozawa, Kayo; Schneider, Thomas R; Cramer, Patrick
2017-05-11
Mediator is a multiprotein co-activator that binds the transcription pre-initiation complex (PIC) and regulates RNA polymerase (Pol) II. The Mediator head and middle modules form the essential core Mediator (cMed), whereas the tail and kinase modules play regulatory roles. The architecture of Mediator and its position on the PIC are known, but atomic details are limited to Mediator subcomplexes. Here we report the crystal structure of the 15-subunit cMed from Schizosaccharomyces pombe at 3.4 Å resolution. The structure shows an unaltered head module, and reveals the intricate middle module, which we show is globally required for transcription. Sites of known Mediator mutations cluster at the interface between the head and middle modules, and in terminal regions of the head subunits Med6 (ref. 16) and Med17 (ref. 17) that tether the middle module. The structure led to a model for Saccharomyces cerevisiae cMed that could be combined with the 3.6 Å cryo-electron microscopy structure of the core PIC (cPIC). The resulting atomic model of the cPIC-cMed complex informs on interactions of the submodules forming the middle module, called beam, knob, plank, connector, and hook. The hook is flexibly linked to Mediator by a conserved hinge and contacts the transcription initiation factor IIH (TFIIH) kinase that phosphorylates the carboxy (C)-terminal domain (CTD) of Pol II and was recently positioned on the PIC. The hook also contains residues that crosslink to the CTD and reside in a previously described cradle. These results provide a framework for understanding Mediator function, including its role in stimulating CTD phosphorylation by TFIIH.
Modulation of electronic structures of bases through DNA recognition of protein.
Hagiwara, Yohsuke; Kino, Hiori; Tateno, Masaru
2010-04-21
The effects of environmental structures on the electronic states of functional regions in a fully solvated DNA·protein complex were investigated using combined ab initio quantum mechanics/molecular mechanics calculations. A complex of a transcriptional factor, PU.1, and the target DNA was used for the calculations. The effects of solvent on the energies of molecular orbitals (MOs) of some DNA bases strongly correlate with the magnitude of masking of the DNA bases from the solvent by the protein. In the complex, PU.1 causes a variation in the magnitude among DNA bases by means of directly recognizing the DNA bases through hydrogen bonds and inducing structural changes of the DNA structure from the canonical one. Thus, the strong correlation found in this study is the first evidence showing the close quantitative relationship between recognition modes of DNA bases and the energy levels of the corresponding MOs. Thus, it has been revealed that the electronic state of each base is highly regulated and organized by the DNA recognition of the protein. Other biological macromolecular systems can be expected to also possess similar modulation mechanisms, suggesting that this finding provides a novel basis for the understanding for the regulation functions of biological macromolecular systems.
Meyer, Mark B.; Benkusky, Nancy A.; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J. Wesley
2017-01-01
The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D3 to its hormonal form, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1, are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH)2D3-mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH)2D3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1. We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH)2D3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. PMID:28808057
Jacouton, Elsa; Mach, Núria; Cadiou, Julie; Lapaque, Nicolas; Clément, Karine; Doré, Joël; van Hylckama Vlieg, Johan E. T.; Smokvina, Tamara; Blottière, Hervé M
2015-01-01
Background and Objectives Identification of new targets for metabolic diseases treatment or prevention is required. In this context, FIAF/ANGPTL4 appears as a crucial regulator of energy homeostasis. Lactobacilli are often considered to display beneficial effect for their hosts, acting on different regulatory pathways. The aim of the present work was to study the effect of several lactobacilli strains on Fiaf gene expression in human intestinal epithelial cells (IECs) and on mice tissues to decipher the underlying mechanisms. Subjects and Methods Nineteen lactobacilli strains have been tested on HT–29 human intestinal epithelial cells for their ability to regulate Fiaf gene expression by RT-qPCR. In order to determine regulated pathways, we analysed the whole genome transcriptome of IECs. We then validated in vivo bacterial effects using C57BL/6 mono-colonized mice fed with normal chow. Results We identified one strain (Lactobacillus rhamnosus CNCMI–4317) that modulated Fiaf expression in IECs. This regulation relied potentially on bacterial surface-exposed molecules and seemed to be PPAR-γ independent but PPAR-α dependent. Transcriptome functional analysis revealed that multiple pathways including cellular function and maintenance, lymphoid tissue structure and development, as well as lipid metabolism were regulated by this strain. The regulation of immune system and lipid and carbohydrate metabolism was also confirmed by overrepresentation of Gene Ontology terms analysis. In vivo, circulating FIAF protein was increased by the strain but this phenomenon was not correlated with modulation Fiaf expression in tissues (except a trend in distal small intestine). Conclusion We showed that Lactobacillus rhamnosus CNCMI–4317 induced Fiaf expression in human IECs, and increased circulating FIAF protein level in mice. Moreover, this effect was accompanied by transcriptome modulation of several pathways including immune response and metabolism in vitro. PMID:26439630
From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking.
Farinha, Carlos M; Canato, Sara
2017-01-01
CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.
Galea, L A M; Wainwright, S R; Roes, M M; Duarte-Guterman, P; Chow, C; Hamson, D K
2013-11-01
The hippocampus is an area of the brain that undergoes dramatic plasticity in response to experience and hormone exposure. The hippocampus retains the ability to produce new neurones in most mammalian species and is a structure that is targeted in a number of neurodegenerative and neuropsychiatric diseases, many of which are influenced by both sex and sex hormone exposure. Intriguingly, gonadal and adrenal hormones affect the structure and function of the hippocampus differently in males and females. Adult neurogenesis in the hippocampus is regulated by both gonadal and adrenal hormones in a sex- and experience-dependent way. Sex differences in the effects of steroid hormones to modulate hippocampal plasticity should not be completely unexpected because the physiology of males and females is different, with the most notable difference being that females gestate and nurse the offspring. Furthermore, reproductive experience (i.e. pregnancy and mothering) results in permanent changes to the maternal brain, including the hippocampus. This review outlines the ability of gonadal and stress hormones to modulate multiple aspects of neurogenesis (cell proliferation and cell survival) in both male and female rodents. The function of adult neurogenesis in the hippocampus is linked to spatial memory and depression, and the present review provides early evidence of the functional links between the hormonal modulation of neurogenesis that may contribute to the regulation of cognition and stress. © 2013 British Society for Neuroendocrinology.
Masuno, Kiriko; Haldar, Saptarsi M.; Jeyaraj, Darwin; Mailloux, Christina M.; Huang, Xiaozhu; Panettieri, Rey A.; Jain, Mukesh K.
2011-01-01
Glucocorticoids (GCs), which activate GC receptor (GR) signaling and thus modulate gene expression, are widely used to treat asthma. GCs exert their therapeutic effects in part through modulating airway smooth muscle (ASM) structure and function. However, the effects of genes that are regulated by GCs on airway function are not fully understood. We therefore used transcription profiling to study the effects of a potent GC, dexamethasone, on human ASM (HASM) gene expression at 4 and 24 hours. After 24 hours of dexamethasone treatment, nearly 7,500 genes had statistically distinguishable changes in expression; quantitative PCR validation of a 40-gene subset of putative GR-regulated genes in 6 HASM cell lines suggested that the early transcriptional targets of GR signaling are similar in independent HASM lines. Gene ontology analysis implicated GR targets in controlling multiple aspects of ASM function. One GR-regulated gene, the transcription factor, Kruppel-like factor 15 (Klf15), was already known to modulate vascular smooth and cardiac muscle function, but had no known role in the lung. We therefore analyzed the pulmonary phenotype of Klf15−/− mice after ovalbumin sensitization and challenge. We found diminished airway responses to acetylcholine in ovalbumin-challenged Klf15−/− mice without a significant change in the induction of asthmatic inflammation. In cultured cells, overexpression of Klf15 reduced proliferation of HASM cells, whereas apoptosis in Klf15−/− murine ASM cells was increased. Together, these results further characterize the GR-regulated gene network in ASM and establish a novel role for the GR target, Klf15, in modulating airway function. PMID:21257922
Amplitude Control of Solid-State Modulators for Precision Fast Kicker Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, J A; Anaya, R M; Caporaso, G C
2002-11-15
A solid-state modulator with very fast rise and fall times, pulse width agility, and multi-pulse burst and intra-pulse amplitude adjustment capability for use with high speed electron beam kickers has been designed and tested at LLNL. The modulator uses multiple solid-state modules stacked in an inductive-adder configuration. Amplitude adjustment is provided by controlling individual modules in the adder, and is used to compensate for transverse e-beam motion as well as the dynamic response and beam-induced steering effects associated with the kicker structure. A control algorithm calculates a voltage based on measured e-beam displacement and adjusts the modulator to regulate beammore » centroid position. This paper presents design details of amplitude control along with measured performance data from kicker operation on the ETA-II accelerator at LLNL.« less
The Role of Neurotrophins in Major Depressive Disorder.
Jiang, Cheng; Salton, Stephen R
2013-03-01
Neurotrophins and other growth factors have been advanced as critical modulators of depressive behavior. Support for this model is based on analyses of knockout and transgenic mouse models, human genetic studies, and screens for gene products that are regulated by depressive behavior and/or antidepressants. Even subtle alteration in the regulated secretion of brain-derived neurotrophic factor (BDNF), for example, due to a single nucleotide polymorphism (SNP)-encoded Val-Met substitution in proBDNF that affects processing and sorting, impacts behavior and cognition. Alterations in growth factor expression result in changes in neurogenesis as well as structural changes in neuronal cytoarchitecture, including effects on dendritic length and spine density, in the hippocampus, nucleus accumbens, and prefrontal cortex. These changes have the potential to impact the plasticity and stability of synapses in the CNS, and the complex brain circuitry that regulates behavior. Here we review the role that neurotrophins play in the modulation of depressive behavior, and the downstream signaling targets they regulate that potentially mediate these behavioral pro-depressant and antidepressant effects.
The Role of Neurotrophins in Major Depressive Disorder
Jiang, Cheng; Salton, Stephen R.
2013-01-01
Neurotrophins and other growth factors have been advanced as critical modulators of depressive behavior. Support for this model is based on analyses of knockout and transgenic mouse models, human genetic studies, and screens for gene products that are regulated by depressive behavior and/or antidepressants. Even subtle alteration in the regulated secretion of brain-derived neurotrophic factor (BDNF), for example, due to a single nucleotide polymorphism (SNP)-encoded Val-Met substitution in proBDNF that affects processing and sorting, impacts behavior and cognition. Alterations in growth factor expression result in changes in neurogenesis as well as structural changes in neuronal cytoarchitecture, including effects on dendritic length and spine density, in the hippocampus, nucleus accumbens, and prefrontal cortex. These changes have the potential to impact the plasticity and stability of synapses in the CNS, and the complex brain circuitry that regulates behavior. Here we review the role that neurotrophins play in the modulation of depressive behavior, and the downstream signaling targets they regulate that potentially mediate these behavioral pro-depressant and antidepressant effects. PMID:23691270
Allosteric Modulation of protein oligomerization: an emerging approach to drug design
NASA Astrophysics Data System (ADS)
Gabizon, Ronen; Friedler, Assaf
2014-03-01
Many disease-related proteins are in equilibrium between different oligomeric forms. The regulation of this equilibrium plays a central role in maintaining the activity of these proteins in vitro and in vivo. Modulation of the oligomerization equilibrium of proteins by molecules that bind preferentially to a specific oligomeric state is emerging as a potential therapeutic strategy that can be applied to many biological systems such as cancer and viral infections. The target proteins for such compounds are diverse in structure and sequence, and may require different approaches for shifting their oligomerization equilibrium. The discovery of such oligomerization-modulating compounds is thus achieved based on existing structural knowledge about the specific target proteins, as well as on their interactions with partner proteins or with ligands. In silico design and combinatorial tools such as peptide arrays and phage display are also used for discovering compounds that modulate protein oligomerization. The current review highlights some of the recent developments in the design of compounds aimed at modulating the oligomerization equilibrium of proteins, including the "shiftides" approach developed in our lab.
Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita
2016-01-01
Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523
Walther, Cornelia
2015-01-01
The majority of hormones stimulates and mediates their signal transduction via G protein-coupled receptors (GPCRs). The signal is transmitted into the cell due to the association of the GPCRs with heterotrimeric G proteins, which in turn activates an extensive array of signaling pathways to regulate cell physiology. However, GPCRs also function as scaffolds for the recruitment of a variety of cytoplasmic protein-interacting proteins that bind to both the intracellular face and protein interaction motifs encoded by GPCRs. The structural scaffolding of these proteins allows GPCRs to recruit large functional complexes that serve to modulate both G protein-dependent and -independent cellular signaling pathways and modulate GPCR intracellular trafficking. This review focuses on GPCR interacting PSD95-disc large-zona occludens domain containing scaffolds in the regulation of endocrine receptor signaling as well as their potential role as therapeutic targets for the treatment of endocrinopathies. PMID:25942107
Ke, Yujie; Balin, Igal; Wang, Ning; Lu, Qi; Tok, Alfred Iing Yoong; White, Timothy J; Magdassi, Shlomo; Abdulhalim, Ibrahim; Long, Yi
2016-12-07
Two-dimensional (2D) photonic structures, widely used for generating photonic band gaps (PBG) in a variety of materials, are for the first time integrated with the temperature-dependent phase change of vanadium dioxide (VO 2 ). VO 2 possesses thermochromic properties, whose potential remains unrealized due to an undesirable yellow-brown color. Here, a SiO 2 /VO 2 core/shell 2D photonic crystal is demonstrated to exhibit static visible light tunability and dynamic near-infrared (NIR) modulation. Three-dimensional (3D) finite difference time domain (FDTD) simulations predict that the transmittance can be tuned across the visible spectrum, while maintaining good solar regulation efficiency (ΔT sol = 11.0%) and high solar transmittance (T lum = 49.6%). Experiments show that the color changes of VO 2 films are accompanied by NIR modulation. This work presents a novel way to manipulate VO 2 photonic structures to modulate light transmission as a function of wavelength at different temperatures.
Structural Biology and Evolution of the TGF-β Family
Hinck, Andrew P.; Mueller, Thomas D.; Springer, Timothy A.
2017-01-01
We review the evolution and structure of members of the transforming growth factor β (TGF-β) family, antagonistic or agonistic modulators, and receptors that regulate TGF-β signaling in extracellular environments. The growth factor (GF) domain common to all family members and many of their antagonists evolved from a common cystine knot growth factor (CKGF) domain. The CKGF superfamily comprises six distinct families in primitive metazoans, including the TGF-β and Dan families. Compared with Wnt/Frizzled and Notch/Delta families that also specify body axes, cell fate, tissues, and other families that contain CKGF domains that evolved in parallel, the TGF-β family was the most fruitful in evolution. Complexes between the prodomains and GFs of the TGF-β family suggest a new paradigm for regulating GF release by conversion from closed- to open-arm procomplex conformations. Ternary complexes of the final step in extracellular signaling show how TGF-β GF dimers bind type I and type II receptors on the cell surface, and enable understanding of much of the specificity and promiscuity in extracellular signaling. However, structures suggest that when GFs bind repulsive guidance molecule (RGM) family coreceptors, type I receptors do not bind until reaching an intracellular, membrane-enveloped compartment, blurring the line between extra- and intracellular signaling. Modulator protein structures show how structurally diverse antagonists including follistatins, noggin, and members of the chordin family bind GFs to regulate signaling; complexes with the Dan family remain elusive. Much work is needed to understand how these molecular components assemble to form signaling hubs in extracellular environments in vivo. PMID:27638177
Time Processing in Children with Tourette's Syndrome
ERIC Educational Resources Information Center
Vicario, Carmelo Mario; Martino, Davide; Spata, Felice; Defazio, Giovanni; Giacche, Roberta; Martino, Vito; Rappo, Gaetano; Pepi, Anna Maria; Silvestri, Paola Rosaria; Cardona, Francesco
2010-01-01
Background: Tourette syndrome (TS) is characterized by dysfunctional connectivity between prefrontal cortex and sub-cortical structures, and altered meso-cortical and/or meso-striatal dopamine release. Since time processing is also regulated by fronto-striatal circuits and modulated by dopaminergic transmission, we hypothesized that time…
Nucleosome-free DNA regions differentially affect distant communication in chromatin
Nizovtseva, Ekaterina V.; Clauvelin, Nicolas; Todolli, Stefjord; Kulaeva, Olga I.; Wengrzynek, Scott
2017-01-01
Abstract Communication between distantly spaced genomic regions is one of the key features of gene regulation in eukaryotes. Chromatin per se can stimulate efficient enhancer-promoter communication (EPC); however, the role of chromatin structure and dynamics in this process remains poorly understood. Here we show that nucleosome spacing and the presence of nucleosome-free DNA regions can modulate chromatin structure/dynamics and, in turn, affect the rate of EPC in vitro and in silico. Increasing the length of internucleosomal linker DNA from 25 to 60 bp results in more efficient EPC. The presence of longer nucleosome-free DNA regions can positively or negatively affect the rate of EPC, depending upon the length and location of the DNA region within the chromatin fiber. Thus the presence of histone-free DNA regions can differentially affect the efficiency of EPC, suggesting that gene regulation over a distance could be modulated by changes in the length of internucleosomal DNA spacers. PMID:27940560
Li, Zhiyong; Yuan, Xiaoqing; Feng, Ying; Chen, Yongkui; Zhao, Yuling; Wang, Huiyong; Xu, Qingli; Wang, Jianji
2018-05-09
Photo-induced conductivity modulation of stimuli-responsive materials is of great importance from the viewpoint of fundamental research and technology. In this work, 5 new kinds of azobenzene-based photo-responsive ionic liquids were synthesized and characterized, and UV/vis light modulation of their conductivity was investigated in an aqueous solution. The factors affecting the conductivity modulation of the photo-responsive fluids, such as photo-isomerization efficiency, photo-regulation aggregation, concentration and chemical structure of the ionic liquids, were examined systematically. It was found that the conductivity of the ionic liquids in water exhibited a significant increase upon UV light irradiation and the ionic liquids with a shorter alkyl spacer in the cation showed a more remarkable photo-induced conductivity enhancement with a maximum increase of 150%. In addition, the solution conductivity was restored (or very close) to the initial value upon an alternative irradiation with visible light. Thus, the solution conductivity can be modulated using alternative irradiation with UV and visible light. Although the reversible photo-isomerization of the azobenzene group under UV/vis irradiation is the origin of the conductivity modulation, the photo-regulated aggregation of the ionic liquid in water is indispensable for the maximum degree of conductivity modulation because UV irradiation can weaken, even break the aggregated cis-isomers of the ionic liquids in an aqueous solution.
Ca2+ -dependent regulation of phototransduction.
Stephen, Ricardo; Filipek, Sławomir; Palczewski, Krzysztof; Sousa, Marcelo Carlos
2008-01-01
Photon absorption by rhodopsin triggers the phototransduction signaling pathway that culminates in degradation of cGMP, closure of cGMP-gated ion channels and hyperpolarization of the photoreceptor membrane. This process is accompanied by a decrease in free Ca(2+) concentration in the photoreceptor cytosol sensed by Ca(2+)-binding proteins that modulate phototransduction and activate the recovery phase to reestablish the photoreceptor dark potential. Guanylate cyclase-activating proteins (GCAPs) belong to the neuronal calcium sensor (NCS) family and are responsible for activating retinal guanylate cyclases (retGCs) at low Ca(2+) concentrations triggering synthesis of cGMP and recovery of the dark potential. Here we review recent structural insight into the role of the N-terminal myristoylation in GCAPs and compare it to other NCS family members. We discuss previous studies identifying regions of GCAPs important for retGC1 regulation in the context of the new structural data available for myristoylated GCAP1. In addition, we present a hypothetical model for the Ca(2+)-triggered conformational change in GCAPs and retGC1 regulation. Finally, we briefly discuss the involvement of mutant GCAP1 proteins in the etiology of retinal degeneration as well as the importance of other Ca(2+) sensors in the modulation of phototransduction.
Cysteine regulation of protein function--as exemplified by NMDA-receptor modulation.
Lipton, Stuart A; Choi, Yun-Beom; Takahashi, Hiroto; Zhang, Dongxian; Li, Weizhong; Godzik, Adam; Bankston, Laurie A
2002-09-01
Until recently cysteine residues, especially those located extracellularly, were thought to be important for metal coordination, catalysis and protein structure by forming disulfide bonds - but they were not thought to regulate protein function. However, this is not the case. Crucial cysteine residues can be involved in modulation of protein activity and signaling events via other reactions of their thiol (sulfhydryl; -SH) groups. These reactions can take several forms, such as redox events (chemical reduction or oxidation), chelation of transition metals (chiefly Zn(2+), Mn(2+) and Cu(2+)) or S-nitrosylation [the catalyzed transfer of a nitric oxide (NO) group to a thiol group]. In several cases, these disparate reactions can compete with one another for the same thiol group on a single cysteine residue, forming a molecular switch composed of a latticework of possible redox, NO or Zn(2+) modifications to control protein function. Thiol-mediated regulation of protein function can also involve reactions of cysteine residues that affect ligand binding allosterically. This article reviews the basis for these molecular cysteine switches, drawing on the NMDA receptor as an exemplary protein, and proposes a molecular model for the action of S-nitrosylation based on recently derived crystal structures.
Modulation of DNA binding by gene-specific transcription factors.
Schleif, Robert F
2013-10-01
The transcription of many genes, particularly in prokaryotes, is controlled by transcription factors whose activity can be modulated by controlling their DNA binding affinity. Understanding the molecular mechanisms by which DNA binding affinity is regulated is important, but because forming definitive conclusions usually requires detailed structural information in combination with data from extensive biophysical, biochemical, and sometimes genetic experiments, little is truly understood about this topic. This review describes the biological requirements placed upon DNA binding transcription factors and their consequent properties, particularly the ways that DNA binding affinity can be modulated and methods for its study. What is known and not known about the mechanisms modulating the DNA binding affinity of a number of prokaryotic transcription factors, including CAP and lac repressor, is provided.
Modulation of Endothelial Glycocalyx Structure under Inflammatory Conditions
Kolářová, Hana; Ambrůzová, Barbora; Švihálková Šindlerová, Lenka; Klinke, Anna; Kubala, Lukáš
2014-01-01
The glycocalyx of the endothelium is an intravascular compartment that creates a barrier between circulating blood and the vessel wall. The glycocalyx is suggested to play an important role in numerous physiological processes including the regulation of vascular permeability, the prevention of the margination of blood cells to the vessel wall, and the transmission of shear stress. Various theoretical models and experimental approaches provide data about changes to the structure and functions of the glycocalyx under various types of inflammatory conditions. These alterations are suggested to promote inflammatory processes in vessels and contribute to the pathogenesis of number of diseases. In this review we summarize current knowledge about the modulation of the glycocalyx under inflammatory conditions and the consequences for the course of inflammation in vessels. The structure and functions of endothelial glycocalyx are briefly discussed in the context of methodological approaches regarding the determination of endothelial glycocalyx and the uncertainty and challenges involved in glycocalyx structure determination. In addition, the modulation of glycocalyx structure under inflammatory conditions and the possible consequences for pathogenesis of selected diseases and medical conditions (in particular, diabetes, atherosclerosis, ischemia/reperfusion, and sepsis) are summarized. Finally, therapeutic strategies to ameliorate glycocalyx dysfunction suggested by various authors are discussed. PMID:24803742
A DEK Domain-Containing Protein Modulates Chromatin Structure and Function in Arabidopsis[W][OPEN
Waidmann, Sascha; Kusenda, Branislav; Mayerhofer, Juliane; Mechtler, Karl; Jonak, Claudia
2014-01-01
Chromatin is a major determinant in the regulation of virtually all DNA-dependent processes. Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. The evolutionarily conserved DEK domain-containing protein is implicated in important chromatin-related processes in animals, but little is known about its DNA targets and protein interaction partners. In plants, the role of DEK has remained elusive. In this work, we identified DEK3 as a chromatin-associated protein in Arabidopsis thaliana. DEK3 specifically binds histones H3 and H4. Purification of other proteins associated with nuclear DEK3 also established DNA topoisomerase 1α and proteins of the cohesion complex as in vivo interaction partners. Genome-wide mapping of DEK3 binding sites by chromatin immunoprecipitation followed by deep sequencing revealed enrichment of DEK3 at protein-coding genes throughout the genome. Using DEK3 knockout and overexpressor lines, we show that DEK3 affects nucleosome occupancy and chromatin accessibility and modulates the expression of DEK3 target genes. Furthermore, functional levels of DEK3 are crucial for stress tolerance. Overall, data indicate that DEK3 contributes to modulation of Arabidopsis chromatin structure and function. PMID:25387881
Neuropeptide diversity and the regulation of social behavior in New World primates
French, Jeffrey A.; Taylor, Jack H.; Mustoe, Aaryn C.; Cavanaugh, Jon
2016-01-01
Oxytocin (OT) and vasopressin (AVP) are important hypothalamic neuropeptides that regulate peripheral physiology, and have emerged as important modulators of brain function, particularly in the social realm. OT structure and the genes that ultimately determine structure are highly conserved among diverse eutherian mammals, but recent discoveries have identified surprising variability in OT and peptide structure in New World monkeys (NWM), with five new OT variants identified to date. This review explores these new findings in light of comparative OT/AVP ligand evolution, documents coevolutionary changes in the oxytocin and vasopressin receptors (OTR and V1aR), and highlights the distribution of neuropeptidergic neurons and receptors in the primate brain. Finally, the behavioral consequences of OT and AVP in regulating NWM sociality are summarized, demonstrating important neuromodulatory effects of these compounds and OT ligand-specific influences in certain social domains. PMID:27020799
Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel
NASA Astrophysics Data System (ADS)
Long, Stephen B.; Campbell, Ernest B.; MacKinnon, Roderick
2005-08-01
Voltage-dependent potassium ion (K+) channels (Kv channels) conduct K+ ions across the cell membrane in response to changes in the membrane voltage, thereby regulating neuronal excitability by modulating the shape and frequency of action potentials. Here we report the crystal structure, at a resolution of 2.9 angstroms, of a mammalian Kv channel, Kv1.2, which is a member of the Shaker K+ channel family. This structure is in complex with an oxido-reductase β subunit of the kind that can regulate mammalian Kv channels in their native cell environment. The activation gate of the pore is open. Large side portals communicate between the pore and the cytoplasm. Electrostatic properties of the side portals and positions of the T1 domain and β subunit are consistent with electrophysiological studies of inactivation gating and with the possibility of K+ channel regulation by the β subunit.
Electron cryo-microscopy structure of the canonical TRPC4 ion channel
Vinayagam, Deivanayagabarathy; Mager, Thomas; Apelbaum, Amir; Bothe, Arne; Merino, Felipe; Hofnagel, Oliver; Gatsogiannis, Christos
2018-01-01
Canonical transient receptor channels (TRPC) are non-selective cation channels. They are involved in receptor-operated Ca2+ signaling and have been proposed to act as store-operated channels (SOC). Their malfunction is related to cardiomyopathies and their modulation by small molecules has been shown to be effective against renal cancer cells. The molecular mechanism underlying the complex activation and regulation is poorly understood. Here, we report the electron cryo-microscopy structure of zebrafish TRPC4 in its unliganded (apo), closed state at an overall resolution of 3.6 Å. The structure reveals the molecular architecture of the cation conducting pore, including the selectivity filter and lower gate. The cytoplasmic domain contains two key hubs that have been shown to interact with modulating proteins. Structural comparisons with other TRP channels give novel insights into the general architecture and domain organization of this superfamily of channels and help to understand their function and pharmacology. PMID:29717981
Biochemical factors modulating female genital sexual arousal physiology.
Traish, Abdulmaged M; Botchevar, Ella; Kim, Noel N
2010-09-01
Female genital sexual arousal responses are complex neurophysiological processes consisting of central and peripheral components that occur following sexual stimulation. The peripheral responses in sexual arousal include genital vasocongestion, engorgement and lubrication resulting from a surge of vaginal and clitoral blood flow. These hemodynamic events are mediated by a host of neurotransmitters and vasoactive agents. To discuss the role of various biochemical factors modulating female genital sexual arousal responses. A comprehensive literature review was conducted using the PubMed database and citations were selected, based on topical relevance, and examined for study methodology and major findings. Data from peer-reviewed publications. Adrenergic as well as non-adrenergic non-cholinergic neurotransmitters play an important role in regulating genital physiological responses by mediating vascular and non-vascular smooth muscle contractility. Vasoactive peptides and neuropeptides also modulate genital sexual responses by regulating vascular and non-vascular smooth muscle cells and epithelial function. The endocrine milieu, particularly sex steroid hormones, is critical in the maintenance of tissue structure and function. Reduced levels of estrogens and androgen are associated with dramatic alterations in genital tissue structure, including the nerve network, as well as the response to physiological modulators. Furthermore, estrogen and androgen deficiency is associated with reduced expression of sex steroid receptors and most importantly with attenuated genital blood flow and lubrication in response to pelvic nerve stimulation. This article provides an integrated framework describing the physiological and molecular basis of various pathophysiological conditions associated with female genital sexual arousal dysfunction. © 2010 International Society for Sexual Medicine.
Protein conformational disorder and enzyme catalysis.
Schulenburg, Cindy; Hilvert, Donald
2013-01-01
Though lacking a well-defined three-dimensional structure, intrinsically unstructured proteins are ubiquitous in nature. These molecules play crucial roles in many cellular processes, especially signaling and regulation. Surprisingly, even enzyme catalysis can tolerate substantial disorder. This observation contravenes conventional wisdom but is relevant to an understanding of how protein dynamics modulates enzyme function. This chapter reviews properties and characteristics of disordered proteins, emphasizing examples of enzymes that lack defined structures, and considers implications of structural disorder for catalytic efficiency and evolution.
Dopamine negatively modulates the NCA ion channels in C. elegans
Topalidou, Irini; Pereira, Laura
2017-01-01
The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels. PMID:28968387
Dopamine negatively modulates the NCA ion channels in C. elegans.
Topalidou, Irini; Cooper, Kirsten; Pereira, Laura; Ailion, Michael
2017-10-01
The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hongqiang; Chen, Hao; Bao, Lei
2005-01-01
Genetic loci that regulate inherited traits are routinely identified using quantitative trait locus (QTL) mapping methods. However, the genotype-phenotype associations do not provide information on the gene expression program through which the genetic loci regulate the traits. Transcription modules are 'selfconsistent regulatory units' and are closely related to the modular components of gene regulatory network [Ihmels, J., Friedlander, G., Bergmann, S., Sarig, O., Ziv, Y. and Barkai, N. (2002) Revealing modular organization in the yeast transcriptional network. Nat. Genet., 31, 370-377; Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D. and Friedman, N. (2003) Module networks: identifyingmore » regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet., 34, 166-176]. We used genome-wide genotype and gene expression data of a genetic reference population that consists of mice of 32 recombinant inbred strains to identify the transcription modules and the genetic loci regulating them. Twenty-nine transcription modules defined by genetic variations were identified. Statistically significant associations between the transcription modules and 18 classical physiological and behavioral traits were found. Genome-wide interval mapping showed that major QTLs regulating the transcription modules are often co-localized with the QTLs regulating the associated classical traits. The association and the possible co-regulation of the classical trait and transcription module indicate that the transcription module may be involved in the gene pathways connecting the QTL and the classical trait. Our results show that a transcription module may associate with multiple seemingly unrelated classical traits and a classical trait may associate with different modules. Literature mining results provided strong independent evidences for the relations among genes of the transcription modules, genes in the regions of the QTLs regulating the transcription modules and the keywords representing the classical traits.« less
Macrogenomic engineering via modulation of the scaling of chromatin packing density.
Almassalha, Luay M; Bauer, Greta M; Wu, Wenli; Cherkezyan, Lusik; Zhang, Di; Kendra, Alexis; Gladstein, Scott; Chandler, John E; VanDerway, David; Seagle, Brandon-Luke L; Ugolkov, Andrey; Billadeau, Daniel D; O'Halloran, Thomas V; Mazar, Andrew P; Roy, Hemant K; Szleifer, Igal; Shahabi, Shohreh; Backman, Vadim
2017-11-01
Many human diseases result from the dysregulation of the complex interactions between tens to thousands of genes. However, approaches for the transcriptional modulation of many genes simultaneously in a predictive manner are lacking. Here, through the combination of simulations, systems modelling and in vitro experiments, we provide a physical regulatory framework based on chromatin packing-density heterogeneity for modulating the genomic information space. Because transcriptional interactions are essentially chemical reactions, they depend largely on the local physical nanoenvironment. We show that the regulation of the chromatin nanoenvironment allows for the predictable modulation of global patterns in gene expression. In particular, we show that the rational modulation of chromatin density fluctuations can lead to a decrease in global transcriptional activity and intercellular transcriptional heterogeneity in cancer cells during chemotherapeutic responses to achieve near-complete cancer cell killing in vitro. Our findings represent a 'macrogenomic engineering' approach to modulating the physical structure of chromatin for whole-scale transcriptional modulation.
Meyer, Mark B; Benkusky, Nancy A; Kaufmann, Martin; Lee, Seong Min; Onal, Melda; Jones, Glenville; Pike, J Wesley
2017-10-20
The vitamin D endocrine system regulates mineral homeostasis through its activities in the intestine, kidney, and bone. Terminal activation of vitamin D 3 to its hormonal form, 1α,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ), occurs in the kidney via the cytochrome P450 enzyme CYP27B1. Despite its importance in vitamin D metabolism, the molecular mechanisms underlying the regulation of the gene for this enzyme, Cyp27b1 , are unknown. Here, we identified a kidney-specific control module governed by a renal cell-specific chromatin structure located distal to Cyp27b1 that mediates unique basal and parathyroid hormone (PTH)-, fibroblast growth factor 23 (FGF23)-, and 1,25(OH) 2 D 3 -mediated regulation of Cyp27b1 expression. Selective genomic deletion of key components within this module in mice resulted in loss of either PTH induction or FGF23 and 1,25(OH) 2 D 3 suppression of Cyp27b1 gene expression; the former loss caused a debilitating skeletal phenotype, whereas the latter conferred a quasi-normal bone mineral phenotype through compensatory homeostatic mechanisms involving Cyp24a1 We found that Cyp27b1 is also expressed at low levels in non-renal cells, in which transcription was modulated exclusively by inflammatory factors via a process that was unaffected by deletion of the kidney-specific module. These results reveal that differential regulation of Cyp27b1 expression represents a mechanism whereby 1,25(OH) 2 D 3 can fulfill separate functional roles, first in the kidney to control mineral homeostasis and second in extra-renal cells to regulate target genes linked to specific biological responses. Furthermore, we conclude that these mouse models open new avenues for the study of vitamin D metabolism and its involvement in therapeutic strategies for human health and disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Structure of the intact ATM/Tel1 kinase
NASA Astrophysics Data System (ADS)
Wang, Xuejuan; Chu, Huanyu; Lv, Mengjuan; Zhang, Zhihui; Qiu, Shuwan; Liu, Haiyan; Shen, Xuetong; Wang, Weiwu; Cai, Gang
2016-05-01
The ataxia-telangiectasia mutated (ATM) protein is an apical kinase that orchestrates the multifaceted DNA-damage response. Normally, ATM kinase is in an inactive, homodimer form and is transformed into monomers upon activation. Besides a conserved kinase domain at the C terminus, ATM contains three other structural modules, referred to as FAT, FATC and N-terminal helical solenoid. Here we report the first cryo-EM structure of ATM kinase, which is an intact homodimeric ATM/Tel1 from Schizosaccharomyces pombe. We show that two monomers directly contact head-to-head through the FAT and kinase domains. The tandem N-terminal helical solenoid tightly packs against the FAT and kinase domains. The structure suggests that ATM/Tel1 dimer interface and the consecutive HEAT repeats inhibit the binding of kinase substrates and regulators by steric hindrance. Our study provides a structural framework for understanding the mechanisms of ATM/Tel1 regulation as well as the development of new therapeutic agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshpande, Chandrika N.; Harrop, Stephen J.; Boucher, Yan
2012-02-15
The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. We report the 1.8 {angstrom} crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, suchmore » as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.« less
Crystal structure of enterococcus faecalis sly A-like transcriptional factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, R.; Zhang, R.; Zagnitko, O.
2003-05-30
The crystal structure of a SlyA transcriptional regulator at 1.6 {angstrom} resolution is presented, and structural relationships between members of the MarR/SlyA family are discussed. The SlyA family, which includes SlyA, Rap, Hor, and RovA proteins, is widely distributed in bacterial and archaeal genomes. Current evidence suggests that SlyA-like factors act as repressors, activators, and modulators of gene transcription. These proteins have been shown to up-regulate the expression of molecular chaperones, acid-resistance proteins, and cytolysin, and down-regulate several biosynthetic enzymes. The structure of SlyA from Enterococcus faecalis, determined as a part of an ongoing structural genomics initiative (www.mcsg.anl.gov), revealed themore » same winged helix DNA-binding motif that was recently found in the MarR repressor from Escherichia coli and the MexR repressor from Pseudomonas aeruginosa, a sequence homologue of MarR. Phylogenetic analysis of the MarR/SlyA family suggests that Sly is placed between the SlyA and MarR subfamilies and shows significant sequence similarity to members of both subfamilies.« less
Xiang, Bo; Yu, Minglan; Liang, Xuemei; Lei, Wei; Huang, Chaohua; Chen, Jing; He, Wenying; Zhang, Tao; Li, Tao; Liu, Kezhi
2017-12-10
To explore common biological pathways for attention deficit hyperactivity disorder (ADHD) and low birth weight (LBW). Thei-Gsea4GwasV2 software was used to analyze the result of genome-wide association analysis (GWAS) for LBW (pathways were derived from Reactome), and nominally significant (P< 0.05, FDR< 0.25) pathways were tested for replication in ADHD.Significant pathways were analyzed with DAPPLE and Reatome FI software to identify genes involved in such pathways, with each cluster enriched with the gene ontology (GO). The Centiscape2.0 software was used to calculate the degree of genetic networks and the betweenness value to explore the core node (gene). Weighed gene co-expression network analysis (WGCNA) was then used to explore the co-expression of genes in these pathways.With gene expression data derived from BrainSpan, GO enrichment was carried out for each gene module. Eleven significant biological pathways was identified in association with LBW, among which two (Selenoamino acid metabolism and Diseases associated with glycosaminoglycan metabolism) were replicated during subsequent ADHD analysis. Network analysis of 130 genes in these pathways revealed that some of the sub-networksare related with morphology of cerebellum, development of hippocampus, and plasticity of synaptic structure. Upon co-expression network analysis, 120 genes passed the quality control and were found to express in 3 gene modules. These modules are mainly related to the regulation of synaptic structure and activity regulation. ADHD and LBW share some biological regulation processes. Anomalies of such proces sesmay predispose to ADHD.
Native thrombopoietin: structure and function.
Kato, T; Matsumoto, A; Ogami, K; Tahara, T; Morita, H; Miyazaki, H
1998-01-01
Thrombopoietin (TPO), the c-Mpl ligand, is produced constitutively in liver and other organs, circulates in the bloodstream, and is delivered to bone marrow, where it stimulates the early development of multiple hematopoietic lineages and megakaryocytopoiesis. The concentration of TPO in blood is regulated by c-Mpl mass on platelets and megakaryocytes. In addition to regulation by the number of TPO molecules, including the possible modulation of TPO mRNA abundance in bone marrow, megakaryocytopoiesis and platelet production may be regulated as a result of modulation of TPO activity by proteolytic processing that generates truncated forms of the molecule. Characterization of TPO partially purified from human plasma, however, revealed that the full-length molecule was the predominant form in the blood of both normal individuals and thrombocytopenic patients, although small amounts of truncated species were detected. Thus, truncation of TPO, at least that in the circulation examined, does not appear to contribute to the direct regulation of platelet production in response to increased demand. Given that native TPO isolated from the plasma of thrombocytopenic animals comprises truncated forms, the truncation of TPO is likely of physiological importance in the life history of this molecule.
IEEE Conference Record of 1973 Eleventh Modulator Symposium, New York City, 18-19 September 1973.
1973-01-01
characteristics of High-Voltage, observed on am NPNP structure of 550 uN base thickness High- Power , Fast-Switching, Reverse- operating at 1.3 Kv I IA I KA/ us 30...of this which supplies four CFA’s. The odd-numered compact modulator are a shunt clamp regulator power supplies have an additional output going to a...three driver of HVPS filter banks. cabinets. Thus four of the power supplies have a 50% greater load than the other four. However, in AEGIS SPY-1
Ding, Bo; Bellizzi, Maria del Rosario; Ning, Yuese; Meyers, Blake C; Wang, Guo-Liang
2012-09-01
Histone acetylation and deacetylation play an important role in the modification of chromatin structure and regulation of gene expression in eukaryotes. Chromatin acetylation status is modulated antagonistically by histone acetyltransferases and histone deacetylases (HDACs). In this study, we characterized the function of histone deacetylase701 (HDT701), a member of the plant-specific HD2 subfamily of HDACs, in rice (Oryza sativa) innate immunity. Transcription of HDT701 is increased in the compatible reaction and decreased in the incompatible reaction after infection by the fungal pathogen Magnaporthe oryzae. Overexpression of HDT701 in transgenic rice leads to decreased levels of histone H4 acetylation and enhanced susceptibility to the rice pathogens M. oryzae and Xanthomonas oryzae pv oryzae (Xoo). By contrast, silencing of HDT701 in transgenic rice causes elevated levels of histone H4 acetylation and elevated transcription of pattern recognition receptor (PRR) and defense-related genes, increased generation of reactive oxygen species after pathogen-associated molecular pattern elicitor treatment, as well as enhanced resistance to both M. oryzae and Xoo. We also found that HDT701 can bind to defense-related genes to regulate their expression. Taken together, these results demonstrate that HDT701 negatively regulates innate immunity by modulating the levels of histone H4 acetylation of PRR and defense-related genes in rice.
Sumagin, Ronen; Parkos, Charles A
2014-01-01
Epithelial adhesion molecules play essential roles in regulating cellular function and maintaining mucosal tissue homeostasis. Some form epithelial junctional complexes to provide structural support for epithelial monolayers and act as a selectively permeable barrier separating luminal contents from the surrounding tissue. Others serve as docking structures for invading viruses and bacteria, while also regulating the immune response. They can either obstruct or serve as footholds for the immune cells recruited to mucosal surfaces. Currently, it is well appreciated that adhesion molecules collectively serve as environmental cue sensors and trigger signaling events to regulate epithelial function through their association with the cell cytoskeleton and various intracellular adapter proteins. Immune cells, particularly neutrophils (PMN) during transepithelial migration (TEM), can modulate adhesion molecule expression, conformation, and distribution, significantly impacting epithelial function and tissue homeostasis. This review discusses the roles of key intestinal epithelial adhesion molecules in regulating PMN trafficking and outlines the potential consequences on epithelial function. PMID:25838976
Wang, Chao; Yu, Jiang; Huo, Lin; Wang, Lei; Feng, Wei; Wang, Chih-chen
2012-01-01
Protein-disulfide isomerase (PDI), with domains arranged as abb′xa′c, is a key enzyme and chaperone localized in the endoplasmic reticulum (ER) catalyzing oxidative folding and preventing misfolding/aggregation of proteins. It has been controversial whether the chaperone activity of PDI is redox-regulated, and the molecular basis is unclear. Here, we show that both the chaperone activity and the overall conformation of human PDI are redox-regulated. We further demonstrate that the conformational changes are triggered by the active site of domain a′, and the minimum redox-regulated cassette is located in b′xa′. The structure of the reduced bb′xa′ reveals for the first time that domain a′ packs tightly with both domain b′ and linker x to form one compact structural module. Oxidation of domain a′ releases the compact conformation and exposes the shielded hydrophobic areas to facilitate its high chaperone activity. Thus, the study unequivocally provides mechanistic insights into the redox-regulated chaperone activity of human PDI. PMID:22090031
Wang, Meng; Cai, Elizabeth; Fujiwara, Nana; Fones, Lilah; Brown, Elizabeth; Yanagawa, Yuchio; Cave, John W
2017-05-03
Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. For a subset of olfactory bulb interneurons, activity-dependent changes in GABA are reflected by corresponding changes in Glutamate decarboxylase 1 ( Gad1 ) expression levels. Mechanisms regulating Gad1 promoter activity are poorly understood, but here we show that a conserved G:C-rich region in the mouse Gad1 proximal promoter region both recruits heterogeneous nuclear ribonucleoproteins (hnRNPs) that facilitate transcription and forms single-stranded DNA secondary structures associated with transcriptional repression. This promoter architecture and function is shared with Tyrosine hydroxylase ( Th ), which is also modulated by odorant-dependent activity in the olfactory bulb. This study shows that the balance between DNA secondary structure formation and hnRNP binding on the mouse Th and Gad1 promoters in the olfactory bulb is responsive to changes in odorant-dependent sensory input. These findings reveal that Th and Gad1 share a novel transcription regulatory mechanism that facilitates sensory input-dependent regulation of dopamine and GABA expression. SIGNIFICANCE STATEMENT Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. This study shows that transcription of genes encoding rate-limiting enzymes for GABA and dopamine biosynthesis ( Gad1 and Th , respectively) in the mammalian olfactory bulb is regulated by G:C-rich regions that both recruit heterogeneous nuclear ribonucleoproteins (hnRNPs) to facilitate transcription and form single-stranded DNA secondary structures associated with repression. hnRNP binding and formation of DNA secondary structure on the Th and Gad1 promoters are mutually exclusive, and odorant sensory input levels regulate the balance between these regulatory features. These findings reveal that Th and Gad1 share a transcription regulatory mechanism that facilitates odorant-dependent regulation of dopamine and GABA expression levels. Copyright © 2017 the authors 0270-6474/17/374778-12$15.00/0.
Voltage regulator/amplifier is self-regulated
NASA Technical Reports Server (NTRS)
Day, W. E.; Phillips, D. E.
1967-01-01
Signal modulated, self-regulating voltage regulator/amplifier controls the output b-plus voltage in modulated regulator systems. It uses self-oscillation with feedback to a control circuit with a discontinuous amplitude action feedback loop.
Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins.
Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo
2016-07-02
Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel's ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.
Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins
Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo
2016-01-01
Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555
Effect of external plasma flows on the interaction between turbulence and convective cells
NASA Astrophysics Data System (ADS)
Uzawa, Ken; Li, Jiquan
2005-10-01
It is widely recognized that large scale structures, such as zonal flows, streamers and also long wavelength Kelvin-Helmholtz modes are nonlinearly generated from maternal turbulence through modulational instability process and play a crucial role in regulating the transport in tokamaks. In order to control the transport, it is desirable to control such structures and/or modulational process. One of control parameters may be mean flow which intrinsically exists in tokamak plasmas. Besides the direct influence on the transport through vortex decorrelation, the mean flow may indirectly change the zonal flow generation by acting on the modulational process itself. In this work, we theoretically investigate the characteristics of zonal flow generation due to the electron temperature gradient (ETG) turbulence in the presence of long wavelength ITG driven zonal flow. This was done by extending our previous modulational analyses[1]. We have numerically analyzed the influence of mean flow on zonal flow generation. The main result is that the zonal flow generation is suppressed by the presence of the mean flow. [1]J. Li, Y. Kishimoto, Physics of Plasmas, 9, 1241 (2002)
Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I
2011-05-01
A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.
The functional landscape bound to the transcription factors of Escherichia coli K-12.
Pérez-Rueda, Ernesto; Tenorio-Salgado, Silvia; Huerta-Saquero, Alejandro; Balderas-Martínez, Yalbi I; Moreno-Hagelsieb, Gabriel
2015-10-01
Motivated by the experimental evidences accumulated in the last ten years and based on information deposited in RegulonDB, literature look up, and sequence analysis, we analyze the repertoire of 304 DNA-binding Transcription factors (TFs) in Escherichia coli K-12. These regulators were grouped in 78 evolutionary families and are regulating almost half of the total genes in this bacterium. In structural terms, 60% of TFs are composed by two-domains, 30% are monodomain, and 10% three- and four-structural domains. As previously noticed, the most abundant DNA-binding domain corresponds to the winged helix-turn-helix, with few alternative DNA-binding structures, resembling the hypothesis of successful protein structures with the emergence of new ones at low scales. In summary, we identified and described the characteristics associated to the DNA-binding TF in E. coli K-12. We also identified twelve functional modules based on a co-regulated gene matrix. Finally, diverse regulons were predicted based on direct associations between the TFs and potential regulated genes. This analysis should increase our knowledge about the gene regulation in the bacterium E. coli K-12, and provide more additional clues for comprehensive modelling of transcriptional regulatory networks in other bacteria. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chiappori, Federica; Merelli, Ivan; Milanesi, Luciano; Colombo, Giorgio; Morra, Giulia
2016-01-01
The Hsp70 is an allosterically regulated family of molecular chaperones. They consist of two structural domains, NBD and SBD, connected by a flexible linker. ATP hydrolysis at the NBD modulates substrate recognition at the SBD, while peptide binding at the SBD enhances ATP hydrolysis. In this study we apply Molecular Dynamics (MD) to elucidate the molecular determinants underlying the allosteric communication from the NBD to the SBD and back. We observe that local structural and dynamical modulation can be coupled to large-scale rearrangements, and that different combinations of ligands at NBD and SBD differently affect the SBD domain mobility. Substituting ADP with ATP in the NBD induces specific structural changes involving the linker and the two NBD lobes. Also, a SBD-bound peptide drives the linker docking by increasing the local dynamical coordination of its C-terminal end: a partially docked DnaK structure is achieved by combining ATP in the NBD and peptide in the SBD. We propose that the MD-based analysis of the inter domain dynamics and structure modulation could be used as a tool to computationally predict the allosteric behaviour and functional response of Hsp70 upon introducing mutations or binding small molecules, with potential applications for drug discovery. PMID:27025773
Conazoles are triazole- or imidazole-containing fungicides used in agriculture and medicine. Using transcriptomic analysis of rat thyroid tissues exposed to either tumorigenic or non-tumorigenic structurally related conazoles, we identified new findings on thyroid gene expressio...
CREB Selectively Controls Learning-Induced Structural Remodeling of Neurons
ERIC Educational Resources Information Center
Middei, Silvia; Spalloni, Alida; Longone, Patrizia; Pittenger, Christopher; O'Mara, Shane M.; Marie, Helene; Ammassari-Teule, Martine
2012-01-01
The modulation of synaptic strength associated with learning is post-synaptically regulated by changes in density and shape of dendritic spines. The transcription factor CREB (cAMP response element binding protein) is required for memory formation and in vitro dendritic spine rearrangements, but its role in learning-induced remodeling of neurons…
Chetnani, Bhaskar
2017-01-01
Abstract A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes. PMID:28531275
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potapovich, Alla I.; Biology Department, Belarus State University, Skorina Prosp. 10, Minsk 220050; Lulli, Daniela
Molecular mechanisms underlying modulation of inflammatory responses in primary human keratinocytes by plant polyphenols (PPs), namely the glycosylated phenylpropanoid verbascoside, the stilbenoid resveratrol and its glycoside polydatin, and the flavonoid quercetin and its glycoside rutin were evaluated. As non-lethal stimuli, the prototypic ligand for epidermal growth factor receptor (EGFR) transforming growth factor alpha (TGFalpha), the combination of tumor necrosis factor (TNFalpha) and interferon (IFNgamma) (T/I), UVA + UVB irradiation, and bacterial lipopolysaccharide (LPS) were used. We demonstrated differential modulation of inflammatory responses in keratinocytes at signal transduction, gene transcription, and protein synthesis levels as a function of PP chemical structure,more » the pro-inflammatory trigger used, and PP interaction with intracellular detoxifying systems. The PPs remarkably inhibited constitutive, LPS- and T/I-induced but not TGFalpha-induced ERK phosphorylation. They also suppressed NFkappaB activation by LPS and T/I. Verbascoside and quercetin invariably impaired EGFR phosphorylation and UV-associated aryl hydrocarbon receptor (AhR)-mediated signaling, while rutin, polydatin and resveratrol did not affect EGFR phosphorylation and further activated AhR machinery in UV-exposed keratinocytes. In general, PPs down-regulated gene expression of pro-inflammatory cytokines/enzymes, except significant up-regulation of IL-8 observed under stimulation with TGFalpha. Both spontaneous and T/I-induced release of IL-8 and IP-10 was suppressed, although 50 {mu}M resveratrol and polydatin up-regulated IL-8. At this concentration, resveratrol activated both gene expression and de novo synthesis of IL-8 and AhR-mediated mechanisms were involved. We conclude that PPs differentially modulate the inflammatory response of human keratinocytes through distinct signal transduction pathways, including AhR and EGFR. - Graphical abstract: Display Omitted Highlights: > Effects of plant polyphenols on inflammatory responses in human keratinocytes. > Inflammatory stimuli used: TGFalpha, TNFalpha+IFNgamma, UVA+UVB, and LPS. > Inflammatory pathways connected with NFB, ERK1/2, EGFR, and AhR were investigated. > Plant polyphenols, flavonoids, stilbenoids, and phenylpropanoids, were studied. > Modulation of inflammation depends on phenolic core structure and glycosylation.« less
Molecular mechanisms of floral organ specification by MADS domain proteins.
Yan, Wenhao; Chen, Dijun; Kaufmann, Kerstin
2016-02-01
Flower development is a model system to understand organ specification in plants. The identities of different types of floral organs are specified by homeotic MADS transcription factors that interact in a combinatorial fashion. Systematic identification of DNA-binding sites and target genes of these key regulators show that they have shared and unique sets of target genes. DNA binding by MADS proteins is not based on 'simple' recognition of a specific DNA sequence, but depends on DNA structure and combinatorial interactions. Homeotic MADS proteins regulate gene expression via alternative mechanisms, one of which may be to modulate chromatin structure and accessibility in their target gene promoters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cognitive reappraisal of snake and spider pictures: An event-related potentials study.
Langeslag, Sandra J E; van Strien, Jan W
2018-05-30
Fear of snakes and spiders are common animal phobias. Emotion regulation can change the response to emotional stimuli, including snakes and spiders. It is well known that emotion regulation modulates the late positive potential (LPP), which reflects sustained motivated attention. However, research concerning the effect of emotion regulation on the early posterior negativity (EPN), which reflects early selective attention, is scarce. The present research question was whether the EPN and LPP amplitudes are modulated by regulation of emotional responses to snake and spider stimuli. Emotion up- and down-regulation were expected to enhance and reduce the LPP amplitude, respectively, but emotion regulation was not expected to modulate the EPN amplitude. Female participants passively viewed snake, spider, and bird pictures, and up- and down-regulated their emotional responses to the snake and spider pictures using self-focused reappraisal, while their electroencephalogram was recorded. There were EPNs for snakes and spiders vs. birds, as well as for snakes vs. spiders. The LPP amplitude tended to be enhanced for snakes and spiders compared to birds. Most importantly, the LPP amplitude was larger in the up-regulate than in the down-regulate condition for both snakes and spiders, but there was no evidence that the EPN amplitude was modulated by emotion regulation. This suggests that emotion regulation modulated sustained motivated attention, but not early selective attention, to snakes and spiders. The findings are in line with the notion that the emotional modulation of the EPN is more automatic than the emotional modulation of the LPP. Copyright © 2018 Elsevier B.V. All rights reserved.
Plasma Membrane Calcium ATPases as Novel Candidates for Therapeutic Agent Development
Strehler, Emanuel E.
2013-01-01
Plasma membrane Ca2+ ATPases (PMCAs) are highly regulated transporters responsible for Ca2+ extrusion from all eukaryotic cells. Different PMCA isoforms are implicated in various tasks of Ca2+ regulation including bulk Ca2+ transport and localized Ca2+ signaling in specific membrane microdomains. Accumulating evidence shows that loss, mutation or inappropriate expression of different PMCAs is associated with pathologies ranging from hypertension, low bone density and male infertility to hearing loss and cerebellar ataxia. Compared to Ca2+ influx channels, PMCAs have lagged far behind as targets for drug development, mainly due to the lack of detailed understanding of their structure and specific function. This is rapidly changing thanks to integrated efforts combining biochemical, structural, cellular and physiological studies suggesting that selective modulation of PMCA isoforms may be of therapeutic value in the management of different and complex diseases. Both structurally informed rational design and high-throughput small molecule library screenings are promising strategies that are expected to lead to specific and isoform-selective modulators of PMCA function. This short review will provide an overview of the diverse roles played by PMCA isoforms in different cells and tissues and their emerging involvement in pathophysiological processes, summarize recent progress in obtaining structural information on the PMCAs, and discuss current and future strategies to develop specific PMCA inhibitors and activators for potential therapeutic applications. PMID:23958189
Schmidt, C Q; Herbert, A P; Hocking, H G; Uhrín, D; Barlow, P N
2008-01-01
The 155-kDa glycoprotein, complement factor H (CFH), is a regulator of complement activation that is abundant in human plasma. Three-dimensional structures of over half the 20 complement control protein (CCP) modules in CFH have been solved in the context of single-, double- and triple-module segments. Proven binding sites for C3b occupy the N and C termini of this elongated molecule and may be brought together by a bend in CFH mediated by its central CCP modules. The C-terminal CCP 20 is key to the ability of the molecule to adhere to polyanionic markers on self-surfaces where CFH acts to regulate amplification of the alternative pathway of complement. The surface patch on CCP 20 that binds to model glycosaminoglycans has been mapped using nuclear magnetic resonance (NMR), as has a second glycosaminoglycan-binding patch on CCP 7. These patches include many of the residue positions at which sequence variations have been linked to three complement-mediated disorders: dense deposit disease, age-related macular degeneration and atypical haemolytic uraemic syndrome. In one plausible model, CCP 20 anchors CFH to self-surfaces via a C3b/polyanion composite binding site, CCP 7 acts as a ‘proof-reader’ to help discriminate self- from non-self patterns of sulphation, and CCPs 1–4 disrupt C3/C5 convertase formation and stability. PMID:18081691
Labrousse-Arias, David; Martínez-Ruiz, Antonio; Calzada, María J
2017-10-20
The extracellular matrix (ECM) is an essential modulator of cell behavior that influences tissue organization. It has a strong relevance in homeostasis and translational implications for human disease. In addition to ECM structural proteins, matricellular proteins are important regulators of the ECM that are involved in a myriad of different pathologies. Recent Advances: Biochemical studies, animal models, and study of human diseases have contributed to the knowledge of molecular mechanisms involved in remodeling of the ECM, both in homeostasis and disease. Some of them might help in the development of new therapeutic strategies. This review aims to review what is known about some of the most studied matricellular proteins and their regulation by hypoxia and redox signaling, as well as the pathological implications of such regulation. Matricellular proteins have complex regulatory functions and are modulated by hypoxia and redox signaling through diverse mechanisms, in some cases with controversial effects that can be cell or tissue specific and context dependent. Therefore, a better understanding of these regulatory processes would be of great benefit and will open new avenues of considerable therapeutic potential. Characterizing the specific molecular mechanisms that modulate matricellular proteins in pathological processes that involve hypoxia and redox signaling warrants additional consideration to harness the potential therapeutic value of these regulatory proteins. Antioxid. Redox Signal. 27, 802-822.
Meleppattu, Shimi; Arthanari, Haribabu; Zinoviev, Alexandra; Boeszoermenyi, Andras; Wagner, Gerhard; Shapira, Michal; Léger-Abraham, Mélissa
2018-03-19
Leishmania parasites are unicellular pathogens that are transmitted to humans through the bite of infected sandflies. Most of the regulation of their gene expression occurs post-transcriptionally, and the different patterns of gene expression required throughout the parasites' life cycle are regulated at the level of translation. Here, we report the X-ray crystal structure of the Leishmania cap-binding isoform 1, LeishIF4E-1, bound to a protein fragment of previously unknown function, Leish4E-IP1, that binds tightly to LeishIF4E-1. The molecular structure, coupled to NMR spectroscopy experiments and in vitro cap-binding assays, reveal that Leish4E-IP1 allosterically destabilizes the binding of LeishIF4E-1 to the 5' mRNA cap. We propose mechanisms through which Leish4E-IP1-mediated LeishIF4E-1 inhibition could regulate translation initiation in the human parasite.
Yu, Xiao; Chen, Shuliang; Hou, Panpan; Wang, Min; Chen, Yu; Guo, Deyin
2015-04-03
Eukaryotic cellular and most viral RNAs carry a 5'-terminal cap structure, a 5'-5' triphosphate linkage between the 5' end of the RNA and a guanosine nucleotide (cap-0). SARS coronavirus (SARS-CoV) nonstructural protein nsp16 functions as a methyltransferase, to methylate mRNA cap-0 structure at the ribose 2'-O position of the first nucleotide to form cap-1 structures. However, whether there is interplay between nsp16 and host proteins was not yet clear. In this report, we identified several potential cellular nsp16-interacting proteins from a human thymus cDNA library by yeast two-hybrid screening. VHL, one of these proteins, was proven to interact with nsp16 both in vitro and in vivo. Further studies showed that VHL can inhibit SARS-CoV replication by regulating nsp16 ubiquitination and promoting its degradation. Our results have revealed the role of cellular VHL in the regulation of SARS-CoV replication. Copyright © 2015 Elsevier Inc. All rights reserved.
Structural basis for gene regulation by a B12-dependent photoreceptor
Jost, Marco; Fernández-Zapata, Jésus; Polanco, María Carmen; Ortiz-Guerrero, Juan Manuel; Chen, Percival Yang-Ting; Kang, Gyunghoon; Padmanabhan, S.; Elías-Arnanz, Montserrat; Drennan, Catherine L.
2015-01-01
Summary Photoreceptor proteins enable organisms to sense and respond to light. The newly discovered CarH-type photoreceptors use a vitamin B12 derivative, adenosylcobalamin, as the light-sensing chromophore to mediate light-dependent gene regulation. Here, we present crystal structures of Thermus thermophilus CarH in all three relevant states: in the dark, both free and bound to operator DNA, and after light exposure. These structures provide a visualization of how adenosylcobalamin mediates CarH tetramer formation in the dark, how this tetramer binds to the promoter −35 element to repress transcription, and how light exposure leads to a large-scale conformational change that activates transcription. In addition to the remarkable functional repurposing of adenosylcobalamin from an enzyme cofactor to a light sensor, we find that nature also repurposed two independent protein modules in assembling CarH. These results expand the biological role of vitamin B12 and provide fundamental insight into a new mode of light-dependent gene regulation. PMID:26416754
Structural basis for gene regulation by a B 12-dependent photoreceptor
Jost, Marco; Fernández-Zapata, Jésus; Polanco, María Carmen; ...
2015-09-28
Photoreceptor proteins enable organisms to sense and respond to light. The newly discovered CarH-type photoreceptors use a vitamin B 12 derivative, adenosylcobalamin, as the light-sensing chromophore to mediate light-dependent gene regulation. Here in this paper, we present crystal structures of Thermus thermophilus CarH in all three relevant states: in the dark, both free and bound to operator DNA, and after light exposure. These structures provide visualizations of how adenosylcobalamin mediates CarH tetramer formation in the dark, how this tetramer binds to the promoter -35 element to repress transcription, and how light exposure leads to a large-scale conformational change that activatesmore » transcription. In addition to the remarkable functional repurposing of adenosylcobalamin from an enzyme cofactor to a light sensor, we find that nature also repurposed two independent protein modules in assembling CarH. Finally, these results expand the biological role of vitamin B 12 and provide fundamental insight into a new mode of light-dependent gene regulation.« less
A Structural Perspective on the Modulation of Protein-Protein Interactions with Small Molecules.
Demirel, Habibe Cansu; Dogan, Tunca; Tuncbag, Nurcan
2018-05-31
Protein-protein interactions (PPIs) are the key components in many cellular processes including signaling pathways, enzymatic reactions and epigenetic regulation. Abnormal interactions of some proteins may be pathogenic and cause various disorders including cancer and neurodegenerative diseases. Although inhibiting PPIs with small molecules is a challenging task, it gained an increasing interest because of its strong potential for drug discovery and design. The knowledge of the interface as well as the structural and chemical characteristics of the PPIs and their roles in the cellular pathways are necessary for a rational design of small molecules to modulate PPIs. In this study, we review the recent progress in the field and detail the physicochemical properties of PPIs including binding hot spots with a focus on structural methods. Then, we review recent approaches for structural prediction of PPIs. Finally, we revisit the concept of targeting PPIs in a systems biology perspective and we refer to the non-structural approaches, usually employed when the structural information is not present. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Structural basis of AMPK regulation by small molecule activators
NASA Astrophysics Data System (ADS)
Xiao, Bing; Sanders, Matthew J.; Carmena, David; Bright, Nicola J.; Haire, Lesley F.; Underwood, Elizabeth; Patel, Bhakti R.; Heath, Richard B.; Walker, Philip A.; Hallen, Stefan; Giordanetto, Fabrizio; Martin, Stephen R.; Carling, David; Gamblin, Steven J.
2013-12-01
AMP-activated protein kinase (AMPK) plays a major role in regulating cellular energy balance by sensing and responding to increases in AMP/ADP concentration relative to ATP. Binding of AMP causes allosteric activation of the enzyme and binding of either AMP or ADP promotes and maintains the phosphorylation of threonine 172 within the activation loop of the kinase. AMPK has attracted widespread interest as a potential therapeutic target for metabolic diseases including type 2 diabetes and, more recently, cancer. A number of direct AMPK activators have been reported as having beneficial effects in treating metabolic diseases, but there has been no structural basis for activator binding to AMPK. Here we present the crystal structure of human AMPK in complex with a small molecule activator that binds at a site between the kinase domain and the carbohydrate-binding module, stabilising the interaction between these two components. The nature of the activator-binding pocket suggests the involvement of an additional, as yet unidentified, metabolite in the physiological regulation of AMPK. Importantly, the structure offers new opportunities for the design of small molecule activators of AMPK for treatment of metabolic disorders.
Immune subversion by chromatin manipulation: a 'new face' of host-bacterial pathogen interaction.
Arbibe, Laurence
2008-08-01
Bacterial pathogens have evolved various strategies to avoid immune surveillance, depending of their in vivo'lifestyle'. The identification of few bacterial effectors capable to enter the nucleus and modifying chromatin structure in host raises the fascinating questions of how pathogens modulate chromatin structure and why. Chromatin is a dynamic structure that maintains the stability and accessibility of the host DNA genome to the transcription machinery. This review describes the various strategies used by pathogens to interface with host chromatin. In some cases, chromatin injury can be a strategy to take control of major cellular functions, such as the cell cycle. In other cases, manipulation of chromatin structure at specific genomic locations by modulating epigenetic information provides a way for the pathogen to impose its own transcriptional signature onto host cells. This emerging field should strongly influence our understanding of chromatin regulation at interphase nucleus and may provide invaluable openings to the control of immune gene expression in inflammatory and infectious diseases.
Regulation from within: the cytoskeleton in transmembrane signaling
Jaqaman, Khuloud; Grinstein, Sergio
2013-01-01
There is mounting evidence that the plasma membrane is highly dynamic and organized in a complex manner. The cortical cytoskeleton is proving to be a particularly important regulator of plasmalemmal organization, modulating the mobility of proteins and lipids in the membrane, facilitating their segregation and influencing their clustering. This organization plays a critical role in receptor-mediated signaling, especially in the case of immunoreceptors, which require lateral clustering for their activation. Based on recent developments, we discuss the structures and mechanisms whereby the cortical cytoskeleton regulates membrane dynamics and organization, and how the non-uniform distribution of immunoreceptors and their self-association may affect activation and signaling. PMID:22917551
The choroid plexus harbors a circadian oscillator modulated by estrogens.
Quintela, Telma; Albuquerque, Tânia; Lundkvist, Gabriella; Carmine Belin, Andrea; Talhada, Daniela; Gonçalves, Isabel; Carro, Eva; Santos, Cecília R A
2018-02-01
The suprachiasmatic nucleus (SCN) of the hypothalamus is considered the master circadian oscillator in mammals. However, extra-SCN structures in the brain also display daily rhythms. Recently, we have demonstrated that the choroid plexus (CP) expresses core clock genes that are subjected to circadian regulation in a sex-dependent manner. By using CP explants cultured from female knock-in mice carrying the Period-luciferase transgene, we show that CP exhibits endogenous circadian rhythms of PERIOD2::LUCIFERASE expression. Furthermore, we demonstrate that estrogen declines following ovariectomy modulates the daily rhythm expression of Bmal1, Per1 and Per2 in female rat CP, corroborating data obtained in experiments where rat CP epithelial cell (CPEC) cultures were incubated with 17β-estradiol (E2). The molecular mechanism underlying these effects was also investigated, and we provide evidence that the estrogen receptor (ER) mediates the response of clock genes to E2. In conclusion, our study proves that the CP harbors a circadian oscillator that is modulated by estrogens and demonstrates that E2 regulation occurs through an estrogen-receptor-dependent mechanism.
Schoenfeld, Ann-Kathrin; Lahrsen, Eric; Alban, Susanne
2016-01-01
The serpin C1 inhibitor (C1-INH) is the only regulator of classical complement activation as well as the major regulator of the contact system. Its importance is demonstrated by hereditary angioedema (HAE), a severe disease with potentially life-threatening attacks due to deficiency or dysfunction of C1-INH. C1-INH replacement is the therapy of choice in HAE. In addition, C1-INH showed to have beneficial effects in other diseases characterized by inappropriate complement and contact system activation. Due to some limitations of its clinical application, there is a need for improving the efficacy of therapeutically applied C1-INH or to enhance the activity of endogenous C1-INH. Given the known potentiating effect of heparin on C1-INH, sulfated glycans (SG) may be such candidates. The aim of this study was to characterize suitable SG by evaluating structure-activity relationships. For this, more than 40 structurally distinct SG were examined for their effects on C1-INH, C1s and FXIIa. The SG turned out to potentiate the C1s inhibition by C1-INH without any direct influence on C1s. Their potentiating activity proved to depend on their degree of sulfation, molecular mass as well as glycan structure. In contrast, the SG had no effect on the FXIIa inhibition by C1-INH, but structure-dependently modulated the activity of FXIIa. Among the tested SG, β-1,3-glucan sulfates with a Mr ≤ 10 000 were identified as most promising lead candidates for the development of a glycan-based C1-INH amplifier. In conclusion, the obtained information on structural characteristics of SG favoring C1-INH potentiation represent an useful elementary basis for the development of compounds improving the potency of C1-INH in diseases and clinical situations characterized by inappropriate activation of complement and contact system. PMID:27783665
Self-Regulation during E-Learning: Using Behavioural Evidence from Navigation Log Files
ERIC Educational Resources Information Center
Jeske, D.; Backhaus, J.; Stamov Roßnagel, C.
2014-01-01
The current paper examined the relationship between perceived characteristics of the learning environment in an e-module in relation to test performance among a group of e-learners. Using structural equation modelling, the relationship between these variables is further explored in terms of the proposed double mediation as outlined by Ning and…
Asymmetric activation mechanism of a homodimeric red light regulated photoreceptor.
Gourinchas, Geoffrey; Heintz, Udo; Winkler, Andreas
2018-06-05
Organisms adapt to environmental cues using diverse signaling networks. In order to sense and integrate light for regulating various biological functions, photoreceptor proteins have evolved in a modular way. This modularity is targeted in the development of optogenetic tools enabling the control of cellular events with high spatiotemporal precision. However, the limited understanding of signaling mechanisms impedes the rational design of innovative photoreceptor-effector couples. Here we reveal molecular details of signal transduction in phytochrome-regulated diguanylyl-cyclases. Asymmetric structural changes of the full-length homodimer result in a functional heterodimer featuring two different photoactivation states. Structural changes around the cofactors result in a quasi-translational rearrangement of the distant coiled-coil sensor-effector linker. Eventually, this regulates enzymatic activity by modulating the dimer interface of the output domains. Considering the importance of phytochrome heterodimerization in plant signaling, our mechanistic details of asymmetric photoactivation in a bacterial system reveal novel aspects of the evolutionary adaptation of phytochromes. © 2018, Gourinchas et al.
Structural Basis for Regulated Proteolysis by the α-Secretase ADAM10.
Seegar, Tom C M; Killingsworth, Lauren B; Saha, Nayanendu; Meyer, Peter A; Patra, Dhabaleswar; Zimmerman, Brandon; Janes, Peter W; Rubinstein, Eric; Nikolov, Dimitar B; Skiniotis, Georgios; Kruse, Andrew C; Blacklow, Stephen C
2017-12-14
Cleavage of membrane-anchored proteins by ADAM (a disintegrin and metalloproteinase) endopeptidases plays a key role in a wide variety of biological signal transduction and protein turnover processes. Among ADAM family members, ADAM10 stands out as particularly important because it is both responsible for regulated proteolysis of Notch receptors and catalyzes the non-amyloidogenic α-secretase cleavage of the Alzheimer's precursor protein (APP). We present here the X-ray crystal structure of the ADAM10 ectodomain, which, together with biochemical and cellular studies, reveals how access to the enzyme active site is regulated. The enzyme adopts an unanticipated architecture in which the C-terminal cysteine-rich domain partially occludes the enzyme active site, preventing unfettered substrate access. Binding of a modulatory antibody to the cysteine-rich domain liberates the catalytic domain from autoinhibition, enhancing enzymatic activity toward a peptide substrate. Together, these studies reveal a mechanism for regulation of ADAM activity and offer a roadmap for its modulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Construction of multi-functional open modulized Matlab simulation toolbox for imaging ladar system
NASA Astrophysics Data System (ADS)
Wu, Long; Zhao, Yuan; Tang, Meng; He, Jiang; Zhang, Yong
2011-06-01
Ladar system simulation is to simulate the ladar models using computer simulation technology in order to predict the performance of the ladar system. This paper presents the developments of laser imaging radar simulation for domestic and overseas studies and the studies of computer simulation on ladar system with different application requests. The LadarSim and FOI-LadarSIM simulation facilities of Utah State University and Swedish Defence Research Agency are introduced in details. This paper presents the low level of simulation scale, un-unified design and applications of domestic researches in imaging ladar system simulation, which are mostly to achieve simple function simulation based on ranging equations for ladar systems. Design of laser imaging radar simulation with open and modularized structure is proposed to design unified modules for ladar system, laser emitter, atmosphere models, target models, signal receiver, parameters setting and system controller. Unified Matlab toolbox and standard control modules have been built with regulated input and output of the functions, and the communication protocols between hardware modules. A simulation based on ICCD gain-modulated imaging ladar system for a space shuttle is made based on the toolbox. The simulation result shows that the models and parameter settings of the Matlab toolbox are able to simulate the actual detection process precisely. The unified control module and pre-defined parameter settings simplify the simulation of imaging ladar detection. Its open structures enable the toolbox to be modified for specialized requests. The modulization gives simulations flexibility.
Insights into Rapid Modulation of Neuroplasticity by Brain Estrogens
Woolfrey, Kevin M.; Penzes, Peter
2013-01-01
Converging evidence from cellular, electrophysiological, anatomic, and behavioral studies suggests that the remodeling of synapse structure and function is a critical component of cognition. This modulation of neuroplasticity can be achieved through the actions of numerous extracellular signals. Moreover, it is thought that it is the integration of different extracellular signals regulation of neuroplasticity that greatly influences cognitive function. One group of signals that exerts powerful effects on multiple neurologic processes is estrogens. Classically, estrogens have been described to exert their effects over a period of hours to days. However, there is now increasing evidence that estrogens can rapidly influence multiple behaviors, including those that require forebrain neural circuitry. Moreover, these effects are found in both sexes. Critically, it is now emerging that the modulation of cognition by rapid estrogenic signaling is achieved by activation of specific signaling cascades and regulation of synapse structure and function, cumulating in the rewiring of neural circuits. The importance of understanding the rapid effects of estrogens on forebrain function and circuitry is further emphasized as investigations continue to consider the potential of estrogenic-based therapies for neuropathologies. This review focuses on how estrogens can rapidly influence cognition and the emerging mechanisms that underlie these effects. We discuss the potential sources and the biosynthesis of estrogens within the brain and the consequences of rapid estrogenic-signaling on the remodeling of neural circuits. Furthermore, we argue that estrogens act via distinct signaling pathways to modulate synapse structure and function in a manner that may vary with cell type, developmental stage, and sex. Finally, we present a model in which the coordination of rapid estrogenic-signaling and activity-dependent stimuli can result in long-lasting changes in neural circuits, contributing to cognition, with potential relevance for the development of novel estrogenic-based therapies for neurodevelopmental or neurodegenerative disorders. PMID:24076546
Emotion Regulation in Alcohol Dependence.
Petit, Géraldine; Luminet, Olivier; Maurage, François; Tecco, Juan; Lechantre, Stéphane; Ferauge, Marc; Gross, James J; de Timary, Philippe
2015-12-01
The main aim of this study was to investigate, in alcohol-dependent (AD) patients, the use of the 5 emotion regulation strategies specified in Gross's (1998, Rev Gen Psychol, 2, 271) process model of emotion regulation with the use of a semi-structured interview allowing a detailed and high-quality assessment of emotion regulation strategies. A secondary aim was to examine the possible influence of protracted abstinence and detoxification on emotion dysregulation. Finally, the association between the level of craving and the types of regulation strategies was investigated. Forty-four treatment-seeking AD patients with varying time spent in rehabilitation, and 26 healthy controls were interviewed using a version of the Emotion Regulation Interview (Werner et al., 2011, J Psychopathol Behav Assess, 33, 346) adapted to alcohol dependence. Compared to controls, AD patients reported significantly greater use of response modulation and attentional deployment, but lesser use of cognitive change. Among patients, (1) rehabilitation duration was positively correlated with the use of cognitive change and (2) the use of response modulation was positively associated with the level of craving. These findings clarify the specific pattern of emotion dysregulation associated with alcohol dependence. They also suggest that (1) abstinence is associated with a shift toward more adaptive emotion regulation patterns and that (2) inefficient regulation strategies may lead to craving and the maintenance of alcohol use. If these findings are confirmed through longitudinal and mediation designs, they will have important clinical implications. Copyright © 2015 by the Research Society on Alcoholism.
Reymond, Mathieu C.; Brunoud, Géraldine; Chauvet, Aurélie; Martínez-Garcia, Jaime F.; Martin-Magniette, Marie-Laure; Monéger, Françoise; Scutt, Charles P.
2012-01-01
A key innovation of flowering plants is the female reproductive organ, the carpel. Here, we show that a mechanism that regulates carpel margin development in the model flowering plant Arabidopsis thaliana was recruited from light-regulated processes. This recruitment followed the loss from the basic helix-loop-helix transcription factor SPATULA (SPT) of a domain previously responsible for its negative regulation by phytochrome. We propose that the loss of this domain was a prerequisite for the light-independent expression in female reproductive tissues of a genetic module that also promotes shade avoidance responses in vegetative organs. Striking evidence for this proposition is provided by the restoration of wild-type carpel development to spt mutants by low red/far-red light ratios, simulating vegetation shade, which we show to occur via phytochrome B, PHYTOCHROME INTERACTING FACTOR4 (PIF4), and PIF5. Our data illustrate the potential of modular evolutionary events to generate rapid morphological change and thereby provide a molecular basis for neo-Darwinian theories that describe this nongradualist phenomenon. Furthermore, the effects shown here of light quality perception on carpel development lead us to speculate on the potential role of light-regulated mechanisms in plant organs that, like the carpel, form within the shade of surrounding tissues. PMID:22851763
Chetnani, Bhaskar; Mondragón, Alfonso
2017-07-27
A T-box regulator or riboswitch actively monitors the levels of charged/uncharged tRNA and participates in amino acid homeostasis by regulating genes involved in their utilization or biosynthesis. It has an aptamer domain for cognate tRNA recognition and an expression platform to sense the charge state and modulate gene expression. These two conserved domains are connected by a variable linker that harbors additional secondary structural elements, such as Stem III. The structural basis for specific tRNA binding is known, but the structural basis for charge sensing and the role of other elements remains elusive. To gain new structural insights on the T-box mechanism, a molecular envelope was calculated from small angle X-ray scattering data for the Bacillus subtilis glyQS T-box riboswitch in complex with an uncharged tRNAGly. A structural model of an anti-terminated glyQS T-box in complex with its cognate tRNAGly was derived based on the molecular envelope. It shows the location and relative orientation of various secondary structural elements. The model was validated by comparing the envelopes of the wild-type complex and two variants. The structural model suggests that in addition to a possible regulatory role, Stem III could aid in preferential stabilization of the T-box anti-terminated state allowing read-through of regulated genes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Correlative nanoscale imaging of actin filaments and their complexes
NASA Astrophysics Data System (ADS)
Sharma, Shivani; Zhu, Huanqi; Grintsevich, Elena E.; Reisler, Emil; Gimzewski, James K.
2013-06-01
Actin remodeling is an area of interest in biology in which correlative microscopy can bring a new way to analyze protein complexes at the nanoscale. Advances in EM, X-ray diffraction, fluorescence, and single molecule techniques have provided a wealth of information about the modulation of the F-actin structure and its regulation by actin binding proteins (ABPs). Yet, there are technological limitations of these approaches to achieving quantitative molecular level information on the structural and biophysical changes resulting from ABPs interaction with F-actin. Fundamental questions about the actin structure and dynamics and how these determine the function of ABPs remain unanswered. Specifically, how local and long-range structural and conformational changes result in ABPs induced remodeling of F-actin needs to be addressed at the single filament level. Advanced, sensitive and accurate experimental tools for detailed understanding of ABP-actin interactions are much needed. This article discusses the current understanding of nanoscale structural and mechanical modulation of F-actin by ABPs at the single filament level using several correlative microscopic techniques, focusing mainly on results obtained by Atomic Force Microscopy (AFM) analysis of ABP-actin complexes.
Motifs, modules and games in bacteria.
Wolf, Denise M; Arkin, Adam P
2003-04-01
Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment. Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.
Motifs, modules and games in bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Denise M.; Arkin, Adam P.
2003-04-01
Global explorations of regulatory network dynamics, organization and evolution have become tractable thanks to high-throughput sequencing and molecular measurement of bacterial physiology. From these, a nascent conceptual framework is developing, that views the principles of regulation in term of motifs, modules and games. Motifs are small, repeated, and conserved biological units ranging from molecular domains to small reaction networks. They are arranged into functional modules, genetically dissectible cellular functions such as the cell cycle, or different stress responses. The dynamical functioning of modules defines the organism's strategy to survive in a game, pitting cell against cell, and cell against environment.more » Placing pathway structure and dynamics into an evolutionary context begins to allow discrimination between those physical and molecular features that particularize a species to its surroundings, and those that provide core physiological function. This approach promises to generate a higher level understanding of cellular design, pathway evolution and cellular bioengineering.« less
Ahmed, Ahmed H; Oswald, Robert E
2010-03-11
Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.
Ahmed, Ahmed H.; Oswald, Robert E.
2010-01-01
Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to both GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators. PMID:20163115
[Apoptosis of human leukemic cells induced by topoisomerase I and II inhibitors].
Solary, E; Dubrez, L; Eymin, B; Bertrand, R; Pommier, Y
1996-03-01
Comparison between five human leukemic lines (BV173, HL60, U937, K562, KCL22) suggest that the main determinant of their sensitivity to topoisomerase I (camptothecin) and II (VP-16) inhibitors is their ability to regulate cell cycle progression in response to specific DNA damage, then to die through apoptosis: the more the cells inhibit cell cycle progression, the less sensitive they are. The final pathway of apoptosis induction involves a cytoplasmic signal, active at neutral pH, needing magnesium, sensitive to various protease inhibitors and activated directly by staurosporine. Modulators of intracellular signaling (calcium chelators, calmodulin inhibitors, PKC modulators, kinase and phosphatase inhibitors) have no significant influence upon apoptosis induction. Conversely, apoptosis induction pathway is modified during monocytic differentiation of HL60 cells induced by phorbol esters. Lastly, poly(ADP-ribosyl)ation and chromatine structure should regulate apoptotic DNA fragmentation that is prevented by 3-aminobenzamide and spermine, respectively.
Assessing potential targets of calcium action in light-modulated gravitropism
NASA Technical Reports Server (NTRS)
Roux, S. J.
1995-01-01
Light, through the mediation of the pigment phytochrome, modulates the gravitropic response of the shoots and roots of many plants. The transduction of both light and gravity stimuli appears to involve Ca(2+)-regulated steps, one or more of which may represent points of intersection between the two transduction chains. To be confident that Ca2+ plays a critical role in stimulus-response coupling for gravitropism, it will be important to identify specific targets of Ca2+ action whose function can be clearly linked to the regulation of growth. Calcium typically exerts its influence on cell metabolism through binding to and activating key regulatory proteins. The three best characterized of these proteins in plants are the calmodulins, calcium-dependent protein kinases, and annexins. In this review we summarize what is known about the structure and function of these proteins and speculate on how their activation by Ca2+ could influence the differential growth response of gravitropism.
Budhidarmo, Rhesa; Day, Catherine L.
2014-01-01
The cellular inhibitor of apoptosis (cIAP) proteins are essential RING E3 ubiquitin ligases that regulate apoptosis and inflammatory responses. cIAPs contain a ubiquitin-associated (UBA) domain that binds ubiquitin and is implicated in the regulation of cell survival and proteasomal degradation. Here we show that mutation of the MGF and LL motifs in the UBA domain of cIAP1 caused unfolding and increased cIAP1 multimonoubiquitylation. By developing a UBA mutant that disrupted ubiquitin binding but not the structure of the UBA domain, we found that the UBA domain enhances cIAP1 and cIAP2 ubiquitylation. We demonstrate that the UBA domain binds to the UbcH5b∼Ub conjugate, and this promotes RING domain-dependent monoubiquitylation. This study establishes ubiquitin-binding modules, such as the UBA domain, as important regulatory modules that can fine tune the activity of E3 ligases. PMID:25065467
A Rab5 GTPase module is important for autophagosome closure
Lipatova, Zhanna; Sun, Dan; Zhu, Xiaolong; Li, Rui; Wu, Zulin; You, Weiming; Cong, Xiaoxia; Zhou, Yiting; Gyurkovska, Valeriya; Liu, Yutao; Li, Qunli; Li, Wenjing; Cheng, Jie; Segev, Nava
2017-01-01
In the conserved autophagy pathway, the double-membrane autophagosome (AP) engulfs cellular components to be delivered for degradation in the lysosome. While only sealed AP can productively fuse with the lysosome, the molecular mechanism of AP closure is currently unknown. Rab GTPases, which regulate all intracellular trafficking pathways in eukaryotes, also regulate autophagy. Rabs function in GTPase modules together with their activators and downstream effectors. In yeast, an autophagy-specific Ypt1 GTPase module, together with a set of autophagy-related proteins (Atgs) and a phosphatidylinositol-3-phosphate (PI3P) kinase, regulates AP formation. Fusion of APs and endosomes with the vacuole (the yeast lysosome) requires the Ypt7 GTPase module. We have previously shown that the Rab5-related Vps21, within its endocytic GTPase module, regulates autophagy. However, it was not clear which autophagy step it regulates. Here, we show that this module, which includes the Vps9 activator, the Rab5-related Vps21, the CORVET tethering complex, and the Pep12 SNARE, functions after AP expansion and before AP closure. Whereas APs are not formed in mutant cells depleted for Atgs, sealed APs accumulate in cells depleted for the Ypt7 GTPase module members. Importantly, depletion of individual members of the Vps21 module results in a novel phenotype: accumulation of unsealed APs. In addition, we show that Vps21-regulated AP closure precedes another AP maturation step, the previously reported PI3P phosphatase-dependent Atg dissociation. Our results delineate three successive steps in the autophagy pathway regulated by Rabs, Ypt1, Vps21 and Ypt7, and provide the first insight into the upstream regulation of AP closure. PMID:28934205
Spatial epigenetics: linking nuclear structure and function in higher eukaryotes.
Jackson, Dean A
2010-09-20
Eukaryotic cells are defined by the genetic information that is stored in their DNA. To function, this genetic information must be decoded. In doing this, the information encoded in DNA is copied first into RNA, during RNA transcription. Primary RNA transcripts are generated within transcription factories, where they are also processed into mature mRNAs, which then pass to the cytoplasm. In the cytoplasm these mRNAs can finally be translated into protein in order to express the genetic information as a functional product. With only rare exceptions, the cells of an individual multicellular eukaryote contain identical genetic information. However, as different genes must be expressed in different cell types to define the structure and function of individual tissues, it is clear that mechanisms must have evolved to regulate gene expression. In higher eukaryotes, mechanisms that regulate the interaction of DNA with the sites where nuclear functions are performed provide one such layer of regulation. In this chapter, I evaluate how a detailed understanding of nuclear structure and chromatin dynamics are beginning to reveal how spatial mechanisms link chromatin structure and function. As these mechanisms operate to modulate the genetic information in DNA, the regulation of chromatin function by nuclear architecture defines the concept of 'spatial epigenetics'.
Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals
Qi, Lei; Lucks, Julius B.; Liu, Chang C.; Mutalik, Vivek K.; Arkin, Adam P.
2012-01-01
Non-coding RNAs (ncRNAs) are versatile regulators in cellular networks. While most trans-acting ncRNAs possess well-defined mechanisms that can regulate transcription or translation, they generally lack the ability to directly sense cellular signals. In this work, we describe a set of design principles for fusing ncRNAs to RNA aptamers to engineer allosteric RNA fusion molecules that modulate the activity of ncRNAs in a ligand-inducible way in Escherichia coli. We apply these principles to ncRNA regulators that can regulate translation (IS10 ncRNA) and transcription (pT181 ncRNA), and demonstrate that our design strategy exhibits high modularity between the aptamer ligand-sensing motif and the ncRNA target-recognition motif, which allows us to reconfigure these two motifs to engineer orthogonally acting fusion molecules that respond to different ligands and regulate different targets in the same cell. Finally, we show that the same ncRNA fused with different sensing domains results in a sensory-level NOR gate that integrates multiple input signals to perform genetic logic. These ligand-sensing ncRNA regulators provide useful tools to modulate the activity of structurally related families of ncRNAs, and building upon the growing body of RNA synthetic biology, our ability to design aptamer–ncRNA fusion molecules offers new ways to engineer ligand-sensing regulatory circuits. PMID:22383579
Yu, Yanan; Zhang, Xiaoxu; Li, Bing; Zhang, Yingying; Liu, Jun; Li, Haixia; Chen, Yinying; Wang, Pengqian; Kang, Ruixia; Wu, Hongli; Wang, Zhong
2016-12-01
Module-based network analysis of diverse pharmacological mechanisms is critical to systematically understand combination therapies and disease outcomes. We first constructed drug-target ischemic networks in baicalin, jasminoidin, ursodeoxycholic acid, and their combinations baicalin and jasminoidin as well as jasminoidin and ursodeoxycholic acid groups and identified modules using the entropy-based clustering algorithm. The modules 11, 7, 4, 8 and 3 were identified as baicalin, jasminoidin, ursodeoxycholic acid, baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid-emerged responsive modules, while 12, 8, 15, 17 and 9 were identified as disappeared responsive modules based on variation of topological similarity, respectively. No overlapping differential biological processes were enriched between baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid pure emerged responsive modules, but two were enriched by their co-disappeared responsive modules including nucleotide-excision repair and epithelial structure maintenance. We found an additive effect of baicalin and jasminoidin in a divergent pattern and a synergistic effect of jasminoidin and ursodeoxycholic acid in a convergent pattern on "central hit strategy" of regulating inflammation against cerebral ischemia. The proposed module-based approach may provide us a holistic view to understand multiple pharmacological mechanisms associated with differential phenotypes from the standpoint of modular pharmacology.
Zhang, Lin; Xiao, Jianfeng; Xu, Jianrong; Fu, Tianran; Cao, Zhiwei; Zhu, Liang; Chen, Hong-Zhuan; Shen, Xu; Jiang, Hualiang; Zhang, Liang
2016-12-01
Fatty acid biosynthesis (FAS) is a vital process in cells. Fatty acids are essential for cell assembly and cellular metabolism. Abnormal FAS directly correlates with cell growth delay and human diseases, such as metabolic syndromes and various cancers. The FAS system utilizes an acyl carrier protein (ACP) as a transporter to stabilize and shuttle the growing fatty acid chain throughout enzymatic modules for stepwise catalysis. Studying the interactions between enzymatic modules and ACP is, therefore, critical for understanding the biological function of the FAS system. However, the information remains unclear due to the high flexibility of ACP and its weak interaction with enzymatic modules. We present here a 2.55 Å crystal structure of type II FAS dehydratase FabZ in complex with holo-ACP, which exhibits a highly symmetrical FabZ hexamer-ACP 3 stoichiometry with each ACP binding to a FabZ dimer subunit. Further structural analysis, together with biophysical and computational results, reveals a novel dynamic seesaw-like ACP binding and catalysis mechanism for the dehydratase module in the FAS system, which is regulated by a critical gatekeeper residue (Tyr100 in FabZ) that manipulates the movements of the β-sheet layer. These findings improve the general understanding of the dehydration process in the FAS system and will potentially facilitate drug and therapeutic design for diseases associated with abnormalities in FAS.
NASA Astrophysics Data System (ADS)
Lu, Shaoying; Seong, Jihye; Wang, Yi; Chang, Shiou-Chi; Eichorst, John Paul; Ouyang, Mingxing; Li, Julie Y.-S.; Chien, Shu; Wang, Yingxiao
2014-07-01
Focal adhesions (FAs) are dynamic subcellular structures crucial for cell adhesion, migration and differentiation. It remains an enigma how enzymatic activities in these local complexes regulate their structural remodeling in live cells. Utilizing biosensors based on fluorescence resonance energy transfer (FRET), we developed a correlative FRET imaging microscopy (CFIM) approach to quantitatively analyze the subcellular coordination between the enzymatic Src activation and the structural FA disassembly. CFIM reveals that the Src kinase activity only within the microdomain of lipid rafts at the plasma membrane is coupled with FA dynamics. FA disassembly at cell periphery was linearly dependent on this raft-localized Src activity, although cells displayed heterogeneous levels of response to stimulation. Within lipid rafts, the time delay between Src activation and FA disassembly was 1.2 min in cells seeded on low fibronectin concentration ([FN]) and 4.3 min in cells on high [FN]. CFIM further showed that the level of Src-FA coupling, as well as the time delay, was regulated by cell-matrix interactions, as a tight enzyme-structure coupling occurred in FA populations mediated by integrin αvβ3, but not in those by integrin α5β1. Therefore, different FA subpopulations have distinctive regulation mechanisms between their local kinase activity and structural FA dynamics.
Energy management of fuel cell/solar cell/supercapacitor hybrid power source
NASA Astrophysics Data System (ADS)
Thounthong, Phatiphat; Chunkag, Viboon; Sethakul, Panarit; Sikkabut, Suwat; Pierfederici, Serge; Davat, Bernard
This study presents an original control algorithm for a hybrid energy system with a renewable energy source, namely, a polymer electrolyte membrane fuel cell (PEMFC) and a photovoltaic (PV) array. A single storage device, i.e., a supercapacitor (ultracapacitor) module, is in the proposed structure. The main weak point of fuel cells (FCs) is slow dynamics because the power slope is limited to prevent fuel starvation problems, improve performance and increase lifetime. The very fast power response and high specific power of a supercapacitor complements the slower power output of the main source to produce the compatibility and performance characteristics needed in a load. The energy in the system is balanced by d.c.-bus energy regulation (or indirect voltage regulation). A supercapacitor module functions by supplying energy to regulate the d.c.-bus energy. The fuel cell, as a slow dynamic source in this system, supplies energy to the supercapacitor module in order to keep it charged. The photovoltaic array assists the fuel cell during daytime. To verify the proposed principle, a hardware system is realized with analog circuits for the fuel cell, solar cell and supercapacitor current control loops, and with numerical calculation (dSPACE) for the energy control loops. Experimental results with small-scale devices, namely, a PEMFC (1200 W, 46 A) manufactured by the Ballard Power System Company, a photovoltaic array (800 W, 31 A) manufactured by the Ekarat Solar Company and a supercapacitor module (100 F, 32 V) manufactured by the Maxwell Technologies Company, illustrate the excellent energy-management scheme during load cycles.
Ariotti, Nicholas; Fernández-Rojo, Manuel A.; Zhou, Yong; Hill, Michelle M.; Rodkey, Travis L.; Inder, Kerry L.; Tanner, Lukas B.; Wenk, Markus R.
2014-01-01
The molecular mechanisms whereby caveolae exert control over cellular signaling have to date remained elusive. We have therefore explored the role caveolae play in modulating Ras signaling. Lipidomic and gene array analyses revealed that caveolin-1 (CAV1) deficiency results in altered cellular lipid composition, and plasma membrane (PM) phosphatidylserine distribution. These changes correlated with increased K-Ras expression and extensive isoform-specific perturbation of Ras spatial organization: in CAV1-deficient cells K-RasG12V nanoclustering and MAPK activation were enhanced, whereas GTP-dependent lateral segregation of H-Ras was abolished resulting in compromised signal output from H-RasG12V nanoclusters. These changes in Ras nanoclustering were phenocopied by the down-regulation of Cavin1, another crucial caveolar structural component, and by acute loss of caveolae in response to increased osmotic pressure. Thus, we postulate that caveolae remotely regulate Ras nanoclustering and signal transduction by controlling PM organization. Similarly, caveolae transduce mechanical stress into PM lipid alterations that, in turn, modulate Ras PM organization. PMID:24567358
Liu, Zhaoqun; Zhou, Zhi; Jiang, Qiufen; Wang, Lingling; Yi, Qilin; Qiu, Limei; Song, Linsheng
2017-01-01
The neuroendocrine-immune (NEI) regulatory network is a complex system, which plays an indispensable role in the immunity of host. In this study, a neuroendocrine immunomodulatory axis (NIA)-like pathway mediated by the nervous system and haemocytes was characterized in the oyster Crassostrea gigas Once invaded pathogen was recognized by the host, the nervous system would temporally release neurotransmitters to modulate the immune response. Instead of acting passively, oyster haemocytes were able to mediate neuronal immunomodulation promptly by controlling the expression of specific neurotransmitter receptors on cell surface and modulating their binding sensitivities, thus regulating intracellular concentration of Ca 2+ This neural immunomodulation mediated by the nervous system and haemocytes could influence cellular immunity in oyster by affecting mRNA expression level of TNF genes, and humoral immunity by affecting the activities of key immune-related enzymes. In summary, though simple in structure, the 'nervous-haemocyte' NIA-like pathway regulates both cellular and humoral immunity in oyster, meaning a world to the effective immune regulation of the NEI network. © 2017 The Authors.
Deciphering the BAR code of membrane modulators.
Salzer, Ulrich; Kostan, Julius; Djinović-Carugo, Kristina
2017-07-01
The BAR domain is the eponymous domain of the "BAR-domain protein superfamily", a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.
β-Catenin Knockdown Affects Mitochondrial Biogenesis and Lipid Metabolism in Breast Cancer Cells.
Vergara, Daniele; Stanca, Eleonora; Guerra, Flora; Priore, Paola; Gaballo, Antonio; Franck, Julien; Simeone, Pasquale; Trerotola, Marco; De Domenico, Stefania; Fournier, Isabelle; Bucci, Cecilia; Salzet, Michel; Giudetti, Anna M; Maffia, Michele
2017-01-01
β-catenin plays an important role as regulatory hub in several cellular processes including cell adhesion, metabolism, and epithelial mesenchymal transition. This is mainly achieved by its dual role as structural component of cadherin-based adherens junctions, and as a key nuclear effector of the Wnt pathway. For this dual role, different classes of proteins are differentially regulated via β-catenin dependent mechanisms. Here, we applied a liquid chromatography-mass spectrometry (LC-MS/MS) approach to identify proteins modulated after β-catenin knockdown in the breast cancer cell line MCF-7. We used a label free analysis to compare trypsin-digested proteins from CTR (shCTR) and β-catenin knockout cells (shβcat). This led to the identification of 98 differentially expressed proteins, 53 of them were up-regulated and 45 down-regulated. Loss of β-catenin induced morphological changes and a significant modulation of the expression levels of proteins associated with primary metabolic processes. In detail, proteins involved in carbohydrate metabolism and tricarboxylic acid cycle were found to be down-regulated, whereas proteins associated to lipid metabolism were found up-regulated in shβcat compared to shCTR. A loss of mitochondrial mass and membrane potential was also assessed by fluorescent probes in shβcat cells with respect to the controls. These data are consistent with the reduced expression of transcriptional factors regulating mitochondrial biogenesis detected in shβcat cells. β-catenin driven metabolic reprogramming resulted also in a significant modulation of lipogenic enzyme expression and activity. Compared to controls, β-catenin knockout cells showed increased incorporation of [1- 14 C]acetate and decreased utilization of [U- 14 C]glucose for fatty acid synthesis. Our data highlight a role of β-catenin in the regulation of metabolism and energy homeostasis in breast cancer cells.
Karasawa, Akira; Erkens, Guus B.; Berntsson, Ronnie P.-A.; Otten, Renee; Schuurman-Wolters, Gea K.; Mulder, Frans A. A.; Poolman, Bert
2011-01-01
The cystathionine β-synthase module of OpuA in conjunction with an anionic membrane surface acts as a sensor of internal ionic strength, which allows the protein to respond to osmotic stress. We now show by chemical modification and cross-linking studies that CBS2-CBS2 interface residues are critical for transport activity and/or ionic regulation of transport, whereas CBS1 serves no functional role. We establish that Cys residues in CBS1, CBS2, and the nucleotide-binding domain are more accessible for cross-linking at high than low ionic strength, indicating that these domains undergo conformational changes when transiting between the active and inactive state. Structural analyses suggest that the cystathionine β-synthase module is largely unstructured. Moreover, we could substitute CBS1 by a linker and preserve ionic regulation of transport. These data suggest that CBS1 serves as a linker and the structured CBS2-CBS2 interface forms a hinge point for ionic strength-dependent rearrangements that are transmitted to the nucleotide-binding domain and thereby affect translocation activity. PMID:21878634
Sterol Regulation of Voltage-Gated K+ Channels.
Balajthy, Andras; Hajdu, Peter; Panyi, Gyorgy; Varga, Zoltan
2017-01-01
Cholesterol is an essential lipid building block of the cellular plasma membrane. In addition to its structural role, it regulates the fluidity and raft structure of the membrane and influences the course of numerous membrane-linked signaling pathways and the function of transmembrane proteins, including ion channels. This is supported by a vast body of scientific data, which demonstrates the modulation of ion channels with a great variety of ion selectivity, gating, and tissue distribution by changes in membrane cholesterol. Here, we review what is currently known about the modulation of voltage-gated K + (Kv) channels by changes in membrane cholesterol content, considering raft association of the channels, the roles of cholesterol recognition sites, and those of adaptor proteins in cholesterol-Kv channel interactions. We specifically focus on Kv1.3, the dominant K + channel of human T cells. Effects of cholesterol depletion and enrichment and 7-dehydrocholesterol enrichment on Kv1.3 gating are discussed in the context of the immunological synapse and the comparison of the in vitro effects of sterol modifications on Kv1.3 function with ex vivo effects on cells from hypercholesterolemic and Smith-Lemli-Opitz patients. © 2017 Elsevier Inc. All rights reserved.
Zaini, Paulo A; Fogaça, Andréa C; Lupo, Fernanda G N; Nakaya, Helder I; Vêncio, Ricardo Z N; da Silva, Aline M
2008-04-01
Xylella fastidiosa is the etiologic agent of a wide range of plant diseases, including citrus variegated chlorosis (CVC), a major threat to citrus industry. The genomes of several strains of this phytopathogen were completely sequenced, enabling large-scale functional studies. DNA microarrays representing 2,608 (91.6%) coding sequences (CDS) of X. fastidiosa CVC strain 9a5c were used to investigate transcript levels during growth with different iron availabilities. When treated with the iron chelator 2,2'-dipyridyl, 193 CDS were considered up-regulated and 216 were considered down-regulated. Upon incubation with 100 microM ferric pyrophosphate, 218 and 256 CDS were considered up- and down-regulated, respectively. Differential expression for a subset of 44 CDS was further evaluated by reverse transcription-quantitative PCR. Several CDS involved with regulatory functions, pathogenicity, and cell structure were modulated under both conditions assayed, suggesting that major changes in cell architecture and metabolism occur when X. fastidiosa cells are exposed to extreme variations in iron concentration. Interestingly, the modulated CDS include those related to colicin V-like bacteriocin synthesis and secretion and to functions of pili/fimbriae. We also investigated the contribution of the ferric uptake regulator Fur to the iron stimulon of X. fastidiosa. The promoter regions of the strain 9a5c genome were screened for putative Fur boxes, and candidates were analyzed by electrophoretic mobility shift assays. Taken together, our data support the hypothesis that Fur is not solely responsible for the modulation of the iron stimulon of X. fastidiosa, and they present novel evidence for iron regulation of pathogenicity determinants.
Cholinergic Inputs from Basal Forebrain Add an Excitatory Bias to Odor Coding in the Olfactory Bulb
Rothermel, Markus; Carey, Ryan M.; Puche, Adam; Shipley, Michael T.
2014-01-01
Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment. PMID:24672011
Delos Santos, Ralph Christian; Bautista, Stephen; Lucarelli, Stefanie; Bone, Leslie N.; Dayam, Roya M.; Abousawan, John; Botelho, Roberto J.; Antonescu, Costin N.
2017-01-01
Clathrin-mediated endocytosis is a major regulator of cell-surface protein internalization. Clathrin and other proteins assemble into small invaginating structures at the plasma membrane termed clathrin-coated pits (CCPs) that mediate vesicle formation. In addition, epidermal growth factor receptor (EGFR) signaling is regulated by its accumulation within CCPs. Given the diversity of proteins regulated by clathrin-mediated endocytosis, how this process may distinctly regulate specific receptors is a key question. We examined the selective regulation of clathrin-dependent EGFR signaling and endocytosis. We find that perturbations of phospholipase Cγ1 (PLCγ1), Ca2+, or protein kinase C (PKC) impair clathrin-mediated endocytosis of EGFR, the formation of CCPs harboring EGFR, and EGFR signaling. Each of these manipulations was without effect on the clathrin-mediated endocytosis of transferrin receptor (TfR). EGFR and TfR were recruited to largely distinct clathrin structures. In addition to control of initiation and assembly of CCPs, EGF stimulation also elicited a Ca2+- and PKC-dependent reduction in synaptojanin1 recruitment to clathrin structures, indicating broad control of CCP assembly by Ca2+ signals. Hence EGFR elicits PLCγ1-calcium signals to facilitate formation of a subset of CCPs, thus modulating its own signaling and endocytosis. This provides evidence for the versatility of CCPs to control diverse cellular processes. PMID:28814502
Rab7a modulates ER stress and ER morphology.
Mateus, Duarte; Marini, Elettra Sara; Progida, Cinzia; Bakke, Oddmund
2018-05-01
The Endoplasmic Reticulum (ER) is a membranous organelle with diverse structural and functional domains. Peripheral ER includes interconnected tubules, and dense tubular arrays called "ER matrices" together with bona fide flat cisternae. Transitions between these states are regulated by membrane-associated proteins and cytosolic factors. Recently, the small GTPases Rab10 and Rab18 were reported to control ER shape by regulating ER dynamics and fusion. Here, we present evidence that another Rab protein, Rab7a, modulates the ER morphology by controlling the ER homeostasis and ER stress. Indeed, inhibition of Rab7a expression by siRNA or expression of the dominant negative mutant Rab7aT22 N, leads to enlargement of sheet-like ER structures and spreading towards the cell periphery. Notably, such alterations are ascribable neither to a direct modulation of the ER shaping proteins Reticulon-4b and CLIMP63, nor to interactions with Protrudin, a Rab7a-binding protein known to affect the ER organization. Conversely, depletion of Rab7a leads to basal ER stress, in turn causing ER membrane expansion. Both ER enlargement and basal ER stress are reverted in rescue experiments by Rab7a re-expression, as well as by the ER chemical chaperone tauroursodeoxycholic acid (TUDCA). Collectively, these findings reveal a new role of Rab7a in ER homeostasis, and indicate that genetic and pharmacological ER stress manipulation may restore ER morphology in Rab7a silenced cells. Copyright © 2018 Elsevier B.V. All rights reserved.
Mund, Andreas; Schubert, Tobias; Staege, Hannah; Kinkley, Sarah; Reumann, Kerstin; Kriegs, Malte; Fritsch, Lauriane; Battisti, Valentine; Ait-Si-Ali, Slimane; Hoffbeck, Anne-Sophie; Soutoglou, Evi; Will, Hans
2012-01-01
Survival time-associated plant homeodomain (PHD) finger protein in Ovarian Cancer 1 (SPOC1, also known as PHF13) is known to modulate chromatin structure and is essential for testicular stem-cell differentiation. Here we show that SPOC1 is recruited to DNA double-strand breaks (DSBs) in an ATM-dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non-homologous end-joining (NHEJ) repair activity, and cellular radioresistance, but impairs homologous recombination (HR) repair. Conversely, SPOC1 overexpression delays IRIF formation and γH2AX expansion, reduces NHEJ repair activity and enhances cellular radiosensitivity. SPOC1 mediates dose-dependent changes in chromatin association of DNA compaction factors KAP-1, HP1-α and H3K9 methyltransferases (KMT) GLP, G9A and SETDB1. In addition, SPOC1 interacts with KAP-1 and H3K9 KMTs, inhibits KAP-1 phosphorylation and enhances H3K9 trimethylation. These findings provide the first evidence for a function of SPOC1 in DNA damage response (DDR) and repair. SPOC1 acts as a modulator of repair kinetics and choice of pathways. This involves its dose-dependent effects on DNA damage sensors, repair mediators and key regulators of chromatin structure. PMID:23034801
Murillo-Maldonado, Juan M; Zeineddine, Fouad Bou; Stock, Rachel; Thackeray, Justin; Riesgo-Escovar, Juan R
2011-01-01
Coordination between growth and patterning/differentiation is critical if appropriate final organ structure and size is to be achieved. Understanding how these two processes are regulated is therefore a fundamental and as yet incompletely answered question. Here we show through genetic analysis that the phospholipase C-γ (PLC-γ) encoded by small wing (sl) acts as such a link between growth and patterning/differentiation by modulating some MAPK outputs once activated by the insulin pathway; particularly, sl promotes growth and suppresses ectopic differentiation in the developing eye and wing, allowing cells to attain a normal size and differentiate properly. sl mutants have previously been shown to have a combination of both growth and patterning/differentiation phenotypes: small wings, ectopic wing veins, and extra R7 photoreceptor cells. We show here that PLC-γ activated by the insulin pathway participates broadly and positively during cell growth modulating EGF pathway activity, whereas in cell differentiation PLC-γ activated by the insulin receptor negatively regulates the EGF pathway. These roles require different SH2 domains of PLC-γ, and act via classic PLC-γ signaling and EGF ligand processing. By means of PLC-γ, the insulin receptor therefore modulates differentiation as well as growth. Overall, our results provide evidence that PLC-γ acts during development at a time when growth ends and differentiation begins, and is important for proper coordination of these two processes.
Smith, Katharine R.; Kopeikina, Katherine J.; Fawcett-Patel, Jessica M.; Leaderbrand, Katherine; Gao, Ruoqi; Schürmann, Britta; Myczek, Kristoffer; Radulovic, Jelena; Swanson, Geoffrey T.; Penzes, Peter
2014-01-01
Summary Recent evidence implicates glutamatergic synapses as key pathogenic sites in psychiatric disorders. Common and rare variants in the ANK3 gene, encoding ankyrin-G, have been associated with bipolar disorder, schizophrenia, and autism. Here we demonstrate that ankyrin-G is integral to AMPAR-mediated synaptic transmission and maintenance of spine morphology. Using super-resolution microscopy we find that ankyrin-G forms distinct nanodomain structures within the spine head and neck. At these sites, it modulates mushroom spine structure and function, likely as a perisynaptic scaffold and barrier within the spine neck. Neuronal activity promotes ankyrin-G accumulation in distinct spine subdomains, where it differentially regulates NMDA receptor-dependent plasticity. These data implicate subsynaptic nanodomains containing a major psychiatric risk molecule, ankyrin-G, as having location-specific functions, and opens directions for basic and translational investigation of psychiatric risk molecules. PMID:25374361
Resistant Starch Regulates Gut Microbiota: Structure, Biochemistry and Cell Signalling.
Yang, Xiaoping; Darko, Kwame Oteng; Huang, Yanjun; He, Caimei; Yang, Huansheng; He, Shanping; Li, Jianzhong; Li, Jian; Hocher, Berthold; Yin, Yulong
2017-01-01
Starch is one of the most popular nutritional sources for both human and animals. Due to the variation of its nutritional traits and biochemical specificities, starch has been classified into rapidly digestible, slowly digestible and resistant starch. Resistant starch has its own unique chemical structure, and various forms of resistant starch are commercially available. It has been found being a multiple-functional regulator for treating metabolic dysfunction. Different functions of resistant starch such as modulation of the gut microbiota, gut peptides, circulating growth factors, circulating inflammatory mediators have been characterized by animal studies and clinical trials. In this mini-review, recent remarkable progress in resistant starch on gut microbiota, particularly the effect of structure, biochemistry and cell signaling on nutrition has been summarized, with highlights on its regulatory effect on gut microbiota. © 2017 The Author(s). Published by S. Karger AG, Basel.
Coast Guard Regulations Applied to Offshore Drilling. Module SH-45. Safety and Health.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This student module on Coast Guard regulations applied to offshore drilling is one of 50 modules concerned with job safety and health. This module presents requirements that apply to the design, construction, equipment, inspection, and operation of offshore drilling units. Following the introduction, 10 objectives (each keyed to a page in the…
Integrated Module and Gene-Specific Regulatory Inference Implicates Upstream Signaling Networks
Roy, Sushmita; Lagree, Stephen; Hou, Zhonggang; Thomson, James A.; Stewart, Ron; Gasch, Audrey P.
2013-01-01
Regulatory networks that control gene expression are important in diverse biological contexts including stress response and development. Each gene's regulatory program is determined by module-level regulation (e.g. co-regulation via the same signaling system), as well as gene-specific determinants that can fine-tune expression. We present a novel approach, Modular regulatory network learning with per gene information (MERLIN), that infers regulatory programs for individual genes while probabilistically constraining these programs to reveal module-level organization of regulatory networks. Using edge-, regulator- and module-based comparisons of simulated networks of known ground truth, we find MERLIN reconstructs regulatory programs of individual genes as well or better than existing approaches of network reconstruction, while additionally identifying modular organization of the regulatory networks. We use MERLIN to dissect global transcriptional behavior in two biological contexts: yeast stress response and human embryonic stem cell differentiation. Regulatory modules inferred by MERLIN capture co-regulatory relationships between signaling proteins and downstream transcription factors thereby revealing the upstream signaling systems controlling transcriptional responses. The inferred networks are enriched for regulators with genetic or physical interactions, supporting the inference, and identify modules of functionally related genes bound by the same transcriptional regulators. Our method combines the strengths of per-gene and per-module methods to reveal new insights into transcriptional regulation in stress and development. PMID:24146602
Hammerstrom, Donald J
2013-11-26
An advanced electric water heater control system that interfaces with a high temperature cut-off thermostat and an upper regulating thermostat. The system includes a control module that is electrically connected to the high-temperature cut-off thermostat and the upper regulating thermostat. The control module includes a switch to open or close the high-temperature cut-off thermostat and the upper regulating thermostat. The control module further includes circuitry configured to control said switch in response to a signal selected from the group of an autonomous signal, a communicated signal, and combinations thereof.
Hall, Amanda C.; Ostrowski, Lauren A.; Mekhail, Karim
2017-01-01
ABSTRACT Cells have evolved intricate mechanisms to maintain genome stability despite allowing mutational changes to drive evolutionary adaptation. Repetitive DNA sequences, which represent the bulk of most genomes, are a major threat to genome stability often driving chromosome rearrangements and disease. The major source of repetitive DNA sequences and thus the most vulnerable constituents of the genome are the rDNA (rDNA) repeats, telomeres, and transposable elements. Maintaining the stability of these loci is critical to overall cellular fitness and lifespan. Therefore, cells have evolved mechanisms to regulate rDNA copy number, telomere length and transposon activity, as well as DNA repair at these loci. In addition, non-canonical structure-forming DNA motifs can also modulate the function of these repetitive DNA loci by impacting their transcription, replication, and stability. Here, we discuss key mechanisms that maintain rDNA repeats, telomeres, and transposons in yeast and human before highlighting emerging roles for non-canonical DNA structures at these repetitive loci. PMID:28406751
FRET analysis of CP12 structural interplay by GAPDH and PRK.
Moparthi, Satish Babu; Thieulin-Pardo, Gabriel; de Torres, Juan; Ghenuche, Petru; Gontero, Brigitte; Wenger, Jérôme
2015-03-13
CP12 is an intrinsically disordered protein playing a key role in the regulation of the Benson-Calvin cycle. Due to the high intrinsic flexibility of CP12, it is essential to consider its structural modulation induced upon binding to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) enzymes. Here, we report for the first time detailed structural modulation about the wild-type CP12 and its site-specific N-terminal and C-terminal disulfide bridge mutants upon interaction with GAPDH and PRK by Förster resonance energy transfer (FRET). Our results indicate an increase in CP12 compactness when the complex is formed with GAPDH or PRK. In addition, the distributions in FRET histograms show the elasticity and conformational flexibility of CP12 in all supra molecular complexes. Contrarily to previous beliefs, our FRET results importantly reveal that both N-terminal and C-terminal site-specific CP12 mutants are able to form the monomeric (GAPDH-CP12-PRK) complex. Copyright © 2015 Elsevier Inc. All rights reserved.
Jia, Xuanyan; Yao, Jianyun; Gao, Zengqiang; Liu, Guangfeng; Dong, Yu-Hui; Wang, Xiaoxue; Zhang, Heng
2018-05-04
Toxin-antitoxin (TA) loci in bacteria are small genetic modules that regulate various cellular activities, including cell growth and death. The two-gene module encoding a HEPN (higher eukaryotes and prokaryotes nucleotide-binding) domain and a cognate MNT (minimal nucleotidyltransferase) domain have been predicted to represent a novel type II TA system prevalent in archaea and bacteria. However, the neutralization mechanism and cellular targets of the TA family remain unclear. The toxin SO_3166 having a HEPN domain and its cognate antitoxin SO_3165 with an MNT domain constitute a typical type II TA system that regulates cell motility and confers plasmid stability in the bacterium Shewanella oneidensis Here, we report the crystal structure and solution conformation of the SO_3166-SO_3165 pair, representing the first complex structures in this TA family. The structures revealed that SO_3165 and SO_3166 form a tight heterooctamer (at a 2:6 ratio), an organization that is very rare in other TA systems. We also observed that SO_3166 dimerization enables the formation of a deep cleft at the HEPN-domain interface harboring a composite R X 4-6H active site that functions as an RNA-cleaving RNase. SO_3165 bound SO_3166 mainly through its two α-helices (α2 and α4), functioning as molecular recognition elements. Moreover, their insertion into the SO_3166 cleft sterically blocked the R X 4-6H site or narrowed the cleft to inhibit RNA substrate binding. Structure-based mutagenesis confirmed the important roles of these α-helices in SO_3166 binding and inhibition. Our structure-function analysis provides first insights into the neutralization mechanism of the HEPN-MNT TA family. © 2018 Jia et al.
Zagrebelsky, Marta; Lonnemann, Niklas; Fricke, Steffen; Kellner, Yves; Preuß, Eike; Michaelsen-Preusse, Kristin; Korte, Martin
2017-02-01
Behavioral learning has been shown to involve changes in the function and structure of synaptic connections of the central nervous system (CNS). On the other hand, the neuronal circuitry in the mature brain is characterized by a high degree of stability possibly providing a correlate for long-term storage of information. This observation indicates the requirement for a set of molecules inhibiting plasticity and promoting stability thereby providing temporal and spatial specificity to plastic processes. Indeed, signaling of Nogo-A via its receptors has been shown to play a crucial role in restricting activity-dependent functional and structural plasticity in the adult CNS. However, whether Nogo-A controls learning and memory formation and what are the cellular and molecular mechanisms underlying this function is still unclear. Here we show that Nogo-A signaling controls spatial learning and reference memory formation upon training in the Morris water maze and negatively modulates structural changes at spines in the mouse hippocampus. Learning processes and the correlated structural plasticity have been shown to involve changes in excitatory as well as in inhibitory neuronal connections. We show here that Nogo-A is highly expressed not only in excitatory, but also in inhibitory, Parvalbumin positive neurons in the adult hippocampus. By this means our current and previous data indicate that Nogo-A loss-of-function positively influences spatial learning by priming the neuronal structure to a higher plasticity level. Taken together our results link the role of Nogo-A in negatively regulating plastic processes to a physiological function in controlling learning and memory processes in the mature hippocampus and open the interesting possibility that it might mainly act by controlling the function of the hippocampal inhibitory circuitry. Copyright © 2016 Elsevier Inc. All rights reserved.
Structure of the Zinc-Bound Amino-Terminal Domain of the NMDA Receptor NR2B Subunit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karakas, E.; Simorowski, N; Furukawa, H
2009-01-01
N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino-terminal domain (ATD) distinct from the L-glutamate-binding domain. The molecular basis for the ATD-mediated allosteric regulation has been enigmatic because of a complete lack of structural information on NMDA receptor ATDs. Here, we report the crystal structures of ATD from the NR2B NMDA receptor subunit in the zinc-freemore » and zinc-bound states. The structures reveal the overall clamshell-like architecture distinct from the non-NMDA receptor ATDs and molecular determinants for the zinc-binding site, ion-binding sites, and the architecture of the putative phenylethanolamine-binding site.« less
Staufen1 senses overall transcript secondary structure to regulate translation
Ricci, Emiliano P; Kucukural, Alper; Cenik, Can; Mercier, Blandine C; Singh, Guramrit; Heyer, Erin E; Ashar-Patel, Ami; Peng, Lingtao; Moore, Melissa J
2015-01-01
Human Staufen1 (Stau1) is a double-stranded RNA (dsRNA)-binding protein implicated in multiple post-transcriptional gene-regulatory processes. Here we combined RNA immunoprecipitation in tandem (RIPiT) with RNase footprinting, formaldehyde cross-linking, sonication-mediated RNA fragmentation and deep sequencing to map Staufen1-binding sites transcriptome wide. We find that Stau1 binds complex secondary structures containing multiple short helices, many of which are formed by inverted Alu elements in annotated 3′ untranslated regions (UTRs) or in ‘strongly distal’ 3′ UTRs. Stau1 also interacts with actively translating ribosomes and with mRNA coding sequences (CDSs) and 3′ UTRs in proportion to their GC content and propensity to form internal secondary structure. On mRNAs with high CDS GC content, higher Stau1 levels lead to greater ribosome densities, thus suggesting a general role for Stau1 in modulating translation elongation through structured CDS regions. Our results also indicate that Stau1 regulates translation of transcription-regulatory proteins. PMID:24336223
Crystal structure of the epithelial calcium channel TRPV6.
Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I
2016-06-23
Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.
Mediator structure and rearrangements required for holoenzyme formation.
Tsai, Kuang-Lei; Yu, Xiaodi; Gopalan, Sneha; Chao, Ti-Chun; Zhang, Ying; Florens, Laurence; Washburn, Michael P; Murakami, Kenji; Conaway, Ronald C; Conaway, Joan W; Asturias, Francisco J
2017-04-13
The conserved Mediator co-activator complex has an essential role in the regulation of RNA polymerase II transcription in all eukaryotes. Understanding the structure and interactions of Mediator is crucial for determining how the complex influences transcription initiation and conveys regulatory information to the basal transcription machinery. Here we present a 4.4 Å resolution cryo-electron microscopy map of Schizosaccharomyces pombe Mediator in which conserved Mediator subunits are individually resolved. The essential Med14 subunit works as a central backbone that connects the Mediator head, middle and tail modules. Comparison with a 7.8 Å resolution cryo-electron microscopy map of a Mediator-RNA polymerase II holoenzyme reveals that changes in the structure of Med14 facilitate a large-scale Mediator rearrangement that is essential for holoenzyme formation. Our study suggests that access to different conformations and crosstalk between structural elements are essential for the Mediator regulation mechanism, and could explain the capacity of the complex to integrate multiple regulatory signals.
A bioarchitectonic approach to the modular engineering of metabolism.
Kerfeld, Cheryl A
2017-09-26
Dissociating the complexity of metabolic processes into modules is a shift in focus from the single gene/gene product to functional and evolutionary units spanning the scale of biological organization. When viewing the levels of biological organization through this conceptual lens, modules are found across the continuum: domains within proteins, co-regulated groups of functionally associated genes, operons, metabolic pathways and (sub)cellular compartments. Combining modules as components or subsystems of a larger system typically leads to increased complexity and the emergence of new functions. By virtue of their potential for 'plug and play' into new contexts, modules can be viewed as units of both evolution and engineering. Through consideration of lessons learned from recent efforts to install new metabolic modules into cells and the emerging understanding of the structure, function and assembly of protein-based organelles, bacterial microcompartments, a structural bioengineering approach is described: one that builds from an architectural vocabulary of protein domains. This bioarchitectonic approach to engineering cellular metabolism can be applied to microbial cell factories, used in the programming of members of synthetic microbial communities or used to attain additional levels of metabolic organization in eukaryotic cells for increasing primary productivity and as the foundation of a green economy.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'. © 2017 The Author(s).
The ArcB Leucine Zipper Domain Is Required for Proper ArcB Signaling
Nuñez Oreza, Luis Alberto; Alvarez, Adrián F.; Arias-Olguín, Imilla I.; Torres Larios, Alfredo; Georgellis, Dimitris
2012-01-01
The Arc two-component system modulates the expression of numerous genes in response to respiratory growth conditions. This system comprises ArcA as the response regulator and ArcB as the sensor kinase. ArcB is a tripartite histidine kinase whose activity is regulated by the oxidation of two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here, we report that the ArcB protein segment covering residues 70–121, fulfills the molecular characteristics of a leucine zipper containing coiled coil structure. Also, mutational analyses of this segment reveal three different phenotypical effects to be distributed along the coiled coil structure of ArcB, demonstrating that this motif is essential for proper ArcB signaling. PMID:22666479
Functional modules of sigma factor regulons guarantee adaptability and evolvability
Binder, Sebastian C.; Eckweiler, Denitsa; Schulz, Sebastian; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Häussler, Susanne; Meyer-Hermann, Michael
2016-01-01
The focus of modern molecular biology turns from assigning functions to individual genes towards understanding the expression and regulation of complex sets of molecules. Here, we provide evidence that alternative sigma factor regulons in the pathogen Pseudomonas aeruginosa largely represent insulated functional modules which provide a critical level of biological organization involved in general adaptation and survival processes. Analysis of the operational state of the sigma factor network revealed that transcription factors functionally couple the sigma factor regulons and significantly modulate the transcription levels in the face of challenging environments. The threshold quality of newly evolved transcription factors was reached faster and more robustly in in silico testing when the structural organization of sigma factor networks was taken into account. These results indicate that the modular structures of alternative sigma factor regulons provide P. aeruginosa with a robust framework to function adequately in its environment and at the same time facilitate evolutionary change. Our data support the view that widespread modularity guarantees robustness of biological networks and is a key driver of evolvability. PMID:26915971
Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome
McGinty, Robert K.; Henrici, Ryan C.; Tan, Song
2014-01-01
The Polycomb group of epigenetic enzymes represses expression of developmentally regulated genes in higher eukaryotes. This group includes the Polycomb repressive complex 1 (PRC1), which ubiquitylates nucleosomal histone H2A Lys119 using its E3 ubiquitin ligase subunits, Ring1B and Bmi1, together with an E2 ubiquitin-conjugating enzyme, UbcH5c. However, the molecular mechanism of nucleosome substrate recognition by PRC1 or other chromatin enzymes is unclear. Here we present the crystal structure of the Ring1B/Bmi1/UbcH5c E3-E2 complex (the PRC1 ubiquitylation module) bound to its nucleosome core particle substrate. The structure shows how a chromatin enzyme achieves substrate specificity by interacting with multiple nucleosome surfaces spatially distinct from the site of catalysis. Our structure further reveals an unexpected role for the ubiquitin E2 enzyme in substrate recognition, and provides insight into how the related histone H2A E3 ligase, BRCA1, interacts with and ubiquitylates the nucleosome. PMID:25355358
Kikuchi, Masataka; Ogishima, Soichi; Miyamoto, Tadashi; Miyashita, Akinori; Kuwano, Ryozo; Nakaya, Jun; Tanaka, Hiroshi
2013-01-01
Alzheimer’s disease (AD), the most common cause of dementia, is associated with aging, and it leads to neuron death. Deposits of amyloid β and aberrantly phosphorylated tau protein are known as pathological hallmarks of AD, but the underlying mechanisms have not yet been revealed. A high-throughput gene expression analysis previously showed that differentially expressed genes accompanying the progression of AD were more down-regulated than up-regulated in the later stages of AD. This suggested that the molecular networks and their constituent modules collapsed along with AD progression. In this study, by using gene expression profiles and protein interaction networks (PINs), we identified the PINs expressed in three brain regions: the entorhinal cortex (EC), hippocampus (HIP) and superior frontal gyrus (SFG). Dividing the expressed PINs into modules, we examined the stability of the modules with AD progression and with normal aging. We found that in the AD modules, the constituent proteins, interactions and cellular functions were not maintained between consecutive stages through all brain regions. Interestingly, the modules were collapsed with AD progression, specifically in the EC region. By identifying the modules that were affected by AD pathology, we found the transcriptional regulation-associated modules that interact with the proteasome-associated module via UCHL5 hub protein, which is a deubiquitinating enzyme. Considering PINs as a system made of network modules, we found that the modules relevant to the transcriptional regulation are disrupted in the EC region, which affects the ubiquitin-proteasome system. PMID:24348898
Halbleib, Jennifer M.; Sääf, Annika M.
2007-01-01
Although there is considerable evidence implicating posttranslational mechanisms in the development of epithelial cell polarity, little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized the temporal program of gene expression during cell–cell adhesion–initiated polarization of human Caco-2 cells in tissue culture, which develop structural and functional polarity similar to that of enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts between neighboring cells. Expression of genes involved in cell proliferation was down-regulated concomitant with induction of genes necessary for functional specialization of polarized epithelial cells. Transcriptional up-regulation of these latter genes correlated with formation of important structural and functional features in enterocyte differentiation and establishment of structural and functional cell polarity; components of the apical microvilli were induced as the brush border formed during polarization; as barrier function was established, expression of tight junction transmembrane proteins peaked; transcripts encoding components of the apical, but not the basal-lateral trafficking machinery were increased during polarization. Coordinated expression of genes encoding components of functional cell structures were often observed indicating temporal control of expression and assembly of multiprotein complexes. PMID:17699590
Hunter, Chad S; Malik, Raleigh E; Witzmann, Frank A; Rhodes, Simon J
2013-01-01
LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex.
Witzmann, Frank A.; Rhodes, Simon J.
2013-01-01
LIM-homeodomain 3 (LHX3) is a transcription factor required for mammalian pituitary gland and nervous system development. Human patients and animal models with LHX3 gene mutations present with severe pediatric syndromes that feature hormone deficiencies and symptoms associated with nervous system dysfunction. The carboxyl terminus of the LHX3 protein is required for pituitary gene regulation, but the mechanism by which this domain operates is unknown. In order to better understand LHX3-dependent pituitary hormone gene transcription, we used biochemical and mass spectrometry approaches to identify and characterize proteins that interact with the LHX3 carboxyl terminus. This approach identified the LANP/pp32 and TAF-1β/SET proteins, which are components of the inhibitor of histone acetyltransferase (INHAT) multi-subunit complex that serves as a multifunctional repressor to inhibit histone acetylation and modulate chromatin structure. The protein domains of LANP and TAF-1β that interact with LHX3 were mapped using biochemical techniques. Chromatin immunoprecipitation experiments demonstrated that LANP and TAF-1β are associated with LHX3 target genes in pituitary cells, and experimental alterations of LANP and TAF-1β levels affected LHX3-mediated pituitary gene regulation. Together, these data suggest that transcriptional regulation of pituitary genes by LHX3 involves regulated interactions with the INHAT complex. PMID:23861948
The dual PH domain protein Opy1 functions as a sensor and modulator of PtdIns(4,5)P₂ synthesis.
Ling, Yading; Stefan, Christopher J; Macgurn, Jason A; Audhya, Anjon; Emr, Scott D
2012-06-29
Phosphatidylinositol-4,5-bisphosphate, PtdIns(4,5)P(2), is an essential signalling lipid that regulates key processes such as endocytosis, exocytosis, actin cytoskeletal organization and calcium signalling. Maintaining proper levels of PtdIns(4,5)P(2) at the plasma membrane (PM) is crucial for cell survival and growth. We show that the conserved PtdIns(4)P 5-kinase, Mss4, forms dynamic, oligomeric structures at the PM that we term PIK patches. The dynamic assembly and disassembly of Mss4 PIK patches may provide a mechanism to precisely modulate Mss4 kinase activity, as needed, for localized regulation of PtdIns(4,5)P(2) synthesis. Furthermore, we identify a tandem PH domain-containing protein, Opy1, as a novel Mss4-interacting protein that partially colocalizes with PIK patches. Based upon genetic, cell biological, and biochemical data, we propose that Opy1 functions as a coincidence detector of the Mss4 PtdIns(4)P 5-kinase and PtdIns(4,5)P(2) and serves as a negative regulator of PtdIns(4,5)P(2) synthesis at the PM. Our results also suggest that additional conserved tandem PH domain-containing proteins may play important roles in regulating phosphoinositide signalling.
Zhou, Hua-Lin; Luo, Guangbin; Wise, Jo Ann; Lou, Hua
2014-01-01
The molecular mechanisms through which alternative splicing and histone modifications regulate gene expression are now understood in considerable detail. Here, we discuss recent studies that connect these two previously separate avenues of investigation, beginning with the unexpected discoveries that nucleosomes are preferentially positioned over exons and DNA methylation and certain histone modifications also show exonic enrichment. These findings have profound implications linking chromatin structure, histone modification and splicing regulation. Complementary single gene studies provided insight into the mechanisms through which DNA methylation and histones modifications modulate alternative splicing patterns. Here, we review an emerging theme resulting from these studies: RNA-guided mechanisms integrating chromatin modification and splicing. Several groundbreaking papers reported that small noncoding RNAs affect alternative exon usage by targeting histone methyltransferase complexes to form localized facultative heterochromatin. More recent studies provided evidence that pre-messenger RNA itself can serve as a guide to enable precise alternative splicing regulation via local recruitment of histone-modifying enzymes, and emerging evidence points to a similar role for long noncoding RNAs. An exciting challenge for the future is to understand the impact of local modulation of transcription elongation rates on the dynamic interplay between histone modifications, alternative splicing and other processes occurring on chromatin. PMID:24081581
Prigent-Combaret, Claire; Zghidi-Abouzid, Ouafa; Effantin, Géraldine; Lejeune, Philippe; Reverchon, Sylvie; Nasser, William
2012-10-01
Bacteria use biofilm structures to colonize surfaces and to survive in hostile conditions, and numerous bacteria produce cellulose as a biofilm matrix polymer. Hence, expression of the bcs operon, responsible for cellulose biosynthesis, must be finely regulated in order to allow bacteria to adopt the proper surface-associated behaviours. Here we show that in the phytopathogenic bacterium, Dickeya dadantii, production of cellulose is required for pellicle-biofilm formation and resistance to chlorine treatments. Expression of the bcs operon is growth phase-regulated and is stimulated in biofilms. Furthermore, we unexpectedly found that the nucleoid-associated protein and global regulator of virulence functions, Fis, directly represses bcs operon expression by interacting with an operator that is absent from the bcs operon of animal pathogenic bacteria and the plant pathogenic bacterium Pectobacterium. Moreover, production of cellulose enhances plant surface colonization by D. dadantii. Overall, these data suggest that cellulose production and biofilm formation may be important factors for surface colonization by D. dadantii and its subsequent survival in hostile environments. This report also presents a new example of how bacteria can modulate the action of a global regulator to co-ordinate basic metabolism, virulence and modifications of lifestyle. © 2012 Blackwell Publishing Ltd.
Post-translational regulation of P2X receptor channels: modulation by phospholipids
Bernier, Louis-Philippe; Ase, Ariel R.; Séguéla, Philippe
2013-01-01
P2X receptor channels mediate fast excitatory signaling by ATP and play major roles in sensory transduction, neuro-immune communication and inflammatory response. P2X receptors constitute a gene family of calcium-permeable ATP-gated cation channels therefore the regulation of P2X signaling is critical for both membrane potential and intracellular calcium homeostasis. Phosphoinositides (PIPn) are anionic signaling phospholipids that act as functional regulators of many types of ion channels. Direct PIPn binding was demonstrated for several ligand- or voltage-gated ion channels, however no generic motif emerged to accurately predict lipid-protein binding sites. This review presents what is currently known about the modulation of the different P2X subtypes by phospholipids and about critical determinants underlying their sensitivity to PIPn levels in the plasma membrane. All functional mammalian P2X subtypes tested, with the notable exception of P2X5, have been shown to be positively modulated by PIPn, i.e., homomeric P2X1, P2X2, P2X3, P2X4, and P2X7, as well as heteromeric P2X1/5 and P2X2/3 receptors. Based on various results reported on the aforementioned subtypes including mutagenesis of the prototypical PIPn-sensitive P2X4 and PIPn-insensitive P2X5 receptor subtypes, an increasing amount of functional, biochemical and structural evidence converges on the modulatory role of a short polybasic domain located in the proximal C-terminus of P2X subunits. This linear motif, semi-conserved in the P2X family, seems necessary and sufficient for encoding direct modulation of ATP-gated channels by PIPn. Furthermore, the physiological impact of the regulation of ionotropic purinergic responses by phospholipids on pain pathways was recently revealed in the context of native crosstalks between phospholipase C (PLC)-linked metabotropic receptors and P2X receptor channels in dorsal root ganglion sensory neurons and microglia. PMID:24324400
Structural Insights into Central Hypertension Regulation by Human Aminopeptidase A*
Yang, Yang; Liu, Chang; Lin, Yi-Lun; Li, Fang
2013-01-01
Hypertension is regulated through both the central and systemic renin-angiotensin systems. In the central renin-angiotensin system, zinc-dependent aminopeptidase A (APA) up-regulates blood pressure by specifically cleaving the N-terminal aspartate, but not the adjacent arginine, from angiotensin II, a process facilitated by calcium. Here, we determined the crystal structures of human APA and its complexes with different ligands and identified a calcium-binding site in the S1 pocket of APA. Without calcium, the S1 pocket can bind both acidic and basic residues through formation of salt bridges with the charged side chains. In the presence of calcium, the binding of acidic residues is enhanced as they ligate the cation, whereas the binding of basic residues is no longer favorable due to charge repulsion. Of the peptidomimetic inhibitors of APA, amastatin has higher potency than bestatin by fitting better in the S1 pocket and interacting additionally with the S3′ subsite. These results explain the calcium-modulated substrate specificity of APA in central hypertension regulation and can guide the design and development of brain-targeting antihypertensive APA inhibitors. PMID:23888046
Structural insights into central hypertension regulation by human aminopeptidase A.
Yang, Yang; Liu, Chang; Lin, Yi-Lun; Li, Fang
2013-08-30
Hypertension is regulated through both the central and systemic renin-angiotensin systems. In the central renin-angiotensin system, zinc-dependent aminopeptidase A (APA) up-regulates blood pressure by specifically cleaving the N-terminal aspartate, but not the adjacent arginine, from angiotensin II, a process facilitated by calcium. Here, we determined the crystal structures of human APA and its complexes with different ligands and identified a calcium-binding site in the S1 pocket of APA. Without calcium, the S1 pocket can bind both acidic and basic residues through formation of salt bridges with the charged side chains. In the presence of calcium, the binding of acidic residues is enhanced as they ligate the cation, whereas the binding of basic residues is no longer favorable due to charge repulsion. Of the peptidomimetic inhibitors of APA, amastatin has higher potency than bestatin by fitting better in the S1 pocket and interacting additionally with the S3' subsite. These results explain the calcium-modulated substrate specificity of APA in central hypertension regulation and can guide the design and development of brain-targeting antihypertensive APA inhibitors.
Binding Leverage as a Molecular Basis for Allosteric Regulation
Mitternacht, Simon; Berezovsky, Igor N.
2011-01-01
Allosteric regulation involves conformational transitions or fluctuations between a few closely related states, caused by the binding of effector molecules. We introduce a quantity called binding leverage that measures the ability of a binding site to couple to the intrinsic motions of a protein. We use Monte Carlo simulations to generate potential binding sites and either normal modes or pairs of crystal structures to describe relevant motions. We analyze single catalytic domains and multimeric allosteric enzymes with complex regulation. For the majority of the analyzed proteins, we find that both catalytic and allosteric sites have high binding leverage. Furthermore, our analysis of the catabolite activator protein, which is allosteric without conformational change, shows that its regulation involves other types of motion than those modulated at sites with high binding leverage. Our results point to the importance of incorporating dynamic information when predicting functional sites. Because it is possible to calculate binding leverage from a single crystal structure it can be used for characterizing proteins of unknown function and predicting latent allosteric sites in any protein, with implications for drug design. PMID:21935347
The Novel Poly(A) Polymerase Star-PAP is a Signal-Regulated Switch at the 3′-end of mRNAs
Li, Weimin; Laishram, Rakesh S.; Anderson, Richard A.
2013-01-01
The mRNA 3′-untranslated region (3′-UTR) modulates message stability, transport, intracellular location and translation. We have discovered a novel nuclear poly(A) polymerase termed Star-PAP (nuclear speckle targeted PIPKIα regulated-poly(A) polymerase) that couples with the transcriptional machinery and is regulated by the phosphoinositide lipid messenger phosphatidylinositol-4,5-bisphosphate (PI4,5P2), the central lipid in phosphoinositide signaling. PI4,5P2 is generated primarily by type I phosphatidylinositol phosphate kinases (PIPKI). Phosphoinositides are present in the nucleus including at nuclear speckles compartments separate from known membrane structures. PIPKs regulate cellular functions by interacting with PI4,5P2 effectors where PIPKs generate PI4,5P2 that then modulates the activity of the associated effectors. Nuclear PIPKIα interacts with and regulates Star-PAP, and PI4,5P2 specifically activates Star-PAP in a gene- and signaling-dependent manner. Importantly, other select signaling molecules integrated into the Star-PAP complex seem to regulate Star-PAP activities and processivities toward RNA substrates, and unique sequence elements around the Star-PAP binding sites within the 3′-UTR of target genes contribute to Star-PAP specificity for processing. Therefore, Star-PAP and its regulatory molecules form a signaling nexus at the 3′-end of target mRNAs to control the expression of select group of genes including the ones involved in stress responses. PMID:23306079
Gao, Wei; Gou, Wangyan; Zhou, Xuemei; Ho, Johnny C; Ma, Yuanyuan; Qu, Yongquan
2018-01-17
The interface between electrolytes and electrocatalysts would largely determine their corresponding activity and stability. Herein, modulating the surface characteristics of NiMo nanoparticles by various adsorbed amines gives the tunability on their interfacial properties and subsequently improves their catalytic performance for hydrogen evolution reaction (HER) in alkaline solutions. Diamines can significantly improve their HER activity by decreasing the charge-transfer resistance and modulating the electronic structures of interfacial active sites. Importantly, among various amines, ethylenediamine facilitates the HER activity of NiMo with a remarkable decrease of 268 mV in the overpotential to reach 10 mA cm -2 as compared with that of the unmodified NiMo in 1.0 M KOH. This method provides a novel strategy of regulating the interfacial properties to strengthen the catalytic performance of electrocatalysts.
Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture*
Mauceri, Daniela; Hagenston, Anna M.; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar
2015-01-01
Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. PMID:26231212
Yu, Yanan; Zhang, Xiaoxu; Li, Bing; Zhang, Yingying; Liu, Jun; Li, Haixia; Chen, Yinying; Wang, Pengqian; Kang, Ruixia; Wu, Hongli
2016-01-01
Module-based network analysis of diverse pharmacological mechanisms is critical to systematically understand combination therapies and disease outcomes. We first constructed drug-target ischemic networks in baicalin, jasminoidin, ursodeoxycholic acid, and their combinations baicalin and jasminoidin as well as jasminoidin and ursodeoxycholic acid groups and identified modules using the entropy-based clustering algorithm. The modules 11, 7, 4, 8 and 3 were identified as baicalin, jasminoidin, ursodeoxycholic acid, baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid-emerged responsive modules, while 12, 8, 15, 17 and 9 were identified as disappeared responsive modules based on variation of topological similarity, respectively. No overlapping differential biological processes were enriched between baicalin and jasminoidin and jasminoidin and ursodeoxycholic acid pure emerged responsive modules, but two were enriched by their co-disappeared responsive modules including nucleotide-excision repair and epithelial structure maintenance. We found an additive effect of baicalin and jasminoidin in a divergent pattern and a synergistic effect of jasminoidin and ursodeoxycholic acid in a convergent pattern on “central hit strategy” of regulating inflammation against cerebral ischemia. The proposed module-based approach may provide us a holistic view to understand multiple pharmacological mechanisms associated with differential phenotypes from the standpoint of modular pharmacology. PMID:27480252
Findeisen, Felix; Minor, Daniel L
2010-12-08
Calcium-binding protein 1 (CaBP1), a calmodulin (CaM) homolog, endows certain voltage-gated calcium channels (Ca(V)s) with unusual properties. CaBP1 inhibits Ca(V)1.2 calcium-dependent inactivation (CDI) and introduces calcium-dependent facilitation (CDF). Here, we show that the ability of CaBP1 to inhibit Ca(V)1.2 CDI and induce CDF arises from interaction between the CaBP1 N-lobe and interlobe linker residue Glu94. Unlike CaM, where functional EF hands are essential for channel modulation, CDI inhibition does not require functional CaBP1 EF hands. Furthermore, CaBP1-mediated CDF has different molecular requirements than CaM-mediated CDF. Overall, the data show that CaBP1 comprises two structural modules having separate functions: similar to CaM, the CaBP1 C-lobe serves as a high-affinity anchor that binds the Ca(V)1.2 IQ domain at a site that overlaps with the Ca²+/CaM C-lobe site, whereas the N-lobe/linker module houses the elements required for channel modulation. Discovery of this division provides the framework for understanding how CaBP1 regulates Ca(V)s. Copyright © 2010 Elsevier Ltd. All rights reserved.
Findeisen, Felix; Minor, Daniel L.
2010-01-01
Calcium-binding protein 1 (CaBP1), a calmodulin (CaM) homolog, endows certain voltage-gated calcium channels (CaVs) with unusual properties. CaBP1 inhibits CaV1.2 calcium-dependent inactivation (CDI) and introduces calcium-dependent facilitation (CDF). Here, we show that the ability of CaBP1 to inhibit CaV1.2 CDI and induce CDF arises from interaction between the CaBP1 N-lobe and interlobe linker residue Glu94. Unlike CaM, where functional EF hands are essential for channel modulation, CDI inhibition does not require functional CaBP1 EF-hands. Furthermore, CaBP1-mediated CDF has different molecular requirements than CaM-mediated CDF. Overall, the data show that CaBP1 comprises two structural modules having separate functions: similar to CaM, the CaBP1 C-lobe serves as a high-affinity anchor that binds the CaV1.2 IQ domain at a site that overlaps with the Ca2+/CaM C-lobe site, whereas the N-lobe/linker module houses the elements required for channel modulation. Discovery of this division provides the framework for understanding how CaBP1 regulates CaVs. PMID:21134641
Stability and structural properties of gene regulation networks with coregulation rules.
Warrell, Jonathan; Mhlanga, Musa
2017-05-07
Coregulation of the expression of groups of genes has been extensively demonstrated empirically in bacterial and eukaryotic systems. Such coregulation can arise through the use of shared regulatory motifs, which allow the coordinated expression of modules (and module groups) of functionally related genes across the genome. Coregulation can also arise through the physical association of multi-gene complexes through chromosomal looping, which are then transcribed together. We present a general formalism for modeling coregulation rules in the framework of Random Boolean Networks (RBN), and develop specific models for transcription factor networks with modular structure (including module groups, and multi-input modules (MIM) with autoregulation) and multi-gene complexes (including hierarchical differentiation between multi-gene complex members). We develop a mean-field approach to analyse the dynamical stability of large networks incorporating coregulation, and show that autoregulated MIM and hierarchical gene-complex models can achieve greater stability than networks without coregulation whose rules have matching activation frequency. We provide further analysis of the stability of small networks of both kinds through simulations. We also characterize several general properties of the transients and attractors in the hierarchical coregulation model, and show using simulations that the steady-state distribution factorizes hierarchically as a Bayesian network in a Markov Jump Process analogue of the RBN model. Copyright © 2017. Published by Elsevier Ltd.
Stacey, David; Lourdusamy, Anbarasu; Ruggeri, Barbara; Maroteaux, Matthieu; Jia, Tianye; Cattrell, Anna; Nymberg, Charlotte; Banaschewski, Tobias; Bhattacharyya, Sohinee; Band, Hamid; Barker, Gareth; Bokde, Arun; Buchel, Christian; Carvalho, Fabiana; Conrod, Patricia; Desrivieres, Sylvane; Easton, Alanna; Fauth-Buehler, Mira; Fernandez-Medarde, Alberto; Flor, Herta; Frouin, Vincent; Gallinat, Jurgen; Garavanh, Hugh; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lawrence, Claire; Loth, Eva; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Rotter, Andrea; Santos, Eugenio; Smolka, Michael; Sommer, Wolfgang; Mameli, Manuel; Spanagel, Rainer; Girault, Jean-Antoine; Mueller, Christian; Schumann, Gunter
2016-04-01
The mesolimbic dopamine system, composed primarily of dopaminergic neurons in the ventral tegmental area that project to striatal structures, is considered to be the key mediator of reinforcement-related mechanisms in the brain. Prompted by a genome-wide association meta-analysis implicating the Ras-specific guanine nucleotide-releasing factor 2 (RASGRF2) gene in the regulation of alcohol intake in men, we have recently shown that male Rasgrf2(-/-) mice exhibit reduced ethanol intake and preference accompanied by a perturbed mesolimbic dopamine system. We therefore propose that these mice represent a valid model to further elucidate the precise genes and mechanisms regulating mesolimbic dopamine functioning. Transcriptomic data from the nucleus accumbens (NAcc) of male Rasgrf2(-/-) mice and wild-type controls were analyzed by weighted gene coexpression network analysis (WGCNA). We performed follow-up genetic association tests in humans using a sample of male adolescents from the IMAGEN study characterized for binge drinking (n = 905) and ventral striatal activation during an fMRI reward task (n = 608). The WGCNA analyses using accumbal transcriptomic data revealed 37 distinct "modules," or functionally related groups of genes. Two of these modules were significantly associated with Rasgrf2 knockout status: M5 (p < 0.001) and M6 (p < 0.001). In follow-up translational analyses we found that human orthologues for the M5 module were significantly (p < 0.01) enriched with genetic association signals for binge drinking in male adolescents. Furthermore, the most significant locus, originating from the EH-domain containing 4 (EHD4) gene (p < 0.001), was also significantly associated with altered ventral striatal activity in male adolescents performing an fMRI reward task (pempirical < 0.001). It was not possible to determine the extent to which the M5 module was dysregulated in Rasgrf2(-/-) mice by perturbed mesolimbic dopamine signalling or by the loss of Rasgrf2 function in the NAcc. Taken together, our findings indicate that the accumbal M5 module, initially identified as being dysregulated in male Rasgrf2(-/-) mice, is also relevant for human alcohol-related phenotypes potentially through the modulation of reinforcement mechanisms in the NAcc. We therefore propose that the genes comprising this module represent important candidates for further elucidation within the context of alcohol-related phenotypes.
Moreno-Beltrán, Blas; Guerra-Castellano, Alejandra; Del Conte, Rebecca; García-Mauriño, Sofía M.; Díaz-Moreno, Sofía; González-Arzola, Katiuska; Santos-Ocaña, Carlos; Velázquez-Campoy, Adrián; De la Rosa, Miguel A.; Turano, Paola; Díaz-Moreno, Irene
2017-01-01
Regulation of mitochondrial activity allows cells to adapt to changing conditions and to control oxidative stress, and its dysfunction can lead to hypoxia-dependent pathologies such as ischemia and cancer. Although cytochrome c phosphorylation—in particular, at tyrosine 48—is a key modulator of mitochondrial signaling, its action and molecular basis remain unknown. Here we mimic phosphorylation of cytochrome c by replacing tyrosine 48 with p-carboxy-methyl-l-phenylalanine (pCMF). The NMR structure of the resulting mutant reveals significant conformational shifts and enhanced dynamics around pCMF that could explain changes observed in its functionality: The phosphomimetic mutation impairs cytochrome c diffusion between respiratory complexes, enhances hemeprotein peroxidase and reactive oxygen species scavenging activities, and hinders caspase-dependent apoptosis. Our findings provide a framework to further investigate the modulation of mitochondrial activity by phosphorylated cytochrome c and to develop novel therapeutic approaches based on its prosurvival effects. PMID:28348229
Palytoxins and cytoskeleton: An overview.
Louzao, M Carmen; Ares, Isabel R; Cagide, Eva; Espiña, Begoña; Vilariño, Natalia; Alfonso, Amparo; Vieytes, Mercedes R; Botana, Luis M
2011-03-01
Cytoskeleton is a dynamic structure essential for a wide variety of normal cellular processes, including the maintenance of cell shape and morphology, volume regulation, membrane dynamics and signal transduction. Cytoskeleton is organized into microtubules, actin meshwork and intermediate filaments. Actin has been identified as a major target for destruction during apoptosis and is also important under pathological conditions such as cancers. Several natural compounds actively modulate actin organization by specific signaling cascades being useful tools to study cytoskeleton dynamics. Palytoxin is a large bioactive compound, first isolated from zoanthids, with a complex structure and different analogs such as ostreocin-D or ovatoxin-a. This toxin has been identified as a potent tumor promoter and cytotoxic molecule, which leads to actin filament distortion and triggers cell death or apoptosis. In this review we report the findings on the involvement of palytoxin and analogues modulating the actin cytoskeleton within different cellular models. Copyright © 2010 Elsevier Ltd. All rights reserved.
[Modulation of Kv4 channels by KChIPs clamping].
Cui, Yuan-Yuan; Wang, Ke-Wei
2009-01-01
The rapidly inactivating (A-type) potassium channels regulate membrane excitability that defines the fundamental mechanism of neuronal functions such as pain signaling. Cytosolic Kv channel-interacting proteins KChIPs co-assemble with Kv4 (Shal) alpha subunits to form a native complex. The specific binding of auxiliary KChIPs to the Kv4 N-terminus results in modulation of gating properties, surface expression and subunit assembly of Kv4 channels. Based on recent structural efforts, here we attempt to emphasize the interaction between KChIPs and Kv4 channel complex in which a single KChIP1 molecule laterally clamps two neighboring Kv4.3 N-termini in a 4:4 manner. Greater insights into molecular mechanism between KChIPs and Kv4 interaction may provide therapeutic potentials by structure-based design of chemical compounds aimed at disrupting the protein-protein interaction for treatment of membrane excitability-related disorders.
miR-132 Regulates Dendritic Spine Structure by Direct Targeting of Matrix Metalloproteinase 9 mRNA.
Jasińska, Magdalena; Miłek, Jacek; Cymerman, Iwona A; Łęski, Szymon; Kaczmarek, Leszek; Dziembowska, Magdalena
2016-09-01
Mir-132 is a neuronal activity-regulated microRNA that controls the morphology of dendritic spines and neuronal transmission. Similar activities have recently been attributed to matrix metalloproteinase-9 (MMP-9), an extrasynaptic protease. In the present study, we provide evidence that miR-132 directly regulates MMP-9 mRNA in neurons to modulate synaptic plasticity. With the use of luciferase reporter system, we show that miR-132 binds to the 3'UTR of MMP-9 mRNA to regulate its expression in neurons. The overexpression of miR-132 in neurons reduces the level of endogenous MMP-9 protein secretion. In synaptoneurosomes, metabotropic glutamate receptor (mGluR)-induced signaling stimulates the dissociation of miR-132 from polyribosomal fractions and shifts it towards the messenger ribonucleoprotein (mRNP)-containing fraction. Furthermore, we demonstrate that the overexpression of miR-132 in the cultured hippocampal neurons from Fmr1 KO mice that have increased synaptic MMP-9 level provokes enlargement of the dendritic spine heads, a process previously implicated in enhanced synaptic plasticity. We propose that activity-dependent miR-132 regulates structural plasticity of dendritic spines through matrix metalloproteinase 9.
[Principles of organization and evolution of systems of regulation of functions].
Veselkin, N P; Natochin, Iu V
2010-01-01
Evolution of living organisms is closely connected with evolution of structure of the system of regulations and its mechanisms. The functional ground of regulations is chemical signalization. As early as in unicellular organisms there is a set of signal mechanisms providing their life activity and orientation in space and time. Subsequent evolution of ways of chemical signalization followed the way of development of ways of delivery of chemical signal and development of mechanisms of its regulation. The mechanisms of chemical regulation of the signal interaction is discussed by the example of the specialized system of transduction of signal from neuron to neuron, of effect of hormone on the epithelial cell and modulation of this effect. These mechanisms are considered as the most important ways of the fine and precise adaptation of chemical signalization underlying functioning of physiological systems and organs of the living organism.
Lahr, Roni M; Mack, Seshat M; Héroux, Annie; Blagden, Sarah P; Bousquet-Antonelli, Cécile; Deragon, Jean-Marc; Berman, Andrea J
2015-09-18
La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. A putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. These studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Lahr, Roni M.; Mack, Seshat M.; Heroux, Annie; ...
2015-07-22
La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. Amore » putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. Ultimately, these studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis.« less
Picas, Laura; Rico, Félix; Deforet, Maxime; Scheuring, Simon
2013-02-26
The erythrocyte membrane, a metabolically regulated active structure that comprises lipid molecules, junctional complexes, and the spectrin network, enables the cell to undergo large passive deformations when passing through the microvascular system. Here we use atomic force microscopy (AFM) imaging and quantitative mechanical mapping at nanometer resolution to correlate structure and mechanics of key components of the erythrocyte membrane, crucial for cell integrity and function. Our data reveal structural and mechanical heterogeneity modulated by the metabolic state at unprecedented nanometer resolution. ATP-depletion, reducing skeletal junction phosphorylation in RBC cells, leads to membrane stiffening. Analysis of ghosts and shear-force opened erythrocytes show that, in the absence of cytosolic kinases, spectrin phosphorylation results in membrane stiffening at the extracellular face and a reduced junction remodeling in response to loading forces. Topography and mechanical mapping of single components at the cytoplasmic face reveal that, surprisingly, spectrin phosphorylation by ATP softens individual filaments. Our findings suggest that, besides the mechanical signature of each component, the RBC membrane mechanics is regulated by the metabolic state and the assembly of its structural elements.
ERIC Educational Resources Information Center
Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
These instructor materials for an aviation maintenance technology course contain three instructional modules. The modules cover the following topics: selecting and using regulations, publications, and records; documenting aircraft records; and exercising mechanic's privileges and limitations. Each module contains some or all of these nine basic…
Banerjee, Ruma; Zou, Cheng-Gang
2005-01-01
Cystathionine beta-synthase in mammals lies at a pivotal crossroad in methionine metabolism directing flux toward cysteine synthesis and catabolism. The enzyme exhibits a modular organization and complex regulation. It catalyzes the beta-replacement of the hydroxyl group of serine with the thiolate of homocysteine and is unique in being the only known pyridoxal phosphate-dependent enzyme that also contains heme b as a cofactor. The heme functions as a sensor and modulates enzyme activity in response to redox change and to CO binding. Mutations in this enzyme are the single most common cause of hereditary hyperhomocysteinemia. Elucidation of the crystal structure of a truncated and highly active form of the human enzyme containing the heme- and pyridoxal phosphate binding domains has afforded a structural perspective on mechanistic and mutation analysis studies. The C-terminal regulatory domain containing two CBS motifs exerts intrasteric regulation and binds the allosteric activator, S-adenosylmethionine. Studies with mammalian cells in culture as well as with animal models have unraveled multiple layers of regulation of cystathionine beta-synthase in response to redox perturbations and reveal the important role of this enzyme in glutathione-dependent redox homestasis. This review discusses the recent advances in our understanding of the structure, mechanism, and regulation of cystathionine beta-synthase from the perspective of its physiological function, focusing on the clinically relevant human enzyme.
Structure analysis of the global metabolic regulator Crc from Pseudomonas aeruginosa.
Wei, Yong; Zhang, Heng; Gao, Zeng-Qiang; Xu, Jian-Hua; Liu, Quan-Sheng; Dong, Yu-Hui
2013-01-01
The global metabolic regulator catabolite repression control (Crc) has recently been found to modulate the susceptibility to antibiotics and virulence in the opportunistic pathogen Pseudomonas aeruginosa and been suggested as a nonlethal target for novel antimicrobials. In P. aeruginosa, Crc couples with the CA motifs from the small RNA CrcZ to form a post-transcriptional regulator system and is removed from the 5'-end of the target mRNAs. In this study, we first reported the crystal structure of Crc from P. aeruginosa refined to 2.20 Å. The structure showed that it consists of two halves with similar overall topology and there are 11 β strands surrounded by 13 helices, forming a four-layered α/β-sandwich. The circular dichroism spectroscopy revealed that it is thermostable in solution and shares similar characteristics to that in crystal. Comprehensive structural analysis and comparison with the homologies of Crc showed high similarity with several known nucleases and consequently may be classified into a member exodeoxyribonuclease III. However, it shows distinct substrate specificity (RNA as the preferred substrate) compared to these DNA endonucleases. Structural comparisons also revealed potential RNA recognition and binding region mainly consisting of five flexible loops. Our structure study provided the basis for the future application of Crc as a target to develop new antibiotics. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.
Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex
Han, Yan; Luo, Jie; Ranish, Jeffrey; Hahn, Steven
2014-01-01
The conserved transcription coactivator SAGA is comprised of several modules that are involved in activator binding, TBP binding, histone acetylation (HAT) and deubiquitination (DUB). Crosslinking and mass spectrometry, together with genetic and biochemical analyses, were used to determine the molecular architecture of the SAGA-TBP complex. We find that the SAGA Taf and Taf-like subunits form a TFIID-like core complex at the center of SAGA that makes extensive interactions with all other SAGA modules. SAGA-TBP binding involves a network of interactions between subunits Spt3, Spt8, Spt20, and Spt7. The HAT and DUB modules are in close proximity, and the DUB module modestly stimulates HAT function. The large activator-binding subunit Tra1 primarily connects to the TFIID-like core via its FAT domain. These combined results were used to derive a model for the arrangement of the SAGA subunits and its interactions with TBP. Our results provide new insight into SAGA function in gene regulation, its structural similarity with TFIID, and functional interactions between the SAGA modules. PMID:25216679
Modulation of Tight Junction Structure and Function by Kinases and Phosphatases Targeting Occludin
Dörfel, Max Johannes; Huber, Otmar
2012-01-01
Tight junctions (TJs) typically represent the most apical contacts in epithelial and endothelial cell layers where they play an essential role in the separation of extracellular or luminal spaces from underlying tissues in the body. Depending on the protein composition, TJs define the barrier characteristics and in addition maintain cell polarity. Two major families of integral membrane proteins form the typical TJ strand network, the tight junction-associated MARVEL protein (TAMP) family members occludin, tricellulin, and MarvelD3 as well as a specific set of claudins. Occludin was the first identified member of these tetraspanins and is now widely accepted as a regulator of TJ assembly and function. Therefore, occludin itself has to be tightly regulated. Phosphorylation of occludin appears to be of central importance in this context. Here we want to summarize current knowledge on the kinases and phosphatases directly modifying occludin, and their role in the regulation of TJ structure, function, and dynamics. PMID:22315516
NASA Astrophysics Data System (ADS)
Menon, Govind; Krishnan, J.
2016-07-01
While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.
Menon, Govind; Krishnan, J
2016-07-21
While signalling and biochemical modules have been the focus of numerous studies, they are typically studied in isolation, with no examination of the effects of the ambient network. In this paper we formulate and develop a systems framework, rooted in dynamical systems, to understand such effects, by studying the interaction of signalling modules. The modules we consider are (i) basic covalent modification, (ii) monostable switches, (iii) bistable switches, (iv) adaptive modules, and (v) oscillatory modules. We systematically examine the interaction of these modules by analyzing (a) sequential interaction without shared components, (b) sequential interaction with shared components, and (c) oblique interactions. Our studies reveal that the behaviour of a module in isolation may be substantially different from that in a network, and explicitly demonstrate how the behaviour of a given module, the characteristics of the ambient network, and the possibility of shared components can result in new effects. Our global approach illuminates different aspects of the structure and functioning of modules, revealing the importance of dynamical characteristics as well as biochemical features; this provides a methodological platform for investigating the complexity of natural modules shaped by evolution, elucidating the effects of ambient networks on a module in multiple cellular contexts, and highlighting the capabilities and constraints for engineering robust synthetic modules. Overall, such a systems framework provides a platform for bridging the gap between non-linear information processing modules, in isolation and as parts of networks, and a basis for understanding new aspects of natural and engineered cellular networks.
Jeong, Byung-Cheon; Park, Si Hoon; Yoo, Kyoung Shin; Shin, Jeong Sheop; Song, Hyun Kyu
2013-07-01
Cystathionine β-synthase (CBS) domains are small intracellular modules that can act as binding domains for adenosine derivatives, and they may regulate the activity of associated enzymes or other functional domains. Among these, the single CBS domain-containing proteins, CBSXs, from Arabidopsis thaliana, have recently been identified as redox regulators of the thioredoxin system. Here, the crystal structure of CBSX2 in complex with adenosine monophosphate (AMP) is reported at 2.2Å resolution. The structure of dimeric CBSX2 with bound-AMP is shown to be approximately flat, which is in stark contrast to the bent form of apo-CBSXs. This conformational change in quaternary structure is triggered by a local structural change of the unique α5 helix, and by moving each loop P into an open conformation to accommodate incoming ligands. Furthermore, subtle rearrangement of the dimer interface triggers movement of all subunits, and consequently, the bent structure of the CBSX2 dimer becomes a flat structure. This reshaping of the structure upon complex formation with adenosine-containing ligand provides evidence that ligand-induced conformational reorganization of antiparallel CBS domains is an important regulatory mechanism. Copyright © 2013 Elsevier Inc. All rights reserved.
Architecture of the RNA polymerase II-Mediator core initiation complex.
Plaschka, C; Larivière, L; Wenzeck, L; Seizl, M; Hemann, M; Tegunov, D; Petrotchenko, E V; Borchers, C H; Baumeister, W; Herzog, F; Villa, E; Cramer, P
2015-02-19
The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 Å resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.
A model of clearance rate regulation in mussels
NASA Astrophysics Data System (ADS)
Fréchette, Marcel
2012-10-01
Clearance rate regulation has been modelled as an instantaneous response to food availability, independent of the internal state of the animals. This view is incompatible with latent effects during ontogeny and phenotypic flexibility in clearance rate. Internal-state regulation of clearance rate is required to account for these patterns. Here I develop a model of internal-state based regulation of clearance rate. External factors such as suspended sediments are included in the model. To assess the relative merits of instantaneous regulation and internal-state regulation, I modelled blue mussel clearance rate and growth using a DEB model. In the usual standard feeding module, feeding is governed by a Holling's Type II response to food concentration. In the internal-state feeding module, gill ciliary activity and thus clearance rate are driven by internal reserve level. Factors such as suspended sediments were not included in the simulations. The two feeding modules were compared on the basis of their ability to capture the impact of latent effects, of environmental heterogeneity in food abundance and of physiological flexibility on clearance rate and individual growth. The Holling feeding module was unable to capture the effect of any of these sources of variability. In contrast, the internal-state feeding module did so without any modification or ad hoc calibration. Latent effects, however, appeared transient. With simple annual variability in temperature and food concentration, the relationship between clearance rate and food availability predicted by the internal-state feeding module was quite similar to that observed in Norwegian fjords. I conclude that in contrast with the usual Holling feeding module, internal-state regulation of clearance rate is consistent with well-documented growth and clearance rate patterns.
Non-degradative Ubiquitination of Protein Kinases
Ball, K. Aurelia; Johnson, Jeffrey R.; Lewinski, Mary K.; Guatelli, John; Verschueren, Erik; Krogan, Nevan J.; Jacobson, Matthew P.
2016-01-01
Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well. PMID:27253329
Kotaka, Masayo; Johnson, Christopher; Lamb, Heather K; Hawkins, Alastair R; Ren, Jingshan; Stammers, David K
2008-08-29
Amongst the most common protein motifs in eukaryotes are zinc fingers (ZFs), which, although largely known as DNA binding modules, also can have additional important regulatory roles in forming protein:protein interactions. AreA is a transcriptional activator central to nitrogen metabolism in Aspergillus nidulans. AreA contains a GATA-type ZF that has a competing dual recognition function, binding either DNA or the negative regulator NmrA. We report the crystal structures of three AreA ZF-NmrA complexes including two with bound NAD(+) or NADP(+). The molecular recognition of AreA ZF-NmrA involves binding of the ZF to NmrA via hydrophobic and hydrogen bonding interactions through helices alpha1, alpha6 and alpha11. Comparison with an earlier NMR solution structure of AreA ZF-DNA complex by overlap of the AreA ZFs shows that parts of helices alpha6 and alpha11 of NmrA are positioned close to the GATA motif of the DNA, mimicking the major groove of DNA. The extensive overlap of DNA with NmrA explains their mutually exclusive binding to the AreA ZF. The presence of bound NAD(+)/NADP(+) in the NmrA-AreaA ZF complex, however, causes minimal structural changes. Thus, any regulatory effects on AreA function mediated by the binding of oxidised nicotinamide dinucleotides to NmrA in the NmrA-AreA ZF complex appear not to be modulated via protein conformational rearrangements.
Fasanaro, Pasquale; D'Alessandra, Yuri; Di Stefano, Valeria; Melchionna, Roberta; Romani, Sveva; Pompilio, Giulio; Capogrossi, Maurizio C.; Martelli, Fabio
2008-01-01
MicroRNAs (miRNAs) are small non-protein-coding RNAs that function as negative gene expression regulators. In the present study, we investigated miRNAs role in endothelial cell response to hypoxia. We found that the expression of miR-210 progressively increased upon exposure to hypoxia. miR-210 overexpression in normoxic endothelial cells stimulated the formation of capillary-like structures on Matrigel and vascular endothelial growth factor-driven cell migration. Conversely, miR-210 blockade via anti-miRNA transfection inhibited the formation of capillary-like structures stimulated by hypoxia and decreased cell migration in response to vascular endothelial growth factor. miR-210 overexpression did not affect endothelial cell growth in both normoxia and hypoxia. However, anti-miR-210 transfection inhibited cell growth and induced apoptosis, in both normoxia and hypoxia. We determined that one relevant target of miR-210 in hypoxia was Ephrin-A3 since miR-210 was necessary and sufficient to down-modulate its expression. Moreover, luciferase reporter assays showed that Ephrin-A3 was a direct target of miR-210. Ephrin-A3 modulation by miR-210 had significant functional consequences; indeed, the expression of an Ephrin-A3 allele that is not targeted by miR-210 prevented miR-210-mediated stimulation of both tubulogenesis and chemotaxis. We conclude that miR-210 up-regulation is a crucial element of endothelial cell response to hypoxia, affecting cell survival, migration, and differentiation. PMID:18417479
Barillot, Romain; Chambon, Camille; Andrieu, Bruno
2016-01-01
Background and Aims Improving crops requires better linking of traits and metabolic processes to whole plant performance. In this paper, we present CN-Wheat, a comprehensive and mechanistic model of carbon (C) and nitrogen (N) metabolism within wheat culms after anthesis. Methods The culm is described by modules that represent the roots, photosynthetic organs and grains. Each of them includes structural, storage and mobile materials. Fluxes of C and N among modules occur through a common pool and through transpiration flow. Metabolite variations are represented by differential equations that depend on the physiological processes occurring in each module. A challenging aspect of CN-Wheat lies in the regulation of these processes by metabolite concentrations and the environment perceived by organs. Key Results CN-Wheat simulates the distribution of C and N into wheat culms in relation to photosynthesis, N uptake, metabolite turnover, root exudation and tissue death. Regulation of physiological activities by local concentrations of metabolites appears to be a valuable feature for understanding how the behaviour of the whole plant can emerge from local rules. Conclusions The originality of CN-Wheat is that it proposes an integrated view of plant functioning based on a mechanistic approach. The formalization of each process can be further refined in the future as knowledge progresses. This approach is expected to strengthen our capacity to understand plant responses to their environment and investigate plant traits adapted to changes in agronomical practices or environmental conditions. A companion paper will evaluate the model. PMID:27497242
Lirussi, Lisa; Antoniali, Giulia; Vascotto, Carlo; D'Ambrosio, Chiara; Poletto, Mattia; Romanello, Milena; Marasco, Daniela; Leone, Marilisa; Quadrifoglio, Franco; Bhakat, Kishor K.; Scaloni, Andrea; Tell, Gianluca
2012-01-01
Apurinic/apyrimidinic endonuclease 1 (APE1) is the main abasic endonuclease in the base excision repair (BER) pathway of DNA lesions caused by oxidation/alkylation in mammalian cells; within nucleoli it interacts with nucleophosmin and rRNA through N-terminal Lys residues, some of which (K27/K31/K32/K35) may undergo acetylation in vivo. Here we study the functional role of these modifications during genotoxic damage and their in vivo relevance. We demonstrate that cells expressing a specific K-to-A multiple mutant are APE1 nucleolar deficient and are more resistant to genotoxic treatment than those expressing the wild type, although they show impaired proliferation. Of interest, we find that genotoxic treatment induces acetylation at these K residues. We also find that the charged status of K27/K31/K32/K35 modulates acetylation at K6/K7 residues that are known to be involved in the coordination of BER activity through a mechanism regulated by the sirtuin 1 deacetylase. Of note, structural studies show that acetylation at K27/K31/K32/K35 may account for local conformational changes on APE1 protein structure. These results highlight the emerging role of acetylation of critical Lys residues in regulating APE1 functions. They also suggest the existence of cross-talk between different Lys residues of APE1 occurring upon genotoxic damage, which may modulate APE1 subnuclear distribution and enzymatic activity in vivo. PMID:22918947
Gourévitch, Boris; Mellen, Nicholas
2014-09-01
In vertebrates, respiratory control is ascribed to heterogeneous respiration-modulated neurons along the Ventral Respiratory Column (VRC) in medulla, which includes the preBötzinger Complex (preBötC), the putative respiratory rhythm generator. Here, the functional anatomy of the VRC was characterized via optical recordings in the sagittaly sectioned neonate rat hindbrain, at sampling rates permitting coupling estimation between neuron pairs, so that each neuron was described using unitary, neuron-system, and coupling attributes. Structured coupling relations in local networks, significantly oriented coupling in the peri-inspiratory interval detected in pooled data, and significant correlations between firing rate and expiratory duration in subsets of neurons revealed network regulation at multiple timescales. Spatially averaged neuronal attributes, including coupling vectors, revealed a sharp boundary at the rostral margin of the preBötC, as well as other functional anatomical features congruent with identified structures, including the parafacial respiratory group and the nucleus ambiguus. Cluster analysis of attributes identified two spatially compact, homogenous groups: the first overlapped with the preBötC, and was characterized by strong respiratory modulation and dense bidirectional coupling with itself and other groups, consistent with a central role for the preBötC in respiratory control; the second lay between preBötC and the facial nucleus, and was characterized by weak respiratory modulation and weak coupling with other respiratory neurons, which is congruent with cardiovascular regulatory networks that are found in this region. Other groups identified using cluster analysis suggested that networks along VRC regulated expiratory duration, and the transition to and from inspiration, but these groups were heterogeneous and anatomically dispersed. Thus, by recording local networks in parallel, this study found evidence for respiratory regulation at multiple timescales along the VRC, as well as a role for the preBötC in the integration of functionally disparate respiratory neurons. Copyright © 2014 Elsevier Inc. All rights reserved.
Weidmann, Chase A; Qiu, Chen; Arvola, René M; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T; Tanaka Hall, Traci M; Goldstrohm, Aaron C
2016-08-02
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.
Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology.
Kiang, J G; Tsokos, G C
1998-11-01
Heat shock proteins (HSPs) are detected in all cells, prokaryotic and eukaryotic. In vivo and in vitro studies have shown that various stressors transiently increase production of HSPs as protection against harmful insults. Increased levels of HSPs occur after environmental stresses, infection, normal physiological processes, and gene transfer. Although the mechanisms by which HSPs protect cells are not clearly understood, their expression can be modulated by cell signal transducers, such as changes in intracellular pH, cyclic AMP, Ca2+, Na+, inositol trisphosphate, protein kinase C, and protein phosphatases. Most of the HSPs interact with other proteins in cells and alter their function. These and other protein-protein interactions may mediate the little understood effects of HSPs on various cell functions. In this review, we focus on the structure of the HSP-70 family (HSP-70s), regulation of HSP-70 gene expression, their cytoprotective effects, and the possibility of regulating HSP-70 expression through modulation of signal transduction pathways. The clinical importance and therapeutic potential of HSPs are discussed.
Fernando, Thilini; Flibotte, Stephane; Xiong, Sheng; Yin, Jianghua; Yzeiraj, Edlira; Moerman, Donald G.; Meléndez, Alicia; Savage-Dunn, Cathy
2011-01-01
Organismal growth and body size are influenced by both genetic and environmental factors. We have utilized the strong molecular genetic techniques available in the nematode C. elegans to identify genetic determinants of body size. In C. elegans, DBL-1, a member of the conserved family of secreted growth factors known as the Transforming Growth Factor β superfamily, is known to play a major role in growth control. The mechanisms by which other determinants of body size function, however, is less well understood. To identify additional genes involved in body size regulation, a genetic screen for small mutants was previously performed. One of the genes identified in that screen was sma-21. We now demonstrate that sma-21 encodes ADT-2, a member of the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family of secreted metalloproteases. ADAMTS proteins are believed to remodel the extracellular matrix and may modulate the activity of extracellular signals. Genetic interactions suggest that ADT-2 acts in parallel with or in multiple size regulatory pathways. We demonstrate that ADT-2 is required for normal levels of expression of a DBL-1-responsive transcriptional reporter. We further demonstrate that adt-2 regulatory sequences drive expression in glial-like and vulval cells, and that ADT-2 activity is required for normal cuticle collagen fibril organization. We therefore propose that ADT-2 regulates body size both by modulating TGFβ signaling activity and by maintaining normal cuticle structure. PMID:21256840
The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast
Sanz, Ana Belén; García, Raúl; Rodríguez-Peña, José M.; Arroyo, Javier
2017-01-01
Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI) pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies. PMID:29371494
The Hedgehog Signal Transduction Network
Robbins, David J.; Fei, Dennis Liang; Riobo, Natalia A.
2013-01-01
Hedgehog (Hh) proteins regulate the development of a wide range of metazoan embryonic and adult structures, and disruption of Hh signaling pathways results in various human diseases. Here, we provide a comprehensive review of the signaling pathways regulated by Hh, consolidating data from a diverse array of organisms in a variety of scientific disciplines. Similar to the elucidation of many other signaling pathways, our knowledge of Hh signaling developed in a sequential manner centered on its earliest discoveries. Thus, our knowledge of Hh signaling has for the most part focused on elucidating the mechanism by which Hh regulates the Gli family of transcription factors, the so-called “canonical” Hh signaling pathway. However, in the past few years, numerous studies have shown that Hh proteins can also signal through Gli-independent mechanisms collectively referred to as “noncanonical” signaling pathways. Noncanonical Hh signaling is itself subdivided into two distinct signaling modules: (i) those not requiring Smoothened (Smo) and (ii) those downstream of Smo that do not require Gli transcription factors. Thus, Hh signaling is now proposed to occur through a variety of distinct context-dependent signaling modules that have the ability to crosstalk with one another to form an interacting, dynamic Hh signaling network. PMID:23074268
Functional metabolomics as a tool to analyze Mediator function and structure in plants.
Davoine, Celine; Abreu, Ilka N; Khajeh, Khalil; Blomberg, Jeanette; Kidd, Brendan N; Kazan, Kemal; Schenk, Peer M; Gerber, Lorenz; Nilsson, Ove; Moritz, Thomas; Björklund, Stefan
2017-01-01
Mediator is a multiprotein transcriptional co-regulator complex composed of four modules; Head, Middle, Tail, and Kinase. It conveys signals from promoter-bound transcriptional regulators to RNA polymerase II and thus plays an essential role in eukaryotic gene regulation. We describe subunit localization and activities of Mediator in Arabidopsis through metabolome and transcriptome analyses from a set of Mediator mutants. Functional metabolomic analysis based on the metabolite profiles of Mediator mutants using multivariate statistical analysis and heat-map visualization shows that different subunit mutants display distinct metabolite profiles, which cluster according to the reported localization of the corresponding subunits in yeast. Based on these results, we suggest localization of previously unassigned plant Mediator subunits to specific modules. We also describe novel roles for individual subunits in development, and demonstrate changes in gene expression patterns and specific metabolite levels in med18 and med25, which can explain their phenotypes. We find that med18 displays levels of phytoalexins normally found in wild type plants only after exposure to pathogens. Our results indicate that different Mediator subunits are involved in specific signaling pathways that control developmental processes and tolerance to pathogen infections.
Social molecular pathways and the evolution of bee societies
Bloch, Guy; Grozinger, Christina M.
2011-01-01
Bees provide an excellent model with which to study the neuronal and molecular modifications associated with the evolution of sociality because relatively closely related species differ profoundly in social behaviour, from solitary to highly social. The recent development of powerful genomic tools and resources has set the stage for studying the social behaviour of bees in molecular terms. We review ‘ground plan’ and ‘genetic toolkit’ models which hypothesize that discrete pathways or sets of genes that regulate fundamental behavioural and physiological processes in solitary species have been co-opted to regulate complex social behaviours in social species. We further develop these models and propose that these conserved pathways and genes may be incorporated into ‘social pathways’, which consist of relatively independent modules involved in social signal detection, integration and processing within the nervous and endocrine systems, and subsequent behavioural outputs. Modifications within modules or in their connections result in the evolution of novel behavioural patterns. We describe how the evolution of pheromonal regulation of social pathways may lead to the expression of behaviour under new social contexts, and review plasticity in circadian rhythms as an example for a social pathway with a modular structure. PMID:21690132
USDA-ARS?s Scientific Manuscript database
The foot-and-mouth disease virus (FMDV) contains a 5’ untranslated region (5’UTR) with multiple structural domains that regulate viral genome replication, translation, and virus-host interactions. At its 5’terminus, the S fragment of over 360 bp is predicted to form a stable stem-loop that is separ...
van der Meer-van Kraaij, Cindy; Siezen, Roland; Kramer, Evelien; Reinders, Marjolein; Blokzijl, Hans; van der Meer, Roelof
2007-01-01
Mucosal pentraxin (Mptx), identified in rats, is a short pentraxin of unknown function. Other subfamily members are Serum amyloid P component (SAP), C-reactive protein (CRP) and Jeltraxin. Rat Mptx mRNA is predominantly expressed in colon and in vivo is strongly (30-fold) regulated by dietary heme and calcium, modulators of colon cancer risk. This renders Mptx a potential nutrient sensitive biomarker of gut health. To support a role as biomarker, we examined whether the pentraxin protein structure is conserved, whether Mptx protein is nutrient-sensitively expressed and whether Mptx is expressed in mouse and human. Sequence comparison and 3D modelling showed that rat Mptx is highly homologous to the other pentraxins. The calcium-binding site and subunit interaction sites are highly conserved, while a loop deletion and charged residues contribute to a distinctive “top” face of the pentamer. In accordance with mRNA expression, Mptx protein is strongly down-regulated in rat colon mucosa in response to high dietary heme intake. Mptx mRNA is expressed in rat and mouse colon, but not in human colon. A stop codon at the beginning of human exon two indicates loss of function, which may be related to differences in intestinal cell turnover between man and rodents. PMID:18850182
E-type cyclins modulate telomere integrity in mammalian male meiosis.
Manterola, Marcia; Sicinski, Piotr; Wolgemuth, Debra J
2016-06-01
We have shown that E-type cyclins are key regulators of mammalian male meiosis. Depletion of cyclin E2 reduced fertility in male mice due to meiotic defects, involving abnormal pairing and synapsis, unrepaired DNA, and loss of telomere structure. These defects were exacerbated by additional loss of cyclin E1, and complete absence of both E-type cyclins produces a meiotic catastrophe. Here, we investigated the involvement of E-type cyclins in maintaining telomere integrity in male meiosis. Spermatocytes lacking cyclin E2 and one E1 allele (E1+/-E2-/-) displayed a high rate of telomere abnormalities but can progress to pachytene and diplotene stages. We show that their telomeres exhibited an aberrant DNA damage repair response during pachynema and that the shelterin complex proteins TRF2 and RAP2 were significantly decreased in the proximal telomeres. Moreover, the insufficient level of these proteins correlated with an increase of γ-H2AX foci in the affected telomeres and resulted in telomere associations involving TRF1 and telomere detachment in later prophase-I stages. These results suggest that E-type cyclins are key modulators of telomere integrity during meiosis by, at least in part, maintaining the balance of shelterin complex proteins, and uncover a novel role of E-type cyclins in regulating chromosome structure during male meiosis.
Nguyen, Tuong-Vi; McCracken, James T; Albaugh, Matthew D; Botteron, Kelly N.; Hudziak, James J; Ducharme, Simon
2015-01-01
Structural covariance, the examination of anatomic correlations between brain regions, has emerged recently as a valid and useful measure of developmental brain changes. Yet the exact biological processes leading to changes in covariance, and the relation between such covariance and behavior, remain largely unexplored. The steroid hormone testosterone represents a compelling mechanism through which this structural covariance may be developmentally regulated in humans. Although steroid hormone receptors can be found throughout the central nervous system, the amygdala represents a key target for testosterone-specific effects, given its high density of androgen receptors. In addition, testosterone has been found to impact cortical thickness (CTh) across the whole brain, suggesting that it may also regulate the structural relationship, or covariance, between the amygdala and CTh. Here we examined testosterone-related covariance between amygdala volumes and whole-brain CTh, as well as its relationship to aggression levels, in a longitudinal sample of children, adolescents, and young adults 6 to 22 years old. We found: (1) testosterone-specific modulation of the covariance between the amygdala and medial prefrontal cortex (mPFC); (2) a significant relationship between amygdala-mPFC covariance and levels of aggression; and (3) mediation effects of amygdala-mPFC covariance on the relationship between testosterone and aggression. These effects were independent of sex, age, pubertal stage, estradiol levels and anxious-depressed symptoms. These findings are consistent with prior evidence that testosterone targets the neural circuits regulating affect and impulse regulation, and show, for the first time in humans, how androgen-dependent organizational effects may regulate a very specific, aggression-related structural brain phenotype from childhood to young adulthood. PMID:26431805
Nguyen, Tuong-Vi; McCracken, James T; Albaugh, Matthew D; Botteron, Kelly N; Hudziak, James J; Ducharme, Simon
2016-01-01
Structural covariance, the examination of anatomic correlations between brain regions, has emerged recently as a valid and useful measure of developmental brain changes. Yet the exact biological processes leading to changes in covariance, and the relation between such covariance and behavior, remain largely unexplored. The steroid hormone testosterone represents a compelling mechanism through which this structural covariance may be developmentally regulated in humans. Although steroid hormone receptors can be found throughout the central nervous system, the amygdala represents a key target for testosterone-specific effects, given its high density of androgen receptors. In addition, testosterone has been found to impact cortical thickness (CTh) across the whole brain, suggesting that it may also regulate the structural relationship, or covariance, between the amygdala and CTh. Here, we examined testosterone-related covariance between amygdala volumes and whole-brain CTh, as well as its relationship to aggression levels, in a longitudinal sample of children, adolescents, and young adults 6-22 years old. We found: (1) testosterone-specific modulation of the covariance between the amygdala and medial prefrontal cortex (mPFC); (2) a significant relationship between amygdala-mPFC covariance and levels of aggression; and (3) mediation effects of amygdala-mPFC covariance on the relationship between testosterone and aggression. These effects were independent of sex, age, pubertal stage, estradiol levels and anxious-depressed symptoms. These findings are consistent with prior evidence that testosterone targets the neural circuits regulating affect and impulse regulation, and show, for the first time in humans, how androgen-dependent organizational effects may regulate a very specific, aggression-related structural brain phenotype from childhood to young adulthood. Copyright © 2015 Elsevier Ltd. All rights reserved.
Structure of Rot, a global regulator of virulence genes in Staphylococcus aureus.
Zhu, Yuwei; Fan, Xiaojiao; Zhang, Xu; Jiang, Xuguang; Niu, Liwen; Teng, Maikun; Li, Xu
2014-09-01
Staphylococcus aureus is a highly versatile pathogen that can infect human tissue by producing a large arsenal of virulence factors that are tightly regulated by a complex regulatory network. Rot, which shares sequence similarity with SarA homologues, is a global regulator that regulates numerous virulence genes. However, the recognition model of Rot for the promoter region of target genes and the putative regulation mechanism remain elusive. In this study, the 1.77 Å resolution X-ray crystal structure of Rot is reported. The structure reveals that two Rot molecules form a compact homodimer, each of which contains a typical helix-turn-helix module and a β-hairpin motif connected by a flexible loop. Fluorescence polarization results indicate that Rot preferentially recognizes AT-rich dsDNA with ~30-base-pair nucleotides and that the conserved positively charged residues on the winged-helix motif are vital for binding to the AT-rich dsDNA. It is proposed that the DNA-recognition model of Rot may be similar to that of SarA, SarR and SarS, in which the helix-turn-helix motifs of each monomer interact with the major grooves of target dsDNA and the winged motifs contact the minor grooves. Interestingly, the structure shows that Rot adopts a novel dimerization model that differs from that of other SarA homologues. As expected, perturbation of the dimer interface abolishes the dsDNA-binding ability of Rot, suggesting that Rot functions as a dimer. In addition, the results have been further confirmed in vivo by measuring the transcriptional regulation of α-toxin, a major virulence factor produced by most S. aureus strains.
Regulation, Signaling, and Physiological Functions of G-Proteins.
Syrovatkina, Viktoriya; Alegre, Kamela O; Dey, Raja; Huang, Xin-Yun
2016-09-25
Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators. Copyright © 2016 Elsevier Ltd. All rights reserved.
Johnson, Michael R.; Rossetti, Tiziana; Speed, Doug; Srivastava, Prashant K.; Chadeau-Hyam, Marc; Hajji, Nabil; Dabrowska, Aleksandra; Rotival, Maxime; Razzaghi, Banafsheh; Kovac, Stjepana; Wanisch, Klaus; Grillo, Federico W.; Slaviero, Anna; Langley, Sarah R.; Shkura, Kirill; Roncon, Paolo; De, Tisham; Mattheisen, Manuel; Niehusmann, Pitt; O’Brien, Terence J.; Petrovski, Slave; von Lehe, Marec; Hoffmann, Per; Eriksson, Johan; Coffey, Alison J.; Cichon, Sven; Walker, Matthew; Simonato, Michele; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Schoch, Susanne; De Paola, Vincenzo; Kaminski, Rafal M.; Cunliffe, Vincent T.; Becker, Albert J.; Petretto, Enrico
2015-01-01
Gene-regulatory network analysis is a powerful approach to elucidate the molecular processes and pathways underlying complex disease. Here we employ systems genetics approaches to characterize the genetic regulation of pathophysiological pathways in human temporal lobe epilepsy (TLE). Using surgically acquired hippocampi from 129 TLE patients, we identify a gene-regulatory network genetically associated with epilepsy that contains a specialized, highly expressed transcriptional module encoding proconvulsive cytokines and Toll-like receptor signalling genes. RNA sequencing analysis in a mouse model of TLE using 100 epileptic and 100 control hippocampi shows the proconvulsive module is preserved across-species, specific to the epileptic hippocampus and upregulated in chronic epilepsy. In the TLE patients, we map the trans-acting genetic control of this proconvulsive module to Sestrin 3 (SESN3), and demonstrate that SESN3 positively regulates the module in macrophages, microglia and neurons. Morpholino-mediated Sesn3 knockdown in zebrafish confirms the regulation of the transcriptional module, and attenuates chemically induced behavioural seizures in vivo. PMID:25615886
A Review on Structures and Functions of Bcl-2 Family Proteins from Homo sapiens.
Sivakumar, Dakshinamurthy; Sivaraman, Thirunavukkarasu
2016-01-01
Cancer cells evade apoptosis, which is regulated by proteins of Bcl-2 family in the intrinsic pathways. Numerous experimental three-dimensional (3D) structures of the apoptotic proteins and the proteins bound with small chemical molecules/peptides/proteins have been reported in the literature. In this review article, the 3D structures of the Bcl-2 family proteins from Homo sapiens and as well complex structures of the anti-apoptotic proteins bound with small molecular inhibitors reported in the literature to date have been comprehensively listed out and described in detail. Moreover, the molecular mechanisms by which the Bcl-2 family proteins modulate the apoptotic processes and strategies for designing antagonists to anti-apoptotic proteins have been concisely discussed.
Amyloid Precursor Protein Translation Is Regulated by a 3’UTR Guanine Quadruplex
Sharoni, Michal; Olson, Kalee; Sebastian, Neeraj P.; Ansaloni, Sara; Schweitzer-Stenner, Reinhard; Akins, Michael R.; Bevilacqua, Philip C.; Saunders, Aleister J.
2015-01-01
A central event in Alzheimer’s disease is the accumulation of amyloid β (Aβ) peptides generated by the proteolytic cleavage of the amyloid precursor protein (APP). APP overexpression leads to increased Aβ generation and Alzheimer’s disease in humans and altered neuronal migration and increased long term depression in mice. Conversely, reduction of APP expression results in decreased Aβ levels in mice as well as impaired learning and memory and decreased numbers of dendritic spines. Together these findings indicate that therapeutic interventions that aim to restore APP and Aβ levels must do so within an ideal range. To better understand the effects of modulating APP levels, we explored the mechanisms regulating APP expression focusing on post-transcriptional regulation. Such regulation can be mediated by RNA regulatory elements such as guanine quadruplexes (G-quadruplexes), non-canonical structured RNA motifs that affect RNA stability and translation. Via a bioinformatics approach, we identified a candidate G-quadruplex within the APP mRNA in its 3’UTR (untranslated region) at residues 3008–3027 (NM_201414.2). This sequence exhibited characteristics of a parallel G-quadruplex structure as revealed by circular dichroism spectrophotometry. Further, as with other G-quadruplexes, the formation of this structure was dependent on the presence of potassium ions. This G-quadruplex has no apparent role in regulating transcription or mRNA stability as wild type and mutant constructs exhibited equivalent mRNA levels as determined by real time PCR. Instead, we demonstrate that this G-quadruplex negatively regulates APP protein expression using dual luciferase reporter and Western blot analysis. Taken together, our studies reveal post-transcriptional regulation by a 3’UTR G-quadruplex as a novel mechanism regulating APP expression. PMID:26618502
Environmental-stress-induced Chromatin Regulation and its Heritability
Fang, Lei; Wuptra, Kenly; Chen, Danqi; Li, Hongjie; Huang, Shau-Ku; Jin, Chunyuan; Yokoyama, Kazunari K
2014-01-01
Chromatin is subject to proofreading and repair mechanisms during the process of DNA replication, as well as repair to maintain genetic and epigenetic information and genome stability. The dynamic structure of chromatin modulates various nuclear processes, including transcription and replication, by altering the accessibility of the DNA to regulatory factors. Structural changes in chromatin are affected by the chemical modification of histone proteins and DNA, remodeling of nucleosomes, incorporation of variant histones, noncoding RNAs, and nonhistone DNA-binding proteins. Phenotypic diversity and fidelity can be balanced by controlling stochastic switching of chromatin structure and dynamics in response to the environmental disruptors and endogenous stresses. The dynamic chromatin remodeling can, therefore, serve as a sensor, through which environmental and/or metabolic agents can alter gene expression, leading to global cellular changes involving multiple interactive networks. Furthermore its recent evidence also suggests that the epigenetic changes are heritable during the development. This review will discuss the environmental sensing system for chromatin regulation and genetic and epigenetic controls from developmental perspectives. PMID:25045581
Regulation of Synaptic Structure by the Ubiquitin C-terminal Hydrolase UCH-L1
Cartier, Anna E.; Djakovic, Stevan N.; Salehi, Afshin; Wilson, Scott M.; Masliah, Eliezer; Patrick, Gentry N.
2009-01-01
UCH-L1 is a de-ubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We have found that UCH-L1 activity is rapidly up-regulated by NMDA receptor activation which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of pre and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1 inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner. PMID:19535597
Regulation of proteasomal degradation by modulating proteasomal initiation regions
Takahashi, Kazunobu; Matouschek, Andreas; Inobe, Tomonao
2016-01-01
Methods for regulating the concentrations of specific cellular proteins are valuable tools for biomedical studies. Artificial regulation of protein degradation by the proteasome is receiving increasing attention. Efficient proteasomal protein degradation requires a degron with two components: a ubiquitin tag that is recognized by the proteasome and a disordered region at which the proteasome engages the substrate and initiates degradation. Here we show that degradation rates can be regulated by modulating the disordered initiation region by the binding of modifier molecules, in vitro and in vivo. These results suggest that artificial modulation of proteasome initiation is a versatile method for conditionally inhibiting the proteasomal degradation of specific proteins. PMID:26278914
NASA Astrophysics Data System (ADS)
Liang, Jiran; Li, Peng; Song, Xiaolong; Zhou, Liwei
2017-12-01
We demonstrated a visible and near-infrared light tunable photonic nanostructure, which is composed of vanadium dioxide (VO2) thin film and silicon dioxide (SiO2) ordered nanosphere arrays. The vanadium films were sputtered on two-dimensional (2D) SiO2 sphere arrays. VO2 thin films were prepared by rapid thermal annealing (RTA) method with different oxygen flow rates. The close-packed VO2 shell formed a continuous surface, the composition of VO2 films in the structure changed when the oxygen flow rates increased. The 2D VO2/SiO2 composite photonic crystal structure exhibited transmittance trough tunability and near-infrared (NIR) transmittance modulation. When the oxygen flow rate increased from 3 slpm to 4 slpm, the largest transmittance trough can be regulated from 904 to 929 nm at low temperature, the transmittance troughs also appear blue shift when the VO2 phase changes from insulator to metal. The composite nanostructure based on VO2 films showed visible transmittance tunability, which would provide insights into the glass color changing in smart windows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Quanjiang; Chen, Peter J.; Qin, Guangrong
Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase ‘WalK’ (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resultedmore » in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. Lastly, the molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors.« less
Inflatable nested toroid structure
NASA Technical Reports Server (NTRS)
Johnson, Christopher J. (Inventor); Raboin, Jasen L. (Inventor); Spexarth, Gary R. (Inventor)
2011-01-01
An inflatable structure comprises at least two generally toroidal, inflatable modules. When in a deployed mode, the first, inner module has a major diameter less than that of a second, outer module and is positioned within the inner circumference of the outer module such that the first module is nested circumferentially alongside the second module. The inflatable structure, in a non-deployed, non-inflated mode, is of compact configuration and adapted to be transported to a site of deployment. When deployed, the inflatable structure is of substantially increased interior volume. In one embodiment, access between the interior of the first module and the second module is provided by at least one port or structural pass-through. In another embodiment, the inflatable structure includes at least one additional generally toroidal module external of and circumferentially surrounding the second module.
Ji, Quanjiang; Chen, Peter J.; Qin, Guangrong; ...
2016-03-18
Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase ‘WalK’ (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resultedmore » in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. Lastly, the molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors.« less
Scheidel, Jennifer; Lindauer, Klaus; Ackermann, Jörg; Koch, Ina
2015-12-17
The insulin-dependent activation and recycling of the insulin receptor play an essential role in the regulation of the energy metabolism, leading to a special interest for pharmaceutical applications. Thus, the recycling of the insulin receptor has been intensively investigated, experimentally as well as theoretically. We developed a time-resolved, discrete model to describe stochastic dynamics and study the approximation of non-linear dynamics in the context of timed Petri nets. Additionally, using a graph-theoretical approach, we analyzed the structure of the regulatory system and demonstrated the close interrelation of structural network properties with the kinetic behavior. The transition invariants decomposed the model into overlapping subnetworks of various sizes, which represent basic functional modules. Moreover, we computed the quasi-steady states of these subnetworks and demonstrated that they are fundamental to understand the dynamic behavior of the system. The Petri net approach confirms the experimental results of insulin-stimulated degradation of the insulin receptor, which represents a common feature of insulin-resistant, hyperinsulinaemic states.
Harkness, Robert W; Mittermaier, Anthony K
2017-11-01
G-quadruplexes (GQs) are four-stranded nucleic acid secondary structures formed by guanosine (G)-rich DNA and RNA sequences. It is becoming increasingly clear that cellular processes including gene expression and mRNA translation are regulated by GQs. GQ structures have been extensively characterized, however little attention to date has been paid to their conformational dynamics, despite the fact that many biological GQ sequences populate multiple structures of similar free energies, leading to an ensemble of exchanging conformations. The impact of these dynamics on biological function is currently not well understood. Recently, structural dynamics have been demonstrated to entropically stabilize GQ ensembles, potentially modulating gene expression. Transient, low-populated states in GQ ensembles may additionally regulate nucleic acid interactions and function. This review will underscore the interplay of GQ dynamics and biological function, focusing on several dynamic processes for biological GQs and the characterization of GQ dynamics by nuclear magnetic resonance (NMR) spectroscopy in conjunction with other biophysical techniques. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.
Jain, Deepti
2015-07-01
The GntR family of transcription regulators constitutes one of the most abundant family of transcription factors. These modulators are involved in a variety of mechanisms controlling various metabolic processes. GntR family members are typically two domain proteins with a smaller N-terminus domain (NTD) with conserved architecture of winged-helix-turn-helix (wHTH) for DNA binding and a larger C-terminus domain (CTD) or the effector binding domain which is also involved in oligomerization. Interestingly, the CTD shows structural heterogeneity depending upon the type of effector molecule that it binds and displays structural homology to various classes of proteins. Binding of the effector molecule to the CTD brings about a conformational change in the transcription factor such that its affinity for its cognate DNA sequence is altered. This review summarizes the structural information available on the members of GntR family and discusses the common features of the DNA binding and operator recognition within the family. The variation in the allosteric mechanism employed by the members of this family is also discussed. © 2015 International Union of Biochemistry and Molecular Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chaojian; Chung, Ben C.; Yan, Haidun
2012-11-13
Voltage-gated Na{sup +} (Na{sub V}) channels initiate neuronal action potentials. Na{sub V} channels are composed of a transmembrane domain responsible for voltage-dependent Na{sup +} conduction and a cytosolic C-terminal domain (CTD) that regulates channel function through interactions with many auxiliary proteins, including fibroblast growth factor homologous factors (FHFs) and calmodulin (CaM). Most ion channel structural studies have focused on mechanisms of permeation and voltage-dependent gating but less is known about how intracellular domains modulate channel function. Here we report the crystal structure of the ternary complex of a human NaV CTD, an FHF, and Ca{sup 2+}-free CaM at 2.2 {angstrom}.more » Combined with functional experiments based on structural insights, we present a platform for understanding the roles of these auxiliary proteins in NaV channel regulation and the molecular basis of mutations that lead to neuronal and cardiac diseases. Furthermore, we identify a critical interaction that contributes to the specificity of individual NaV CTD isoforms for distinctive FHFs.« less
Reprogramming cellular events by poly(ADP-ribose)-binding proteins
Pic, Émilie; Ethier, Chantal; Dawson, Ted M.; Dawson, Valina L.; Masson, Jean-Yves; Poirier, Guy G.; Gagné, Jean-Philippe
2013-01-01
Poly(ADP-ribosyl)ation is a posttranslational modification catalyzed by the poly(ADP-ribose) polymerases (PARPs). These enzymes covalently modify glutamic, aspartic and lysine amino acid side chains of acceptor proteins by the sequential addition of ADP-ribose (ADPr) units. The poly(ADP-ribose) (pADPr) polymers formed alter the physico-chemical characteristics of the substrate with functional consequences on its biological activities. Recently, non-covalent binding to pADPr has emerged as a key mechanism to modulate and coordinate several intracellular pathways including the DNA damage response, protein stability and cell death. In this review, we describe the basis of non-covalent binding to pADPr that has led to the emerging concept of pADPr-responsive signaling pathways. This review emphasizes the structural elements and the modular strategies developed by pADPr-binding proteins to exert a fine-tuned control of a variety of pathways. Poly(ADP-ribosyl)ation reactions are highly regulated processes, both spatially and temporally, for which at least four specialized pADPr-binding modules accommodate different pADPr structures and reprogram protein functions. In this review, we highlight the role of well-characterized and newly discovered pADPr-binding modules in a diverse set of physiological functions. PMID:23268355
Liu, Mengjin; Prakash, Celine; Nauta, Arjen; Siezen, Roland J.
2012-01-01
Sulfuric volatile compounds derived from cysteine and methionine provide many dairy products with a characteristic odor and taste. To better understand and control the environmental dependencies of sulfuric volatile compound formation by the dairy starter bacteria, we have used the available genome sequence and experimental information to systematically evaluate the presence of the key enzymes and to reconstruct the general modes of transcription regulation for the corresponding genes. The genomic organization of the key genes is suggestive of a subdivision of the reaction network into five modules, where we observed distinct differences in the modular composition between the families Lactobacillaceae, Enterococcaceae, and Leuconostocaceae, on the one hand, and the family Streptococcaceae, on the other. These differences are mirrored by the way in which transcription regulation of the genes is structured in these families. In the Lactobacillaceae, Enterococcaceae, and Leuconostocaceae, the main shared mode of transcription regulation is methionine (Met) T-box-mediated regulation. In addition, the gene metK, encoding S-adenosylmethionine (SAM) synthetase, is controlled via the SMK box (SAM). The SMK box is also found upstream of metK in species of the family Streptococcaceae. However, the transcription control of the other modules is mediated via three different LysR-family regulators, MetR/MtaR (methionine), CmbR (O-acetyl[homo]serine), and HomR (O-acetylhomoserine). Redefinition of the associated DNA-binding motifs helped to identify/disentangle the related regulons, which appeared to perfectly match the proposed subdivision of the reaction network. PMID:22522891
Crystal structures of the NO sensor NsrR reveal how its iron-sulfur cluster modulates DNA binding
NASA Astrophysics Data System (ADS)
Volbeda, Anne; Dodd, Erin L.; Darnault, Claudine; Crack, Jason C.; Renoux, Oriane; Hutchings, Matthew I.; Le Brun, Nick E.; Fontecilla-Camps, Juan C.
2017-04-01
NsrR from Streptomyces coelicolor (Sc) regulates the expression of three genes through the progressive degradation of its [4Fe-4S] cluster on nitric oxide (NO) exposure. We report the 1.95 Å resolution crystal structure of dimeric holo-ScNsrR and show that the cluster is coordinated by the three invariant Cys residues from one monomer and, unexpectedly, Asp8 from the other. A cavity map suggests that NO displaces Asp8 as a cluster ligand and, while D8A and D8C variants remain NO sensitive, DNA binding is affected. A structural comparison of holo-ScNsrR with an apo-IscR-DNA complex shows that the [4Fe-4S] cluster stabilizes a turn between ScNsrR Cys93 and Cys99 properly oriented to interact with the DNA backbone. In addition, an apo ScNsrR structure suggests that Asn97 from this turn, along with Arg12, which forms a salt-bridge with Asp8, are instrumental in modulating the position of the DNA recognition helix region relative to its major groove.
Modulatory compartments in cortex and local regulation of cholinergic tone.
Coppola, Jennifer J; Ward, Nicholas J; Jadi, Monika P; Disney, Anita A
2016-09-01
Neuromodulatory signaling is generally considered broad in its impact across cortex. However, variations in the characteristics of cortical circuits may introduce regionally-specific responses to diffuse modulatory signals. Features such as patterns of axonal innervation, tissue tortuosity and molecular diffusion, effectiveness of degradation pathways, subcellular receptor localization, and patterns of receptor expression can lead to local modification of modulatory inputs. We propose that modulatory compartments exist in cortex and can be defined by variation in structural features of local circuits. Further, we argue that these compartments are responsible for local regulation of neuromodulatory tone. For the cholinergic system, these modulatory compartments are regions of cortical tissue within which signaling conditions for acetylcholine are relatively uniform, but between which signaling can vary profoundly. In the visual system, evidence for the existence of compartments indicates that cholinergic modulation likely differs across the visual pathway. We argue that the existence of these compartments calls for thinking about cholinergic modulation in terms of finer-grained control of local cortical circuits than is implied by the traditional view of this system as a diffuse modulator. Further, an understanding of modulatory compartments provides an opportunity to better understand and perhaps correct signal modifications that lead to pathological states. Copyright © 2016 Elsevier Ltd. All rights reserved.
Designing the stem cell microenvironment for guided connective tissue regeneration.
Bogdanowicz, Danielle R; Lu, Helen H
2017-12-01
Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration. © 2017 New York Academy of Sciences.
Normanno, Davide; Vanzi, Francesco; Pavone, Francesco Saverio
2008-01-01
Gene expression regulation is a fundamental biological process which deploys specific sets of genomic information depending on physiological or environmental conditions. Several transcription factors (including lac repressor, LacI) are present in the cell at very low copy number and increase their local concentration by binding to multiple sites on DNA and looping the intervening sequence. In this work, we employ single-molecule manipulation to experimentally address the role of DNA supercoiling in the dynamics and stability of LacI-mediated DNA looping. We performed measurements over a range of degrees of supercoiling between −0.026 and +0.026, in the absence of axial stretching forces. A supercoiling-dependent modulation of the lifetimes of both the looped and unlooped states was observed. Our experiments also provide evidence for multiple structural conformations of the LacI–DNA complex, depending on torsional constraints. The supercoiling-dependent modulation demonstrated here adds an important element to the model of the lac operon. In fact, the complex network of proteins acting on the DNA in a living cell constantly modifies its topological and mechanical properties: our observations demonstrate the possibility of establishing a signaling pathway from factors affecting DNA supercoiling to transcription factors responsible for the regulation of specific sets of genes. PMID:18310101
Zhang, Jiaxing; Zhang, Haiyan; Chen, Ji; Fan, Ming; Gong, Qiyong
2013-01-01
The present study aimed to investigate structural modulation of brain by high level of oxygen during its peak period of development. Voxel-based morphometry analysis of gray matter (GM) and white matter (WM) volumes and Tract-Based Spatial Statistics analysis of WM fractional anisotropy (FA) and mean diffusion (MD) based on MRI images were carried out on 21 Tibetan adolencents (15-18 years), who were born and raised in Qinghai-Tibetan Plateau (2900-4700 m) and have lived at sea level (SL) in the last 4 years. The control group consisted of matched Tibetan adolescents born and raised at high altitude all the time. SL immigrants had increased GM volume in the left insula, left inferior parietal gyrus, and right superior parietal gyrus and decreased GM in the left precentral cortex and multiple sites in cerebellar cortex (left lobule 8, bilateral lobule 6 and crus 1/2). Decreased WM volume was found in the right superior frontal gyrus in SL immigrants. SL immigrants had higher FA and lower MD at multiple sites of WM tracts. Moreover, we detected changes in ventilation and circulation. GM volume in cerebellum lobule 8 positively correlated with diastolic pressure, while GM volume in insula positively correlated vital capacity and hypoxic ventilatory response. Our finding indicate that the structural modulations of GM by high level of oxygen during its peak period of development are related to respiratory and circulatory regulations, while the modulation in WM mainly exhibits an enhancement in myelin maturation.
Intelligent Chatter Bot for Regulation Search
NASA Astrophysics Data System (ADS)
De Luise, María Daniela López; Pascal, Andrés; Saad, Ben; Álvarez, Claudia; Pescio, Pablo; Carrilero, Patricio; Malgor, Rafael; Díaz, Joaquín
2016-01-01
This communication presents a functional prototype, named PTAH, implementing a linguistic model focused on regulations in Spanish. Its global architecture, the reasoning model and short statistics are provided for the prototype. It is mainly a conversational robot linked to an Expert System by a module with many intelligent linguistic filters, implementing the reasoning model of an expert. It is focused on bylaws, regulations, jurisprudence and customized background representing entity mission, vision and profile. This Structure and model are generic enough to self-adapt to any regulatory environment, but as a first step, it was limited to an academic field. This way it is possible to limit the slang and data numbers. The foundations of the linguistic model are also outlined and the way the architecture implements the key features of the behavior.
Kamenšek, Simona; Browning, Douglas F; Podlesek, Zdravko; Busby, Stephen J W; Žgur-Bertok, Darja; Butala, Matej
2015-06-01
Colicins are plasmid-encoded narrow spectrum antibiotics that are synthesized by strains of Escherichia coli and govern intraspecies competition. In a previous report, we demonstrated that the global transcriptional factor IscR, co dependently with the master regulator of the DNA damage response, LexA, delays induction of the pore forming colicin genes after SOS induction. Here we show that IscR is not involved in the regulation of nuclease colicins, but that the AsnC protein is. We report that AsnC, in concert with LexA, is the key controller of the temporal induction of the DNA degrading colicin E8 gene (cea8), after DNA damage. We demonstrate that a large AsnC nucleosome-like structure, in conjunction with two LexA molecules, prevent cea8 transcription initiation and that AsnC binding activity is directly modulated by L asparagine. We show that L-asparagine is an environmental factor that has a marked impact on cea8 promoter regulation. Our results show that AsnC also modulates the expression of several other DNase and RNase colicin genes but does not substantially affect pore-forming colicin K gene expression. We propose that selection pressure has "chosen" highly conserved regulators to control colicin expression in E. coli strains, enabling similar colicin gene silencing among bacteria upon exchange of colicinogenic plasmids.
Zhang, Jun; Li, Jing; Craig, Theodore A; Kumar, Rajiv; Gross, Michael L
2017-07-18
Downstream regulatory element antagonist modulator (DREAM) is an EF-hand Ca 2+ -binding protein that also binds to a specific DNA sequence, downstream regulatory elements (DRE), and thereby regulates transcription in a calcium-dependent fashion. DREAM binds to DRE in the absence of Ca 2+ but detaches from DRE under Ca 2+ stimulation, allowing gene expression. The Ca 2+ binding properties of DREAM and the consequences of the binding on protein structure are key to understanding the function of DREAM. Here we describe the application of hydrogen-deuterium exchange mass spectrometry (HDX-MS) and site-directed mutagenesis to investigate the Ca 2+ binding properties and the subsequent conformational changes of full-length DREAM. We demonstrate that all EF-hands undergo large conformation changes upon calcium binding even though the EF-1 hand is not capable of binding to Ca 2+ . Moreover, EF-2 is a lower-affinity site compared to EF-3 and -4 hands. Comparison of HDX profiles between wild-type DREAM and two EF-1 mutated constructs illustrates that the conformational changes in the EF-1 hand are induced by long-range structural interactions. HDX analyses also reveal a conformational change in an N-terminal leucine-charged residue-rich domain (LCD) remote from Ca 2+ -binding EF-hands. This LCD domain is responsible for the direct interaction between DREAM and cAMP response element-binding protein (CREB) and regulates the recruitment of the co-activator, CREB-binding protein. These long-range interactions strongly suggest how conformational changes transmit the Ca 2+ signal to CREB-mediated gene transcription.
Nuclear Calcium Buffering Capacity Shapes Neuronal Architecture.
Mauceri, Daniela; Hagenston, Anna M; Schramm, Kathrin; Weiss, Ursula; Bading, Hilmar
2015-09-18
Calcium-binding proteins (CaBPs) such as parvalbumin are part of the cellular calcium buffering system that determines intracellular calcium diffusion and influences the spatiotemporal dynamics of calcium signals. In neurons, CaBPs are primarily localized to the cytosol and function, for example, in nerve terminals in short-term synaptic plasticity. However, CaBPs are also expressed in the cell nucleus, suggesting that they modulate nuclear calcium signals, which are key regulators of neuronal gene expression. Here we show that the calcium buffering capacity of the cell nucleus in mouse hippocampal neurons regulates neuronal architecture by modulating the expression levels of VEGFD and the complement factor C1q-c, two nuclear calcium-regulated genes that control dendrite geometry and spine density, respectively. Increasing the levels of nuclear calcium buffers by means of expression of a nuclearly targeted form of parvalbumin fused to mCherry (PV.NLS-mC) led to a reduction in VEGFD expression and, as a result, to a decrease in total dendritic length and complexity. In contrast, mRNA levels of the synapse pruning factor C1q-c were increased in neurons expressing PV.NLS-mC, causing a reduction in the density and size of dendritic spines. Our results establish a close link between nuclear calcium buffering capacity and the transcription of genes that determine neuronal structure. They suggest that the development of cognitive deficits observed in neurological conditions associated with CaBP deregulation may reflect the loss of necessary structural features of dendrites and spines. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Prasad, Ramesh; Sen, Prosenjit
2018-02-01
Tissue factor (TF)-mediated factor VII (FVII) activation and a subsequent proteolytic TF-FVIIa binary complex formation is the key step initiating the coagulation cascade, with implications in various homeostatic and pathologic scenarios. TF binding allosterically modifies zymogen-like free FVIIa to its highly catalytically active form. As a result of unresolved crystal structure of the full-length TF 1-263 -FVIIa binary complex and free FVIIa, allosteric alterations in FVIIa following its binding to full-length TF and the consequences of these on function are not entirely clear. The present study aims to map and identify structural alterations in FVIIa and TF resulting from full-length TF binding to FVIIa and the key events responsible for enhanced FVIIa activity in coagulation. We constructed the full-length TF 1-263 -FVIIa membrane bound complex using computational modeling and subjected it to molecular dynamics (MD) simulations. MD simulations showed that TF alters the structure of each domain of FVIIa and these combined alterations contribute to enhanced TF-FVIIa activity. Detailed, domain-wise investigation revealed several new non-covalent interactions between TF and FVIIa that were not found in the truncated soluble TF-FVIIa crystal structure. The structural modulation of each FVIIa domain imparted by TF indicated that both inter and intra-domain communication is crucial for allosteric modulation of FVIIa. Our results suggest that these newly formed interactions can provide additional stability to the protease domain and regulate its activity profile by governing catalytic triad (CT) orientation and localization. The unexplored newly formed interactions between EGF2 and TF provides a possible explanation for TF-induced allosteric activation of FVIIa.
Giménez-Mascarell, Paula; Oyenarte, Iker; Hardy, Serge; Breiderhoff, Tilman; Stuiver, Marchel; Kostantin, Elie; Diercks, Tammo; Pey, Angel L.; Ereño-Orbea, June; Martínez-Chantar, María Luz; Khalaf-Nazzal, Reham; Claverie-Martin, Felix; Müller, Dominik; Tremblay, Michel L.
2017-01-01
Phosphatases of regenerating liver (PRLs), the most oncogenic of all protein-tyrosine phosphatases (PTPs), play a critical role in metastatic progression of cancers. Recent findings established a new paradigm by uncovering that their association with magnesium transporters of the cyclin M (CNNM) family causes a rise in intracellular magnesium levels that promote oncogenic transformation. Recently, however, essential roles for regulation of the circadian rhythm and reproduction of the CNNM family have been highlighted. Here, we describe the crystal structure of PRL-1 in complex with the Bateman module of CNNM2 (CNNM2BAT), which consists of two cystathionine β-synthase (CBS) domains (IPR000664) and represents an intracellular regulatory module of the transporter. The structure reveals a heterotetrameric association, consisting of a disc-like homodimer of CNNM2BAT bound to two independent PRL-1 molecules, each one located at opposite tips of the disc. The structure highlights the key role played by Asp-558 at the extended loop of the CBS2 motif of CNNM2 in maintaining the association between the two proteins and proves that the interaction between CNNM2 and PRL-1 occurs via the catalytic domain of the phosphatase. Our data shed new light on the structural basis underlying the interaction between PRL phosphatases and CNNM transporters and provides a hypothesis about the molecular mechanism by which PRL-1, upon binding to CNNM2, might increase the intracellular concentration of Mg2+ thereby contributing to tumor progression and metastasis. The availability of this structure sets the basis for the rational design of compounds modulating PRL-1 and CNNM2 activities. PMID:27899452
Biomedical Potential of mTOR Modulation by Nanoparticles.
Hulea, Laura; Markovic, Zoran; Topisirovic, Ivan; Simmet, Thomas; Trajkovic, Vladimir
2016-05-01
Modulation of the mammalian target of rapamycin (mTOR), the principal regulator of cellular homeostasis, underlies the biological effects of engineered nanoparticles, including regulation of cell death/survival and metabolic responses. Understanding the mechanisms and biological actions of nanoparticle-mediated mTOR modulation may help in developing safe and efficient nanotherapeutics to fight human disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
Snelling, Paul C; Lipscomb, Martin; Lockyer, Lesley; Yates, Sue; Young, Pat
2010-11-01
European Union (EU) regulations require that university programmes are of specified duration. Additional EU regulations apply specifically to university based nurse education, enacted in the UK by the Nursing and Midwifery Council (NMC). However, little is known about how much time student nurses spend on their studies. In this exploratory study, students undertaking a single module in the pre-registration diploma programme at an English university were asked to keep a log of learning activity for the duration of the module. Twenty-six students completed the log. These students achieved higher grades and attended more lectures than the average for the module. The mean study time was 128.4 h against a regulatory assumption that the module should take 200 h. More than half of the 26 students undertook paid work during the module run, though this work was not associated with poorer performance. Problems in regulation for course duration are discussed and it is suggested that undertaking a 4600 h course in 3 years is problematic. More research is required so that patterns of study can be better understood and student centred programmes meeting regulatory requirements developed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Cardiac voltage gated calcium channels and their regulation by β-adrenergic signaling.
Kumari, Neema; Gaur, Himanshu; Bhargava, Anamika
2018-02-01
Voltage-gated calcium channels (VGCCs) are the predominant source of calcium influx in the heart leading to calcium-induced calcium release and ultimately excitation-contraction coupling. In the heart, VGCCs are modulated by the β-adrenergic signaling. Signaling through β-adrenergic receptors (βARs) and modulation of VGCCs by β-adrenergic signaling in the heart are critical signaling and changes to these have been significantly implicated in heart failure. However, data related to calcium channel dysfunction in heart failure is divergent and contradictory ranging from reduced function to no change in the calcium current. Many recent studies have highlighted the importance of functional and spatial microdomains in the heart and that may be the key to answer several puzzling questions. In this review, we have briefly discussed the types of VGCCs found in heart tissues, their structure, and significance in the normal and pathological condition of the heart. More importantly, we have reviewed the modulation of VGCCs by βARs in normal and pathological conditions incorporating functional and structural aspects. There are different types of βARs, each having their own significance in the functioning of the heart. Finally, we emphasize the importance of location of proteins as it relates to their function and modulation by co-signaling molecules. Its implication on the studies of heart failure is speculated. Copyright © 2017 Elsevier Inc. All rights reserved.
Kalia, Dimpy; Merey, Gökçe; Nakayama, Shizuka; Zheng, Yue; Zhou, Jie; Luo, Yiling; Guo, Min; Roembke, Benjamin T; Sintim, Herman O
2013-01-07
For an organism to survive, it must be able to sense its environment and regulate physiological processes accordingly. Understanding how bacteria integrate signals from various environmental factors and quorum sensing autoinducers to regulate the metabolism of various nucleotide second messengers c-di-GMP, c-di-AMP, cGMP, cAMP and ppGpp, which control several key processes required for adaptation is key for efforts to develop agents to curb bacterial infections. In this review, we provide an update of nucleotide signaling in bacteria and show how these signals intersect or integrate to regulate the bacterial phenotype. The intracellular concentrations of nucleotide second messengers in bacteria are regulated by synthases and phosphodiesterases and a significant number of these metabolism enzymes had been biochemically characterized but it is only in the last few years that the effector proteins and RNA riboswitches, which regulate bacterial physiology upon binding to nucleotides, have been identified and characterized by biochemical and structural methods. C-di-GMP, in particular, has attracted immense interest because it is found in many bacteria and regulate both biofilm formation and virulence factors production. In this review, we discuss how the activities of various c-di-GMP effector proteins and riboswitches are modulated upon c-di-GMP binding. Using V. cholerae, E. coli and B. subtilis as models, we discuss how both environmental factors and quorum sensing autoinducers regulate the metabolism and/or processing of nucleotide second messengers. The chemical syntheses of the various nucleotide second messengers and the use of analogs thereof as antibiofilm or immune modulators are also discussed.
Liu, Suxuan; Xiong, Xinyu; Zhao, Xianxian; Yang, Xiaofeng; Wang, Hong
2015-05-09
Eukaryotic cell membrane dynamics change in curvature during physiological and pathological processes. In the past ten years, a novel protein family, Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain proteins, has been identified to be the most important coordinators in membrane curvature regulation. The F-BAR domain family is a member of the Bin/Amphiphysin/Rvs (BAR) domain superfamily that is associated with dynamic changes in cell membrane. However, the molecular basis in membrane structure regulation and the biological functions of F-BAR protein are unclear. The pathophysiological role of F-BAR protein is unknown. This review summarizes the current understanding of structure and function in the BAR domain superfamily, classifies F-BAR family proteins into nine subfamilies based on domain structure, and characterizes F-BAR protein structure, domain interaction, and functional relevance. In general, F-BAR protein binds to cell membrane via F-BAR domain association with membrane phospholipids and initiates membrane curvature and scission via Src homology-3 (SH3) domain interaction with its partner proteins. This process causes membrane dynamic changes and leads to seven important cellular biological functions, which include endocytosis, phagocytosis, filopodium, lamellipodium, cytokinesis, adhesion, and podosome formation, via distinct signaling pathways determined by specific domain-binding partners. These cellular functions play important roles in many physiological and pathophysiological processes. We further summarize F-BAR protein expression and mutation changes observed in various diseases and developmental disorders. Considering the structure feature and functional implication of F-BAR proteins, we anticipate that F-BAR proteins modulate physiological and pathophysiological processes via transferring extracellular materials, regulating cell trafficking and mobility, presenting antigens, mediating extracellular matrix degradation, and transmitting signaling for cell proliferation.
Lee, Chien-Hsing; Huang, Po-Tsang; Liou, Horng-Huei; Lin, Mei-Ying; Lou, Kuo-Long; Chen, Chung-Yi
2016-04-22
The ROMK1 (Kir1.1) channel activity is predominantly regulated by intracellular pH (pHi) and phosphatidylinositol 4,5-bisphosphate (PIP2). Although several residues were reported to be involved in the regulation of pHi associated with PIP2 interaction, the detailed molecular mechanism remains unclear. We perform experiments in ROMK1 pHi-gating with electrophysiology combined with mutational and structural analysis. In the present study, non basic residues of C-terminal region (S219, N215, I192, L216 and L220) in ROMK1 channels have been found to mediate channel-PIP2 interaction and pHi gating. Further, our structural results show these residues with an appropriate distance to interact with membrane PIP2. Meanwhile, a cluster of basic residues (R188, R217 and K218), which was previously discovered regarding the interaction with PIP2, exists in this appropriate distance to discriminate the regulation of channel-PIP2 interaction and pHi-gating. This appropriate distance can be observed with high conservation in the Kir channel family. Our results provide insight that an appropriate distance cooperates with the electrostatics interaction of channel-PIP2 to regulate pHi-gating. Copyright © 2016 Elsevier Inc. All rights reserved.
Grassi, Angela; Di Camillo, Barbara; Ciccarese, Francesco; Agnusdei, Valentina; Zanovello, Paola; Amadori, Alberto; Finesso, Lorenzo; Indraccolo, Stefano; Toffolo, Gianna Maria
2016-03-12
Inference of gene regulation from expression data may help to unravel regulatory mechanisms involved in complex diseases or in the action of specific drugs. A challenging task for many researchers working in the field of systems biology is to build up an experiment with a limited budget and produce a dataset suitable to reconstruct putative regulatory modules worth of biological validation. Here, we focus on small-scale gene expression screens and we introduce a novel experimental set-up and a customized method of analysis to make inference on regulatory modules starting from genetic perturbation data, e.g. knockdown and overexpression data. To illustrate the utility of our strategy, it was applied to produce and analyze a dataset of quantitative real-time RT-PCR data, in which interferon-α (IFN-α) transcriptional response in endothelial cells is investigated by RNA silencing of two candidate IFN-α modulators, STAT1 and IFIH1. A putative regulatory module was reconstructed by our method, revealing an intriguing feed-forward loop, in which STAT1 regulates IFIH1 and they both negatively regulate IFNAR1. STAT1 regulation on IFNAR1 was object of experimental validation at the protein level. Detailed description of the experimental set-up and of the analysis procedure is reported, with the intent to be of inspiration for other scientists who want to realize similar experiments to reconstruct gene regulatory modules starting from perturbations of possible regulators. Application of our approach to the study of IFN-α transcriptional response modulators in endothelial cells has led to many interesting novel findings and new biological hypotheses worth of validation.
The Extended Granin Family: Structure, Function, and Biomedical Implications
Bartolomucci, Alessandro; Possenti, Roberta; Mahata, Sushil K.; Fischer-Colbrie, Reiner; Loh, Y. Peng
2011-01-01
The chromogranins (chromogranin A and chromogranin B), secretogranins (secretogranin II and secretogranin III), and additional related proteins (7B2, NESP55, proSAAS, and VGF) that together comprise the granin family subserve essential roles in the regulated secretory pathway that is responsible for controlled delivery of peptides, hormones, neurotransmitters, and growth factors. Here we review the structure and function of granins and granin-derived peptides and expansive new genetic evidence, including recent single-nucleotide polymorphism mapping, genomic sequence comparisons, and analysis of transgenic and knockout mice, which together support an important and evolutionarily conserved role for these proteins in large dense-core vesicle biogenesis and regulated secretion. Recent data further indicate that their processed peptides function prominently in metabolic and glucose homeostasis, emotional behavior, pain pathways, and blood pressure modulation, suggesting future utility of granins and granin-derived peptides as novel disease biomarkers. PMID:21862681
Repetitive elements dynamics in cell identity programming, maintenance and disease.
Bodega, Beatrice; Orlando, Valerio
2014-12-01
The days of 'junk DNA' seem to be over. The rapid progress of genomics technologies has been unveiling unexpected mechanisms by which repetitive DNA and in particular transposable elements (TEs) have evolved, becoming key issues in understanding genome structure and function. Indeed, rather than 'parasites', recent findings strongly suggest that TEs may have a positive function by contributing to tissue specific transcriptional programs, in particular as enhancer-like elements and/or modules for regulation of higher order chromatin structure. Further, it appears that during development and aging genomes experience several waves of TEs activation, and this contributes to individual genome shaping during lifetime. Interestingly, TEs activity is major target of epigenomic regulation. These findings are shedding new light on the genome-phenotype relationship and set the premises to help to explain complex disease manifestation, as consequence of TEs activity deregulation. Copyright © 2014. Published by Elsevier Ltd.
The extended granin family: structure, function, and biomedical implications.
Bartolomucci, Alessandro; Possenti, Roberta; Mahata, Sushil K; Fischer-Colbrie, Reiner; Loh, Y Peng; Salton, Stephen R J
2011-12-01
The chromogranins (chromogranin A and chromogranin B), secretogranins (secretogranin II and secretogranin III), and additional related proteins (7B2, NESP55, proSAAS, and VGF) that together comprise the granin family subserve essential roles in the regulated secretory pathway that is responsible for controlled delivery of peptides, hormones, neurotransmitters, and growth factors. Here we review the structure and function of granins and granin-derived peptides and expansive new genetic evidence, including recent single-nucleotide polymorphism mapping, genomic sequence comparisons, and analysis of transgenic and knockout mice, which together support an important and evolutionarily conserved role for these proteins in large dense-core vesicle biogenesis and regulated secretion. Recent data further indicate that their processed peptides function prominently in metabolic and glucose homeostasis, emotional behavior, pain pathways, and blood pressure modulation, suggesting future utility of granins and granin-derived peptides as novel disease biomarkers. Copyright © 2011 by The Endocrine Society
Self-regulated oscillation of transport and topology of magnetic islands in toroidal plasmas
Ida, K.; Kobayashi, T.; Evans, T. E.; ...
2015-11-04
The coupling between the transport and magnetic topology is an important issue because the structure of magnetic islands, embedded in a toroidal equilibrium field, depends on the nature of the transport at the edge of the islands. Measurements of modulated heat pulse propagation in the DIII-D tokamak have revealed the existence of self-regulated oscillations in the radial energy transport into magnetic islands that are indicative of bifurcations in the island structure and transport near the q = 2 surface. Large amplitude heat pulses are seen in one state followed by small amplitude pulses later in the discharge resulting in amore » repeating cycle of island states. These two states are interpreted as a bifurcation of magnetic island with high and low heat pulse accessibility. In conclusion, this report describes the discovery of a bifurcation in the coupled dynamics between the transport and topology of magnetic islands in tokamak plasmas.« less
Kobayashi, Ayaho; Kanaba, Teppei; Satoh, Ryosuke; Ito, Yutaka; Sugiura, Reiko; Mishima, Masaki
2017-10-01
Negative regulator differentiation 1 (Nrd1), a fission yeast RNA binding protein, modulates cytokinesis and sexual development and contributes to stress granule formation in response to environmental stresses. Nrd1 comprises four RRM domains and binds and stabilizes Cdc4 mRNA that encodes the myosin II light chain. Nrd1 binds the Cpc2 fission-yeast RACK1 homolog, and the interaction promotes Nrd1 localization to stress granules. Interestingly, Pmk1 mitogen-activated protein kinase phosphorylates Thr40 in the unstructured N-terminal region and Thr126 in the first RRM domain of Nrd1. Phosphorylation significantly reduces RNA-binding activity and likely modulates Nrd1 function. To reveal the relationship between the structure and function of Nrd1 and how phosphorylation affects structure, we used heteronuclear NMR techniques to investigate the three-dimensional structure of Nrd1. Here we report the 1 H, 13 C, and 15 N resonance assignments of RRM1-RRM2 (residues 108-284) comprising the first and second RRMs obtained using heteronuclear NMR techniques. Secondary structures derived from the chemical shifts are reported. These data should contribute to the understanding of the three-dimensional structure of the RRM1-RRM2 region of Nrd1 and the perturbation caused by phosphorylation.
Stacey, David; Lourdusamy, Anbarasu; Ruggeri, Barbara; Maroteaux, Matthieu; Jia, Tianye; Cattrell, Anna; Nymberg, Charlotte; Banaschewski, Tobias; Bhattacharyya, Sohinee; Band, Hamid; Barker, Gareth; Bokde, Arun; Buchel, Christian; Carvalho, Fabiana; Conrod, Patricia; Desrivieres, Sylvane; Easton, Alanna; Fauth-Buehler, Mira; Fernandez-Medarde, Alberto; Flor, Herta; Frouin, Vincent; Gallinat, Jurgen; Garavanh, Hugh; Heinz, Andreas; Ittermann, Bernd; Lathrop, Mark; Lawrence, Claire; Loth, Eva; Mann, Karl; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Rotter, Andrea; Santos, Eugenio; Smolka, Michael; Sommer, Wolfgang; Mameli, Manuel; Spanagel, Rainer; Girault, Jean-Antoine; Mueller, Christian; Schumann, Gunter
2016-01-01
Background The mesolimbic dopamine system, composed primarily of dopaminergic neurons in the ventral tegmental area that project to striatal structures, is considered to be the key mediator of reinforcement-related mechanisms in the brain. Prompted by a genome-wide association meta-analysis implicating the Ras-specific guanine nucleotide-releasing factor 2 (RASGRF2) gene in the regulation of alcohol intake in men, we have recently shown that male Rasgrf2−/− mice exhibit reduced ethanol intake and preference accompanied by a perturbed mesolimbic dopamine system. We therefore propose that these mice represent a valid model to further elucidate the precise genes and mechanisms regulating mesolimbic dopamine functioning. Methods Transcriptomic data from the nucleus accumbens (NAcc) of male Rasgrf2−/− mice and wild-type controls were analyzed by weighted gene coexpression network analysis (WGCNA). We performed follow-up genetic association tests in humans using a sample of male adolescents from the IMAGEN study characterized for binge drinking (n = 905) and ventral striatal activation during an fMRI reward task (n = 608). Results The WGCNA analyses using accumbal transcriptomic data revealed 37 distinct “modules,” or functionally related groups of genes. Two of these modules were significantly associated with Rasgrf2 knockout status: M5 (p < 0.001) and M6 (p < 0.001). In follow-up translational analyses we found that human orthologues for the M5 module were significantly (p < 0.01) enriched with genetic association signals for binge drinking in male adolescents. Furthermore, the most significant locus, originating from the EH-domain containing 4 (EHD4) gene (p < 0.001), was also significantly associated with altered ventral striatal activity in male adolescents performing an fMRI reward task (pempirical < 0.001). Limitations It was not possible to determine the extent to which the M5 module was dysregulated in Rasgrf2−/− mice by perturbed mesolimbic dopamine signalling or by the loss of Rasgrf2 function in the NAcc. Conclusion Taken together, our findings indicate that the accumbal M5 module, initially identified as being dysregulated in male Rasgrf2−/− mice, is also relevant for human alcohol-related phenotypes potentially through the modulation of reinforcement mechanisms in the NAcc. We therefore propose that the genes comprising this module represent important candidates for further elucidation within the context of alcohol-related phenotypes. PMID:26679926
Priest, Henry D; Fox, Samuel E; Rowley, Erik R; Murray, Jessica R; Michael, Todd P; Mockler, Todd C
2014-01-01
Brachypodium distachyon is a close relative of many important cereal crops. Abiotic stress tolerance has a significant impact on productivity of agriculturally important food and feedstock crops. Analysis of the transcriptome of Brachypodium after chilling, high-salinity, drought, and heat stresses revealed diverse differential expression of many transcripts. Weighted Gene Co-Expression Network Analysis revealed 22 distinct gene modules with specific profiles of expression under each stress. Promoter analysis implicated short DNA sequences directly upstream of module members in the regulation of 21 of 22 modules. Functional analysis of module members revealed enrichment in functional terms for 10 of 22 network modules. Analysis of condition-specific correlations between differentially expressed gene pairs revealed extensive plasticity in the expression relationships of gene pairs. Photosynthesis, cell cycle, and cell wall expression modules were down-regulated by all abiotic stresses. Modules which were up-regulated by each abiotic stress fell into diverse and unique gene ontology GO categories. This study provides genomics resources and improves our understanding of abiotic stress responses of Brachypodium.
NASA Astrophysics Data System (ADS)
Xu, An-Ping; Yang, Pei-Pei; Yang, Chao; Gao, Yu-Juan; Zhao, Xiao-Xiao; Luo, Qiang; Li, Xiang-Dan; Li, Li-Zhong; Wang, Lei; Wang, Hao
2016-07-01
We report an assembly and transformation process of a supramolecular module, BP-KLVFF-RGD (BKR) in solution and on specific living cell surfaces for imaging and treatment. The BKR self-assembled into nanoparticles, which further transformed into nanofibers in situ induced by coordination with Ca2+ ions.We report an assembly and transformation process of a supramolecular module, BP-KLVFF-RGD (BKR) in solution and on specific living cell surfaces for imaging and treatment. The BKR self-assembled into nanoparticles, which further transformed into nanofibers in situ induced by coordination with Ca2+ ions. Electronic supplementary information (ESI) available: Experimental details; Fig. S1-S9. See DOI: 10.1039/c6nr03580a
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module presents an overview of the land disposal restrictions (LDR) program. It defines the basic terms and describes the structure of the LDR regulations. It identifies the statutory basis for LDR and describes the applicability of LDR. It explains how EPA sets treatment standards and identifies treatment standards for wastes subject to land disposal restrictions and cites the CFR section. It describes and identifies how exemptions and variances from treatment requirements are obtained, including federal register citations. It defines generator and Treatment, Storage, and Disposal Facility (TSDF) requirements under the LDR program. It summarizes the schedule of existing restrictionsmore » and the plan for restricting newly identified wastes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaojing; Kuk, Jane; Moffat, Keith
2008-11-12
Phytochromes are red-light photoreceptors that regulate light responses in plants, fungi, and bacteria via reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states. Here we report the crystal structure at 2.9 {angstrom} resolution of a bacteriophytochrome from Pseudomonas aeruginosa with an intact, fully photoactive photosensory core domain in its dark-adapted Pfr state. This structure reveals how unusual interdomain interactions, including a knot and an 'arm' structure near the chromophore site, bring together the PAS (Per-ARNT-Sim), GAF (cGMP phosphodiesterase/adenyl cyclase/FhlA), and PHY (phytochrome) domains to achieve Pr/Pfr photoconversion. The PAS, GAF, and PHY domains have topologic elements in common andmore » may have a single evolutionary origin. We identify key interactions that stabilize the chromophore in the Pfr state and provide structural and mutational evidence to support the essential role of the PHY domain in efficient Pr/Pfr photoconversion. We also identify a pair of conserved residues that may undergo concerted conformational changes during photoconversion. Modeling of the full-length bacteriophytochrome structure, including its output histidine kinase domain, suggests how local structural changes originating in the photosensory domain modulate interactions between long, cross-domain signaling helices at the dimer interface and are transmitted to the spatially distant effector domain, thereby regulating its histidine kinase activity.« less
Ibarguren, Maitane; López, David J; Escribá, Pablo V
2014-06-01
This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, W. L.; Chao, F. L.
2018-04-01
Sustainable products become increasingly important for company in addressing eco-performance to satisfy global environmental regulations. Case study of flame guiding module reviewed design process and concerns related to the torch design. For enhancing flame height, the torch was embedded with an airflow guidance structure. The design process and design methodologies were investigated as an eco-design case study. Combine qualitative and CAE simulation were proposed to fulfil its main and auxiliary functions including reduction of impact during use. The design guidelines help prevent mistake arrangements, CAE helps understand combustion phenomenon. The flow field simulation enables fine tune of geometric design. Functional test and measurement are carried out to confirm the product features. On Eco-performance, we choose 5 items for evaluation the status of previous and redesign module, namely function need, low impact material, few manufacturing steps, low energy consumption, and safety. The radar diagram indicates that eco-performance of redesign module is better. Life cycle assessment calculated the carbon footprint of the manufacturing and processing stage with Eco-it. By using recycled steel in the flame module, it reduces raw material stage carbon footprint significantly.
Monoaminergic Modulation of Motor Cortex Function
Vitrac, Clément; Benoit-Marand, Marianne
2017-01-01
Elaboration of appropriate responses to behavioral situations rests on the ability of selecting appropriate motor outcomes in accordance to specific environmental inputs. To this end, the primary motor cortex (M1) is a key structure for the control of voluntary movements and motor skills learning. Subcortical loops regulate the activity of the motor cortex and thus contribute to the selection of appropriate motor plans. Monoamines are key mediators of arousal, attention and motivation. Their firing pattern enables a direct encoding of different states thus promoting or repressing the selection of actions adapted to the behavioral context. Monoaminergic modulation of motor systems has been extensively studied in subcortical circuits. Despite evidence of converging projections of multiple neurotransmitters systems in the motor cortex pointing to a direct modulation of local circuits, their contribution to the execution and learning of motor skills is still poorly understood. Monoaminergic dysregulation leads to impaired plasticity and motor function in several neurological and psychiatric conditions, thus it is critical to better understand how monoamines modulate neural activity in the motor cortex. This review aims to provide an update of our current understanding on the monoaminergic modulation of the motor cortex with an emphasis on motor skill learning and execution under physiological conditions. PMID:29062274
Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.
Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B
2017-08-01
Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Longo, Francesca; Motta, Sara; Mauri, Pierluigi; Landini, Paolo; Rossi, Elio
2016-11-25
In the bacterium Escherichia coli, some intermediates of the sulfate assimilation and cysteine biosynthesis pathway can act as signal molecules and modulate gene expression. In addition to sensing and utilization of sulphur sources, these signaling mechanisms also impact more global cell processes, such as resistance to antimicrobial agents and biofilm formation. In a recent work, we have shown that inactivation of the cysH gene, encoding phosphoadenosine-phosphosulfate (PAPS) reductase, and the consequent increase in intracellular PAPS concentration, strongly affect production of several cell surface-associated structures, enhancing surface adhesion and cell aggregation. In order to identify the molecular mechanism relaying intracellular PAPS concentration to regulation of cell surface-associated structures, we looked for mutations able to suppress the effects of cysH inactivation. We found that mutations in the adenylate cyclase-encoding cyaA gene abolished the effects of PAPS accumulation; consistent with this result, cyclic AMP (cAMP)-dependent gene expression appears to be increased in the cysH mutant. Experiments aimed at the direct identification of proteins interacting with either CysC or CysH, i.e. the PAPS-related proteins APS kinase and PAPS reductase, allowed us to identify several regulators, namely, CspC, CspE, HNS and HupA. Protein-protein interaction between HupA and CysH was confirmed by a bacterial two hybrid system, and inactivation of the hupA gene enhanced the effects of the cysH mutation in terms of production of cell surface-associated factors. Our results indicate that PAPS can modulate different regulatory systems, providing evidence that this molecule acts as a global signal molecule in E. coli. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin
2017-12-01
Highly transparent, energy-saving, and superhydrophobic nanostructured SiO2/VO2 composite films have been fabricated using a sol-gel method. These composite films are composed of an underlying infrared (IR)-regulating VO2 layer and a top protective layer that consists of SiO2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO2 layer. The transmittance of the composite films in visible region (Tlum) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO2 films and tungsten-doped VO2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO2/VO2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW.cm-2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications.
Exploration of G-quadruplex function in c-Myb gene and its transcriptional regulation by topotecan.
Li, Fangyuan; Zhou, Jiang; Xu, Ming; Yuan, Gu
2018-02-01
Our bioinformatics research shows that there are four G-rich sequences (S1-S4) in the upstream region of the transcription start site of c-Myb gene, and we have proved that these sequences have the ability to form G-quadruplex structures. This work mainly focuses on G-quadruplex function, recognition and transcription regulation in c-Myb gene, revealing a novel regulatory element in c-Myb proximal promoter region, and its transcription regulation by G-quadruplex binder. The research has identified that the enhancer effect in c-Myb transcription was primarily affected by the G-quadruplex formed by S1 sequence, and the up-regulation effect may due to the removal of repressive progress of MZF-1 by stabilizing G-quadruplex. Attentions were being paid to the development of G-quadruplex binders for selective recognition, and topotecan was found to have high binding affinity in vitro and could effectively affect the c-Myb transcription activities in cells. The regulation of G-quadruplex with binders in transcriptional, translational levels by Q-RT-PCR and western blot was in expectation of providing a strategy for gene expression modulation. In conclusion, our study revealed a G-quadruplex structure in c-Myb proximal promoter region, which was of great importance in the regulation of c-Myb function. Copyright © 2017 Elsevier B.V. All rights reserved.
Design of a Temperature-Responsive Transcription Terminator.
Roßmanith, Johanna; Weskamp, Mareen; Narberhaus, Franz
2018-02-16
RNA structures regulate various steps in gene expression. Transcription in bacteria is typically terminated by stable hairpin structures. Translation initiation can be modulated by metabolite- or temperature-sensitive RNA structures, called riboswitches or RNA thermometers (RNATs), respectively. RNATs control translation initiation by occlusion of the ribosome binding site at low temperatures. Increasing temperatures destabilize the RNA structure and facilitate ribosome access. In this study, we exploited temperature-responsive RNAT structures to design regulatory elements that control transcription termination instead of translation initiation in Escherichia coli. In order to mimic the structure of factor-independent intrinsic terminators, naturally occurring RNAT hairpins were genetically engineered to be followed by a U-stretch. Functional temperature-responsive terminators (thermoterms) prevented mRNA synthesis at low temperatures but resumed transcription after a temperature upshift. The successful design of temperature-controlled terminators highlights the potential of RNA structures as versatile gene expression control elements.
O-GlcNAc modification is essential for the regulation of autophagy in Drosophila melanogaster.
Park, Sujin; Lee, Yangsin; Pak, Jin Won; Kim, Hanbyeol; Choi, Hyeonjin; Kim, Jae-woo; Roth, Jürgen; Cho, Jin Won
2015-08-01
O-GlcNAcylation is a dynamic post-translational modification that takes place on ser/thr residues of nucleocytoplasmic proteins. O-GlcNAcylation regulates almost all cellular events as a nutrient sensor, a transcriptional and translational regulator, and a disease-related factor. Although the role of O-GlcNAcylation in insulin signaling and metabolism are well established, the relationship between O-GlcNAcylation and autophagy is largely unknown. Here, we manipulated O-GlcNAcylation in Drosophila and found that it regulates autophagy through Akt/dFOXO signaling. We demonstrate that O-GlcNAcylation and the levels of O-GlcNAc transferase (OGT) are increased during starvation. Furthermore, Atg proteins and autolysosomes are increased in OGT-reduced flies without fasting. Atg proteins and autophagosomes are reduced in OGT-overexpressing flies. Our results suggest that not only autophagy gene expression but also autophagic structures are regulated by OGT through Akt and dFOXO. These data imply that O-GlcNAcylation is important in modulating autophagy as well as insulin signaling in Drosophila.
Cell fate regulation governed by a repurposed bacterial histidine kinase
Childers, W. Seth; Xu, Qingping; Mann, Thomas H.; ...
2014-10-28
One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK~P over DivK, which is modulated by an allosteric intramolecular interactionmore » between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.« less
47 CFR 78.115 - Modulation limits.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Modulation limits. 78.115 Section 78.115... SERVICE Technical Regulations § 78.115 Modulation limits. (a) If amplitude modulation is employed, negative modulation peaks shall not exceed 100 percent modulation. [37 FR 3292, Feb. 12, 1972, as amended...
Pripfl, Jürgen; Lamm, Claus
2015-02-01
Recent neuroscience theories suggest that different kinds of self-regulation may share a common psychobiological mechanism. However, empirical evidence for a domain general self-regulation mechanism is scarce. The aim of this study was to investigate whether focused anodal transcranial direct current stimulation (tDCS), facilitating the activity of the dorsolateral prefrontal cortex (dlPFC), acts on a domain general self-regulation mechanism and thus modulates both affective and appetitive self-regulation. Twenty smokers participated in this within-subject sham controlled study. Effects of anodal left, anodal right and sham tDCS over the dlPFC on affective picture appraisal and nicotine craving-cue appraisal were assessed. Anodal right tDCS over the dlPFC reduced negative affect in emotion appraisal, but neither modulated regulation of positive emotion appraisal nor of craving appraisal. Anodal left stimulation did not induce any significant effects. The results of our study show that domain specific self-regulation networks are at work in the prefrontal cortex. Focused tDCS modulation of this specific self-regulation network could probably be used during the first phase of nicotine abstinence, during which negative affect might easily result in relapse. These findings have implications for neuroscience models of self-regulation and are of relevance for the development of brain stimulation based treatment methods for neuropsychiatric disorders associated with self-regulation deficits. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Modulation of anxiety and fear via distinct intrahippocampal circuits.
Engin, Elif; Smith, Kiersten S; Gao, Yudong; Nagy, David; Foster, Rachel A; Tsvetkov, Evgeny; Keist, Ruth; Crestani, Florence; Fritschy, Jean-Marc; Bolshakov, Vadim Y; Hajos, Mihaly; Heldt, Scott A; Rudolph, Uwe
2016-03-14
Recent findings indicate a high level of specialization at the level of microcircuits and cell populations within brain structures with regards to the control of fear and anxiety. The hippocampus, however, has been treated as a unitary structure in anxiety and fear research despite mounting evidence that different hippocampal subregions have specialized roles in other cognitive domains. Using novel cell-type- and region-specific conditional knockouts of the GABAA receptor α2 subunit, we demonstrate that inhibition of the principal neurons of the dentate gyrus or CA3 via α2-containing GABAA receptors (α2GABAARs) is required to suppress anxiety, while the inhibition of CA1 pyramidal neurons is required to suppress fear responses. We further show that the diazepam-modulation of hippocampal theta activity shows certain parallels with our behavioral findings, suggesting a possible mechanism for the observed behavioral effects. Thus, our findings demonstrate a double dissociation in the regulation of anxiety versus fear by hippocampal microcircuitry.
Modulation of anxiety and fear via distinct intrahippocampal circuits
Engin, Elif; Smith, Kiersten S; Gao, Yudong; Nagy, David; Foster, Rachel A; Tsvetkov, Evgeny; Keist, Ruth; Crestani, Florence; Fritschy, Jean-Marc; Bolshakov, Vadim Y; Hajos, Mihaly; Heldt, Scott A; Rudolph, Uwe
2016-01-01
Recent findings indicate a high level of specialization at the level of microcircuits and cell populations within brain structures with regards to the control of fear and anxiety. The hippocampus, however, has been treated as a unitary structure in anxiety and fear research despite mounting evidence that different hippocampal subregions have specialized roles in other cognitive domains. Using novel cell-type- and region-specific conditional knockouts of the GABAA receptor α2 subunit, we demonstrate that inhibition of the principal neurons of the dentate gyrus and CA3 via α2-containing GABAA receptors (α2GABAARs) is required to suppress anxiety, while the inhibition of CA1 pyramidal neurons is required to suppress fear responses. We further show that the diazepam-modulation of hippocampal theta activity shows certain parallels with our behavioral findings, suggesting a possible mechanism for the observed behavioral effects. Thus, our findings demonstrate a double dissociation in the regulation of anxiety versus fear by hippocampal microcircuitry. DOI: http://dx.doi.org/10.7554/eLife.14120.001 PMID:26971710
Figueiredo, Agnes Marie Sá; Ferreira, Fabienne Antunes; Beltrame, Cristiana Ossaille; Côrtes, Marina Farrel
2017-09-01
Staphylococcus aureus biofilms represent a unique micro-environment that directly contribute to the bacterial fitness within hospital settings. The accumulation of this structure on implanted medical devices has frequently caused the development of persistent and chronic S. aureus-associated infections, which represent an important social and economic burden worldwide. ica-independent biofilms are composed of an assortment of bacterial products and modulated by a multifaceted and overlapping regulatory network; therefore, biofilm composition can vary among S. aureus strains. In the microniches formed by biofilms-produced by a number of bacterial species and composed by different structural components-drug refractory cell subpopulations with distinct physiological characteristics can emerge and result in therapeutic failures in patients with recalcitrant bacterial infections. In this review, we highlight the importance of biofilms in the development of persistence and chronicity in some S. aureus diseases, the main molecules associated with ica-independent biofilm development and the regulatory mechanisms that modulate ica-independent biofilm production, accumulation, and dispersion.
Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression
Singh, Nikhil; Gupta, Mudit; Trivedi, Chinmay M.; Singh, Manvendra K.; Li, Li; Epstein, Jonathan A.
2013-01-01
Craniofacial development is characterized by reciprocal interactions between neural crest cells and neighboring cell populations of ectodermal, endodermal and mesodermal origin. Various genetic pathways play critical roles in coordinating the development of cranial structures by modulating the growth, survival and differentiation of neural crest cells. However, the regulation of these pathways, particularly at the epigenomic level, remains poorly understood. Using murine genetics, we show that neural crest cells exhibit a requirement for the class I histone deacetylase Hdac3 during craniofacial development. Mice in which Hdac3 has been conditionally deleted in neural crest demonstrate fully penetrant craniofacial abnormalities, including microcephaly, cleft secondary palate and dental hypoplasia. Consistent with these abnormalities, we observe dysregulation of cell cycle genes and increased apoptosis in neural crest structures in mutant embryos. Known regulators of cell cycle progression and apoptosis in neural crest, including Msx1, Msx2 and Bmp4, are upregulated in Hdac3-deficient cranial mesenchyme. These results suggest that Hdac3 serves as a critical regulator of craniofacial morphogenesis, in part by repressing core apoptotic pathways in cranial neural crest cells. PMID:23506836
Circadian and Homeostatic Regulation of Structural Synaptic Plasticity in Hypocretin Neurons
Appelbaum, Lior; Wang, Gordon; Yokogawa, Tohei; Skariah, Gemini M; Smith, Stephen J; Mourrain, Philippe; Mignot, Emmanuel
2010-01-01
Summary Neurons exhibit rhythmic activity that ultimately affects behavior such as sleep. In living zebrafish larvae, we used time-lapse two-photon imaging of the presynaptic marker synaptophysin (SYP) in hypocretin/orexin (HCRT) neurons to determine the dynamics of synaptic modifications during the day and night. We observed circadian rhythmicity in synapse number in HCRT axons. This rhythm is regulated primarily by the circadian clock but is also affected by sleep deprivation. Furthermore, NPTX2, a protein implicated in AMPA receptor clustering, was found to modulate circadian synaptic changes. In zebrafish, nptx2b is rhythmic gene that is mostly expressed in hypothalamic and pineal gland cells. Arrhythmic transgenic nptx2b overexpression (hcrt:NPTX2b) increases synapse number and abolishes rhythmicity in HCRT axons. Finally, hcrt:NPTX2b fish are resistant to the sleep-promoting effects of melatonin. This behavioral effect is consistent with NPTX2b-mediated increased activity of HCRT circuitry. These data provide real-time in vivo evidence of circadian and homeostatic regulation of structural synaptic plasticity. PMID:20920793
Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons.
Appelbaum, Lior; Wang, Gordon; Yokogawa, Tohei; Skariah, Gemini M; Smith, Stephen J; Mourrain, Philippe; Mignot, Emmanuel
2010-10-06
Neurons exhibit rhythmic activity that ultimately affects behavior such as sleep. In living zebrafish larvae, we used time-lapse two-photon imaging of the presynaptic marker synaptophysin in hypocretin/orexin (HCRT) neurons to determine the dynamics of synaptic modifications during the day and night. We observed circadian rhythmicity in synapse number in HCRT axons. This rhythm is regulated primarily by the circadian clock but is also affected by sleep deprivation. Furthermore, NPTX2, a protein implicated in AMPA receptor clustering, modulates circadian synaptic changes. In zebrafish, nptx2b is a rhythmic gene that is mostly expressed in hypothalamic and pineal gland cells. Arrhythmic transgenic nptx2b overexpression (hcrt:NPTX2b) increases synapse number and abolishes rhythmicity in HCRT axons. Finally, hcrt:NPTX2b fish are resistant to the sleep-promoting effects of melatonin. This behavioral effect is consistent with NPTX2b-mediated increased activity of HCRT circuitry. These data provide real-time in vivo evidence of circadian and homeostatic regulation of structural synaptic plasticity. Copyright © 2010 Elsevier Inc. All rights reserved.
Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm
2016-01-01
Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease. PMID:27162358
Kampourakis, Thomas; Sun, Yin-Biao; Irving, Malcolm
2016-05-24
Contraction of heart muscle is triggered by calcium binding to the actin-containing thin filaments but modulated by structural changes in the myosin-containing thick filaments. We used phosphorylation of the myosin regulatory light chain (cRLC) by the cardiac isoform of its specific kinase to elucidate mechanisms of thick filament-mediated contractile regulation in demembranated trabeculae from the rat right ventricle. cRLC phosphorylation enhanced active force and its calcium sensitivity and altered thick filament structure as reported by bifunctional rhodamine probes on the cRLC: the myosin head domains became more perpendicular to the filament axis. The effects of cRLC phosphorylation on thick filament structure and its calcium sensitivity were mimicked by increasing sarcomere length or by deleting the N terminus of the cRLC. Changes in thick filament structure were highly cooperative with respect to either calcium concentration or extent of cRLC phosphorylation. Probes on unphosphorylated myosin heads reported similar structural changes when neighboring heads were phosphorylated, directly demonstrating signaling between myosin heads. Moreover probes on troponin showed that calcium sensitization by cRLC phosphorylation is mediated by the thin filament, revealing a signaling pathway between thick and thin filaments that is still present when active force is blocked by Blebbistatin. These results show that coordinated and cooperative structural changes in the thick and thin filaments are fundamental to the physiological regulation of contractility in the heart. This integrated dual-filament concept of contractile regulation may aid understanding of functional effects of mutations in the protein components of both filaments associated with heart disease.
Protein complexes and functional modules in molecular networks
NASA Astrophysics Data System (ADS)
Spirin, Victor; Mirny, Leonid A.
2003-10-01
Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.
NASA Astrophysics Data System (ADS)
Yang, Xiyan; Wu, Yahao; Yuan, Zhanjiang
2015-06-01
Two-component signaling modules exist extensively in bacteria and microbes. These modules can be, based on their distinct network structures, divided into two types: the monofunctional system (denoted by MFS) where the sensor kinase (SK) modulates only phosphorylation of the response regulator (RR), and the bifunctional system (denoted by BFS) where the SK catalyzes both phosphorylation and dephosphorylation of the RR. Here, we analyze dynamical behaviors of these two systems based on stability theory, focusing on differences between them. The analysis of the deterministic behavior indicates that there is no difference between the two modules, that is, each system has the unique stable steady state. However, there are significant differences in stochastic behavior between them. Specifically, if the mean phosphorylated SK level is kept the same for the two modules, then the variance and the Fano factor for the phosphorylated RR in the BFS are always no less than those in the MFS, indicating that bifunctionality always enhances fluctuations. The correlation between the phosphorylated SK and the phosphorylated RR in the BFS is always positive mainly due to competition between system components, but this correlation in the MFS may be positive, almost zero, or negative, depending on the ratio between two rate constants. Our overall analysis indicates that differences between dynamical behaviors of monofunctional and bifunctional signaling modules are mainly in the stochastic rather than deterministic aspect.
Peroxiredoxins: Guardians Against Oxidative Stress and Modulators of Peroxide Signaling
Perkins, Arden; Nelson, Kimberly J.; Parsonage, Derek; Poole, Leslie B.; Karplus, P. Andrew
2015-01-01
Peroxiredoxins (Prxs) are a ubiquitous family of cysteine-dependent peroxidase enzymes that play dominant roles in regulating peroxide levels within cells. These enzymes, often present at high levels and capable of rapidly clearing peroxides, display a remarkable array of variations in their oligomeric states and susceptibility to regulation by hyperoxidative inactivation and other post-translational modifications. Key conserved residues within the active site promote catalysis by stabilizing the transition state required for transferring the terminal oxygen of hydroperoxides to the active site (peroxidatic) cysteine residue. Extensive investigations continue to expand our understanding of the scope of their importance as well as the structures and forces at play within these critical defense and regulatory enzymes. PMID:26067716
Ponsuksili, Siriluck; Du, Yang; Hadlich, Frieder; Siengdee, Puntita; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus
2013-08-05
Physiological processes aiding the conversion of muscle to meat involve many genes associated with muscle structure and metabolic processes. MicroRNAs regulate networks of genes to orchestrate cellular functions, in turn regulating phenotypes. We applied weighted gene co-expression network analysis to identify co-expression modules that correlated to meat quality phenotypes and were highly enriched for genes involved in glucose metabolism, response to wounding, mitochondrial ribosome, mitochondrion, and extracellular matrix. Negative correlation of miRNA with mRNA and target prediction were used to select transcripts out of the modules of trait-associated mRNAs to further identify those genes that are correlated with post mortem traits. Porcine muscle co-expression transcript networks that correlated to post mortem traits were identified. The integration of miRNA and mRNA expression analyses, as well as network analysis, enabled us to interpret the differentially-regulated genes from a systems perspective. Linking co-expression networks of transcripts and hierarchically organized pairs of miRNAs and mRNAs to meat properties yields new insight into several biological pathways underlying phenotype differences. These pathways may also be diagnostic for many myopathies, which are accompanied by deficient nutrient and oxygen supply of muscle fibers.
Cyclic Nucleotide Phosphodiesterases: important signaling modulators and therapeutic targets
Ahmad, Faiyaz; Murata, Taku; Simizu, Kasumi; Degerman, Eva; Maurice, Donald; Manganiello, Vincent
2014-01-01
By catalyzing hydrolysis of cAMP and cGMP, cyclic nucleotide phosphodiesterases are critical regulators of their intracellular concentrations and their biological effects. Since these intracellular second messengers control many cellular homeostatic processes, dysregulation of their signals and signaling pathways initiate or modulate pathophysiological pathways related to various disease states, including erectile dysfunction, pulmonary hypertension, acute refractory cardiac failure, intermittent claudication, chronic obstructive pulmonary disease, and psoriasis. Alterations in expression of PDEs and PDE-gene mutations (especially mutations in PDE6, PDE8B, PDE11A and PDE4) have been implicated in various diseases and cancer pathologies. PDEs also play important role in formation and function of multi-molecular signaling/regulatory complexes called signalosomes. At specific intracellular locations, individual PDEs, together with pathway-specific signaling molecules, regulators, and effectors, are incorporated into specific signalosomes, where they facilitate and regulate compartmentalization of cyclic nucleotide signaling pathways and specific cellular functions. Currently, only a limited number of PDE inhibitors (PDE3, PDE4, PDE5 inhibitors) are used in clinical practice. Future paths to novel drug discovery include the crystal structure-based design approach, which has resulted in generation of more effective family-selective inhibitors, as well as burgeoning development of strategies to alter compartmentalized cyclic nucleotide signaling pathways by selectively targeting individual PDEs and their signalosome partners. PMID:25056711
[Renin-angiotensin-aldosterone system (RAAS) and its pharmacologic modulation].
Giestas, Anabela; Palma, Isabel; Ramos, Maria Helena
2010-01-01
The renin-angiotensin-aldosterone system (RAAS) is a neuroendocrine complex system that regulates the modulation of salt and water homeostasis, and regulation of blood pressure. Through its multiple interactions it protects the endothelium, heart, brain and kidney. In addition, the RAAS regulates the vascular response to injury and inflammation. Chronic activation/dysregulation of the RAAS leads to hypertension and perpetuates a cascade of proinflammatory, prothrombotic and atherogenic effects associated with endorgan damage (heart, brain, kidney, endothelium). Consequently, the RAAS is an important therapeutic target in these situations. This article presents an overview of physiology, pathophysiology and pharmacologic modulation of the RAAS.
Bone matrix to growth factors: location, location, location
Todorovic, Vesna
2010-01-01
The demonstration that fibrillin-1 mutations perturb transforming growth factor (TGF)–β bioavailability/signaling in Marfan syndrome (MFS) changed the view of the extracellular matrix as a passive structural support to a dynamic modulator of cell behavior. In this issue, Nistala et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201003089) advance this concept by demonstrating how fibrillin-1 and -2 regulate TGF-β and bone morphogenetic protein (BMP) action during osteoblast maturation. PMID:20855500
Elucidating the structure and function of S100 proteins in membranes
NASA Astrophysics Data System (ADS)
Valenzuela, Stella M.; Berkahn, Mark; Martin, Donald K.; Huynh, Thuan; Yang, Zheng; Geczy, Carolyn L.
2006-01-01
S100 proteins are important Ca 2+-binding proteins involved in vital cellular functions including the modulation of cell growth, migration and differentiation, regulation of intracellular signal transduction/phosphorylation pathways, energy metabolism, cytoskeletal interactions and modulation of ion channels. Furthermore, they are implicated in oncogenesis and numerous other disease states. Three S100 proteins: S100A8, S100A9 and S100A12 are constitutively expressed in neutrophils and monocytes. At low levels of intracellular Ca 2+, S100A8 and S100A9 are located predominantly in the cytosol but when Ca 2+ concentrations are elevated as a consequence of activation, they translocate to membranes and complex with cytoskeletal components such as vimentin. The functions of S100A8 and S100A9 at the plasma membrane remain unclear. A possible role may be the regulation of ion channel proteins. The current study uses the techniques of Atomic Force Microscopy and production of artificial lipid membranes in the form of liposomes to investigate possible mechanisms for the insertion of these proteins into membranes in order to elucidate their structure and stoichiometry in the transmembrane state. We have successfully imaged the liposomes as a lipid bilayer, the S100A8/A9 protein complex in solution and the S100A8/A9 complex associating with lipid, using tapping-mode atomic force microscopy, in buffer.
Rojas-Pirela, Maura; Rigden, Daniel J; Michels, Paul A; Cáceres, Ana J; Concepción, Juan Luis; Quiñones, Wilfredo
2018-01-01
Per-ARNT-Sim (PAS) domains of proteins play important roles as modules for signalling and cellular regulation processes in widely diverse organisms such as Archaea, Bacteria, protists, plants, yeasts, insects and vertebrates. These domains are present in many proteins where they are used as sensors of stimuli and modules for protein interactions. Characteristically, they can bind a broad spectrum of molecules. Such binding causes the domain to trigger a specific cellular response or to make the protein containing the domain susceptible to responding to additional physical or chemical signals. Different PAS proteins have the ability to sense redox potential, light, oxygen, energy levels, carboxylic acids, fatty acids and several other stimuli. Such proteins have been found to be involved in cellular processes such as development, virulence, sporulation, adaptation to hypoxia, circadian cycle, metabolism and gene regulation and expression. Our analysis of the genome of different kinetoplastid species revealed the presence of PAS domains also in different predicted kinases from these protists. Open-reading frames coding for these PAS-kinases are unusually large. In addition, the products of these genes appear to contain in their structure combinations of domains uncommon in other eukaryotes. The physiological significance of PAS domains in these parasites, specifically in Trypanosoma cruzi, is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhou, Jin; Lyu, Yihua; Richlen, Mindy; Anderson, Donald M.; Cai, Zhonghua
2017-01-01
Algae are ubiquitous in the marine environment, and the ways in which they interact with bacteria are of particular interest in marine ecology field. The interactions between primary producers and bacteria impact the physiology of both partners, alter the chemistry of their environment, and shape microbial diversity. Although algal-bacterial interactions are well known and studied, information regarding the chemical-ecological role of this relationship remains limited, particularly with respect to quorum sensing (QS), which is a system of stimuli and response correlated to population density. In the microbial biosphere, QS is pivotal in driving community structure and regulating behavioral ecology, including biofilm formation, virulence, antibiotic resistance, swarming motility, and secondary metabolite production. Many marine habitats, such as the phycosphere, harbour diverse populations of microorganisms and various signal languages (such as QS-based autoinducers). QS-mediated interactions widely influence algal-bacterial symbiotic relationships, which in turn determine community organization, population structure, and ecosystem functioning. Understanding infochemicals-mediated ecological processes may shed light on the symbiotic interactions between algae host and associated microbes. In this review, we summarize current achievements about how QS modulates microbial behavior, affects symbiotic relationships, and regulates phytoplankton chemical ecological processes. Additionally, we present an overview of QS-modulated co-evolutionary relationships between algae and bacterioplankton, and consider the potential applications and future perspectives of QS. PMID:28966438
Airway smooth muscle in airway reactivity and remodeling: what have we learned?
2013-01-01
It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517
A structured interdomain linker directs self-polymerization of human uromodulin
Bokhove, Marcel; Nishimura, Kaoru; Brunati, Martina; Han, Ling; de Sanctis, Daniele; Rampoldi, Luca
2016-01-01
Uromodulin (UMOD)/Tamm–Horsfall protein, the most abundant human urinary protein, plays a key role in chronic kidney diseases and is a promising therapeutic target for hypertension. Via its bipartite zona pellucida module (ZP-N/ZP-C), UMOD forms extracellular filaments that regulate kidney electrolyte balance and innate immunity, as well as protect against renal stones. Moreover, salt-dependent aggregation of UMOD filaments in the urine generates a soluble molecular net that captures uropathogenic bacteria and facilitates their clearance. Despite the functional importance of its homopolymers, no structural information is available on UMOD and how it self-assembles into filaments. Here, we report the crystal structures of polymerization regions of human UMOD and mouse ZP2, an essential sperm receptor protein that is structurally related to UMOD but forms heteropolymers. The structure of UMOD reveals that an extensive hydrophobic interface mediates ZP-N domain homodimerization. This arrangement is required for filament formation and is directed by an ordered ZP-N/ZP-C linker that is not observed in ZP2 but is conserved in the sequence of deafness/Crohn’s disease-associated homopolymeric glycoproteins α-tectorin (TECTA) and glycoprotein 2 (GP2). Our data provide an example of how interdomain linker plasticity can modulate the function of structurally similar multidomain proteins. Moreover, the architecture of UMOD rationalizes numerous pathogenic mutations in both UMOD and TECTA genes. PMID:26811476
A General Water Resources Regulation Software System in China
NASA Astrophysics Data System (ADS)
LEI, X.
2017-12-01
To avoid iterative development of core modules in water resource normal regulation and emergency regulation and improve the capability of maintenance and optimization upgrading of regulation models and business logics, a general water resources regulation software framework was developed based on the collection and analysis of common demands for water resources regulation and emergency management. It can provide a customizable, secondary developed and extensible software framework for the three-level platform "MWR-Basin-Province". Meanwhile, this general software system can realize business collaboration and information sharing of water resources regulation schemes among the three-level platforms, so as to improve the decision-making ability of national water resources regulation. There are four main modules involved in the general software system: 1) A complete set of general water resources regulation modules allows secondary developer to custom-develop water resources regulation decision-making systems; 2) A complete set of model base and model computing software released in the form of Cloud services; 3) A complete set of tools to build the concept map and model system of basin water resources regulation, as well as a model management system to calibrate and configure model parameters; 4) A database which satisfies business functions and functional requirements of general water resources regulation software can finally provide technical support for building basin or regional water resources regulation models.
Development of a UAS-based survey module for ecological research
NASA Astrophysics Data System (ADS)
Meng, R.; McMahon, A. M.; Serbin, S.
2016-12-01
The development of small unmanned aircraft system (UAS, < 25 kg) techniques is enabling measurements of terrestrial ecosystems at unprecedented temporal and spatial scales. Given the potential for improved mission safety, high revisit frequency, and reduced operation cost, UAS platforms are of particular interest in the development for scientific research. Our group is developing a UAS-based survey module for ecological research (e.g. scaling and mapping plant functional traits). However, in addition to technical challenges, the complicated regulations required to operate a UAS for research (e.g. Certificates of Waiver or Authorization, COA, for each location) and complying with Federal Aviation Administration (FAA) restrictions, which still actively evolving, can have significant impacts on research and schedules. Here we briefly discuss our lessons-learned related to FAA registration and COA procedures, requirements, and regulations in the US, accompanied by our hand-on experiences (our group currently have two COA granted and three more under review by FAA). We then introduce our design for a modular data collection software framework. This framework is open source (available on GitHub) and cross-platform compatible (written in Python), providing flexibility in development and deployment hardware configurations. In addition our framework uses a central module to coordinate the data acquisition, synchronization with the UAS control system and data storage through a common interface and interchangeable, hardware specific software modules. Utilizing this structure and a common data transfer format, the system can be easily reconfigured to meet the needs of a specific platform or operation, eliminating the need to redevelop acquisition systems for specific instrument/platform configurations. On-site data measurement tests of UAS-based survey module were conducted and data quality from multi-sensors (e.g. a high-resolution digital camera, spectroradiometer, and a thermal infrared camera) was reported. Finally, the results of this prototype study show that the UAS techniques can be used to develop a low-cost alternative for ecological research, but much effort is still needed to carefully deal with flight regulations and integrate off-the-shelf instrumentation, by the practitioner.
Weidmann, Chase A; Qiu, Chen; Arvola, René M; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T; Tanaka Hall, Traci M; Goldstrohm, Aaron C
2016-01-01
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics. DOI: http://dx.doi.org/10.7554/eLife.17096.001 PMID:27482653
Weidmann, Chase A.; Qiu, Chen; Arvola, René M.; ...
2016-08-02
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAsmore » that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weidmann, Chase A.; Qiu, Chen; Arvola, René M.
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAsmore » that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics.« less
Lv, Qiao-Ying; Xie, Bing-Ying; Yang, Bing-Yi; Ning, Cheng-Cheng; Shan, Wei-Wei; Gu, Chao; Luo, Xue-Zhen; Chen, Xiao-Jun; Zhang, Zhen-Bo; Feng, You-Ji
2017-01-01
Background: Insulin resistance (IR) has been well studied in the initiation and development of endometrial endometrioid carcinoma (EEC). As yet, it has been largely neglected for estrogen sensitivity in local endometrium in hyperinsulinemia-induced systemic microenvironment. The aim of this study was to investigate the role of insulin in regulating estrogen sensitivity and explore the potential mechanisms in insulin-driven inflammatory microenvironment. Methods: We first investigated the effect of insulin on estradiol-driven endometrial cancer cells proliferation in vitro to address the roles of insulin in modulating estrogen sensitivity. Then GPER, ERα and TET1 in EEC samples with or without insulin resistance were screened by immunohistochemistry to confirm whether insulin resistance regulates estrogen receptors. Further mechanism analysis was carried out to address whether TET1 was mediated epigenetic modulation of GPER in insulin-induced microenvironment. Results: Insulin enhanced estradiol-driven endometrial cancer cells proliferation by up-regulating G-protein-coupled estrogen receptor (GPER) expression, but not ERα or ERβ. Immunohistochemistry of EEC tissues showed that GPER expression was greatly increased in endometrial tissues from EEC subjects with insulin resistance and was positively correlated with Ten-eleven-translocation 1 (TET1) expression. Mechanistically, insulin up-regulates TET1 expression, and the latter, an important DNA hydroxymethylase, could up-regulate GPER expression through epigenetic modulation. Conclusion: This study identified TET1 as the upstream regulator of GPER expression and provides a possible mechanism that insulin-induced positive regulation of estrogen sensitivity in endometrial cancer cells. Increasing expression of GPER through TET1-mediated epigenetic modulation may emerge as the main regulator to enhance the response of endometrial cancer to estrogen in insulin-driven inflammatory microenvironment. PMID:28382153
Lv, Qiao-Ying; Xie, Bing-Ying; Yang, Bing-Yi; Ning, Cheng-Cheng; Shan, Wei-Wei; Gu, Chao; Luo, Xue-Zhen; Chen, Xiao-Jun; Zhang, Zhen-Bo; Feng, You-Ji
2017-01-01
Background: Insulin resistance (IR) has been well studied in the initiation and development of endometrial endometrioid carcinoma (EEC). As yet, it has been largely neglected for estrogen sensitivity in local endometrium in hyperinsulinemia-induced systemic microenvironment. The aim of this study was to investigate the role of insulin in regulating estrogen sensitivity and explore the potential mechanisms in insulin-driven inflammatory microenvironment. Methods: We first investigated the effect of insulin on estradiol-driven endometrial cancer cells proliferation in vitro to address the roles of insulin in modulating estrogen sensitivity. Then GPER, ERα and TET1 in EEC samples with or without insulin resistance were screened by immunohistochemistry to confirm whether insulin resistance regulates estrogen receptors. Further mechanism analysis was carried out to address whether TET1 was mediated epigenetic modulation of GPER in insulin-induced microenvironment. Results: Insulin enhanced estradiol-driven endometrial cancer cells proliferation by up-regulating G-protein-coupled estrogen receptor (GPER) expression, but not ERα or ERβ. Immunohistochemistry of EEC tissues showed that GPER expression was greatly increased in endometrial tissues from EEC subjects with insulin resistance and was positively correlated with Ten-eleven-translocation 1 (TET1) expression. Mechanistically, insulin up-regulates TET1 expression, and the latter, an important DNA hydroxymethylase, could up-regulate GPER expression through epigenetic modulation. Conclusion: This study identified TET1 as the upstream regulator of GPER expression and provides a possible mechanism that insulin-induced positive regulation of estrogen sensitivity in endometrial cancer cells. Increasing expression of GPER through TET1-mediated epigenetic modulation may emerge as the main regulator to enhance the response of endometrial cancer to estrogen in insulin-driven inflammatory microenvironment.
Watson, L Ashley; Tsai, Li-Huei
2017-04-01
Different aspects of learning, memory, and cognition are regulated by epigenetic mechanisms such as covalent DNA modifications and histone post-translational modifications. More recently, the modulation of chromatin architecture and nuclear organization is emerging as a key factor in dynamic transcriptional regulation of the post-mitotic neuron. For instance, neuronal activity induces relocalization of gene loci to 'transcription factories', and specific enhancer-promoter looping contacts allow for precise transcriptional regulation. Moreover, neuronal activity-dependent DNA double-strand break formation in the promoter of immediate early genes appears to overcome topological constraints on transcription. Together, these findings point to a critical role for genome topology in integrating dynamic environmental signals to define precise spatiotemporal gene expression programs supporting cognitive processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
FOXO3a regulates BNIP3 and modulates mitochondrial calcium, dynamics, and function in cardiac stress
Kohlbrenner, Erik; Gamb, Scott I.; Guenzel, Adam J.; Klaus, Katherine; Fayyaz, Ahmed U.; Nair, K. Sreekumaran; Hajjar, Roger J.
2016-01-01
The forkhead box O3a (FOXO3a) transcription factor has been shown to regulate glucose metabolism, muscle atrophy, and cell death in postmitotic cells. Its role in regulation of mitochondrial and myocardial function is not well studied. Based on previous work, we hypothesized that FOXO3a, through BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (BNIP3), modulates mitochondrial morphology and function in heart failure (HF). We modulated the FOXO3a-BNIP3 pathway in normal and phenylephrine (PE)-stressed adult cardiomyocytes (ACM) in vitro and developed a cardiotropic adeno-associated virus serotype 9 encoding dominant-negative FOXO3a (AAV9.dn-FX3a) for gene delivery in a rat model of HF with preserved ejection fraction (HFpEF). We found that FOXO3a upregulates BNIP3 expression in normal and PE-stressed ACM, with subsequent increases in mitochondrial Ca2+, leading to decreased mitochondrial membrane potential, mitochondrial fragmentation, and apoptosis. Whereas dn-FX3a attenuated the increase in BNIP3 expression and its consequences in PE-stressed ACM, AAV9.dn-FX3a delivery in an experimental model of HFpEF decreased BNIP3 expression, reversed adverse left ventricular remodeling, and improved left ventricular systolic and, particularly, diastolic function, with improvements in mitochondrial structure and function. Moreover, AAV9.dn-FX3a restored phospholamban phosphorylation at S16 and enhanced dynamin-related protein 1 phosphorylation at S637. Furthermore, FOXO3a upregulates maladaptive genes involved in mitochondrial apoptosis, autophagy, and cardiac atrophy. We conclude that FOXO3a activation in cardiac stress is maladaptive, in that it modulates Ca2+ cycling, Ca2+ homeostasis, and mitochondrial dynamics and function. Our results suggest an important role of FOXO3a in HF, making it an attractive potential therapeutic target. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/role-of-foxo3a-in-heart-failure/. PMID:27694219
Towards a neural basis of music-evoked emotions.
Koelsch, Stefan
2010-03-01
Music is capable of evoking exceptionally strong emotions and of reliably affecting the mood of individuals. Functional neuroimaging and lesion studies show that music-evoked emotions can modulate activity in virtually all limbic and paralimbic brain structures. These structures are crucially involved in the initiation, generation, detection, maintenance, regulation and termination of emotions that have survival value for the individual and the species. Therefore, at least some music-evoked emotions involve the very core of evolutionarily adaptive neuroaffective mechanisms. Because dysfunctions in these structures are related to emotional disorders, a better understanding of music-evoked emotions and their neural correlates can lead to a more systematic and effective use of music in therapy. Copyright 2010 Elsevier Ltd. All rights reserved.
47 CFR 95.637 - Modulation standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... amplitude modulation and frequency or phase modulation of a transmitter are not permitted. (d) When emission... 47 Telecommunication 5 2010-10-01 2010-10-01 false Modulation standards. 95.637 Section 95.637... SERVICES Technical Regulations Technical Standards § 95.637 Modulation standards. (a) A GMRS transmitter...
Structural characterization of metal binding to a cold-adapted frataxin.
Noguera, Martín E; Roman, Ernesto A; Rigal, Juan B; Cousido-Siah, Alexandra; Mitschler, André; Podjarny, Alberto; Santos, Javier
2015-06-01
Frataxin is an evolutionary conserved protein that participates in iron metabolism. Deficiency of this small protein in humans causes a severe neurodegenerative disease known as Friedreich's ataxia. A number of studies indicate that frataxin binds iron and regulates Fe-S cluster biosynthesis. Previous structural studies showed that metal binding occurs mainly in a region of high density of negative charge. However, a comprehensive characterization of the binding sites is required to gain further insights into the mechanistic details of frataxin function. In this work, we have solved the X-ray crystal structures of a cold-adapted frataxin from a psychrophilic bacterium in the presence of cobalt or europium ions. We have identified a number of metal-binding sites, mainly solvent exposed, several of which had not been observed in previous studies on mesophilic homologues. No major structural changes were detected upon metal binding, although the structures exhibit significant changes in crystallographic B-factors. The analysis of these B-factors, in combination with crystal packing and RMSD among structures, suggests the existence of localized changes in the internal motions. Based on these results, we propose that bacterial frataxins possess binding sites of moderate affinity for a quick capture and transfer of iron to other proteins and for the regulation of Fe-S cluster biosynthesis, modulating interactions with partner proteins.
Yamaguchi, Yoko; Moriyama, Shunsuke; Lerner, Darren T; Grau, E Gordon; Seale, Andre P
2016-09-01
Prolactin (PRL) is a vertebrate hormone with diverse actions in osmoregulation, metabolism, reproduction, and in growth and development. Osmoregulation is fundamental to maintaining the functional structure of the macromolecules that conduct the business of life. In teleost fish, PRL plays a critical role in osmoregulation in fresh water. Appropriately, PRL cells of the tilapia are directly osmosensitive, with PRL secretion increasing as extracellular osmolality falls. Using a model system that employs dispersed PRL cells from the euryhaline teleost fish, Oreochromis mossambicus, we investigated the autocrine regulation of PRL cell function. Unknown was whether these PRL cells might also be sensitive to autocrine feedback and whether possible autocrine regulation might interact with the well-established regulation by physiologically relevant changes in extracellular osmolality. In the cell-perfusion system, ovine PRL and two isoforms of tilapia PRL (tPRL), tPRL177 and tPRL188, stimulated the release of tPRLs from the dispersed PRL cells. These effects were significant within 5-10 minutes and lasted the entire course of exposure, ceasing within 5-10 minutes of removal of tested PRLs from the perifusion medium. The magnitude of response varied between tPRL177 and tPRL188 and was modulated by extracellular osmolality. On the other hand, the gene expression of tPRLs was mainly unchanged or suppressed by static incubations of PRL cells with added PRLs. By demonstrating the regulatory complexity driven by positive autocrine feedback and its interaction with osmotic stimuli, these findings expand upon the knowledge that pituitary PRL cells are regulated complexly through multiple factors and interactions.
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MODULE OF A 25-MODULE COURSE IS DESIGNED AS A REVIEW OF THE OPERATING PRINCIPLES AND SERVICING PROCEDURES FOR GENERATORS AND AS AN INTRODUCTION TO TRANSISTOR CONTROLLED VOLTAGE REGULATION FOR GENERATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) REVIEW OF GENERATOR PRINCIPLES, AC AND DC, (2) SERVICING AND TESTING ALTERNATORS, AND (3)…
Cheng, Mary Hongying; Block, Ethan; Hu, Feizhuo; Cobanoglu, Murat Can; Sorkin, Alexander; Bahar, Ivet
2015-01-01
Human dopamine (DA) transporter (hDAT) regulates dopaminergic signaling in the central nervous system by maintaining the synaptic concentration of DA at physiological levels, upon reuptake of DA into presynaptic terminals. DA translocation involves the co-transport of two sodium ions and the channeling of a chloride ion, and it is achieved via alternating access between outward-facing (OF) and inward-facing states of DAT. hDAT is a target for addictive drugs, such as cocaine, amphetamine (AMPH), and therapeutic antidepressants. Our recent quantitative systems pharmacology study suggested that orphenadrine (ORPH), an anticholinergic agent and anti-Parkinson drug, might be repurposable as a DAT drug. Previous studies have shown that DAT-substrates like AMPH or -blockers like cocaine modulate the function of DAT in different ways. However, the molecular mechanisms of modulation remained elusive due to the lack of structural data on DAT. The newly resolved DAT structure from Drosophila melanogaster opens the way to a deeper understanding of the mechanism and time evolution of DAT–drug/ligand interactions. Using a combination of homology modeling, docking analysis, molecular dynamics simulations, and molecular biology experiments, we performed a comparative study of the binding properties of DA, AMPH, ORPH, and cocaine and their modulation of hDAT function. Simulations demonstrate that binding DA or AMPH drives a structural transition toward a functional form predisposed to translocate the ligand. In contrast, ORPH appears to inhibit DAT function by arresting it in the OF open conformation. The analysis shows that cocaine and ORPH competitively bind DAT, with the binding pose and affinity dependent on the conformational state of DAT. Further assays show that the effect of ORPH on DAT uptake and endocytosis is comparable to that of cocaine. PMID:26106364
DREAM Mediated Regulation of GCM1 in the Human Placental Trophoblast
Baczyk, Dora; Kibschull, Mark; Mellstrom, Britt; Levytska, Khrystyna; Rivas, Marcos; Drewlo, Sascha; Lye, Stephen J.; Naranjo, Jose R.; Kingdom, John C. P.
2013-01-01
The trophoblast transcription factor glial cell missing-1 (GCM1) regulates differentiation of placental cytotrophoblasts into the syncytiotrophoblast layer in contact with maternal blood. Reduced placental expression of GCM1 and abnormal syncytiotrophoblast structure are features of hypertensive disorder of pregnancy – preeclampsia. In-silico techniques identified the calcium-regulated transcriptional repressor – DREAM (Downstream Regulatory Element Antagonist Modulator) - as a candidate for GCM1 gene expression. Our objective was to determine if DREAM represses GCM1 regulated syncytiotrophoblast formation. EMSA and ChIP assays revealed a direct interaction between DREAM and the GCM1 promoter. siRNA-mediated DREAM silencing in cell culture and placental explant models significantly up-regulated GCM1 expression and reduced cytotrophoblast proliferation. DREAM calcium dependency was verified using ionomycin. Furthermore, the increased DREAM protein expression in preeclamptic placental villi was predominantly nuclear, coinciding with an overall increase in sumolylated DREAM and correlating inversely with GCM1 levels. In conclusion, our data reveal a calcium-regulated pathway whereby GCM1-directed villous trophoblast differentiation is repressed by DREAM. This pathway may be relevant to disease prevention via calcium-supplementation. PMID:23300953
CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity
Garrett, Roger A.; Shah, Shiraz A.; Erdmann, Susanne; Liu, Guannan; Mousaei, Marzieh; León-Sobrino, Carlos; Peng, Wenfang; Gudbergsdottir, Soley; Deng, Ling; Vestergaard, Gisle; Peng, Xu; She, Qunxin
2015-01-01
The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed. PMID:25764276
Freyre-González, Julio A; Alonso-Pavón, José A; Treviño-Quintanilla, Luis G; Collado-Vides, Julio
2008-10-27
Previous studies have used different methods in an effort to extract the modular organization of transcriptional regulatory networks. However, these approaches are not natural, as they try to cluster strongly connected genes into a module or locate known pleiotropic transcription factors in lower hierarchical layers. Here, we unravel the transcriptional regulatory network of Escherichia coli by separating it into its key elements, thus revealing its natural organization. We also present a mathematical criterion, based on the topological features of the transcriptional regulatory network, to classify the network elements into one of two possible classes: hierarchical or modular genes. We found that modular genes are clustered into physiologically correlated groups validated by a statistical analysis of the enrichment of the functional classes. Hierarchical genes encode transcription factors responsible for coordinating module responses based on general interest signals. Hierarchical elements correlate highly with the previously studied global regulators, suggesting that this could be the first mathematical method to identify global regulators. We identified a new element in transcriptional regulatory networks never described before: intermodular genes. These are structural genes that integrate, at the promoter level, signals coming from different modules, and therefore from different physiological responses. Using the concept of pleiotropy, we have reconstructed the hierarchy of the network and discuss the role of feedforward motifs in shaping the hierarchical backbone of the transcriptional regulatory network. This study sheds new light on the design principles underpinning the organization of transcriptional regulatory networks, showing a novel nonpyramidal architecture composed of independent modules globally governed by hierarchical transcription factors, whose responses are integrated by intermodular genes.
Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain
Djordjevic, Snezana; Goudreau, Paul N.; Xu, Qingping; Stock, Ann M.; West, Ann H.
1998-01-01
We report the x-ray crystal structure of the methylesterase CheB, a phosphorylation-activated response regulator involved in reversible modification of bacterial chemotaxis receptors. Methylesterase CheB and methyltransferase CheR modulate signaling output of the chemotaxis receptors by controlling the level of receptor methylation. The structure of CheB, which consists of an N-terminal regulatory domain and a C-terminal catalytic domain joined by a linker, was solved by molecular replacement methods using independent search models for the two domains. In unphosphorylated CheB, the N-terminal domain packs against the active site of the C-terminal domain and thus inhibits methylesterase activity by directly restricting access to the active site. We propose that phosphorylation of CheB induces a conformational change in the regulatory domain that disrupts the domain interface, resulting in a repositioning of the domains and allowing access to the active site. Structural similarity between the two companion receptor modification enzymes, CheB and CheR, suggests an evolutionary and/or functional relationship. Specifically, the phosphorylated N-terminal domain of CheB may facilitate interaction with the receptors, similar to the postulated role of the N-terminal domain of CheR. Examination of surfaces in the N-terminal regulatory domain of CheB suggests that despite a common fold throughout the response regulator family, surfaces used for protein–protein interactions differ significantly. Comparison between CheB and other response regulators indicates that analogous surfaces are used for different functions and conversely, similar functions are mediated by different molecular surfaces. PMID:9465023
Four RNA families with functional transient structures
Zhu, Jing Yun A; Meyer, Irmtraud M
2015-01-01
Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5′ flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5′ UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All transient and dominant structures are mapped to our new alignments introduced here. PMID:25751035
Four RNA families with functional transient structures.
Zhu, Jing Yun A; Meyer, Irmtraud M
2015-01-01
Protein-coding and non-coding RNA transcripts perform a wide variety of cellular functions in diverse organisms. Several of their functional roles are expressed and modulated via RNA structure. A given transcript, however, can have more than a single functional RNA structure throughout its life, a fact which has been previously overlooked. Transient RNA structures, for example, are only present during specific time intervals and cellular conditions. We here introduce four RNA families with transient RNA structures that play distinct and diverse functional roles. Moreover, we show that these transient RNA structures are structurally well-defined and evolutionarily conserved. Since Rfam annotates one structure for each family, there is either no annotation for these transient structures or no such family. Thus, our alignments either significantly update and extend the existing Rfam families or introduce a new RNA family to Rfam. For each of the four RNA families, we compile a multiple-sequence alignment based on experimentally verified transient and dominant (dominant in terms of either the thermodynamic stability and/or attention received so far) RNA secondary structures using a combination of automated search via covariance model and manual curation. The first alignment is the Trp operon leader which regulates the operon transcription in response to tryptophan abundance through alternative structures. The second alignment is the HDV ribozyme which we extend to the 5' flanking sequence. This flanking sequence is involved in the regulation of the transcript's self-cleavage activity. The third alignment is the 5' UTR of the maturation protein from Levivirus which contains a transient structure that temporarily postpones the formation of the final inhibitory structure to allow translation of maturation protein. The fourth and last alignment is the SAM riboswitch which regulates the downstream gene expression by assuming alternative structures upon binding of SAM. All transient and dominant structures are mapped to our new alignments introduced here.
Translation regulation in plants: an interesting past, an exciting present and a promising future.
Merchante, Catharina; Stepanova, Anna N; Alonso, Jose M
2017-05-01
Changes in gene expression are at the core of most biological processes, from cell differentiation to organ development, including the adaptation of the whole organism to the ever-changing environment. Although the central role of transcriptional regulation is solidly established and the general mechanisms involved in this type of regulation are relatively well understood, it is clear that regulation at a translational level also plays an essential role in modulating gene expression. Despite the large number of examples illustrating the critical role played by translational regulation in determining the expression levels of a gene, our understanding of the molecular mechanisms behind such types of regulation has been slow to emerge. With the recent development of high-throughput approaches to map and quantify different critical parameters affecting translation, such as RNA structure, protein-RNA interactions and ribosome occupancy at the genome level, a renewed enthusiasm toward studying translation regulation is warranted. The use of these new powerful technologies in well-established and uncharacterized translation-dependent processes holds the promise to decipher the likely complex and diverse, but also fascinating, mechanisms behind the regulation of translation. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Regulating the ethylene response of a plant by modulation of F-box proteins
Guo, Hongwei [Beijing, CN; Ecker, Joseph R [Carlsbad, CA
2014-01-07
The relationship between F-box proteins and proteins invovled in the ethylene response in plants is described. In particular, F-box proteins may bind to proteins involved in the ethylene response and target them for degradation by the ubiquitin/proteasome pathway. The transcription factor EIN3 is a key transcription factor mediating ethylne-regulated gene expression and morphological responses. EIN3 is degraded through a ubiquitin/proteasome pathway mediated by F-box proteins EBF1 and EBF2. The link between F-box proteins and the ethylene response is a key step in modulating or regulating the response of a plant to ethylene. Described herein are transgenic plants having an altered sensitivity to ethylene, and methods for making transgenic plant haing an althered sensitivity to ethylene by modulating the level of activity of F-box proteins. Methods of altering the ethylene response in a plant by modulating the activity or expression of an F-box protein are described. Also described are methods of identifying compounds that modulate the ethylene response in plants by modulating the level of F-box protein expression or activity.
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.
FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less
Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis
Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; ...
2015-09-18
FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less
Validating module network learning algorithms using simulated data.
Michoel, Tom; Maere, Steven; Bonnet, Eric; Joshi, Anagha; Saeys, Yvan; Van den Bulcke, Tim; Van Leemput, Koenraad; van Remortel, Piet; Kuiper, Martin; Marchal, Kathleen; Van de Peer, Yves
2007-05-03
In recent years, several authors have used probabilistic graphical models to learn expression modules and their regulatory programs from gene expression data. Despite the demonstrated success of such algorithms in uncovering biologically relevant regulatory relations, further developments in the area are hampered by a lack of tools to compare the performance of alternative module network learning strategies. Here, we demonstrate the use of the synthetic data generator SynTReN for the purpose of testing and comparing module network learning algorithms. We introduce a software package for learning module networks, called LeMoNe, which incorporates a novel strategy for learning regulatory programs. Novelties include the use of a bottom-up Bayesian hierarchical clustering to construct the regulatory programs, and the use of a conditional entropy measure to assign regulators to the regulation program nodes. Using SynTReN data, we test the performance of LeMoNe in a completely controlled situation and assess the effect of the methodological changes we made with respect to an existing software package, namely Genomica. Additionally, we assess the effect of various parameters, such as the size of the data set and the amount of noise, on the inference performance. Overall, application of Genomica and LeMoNe to simulated data sets gave comparable results. However, LeMoNe offers some advantages, one of them being that the learning process is considerably faster for larger data sets. Additionally, we show that the location of the regulators in the LeMoNe regulation programs and their conditional entropy may be used to prioritize regulators for functional validation, and that the combination of the bottom-up clustering strategy with the conditional entropy-based assignment of regulators improves the handling of missing or hidden regulators. We show that data simulators such as SynTReN are very well suited for the purpose of developing, testing and improving module network algorithms. We used SynTReN data to develop and test an alternative module network learning strategy, which is incorporated in the software package LeMoNe, and we provide evidence that this alternative strategy has several advantages with respect to existing methods.
Delos Santos, Ralph Christian; Bautista, Stephen; Lucarelli, Stefanie; Bone, Leslie N; Dayam, Roya M; Abousawan, John; Botelho, Roberto J; Antonescu, Costin N
2017-10-15
Clathrin-mediated endocytosis is a major regulator of cell-surface protein internalization. Clathrin and other proteins assemble into small invaginating structures at the plasma membrane termed clathrin-coated pits (CCPs) that mediate vesicle formation. In addition, epidermal growth factor receptor (EGFR) signaling is regulated by its accumulation within CCPs. Given the diversity of proteins regulated by clathrin-mediated endocytosis, how this process may distinctly regulate specific receptors is a key question. We examined the selective regulation of clathrin-dependent EGFR signaling and endocytosis. We find that perturbations of phospholipase Cγ1 (PLCγ1), Ca 2+ , or protein kinase C (PKC) impair clathrin-mediated endocytosis of EGFR, the formation of CCPs harboring EGFR, and EGFR signaling. Each of these manipulations was without effect on the clathrin-mediated endocytosis of transferrin receptor (TfR). EGFR and TfR were recruited to largely distinct clathrin structures. In addition to control of initiation and assembly of CCPs, EGF stimulation also elicited a Ca 2+ - and PKC-dependent reduction in synaptojanin1 recruitment to clathrin structures, indicating broad control of CCP assembly by Ca 2+ signals. Hence EGFR elicits PLCγ1-calcium signals to facilitate formation of a subset of CCPs, thus modulating its own signaling and endocytosis. This provides evidence for the versatility of CCPs to control diverse cellular processes. © 2017 Delos Santos et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Bai, Qifeng; Yao, Xiaojun
2016-02-01
Metabotropic glutamate receptor 1 (mGlu1), which belongs to class C G protein-coupled receptors (GPCRs), can be coupled with G protein to transfer extracellular signal by dimerization and allosteric regulation. Unraveling the dimer packing and allosteric mechanism can be of great help for understanding specific regulatory mechanism and designing more potential negative allosteric modulator (NAM). Here, we report molecular dynamics simulation studies of the modulation mechanism of FITM on the wild type, T815M and Y805A mutants of mGlu1 through weak interaction analysis and free energy calculation. The weak interaction analysis demonstrates that van der Waals (vdW) and hydrogen bonding play an important role on the dimer packing between six cholesterol molecules and mGlu1 as well as the interaction between allosteric sites T815, Y805 and FITM in wild type, T815M and Y805A mutants of mGlu1. Besides, the results of free energy calculations indicate that secondary binding pocket is mainly formed by the residues Thr748, Cys746, Lys811 and Ser735 except for FITM-bound pocket in crystal structure. Our results can not only reveal the dimer packing and allosteric regulation mechanism, but also can supply useful information for the design of potential NAM of mGlu1.
Rudnizky, Sergei; Khamis, Hadeel; Malik, Omri; Squires, Allison H; Meller, Amit; Melamed, Philippa
2018-01-01
Abstract Most functional transcription factor (TF) binding sites deviate from their ‘consensus’ recognition motif, although their sites and flanking sequences are often conserved across species. Here, we used single-molecule DNA unzipping with optical tweezers to study how Egr-1, a TF harboring three zinc fingers (ZF1, ZF2 and ZF3), is modulated by the sequence and context of its functional sites in the Lhb gene promoter. We find that both the core 9 bp bound to Egr-1 in each of the sites, and the base pairs flanking them, modulate the affinity and structure of the protein–DNA complex. The effect of the flanking sequences is asymmetric, with a stronger effect for the sequence flanking ZF3. Characterization of the dissociation time of Egr-1 revealed that a local, mechanical perturbation of the interactions of ZF3 destabilizes the complex more effectively than a perturbation of the ZF1 interactions. Our results reveal a novel role for ZF3 in the interaction of Egr-1 with other proteins and the DNA, providing insight on the regulation of Lhb and other genes by Egr-1. Moreover, our findings reveal the potential of small changes in DNA sequence to alter transcriptional regulation, and may shed light on the organization of regulatory elements at promoters. PMID:29253225
Blacklock, Kristin; Verkhivker, Gennady M.
2013-01-01
Allosteric interactions of the molecular chaperone Hsp90 with a large cohort of cochaperones and client proteins allow for molecular communication and event coupling in signal transduction networks. The integration of cochaperones into the Hsp90 system is driven by the regulatory mechanisms that modulate the progression of the ATPase cycle and control the recruitment of the Hsp90 clientele. In this work, we report the results of computational modeling of allosteric regulation in the Hsp90 complexes with the cochaperones p23 and Aha1. By integrating protein docking, biophysical simulations, modeling of allosteric communications, protein structure network analysis and the energy landscape theory we have investigated dynamics and stability of the Hsp90-p23 and Hsp90-Aha1 interactions in direct comparison with the extensive body of structural and functional experiments. The results have revealed that functional dynamics and allosteric interactions of Hsp90 can be selectively modulated by these cochaperones via specific targeting of the regulatory hinge regions that could restrict collective motions and stabilize specific chaperone conformations. The protein structure network parameters have quantified the effects of cochaperones on conformational stability of the Hsp90 complexes and identified dynamically stable communities of residues that can contribute to the strengthening of allosteric interactions. According to our results, p23-mediated changes in the Hsp90 interactions may provide “molecular brakes” that could slow down an efficient transmission of the inter-domain allosteric signals, consistent with the functional role of p23 in partially inhibiting the ATPase cycle. Unlike p23, Aha1-mediated acceleration of the Hsp90-ATPase cycle may be achieved via modulation of the equilibrium motions that facilitate allosteric changes favoring a closed dimerized form of Hsp90. The results of our study have shown that Aha1 and p23 can modulate the Hsp90-ATPase activity and direct the chaperone cycle by exerting the precise control over structural stability, global movements and allosteric communications in Hsp90. PMID:23977182
Abnormal Epigenetic Regulation of Immune System during Aging.
Jasiulionis, Miriam G
2018-01-01
Epigenetics refers to the study of mechanisms controlling the chromatin structure, which has fundamental role in the regulation of gene expression and genome stability. Epigenetic marks, such as DNA methylation and histone modifications, are established during embryonic development and epigenetic profiles are stably inherited during mitosis, ensuring cell differentiation and fate. Under the effect of intrinsic and extrinsic factors, such as metabolic profile, hormones, nutrition, drugs, smoke, and stress, epigenetic marks are actively modulated. In this sense, the lifestyle may affect significantly the epigenome, and as a result, the gene expression profile and cell function. Epigenetic alterations are a hallmark of aging and diseases, such as cancer. Among biological systems compromised with aging is the decline of immune response. Different regulators of immune response have their promoters and enhancers susceptible to the modulation by epigenetic marks, which is fundamental to the differentiation and function of immune cells. Consistent evidence has showed the regulation of innate immune cells, and T and B lymphocytes by epigenetic mechanisms. Therefore, age-dependent alterations in epigenetic marks may result in the decline of immune function and this might contribute to the increased incidence of diseases in old people. In order to maintain health, we need to better understand how to avoid epigenetic alterations related to immune aging. In this review, the contribution of epigenetic mechanisms to the loss of immune function during aging will be discussed, and the promise of new means of disease prevention and management will be pointed.
Allostery and the dynamic oligomerization of porphobilinogen synthase
Jaffe, Eileen K.; Lawrence, Sarah H.
2011-01-01
The structural basis for allosteric regulation of porphobilinogen synthase (PBGS) is modulation of a quaternary structure equilibrium between octamer and hexamer (via dimers), which is represented schematically as 8mer ⇔ 2mer ⇔ 2mer* ⇔ 6mer*. The “*” represents a reorientation between two domains of each subunit that occurs in the dissociated state because it is sterically forbidden in the larger multimers. Allosteric effectors of PBGS are both intrinsic and extrinsic and are phylogenetically variable. In some species this equilibrium is modulated intrinsically by magnesium which binds at a site specific to the 8mer. In other species this equilibrium is modulated intrinsically by pH; the guanidinium group of an arginine being spatially equivalent to the allosteric magnesium ion. In humans, disease associated variants all shift the equilibrium toward the 6mer* relative to wild type. The 6mer* has a surface cavity that is not present in the 8mer and is proposed as a small molecule allosteric binding site. In silico and in vitro approaches have revealed species-specific allosteric PBGS inhibitors that stabilize the 6mer*. Some of these inhibitors are drugs in clinical use leading to the hypothesis that extrinsic allosteric inhibition of human PBGS could be a mechanism for drug side effects. PMID:22037356
Dunlap, K D; Larkins-Ford, J
2003-02-01
Some gymnotiform electric fish modulate their electric organ discharge for intraspecific communication. In Apteronotus leptorhynchus, chirps are usually rapid (10-30 ms) modulations that are activated through non- N-methyl- d-aspartate (non-NMDA) glutamate receptors in the hindbrain pacemaker nucleus. Males produce longer chirp types than females and chirp at higher rates. In Apteronotus albifrons, chirp rate is sexually monomorphic, but chirp structure (change in frequency and amplitude during a chirp) was unknown. To better understand the neural regulation and evolution of chirping behavior, we compared chirp structure in these two species under identical stimulus regimes. A. albifrons, like A. leptorhynchus, produced distinct types of chirps that varied, in part, by frequency excursion. However, unlike in A. leptorhynchus, chirp types in A. albifrons varied little in duration, and chirps were all longer (70-200 ms) than those of A. leptorhynchus. Chirp type production was not sexually dimorphic in A. albifrons, but within two chirp types males produced longer chirps than females. We suggest that species differences in chirp duration might be attributable to differences in the relative proportions of fast-acting (non-NMDA) and slow-acting (NMDA) glutamate receptors in the pacemaker. Additionally, we map species difference onto a phylogeny and hypothesize an evolutionary sequence for the diversification of chirp structure.
Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily
Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael
2015-01-01
The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702
Structural basis for KCNE3 modulation of potassium recycling in epithelia.
Kroncke, Brett M; Van Horn, Wade D; Smith, Jarrod; Kang, CongBao; Welch, Richard C; Song, Yuanli; Nannemann, David P; Taylor, Keenan C; Sisco, Nicholas J; George, Alfred L; Meiler, Jens; Vanoye, Carlos G; Sanders, Charles R
2016-09-01
The single-span membrane protein KCNE3 modulates a variety of voltage-gated ion channels in diverse biological contexts. In epithelial cells, KCNE3 regulates the function of the KCNQ1 potassium ion (K(+)) channel to enable K(+) recycling coupled to transepithelial chloride ion (Cl(-)) secretion, a physiologically critical cellular transport process in various organs and whose malfunction causes diseases, such as cystic fibrosis (CF), cholera, and pulmonary edema. Structural, computational, biochemical, and electrophysiological studies lead to an atomically explicit integrative structural model of the KCNE3-KCNQ1 complex that explains how KCNE3 induces the constitutive activation of KCNQ1 channel activity, a crucial component in K(+) recycling. Central to this mechanism are direct interactions of KCNE3 residues at both ends of its transmembrane domain with residues on the intra- and extracellular ends of the KCNQ1 voltage-sensing domain S4 helix. These interactions appear to stabilize the activated "up" state configuration of S4, a prerequisite for full opening of the KCNQ1 channel gate. In addition, the integrative structural model was used to guide electrophysiological studies that illuminate the molecular basis for how estrogen exacerbates CF lung disease in female patients, a phenomenon known as the "CF gender gap."
Depetris-Chauvin, Ana; Fernández-Gamba, Agata; Gorostiza, E Axel; Herrero, Anastasia; Castaño, Eduardo M; Ceriani, M Fernanda
2014-10-01
In the Drosophila brain, the neuropeptide PIGMENT DISPERSING FACTOR (PDF) is expressed in the small and large Lateral ventral neurons (LNvs) and regulates circadian locomotor behavior. Interestingly, PDF immunoreactivity at the dorsal terminals changes across the day as synaptic contacts do as a result of a remarkable remodeling of sLNv projections. Despite the relevance of this phenomenon to circuit plasticity and behavior, the underlying mechanisms remain poorly understood. In this work we provide evidence that PDF along with matrix metalloproteinases (Mmp1 and 2) are key in the control of circadian structural remodeling. Adult-specific downregulation of PDF levels per se hampers circadian axonal remodeling, as it does altering Mmp1 or Mmp2 levels within PDF neurons post-developmentally. However, only Mmp1 affects PDF immunoreactivity at the dorsal terminals and exerts a clear effect on overt behavior. In vitro analysis demonstrated that PDF is hydrolyzed by Mmp1, thereby suggesting that Mmp1 could directly terminate its biological activity. These data demonstrate that Mmp1 modulates PDF processing, which leads to daily structural remodeling and circadian behavior.
Depetris-Chauvin, Ana; Fernández-Gamba, Ágata; Gorostiza, E. Axel; Herrero, Anastasia; Castaño, Eduardo M.; Ceriani, M. Fernanda
2014-01-01
In the Drosophila brain, the neuropeptide PIGMENT DISPERSING FACTOR (PDF) is expressed in the small and large Lateral ventral neurons (LNvs) and regulates circadian locomotor behavior. Interestingly, PDF immunoreactivity at the dorsal terminals changes across the day as synaptic contacts do as a result of a remarkable remodeling of sLNv projections. Despite the relevance of this phenomenon to circuit plasticity and behavior, the underlying mechanisms remain poorly understood. In this work we provide evidence that PDF along with matrix metalloproteinases (Mmp1 and 2) are key in the control of circadian structural remodeling. Adult-specific downregulation of PDF levels per se hampers circadian axonal remodeling, as it does altering Mmp1 or Mmp2 levels within PDF neurons post-developmentally. However, only Mmp1 affects PDF immunoreactivity at the dorsal terminals and exerts a clear effect on overt behavior. In vitro analysis demonstrated that PDF is hydrolyzed by Mmp1, thereby suggesting that Mmp1 could directly terminate its biological activity. These data demonstrate that Mmp1 modulates PDF processing, which leads to daily structural remodeling and circadian behavior. PMID:25356918
FGF signaling refines Wnt gradients to regulate the patterning of taste papillae.
Prochazkova, Michaela; Häkkinen, Teemu J; Prochazka, Jan; Spoutil, Frantisek; Jheon, Andrew H; Ahn, Youngwook; Krumlauf, Robb; Jernvall, Jukka; Klein, Ophir D
2017-06-15
The patterning of repeated structures is a major theme in developmental biology, and the inter-relationship between spacing and size of such structures is an unresolved issue. Fungiform papillae are repeated epithelial structures that house taste buds on the anterior tongue. Here, we report that FGF signaling is a crucial regulator of fungiform papillae development. We found that mesenchymal FGF10 controls the size of the papillary area, while overall patterning remains unchanged. Our results show that FGF signaling negatively affects the extent of canonical Wnt signaling, which is the main activation pathway during fungiform papillae development; however, this effect does not occur at the level of gene transcription. Rather, our experimental data, together with computational modeling, indicate that FGF10 modulates the range of Wnt effects, likely via induction of Sostdc1 expression. We suggest that modification of the reach of Wnt signaling could be due to local changes in morphogen diffusion, representing a novel mechanism in this tissue context, and we propose that this phenomenon might be involved in a broader array of mammalian developmental processes. © 2017. Published by The Company of Biologists Ltd.
Thalamic reticular nucleus induces fast and local modulation of arousal state
Lewis, Laura D; Voigts, Jakob; Flores, Francisco J; Schmitt, L Ian; Wilson, Matthew A
2015-01-01
During low arousal states such as drowsiness and sleep, cortical neurons exhibit rhythmic slow wave activity associated with periods of neuronal silence. Slow waves are locally regulated, and local slow wave dynamics are important for memory, cognition, and behaviour. While several brainstem structures for controlling global sleep states have now been well characterized, a mechanism underlying fast and local modulation of cortical slow waves has not been identified. Here, using optogenetics and whole cortex electrophysiology, we show that local tonic activation of thalamic reticular nucleus (TRN) rapidly induces slow wave activity in a spatially restricted region of cortex. These slow waves resemble those seen in sleep, as cortical units undergo periods of silence phase-locked to the slow wave. Furthermore, animals exhibit behavioural changes consistent with a decrease in arousal state during TRN stimulation. We conclude that TRN can induce rapid modulation of local cortical state. DOI: http://dx.doi.org/10.7554/eLife.08760.001 PMID:26460547
Tamam, Sofina; Ahmad, Asma Hayati
2017-01-01
Pain is modulated by various factors, the most notable of which is emotions. Since love is an emotion, it can also modulate pain. The answer to the question of whether it enhances or reduces pain needs to be determined. A review was conducted of animal and human studies in which this enigmatic emotion and its interaction with pain was explored. Recent advances in neuroimaging have revealed similarities in brain activation relating to love and pain. At the simplest level, this interaction can be explained by the overlapping network structure in brain functional connectivity, although the explanation is considerably more complex. The effect of love can either result in increased or decreased pain perception. An explanation of the interaction between pain and love relates to the functional connectivity of the brain and to the psychological construct of the individual, as well as to his or her ability to engage resources relating to emotion regulation. In turn, this determines how a person relates to love and reacts to pain. PMID:28814928
Structure of Drosophila Oskar reveals a novel RNA binding protein
Yang, Na; Yu, Zhenyu; Hu, Menglong; Wang, Mingzhu; Lehmann, Ruth; Xu, Rui-Ming
2015-01-01
Oskar (Osk) protein plays critical roles during Drosophila germ cell development, yet its functions in germ-line formation and body patterning remain poorly understood. This situation contrasts sharply with the vast knowledge about the function and mechanism of osk mRNA localization. Osk is predicted to have an N-terminal LOTUS domain (Osk-N), which has been suggested to bind RNA, and a C-terminal hydrolase-like domain (Osk-C) of unknown function. Here, we report the crystal structures of Osk-N and Osk-C. Osk-N shows a homodimer of winged-helix–fold modules, but without detectable RNA-binding activity. Osk-C has a lipase-fold structure but lacks critical catalytic residues at the putative active site. Surprisingly, we found that Osk-C binds the 3′UTRs of osk and nanos mRNA in vitro. Mutational studies identified a region of Osk-C important for mRNA binding. These results suggest possible functions of Osk in the regulation of stability, regulation of translation, and localization of relevant mRNAs through direct interaction with their 3′UTRs, and provide structural insights into a novel protein–RNA interaction motif involving a hydrolase-related domain. PMID:26324911
Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase.
Meiselbach, Heike; Sticht, Heinrich
2011-08-01
The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.
Small-molecule modulators of PXR and CAR
Chai, Sergio C.; Cherian, Milu T.; Wang, Yue-Ming; Chen, Taosheng
2016-01-01
Two nuclear receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), participate in the xenobiotic detoxification system by regulating the expression of drug-metabolizing enzymes and transporters in order to degrade and excrete foreign chemicals or endogenous metabolites. This review aims to expand the perceived relevance of PXR and CAR beyond their established role as master xenosensors to disease-oriented areas, emphasizing their modulation by small molecules. Structural studies of these receptors have provided much-needed insight into the nature of their binding promiscuity and the important elements that lead to ligand binding. Reports of species- and isoform-selective activation highlight the need for further scrutiny when extrapolating from animal data to humans, as animal models are at the forefront of early drug discovery. PMID:26921498
Godwin, Ryan C; Melvin, Ryan L; Gmeiner, William H; Salsbury, Freddie R
2017-01-31
Zinc-finger proteins are regulators of critical signaling pathways for various cellular functions, including apoptosis and oncogenesis. Here, we investigate how binding site protonation states and zinc coordination influence protein structure, dynamics, and ultimately function, as these pivotal regulatory proteins are increasingly important for protein engineering and therapeutic discovery. To better understand the thermodynamics and dynamics of the zinc finger of NEMO (NF-κB essential modulator), as well as the role of zinc, we present results of 20 μs molecular dynamics trajectories, 5 μs for each of four active site configurations. Consistent with experimental evidence, the zinc ion is essential for mechanical stabilization of the functional, folded conformation. Hydrogen bond motifs are unique for deprotonated configurations yet overlap in protonated cases. Correlated motions and principal component analysis corroborate the similarity of the protonated configurations and highlight unique relationships of the zinc-bound configuration. We hypothesize a potential mechanism for zinc binding from results of the thiol configurations. The deprotonated, zinc-bound configuration alone predominantly maintains its tertiary structure throughout all 5 μs and alludes rare conformations potentially important for (im)proper zinc-finger-related protein-protein or protein-DNA interactions.
A Disintegrin and Metalloprotease 17 in the Cardiovascular and Central Nervous Systems.
Xu, Jiaxi; Mukerjee, Snigdha; Silva-Alves, Cristiane R A; Carvalho-Galvão, Alynne; Cruz, Josiane C; Balarini, Camille M; Braga, Valdir A; Lazartigues, Eric; França-Silva, Maria S
2016-01-01
ADAM17 is a metalloprotease and disintegrin that lodges in the plasmatic membrane of several cell types and is able to cleave a wide variety of cell surface proteins. It is somatically expressed in mammalian organisms and its proteolytic action influences several physiological and pathological processes. This review focuses on the structure of ADAM17, its signaling in the cardiovascular system and its participation in certain disorders involving the heart, blood vessels, and neural regulation of autonomic and cardiovascular modulation.
SNAP-25 IN NEUROPSYCHIATRIC DISORDERS
Corradini, Irene; Verderio, Claudia; Sala, Mariaelvina; Wilson, Michael C.; Matteoli, Michela
2009-01-01
SNAP-25 is plasma membrane protein which, together with syntaxin and the synaptic vesicle protein VAMP/synaptobrevin, forms the SNARE docking complex for regulated exocytosis. SNAP-25 also modulates different voltage-gated calcium channels, representing therefore a multifunctional protein that plays essential roles in neurotransmitter release at different steps. Recent genetic studies of human populations and of some mouse models implicate that alterations in SNAP-25 gene structure, expression and/or function may contribute directly to these distinct neuropsychiatric and neurological disorders. PMID:19161380
A multilevel control approach for a modular structured space platform
NASA Technical Reports Server (NTRS)
Chichester, F. D.; Borelli, M. T.
1981-01-01
A three axis mathematical representation of a modular assembled space platform consisting of interconnected discrete masses, including a deployable truss module, was derived for digital computer simulation. The platform attitude control system as developed to provide multilevel control utilizing the Gauss-Seidel second level formulation along with an extended form of linear quadratic regulator techniques. The objectives of the multilevel control are to decouple the space platform's spatial axes and to accommodate the modification of the platform's configuration for each of the decoupled axes.
Djordjevic, Michael A; Bezos, Anna; Susanti; Marmuse, Laurence; Driguez, Hugues; Samain, Eric; Vauzeilles, Boris; Beau, Jean-Marie; Kordbacheh, Farzaneh; Rolfe, Barry G; Schwörer, Ralf; Daines, Alison M; Gresshoff, Peter M; Parish, Christopher R
2014-01-01
Lipochitin oligosaccharides (LCOs) are signaling molecules required by ecologically and agronomically important bacteria and fungi to establish symbioses with diverse land plants. In plants, oligo-chitins and LCOs can differentially interact with different lysin motif (LysM) receptors and affect innate immunity responses or symbiosis-related pathways. In animals, oligo-chitins also induce innate immunity and other physiological responses but LCO recognition has not been demonstrated. Here LCO and LCO-like compounds are shown to be biologically active in mammals in a structure dependent way through the modulation of angiogenesis, a tightly-regulated process involving the induction and growth of new blood vessels from existing vessels. The testing of 24 LCO, LCO-like or oligo-chitin compounds resulted in structure-dependent effects on angiogenesis in vitro leading to promotion, or inhibition or nil effects. Like plants, the mammalian LCO biological activity depended upon the presence and type of terminal substitutions. Un-substituted oligo-chitins of similar chain lengths were unable to modulate angiogenesis indicating that mammalian cells, like plant cells, can distinguish between LCOs and un-substituted oligo-chitins. The cellular mode-of-action of the biologically active LCOs in mammals was determined. The stimulation or inhibition of endothelial cell adhesion to vitronectin or fibronectin correlated with their pro- or anti-angiogenic activity. Importantly, novel and more easily synthesised LCO-like disaccharide molecules were also biologically active and de-acetylated chitobiose was shown to be the primary structural basis of recognition. Given this, simpler chitin disaccharides derivatives based on the structure of biologically active LCOs were synthesised and purified and these showed biological activity in mammalian cells. Since important chronic disease states are linked to either insufficient or excessive angiogenesis, LCO and LCO-like molecules may have the potential to be a new, carbohydrate-based class of therapeutics for modulating angiogenesis.
NASA Astrophysics Data System (ADS)
Chandrasekar, M.; Senthilkumar, T.
2016-07-01
A passive thermal regulation technique with fins in conjunction with cotton wicks is developed in the present work for controlling the temperature of PV module during its operation. Experiments were conducted with the developed technique in the location of Tiruchirappalli (78.6°E and 10.8°N), Tamil Nadu, India with flat 25 Wp PV module and its viability was confirmed. The PV module temperature got reduced by 12 % while the electrical yield is increased by 14 % with the help of the developed cooling system. Basic energy balance equation applicable for PV module was used to evaluate the module temperatures and a fair agreement was obtained between the theoretical and experimental values for the cases of with cooling and without cooling.
Alvarado, John J; Betts, Laurie; Moroco, Jamie A; Smithgall, Thomas E; Yeh, Joanne I
2010-11-12
Most mammalian cell types depend on multiple Src family kinases (SFKs) to regulate diverse signaling pathways. Strict control of SFK activity is essential for normal cellular function, and loss of kinase regulation contributes to several forms of cancer and other diseases. Previous x-ray crystal structures of the SFKs c-Src and Hck revealed that intramolecular association of their Src homology (SH) 3 domains and SH2 kinase linker regions has a key role in down-regulation of kinase activity. However, the amino acid sequence of the Hck linker represents a suboptimal ligand for the isolated SH3 domain, suggesting that it may form the polyproline type II helical conformation required for SH3 docking only in the context of the intact structure. To test this hypothesis directly, we determined the crystal structure of a truncated Hck protein consisting of the SH2 and SH3 domains plus the linker. Despite the absence of the kinase domain, the structures and relative orientations of the SH2 and SH3 domains in this shorter protein were very similar to those observed in near full-length, down-regulated Hck. However, the SH2 kinase linker adopted a modified topology and failed to engage the SH3 domain. This new structure supports the idea that these noncatalytic regions work together as a "conformational switch" that modulates kinase activity in a manner unique to the SH3 domain and linker topologies present in the intact Hck protein. Our results also provide fresh structural insight into the facile induction of Hck activity by HIV-1 Nef and other Hck SH3 domain binding proteins and implicate the existence of innate conformational states unique to individual Src family members that "fine-tune" their sensitivities to activation by SH3-based ligands.
Lyu, Xiaomei; Ng, Kuan Rei; Lee, Jie Lin; Mark, Rita; Chen, Wei Ning
2017-08-09
Flavonoids are an important class of plant polyphenols that possess a variety of health benefits. In this work, S. cerevisiae was metabolically engineered to produce the flavonoid naringenin, using tyrosine as the precursor. Our strategy to improve naringenin production comprised three modules. In module 1, we employed a modified GAL system to overexpress the genes of the naringenin biosynthesis pathway and investigated their synergistic action. In module 2, we simultaneously up-regulated acetyl-CoA production and down-regulated fatty acid biosynthesis in order to increase the precursor supply, malonyl-CoA. In module 3, we engineered the tyrosine biosynthetic pathway to eliminate the feedback inhibition of tyrosine and also down-regulated competing pathways. It was found that modules 1 and 3 played important roles in improving naringenin production. We succeeded in producing up to ∼90 mg/L of naringenin in our final strain, which is a 20-fold increase as compared to the parental strain.
The mechanism by which a propeptide-encoded pH sensor regulates spatiotemporal activation of furin.
Williamson, Danielle M; Elferich, Johannes; Ramakrishnan, Parvathy; Thomas, Gary; Shinde, Ujwal
2013-06-28
The proprotein convertase furin requires the pH gradient of the secretory pathway to regulate its multistep, compartment-specific autocatalytic activation. Although His-69 within the furin prodomain serves as the pH sensor that detects transport of the propeptide-enzyme complex to the trans-Golgi network, where it promotes cleavage and release of the inhibitory propeptide, a mechanistic understanding of how His-69 protonation mediates furin activation remains unclear. Here we employ biophysical, biochemical, and computational approaches to elucidate the mechanism underlying the pH-dependent activation of furin. Structural analyses and binding experiments comparing the wild-type furin propeptide with a nonprotonatable His-69 → Leu mutant that blocks furin activation in vivo revealed protonation of His-69 reduces both the thermodynamic stability of the propeptide as well as its affinity for furin at pH 6.0. Structural modeling combined with mathematical modeling and molecular dynamic simulations suggested that His-69 does not directly contribute to the propeptide-enzyme interface but, rather, triggers movement of a loop region in the propeptide that modulates access to the cleavage site and, thus, allows for the tight pH regulation of furin activation. Our work establishes a mechanism by which His-69 functions as a pH sensor that regulates compartment-specific furin activation and provides insights into how other convertases and proteases may regulate their precise spatiotemporal activation.
The Mechanism by Which a Propeptide-encoded pH Sensor Regulates Spatiotemporal Activation of Furin*
Williamson, Danielle M.; Elferich, Johannes; Ramakrishnan, Parvathy; Thomas, Gary; Shinde, Ujwal
2013-01-01
The proprotein convertase furin requires the pH gradient of the secretory pathway to regulate its multistep, compartment-specific autocatalytic activation. Although His-69 within the furin prodomain serves as the pH sensor that detects transport of the propeptide-enzyme complex to the trans-Golgi network, where it promotes cleavage and release of the inhibitory propeptide, a mechanistic understanding of how His-69 protonation mediates furin activation remains unclear. Here we employ biophysical, biochemical, and computational approaches to elucidate the mechanism underlying the pH-dependent activation of furin. Structural analyses and binding experiments comparing the wild-type furin propeptide with a nonprotonatable His-69 → Leu mutant that blocks furin activation in vivo revealed protonation of His-69 reduces both the thermodynamic stability of the propeptide as well as its affinity for furin at pH 6.0. Structural modeling combined with mathematical modeling and molecular dynamic simulations suggested that His-69 does not directly contribute to the propeptide-enzyme interface but, rather, triggers movement of a loop region in the propeptide that modulates access to the cleavage site and, thus, allows for the tight pH regulation of furin activation. Our work establishes a mechanism by which His-69 functions as a pH sensor that regulates compartment-specific furin activation and provides insights into how other convertases and proteases may regulate their precise spatiotemporal activation. PMID:23653353
Bacterial differentiation via gradual activation of global regulators.
Kovács, Ákos T
2016-02-01
Bacteria have evolved to adapt to various conditions and respond to certain stress conditions. The ability to sense and efficiently reply to these environmental effects involve versatile array of sensors and global or specific regulators. Interestingly, modulation of the levels of active global regulators enables bacteria to respond to diverse signals via a single central transcriptional regulator and to activate or repress certain differentiation pathways at a spatio-temporal manner. The Gram-positive Bacillus subtilis is an ideal bacterium to study how membrane bound and cytoplasmic sensor kinases affect the level of phosphorylated global regulator, Spo0A which in response activates genes related to sliding, biofilm formation, and sporulation. In addition, other global regulators, including the two-component system DegS-DegU, modulate overlapping and complementary genes in B. subtilis related to surface colonization and biofilm formation. The intertwinement of global regulatory systems also allows the accurate modulation of differentiation pathways. Studies in the last decade enable us to get a deeper insight into the role of global regulators on the smooth transition of developmental processes in B. subtilis.
Molecular locks and keys: the role of small molecules in phytohormone research
Fonseca, Sandra; Rosado, Abel; Vaughan-Hirsch, John; Bishopp, Anthony; Chini, Andrea
2014-01-01
Plant adaptation, growth and development rely on the integration of many environmental and endogenous signals that collectively determine the overall plant phenotypic plasticity. Plant signaling molecules, also known as phytohormones, are fundamental to this process. These molecules act at low concentrations and regulate multiple aspects of plant fitness and development via complex signaling networks. By its nature, phytohormone research lies at the interface between chemistry and biology. Classically, the scientific community has always used synthetic phytohormones and analogs to study hormone functions and responses. However, recent advances in synthetic and combinational chemistry, have allowed a new field, plant chemical biology, to emerge and this has provided a powerful tool with which to study phytohormone function. Plant chemical biology is helping to address some of the most enduring questions in phytohormone research such as: Are there still undiscovered plant hormones? How can we identify novel signaling molecules? How can plants activate specific hormone responses in a tissue-specific manner? How can we modulate hormone responses in one developmental context without inducing detrimental effects on other processes? The chemical genomics approaches rely on the identification of small molecules modulating different biological processes and have recently identified active forms of plant hormones and molecules regulating many aspects of hormone synthesis, transport and response. We envision that the field of chemical genomics will continue to provide novel molecules able to elucidate specific aspects of hormone-mediated mechanisms. In addition, compounds blocking specific responses could uncover how complex biological responses are regulated. As we gain information about such compounds we can design small alterations to the chemical structure to further alter specificity, enhance affinity or modulate the activity of these compounds. PMID:25566283
Ormazabal, Valeska; Zuñiga, Felipe A; Escobar, Elizabeth; Aylwin, Carlos; Salas-Burgos, Alexis; Godoy, Alejandro; Reyes, Alejandro M; Vera, Juan Carlos; Rivas, Coralia I
2010-11-19
Na(+)-coupled ascorbic acid transporter-2 (SVCT2) activity is impaired at acid pH, but little is known about the molecular determinants that define the transporter pH sensitivity. SVCT2 contains six histidine residues in its primary sequence, three of which are exofacial in the transporter secondary structure model. We used site-directed mutagenesis and treatment with diethylpyrocarbonate to identify histidine residues responsible for SVCT2 pH sensitivity. We conclude that five histidine residues, His(109), His(203), His(206), His(269), and His(413), are central regulators of SVCT2 function, participating to different degrees in modulating pH sensitivity, transporter kinetics, Na(+) cooperativity, conformational stability, and subcellular localization. Our results are compatible with a model in which (i) a single exofacial histidine residue, His(413), localized in the exofacial loop IV that connects transmembrane helices VII-VIII defines the pH sensitivity of SVCT2 through a mechanism involving a marked attenuation of the activation by Na(+) and loss of Na(+) cooperativity, which leads to a decreased V(max) without altering the transport K(m); (ii) exofacial histidine residues His(203), His(206), and His(413) may be involved in maintaining a functional interaction between exofacial loops II and IV and influence the general folding of the transporter; (iii) histidines 203, 206, 269, and 413 affect the transporter kinetics by modulating the apparent transport K(m); and (iv) histidine 109, localized at the center of transmembrane helix I, might be fundamental for the interaction of SVCT2 with the transported substrate ascorbic acid. Thus, histidine residues are central regulators of SVCT2 function.
Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin
2017-01-01
Highly transparent, energy-saving, and superhydrophobic nanostructured SiO 2 /VO 2 composite films have been fabricated using a sol-gel method. These composite films are composed of an underlying infrared (IR)-regulating VO 2 layer and a top protective layer that consists of SiO 2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO 2 layer. The transmittance of the composite films in visible region ( T lum ) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO 2 films and tungsten-doped VO 2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO 2 /VO 2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW . cm -2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications.
Wang, Chao; Zhao, Li; Liang, Zihui; Dong, Binghai; Wan, Li; Wang, Shimin
2017-01-01
Abstract Highly transparent, energy-saving, and superhydrophobic nanostructured SiO2/VO2 composite films have been fabricated using a sol–gel method. These composite films are composed of an underlying infrared (IR)-regulating VO2 layer and a top protective layer that consists of SiO2 nanoparticles. Experimental results showed that the composite structure could enhance the IR light regulation performance, solar modulation capability, and hydrophobicity of the pristine VO2 layer. The transmittance of the composite films in visible region (T lum) was higher than 60%, which was sufficient to meet the requirements of glass lighting. Compared with pristine VO2 films and tungsten-doped VO2 film, the near IR control capability of the composite films was enhanced by 13.9% and 22.1%, respectively, whereas their solar modulation capability was enhanced by 10.9% and 22.9%, respectively. The water contact angles of the SiO2/VO2 composite films were over 150°, indicating superhydrophobicity. The transparent superhydrophobic surface exhibited a high stability toward illumination as all the films retained their initial superhydrophobicity even after exposure to 365 nm light with an intensity of 160 mW.cm−2 for 10 h. In addition, the films possessed anti-oxidation and anti-acid properties. These characteristics are highly advantageous for intelligent windows or solar cell applications, given that they can provide surfaces with anti-fogging, rainproofing, and self-cleaning effects. Our technique offers a simple and low-cost solution to the development of stable and visible light transparent superhydrophobic surfaces for industrial applications. PMID:28970866
Saul, M C; Majdak, P; Perez, S; Reilly, M; Garland, T; Rhodes, J S
2017-03-01
Although exercise is critical for health, many lack the motivation to exercise, and it is unclear how motivation might be increased. To uncover the molecular underpinnings of increased motivation for exercise, we analyzed the transcriptome of the striatum in four mouse lines selectively bred for high voluntary wheel running and four non-selected control lines. The striatum was dissected and RNA was extracted and sequenced from four individuals of each line. We found multiple genes and gene systems with strong relationships to both selection and running history over the previous 6 days. Among these genes were Htr1b, a serotonin receptor subunit and Slc38a2, a marker for both glutamatergic and γ-aminobutyric acid (GABA)-ergic signaling. System analysis of the raw results found enrichment of transcriptional regulation and kinase genes. Further, we identified a splice variant affecting the Wnt-related Golgi signaling gene Tmed5. Using coexpression network analysis, we found a cluster of interrelated coexpression modules with relationships to running behavior. From these modules, we built a network correlated with running that predicts a mechanistic relationship between transcriptional regulation by nucleosome structure and Htr1b expression. The Library of Integrated Network-Based Cellular Signatures identified the protein kinase C δ inhibitor, rottlerin, the tyrosine kinase inhibitor, Linifanib and the delta-opioid receptor antagonist 7-benzylidenenaltrexone as potential compounds for increasing the motivation to run. Taken together, our findings support a neurobiological framework of exercise motivation where chromatin state leads to differences in dopamine signaling through modulation of both the primary neurotransmitters glutamate and GABA, and by neuromodulators such as serotonin. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Linnemann, Amelia K.; Krawetz, Stephen A.
2010-01-01
Summary The ordered packaging of DNA within the nucleus of somatic cells reflects a dynamic supportive structure that facilitates stable transcription interrupted by intermittent cycles of extreme condensation. This dynamic mode of packing and unpacking chromatin is intimately linked to the ability of the genome to specifically complex with both histones and non-histone proteins. Understanding the underlying mechanism that governs the formation of higher order chromatin structures is a key to understanding how local architecture modulates transcription. In part, the formation of these structures appears to be regulated through genomic looping that is dynamically mediated by attachment to the nuclear scaffold/matrix at S/MARs, i.e., Scaffold/Matrix Attachment Regions. Although the mechanism guiding the formation and use of these higher-ordered structures remains unknown, S/MARs continue to reveal a multitude of roles in development and the pathogenesis of disease. PMID:20948980
Linnemann, Amelia K; Krawetz, Stephen A
2009-01-01
The ordered packaging of DNA within the nucleus of somatic cells reflects a dynamic supportive structure that facilitates stable transcription interrupted by intermittent cycles of extreme condensation. This dynamic mode of packing and unpacking chromatin is intimately linked to the ability of the genome to specifically complex with both histones and non-histone proteins. Understanding the underlying mechanism that governs the formation of higher order chromatin structures is a key to understanding how local architecture modulates transcription. In part, the formation of these structures appears to be regulated through genomic looping that is dynamically mediated by attachment to the nuclear scaffold/matrix at S/MARs, i.e., Scaffold/Matrix Attachment Regions. Although the mechanism guiding the formation and use of these higher-ordered structures remains unknown, S/MARs continue to reveal a multitude of roles in development and the pathogenesis of disease.
NASA Astrophysics Data System (ADS)
Dasbiswas, K.; Majkut, S.; Discher, D. E.; Safran, Samuel A.
2015-01-01
Recent experiments show that both striation, an indication of the structural registry in muscle fibres, as well as the contractile strains produced by beating cardiac muscle cells can be optimized by substrate stiffness. Here we show theoretically how the substrate rigidity dependence of the registry data can be mapped onto that of the strain measurements. We express the elasticity-mediated structural registry as a phase-order parameter using a statistical physics approach that takes the noise and disorder inherent in biological systems into account. By assuming that structurally registered myofibrils also tend to beat in phase, we explain the observed dependence of both striation and strain measurements of cardiomyocytes on substrate stiffness in a unified manner. The agreement of our ideas with experiment suggests that the correlated beating of heart cells may be limited by the structural order of the myofibrils, which in turn is regulated by their elastic environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-06-01
The goal of this module is to explain the purpose, scope, and reporting requirements under the Spill Prevention Control and Countermeasures (SPCC) and related regulations and the Oil Pollution Act of 1990.
Crystal structure of MTCP-1: Implications for role of TCL-1 and MTCP-1 in T cell malignancies
Fu, Zheng-Qing; Du Bois, Garrett C.; Song, Sherry P.; Kulikovskaya, Irina; Virgilio, Laura; Rothstein, Jay L.; Croce, Carlo M.; Weber, Irene T.; Harrison, Robert W.
1998-01-01
Two related oncogenes, TCL-1 and MTCP-1, are overexpressed in T cell prolymphocytic leukemias as a result of chromosomal rearrangements that involve the translocation of one T cell receptor gene to either chromosome 14q32 or Xq28. The crystal structure of human recombinant MTCP-1 protein has been determined at 2.0 Å resolution by using multiwavelength anomalous dispersion data from selenomethionine-enriched protein and refined to an R factor of 0.21. MTCP-1 folds into a compact eight-stranded β barrel structure with a short helix between the fourth and fifth strands. The topology is unique. The structure of TCL-1 has been predicted by molecular modeling based on 40% amino acid sequence identity with MTCP-1. The identical residues are clustered inside the barrel and on the surface at one side of the barrel. The overall structure of MTCP-1 superficially resembles the structures of proteins in the lipocalin family and calycin superfamily. These proteins have diverse functions, including transport of retinol, fatty acids, chromophores, pheromones, synthesis of prostaglandin, immune modulation, and cell regulation. However, MTCP-1 differs in the topology of the β strands. The structural similarity suggests that MTCP-1 and TCL-1 form a unique family of β barrel proteins that is predicted to bind small hydrophobic ligands and function in cell regulation. PMID:9520380
Clift, Ian C.; Bamidele, Adebowale O.; Rodriguez-Ramirez, Christie; Kremer, Kimberly N.
2014-01-01
CXC chemokine receptor 4 (CXCR4) is a G protein–coupled receptor (GPCR) located on the cell surface that signals upon binding the chemokine stromal derived factor-1 (SDF-1; also called CXCL 12). CXCR4 promotes neuroblastoma proliferation and chemotaxis. CXCR4 expression negatively correlates with prognosis and drives neuroblastoma growth and metastasis in mouse models. All functions of CXCR4 require its expression on the cell surface, yet the molecular mechanisms that regulate CXCR4 cell-surface levels in neuroblastoma are poorly understood. We characterized CXCR4 cell-surface regulation in the related SH-SY5Y and SK-N-SH human neuroblastoma cell lines. SDF-1 treatment caused rapid down-modulation of CXCR4 in SH-SY5Y cells. Pharmacologic activation of protein kinase C similarly reduced CXCR4, but via a distinct mechanism. Analysis of CXCR4 mutants delineated two CXCR4 regions required for SDF-1 treatment to decrease cell-surface CXCR4 in neuroblastoma cells: the isoleucine-leucine motif at residues 328 and 329 and residues 343–352. In contrast, and unlike CXCR4 regulation in other cell types, serines 324, 325, 338, and 339 were not required. Arrestin proteins can bind and regulate GPCR cell-surface expression, often functioning together with kinases such as G protein–coupled receptor kinase 2 (GRK2). Using SK-N-SH cells which are naturally deficient in β-arrestin1, we showed that β-arrestin1 is required for the CXCR4 343–352 region to modulate CXCR4 cell-surface expression following treatment with SDF-1. Moreover, GRK2 overexpression enhanced CXCR4 internalization, via a mechanism requiring both β-arrestin1 expression and the 343–352 region. Together, these results characterize CXCR4 structural domains and β-arrestin1 as critical regulators of CXCR4 cell-surface expression in neuroblastoma. β-Arrestin1 levels may therefore influence the CXCR4-driven metastasis of neuroblastoma as well as prognosis. PMID:24452472
A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem.
Dodsworth, Steven
2009-12-01
At the shoot apex of plants is a small region known as the shoot apical meristem (SAM) that maintains a population of undifferentiated (stem) cells whilst providing cells for developing lateral organs and the stem. All aerial structures of the plant develop from the SAM post-embryogenesis, enabling plants to grow in a characteristic modular fashion with great phenotypic and developmental plasticity throughout their lifetime. The maintenance of the stem cell population is intimately balanced with cell recruitment into differentiating tissues through intercellular communication involving a complex signalling network. Recent studies have shown that diverse regulators function in SAM maintenance, many of which converge on the WUSCHEL (WUS) gene. In this review the diverse regulatory modules that function in SAM maintenance are discussed: transcriptional and epigenetic control, hormonal regulation, and the balance with organogenesis. The central role of WUS as an integrator of multiple signals is highlighted; in addition, accessory feedback loops emerge as a feature enabling dynamic regulation of the stem cell niche.
CORECLUST: identification of the conserved CRM grammar together with prediction of gene regulation.
Nikulova, Anna A; Favorov, Alexander V; Sutormin, Roman A; Makeev, Vsevolod J; Mironov, Andrey A
2012-07-01
Identification of transcriptional regulatory regions and tracing their internal organization are important for understanding the eukaryotic cell machinery. Cis-regulatory modules (CRMs) of higher eukaryotes are believed to possess a regulatory 'grammar', or preferred arrangement of binding sites, that is crucial for proper regulation and thus tends to be evolutionarily conserved. Here, we present a method CORECLUST (COnservative REgulatory CLUster STructure) that predicts CRMs based on a set of positional weight matrices. Given regulatory regions of orthologous and/or co-regulated genes, CORECLUST constructs a CRM model by revealing the conserved rules that describe the relative location of binding sites. The constructed model may be consequently used for the genome-wide prediction of similar CRMs, and thus detection of co-regulated genes, and for the investigation of the regulatory grammar of the system. Compared with related methods, CORECLUST shows better performance at identification of CRMs conferring muscle-specific gene expression in vertebrates and early-developmental CRMs in Drosophila.
Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance.
Dik, David A; Fisher, Jed F; Mobashery, Shahriar
2018-05-30
The importance of the cell wall to the viability of the bacterium is underscored by the breadth of antibiotic structures that act by blocking key enzymes that are tasked with cell-wall creation, preservation, and regulation. The interplay between cell-wall integrity, and the summoning forth of resistance mechanisms to deactivate cell-wall-targeting antibiotics, involves exquisite orchestration among cell-wall synthesis and remodeling and the detection of and response to the antibiotics through modulation of gene regulation by specific effectors. Given the profound importance of antibiotics to the practice of medicine, the assertion that understanding this interplay is among the most fundamentally important questions in bacterial physiology is credible. The enigmatic regulation of the expression of the AmpC β-lactamase, a clinically significant and highly regulated resistance response of certain Gram-negative bacteria to the β-lactam antibiotics, is the exemplar of this challenge. This review gives a current perspective to this compelling, and still not fully solved, 35-year enigma.
Suenaga, Tadahiro; Arase, Hisashi; Yamasaki, Sho; Kohno, Masayuki; Yokosuka, Tadashi; Takeuchi, Arata; Hattori, Takamichi; Saito, Takashi
2007-11-01
Lymphocyte proliferation is regulated by signals through antigen receptors, co-stimulatory receptors, and other positive and negative modulators. Several membrane tetraspanning molecules are also involved in the regulation of lymphocyte growth and death. We cloned a new B cell-specific tetraspanning (BTS) membrane molecule, which is similar to CD20 in terms of expression, structure and function. BTS is specifically expressed in the B cell line and its expression is increased after the pre-B cell stage. BTS is expressed in intracellular granules and on the cell surface. Overexpression of BTS in immature B cell lines induces growth retardation through inhibition of cell cycle progression and cell size increase without inducing apoptosis. This inhibitory function is mediated predominantly by the N terminus of BTS. The development of mature B cells is inhibited in transgenic mice expressing BTS, suggesting that BTS is involved in the in vivo regulation of B cells. These results indicate that BTS plays a role in the regulation of cell division and B cell growth.
Regulation of pH During Amelogenesis.
Lacruz, Rodrigo S; Nanci, Antonio; Kurtz, Ira; Wright, J Timothy; Paine, Michael L
2010-02-01
During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation.
Phosphodiesterases regulate airway smooth muscle function in health and disease.
Krymskaya, Vera P; Panettieri, Reynold A
2007-01-01
On the basis of structure, regulation, and kinetic properties, phosphodiesterases (PDEs) represent a superfamily of enzymes divided into 11 subfamilies that catalyze cytosolic levels of 3',5'-cyclic adenosine monophosphate (cAMP) or 3',5'-cyclic guanosine monophosphate (cGMP) to 5'-AMP or 5'-GMP, respectively. PDE4 represents the major PDE expressed in inflammatory cells as well as airway smooth muscle (ASM), and selective PDE4 inhibitors provide a broad spectrum of anti-inflammatory effects such as abrogating cytokine and chemokine release from inflammatory cells and inhibiting inflammatory cell trafficking. Due to cell- and tissue-specific gene expression and regulation, PDEs modulate unique organ-based functions. New tools or compounds that selectively inhibit PDE subfamilies and genetically engineered mice deficient in selective isoforms have greatly enhanced our understanding of PDE function in airway inflammation and resident cell function. This chapter will focus on recent advances in our understanding of the role of PDE in regulating ASM function.
Long-range allosteric signaling in red light–regulated diguanylyl cyclases
Gourinchas, Geoffrey; Etzl, Stefan; Göbl, Christoph; Vide, Uršula; Madl, Tobias; Winkler, Andreas
2017-01-01
Nature has evolved an astonishingly modular architecture of covalently linked protein domains with diverse functionalities to enable complex cellular networks that are critical for cell survival. The coupling of sensory modules with enzymatic effectors allows direct allosteric regulation of cellular signaling molecules in response to diverse stimuli. We present molecular details of red light–sensing bacteriophytochromes linked to cyclic dimeric guanosine monophosphate–producing diguanylyl cyclases. Elucidation of the first crystal structure of a full-length phytochrome with its enzymatic effector, in combination with the characterization of light-induced changes in conformational dynamics, reveals how allosteric light regulation is fine-tuned by the architecture and composition of the coiled-coil sensor-effector linker and also the central helical spine. We anticipate that consideration of molecular principles of sensor-effector coupling, going beyond the length of the characteristic linker, and the appreciation of dynamically driven allostery will open up new directions for the design of novel red light–regulated optogenetic tools. PMID:28275738
Power converters for the 120 V bus supply control
NASA Astrophysics Data System (ADS)
Elisabelar, Christian
1993-03-01
Power converters for the 120 V bus supply control in such projects as Columbus and Hermes are addressed. Because of the power levels involved and the existing state of the art, several converter modules need to be connected in parallel to supply a single bus. To simplify the study, the power of each converter is set at around 1 kW. Many converter structures which satisfy requirement specifications and several solutions, with or without galvanic insulation, are proposed. The choice and sizing of the converter structure are considered. Stress factors and available technology are selection criteria in determining the most suitable structures. The dimensions of each structure, taking into account the rules of space design enable efficiency to be analytically estimated and it is subsequently verified experimentally. The converter command and its functional performance are then addressed. Numerical simulations with SUCCESS software are run to observe the actual operation of the power part of the converter and to develop the command law with its regulation parameters. The converter is simulated in its entirety and different transients are studied like load variation, no load operating point, short circuit. The response time, stability and behavior under disturbed conditions are thus known. A comparison of the various structures studied enabled the optimal converter to be chosen for some 120 V regulated bus applications.
3D packaging of a microfluidic system with sensory applications
NASA Astrophysics Data System (ADS)
Morrissey, Anthony; Kelly, Gerard; Alderman, John C.
1997-09-01
Among the main benefits of microsystem technology are its contributions to cost reductio, reliability and improved performance. however, the packaging of microsystems, and particularly microsensor, has proven to be one of the biggest limitations to their commercialization and the packaging of silicon sensor devices can be the most costly part of their fabrication. This paper describes the integration of 3D packaging of a microsystem. Central to the operation of the 3D demonstrator is a micromachined silicon membrane pump to supply fluids to a sensing chamber constructed about the active area of a sensor chip. This chip carries ISFET based chemical sensors, pressure sensors and thermal sensors. The electronics required for controlling and regulating the activity of the various sensors ar also available on this chip and as other chips in the 3D assembly. The demonstrator also contains a power supply module with optical fiber interconnections. All of these modules are integrated into a single plastic- encapsulated 3D vertical multichip module. The reliability of such a structure, initially proposed by Val was demonstrated by Barrett et al. An additional module available for inclusion in some of our assemblies is a test chip capable of measuring the packaging-induced stress experienced during and after assembly. The packaging process described produces a module with very high density and utilizes standard off-the-shelf components to minimize costs. As the sensor chip and micropump include micromachined silicon membranes and microvalves, the packaging of such structures has to allow consideration for the minimization of the packaging-induced stresses. With this in mind, low stress techniques, including the use of soft glob-top materials, were employed.
The histone codes for meiosis.
Wang, Lina; Xu, Zhiliang; Khawar, Muhammad Babar; Liu, Chao; Li, Wei
2017-09-01
Meiosis is a specialized process that produces haploid gametes from diploid cells by a single round of DNA replication followed by two successive cell divisions. It contains many special events, such as programmed DNA double-strand break (DSB) formation, homologous recombination, crossover formation and resolution. These events are associated with dynamically regulated chromosomal structures, the dynamic transcriptional regulation and chromatin remodeling are mainly modulated by histone modifications, termed 'histone codes'. The purpose of this review is to summarize the histone codes that are required for meiosis during spermatogenesis and oogenesis, involving meiosis resumption, meiotic asymmetric division and other cellular processes. We not only systematically review the functional roles of histone codes in meiosis but also discuss future trends and perspectives in this field. © 2017 Society for Reproduction and Fertility.
ERIC Educational Resources Information Center
Stoeger, Heidrun; Fleischmann, Sandra; Obergriesser, Stefanie
2015-01-01
After defining self-regulated learning (SRL), explaining its importance for all ability groups, and summarizing findings on gifted learners' scarcer use of and lower preference for SRL, we describe two instructional modules designed for teaching SRL during regular classroom instruction and homework. We then explain how the modules are…
3D printed Lego®-like modular microfluidic devices based on capillary driving.
Nie, Jing; Gao, Qing; Qiu, Jing-Jiang; Sun, Miao; Liu, An; Shao, Lei; Fu, Jian-Zhong; Zhao, Peng; He, Yong
2018-03-12
The field of how to rapidly assemble microfluidics with modular components continuously attracts researchers' attention, however, extra efforts must be devoted to solving the problems of leaking and aligning between individual modules. This paper presents a novel type of modular microfluidic device, driven by capillary force. There is no necessity for a strict seal or special alignment, and its open structures make it easy to integrate various stents and reactants. The key rationale for this method is to print different functional modules with a low-cost three-dimensional (3D) printer, then fill the channels with capillary materials and assemble them with plugs like Lego ® bricks. This rapidly reconstructed modular microfluidic device consists of a variety of common functional modules and other personalized modules, each module having a unified standard interface for easy assembly. As it can be printed by a desktop 3D printer, the manufacturing process is simple and efficient, with controllable regulation of the flow channel scale. Through diverse combinations of different modules, a variety of different functions can be achieved, without duplicating the manufacturing process. A single module can also be taken out for testing and analysis. What's more, combined with basic circuit components, it can serve as a low-cost Lego ® -like modular microfluidic circuits. As a proof of concept, the modular microfluidic device has been successfully demonstrated and used for stent degradation and cell cultures, revealing the potential use of this method in both chemical and biological research.
Cardiac myofilaments: mechanics and regulation
NASA Technical Reports Server (NTRS)
de Tombe, Pieter P.; Bers, D. M. (Principal Investigator)
2003-01-01
The mechanical properties of the cardiac myofilament are an important determinant of pump function of the heart. This report is focused on the regulation of myofilament function in cardiac muscle. Calcium ions form the trigger that induces activation of the thin filament which, in turn, allows for cross-bridge formation, ATP hydrolysis, and force development. The structure and protein-protein interactions of the cardiac sarcomere that are responsible for these processes will be reviewed. The molecular mechanism that underlies myofilament activation is incompletely understood. Recent experimental approaches have been employed to unravel the mechanism and regulation of myofilament mechanics and energetics by activator calcium and sarcomere length, as well as contractile protein phosphorylation mediated by protein kinase A. Central to these studies is the question whether such factors impact on muscle function simply by altering thin filament activation state, or whether modulation of cross-bridge cycling also plays a part in the responses of muscle to these stimuli.
Regulation of humoral immunity by complement.
Carroll, Michael C; Isenman, David E
2012-08-24
The complement system of innate immunity is important in regulating humoral immunity largely through the complement receptor CR2, which forms a coreceptor on B cells during antigen-induced activation. However, CR2 also retains antigens on follicular dendritic cells (FDCs). Display of antigen on FDCs is critical for clonal selection and affinity maturation of activated B cells. This review will discuss the role of complement in adaptive immunity in general with a focus on the interplay between CR2-associated antigen on B cells with CR2 expressed on FDCs. This latter interaction provides an opportunity for memory B cells to sample antigen over prolonged periods. The cocrystal structure of CR2 with its ligand C3d provides insight into how the complement system regulates access of antigen by B cells with implications for therapeutic manipulations to modulate aberrant B cell responses in the case of autoimmunity. Copyright © 2012 Elsevier Inc. All rights reserved.
An evolution-based strategy for engineering allosteric regulation
NASA Astrophysics Data System (ADS)
Pincus, David; Resnekov, Orna; Reynolds, Kimberly A.
2017-04-01
Allosteric regulation provides a way to control protein activity at the time scale of milliseconds to seconds inside the cell. An ability to engineer synthetic allosteric systems would be of practical utility for the development of novel biosensors, creation of synthetic cell signaling pathways, and design of small molecule pharmaceuticals with regulatory impact. To this end, we outline a general approach—termed rational engineering of allostery at conserved hotspots (REACH)—to introduce novel regulation into a protein of interest by exploiting latent allostery that has been hard-wired by evolution into its structure. REACH entails the use of statistical coupling analysis (SCA) to identify ‘allosteric hotspots’ on protein surfaces, the development and implementation of experimental assays to test hotspots for functionality, and a toolkit of allosteric modulators to impinge on endogenous cellular circuitry. REACH can be broadly applied to rewire cellular processes to respond to novel inputs.
Jenni, Nicole L; Larkin, Joshua D; Floresco, Stan B
2017-06-28
Mesocortical dopamine (DA) regulates a variety of cognitive functions via actions on D 1 and/or D 2 receptors. For example, risk/reward decision making is modulated differentially by these two receptors within the prefrontal cortex (PFC), with D 2 receptors enabling flexible decision making and D 1 receptors promoting persistence in choice biases. However, it is unclear how DA mediates opposing patterns of behavior by acting on different receptors within the same terminal region. We explored the possibility that DA may act on separate networks of PFC neurons that are modulated by D 1 or D 2 receptors and in turn interface with divergent downstream structures such as the basolateral amygdala (BLA) or nucleus accumbens (NAc). Decision making was assessed using a probabilistic discounting task in which well trained male rats chose between small/certain or large/risky rewards, with the odds of obtaining the larger reward changing systematically within a session. Selective disruption of D 1 or D 2 modulation of separate PFC output pathways was achieved using unilateral intra-PFC infusions of DA antagonists combined with contralateral inactivation of the BLA or NAc. Disrupting D 2 (but not D 1 ) modulation of PFC→BLA circuitry impaired adjustments in decision biases in response to changes in reward probabilities. In contrast, disrupting D 1 modulation of PFC→NAc networks reduced risky choice, attenuating reward sensitivity and increasing sensitivity to reward omissions. These findings reveal that mesocortical DA can facilitate dissociable components of reward seeking and action selection by acting on different functional networks of PFC neurons that can be distinguished by the subcortical projection targets with which they interface. SIGNIFICANCE STATEMENT Prefrontal cortical dopamine regulates a variety of executive functions governed by the frontal lobes via actions on D 1 and D 2 receptors. These receptors can in some instances mediate different patterns of behavior, but the mechanisms underlying these dissociable actions are unclear. Using a selective disconnection approach, we reveal that D 1 and D 2 receptors can facilitate diverse aspects of decision making by acting on separate networks of prefrontal neurons that interface with distinct striatal or amygdalar targets. These findings reveal an additional level of complexity in how mesocortical DA regulates different forms of cognition via actions on different receptors, highlighting how it may act upon distinct cortical microcircuits to drive different patterns of behavior. Copyright © 2017 the authors 0270-6474/17/376200-14$15.00/0.
The cellular mastermind(?) – Mechanotransduction and the nucleus
Kaminski, Ashley; Fedorchak, Gregory R.; Lammerding, Jan
2015-01-01
Cells respond to mechanical stimulation by activation of specific signaling pathways and genes that allow the cell to adapt to its dynamic physical environment. How cells sense the various mechanical inputs and translate them into biochemical signals remains an area of active investigation. Recent reports suggest that the cell nucleus may be directly implicated in this cellular mechanotransduction process. In this chapter, we discuss how forces applied to the cell surface and cytoplasm induce changes in nuclear structure and organization, which could directly affect gene expression, while also highlighting the complex interplay between nuclear structural proteins and transcriptional regulators that may further modulate mechanotransduction signaling. Taken together, these findings paint a picture of the nucleus as a central hub in cellular mechanotransduction—both structurally and biochemically—with important implications in physiology and disease. PMID:25081618
Design of 5 V DC to 20 V DC switching regulator for power supply module
NASA Astrophysics Data System (ADS)
Azmi, N. A.; Murad, S. A. Z.; Harun, A.; Ismail, R. C.; Isa, M. N. M.; Zulkifeli, M. A.
2017-09-01
This paper presents the design of 5 V to 20 V DC switching regulator for power supply module. A voltage multiplier which consists of cascaded diode-capacitor combination is used in order to obtain a high voltage power supply. Due to power loss that has occurred in a stray of component arrangement, the proposed design employs a pulse width modulation (PWM) controller circuit with an inclusion of a capacitor, diode, and inductor components. The input supply of 5 V DC to LT1618 controller circuit has produced 20.35 V based from simulation results. Meanwhile, the measurement results of 19.36 V are obtained and the feedback signal is required for the purpose of stabilizing the output. The proposed design can reduce the components as well as the PCB size, thus minimizing the overall cost of making a switching regulator for power supply module.
The nuclear lamina regulates germline stem cell niche organization via modulation of EGFR signaling.
Chen, Haiyang; Chen, Xin; Zheng, Yixian
2013-07-03
Stem cell niche interactions have been studied extensively with regard to cell polarity and extracellular signaling. Less is known about the way in which signals and polarity cues integrate with intracellular structures to ensure appropriate niche organization and function. Here, we report that nuclear lamins function in the cyst stem cells (CySCs) of Drosophila testes to control the interaction of CySCs with the hub. This interaction is important for regulation of CySC differentiation and organization of the niche that supports the germline stem cells (GSCs). Lamin promotes nuclear retention of phosphorylated ERK in the CySC lineage by regulating the distribution of specific nucleoporins within the nuclear pores. Lamin-regulated nuclear epidermal growth factor (EGF) receptor signaling in the CySC lineage is essential for proliferation and differentiation of the GSCs and the transient amplifying germ cells. Thus, we have uncovered a role for the nuclear lamina in the integration of EGF signaling to regulate stem cell niche function. Copyright © 2013 Elsevier Inc. All rights reserved.
NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence.
Parry, Aled J; Hoare, Matthew; Bihary, Dóra; Hänsel-Hertsch, Robert; Smith, Stephen; Tomimatsu, Kosuke; Mannion, Elizabeth; Smith, Amy; D'Santos, Paula; Russell, I Alasdair; Balasubramanian, Shankar; Kimura, Hiroshi; Samarajiwa, Shamith A; Narita, Masashi
2018-05-09
Senescent cells interact with the surrounding microenvironment achieving diverse functional outcomes. We have recently identified that NOTCH1 can drive 'lateral induction' of a unique senescence phenotype in adjacent cells by specifically upregulating the NOTCH ligand JAG1. Here we show that NOTCH signalling can modulate chromatin structure autonomously and non-autonomously. In addition to senescence-associated heterochromatic foci (SAHF), oncogenic RAS-induced senescent (RIS) cells exhibit a massive increase in chromatin accessibility. NOTCH signalling suppresses SAHF and increased chromatin accessibility in this context. Strikingly, NOTCH-induced senescent cells, or cancer cells with high JAG1 expression, drive similar chromatin architectural changes in adjacent cells through cell-cell contact. Mechanistically, we show that NOTCH signalling represses the chromatin architectural protein HMGA1, an association found in multiple human cancers. Thus, HMGA1 is involved not only in SAHFs but also in RIS-driven chromatin accessibility. In conclusion, this study identifies that the JAG1-NOTCH-HMGA1 axis mediates the juxtacrine regulation of chromatin architecture.
Interaction of cardiac troponin with cardiotonic drugs: a structural perspective.
Li, Monica X; Robertson, Ian M; Sykes, Brian D
2008-04-25
Over the 40 years since its discovery, many studies have focused on understanding the role of troponin as a myofilament based molecular switch in regulating the Ca(2+)-dependent activation of striated muscle contraction. Recently, studies have explored the role of cardiac troponin as a target for cardiotonic agents. These drugs are clinically useful for treating heart failure, a condition in which the heart is no longer able to pump enough blood to other organs. These agents act via a mechanism that modulates the Ca(2+)-sensitivity of troponin; such a mode of action is therapeutically desirable because intracellular Ca(2+) concentration is not perturbed, preserving the regulation of other Ca(2+)-based signaling pathways. This review describes molecular details of the interaction of cardiac troponin with a variety of cardiotonic drugs. We present recent structural work that has identified the docking sites of several cardiotonic drugs in the troponin C-troponin I interface and discuss their relevance in the design of troponin based drugs for the treatment of heart disease.
Structural Basis of J Cochaperone Binding and Regulation of Hsp70
Jiang, Jianwen; Maes, E. Guy; Taylor, Alex B; Wang, Liping; Hinck, Andrew P; Lafer, Eileen M; Sousa, Rui
2007-01-01
The many protein processing reactions of the ATP-hydrolyzing Hsp70s are regulated by J cochaperones, which contain J domains that stimulate Hsp70 ATPase activity and accessory domains that present protein substrates to Hsp70s. We report the structure of a J domain complexed with a J responsive portion of a mammalian Hsp70. The J domain activates ATPase activity by directing the linker that connects the Hsp70 nucleotide binding domain (NBD) and substrate binding domain (SBD) towards a hydrophobic patch on the NBD surface. Binding of the J domain to Hsp70 displaces the SBD from the NBD, which may allow the SBD flexibility to capture diverse substrates. Unlike prokaryotic Hsp70, the SBD and NBD of the mammalian chaperone interact in the ADP state. Thus, while both nucleotides and J cochaperones modulate Hsp70 NBD:linker and NBD:SBD interactions, the intrinsic persistence of those interactions differs in different Hsp70s and this may optimize their activities for different cellular roles. PMID:17996706
Structural Basis of Ligand Binding by a C-di-GMP Riboswitch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, K.; Lipchock, S; Ames, T
2009-01-01
The second messenger signaling molecule bis-(3{prime}-5{prime})-cyclic dimeric guanosine monophosphate (c-di-GMP) regulates many processes in bacteria, including motility, pathogenesis and biofilm formation. c-di-GMP-binding riboswitches are important downstream targets in this signaling pathway. Here we report the crystal structure, at 2.7 {angstrom} resolution, of a c-di-GMP riboswitch aptamer from Vibrio cholerae bound to c-di-GMP, showing that the ligand binds within a three-helix junction that involves base-pairing and extensive base-stacking. The symmetric c-di-GMP is recognized asymmetrically with respect to both the bases and the backbone. A mutant aptamer was engineered that preferentially binds the candidate signaling molecule c-di-AMP over c-di-GMP. Kinetic and structuralmore » data suggest that genetic regulation by the c-di-GMP riboswitch is kinetically controlled and that gene expression is modulated through the stabilization of a previously unidentified P1 helix, illustrating a direct mechanism for c-di-GMP signaling.« less
Cleavage of amyloid precursor protein by an archaeal presenilin homologue PSH
Dang, Shangyu; Wu, Shenjie; Wang, Jiawei; Li, Hongbo; Huang, Min; He, Wei; Li, Yue-Ming; Wong, Catherine C. L.; Shi, Yigong
2015-01-01
Aberrant cleavage of amyloid precursor protein (APP) by γ-secretase contributes to the development of Alzheimer’s disease. More than 200 disease-derived mutations have been identified in presenilin (the catalytic subunit of γ-secretase), making modulation of γ-secretase activity a potentially attractive therapeutic opportunity. Unfortunately, the technical challenges in dealing with intact γ-secretase have hindered discovery of modulators and demand a convenient substitute approach. Here we report that, similar to γ-secretase, the archaeal presenilin homolog PSH faithfully processes the substrate APP C99 into Aβ42, Aβ40, and Aβ38. The molar ratio of the cleavage products Aβ42 over Aβ40 by PSH is nearly identical to that by γ-secretase. The proteolytic activity of PSH is specifically suppressed by presenilin-specific inhibitors. Known modulators of γ-secretase also modulate PSH similarly in terms of the Aβ42/Aβ40 ratio. Structural analysis reveals association of a known γ-secretase inhibitor with PSH between its two catalytic aspartate residues. These findings identify PSH as a surrogate protease for the screening of agents that may regulate the protease activity and the cleavage preference of γ-secretase. PMID:25733893
Korsunsky, Ilya; Parameswaran, Janaki; Shapira, Iuliana; Lovecchio, John; Menzin, Andrew; Whyte, Jill; Dos Santos, Lisa; Liang, Sharon; Bhuiya, Tawfiqul; Keogh, Mary; Khalili, Houman; Pond, Cassandra; Liew, Anthony; Shih, Andrew; Gregersen, Peter K; Lee, Annette T
2017-10-01
MicroRNAs have been established as key regulators of tumor gene expression and as prime biomarker candidates for clinical phenotypes in epithelial ovarian cancer (EOC). We analyzed the coexpression and regulatory structure of microRNAs and their co-localized gene targets in primary tumor tissue of 20 patients with advanced EOC in order to construct a regulatory signature for clinical prognosis. We performed an integrative analysis to identify two prognostic microRNA/mRNA coexpression modules, each enriched for consistent biological functions. One module, enriched for malignancy-related functions, was found to be upregulated in malignant versus benign samples. The second module, enriched for immune-related functions, was strongly correlated with imputed intratumoral immune infiltrates of T cells, natural killer cells, cytotoxic lymphocytes, and macrophages. We validated the prognostic relevance of the immunological module microRNAs in the publicly available The Cancer Genome Atlas data set. These findings provide novel functional roles for microRNAs in the progression of advanced EOC and possible prognostic signatures for survival. © American Federation for Medical Research (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Connexin channels and phospholipids: association and modulation
Locke, Darren; Harris, Andrew L
2009-01-01
Background For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. Results Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. Conclusion This study is the first to identify (endogenous) phospholipids that tightly associate with connexin channels. The finding that specific phospholipids are associated with different connexin isoforms suggests connexin-specific regulatory and/or structural interactions with lipid membranes. The results are interpreted in light of connexin channel function and cell biology, as informed by current knowledge of lipid-protein interactions and membrane biophysics. The intimate involvement of distinct phospholipids with different connexins contributes to channel structure and/or function, as well as plaque integrity, and to modulation of connexin channels by lipophilic agents. PMID:19686581
ERIC Educational Resources Information Center
Minnesota State Dept. of Education, St. Paul. Div. of Vocational and Technical Education.
THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATING PRINCIPLES AND THE SERVICING AND TESTING PROCEDURES FOR ALTERNATING CURRENT (AC) GENERATORS AND REGULATORS USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE REVIEW OF ALTERNATOR PRINCIPLES, ALTERNATOR SERVICING AND TESTING, ALTERNATOR REGULATOR OPERATING…
The Pro-inflammatory Effects of Glucocorticoids in the Brain
Duque, Erica de Almeida; Munhoz, Carolina Demarchi
2016-01-01
Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein–protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain. PMID:27445981
Mulej Bratec, Satja; Xie, Xiyao; Schmid, Gabriele; Doll, Anselm; Schilbach, Leonhard; Zimmer, Claus; Wohlschläger, Afra; Riedl, Valentin; Sorg, Christian
2015-12-01
Cognitive emotion regulation is a powerful way of modulating emotional responses. However, despite the vital role of emotions in learning, it is unknown whether the effect of cognitive emotion regulation also extends to the modulation of learning. Computational models indicate prediction error activity, typically observed in the striatum and ventral tegmental area, as a critical neural mechanism involved in associative learning. We used model-based fMRI during aversive conditioning with and without cognitive emotion regulation to test the hypothesis that emotion regulation would affect prediction error-related neural activity in the striatum and ventral tegmental area, reflecting an emotion regulation-related modulation of learning. Our results show that cognitive emotion regulation reduced emotion-related brain activity, but increased prediction error-related activity in a network involving ventral tegmental area, hippocampus, insula and ventral striatum. While the reduction of response activity was related to behavioral measures of emotion regulation success, the enhancement of prediction error-related neural activity was related to learning performance. Furthermore, functional connectivity between the ventral tegmental area and ventrolateral prefrontal cortex, an area involved in regulation, was specifically increased during emotion regulation and likewise related to learning performance. Our data, therefore, provide first-time evidence that beyond reducing emotional responses, cognitive emotion regulation affects learning by enhancing prediction error-related activity, potentially via tegmental dopaminergic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.
Signaling network of the Btk family kinases.
Qiu, Y; Kung, H J
2000-11-20
The Btk family kinases represent new members of non-receptor tyrosine kinases, which include Btk/Atk, Itk/Emt/Tsk, Bmx/Etk, and Tec. They are characterized by having four structural modules: PH (pleckstrin homology) domain, SH3 (Src homology 3) domain, SH2 (Src homology 2) domain and kinase (Src homology 1) domain. Increasing evidence suggests that, like Src-family kinases, Btk family kinases play central but diverse modulatory roles in various cellular processes. They participate in signal transduction in response to virtually all types of extracellular stimuli which are transmitted by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen-receptors and integrins. They are regulated by many non-receptor tyrosine kinases such as Src, Jak, Syk and FAK family kinases. In turn, they regulate many of major signaling pathways including those of PI3K, PLCgamma and PKC. Both genetic and biochemical approaches have been used to dissect the signaling pathways and elucidate their roles in growth, differentiation and apoptosis. An emerging new role of this family of kinases is cytoskeletal reorganization and cell motility. The physiological importance of these kinases was amply demonstrated by their link to the development of immunodeficiency diseases, due to germ-line mutations. The present article attempts to review the structure and functions of Btk family kinases by summarizing our current knowledge on the interacting partners associated with the different modules of the kinases and the diverse signaling pathways in which they are involved.
Sun, Yongfu; Gao, Shan; Xie, Yi
2014-01-21
Atomically-thick two-dimensional crystals can provide promising opportunities to satisfy people's requirement of next-generation flexible and transparent nanodevices. However, the characterization of these low-dimensional structures and the understanding of their clear structure-property relationship encounter many great difficulties, owing to the lack of long-range order in the third dimensionality. In this review, we survey the recent progress in fine structure characterization by X-ray absorption fine structure spectroscopy and also overview electronic structure modulation by density-functional calculations in the ultrathin two-dimensional crystals. In addition, we highlight their structure-property relationship, transparent and flexible device construction as well as wide applications in photoelectrochemical water splitting, photodetectors, thermoelectric conversion, touchless moisture sensing, supercapacitors and lithium ion batteries. Finally, we outline the major challenges and opportunities that face the atomically-thick two-dimensional crystals. It is anticipated that the present review will deepen people's understanding of this field and hence contribute to guide the future design of high-efficiency energy-related devices.
Correlation of Factor IXa Subsite Modulations with Effects on Substrate Discrimination
Neuenschwander, Pierre F.; Deadmond, Kimberly J.; Zepeda, Karla; Rutland, Joshua
2012-01-01
Summary Background A key feature of factor IXa (fIXa) is its allosteric transformation from an enzymatically latent form into a potent procoagulant. Whilst several small molecules have been found capable of partially effecting fIXa function (i.e. ethylene glycol, calcium ion and LMWH), the resulting modest changes in peptidolytic activity have made the study of their mechanisms of action challenging. Since these effects yield hints into potential regulatory forces that may be operational in full expression of fIXa coagulant activity, their description remains of high interest. Studies of crystal structures have yielded insight into structural changes induced by these effectors, but there remains a paucity of information to correlate any given structural change with specific consequences on fIXa function. Objectives To correlate structural changes induced by these modulators with defined consequences in fIXa substrate discrimination and function. Methods A peptidomics-based MS approach was used to examine patterns of hydrolysis of four combinatorial chemistry-derived pentapeptide libraries by fIXa under various conditions in a soluble, active enzyme system. Results Ethylene glycol specifically alters the S3 subsite of fIXa to render it more tolerant to side chains at the P3 substrate position, while calcium enhances tolerance at the S2 subsite. In contrast, LMWH alters both S2 and S1' subsites. Conclusions These results demonstrate the role of plasticity in regulating fIXa function with respect to discrimination of extended substrate sequences, as well as provide crucial insight into active site modulations that may be capitalized upon by various physiological cofactors of fIXa and in future drug design. PMID:22212890
Vas deferens neuro-effector junction: from kymographic tracings to structural biology principles.
Navarrete, L Camilo; Barrera, Nelson P; Huidobro-Toro, J Pablo
2014-10-01
The vas deferens is a simple bioassay widely used to study the physiology of sympathetic neurotransmission and the pharmacodynamics of adrenergic drugs. The role of ATP as a sympathetic co-transmitter has gained increasing attention and furthered our understanding of its role in sympathetic reflexes. In addition, new information has emerged on the mechanisms underlying the storage and release of ATP. Both noradrenaline and ATP concur to elicit the tissue smooth muscle contractions following sympathetic reflexes or electrical field stimulation of the sympathetic nerve terminals. ATP and adenosine (its metabolic byproduct) are powerful presynaptic regulators of co-transmitter actions. In addition, neuropeptide Y, the third member of the sympathetic triad, is an endogenous modulator. The peptide plus ATP and/or adenosine play a significant role as sympathetic modulators of transmitter's release. This review focuses on the physiological principles that govern sympathetic co-transmitter activity, with special interest in defining the motor role of ATP. In addition, we intended to review the recent structural biology findings related to the topology of the P2X1R based on the crystallized P2X4 receptor from Danio rerio, or the crystallized adenosine A2A receptor as a member of the G protein coupled family of receptors as prototype neuro modulators. This review also covers structural elements of ectonucleotidases, since some members are found in the vas deferens neuro-effector junction. The allosteric principles that apply to purinoceptors are also reviewed highlighting concepts derived from receptor theory at the light of the current available structural elements. Finally, we discuss clinical applications of these concepts. Copyright © 2014 Elsevier B.V. All rights reserved.
Fossat, Nicolas; Ip, Chi Kin; Jones, Vanessa J; Studdert, Joshua B; Khoo, Poh-Lynn; Lewis, Samara L; Power, Melinda; Tourle, Karin; Loebel, David A F; Kwan, Kin Ming; Behringer, Richard R; Tam, Patrick P L
2015-06-01
Lhx1 encodes a LIM homeobox transcription factor that is expressed in the primitive streak, mesoderm and anterior mesendoderm of the mouse embryo. Using a conditional Lhx1 flox mutation and three different Cre deleters, we demonstrated that LHX1 is required in the anterior mesendoderm, but not in the mesoderm, for formation of the head. LHX1 enables the morphogenetic movement of cells that accompanies the formation of the anterior mesendoderm, in part through regulation of Pcdh7 expression. LHX1 also regulates, in the anterior mesendoderm, the transcription of genes encoding negative regulators of WNT signalling, such as Dkk1, Hesx1, Cer1 and Gsc. Embryos carrying mutations in Pcdh7, generated using CRISPR-Cas9 technology, and embryos without Lhx1 function specifically in the anterior mesendoderm displayed head defects that partially phenocopied the truncation defects of Lhx1-null mutants. Therefore, disruption of Lhx1-dependent movement of the anterior mesendoderm cells and failure to modulate WNT signalling both resulted in the truncation of head structures. Compound mutants of Lhx1, Dkk1 and Ctnnb1 show an enhanced head truncation phenotype, pointing to a functional link between LHX1 transcriptional activity and the regulation of WNT signalling. Collectively, these results provide comprehensive insight into the context-specific function of LHX1 in head formation: LHX1 enables the formation of the anterior mesendoderm that is instrumental for mediating the inductive interaction with the anterior neuroectoderm and LHX1 also regulates the expression of factors in the signalling cascade that modulate the level of WNT activity. © 2015. Published by The Company of Biologists Ltd.
Oh, Min Young; Garyn, Corey
2018-01-01
The double bromodomain and extra-terminal domain (BET) proteins are critical epigenetic readers that bind to acetylated histones in chromatin and regulate transcriptional activity and modulate changes in chromatin structure and organization. The testis-specific BET member, BRDT, is essential for the normal progression of spermatogenesis as mutations in the Brdt gene result in complete male sterility. Although BRDT is expressed in both spermatocytes and spermatids, loss of the first bromodomain of BRDT leads to severe defects in spermiogenesis without overtly compromising meiosis. In contrast, complete loss of BRDT blocks the progression of spermatocytes into the first meiotic division, resulting in a complete absence of post-meiotic cells. Although BRDT has been implicated in chromatin remodeling and mRNA processing during spermiogenesis, little is known about its role in meiotic processes. Here we report that BRDT is an essential regulator of chromatin organization and reprograming during prophase I of meiosis. Loss of BRDT function disrupts the epigenetic state of the meiotic sex chromosome inactivation in spermatocytes, affecting the synapsis and silencing of the X and Y chromosomes. We also found that BRDT controls the global chromatin organization and histone modifications of the chromatin attached to the synaptonemal complex. Furthermore, the homeostasis of crossover formation and localization during pachynema was altered, underlining a possible epigenetic mechanism by which crossovers are regulated and differentially established in mammalian male genomes. Our observations reveal novel findings about the function of BRDT in meiosis and provide insight into how epigenetic regulators modulate the progression of male mammalian meiosis and the formation of haploid gametes. PMID:29513658
Jenkins, Adam M; Waterhouse, Robert M; Muskavitch, Marc A T
2015-04-23
Long non-coding RNAs (lncRNAs) have been defined as mRNA-like transcripts longer than 200 nucleotides that lack significant protein-coding potential, and many of them constitute scaffolds for ribonucleoprotein complexes with critical roles in epigenetic regulation. Various lncRNAs have been implicated in the modulation of chromatin structure, transcriptional and post-transcriptional gene regulation, and regulation of genomic stability in mammals, Caenorhabditis elegans, and Drosophila melanogaster. The purpose of this study is to identify the lncRNA landscape in the malaria vector An. gambiae and assess the evolutionary conservation of lncRNAs and their secondary structures across the Anopheles genus. Using deep RNA sequencing of multiple Anopheles gambiae life stages, we have identified 2,949 lncRNAs and more than 300 previously unannotated putative protein-coding genes. The lncRNAs exhibit differential expression profiles across life stages and adult genders. We find that across the genus Anopheles, lncRNAs display much lower sequence conservation than protein-coding genes. Additionally, we find that lncRNA secondary structure is highly conserved within the Gambiae complex, but diverges rapidly across the rest of the genus Anopheles. This study offers one of the first lncRNA secondary structure analyses in vector insects. Our description of lncRNAs in An. gambiae offers the most comprehensive genome-wide insights to date into lncRNAs in this vector mosquito, and defines a set of potential targets for the development of vector-based interventions that may further curb the human malaria burden in disease-endemic countries.
RNA splicing during terminal erythropoiesis.
Conboy, John G
2017-05-01
Erythroid progenitors must accurately and efficiently splice thousands of pre-mRNAs as the cells undergo extensive changes in gene expression and cellular remodeling during terminal erythropoiesis. Alternative splicing choices are governed by interactions between RNA binding proteins and cis-regulatory binding motifs in the RNA. This review will focus on recent studies that define the genome-wide scope of splicing in erythroblasts and discuss what is known about its regulation. RNA-seq analysis of highly purified erythroblast populations has revealed an extensive program of alternative splicing of both exons and introns. During normal erythropoiesis, stage-specific splicing transitions alter the structure and abundance of protein isoforms required for optimized red cell production. Mutation or deficiency of splicing regulators underlies hematopoietic disease in myelopdysplasia syndrome patients via disrupting the splicing program. Erythroid progenitors execute an elaborate alternative splicing program that modulates gene expression posttranscriptionally, ultimately regulating the structure and function of the proteome in a differentiation stage-specific manner during terminal erythropoiesis. This program helps drive differentiation and ensure synthesis of the proper protein isoforms required to produce mechanically stable red cells. Mutation or deficiency of key splicing regulatory proteins disrupts the splicing program to cause disease.
Bunik, Victoria; Artiukhov, Artem; Aleshin, Vasily; Mkrtchyan, Garik
2016-12-14
Glutamate dehydrogenase (GDH) of animal cells is usually considered to be a mitochondrial enzyme. However, this enzyme has recently been reported to be also present in nucleus, endoplasmic reticulum and lysosomes. These extramitochondrial localizations are associated with moonlighting functions of GDH, which include acting as a serine protease or an ATP-dependent tubulin-binding protein. Here, we review the published data on kinetics and localization of multiple forms of animal GDH taking into account the splice variants, post-translational modifications and GDH isoenzymes, found in humans and apes. The kinetic properties of human GLUD1 and GLUD2 isoenzymes are shown to be similar to those published for GDH1 and GDH2 from bovine brain. Increased functional diversity and specific regulation of GDH isoforms due to alternative splicing and post-translational modifications are also considered. In particular, these structural differences may affect the well-known regulation of GDH by nucleotides which is related to recent identification of thiamine derivatives as novel GDH modulators. The thiamine-dependent regulation of GDH is in good agreement with the fact that the non-coenzyme forms of thiamine, i.e., thiamine triphosphate and its adenylated form are generated in response to amino acid and carbon starvation.
BamHI-A rightward frame 1, an Epstein–Barr virus-encoded oncogene and immune modulator
Hoebe, Eveline K; Le Large, Tessa Y S; Greijer, Astrid E; Middeldorp, Jaap M
2013-01-01
Epstein–Barr virus (EBV) causes several benign and malignant disorders of lymphoid and epithelial origin. EBV-related tumors display distinct patterns of viral latent gene expression, of which the BamHI-A rightward frame 1 (BARF1) is selectively expressed in carcinomas, regulated by cellular differentiation factors including ΔNp63α. BARF1 functions as a viral oncogene, immortalizing and transforming epithelial cells of different origin by acting as a mitogenic growth factor, inducing cyclin-D expression, and up-regulating antiapoptotic Bcl-2, stimulating host cell growth and survival. In addition, secreted hexameric BARF1 has immune evasive properties, functionally corrupting macrophage colony stimulating factor, as supported by recent functional and structural data. Therefore, BARF1, an intracellular and secreted protein, not only has multiple pathogenic functions but also can function as a target for immune responses. Deciphering the role of BARF1 in EBV biology will contribute to novel diagnostic and treatment options for EBV-driven carcinomas. Herein, we discuss recent insights on the regulation of BARF1 expression and aspects of structure-function relating to its oncogenic and immune suppressive properties. © 2013 The Authors. Reviews in Medical Virology published by John Wiley & Sons, Ltd. PMID:23996634
Murine craniofacial development requires Hdac3-mediated repression of Msx gene expression.
Singh, Nikhil; Gupta, Mudit; Trivedi, Chinmay M; Singh, Manvendra K; Li, Li; Epstein, Jonathan A
2013-05-15
Craniofacial development is characterized by reciprocal interactions between neural crest cells and neighboring cell populations of ectodermal, endodermal and mesodermal origin. Various genetic pathways play critical roles in coordinating the development of cranial structures by modulating the growth, survival and differentiation of neural crest cells. However, the regulation of these pathways, particularly at the epigenomic level, remains poorly understood. Using murine genetics, we show that neural crest cells exhibit a requirement for the class I histone deacetylase Hdac3 during craniofacial development. Mice in which Hdac3 has been conditionally deleted in neural crest demonstrate fully penetrant craniofacial abnormalities, including microcephaly, cleft secondary palate and dental hypoplasia. Consistent with these abnormalities, we observe dysregulation of cell cycle genes and increased apoptosis in neural crest structures in mutant embryos. Known regulators of cell cycle progression and apoptosis in neural crest, including Msx1, Msx2 and Bmp4, are upregulated in Hdac3-deficient cranial mesenchyme. These results suggest that Hdac3 serves as a critical regulator of craniofacial morphogenesis, in part by repressing core apoptotic pathways in cranial neural crest cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Stress, epigenetics, and alcoholism.
Moonat, Sachin; Pandey, Subhash C
2012-01-01
Acute and chronic stressors have been associated with alterations in mood and increased anxiety that may eventually result in the development of stress-related psychiatric disorders. Stress and associated disorders, including anxiety, are key factors in the development of alcoholism because alcohol consumption can temporarily reduce the drinker's dysphoria. One molecule that may help mediate the relationship between stress and alcohol consumption is brain-derived neurotrophic factor (BDNF), a protein that regulates the structure and function of the sites where two nerve cells interact and exchange nerve signals (i.e., synapses) and which is involved in numerous physiological processes. Aberrant regulation of BDNF signaling and alterations in synapse activity (i.e., synaptic plasticity) have been associated with the pathophysiology of stress-related disorders and alcoholism. Mechanisms that contribute to the regulation of genetic information without modification of the DNA sequence (i.e., epigenetic mechanisms) may play a role in the complex control of BDNF signaling and synaptic plasticity-for example, by modifying the structure of the DNA-protein complexes (i.e., chromatin) that make up the chromosomes and thereby modulating the expression of certain genes. Studies regarding the epigenetic control of BDNF signaling and synaptic plasticity provide a promising direction to understand the mechanisms mediating the interaction between stress and alcoholism.
Mason, Mike J; Fan, Guoping; Plath, Kathrin; Zhou, Qing; Horvath, Steve
2009-01-01
Background Recent work has revealed that a core group of transcription factors (TFs) regulates the key characteristics of embryonic stem (ES) cells: pluripotency and self-renewal. Current efforts focus on identifying genes that play important roles in maintaining pluripotency and self-renewal in ES cells and aim to understand the interactions among these genes. To that end, we investigated the use of unsigned and signed network analysis to identify pluripotency and differentiation related genes. Results We show that signed networks provide a better systems level understanding of the regulatory mechanisms of ES cells than unsigned networks, using two independent murine ES cell expression data sets. Specifically, using signed weighted gene co-expression network analysis (WGCNA), we found a pluripotency module and a differentiation module, which are not identified in unsigned networks. We confirmed the importance of these modules by incorporating genome-wide TF binding data for key ES cell regulators. Interestingly, we find that the pluripotency module is enriched with genes related to DNA damage repair and mitochondrial function in addition to transcriptional regulation. Using a connectivity measure of module membership, we not only identify known regulators of ES cells but also show that Mrpl15, Msh6, Nrf1, Nup133, Ppif, Rbpj, Sh3gl2, and Zfp39, among other genes, have important roles in maintaining ES cell pluripotency and self-renewal. We also report highly significant relationships between module membership and epigenetic modifications (histone modifications and promoter CpG methylation status), which are known to play a role in controlling gene expression during ES cell self-renewal and differentiation. Conclusion Our systems biologic re-analysis of gene expression, transcription factor binding, epigenetic and gene ontology data provides a novel integrative view of ES cell biology. PMID:19619308
Label Review Training: Module 1: Label Basics, Page 29
This module of the pesticide label review training provides basic information about pesticides, their labeling and regulation, and the core principles of pesticide label review. This page is a quiz on Module 1.
Stetz, Gabrielle; Verkhivker, Gennady M.
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms. PMID:28095400
Stetz, Gabrielle; Verkhivker, Gennady M
2017-01-01
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms.
Amyloid fibril formation of peptides derived from the C-terminus of CETP modulated by lipids
DOE Office of Scientific and Technical Information (OSTI.GOV)
García-González, Victor; Mas-Oliva, Jaime, E-mail: jmas@ifc.unam.mx; División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México, DF
2013-04-26
Highlights: •The secondary structure of a C-terminal peptide derived from CETP was studied. •Lipids modulate secondary structure changes of a C-terminal peptide derived from CETP. •Lysophosphatidic acid maintains a functional α-helix and prevents fibril formation. •Transfer of lipids by CETP is related to the presence of an α-helix at its C-end. -- Abstract: Cholesteryl-ester transfer protein (CETP) is a plasmatic protein involved in neutral lipid transfer between lipoproteins. Focusing on the last 12 C-terminus residues we have previously shown that mutation D{sub 470}N promotes a conformational change towards a β-secondary structure. In turn, this modification leads to the formation ofmore » oligomers and fibrillar structures, which cause cytotoxic effects similar to the ones provoked by amyloid peptides. In this study, we evaluated the role of specific lipid arrangements on the structure of peptide helix-Z (D{sub 470}N) through the use of thioflavin T fluorescence, peptide bond absorbance, circular dichroism and electron microscopy. The results indicate that the use of micelles formed with lysophosphatidylcholine and lysophosphatidic acid (LPA) under neutral pH induce a conformational transition of peptide helix-Z containing a β-sheet conformation to a native α-helix structure, therefore avoiding the formation of amyloid fibrils. In contrast, incubation with phosphatidic acid does not change the profile for the β-sheet conformation. When the electrostatic charge at the surface of micelles or vesicles is regulated through the use of lipids such as phospholipid and LPA, minimal changes and the presence of β-structures were recorded. Mixtures with a positive net charge diminished the percentage of β-structure and the amount of amyloid fibrils. Our results suggest that the degree of solvation determined by the presence of a free hydroxyl group on lipids such as LPA is a key condition that can modulate the secondary structure and the consequent formation of amyloid fibrils in the highly flexible C-terminus domain of CETP.« less
James, Kevin A.; Verkhivker, Gennady M.
2014-01-01
The ErbB protein tyrosine kinases are among the most important cell signaling families and mutation-induced modulation of their activity is associated with diverse functions in biological networks and human disease. We have combined molecular dynamics simulations of the ErbB kinases with the protein structure network modeling to characterize the reorganization of the residue interaction networks during conformational equilibrium changes in the normal and oncogenic forms. Structural stability and network analyses have identified local communities integrated around high centrality sites that correspond to the regulatory spine residues. This analysis has provided a quantitative insight to the mechanism of mutation-induced “superacceptor” activity in oncogenic EGFR dimers. We have found that kinase activation may be determined by allosteric interactions between modules of structurally stable residues that synchronize the dynamics in the nucleotide binding site and the αC-helix with the collective motions of the integrating αF-helix and the substrate binding site. The results of this study have pointed to a central role of the conserved His-Arg-Asp (HRD) motif in the catalytic loop and the Asp-Phe-Gly (DFG) motif as key mediators of structural stability and allosteric communications in the ErbB kinases. We have determined that residues that are indispensable for kinase regulation and catalysis often corresponded to the high centrality nodes within the protein structure network and could be distinguished by their unique network signatures. The optimal communication pathways are also controlled by these nodes and may ensure efficient allosteric signaling in the functional kinase state. Structure-based network analysis has quantified subtle effects of ATP binding on conformational dynamics and stability of the EGFR structures. Consistent with the NMR studies, we have found that nucleotide-induced modulation of the residue interaction networks is not limited to the ATP site, and may enhance allosteric cooperativity with the substrate binding region by increasing communication capabilities of mediating residues. PMID:25427151
Structural cost optimization of photovoltaic central power station modules and support structure
NASA Technical Reports Server (NTRS)
Sutton, P. D.; Stolte, W. J.; Marsh, R. O.
1979-01-01
The results of a comprehensive study of photovoltaic module structural support concepts for photovoltaic central power stations and their associated costs are presented. The objective of the study has been the identification of structural cost drivers. Parametric structural design and cost analyses of complete array systems consisting of modules, primary support structures, and foundations were performed. Area related module cost was found to be constant with design, size, and loading. A curved glass module concept was evaluated and found to have the potential to significantly reduce panel structural costs. Conclusions of the study are: array costs do not vary greatly among the designs evaluated; panel and array costs are strongly dependent on design loading; and the best support configuration is load dependent
Hierarchical Feedback Modules and Reaction Hubs in Cell Signaling Networks
Xu, Jianfeng; Lan, Yueheng
2015-01-01
Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks. PMID:25951347
Micropatterned Azopolymer Surfaces Modulate Cell Mechanics and Cytoskeleton Structure.
Rianna, Carmela; Ventre, Maurizio; Cavalli, Silvia; Radmacher, Manfred; Netti, Paolo A
2015-09-30
Physical and chemical characteristics of materials are important regulators of cell behavior. In particular, cell elasticity is a fundamental parameter that reflects the state of a cell. Surface topography finely modulates cell fate and function via adhesion mediated signaling and cytoskeleton generated forces. However, how topographies alter cell mechanics is still unclear. In this work we have analyzed the mechanical properties of peripheral and nuclear regions of NIH-3T3 cells on azopolymer substrates with different topographic patterns. Micrometer scale patterns in the form of parallel ridges or square lattices of surface elevations were encoded on light responsive azopolymer films by means of contactless optical methods. Cell mechanics was investigated by atomic force microscopy (AFM). Cells and consequently the cell cytoskeleton were oriented along the linear patterns affecting cytoskeletal structures, e.g., formation of actin stress fibers. Our data demonstrate that topographic substrate patterns are recognized by cells and mechanical information is transferred by the cytoskeleton. Furthermore, cytoskeleton generated forces deform the nucleus, changing its morphology that appears to be related to different mechanical properties in the nuclear region.
Abbott, Jason R; Hodges, Timothy R; Daniels, R Nathan; Patel, Pratiq A; Kennedy, Jack Phillip; Howes, Jennifer E; Akan, Denis T; Burns, Michael C; Sai, Jiqing; Sobolik, Tammy; Beesetty, Yugandhar; Lee, Taekyu; Rossanese, Olivia W; Phan, Jason; Waterson, Alex G; Fesik, Stephen W
2018-06-01
Deregulated RAS activity, often the result of mutation, is implicated in approximately 30% of all human cancers. Despite this statistic, no clinically successful treatment for RAS-driven tumors has yet been developed. One approach for modulating RAS activity is to target and affect the activity of proteins that interact with RAS, such as the guanine nucleotide exchange factor (GEF) son of sevenless homologue 1 (SOS1). Here, we report on structure-activity relationships (SAR) in an indole series of compounds. Using structure-based design, we systematically explored substitution patterns on the indole nucleus, the pendant amino acid moiety, and the linker unit that connects these two fragments. Best-in-class compounds activate the nucleotide exchange process at sub-micromolar concentrations in vitro, increase levels of active RAS-GTP in HeLa cells, and elicit signaling changes in the mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway, resulting in a decrease in pERK1/2 T202/Y204 protein levels at higher compound concentrations.
Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.
2011-01-01
Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation required for long-term memory. Several studies have shown that CBP and histone acetylation are necessary for hippocampus-dependent long-term memory and hippocampal long-term potentiation (LTP). Importantly, every genetically modified Cbp mutant mouse exhibits long-term memory impairments in object recognition. However, the role of the hippocampus in object recognition is controversial. To better understand how chromatin-modifying enzymes modulate long-term memory for object recognition, we first examined the role of the hippocampus in retrieval of long-term memory for object recognition or object location. Muscimol inactivation of the dorsal hippocampus prior to retrieval had no effect on long-term memory for object recognition, but completely blocked long-term memory for object location. This was consistent with experiments showing that muscimol inactivation of the hippocampus had no effect on long-term memory for the object itself, supporting the idea that the hippocampus encodes spatial information about an object (such as location or context), whereas cortical areas (such as the perirhinal or insular cortex) encode information about the object itself. Using location-dependent object recognition tasks that engage the hippocampus, we demonstrate that CBP is essential for the modulation of long-term memory via HDAC inhibition. Together, these results indicate that HDAC inhibition modulates memory in the hippocampus via CBP and that different brain regions utilize different chromatin-modifying enzymes to regulate learning and memory. PMID:21224411
Blacklock, Kristin; Verkhivker, Gennady M.
2014-01-01
A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks. PMID:24922508
Blacklock, Kristin; Verkhivker, Gennady M
2014-06-01
A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks.
Saladi, Srinivas Vinod; Keenen, Bridget; Marathe, Himangi G; Qi, Huiling; Chin, Khew-Voon; de la Serna, Ivana L
2010-10-22
Metastatic melanoma is an aggressive malignancy that is resistant to therapy and has a poor prognosis. The progression of primary melanoma to metastatic disease is a multi-step process that requires dynamic regulation of gene expression through currently uncharacterized epigenetic mechanisms. Epigenetic regulation of gene expression often involves changes in chromatin structure that are catalyzed by chromatin remodeling enzymes. Understanding the mechanisms involved in the regulation of gene expression during metastasis is important for developing an effective strategy to treat metastatic melanoma. SWI/SNF enzymes are multisubunit complexes that contain either BRG1 or BRM as the catalytic subunit. We previously demonstrated that heterogeneous SWI/SNF complexes containing either BRG1 or BRM are epigenetic modulators that regulate important aspects of the melanoma phenotype and are required for melanoma tumorigenicity in vitro. To characterize BRG1 expression during melanoma progression, we assayed expression of BRG1 in patient derived normal skin and in melanoma specimen. BRG1 mRNA levels were significantly higher in stage IV melanomas compared to stage III tumors and to normal skin. To determine the role of BRG1 in regulating the expression of genes involved in melanoma metastasis, we expressed BRG1 in a melanoma cell line that lacks BRG1 expression and examined changes in extracellular matrix and adhesion molecule expression. We found that BRG1 modulated the expression of a subset of extracellular matrix remodeling enzymes and adhesion proteins. Furthermore, BRG1 altered melanoma adhesion to different extracellular matrix components. Expression of BRG1 in melanoma cells that lack BRG1 increased invasive ability while down-regulation of BRG1 inhibited invasive ability in vitro. Activation of metalloproteinase (MMP) 2 expression greatly contributed to the BRG1 induced increase in melanoma invasiveness. We found that BRG1 is recruited to the MMP2 promoter and directly activates expression of this metastasis associated gene. We provide evidence that BRG1 expression increases during melanoma progression. Our study has identified BRG1 target genes that play an important role in melanoma metastasis and we show that BRG1 promotes melanoma invasive ability in vitro. These results suggest that increased BRG1 levels promote the epigenetic changes in gene expression required for melanoma metastasis to proceed.
Antithrombin, an Important Inhibitor in Blood Clots.
Zhu, Ying; Cong, Qing-Wei; Liu, Yue; Wan, Chun-Ling; Yu, Tao; He, Guang; He, Lin; Cai, Lei; Chou, Kuo-Chen
2016-01-01
Blood coagulation is healthy and lifesaving because it can stop bleeding. It can, however, be a troublemaker as well, causing serious medical problems including heart attack and stroke. Body has complex blood coagulation cascade to modulate the blood clots. In the environment of plasma, the blood coagulation cascade is regulated by antithrombin, which is deemed one of the most important serine protease inhibitors. It inhibits thrombin; it can inhibit factors IXa and Xa as well. Interestingly, its inhibitory ability will be significantly increased with the existence of heparin. In this minireview paper, we are to summarize the structural features of antithrombin, as well as its heparin binding modes and anti-coagulation mechanisms, in hopes that the discussion and analysis presented in this paper can stimulate new strategies to find more effective approaches or compounds to modulate the antithrombin.
Pepducins as a potential treatment strategy for asthma and COPD.
Panettieri, Reynold A; Pera, Tonio; Liggett, Stephen B; Benovic, Jeffrey L; Penn, Raymond B
2018-05-02
Current therapies to treat asthma and other airway diseases primarily include anti-inflammatory agents and bronchodilators. Anti-inflammatory agents target trafficking and resident immunocytes and structural cells, while bronchodilators act to prevent or reverse shortening of airway smooth muscle (ASM), the pivotal tissue regulating bronchomotor tone. Advances in our understanding of the biology of G protein-coupled receptors (GPCRs) and biased agonism offers unique opportunities to modulate GPCR function that include the use of pepducins and allosteric modulators. Recent evidence suggests that small molecule inhibitors of Gα q as well as pepducins targeting G q -coupled receptors can broadly inhibit contractile agonist-induced ASM function. Given these advances, new therapeutic approaches can be leveraged to diminish the global rise in morbidity and mortality associated with asthma and chronic obstructive pulmonary disease. Copyright © 2018. Published by Elsevier Ltd.
Nepal, Saroj; Shrestha, Anup; Park, Pil-Hoon
2015-09-05
Adiponectin and leptin, both produced from adipose tissue, cause cell cycle arrest and progression, respectively in cancer cells. Ubiquitin specific protease-2 (USP-2), a deubiquitinating enzyme, is known to impair proteasome-induced degradation of cyclin D1, a critical cell cycle regulator. Herein, we investigated the effects of these adipokines on USP-2 expression and its potential role in the modulation of cell cycle. Treatment with globular adiponectin (gAcrp) decreased, whereas leptin increased USP-2 expression both in human hepatoma and breast cancer cells. In addition, overexpression or gene silencing of USP-2 affected cyclin D1 expression and cell cycle progression/arrest by adipokines. Adiponectin and leptin also modulated in vitro proteasomal activity, which was partially dependent on USP-2 expression. Taken together, our results reveal that modulation of USP-2 expression plays a crucial role in cell cycle regulation by adipokines. Thus, USP-2 would be a promising therapeutic target for the modulation of cancer cell growth by adipokines. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Structural basis for the auxin-induced transcriptional regulation by Aux/IAA17.
Han, Mookyoung; Park, Yangshin; Kim, Iktae; Kim, Eun-Hee; Yu, Tae-Kyung; Rhee, Sangkee; Suh, Jeong-Yong
2014-12-30
Auxin is the central hormone that regulates plant growth and organ development. Transcriptional regulation by auxin is mediated by the auxin response factor (ARF) and the repressor, AUX/IAA. Aux/IAA associates with ARF via domain III-IV for transcriptional repression that is reversed by auxin-induced Aux/IAA degradation. It has been known that Aux/IAA and ARF form homo- and hetero-oligomers for the transcriptional regulation, but what determines their association states is poorly understood. Here we report, to our knowledge, the first solution structure of domain III-IV of Aux/IAA17 (IAA17), and characterize molecular interactions underlying the homotypic and heterotypic oligomerization. The structure exhibits a compact β-grasp fold with a highly dynamic insert helix that is unique in Aux/IAA family proteins. IAA17 associates to form a heterogeneous ensemble of front-to-back oligomers in a concentration-dependent manner. IAA17 and ARF5 associate to form homo- or hetero-oligomers using a common scaffold and binding interfaces, but their affinities vary significantly. The equilibrium dissociation constants (KD) for homo-oligomerization are 6.6 μM and 0.87 μM for IAA17 and ARF5, respectively, whereas hetero-oligomerization reveals a ∼ 10- to ∼ 100-fold greater affinity (KD = 73 nM). Thus, individual homo-oligomers of IAA17 and ARF5 spontaneously exchange their subunits to form alternating hetero-oligomers for transcriptional repression. Oligomerization is mainly driven by electrostatic interactions, so that charge complementarity at the interface determines the binding affinity. Variable binding affinity by surface charge modulation may effectively regulate the complex interaction network between Aux/IAA and ARF family proteins required for the transcriptional control of auxin-response genes.
Concrete structure construction on the Moon
NASA Technical Reports Server (NTRS)
Matsumoto, Shinji; Namba, Haruyuki; Kai, Yoshiro; Yoshida, Tetsuji
1992-01-01
This paper describes a precast prestressed concrete structure system on the Moon and erection methods for this system. The horizontal section of the structural module is hexagonal so that various layouts of the modules are possible by connecting the adjacent modules to each other. For erection of the modules, specially designed mobile cranes are used.
Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie
2010-10-05
Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of the insect cell metabolism by the arboviruses.
Tchankouo-Nguetcheu, Stéphane; Khun, Huot; Pincet, Laurence; Roux, Pascal; Bahut, Muriel; Huerre, Michel; Guette, Catherine; Choumet, Valérie
2010-01-01
Background Arthropod borne virus infections cause several emerging and resurgent infectious diseases. Among the diseases caused by arboviruses, dengue and chikungunya are responsible for a high rate of severe human diseases worldwide. The midgut of mosquitoes is the first barrier for pathogen transmission and is a target organ where arboviruses must replicate prior to infecting other organs. A proteomic approach was undertaken to characterize the key virus/vector interactions and host protein modifications that happen in the midgut for viral transmission to eventually take place. Methodology and Principal Findings Using a proteomics differential approach with two-Dimensional Differential in-Gel Electrophoresis (2D-DIGE), we defined the protein modulations in the midgut of Aedes aegypti that were triggered seven days after an oral infection (7 DPI) with dengue 2 (DENV-2) and chikungunya (CHIKV) viruses. Gel profile comparisons showed that the level of 18 proteins was modulated by DENV-2 only and 12 proteins were modulated by CHIKV only. Twenty proteins were regulated by both viruses in either similar or different ways. Both viruses caused an increase of proteins involved in the generation of reactive oxygen species, energy production, and carbohydrate and lipid metabolism. Midgut infection by DENV-2 and CHIKV triggered an antioxidant response. CHIKV infection produced an increase of proteins involved in detoxification. Conclusion/Significance Our study constitutes the first analysis of the protein response of Aedes aegypti's midgut infected with viruses belonging to different families. It shows that the differentially regulated proteins in response to viral infection include structural, redox, regulatory proteins, and enzymes for several metabolic pathways. Some of these proteins like antioxidant are probably involved in cell protection. On the other hand, we propose that the modulation of other proteins like transferrin, hsp60 and alpha glucosidase, may favour virus survival, replication and transmission, suggesting a subversion of the insect cell metabolism by the arboviruses. PMID:20957153
Chen, Lei; Liu, Jin-cheng; Zhang, Xiao-nan; Guo, Yan-yan; Xu, Zhao-hui; Cao, Wei; Sun, Xiao-li; Sun, Wen-ji; Zhao, Ming-Gao
2008-06-01
Gentiopicroside is one of the secoiridoid compound isolated from Gentiana lutea. It exhibits analgesic activities in the mice. The anterior cingulate cortex (ACC) is a forebrain structure known for its roles in pain transmission and modulation. Painful stimuli potentiate the prefrontal synaptic transmission and induce glutamate NMDA NR2B receptor expression in the ACC. But little is known about Gentiopicroside on the persistent inflammatory pain and chronic pain-induced synaptic transmission changes in the ACC. The present study was undertaken to investigate its analgesic activities and central synaptic modulation to the peripheral painful inflammation. Gentiopicroside produced significant analgesic effects against persistent inflammatory pain stimuli in mice. Systemic administration of Gentiopicroside significantly reversed NR2B over-expression during the chronic phases of persistent inflammation caused by hind-paw administration of complete Freunds adjuvant (CFA) in mice. Whole-cell patch clamp recordings revealed that Gentiopicroside significantly reduced NR2B receptors mediated postsynaptic currents in the ACC. Our findings provide strong evidence that analgesic effects of Gentiopicroside involve down-regulation of NR2B receptors in the ACC to persistent inflammatory pain.
NASA Astrophysics Data System (ADS)
Tamaoki, D.; Karahara, I.; Nishiuchi, T.; De Oliveira, S.; Schreiber, L.; Wakasugi, T.; Yamada, K.; Yamaguchi, K.; Kamisaka, S.
2009-07-01
Land plants rely on lignified secondary cell walls in supporting their body weight on the Earth. Although gravity influences the formation of the secondary cell walls, the regulatory mechanism of their formation by gravity is not yet understood. We carried out a comprehensive analysis of gene expression in inflorescence stems of Arabidopsis thaliana L. using microarray (22 K) to identify genes whose expression is modulated under hypergravity condition (300 g). Total RNA was isolated from the basal region of inflorescence stems of plants grown for 24 h at 300 g or 1 g. Microarray analysis showed that hypergravity up-regulated the expression of 403 genes to more than 2-fold. Hypergravity up-regulated the genes responsible for the biosynthesis or modification of cell wall components such as lignin, xyloglucan, pectin and structural proteins. In addition, hypergravity altered the expression of genes related to the biosynthesis of plant hormones such as auxin and ethylene and that of genes encoding hormone-responsive proteins. Our transcriptome profiling indicates that hypergravity influences the formation of secondary cell walls by modulating the pattern of gene expression, and that auxin and/or ethylene play an important role in signaling hypergravity stimulus.
A discontinuous hammerhead ribozyme embedded in a mammalian messenger RNA
Martick, Monika; Horan, Lucas H.; Noller, Harry F.; Scott, William G.
2008-01-01
Structured RNAs embedded in the untranslated regions (UTRs) of messenger RNAs can regulate gene expression. In bacteria, control of a metabolite gene is mediated by the self-cleaving activity of a ribozyme embedded in its 5′ UTR1. This discovery has raised the question of whether gene-regulating ribozymes also exist in eukaryotic mRNAs. Here we show that highly active hammerhead ribozymes2,3 are present in the 3′ UTRs of rodent C-type lectin type II (Clec2) genes4–7. Using a hammerhead RNA motif search with relaxed delimitation of the non-conserved regions, we detected ribozyme sequences in which the invariant regions, in contrast to the previously identified continuous hammerheads8–10, occur as two fragments separated by hundreds of nucleotides. Notably, a fragment pair can assemble to form an active hammerhead ribozyme structure between the translation termination and the poly-adenylation signals within the 3′ UTR. We demonstrate that this hammerhead structure can self-cleave both in vitro and in vivo, and is able to reduce protein expression in mouse cells. These results indicate that an unrecognized mechanism of post-transcriptional gene regulation involving association of discontinuous ribozyme sequences within an mRNA may be modulating the expression of several CLEC2 proteins that function in bone remodelling and the immune response of several mammals. PMID:18615019
Hypothalamic and dietary control of temperature-mediated longevity
Tabarean, Iustin; Morrison, Brad; Marcondes, Maria Cecilia; Bartfai, Tamas; Conti, Bruno
2009-01-01
Temperature is an important modulator of longevity and aging in both poikilotherms and homeotherm animals. In homeotherms, temperature homeostasis is regulated primarily in the preoptic area (POA) of the hypothalamus. This region receives and integrates peripheral, central and environmental signals and maintains a nearly constant core body temperature (Tcore) by regulating the autonomic and hormonal control of heat production and heat dissipation. Temperature sensitive neurons found in the POA are considered key elements of the neuronal circuitry modulating these effects. Nutrient homeostasis is also a hypothalamically regulated modulator of aging as well as one of the signals that can influence Tcore in homeotherms. Investigating the mechanisms of the regulation of nutrient and temperature homeostasis in the hypothalamus is important to understand how these two elements of energy homeostasis influence longevity and aging as well as how aging can affect hypothalamic homeostatic mechanisms. PMID:19631766
Hypothalamic and dietary control of temperature-mediated longevity.
Tabarean, Iustin; Morrison, Brad; Marcondes, Maria Cecilia; Bartfai, Tamas; Conti, Bruno
2010-01-01
Temperature is an important modulator of longevity and aging in both poikilotherms and homeotherm animals. In homeotherms, temperature homeostasis is regulated primarily in the preoptic area (POA) of the hypothalamus. This region receives and integrates peripheral, central and environmental signals and maintains a nearly constant core body temperature (T(core)) by regulating the autonomic and hormonal control of heat production and heat dissipation. Temperature sensitive neurons found in the POA are considered key elements of the neuronal circuitry modulating these effects. Nutrient homeostasis is also a hypothalamically regulated modulator of aging as well as one of the signals that can influence T(core) in homeotherms. Investigating the mechanisms of the regulation of nutrient and temperature homeostasis in the hypothalamus is important to understanding how these two elements of energy homeostasis influence longevity and aging as well as how aging can affect hypothalamic homeostatic mechanisms. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Zhang, Jingwei; Dalbay, Melis T; Luo, Xiaoman; Vrij, Erik; Barbieri, Davide; Moroni, Lorenzo; de Bruijn, Joost D; van Blitterswijk, Clemens A; Chapple, J Paul; Knight, Martin M; Yuan, Huipin
2017-07-15
The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery applications. The surface topography of synthetic biomaterials plays important roles in material-driven osteogenesis. The data presented herein have shown that the surface topography of calcium phosphate ceramics regulates mesenchymal stromal cells (e.g., human bone marrow mesenchymal stromal cells, hBMSCs) with respect to morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation in vitro. Together with bone formation in vivo, our results suggested a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery by the bioengineering control of osteogenesis via primary cilia modulation. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Tonic regulation of vascular permeability
Curry, Fitz-Roy E.; Adamson, Roger H.
2014-01-01
Our major theme is that the layered structure of the endothelial barrier requires continuous activation of signaling pathways regulated by S1P and intracellular cAMP. These pathways modulate the adherens junction, continuity of tight junction strands, and the balance of synthesis and degradation of glycocalyx components. We evaluate recent evidence that baseline permeability is maintained by constant activity of mechanisms involving the small GTPases Rap1 and Rac1. In the basal state, the barrier is compromised when activities of the small GTPases are reduced by low S1P supply or delivery. With inflammatory stimulus, increased permeability can be understood in part as the action of signaling to reduce Rap1 and Rac1 activation. With the hypothesis that microvessel permeability and selectivity under both normal and inflammatory conditions are regulated by mechanisms that are continuously active it follows that when S1P or intracellular cAMP are elevated at the time of inflammatory stimulus, they can buffer changes induced by inflammatory agents and maintain normal barrier stability. When endothelium is exposed to inflammatory conditions and subsequently exposed to elevated S1P or intracellular cAMP, the same processes restore the functional barrier by first reestablishing the adherens junction, then modulating tight junctions and glycocalyx. In more extreme inflammatory conditions, loss of the inhibitory actions of Rac1 dependent mechanisms may promote expression of more inflammatory endothelial phenotypes by contributing to the up-regulation of RhoA dependent contractile mechanisms and the sustained loss of surface glycocalyx allowing access of inflammatory cells to the endothelium. PMID:23374222
Measures of Autonomic Nervous System Regulation
2011-04-01
and most often used measures of ANS activation encompass non-invasive tools, which measure cardiac, skin conductance, respiratory , and vascular...regulation, osmotic balance, metabolism, digestion, excretion, and cardiac and respiratory activity. The ANS consists of the sympathetic and...modulate heart rate, as a function of the respiratory cycles. Generally, these two systems should be seen as permanently modulating vital functions to
pH-Driven Reversible Self-Assembly of Micron-Scale DNA Scaffolds.
Green, Leopold N; Amodio, Alessia; Subramanian, Hari K K; Ricci, Francesco; Franco, Elisa
2017-12-13
Inspired by cytoskeletal scaffolds that sense and respond dynamically to environmental changes and chemical inputs with a unique capacity for reconfiguration, we propose a strategy that allows the dynamic and reversible control of the growth and breakage of micron-scale synthetic DNA structures upon pH changes. We do so by rationally designing a pH-responsive system composed of synthetic DNA strands that act as pH sensors, regulators, and structural elements. Sensor strands can dynamically respond to pH changes and route regulatory strands to direct the self-assembly of structural elements into tubular structures. This example represents the first demonstration of the reversible assembly and disassembly of micron-scale DNA scaffolds using an external chemical input other than DNA. The capacity to reversibly modulate nanostructure size may promote the development of smart devices for catalysis or drug-delivery applications.
Su, Ting; Cheng, Jingdong; Sohmen, Daniel; Hedman, Rickard; Berninghausen, Otto; von Heijne, Gunnar; Wilson, Daniel N; Beckmann, Roland
2017-05-30
Interaction between the nascent polypeptide chain and the ribosomal exit tunnel can modulate the rate of translation and induce translational arrest to regulate expression of downstream genes. The ribosomal tunnel also provides a protected environment for initial protein folding events. Here, we present a 2.9 Å cryo-electron microscopy structure of a ribosome stalled during translation of the extremely compacted VemP nascent chain. The nascent chain forms two α-helices connected by an α-turn and a loop, enabling a total of 37 amino acids to be observed within the first 50-55 Å of the exit tunnel. The structure reveals how α-helix formation directly within the peptidyltransferase center of the ribosome interferes with aminoacyl-tRNA accommodation, suggesting that during canonical translation, a major role of the exit tunnel is to prevent excessive secondary structure formation that can interfere with the peptidyltransferase activity of the ribosome.
Subunit architecture and functional modular rearrangements of the transcriptional Mediator complex
Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C.; Conaway, Joan W.; Asturias, Francisco J.
2014-01-01
SUMMARY The multisubunit Mediator comprising ~30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. PMID:24882805
Campbell, Elizabeth A.; Greenwell, Roger; Anthony, Jennifer R.; Wang, Sheng; Lim, Lionel; Das, Kalyan; Sofia, Heidi J.; Donohue, Timothy J.; Darst, Seth A.
2008-01-01
SUMMARY A transcriptional response to singlet oxygen in Rhodobacter sphaeroides is controlled by the group IV σ factor σE and its cognate anti-σ ChrR. Crystal structures of the σE/ChrR complex reveal a modular, two-domain architecture for ChrR. The ChrR N-terminal anti-σ domain (ASD) binds a Zn2+ ion, contacts σE, and is sufficient to inhibit σE-dependent transcription. The ChrR C-terminal domain adopts a cupin fold, can coordinate an additional Zn2+, and is required for the transcriptional response to singlet oxygen. Structure-based sequence analyses predict that the ASD defines a common structural fold among predicted group IV antiσs. These ASDs are fused to diverse C-terminal domains that are likely involved in responding to specific environmental signals that control the activity of their cognate σ factor. PMID:17803943
Cryo-electron microscopy structure of the TRPV2 ion channel.
Zubcevic, Lejla; Herzik, Mark A; Chung, Ben C; Liu, Zhirui; Lander, Gabriel C; Lee, Seok-Yong
2016-02-01
Transient receptor potential vanilloid (TRPV) cation channels are polymodal sensors involved in a variety of physiological processes. TRPV2, a member of the TRPV family, is regulated by temperature, by ligands, such as probenecid and cannabinoids, and by lipids. TRPV2 has been implicated in many biological functions, including somatosensation, osmosensation and innate immunity. Here we present the atomic model of rabbit TRPV2 in its putative desensitized state, as determined by cryo-EM at a nominal resolution of ∼4 Å. In the TRPV2 structure, the transmembrane segment 6 (S6), which is involved in gate opening, adopts a conformation different from the one observed in TRPV1. Structural comparisons of TRPV1 and TRPV2 indicate that a rotation of the ankyrin-repeat domain is coupled to pore opening via the TRP domain, and this pore opening can be modulated by rearrangements in the secondary structure of S6.
Cryo-electron microscopy structure of the TRPV2 ion channel
Chung, Ben C; Liu, Zhirui; Lander, Gabriel C; Lee, Seok-Yong
2016-01-01
Transient receptor potential vanilloid (TRPV) cation channels are polymodal sensors involved in a variety of physiological processes. TRPV2, a member of the TRPV family, is regulated by temperature, by ligands, such as probenecid and cannabinoids, and by lipids. TRPV2 has been implicated in many biological functions, including somatosensation, osmosensation and innate immunity. Here we present the atomic model of rabbit TRPV2 in its putative desensitized state, as determined by cryo-EM at a nominal resolution of ~4 Å. In the TRPV2 structure, the transmembrane segment 6 (S6), which is involved in gate opening, adopts a conformation different from the one observed in TRPV1. Structural comparisons of TRPV1 and TRPV2 indicate that a rotation of the ankyrin-repeat domain is coupled to pore opening via the TRP domain, and this pore opening can be modulated by rearrangements in the secondary structure of S6. PMID:26779611
Neuronal activity in ontogeny and oncology
Venkatesh, Humsa; Monje, Michelle
2017-01-01
The nervous system plays a central role in regulating the stem cell niche in many organs and thereby critically modulates development, homeostasis and plasticity. A similarly powerful role for neural regulation of the cancer microenvironment is emerging. Neurons promote the growth of cancers of the brain, skin, prostate, pancreas and stomach. Parallel mechanisms shared in development and cancer suggest that neural modulation of the tumor microenvironment may prove a universal theme, although the mechanistic details of such modulation remain to be discovered for many malignancies. Here, we review what is known about the influences of active neurons on stem cell and cancer microenvironments across a broad range of tissues and discuss emerging principles of neural regulation of development and cancer. PMID:28718448
Modulation of Phytoalexin Biosynthesis in Engineered Plants for Disease Resistance
Jeandet, Philippe; Clément, Christophe; Courot, Eric; Cordelier, Sylvain
2013-01-01
Phytoalexins are antimicrobial substances of low molecular weight produced by plants in response to infection or stress, which form part of their active defense mechanisms. Starting in the 1950’s, research on phytoalexins has begun with biochemistry and bio-organic chemistry, resulting in the determination of their structure, their biological activity as well as mechanisms of their synthesis and their catabolism by microorganisms. Elucidation of the biosynthesis of numerous phytoalexins has permitted the use of molecular biology tools for the exploration of the genes encoding enzymes of their synthesis pathways and their regulators. Genetic manipulation of phytoalexins has been investigated to increase the disease resistance of plants. The first example of a disease resistance resulting from foreign phytoalexin expression in a novel plant has concerned a phytoalexin from grapevine which was transferred to tobacco. Transformations were then operated to investigate the potential of other phytoalexin biosynthetic genes to confer resistance to pathogens. Unexpectedly, engineering phytoalexins for disease resistance in plants seem to have been limited to exploiting only a few phytoalexin biosynthetic genes, especially those encoding stilbenes and some isoflavonoids. Research has rather focused on indirect approaches which allow modulation of the accumulation of phytoalexin employing transcriptional regulators or components of upstream regulatory pathways. Genetic approaches using gain- or less-of functions in phytoalexin engineering together with modulation of phytoalexin accumulation through molecular engineering of plant hormones and defense-related marker and elicitor genes have been reviewed. PMID:23880860
Acyl-CoA-Binding Protein ACBP1 Modulates Sterol Synthesis during Embryogenesis1[OPEN
Hsiao, An-Shan; Xue, Yan
2017-01-01
Fatty acids (FAs) and sterols are primary metabolites that exert interrelated functions as structural and signaling lipids. Despite their common syntheses from acetyl-coenzyme A, homeostatic cross talk remains enigmatic. Six Arabidopsis (Arabidopsis thaliana) acyl-coenzyme A-binding proteins (ACBPs) are involved in FA metabolism. ACBP1 interacts with PHOSPHOLIPASE Dα1 and regulates phospholipid composition. Here, its specific role in the negative modulation of sterol synthesis during embryogenesis is reported. ACBP1, likely in a liganded state, interacts with STEROL C4-METHYL OXIDASE1-1 (SMO1-1), a rate-limiting enzyme in the sterol pathway. Proembryo abortion in the double mutant indicated that the ACBP1-SMO1-1 interaction is synthetic lethal, corroborating with their strong promoter activities in developing ovules. Gas chromatography-mass spectrometry revealed quantitative and compositional changes in FAs and sterols upon overexpression or mutation of ACBP1 and/or SMO1-1. Aberrant levels of these metabolites may account for the downstream defect in lipid signaling. GLABRA2 (GL2), encoding a phospholipid/sterol-binding homeodomain transcription factor, was up-regulated in developing seeds of acbp1, smo1-1, and ACBP1+/−smo1-1 in comparison with the wild type. Consistent with the corresponding transcriptional alteration of GL2 targets, high-oil, low-mucilage phenotypes of gl2 were phenocopied in ACBP1+/−smo1-1. Thus, ACBP1 appears to modulate the metabolism of two important lipid classes (FAs and sterols) influencing cellular signaling. PMID:28500265
RNA-Mediated cis Regulation in Acinetobacter baumannii Modulates Stress-Induced Phenotypic Variation
Ching, Carly; Gozzi, Kevin; Heinemann, Björn; Chai, Yunrong
2017-01-01
ABSTRACT In the nosocomial opportunistic pathogen Acinetobacter baumannii, RecA-dependent mutagenesis, which causes antibiotic resistance acquisition, is linked to the DNA damage response (DDR). Notably, unlike the Escherichia coli paradigm, recA and DDR gene expression in A. baumannii is bimodal. Namely, there is phenotypic variation upon DNA damage, which may provide a bet-hedging strategy for survival. Thus, understanding recA gene regulation is key to elucidate the yet unknown DDR regulation in A. baumannii. Here, we identify a structured 5′ untranslated region (UTR) in the recA transcript which serves as a cis-regulatory element. We show that a predicted stem-loop structure in this 5′ UTR affects mRNA half-life and underlies bimodal gene expression and thus phenotypic variation in response to ciprofloxacin treatment. We furthermore show that the stem-loop structure of the recA 5′ UTR influences intracellular RecA protein levels and, in vivo, impairing the formation of the stem-loop structure of the recA 5′ UTR lowers cell survival of UV treatment and decreases rifampin resistance acquisition from DNA damage-induced mutagenesis. We hypothesize that the 5′ UTR allows for stable recA transcripts during stress, including antibiotic treatment, enabling cells to maintain suitable RecA levels for survival. This innovative strategy to regulate the DDR in A. baumannii may contribute to its success as a pathogen. IMPORTANCE Acinetobacter baumannii is an opportunistic pathogen quickly gaining antibiotic resistances. Mutagenesis and antibiotic resistance acquisition are linked to the DNA damage response (DDR). However, how the DDR is regulated in A. baumannii remains unknown, since unlike most bacteria, A. baumannii does not follow the regulation of the Escherichia coli paradigm. In this study, we have started to uncover the mechanisms regulating the novel A. baumannii DDR. We have found that a cis-acting 5′ UTR regulates recA transcript stability, RecA protein levels, and DNA damage-induced phenotypic variation. Though 5′ UTRs are known to provide stability to transcripts in bacteria, this is the first example in which it regulates a bimodal DDR response through recA transcript stabilization, potentially enabling cells to have enough RecA for survival and genetic variability. PMID:28320880
Molecular targets for small-molecule modulators of circadian clocks
He, Baokun; Chen, Zheng
2016-01-01
Background Circadian clocks are endogenous timing systems that regulate various aspects of mammalian metabolism, physiology and behavior. Traditional chronotherapy refers to the administration of drugs in a defined circadian time window to achieve optimal pharmacokinetic and therapeutic efficacies. In recent years, substantial efforts have been dedicated to developing novel small-molecule modulators of circadian clocks. Methods Here, we review the recent progress in the identification of molecular targets of small-molecule clock modulators and their efficacies in clock-related disorders. Specifically, we examine the clock components and regulatory factors as possible molecular targets of small molecules, and we review several key clock-related disorders as promising venues for testing the preventive/therapeutic efficacies of these small molecules. Finally, we also discuss circadian regulation of drug metabolism. Results Small molecules can modulate the period, phase and/or amplitude of the circadian cycle. Core clock proteins, nuclear hormone receptors, and clock-related kinases and other epigenetic regulators are promising molecular targets for small molecules. Through these targets small molecules exert protective effects against clock-related disorders including the metabolic syndrome, immune disorders, sleep disorders and cancer. Small molecules can also modulate circadian drug metabolism and response to existing therapeutics. Conclusion Small-molecule clock modulators target clock components or diverse cellular pathways that functionally impinge upon the clock. Target identification of new small-molecule modulators will deepen our understanding of key regulatory nodes in the circadian network. Studies of clock modulators will facilitate their therapeutic applications, alone or in combination, for clock-related diseases. PMID:26750111
Regulation of galactan synthase expression to modify galactan content in plants
None
2017-08-22
The disclosure provides methods of engineering plants to modulate galactan content. Specifically, the disclosure provides methods for engineering a plant to increase the galactan content in a plant tissue by inducing expression of beta-1,4-galactan synthase (GALS), modulated by a heterologous promoter. Further disclosed are the methods of modulating expression level of GALS under the regulation of a transcription factor, as well as overexpression of UDP-galactose epimerse in the same plant tissue. Tissue specific promoters and transcription factors can be used in the methods are also provided.
An, Young Jun; Na, Jung-Hyun; Kim, Myung-Il; Cha, Sun-Shin
2015-10-01
Lon proteases degrade defective or denature proteins as well as some folded proteins for the control of cellular protein quality. There are two types of Lon proteases, LonA and LonB. Each consists of two functional components: a protease component and an ATPase associated with various cellular activities (AAA+ module). Here, we report the 2.03 -resolution crystal structure of the isolated AAA+ module (iAAA+ module) of LonB from Thermococcus onnurineus NA1 (TonLonB). The iAAA+ module, having no bound nucleotide, adopts a conformation virtually identical to the ADP-bound conformation of AAA+ modules in the hexameric structure of TonLonB; this provides insights into the ATP-independent proteolytic activity observed in a LonB protease. Structural comparison of AAA+ modules between LonA and LonB revealed that the AAA+ modules of Lon proteases are separated into two distinct clades depending on their structural features. The AAA+ module of LonB belongs to the -H2 & Ins1 insert clade (HINS clade)- defined for the first time in this study, while the AAA+ module of LonA is a member of the HCLR clade.
Brown, Nicholas G.; VanderLinden, Ryan; Watson, Edmond R.; ...
2015-03-30
For many E3 ligases, a mobile RING (Really Interesting New Gene) domain stimulates ubiquitin (Ub) transfer from a thioester-linked E2~Ub intermediate to a lysine on a remotely bound disordered substrate. One such E3 is the gigantic, multisubunit 1.2-MDa anaphase-promoting complex/cyclosome (APC), which controls cell division by ubiquitinating cell cycle regulators to drive their timely degradation. Intrinsically disordered substrates are typically recruited via their KEN-box, D-box, and/or other motifs binding to APC and a coactivator such as CDH1. On the opposite side of the APC, the dynamic catalytic core contains the cullin-like subunit APC2 and its RING partner APC11, which collaboratesmore » with the E2 UBCH10 (UBE2C) to ubiquitinate substrates. However, how dynamic RING–E2~Ub catalytic modules such as APC11–UBCH10~Ub collide with distally tethered disordered substrates remains poorly understood. In this paper, we report structural mechanisms of UBCH10 recruitment to APC CDH1 and substrate ubiquitination. Unexpectedly, in addition to binding APC11’s RING, UBCH10 is corecruited via interactions with APC2, which we visualized in a trapped complex representing an APC CDH1–UBCH10~Ub–substrate intermediate by cryo-electron microscopy, and in isolation by X-ray crystallography. To our knowledge, this is the first structural view of APC, or any cullin–RING E3, with E2 and substrate juxtaposed, and it reveals how tripartite cullin–RING–E2 interactions establish APC’s specificity for UBCH10 and harness a flexible catalytic module to drive ubiquitination of lysines within an accessible zone. Finally, we propose that multisite interactions reduce the degrees of freedom available to dynamic RING E3–E2~Ub catalytic modules, condense the search radius for target lysines, increase the chance of active-site collision with conformationally fluctuating substrates, and enable regulation.« less
Bazhanov, Nikolay; Kuhlman, Jessica; Prockop, Darwin J.
2013-01-01
Human mesenchymal stem/precursor cells (MSC) are similar to some other stem/progenitor cells in that they compact into spheres when cultured in hanging drops or on non-adherent surfaces. Assembly of MSC into spheres alters many of their properties, including enhanced secretion of factors that mediate inflammatory and immune responses. Here we demonstrated that MSC spontaneously aggregated into sphere-like structures after injection into a subcutaneous air pouch or the peritoneum of mice. The structures were similar to MSC spheres formed in cultures demonstrated by the increased expression of genes for inflammation-modulating factors TSG6, STC1, and COX2, a key enzyme in production of PGE2. To identify the signaling pathways involved, hanging drop cultures were used to follow the time-dependent changes in the cells as they compacted into spheres. Among the genes up-regulated were genes for the stress-activated signaling pathway for IL1α/β, and the contact-dependent signaling pathway for Notch. An inhibitor of caspases reduced the up-regulation of IL1A/B expression, and inhibitors of IL1 signaling decreased production of PGE2, TSG6 and STC1. Also, inhibition of IL1A/B expression and secretion of PGE2 negated the anti-inflammatory effects of MSC spheres on stimulated macrophages. Experiments with γ-secretase inhibitors suggested that Notch signaling was also required for production of PGE2 but not TSG6 or STC1. The results indicated that assembly of MSC into spheres triggers caspase-dependent IL1 signaling and the secretion of modulators of inflammation and immunity. Similar aggregation in vivo may account for some of the effects observed with administration of the cells in animal models. PMID:23922312
Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels
Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; De Maria, Michela; Manocchio, Laura; Medoro, Alessandro; Taglialatela, Maurizio
2015-01-01
Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na+, Ca2+ and K+ voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1–S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively target the VSM. PMID:26236192
Molecular pathophysiology and pharmacology of the voltage-sensing module of neuronal ion channels.
Miceli, Francesco; Soldovieri, Maria Virginia; Ambrosino, Paolo; De Maria, Michela; Manocchio, Laura; Medoro, Alessandro; Taglialatela, Maurizio
2015-01-01
Voltage-gated ion channels (VGICs) are membrane proteins that switch from a closed to open state in response to changes in membrane potential, thus enabling ion fluxes across the cell membranes. The mechanism that regulate the structural rearrangements occurring in VGICs in response to changes in membrane potential still remains one of the most challenging topic of modern biophysics. Na(+), Ca(2+) and K(+) voltage-gated channels are structurally formed by the assembly of four similar domains, each comprising six transmembrane segments. Each domain can be divided into two main regions: the Pore Module (PM) and the Voltage-Sensing Module (VSM). The PM (helices S5 and S6 and intervening linker) is responsible for gate opening and ion selectivity; by contrast, the VSM, comprising the first four transmembrane helices (S1-S4), undergoes the first conformational changes in response to membrane voltage variations. In particular, the S4 segment of each domain, which contains several positively charged residues interspersed with hydrophobic amino acids, is located within the membrane electric field and plays an essential role in voltage sensing. In neurons, specific gating properties of each channel subtype underlie a variety of biological events, ranging from the generation and propagation of electrical impulses, to the secretion of neurotransmitters and to the regulation of gene expression. Given the important functional role played by the VSM in neuronal VGICs, it is not surprising that various VSM mutations affecting the gating process of these channels are responsible for human diseases, and that compounds acting on the VSM have emerged as important investigational tools with great therapeutic potential. In the present review we will briefly describe the most recent discoveries concerning how the VSM exerts its function, how genetically inherited diseases caused by mutations occurring in the VSM affects gating in VGICs, and how several classes of drugs and toxins selectively target the VSM.
Rebbeck, Robyn T.; Essawy, Maram M.; Nitu, Florentin R.; Grant, Benjamin D.; Gillispie, Gregory D.; Thomas, David D.; Bers, Donald M.; Cornea, Razvan L.
2017-01-01
Using time-resolved fluorescence resonance energy transfer (FRET), we have developed and validated the first high-throughput screening (HTS) method to discover compounds that modulate an intracellular Ca2+ channel, the ryanodine receptor (RyR), for therapeutic applications. Intracellular Ca2+ regulation is critical for striated muscle function, and RyR is a central player. At resting [Ca2+], increased propensity of channel opening due to RyR dysregulation is associated with severe cardiac and skeletal myopathies, diabetes and neurological disorders. This leaky state of the RyR is an attractive target for pharmacological agents to treat such pathologies. Our FRET-based HTS detects RyR binding of accessory proteins calmodulin or FKBP12.6. Under conditions that mimic a pathological state, we carried out a screen of the 727-compound NIH Clinical Collection, which yielded six compounds that reproducibly changed FRET by >3SD. Dose-response of FRET and [3H]ryanodine binding readouts reveal that five hits reproducibly alter RyR1 structure and activity. One compound increased FRET and inhibited RyR1, which was only significant at nM [Ca2+], and accentuated without CaM present. These properties characterize a compound that could mitigate RyR1 leak. An excellent z′-factor and the tight correlation between structural and functional readouts validate this first HTS method to identify RyR modulators. PMID:27760856
NASA Astrophysics Data System (ADS)
Dan, Wang; Bingbing, Lin; Taipeng, Shen; Jun, Wu; Fuhua, Hao; Chunchao, Xia; Qiyong, Gong; Huiru, Tang; Bin, Song; Hua, Ai
2016-07-01
Polymer-mediated self-assembly of superparamagnetic iron oxide (SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized polyesters (DA-polyester) were used to directly control the magnetic nanoparticle spacing and its effect on magnetic resonance relaxation properties of these clusters was investigated. Monodisperse SPIO nanocrystals with different surface coating materials (poly(ɛ-caprolactone), poly(lactic acid)) of different molecular weights containing dopamine (DA) structure (DA-PCL2k, DA-PCL1k, DA-PLA1k)) were prepared via ligand exchange reaction, and these nanocrystals were encapsulated inside amphiphilic polymer micelles to modulate the SPIO nanocrystal interparticle spacing. Small-angle x-ray scattering (SAXS) was applied to quantify the interparticle spacing of SPIO clusters. The results demonstrated that the tailored magnetic nanoparticle clusters featured controllable interparticle spacing providing directly by the different surface coating of SPIO nanocrystals. Systematic modulation of SPIO nanocrystal interparticle spacing can regulate the saturation magnetization (M s) and T 2 relaxation of the aggregation, and lead to increased magnetic resonance (MR) relaxation properties with decreased interparticle spacing. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB933903), the National Key Technology R&D Program of China (Grant No. 2012BAI23B08), and the National Natural Science Foundation of China (Grant Nos. 20974065, 51173117, and 50830107).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Severson, Eric A.; Kwon, Mike; Hilgarth, Roland S.
2010-07-02
The Apical Junctional Complex (AJC) encompassing the tight junction (TJ) and adherens junction (AJ) plays a pivotal role in regulating epithelial barrier function and epithelial cell proliferative processes through signaling events that remain poorly characterized. A potential regulator of AJC protein expression is Glycogen Synthase Kinase-3 (GSK-3). GSK-3 is a constitutively active kinase that is repressed during epithelial-mesenchymal transition (EMT). In the present study, we report that GSK-3 activity regulates the structure and function of the AJC in polarized model intestinal (SK-CO15) and kidney (Madin-Darby Canine Kidney (MDCK)) epithelial cells. Reduction of GSK-3 activity, either by small molecule inhibitors ormore » siRNA targeting GSK-3 alpha and beta mRNA, resulted in increased permeability to both ions and bulk solutes. Immunofluorescence labeling and immunoblot analyses revealed that the barrier defects correlated with decreased protein expression of AJC transmembrane proteins Occludin, Claudin-1 and E-cadherin without influencing other TJ proteins, Zonula Occludens-1 (ZO-1) and Junctional Adhesion Molecule A (JAM-A). The decrease in Occludin and E-cadherin protein expression correlated with downregulation of the corresponding mRNA levels for these respective proteins following GSK-3 inhibition. These observations implicate an important role of GSK-3 in the regulation of the structure and function of the AJC that is mediated by differential modulation of mRNA transcription of key AJC proteins, Occludin, Claudin-1 and E-cadherin.« less
Automated identification of RNA 3D modules with discriminative power in RNA structural alignments.
Theis, Corinna; Höner Zu Siederdissen, Christian; Hofacker, Ivo L; Gorodkin, Jan
2013-12-01
Recent progress in predicting RNA structure is moving towards filling the 'gap' in 2D RNA structure prediction where, for example, predicted internal loops often form non-canonical base pairs. This is increasingly recognized with the steady increase of known RNA 3D modules. There is a general interest in matching structural modules known from one molecule to other molecules for which the 3D structure is not known yet. We have created a pipeline, metaRNAmodules, which completely automates extracting putative modules from the FR3D database and mapping of such modules to Rfam alignments to obtain comparative evidence. Subsequently, the modules, initially represented by a graph, are turned into models for the RMDetect program, which allows to test their discriminative power using real and randomized Rfam alignments. An initial extraction of 22 495 3D modules in all PDB files results in 977 internal loop and 17 hairpin modules with clear discriminatory power. Many of these modules describe only minor variants of each other. Indeed, mapping of the modules onto Rfam families results in 35 unique locations in 11 different families. The metaRNAmodules pipeline source for the internal loop modules is available at http://rth.dk/resources/mrm.
Mechanistic insights into the allosteric regulation of bacterial ADP-glucose pyrophosphorylases
Comino, Natalia; Cifuente, Javier O.; Marina, Alberto; Orrantia, Ane; Eguskiza, Ander; Guerin, Marcelo E.
2017-01-01
ADP-glucose pyrophosphorylase (AGPase) controls bacterial glycogen and plant starch biosynthetic pathways, the most common carbon storage polysaccharides in nature. AGPase activity is allosterically regulated by a series of metabolites in the energetic flux within the cell. Very recently, we reported the first crystal structures of the paradigmatic AGPase from Escherichia coli (EcAGPase) in complex with its preferred physiological negative and positive allosteric regulators, adenosine 5′-monophosphate (AMP) and fructose 1,6-bisphosphate (FBP), respectively. However, understanding the molecular mechanism by which AMP and FBP allosterically modulates EcAGPase enzymatic activity still remains enigmatic. Here we found that single point mutations of key residues in the AMP-binding site decrease its inhibitory effect but also clearly abolish the overall AMP-mediated stabilization effect in wild-type EcAGPase. Single point mutations of key residues for FBP binding did not revert the AMP-mediated stabilization. Strikingly, an EcAGPase-R130A mutant displayed a dramatic increase in activity when compared with wild-type EcAGPase, and this increase correlated with a significant increment of glycogen content in vivo. The crystal structure of EcAGPase-R130A revealed unprecedented conformational changes in structural elements involved in the allosteric signal transmission. Altogether, we propose a model in which the positive and negative energy reporters regulate AGPase catalytic activity via intra- and interprotomer cross-talk, with a “sensory motif” and two loops, RL1 and RL2, flanking the ATP-binding site playing a significant role. The information reported herein provides exciting possibilities for industrial/biotechnological applications. PMID:28223362
Casciano, Jessica C.; Duchemin, Nicholas J.; Lamontagne, R. Jason; Steel, Laura F.; Bouchard, Michael J.
2017-01-01
Many viruses modulate calcium (Ca2+) signaling to create a cellular environment that is more permissive to viral replication, but for most viruses that regulate Ca2+ signaling, the mechanism underlying this regulation is not well understood. The hepatitis B virus (HBV) HBx protein modulates cytosolic Ca2+ levels to stimulate HBV replication in some liver cell lines. A chronic HBV infection is associated with life-threatening liver diseases, including hepatocellular carcinoma (HCC), and HBx modulation of cytosolic Ca2+ levels could have an important role in HBV pathogenesis. Whether HBx affects cytosolic Ca2+ in a normal hepatocyte, the natural site of an HBV infection, has not been addressed. Here, we report that HBx alters cytosolic Ca2+ signaling in cultured primary hepatocytes. We used single cell Ca2+ imaging of cultured primary rat hepatocytes to demonstrate that HBx elevates the cytosolic Ca2+ level in hepatocytes following an IP3-linked Ca2+ response; HBx effects were similar when expressed alone or in the context of replicating HBV. HBx elevation of the cytosolic Ca2+ level required extracellular Ca2+ influx and store-operated Ca2+ (SOC) entry and stimulated HBV replication in hepatocytes. We used both targeted RT-qPCR and transcriptome-wide RNAseq analyses to compare levels of SOC channel components and other Ca2+ signaling regulators in HBV-expressing and control hepatocytes and show that the transcript levels of these various proteins are not affected by HBV. We also show that HBx regulation of SOC-regulated Ca2+ accumulation is likely the consequence of HBV modulation of a SOC channel regulatory mechanism. In support of this, we link HBx enhancement of SOC-regulated Ca2+ accumulation to Ca2+ uptake by mitochondria and demonstrate that HBx stimulates mitochondrial Ca2+ uptake in primary hepatocytes. The results of our study may provide insights into viral mechanisms that affect Ca2+ signaling to regulate viral replication and virus-associated diseases. PMID:28151934
Cardone, A; Hassan, S A; Albers, R W; Sriram, R D; Pant, H C
2010-08-20
The crystal structure of the cdk5/p25 complex has provided information on possible molecular mechanisms of the ligand binding, specificity, and regulation of the kinase. Comparative molecular dynamics simulations are reported here for physiological conditions. This study provides new insight on the mechanisms that modulate such processes, which may be exploited to control pathological activation by p25. The structural changes observed in the kinase are stabilized by a network of interactions involving highly conserved residues within the cyclin-dependent kinase (cdk) family. Collective motions of the proteins (cdk5, p25, and CIP) and their complexes are identified by principal component analysis, revealing two conformational states of the activation loop upon p25 complexation, which are absent in the uncomplexed kinase and not apparent from the crystal. Simulations of the uncomplexed inhibitor CIP show structural rearrangements and increased flexibility of the interfacial loop containing the critical residue E240, which becomes fully hydrated and available for interactions with one of several positively charged residues in the kinase. These changes provide a rationale for the observed high affinity and enhanced inhibitory action of CIP when compared to either p25 or the physiological activators of cdk5. Published by Elsevier Ltd.
Argüello-Astorga, G R; Herrera-Estrella, L R
1996-01-01
Regulation of plant gene transcription by light is mediated by multipartite cis-regulatory units. Previous attempts to identify structural features that are common to all light-responsive elements (LREs) have been unsuccessful. To address the question of what is needed to confer photoresponsiveness to a promoter, the upstream sequences from more than 110 light-regulated plant genes were analyzed by a new, phylogenetic-structural method. As a result, 30 distinct conserved DNA module arrays (CMAs) associated with light-responsive promoter regions were identified. Several of these CMAs have remained invariant throughout the evolutionary radiation of angiosperms and are conserved between homologous genes as well as between members of different gene families. The identified CMAs share a gene superfamily-specific core that correlates with the particular phytochrome-dependent transduction pathway that controls their expression, i.e. ACCTA(A/C)C(A/C) for the cGMP-dependent phenylpropanoid metabolism-associated genes, and GATA(A/T)GR for the Ca2+/calmodulin-dependent photosynthesis-associated nuclear genes. In addition to suggesting a general model for the functional and structural organization of LREs, the data obtained in this study indicate that angiosperm LREs probably evolved from complex cis-acting elements involved in regulatory processes other than photoregulation in gymnosperms. PMID:8938415
Non-AUG translation: a new start for protein synthesis in eukaryotes
Kearse, Michael G.; Wilusz, Jeremy E.
2017-01-01
Although it was long thought that eukaryotic translation almost always initiates at an AUG start codon, recent advancements in ribosome footprint mapping have revealed that non-AUG start codons are used at an astonishing frequency. These non-AUG initiation events are not simply errors but instead are used to generate or regulate proteins with key cellular functions; for example, during development or stress. Misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and modulation of non-AUG usage may represent a novel therapeutic strategy. It is thus becoming increasingly clear that start codon selection is regulated by many trans-acting initiation factors as well as sequence/structural elements within messenger RNAs and that non-AUG translation has a profound impact on cellular states. PMID:28982758
Regulation of AMPA receptors by phosphorylation.
Carvalho, A L; Duarte, C B; Carvalho, A P
2000-10-01
The AMPA receptors for glutamate are oligomeric structures that mediate fast excitatory responses in the central nervous system. Phosphorylation of AMPA receptors is an important mechanism for short-term modulation of their function, and is thought to play an important role in synaptic plasticity in different brain regions. Recent studies have shown that phosphorylation of AMPA receptors by cAMP-dependent protein kinase (PKA) and Ca2+- and calmodulin-dependent protein kinase II (CaMKII) potentiates their activity, but phosphorylation of the receptor subunits may also affect their interaction with intracellular proteins, and their expression at the plasma membrane. Phosphorylation of AMPA receptor subunits has also been investigated in relation to processes of synaptic plasticity. This review focuses on recent advances in understanding the molecular mechanisms of regulation of AMPA receptors, and their implications in synaptic plasticity.
Partners in crime: The role of tandem modules in gene transcription.
Sharma, Rajal; Zhou, Ming-Ming
2015-09-01
Histones and their modifications play an important role in the regulation of gene transcription. Numerous modifications, such as acetylation, phosphorylation, methylation, ubiquitination, and SUMOylation, have been described. These modifications almost always co-occur and thereby increase the combinatorial complexity of post-translational modification detection. The domains that recognize these histone modifications often occur in tandem in the context of larger proteins and complexes. The presence of multiple modifications can positively or negatively regulate the binding of these tandem domains, influencing downstream cellular function. Alternatively, these tandem domains can have novel functions from their independent parts. Here we summarize structural and functional information known about major tandem domains and their histone binding properties. An understanding of these interactions is key for the development of epigenetic therapy. © 2015 The Protein Society.
Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability.
Wei, Luqing; Chen, Hong; Wu, Guo-Rong
2018-01-01
The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability.
SH2 domains: modulators of nonreceptor tyrosine kinase activity.
Filippakopoulos, Panagis; Müller, Susanne; Knapp, Stefan
2009-12-01
The Src homology 2 (SH2) domain is a sequence-specific phosphotyrosine-binding module present in many signaling molecules. In cytoplasmic tyrosine kinases, the SH2 domain is located N-terminally to the catalytic kinase domain (SH1) where it mediates cellular localization, substrate recruitment, and regulation of kinase activity. Initially, structural studies established a role of the SH2 domain stabilizing the inactive state of Src family members. However, biochemical characterization showed that the presence of the SH2 domain is frequently required for catalytic activity, suggesting a crucial function stabilizing the active state of many nonreceptor tyrosine kinases. Recently, the structure of the SH2-kinase domain of Fes revealed that the SH2 domain stabilizes the active kinase conformation by direct interactions with the regulatory helix alphaC. Stabilizing interactions between the SH2 and the kinase domains have also been observed in the structures of active Csk and Abl. Interestingly, mutations in the SH2 domain found in human disease can be explained by SH2 domain destabilization or incorrect positioning of the SH2. Here we summarize our understanding of mechanisms that lead to tyrosine kinase activation by direct interactions mediated by the SH2 domain and discuss how mutations in the SH2 domain trigger kinase inactivation.
miRegulome: a knowledge-base of miRNA regulomics and analysis.
Barh, Debmalya; Kamapantula, Bhanu; Jain, Neha; Nalluri, Joseph; Bhattacharya, Antaripa; Juneja, Lucky; Barve, Neha; Tiwari, Sandeep; Miyoshi, Anderson; Azevedo, Vasco; Blum, Kenneth; Kumar, Anil; Silva, Artur; Ghosh, Preetam
2015-08-05
miRNAs regulate post transcriptional gene expression by targeting multiple mRNAs and hence can modulate multiple signalling pathways, biological processes, and patho-physiologies. Therefore, understanding of miRNA regulatory networks is essential in order to modulate the functions of a miRNA. The focus of several existing databases is to provide information on specific aspects of miRNA regulation. However, an integrated resource on the miRNA regulome is currently not available to facilitate the exploration and understanding of miRNA regulomics. miRegulome attempts to bridge this gap. The current version of miRegulome v1.0 provides details on the entire regulatory modules of miRNAs altered in response to chemical treatments and transcription factors, based on validated data manually curated from published literature. Modules of miRegulome (upstream regulators, downstream targets, miRNA regulated pathways, functions, diseases, etc) are hyperlinked to an appropriate external resource and are displayed visually to provide a comprehensive understanding. Four analysis tools are incorporated to identify relationships among different modules based on user specified datasets. miRegulome and its tools are helpful in understanding the biology of miRNAs and will also facilitate the discovery of biomarkers and therapeutics. With added features in upcoming releases, miRegulome will be an essential resource to the scientific community. http://bnet.egr.vcu.edu/miRegulome.
The allosteric site regulates the voltage sensitivity of muscarinic receptors.
Hoppe, Anika; Marti-Solano, Maria; Drabek, Matthäus; Bünemann, Moritz; Kolb, Peter; Rinne, Andreas
2018-01-01
Muscarinic receptors (M-Rs) for acetylcholine (ACh) belong to the class A of G protein-coupled receptors. M-Rs are activated by orthosteric agonists that bind to a specific site buried in the M-R transmembrane helix bundle. In the active conformation, receptor function can be modulated either by allosteric modulators, which bind to the extracellular receptor surface or by the membrane potential via an unknown mechanism. Here, we compared the modulation of M 1 -Rs and M 3 -Rs induced by changes in voltage to their allosteric modulation by chemical compounds. We quantified changes in receptor signaling in single HEK 293 cells with a FRET biosensor for the G q protein cycle. In the presence of ACh, M 1 -R signaling was potentiated by voltage, similarly to positive allosteric modulation by benzyl quinolone carboxylic acid. Conversely, signaling of M 3 -R was attenuated by voltage or the negative allosteric modulator gallamine. Because the orthosteric site is highly conserved among M-Rs, but allosteric sites vary, we constructed "allosteric site" M 3 /M 1 -R chimeras and analyzed their voltage dependencies. Exchanging the entire allosteric sites eliminated the voltage sensitivity of ACh responses for both receptors, but did not affect their modulation by allosteric compounds. Furthermore, a point mutation in M 3 -Rs caused functional uncoupling of the allosteric and orthosteric sites and abolished voltage dependence. Molecular dynamics simulations of the receptor variants indicated a subtype-specific crosstalk between both sites, involving the conserved tyrosine lid structure of the orthosteric site. This molecular crosstalk leads to receptor subtype-specific voltage effects. Copyright © 2017 Elsevier Inc. All rights reserved.
Wu, Meilin; Liu, Clifford Z.; Joiner, William J.
2016-01-01
Ly6 proteins are endogenous prototoxins found in most animals. They show striking structural and functional parallels to snake α-neurotoxins, including regulation of ion channels and cholinergic signaling. However, the structural contributions of Ly6 proteins to regulation of effector molecules is poorly understood. This question is particularly relevant to the Ly6 protein QUIVER/SLEEPLESS (QVR/SSS), which has previously been shown to suppress excitability and synaptic transmission by upregulating potassium (K) channels and downregulating nicotinic acetylcholine receptors (nAChRs) in wake-promoting neurons to facilitate sleep in Drosophila. Using deletion mutagenesis, co-immunoprecipitations, ion flux assays, surface labeling and confocal microscopy, we demonstrate that only loop 2 is required for many of the previously described properties of SSS in transfected cells, including interactions with K channels and nAChRs. Collectively our data suggest that QVR/SSS, and by extension perhaps other Ly6 proteins, target effector molecules using limited protein motifs. Mapping these motifs may be useful in rational design of drugs that mimic or suppress Ly6-effector interactions to modulate nervous system function. PMID:26828958
Spatio-temporal regulation of connexin43 phosphorylation and gap junction dynamics.
Solan, Joell L; Lampe, Paul D
2018-01-01
Gap junctions are specialized membrane domains containing tens to thousands of intercellular channels. These channels permit exchange of small molecules (<1000Da) including ions, amino acids, nucleotides, metabolites and secondary messengers (e.g., calcium, glucose, cAMP, cGMP, IP 3 ) between cells. The common reductionist view of these structures is that they are composed entirely of integral membrane proteins encoded by the 21 member connexin human gene family. However, it is clear that the normal physiological function of this structure requires interaction and regulation by a variety of proteins, especially kinases. Phosphorylation is capable of directly modulating connexin channel function but the most dramatic effects on gap junction activity occur via the organization of the gap junction structures themselves. This is a direct result of the short half-life of the primary gap junction protein, connexin, which requires them to be constantly assembled, remodeled and turned over. The biological consequences of this remodeling are well illustrated during cardiac ischemia, a process wherein gap junctions are disassembled and remodeled resulting in arrhythmia and ultimately heart failure. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Copyright © 2017 Elsevier B.V. All rights reserved.
Jelinic, Petar; Pellegrino, Jessica; David, Gregory
2011-01-01
Transcription requires the progression of RNA polymerase II (RNAP II) through a permissive chromatin structure. Recent studies of Saccharomyces cerevisiae have demonstrated that the yeast Sin3 protein contributes to the restoration of the repressed chromatin structure at actively transcribed loci. Yet, the mechanisms underlying the restoration of the repressive chromatin structure at transcribed loci and its significance in gene expression have not been investigated in mammals. We report here the identification of a mammalian complex containing the corepressor Sin3B, the histone deacetylase HDAC1, Mrg15, and the PHD finger-containing Pf1 and show that this complex plays important roles in regulation of transcription. We demonstrate that this complex localizes at discrete loci approximately 1 kb downstream of the transcription start site of transcribed genes, and this localization requires both Pf1's and Mrg15's interaction with chromatin. Inactivation of this mammalian complex promotes increased RNAP II progression within transcribed regions and subsequent increased transcription. Our results define a novel mammalian complex that contributes to the regulation of transcription and point to divergent uses of the Sin3 protein homologues throughout evolution in the modulation of transcription. PMID:21041482
Rack assembly for mounting solar modules
Plaisted, Joshua Reed; West, Brian
2010-12-28
A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.
Rack assembly for mounting solar modules
Plaisted, Joshua Reed; West, Brian
2012-09-04
A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures to be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.
Rack assembly for mounting solar modules
Plaisted, Joshua Reed; West, Brian
2014-06-10
A rack assembly is provided for mounting solar modules over an underlying body. The rack assembly may include a plurality of rail structures that are arrangeable over the underlying body to form an overall perimeter for the rack assembly. One or more retention structures may be provided with the plurality of rail structures, where each retention structure is configured to support one or more solar modules at a given height above the underlying body. At least some of the plurality of rail structures are adapted to enable individual rail structures o be sealed over the underlying body so as to constrain air flow underneath the solar modules. Additionally, at least one of (i) one or more of the rail structures, or (ii) the one or more retention structures are adjustable so as to adapt the rack assembly to accommodate solar modules of varying forms or dimensions.
The Mediator complex and transcription regulation
Poss, Zachary C.; Ebmeier, Christopher C.
2013-01-01
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module. PMID:24088064
2012-01-01
Background Transcript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation. However, our knowledge is still limited about the regulatory mechanisms that coordinate and modulate the different pathways providing substrates during xylogenesis. The development of compression wood in conifers constitutes an exceptional model for these studies. Although differential expression of a few genes in differentiating compression wood compared to normal or opposite wood has been reported, the broad range of features that distinguish this reaction wood suggest that the expression of a larger set of genes would be modified. Results By combining the construction of different cDNA libraries with microarray analyses we have identified a total of 496 genes in maritime pine (Pinus pinaster, Ait.) that change in expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood). Samples from different provenances collected in different years and geographic locations were integrated into the analyses to mitigate the effects of multiple sources of variability. This strategy allowed us to define a group of genes that are consistently associated with compression wood formation. Correlating with the deposition of a thicker secondary cell wall that characterizes compression wood development, the expression of a number of genes involved in synthesis of cellulose, hemicellulose, lignin and lignans was up-regulated. Further analysis of a set of these genes involved in S-adenosylmethionine metabolism, ammonium recycling, and lignin and lignans biosynthesis showed changes in expression levels in parallel to the levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro. Conclusions The comparative transcriptomic analysis reported here have revealed a broad spectrum of coordinated transcriptional modulation of genes involved in biosynthesis of different cell wall polymers associated with within-tree variations in pine wood structure and composition. In particular, we demonstrate the coordinated modulation at transcriptional level of a gene set involved in S-adenosylmethionine synthesis and ammonium assimilation with increased demand for coniferyl alcohol for lignin and lignan synthesis, enabling a better understanding of the metabolic requirements in cells undergoing lignification. PMID:22747794
Fundamentals of Adaptive Intelligent Tutoring Systems for Self-Regulated Learning
2015-03-01
has 4 fundamental elements: a learner model, a pedagogical (instructional) model, a domain model, and a communication model. Figure 5 shows a...The TUI has been discussed in detail, so now the learner, pedagogical , and domain modules will be reviewed: Learner module. In addition to...shared states, which are provided to the pedagogical module. Pedagogical module. The pedagogical module models the instructional techniques
Whiteside, Ursula; Chen, Eunice; Neighbors, Clayton; Hunter, Dorian; Lo, Tracy; Larimer, Mary
2007-04-01
The current study evaluated whether difficulties regulating emotions explained unique variance in binge eating and examined which types of emotion regulation difficulties are most strongly associated with binge eating. The Eating Disorders Diagnostic Scale and the Difficulties in Emotion Regulation Scale were completed by 695 undergraduates. Hierarchical regression results indicated that difficulties regulating emotions accounted for a significant amount of the variance in binge eating over and above sex, food restriction, and over-evaluation of weight and shape. Results also indicated that greater difficulty identifying and making sense of emotional states, and limited access to emotion regulation strategies were primarily responsible for the link between emotion regulation difficulties and binge eating. This supports a model of binge eating that includes emotional vulnerability and a deficit of skills to functionally modulate negative moods.