Sample records for structural optical thermal

  1. Thermal Strain Analysis of Optic Fiber Sensors

    PubMed Central

    Her, Shiuh-Chuan; Huang, Chih-Ying

    2013-01-01

    An optical fiber sensor surface bonded onto a host structure and subjected to a temperature change is analytically studied in this work. The analysis is developed in order to assess the thermal behavior of an optical fiber sensor designed for measuring the strain in the host structure. For a surface bonded optical fiber sensor, the measuring sensitivity is strongly dependent on the bonding characteristics which include the protective coating, adhesive layer and the bonding length. Thermal stresses can be generated due to a mismatch of thermal expansion coefficients between the optical fiber and host structure. The optical fiber thermal strain induced by the host structure is transferred via the adhesive layer and protective coating. In this investigation, an analytical expression of the thermal strain and stress in the optical fiber is presented. The theoretical predictions are validated using the finite element method. Numerical results show that the thermal strain and stress are linearly dependent on the difference in thermal expansion coefficients between the optical fiber and host structure and independent of the thermal expansion coefficients of the adhesive and coating. PMID:23385407

  2. Optical analysis of thermal induced structural distortions

    NASA Technical Reports Server (NTRS)

    Weinswig, Shepard; Hookman, Robert A.

    1991-01-01

    The techniques used for the analysis of thermally induced structural distortions of optical components such as scanning mirrors and telescope optics are outlined. Particular attention is given to the methodology used in the thermal and structural analysis of the GOES scan mirror, the optical analysis using Zernike coefficients, and the optical system performance evaluation. It is pointed out that the use of Zernike coefficients allows an accurate, effective, and simple linkage between thermal/mechanical effects and the optical design.

  3. Integrated Modeling Activities for the James Webb Space Telescope: Structural-Thermal-Optical Analysis

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Howard, Joseph M.; Mosier, Gary E.; Parrish, Keith A.; McGinnis, Mark A.; Bluth, Marcel; Kim, Kevin; Ha, Kong Q.

    2004-01-01

    The James Web Space Telescope (JWST) is a large, infrared-optimized space telescope scheduled for launch in 2011. This is a continuation of a series of papers on modeling activities for JWST. The structural-thermal-optical, often referred to as STOP, analysis process is used to predict the effect of thermal distortion on optical performance. The benchmark STOP analysis for JWST assesses the effect of an observatory slew on wavefront error. Temperatures predicted using geometric and thermal math models are mapped to a structural finite element model in order to predict thermally induced deformations. Motions and deformations at optical surfaces are then input to optical models, and optical performance is predicted using either an optical ray trace or a linear optical analysis tool. In addition to baseline performance predictions, a process for performing sensitivity studies to assess modeling uncertainties is described.

  4. Integrated Modeling Activities for the James Webb Space Telescope (JWST): Structural-Thermal-Optical Analysis

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Parrish, Keith; Howard, Joseph M.; Mosier, Gary E.; McGinnis, Mark; Bluth, Marcel; Kim, Kevin; Ha, Hong Q.

    2004-01-01

    This is a continuation of a series of papers on modeling activities for JWST. The structural-thermal- optical, often referred to as "STOP", analysis process is used to predict the effect of thermal distortion on optical performance. The benchmark STOP analysis for JWST assesses the effect of an observatory slew on wavefront error. The paper begins an overview of multi-disciplinary engineering analysis, or integrated modeling, which is a critical element of the JWST mission. The STOP analysis process is then described. This process consists of the following steps: thermal analysis, structural analysis, and optical analysis. Temperatures predicted using geometric and thermal math models are mapped to the structural finite element model in order to predict thermally-induced deformations. Motions and deformations at optical surfaces are input to optical models and optical performance is predicted using either an optical ray trace or WFE estimation techniques based on prior ray traces or first order optics. Following the discussion of the analysis process, results based on models representing the design at the time of the System Requirements Review. In addition to baseline performance predictions, sensitivity studies are performed to assess modeling uncertainties. Of particular interest is the sensitivity of optical performance to uncertainties in temperature predictions and variations in metal properties. The paper concludes with a discussion of modeling uncertainty as it pertains to STOP analysis.

  5. Design, analysis and test verification of advanced encapsulation systems, phase 2 program results

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Minning, C.; Breen, R. T.; Coakley, J. F.; Duncan, L. B.; Gllaspy, D. M.; Kiewert, R. H.; McKinney, F. G.; Taylor, W. E.; Vaughn, L. E.

    1982-06-01

    Optical, electrical isolation, thermal structural, structural deflection, and thermal tests are reported. The utility of the optical, series capacitance, and structural deflection models was verified.

  6. Design, analysis and test verification of advanced encapsulation systems, phase 2 program results

    NASA Technical Reports Server (NTRS)

    Garcia, A.; Minning, C.; Breen, R. T.; Coakley, J. F.; Duncan, L. B.; Gllaspy, D. M.; Kiewert, R. H.; Mckinney, F. G.; Taylor, W. E.; Vaughn, L. E.

    1982-01-01

    Optical, electrical isolation, thermal structural, structural deflection, and thermal tests are reported. The utility of the optical, series capacitance, and structural deflection models was verified.

  7. Influence of ordering change on the optical and thermal properties of inflation polyethylene films

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko; Orie, Akihiro; Hikima, Yuta; Hashimoto, Toshimasa; Juodkazis, Saulius

    2011-04-01

    Changes of thermal diffusivity inside femtosecond laser-structured volumes as small as few percent were reliably determined (with standard deviation less than 1%) with miniaturized sensors. An increase of thermal diffusivity of a crystalline high-density polyethylene (HDPE) inflation films by 10-20% from the measured (1.16 ± 0.01) × 10 -7 m 2 s -1 value in regions not structured by femtosecond laser pulses is considerably larger than that of non-crystalline polymers, 0-3%. The origin of the change of thermal diffusivity are interplay between the laser induced disordering, voids' formation, compaction, and changes in molecular orientation. It is shown that laser structuring can be used to modify thermal and optical properties. The birefringence and infrared spectroscopy with thermal imaging of CH 2 vibrations are confirming inter-relation between structural, optical, and thermal properties of the laser-structured crystalline HDPE inflation films. Birefringence modulation as high as Δ n ˜ ± 1 × 10 -3 is achieved with grating structures.

  8. Materials and structures

    NASA Astrophysics Data System (ADS)

    Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul

    1992-08-01

    Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.

  9. Integration of Design, Thermal, Structural, and Optical Analysis, Including Thermal Animation

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.

    1993-01-01

    In many industries there has recently been a concerted movement toward 'quality management' and the issue of how to accomplish work more efficiently. Part of this effort is focused on concurrent engineering; the idea of integrating the design and analysis processes so that they are not separate, sequential processes (often involving design rework due to analytical findings) but instead form an integrated system with smooth transfers of information. Presented herein are several specific examples of concurrent engineering methods being carried out at Langley Research Center (LaRC): integration of thermal, structural and optical analyses to predict changes in optical performance based on thermal and structural effects; integration of the CAD design process with thermal and structural analyses; and integration of analysis and presentation by animating the thermal response of a system as an active color map -- a highly effective visual indication of heat flow.

  10. Temperature induced distortions in space telescope mirrors

    NASA Technical Reports Server (NTRS)

    Nied, H. F.; Rudmann, A. A.

    1993-01-01

    In this paper, it is illustrated how measured instantaneous coefficients of thermal expansion (CTE) can be accurately taken into account when modeling the structural behavior of space based optical systems. In particular, the importance of including CTE spatial variations in the analysis of optical elements is emphasized. A comparison is made between the CTE's of three optical materials commonly used in the construction of space mirrors (ULE, Zerodur, and beryllium). The overall impact that selection of any one of these materials has on thermal distortions is briefly discussed. As an example of how temperature dependent spatial variations in thermal strain can be accurately incorporated in the thermo-structural analysis of a precision optical system, a finite element model is developed, which is used to estimate the thermally induced distortions in the Hubble Space Telescope's (HST) primary mirror. In addition to the structural analysis, the optical aberrations due to thermally induced distortions are also examined. These calculations indicate that thermal distortions in HST's primary mirror contribute mainly to defocus error with a relatively small contribution to spherical aberration.

  11. Thermo-optic characteristics and switching power limit of slow-light photonic crystal structures on a silicon-on-insulator platform.

    PubMed

    Chahal, Manjit; Celler, George K; Jaluria, Yogesh; Jiang, Wei

    2012-02-13

    Employing a semi-analytic approach, we study the influence of key structural and optical parameters on the thermo-optic characteristics of photonic crystal waveguide (PCW) structures on a silicon-on-insulator (SOI) platform. The power consumption and spatial temperature profile of such structures are given as explicit functions of various structural, thermal and optical parameters, offering physical insight not available in finite-element simulations. Agreement with finite-element simulations and experiments is demonstrated. Thermal enhancement of the air-bridge structure is analyzed. The practical limit of thermo-optic switching power in slow light PCWs is discussed, and the scaling with key parameters is analyzed. Optical switching with sub-milliwatt power is shown viable.

  12. Predicting the thermal/structural performance of the atmospheric trace molecules spectroscopy /ATMOS/ Fourier transform spectrometer

    NASA Technical Reports Server (NTRS)

    Miller, J. M.

    1980-01-01

    ATMOS is a Fourier transform spectrometer to measure atmospheric trace molecules over a spectral range of 2-16 microns. Assessment of the system performance of ATMOS includes evaluations of optical system errors induced by thermal and structural effects. In order to assess the optical system errors induced from thermal and structural effects, error budgets are assembled during system engineering tasks and line of sight and wavefront deformations predictions (using operational thermal and vibration environments and computer models) are subsequently compared to the error budgets. This paper discusses the thermal/structural error budgets, modelling and analysis methods used to predict thermal/structural induced errors and the comparisons that show that predictions are within the error budgets.

  13. Thermal effects of optical antenna under the irradiation of laser

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Li, Fu; Yang, Wenqiang; Yang, Jianfeng

    2017-10-01

    The laser communication terminal is a precision optical, mechanical, electrical integration device which operations extremely high accuracy. It is hard to improve the space environment adaptability in the hash vibration, thermal cycling, high vacuum and radiation conditions space environment. Accordingly, the optical antenna will be influenced by space thermal environment. Laser energy will be absorbed when optical antenna under the irradiation of laser. It can contribute to thermal distortion and make the beam quality degradation which affects the performance of laser communications links. This influence will aggravate when the laser power rising.Wavefront aberration is the distance between the ideal reference sphere and the actual distorted wavefront. The smaller the wavefront aberration, the better the optical performance of the optical antenna. On the contrary, the greater the wavefront aberration, the worse the performance of the optical antenna or even affect the normal operation of the optical antenna. The performance index of the optical antenna generally requires the wavefront aberration to be better than λ/20. Due to the different thermal and thermal expansion coefficients of the material, the effect of thermal deformation on the optical antenna can be reduced by matching the appropriate material. While the appropriate support structure and proper heat dissipation design can also reduce the impact. In this paper, the wavefront aberration of the optical antenna is better than λ/50 by the material matching and the appropriate support structure and the secondary design of the diameter of 5mm hole thermal design.

  14. Structural and optical behavior due to thermal effects in end-pumped Yb:YAG disk lasers.

    PubMed

    Sazegari, Vahid; Milani, Mohammad Reza Jafari; Jafari, Ahmad Khayat

    2010-12-20

    We employ a Monte Carlo ray-tracing code along with the ANSYS package to predict the optical and structural behavior in end-pumped CW Yb:YAG disk lasers. The presence of inhomogeneous temperature, stress, and strain distributions is responsible for many deleterious effects for laser action through disk fracture, strain-induced birefringence, and thermal lensing. The thermal lensing, in turn, results in the optical phase distortion in solid-state lasers. Furthermore, the dependence of optical phase distortion on variables such as the heat transfer coefficient, the cooling fluid temperature, and crystal thickness is discussed.

  15. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, J.D.

    1995-05-30

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber`s transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature. 5 figs.

  16. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, Jonathan D.

    1995-01-01

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber's transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature.

  17. Integration of design, structural, thermal and optical analysis: And user's guide for structural-to-optical translator (PATCOD)

    NASA Technical Reports Server (NTRS)

    Amundsen, R. M.; Feldhaus, W. S.; Little, A. D.; Mitchum, M. V.

    1995-01-01

    Electronic integration of design and analysis processes was achieved and refined at Langley Research Center (LaRC) during the development of an optical bench for a laser-based aerospace experiment. Mechanical design has been integrated with thermal, structural and optical analyses. Electronic import of the model geometry eliminates the repetitive steps of geometry input to develop each analysis model, leading to faster and more accurate analyses. Guidelines for integrated model development are given. This integrated analysis process has been built around software that was already in use by designers and analysis at LaRC. The process as currently implemented used Pro/Engineer for design, Pro/Manufacturing for fabrication, PATRAN for solid modeling, NASTRAN for structural analysis, SINDA-85 and P/Thermal for thermal analysis, and Code V for optical analysis. Currently, the only analysis model to be built manually is the Code V model; all others can be imported for the Pro/E geometry. The translator from PATRAN results to Code V optical analysis (PATCOD) was developed and tested at LaRC. Directions for use of the translator or other models are given.

  18. Integrated thermal disturbance analysis of optical system of astronomical telescope

    NASA Astrophysics Data System (ADS)

    Yang, Dehua; Jiang, Zibo; Li, Xinnan

    2008-07-01

    During operation, astronomical telescope will undergo thermal disturbance, especially more serious in solar telescope, which may cause degradation of image quality. As drives careful thermal load investigation and measure applied to assess its effect on final image quality during design phase. Integrated modeling analysis is boosting the process to find comprehensive optimum design scheme by software simulation. In this paper, we focus on the Finite Element Analysis (FEA) software-ANSYS-for thermal disturbance analysis and the optical design software-ZEMAX-for optical system design. The integrated model based on ANSYS and ZEMAX is briefed in the first from an overview of point. Afterwards, we discuss the establishment of thermal model. Complete power series polynomial with spatial coordinates is introduced to present temperature field analytically. We also borrow linear interpolation technique derived from shape function in finite element theory to interface the thermal model and structural model and further to apply the temperatures onto structural model nodes. Thereby, the thermal loads are transferred with as high fidelity as possible. Data interface and communication between the two softwares are discussed mainly on mirror surfaces and hence on the optical figure representation and transformation. We compare and comment the two different methods, Zernike polynomials and power series expansion, for representing and transforming deformed optical surface to ZEMAX. Additionally, these methods applied to surface with non-circular aperture are discussed. At the end, an optical telescope with parabolic primary mirror of 900 mm in diameter is analyzed to illustrate the above discussion. Finite Element Model with most interested parts of the telescope is generated in ANSYS with necessary structural simplification and equivalence. Thermal analysis is performed and the resulted positions and figures of the optics are to be retrieved and transferred to ZEMAX, and thus final image quality is evaluated with thermal disturbance.

  19. Active structural control for damping augmentation and compensation of thermal distortion

    NASA Technical Reports Server (NTRS)

    Sirlin, S. W.

    1992-01-01

    A large space-based Focus Mission Interferometer is used as a testbed for the NASA Controls and Structures Interaction Program. Impedance-based adaptive structural control and control of thermal disturbances are demonstrated using an end-to-end simulation of the system's optical performance. Attention is also given to integrated optical/structural modeling and a hierarchical, layered control strategy.

  20. Effect of rapid thermal annealing on the electrical, optical and structural properties of ZnO-doped In2O3 films grown by linear facing target sputtering.

    PubMed

    Cho, Chung-Ki; Kim, Han-Ki

    2012-04-01

    We investigated the effect of rapid thermal annealing on the electrical, optical, and structural properties of ZnO-doped In2O3 (ZIO) films grown at different Ar/O2 flow ratios (15/0 and 15/1 sccm) by using linear facing target sputtering. It was found that the ZIO films grown at different Ar/O2, flow ratios showed different electrical and optical behavior with increasing rapid thermal annealing temperature. Synchrotron X-ray scattering examination showed that the different electrical and optical properties of the ZIO films could be attributed to the difference in preferred orientation with an increase in rapid thermal annealing temperature.

  1. On the collaborative design and simulation of space camera: stop structural/thermal/optical) analysis

    NASA Astrophysics Data System (ADS)

    Duan, Pengfei; Lei, Wenping

    2017-11-01

    A number of disciplines (mechanics, structures, thermal, and optics) are needed to design and build Space Camera. Separate design models are normally constructed by each discipline CAD/CAE tools. Design and analysis is conducted largely in parallel subject to requirements that have been levied on each discipline, and technical interaction between the different disciplines is limited and infrequent. As a result a unified view of the Space Camera design across discipline boundaries is not directly possible in the approach above, and generating one would require a large manual, and error-prone process. A collaborative environment that is built on abstract model and performance template allows engineering data and CAD/CAE results to be shared across above discipline boundaries within a common interface, so that it can help to attain speedy multivariate design and directly evaluate optical performance under environment loadings. A small interdisciplinary engineering team from Beijing Institute of Space Mechanics and Electricity has recently conducted a Structural/Thermal/Optical (STOP) analysis of a space camera with this collaborative environment. STOP analysis evaluates the changes in image quality that arise from the structural deformations when the thermal environment of the camera changes throughout its orbit. STOP analyses were conducted for four different test conditions applied during final thermal vacuum (TVAC) testing of the payload on the ground. The STOP Simulation Process begins with importing an integrated CAD model of the camera geometry into the collaborative environment, within which 1. Independent thermal and structural meshes are generated. 2. The thermal mesh and relevant engineering data for material properties and thermal boundary conditions are then used to compute temperature distributions at nodal points in both the thermal and structures mesh through Thermal Desktop, a COTS thermal design and analysis code. 3. Thermally induced structural deformations of the camera are then evaluated in Nastran, an industry standard code for structural design and analysis. 4. Thermal and structural results are next imported into SigFit, another COTS tool that computes deformation and best fit rigid body displacements for the optical surfaces. 5. SigFit creates a modified optical prescription that is imported into CODE V for evaluation of optical performance impacts. The integrated STOP analysis was validated using TVAC test data. For the four different TVAC tests, the relative errors between simulation and test data of measuring points temperatures were almost around 5%, while in some test conditions, they were even much lower to 1%. As to image quality MTF, relative error between simulation and test was 8.3% in the worst condition, others were all below 5%. Through the validation, it has been approved that the collaborative design and simulation environment can achieved the integrated STOP analysis of Space Camera efficiently. And further, the collaborative environment allows an interdisciplinary analysis that formerly might take several months to perform to be completed in two or three weeks, which is very adaptive to scheme demonstration of projects in earlier stages.

  2. Space ten-meter telescope (STMT) - Structural and thermal feasibility study of the primary mirror

    NASA Technical Reports Server (NTRS)

    Bely, Pierre Y.; Bolton, John F.; Neeck, Steven P.; Tulkoff, Philip J.

    1987-01-01

    The structural and thermal behavior of a ten-meter primary mirror for a space optical/near-IR telescope in geosynchronous orbit is studied. The glass-type lightweighted mirror is monolithic, of the double arch type, and is supported at only three points. The computer programs SSPTA (thermal), NASTRAN (finite element), and ACCOS V (optical) are used in sequence to determine the temperature, deformation, and optical performance of the mirror. A mirror temperature of 130 K or less appears to be obtainable by purely passive means. With a fused silica or standard Zerodur blank, thermally-induced deformation is unacceptable and cannot be fully corrected by an active secondary mirror over the desired field. Either active thermal control or a blank of lower thermal expansion coefficient would be required.

  3. Structural-Thermal-Optical Program (STOP)

    NASA Technical Reports Server (NTRS)

    Lee, H. P.

    1972-01-01

    A structural thermal optical computer program is developed which uses a finite element approach and applies the Ritz method for solving heat transfer problems. Temperatures are represented at the vertices of each element and the displacements which yield deformations at any point of the heated surface are interpolated through grid points.

  4. Structural-Thermal-Optical-Performance (STOP) Analysis

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeffrey; Irish, Sandra

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). A STOP analysis is a multidiscipline analysis, consisting of Structural, Thermal and Optical Performance Analyses, that is performed for all space flight instruments and satellites. This course will explain the different parts of performing this analysis. The student will learn how to effectively interact with each discipline in order to accurately obtain the system analysis results.

  5. Membrane dish analysis: A summary of structural and optical analysis capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, C.R.; Balch, C.D.; Jorgensen, G.J.

    Research at SERI within the Department of Energy's Solar Thermal Technology Program has focused on the development of membrane dish concentrators for space and terrestrial power applications. As potentially lightweight, inexpensive, high-performance structures, they are excellent candidates for space-deployable energy sources as well as cost-effective terrestrial energy concepts. A thorough engineering research treatment of these types of structures consists primarily of two parts: (1) structural mechanics of the membrane and ring support and (2) analysis and characterization of the concentrator optical performance. It is important to understand the effects of the membrane's structure and support system on the optical performancemore » of the concentrator. This requires an interface between appropriate structural and optical models. Until recently, such models and the required interface have not existed. This report documents research that has been conducted at SERI in this area. It is a compilation of several papers describing structural models of membrane dish structures and optical models used to predict dish concentrator optical and thermal performance. The structural models were developed under SERI subcontract by Dr. Steele and Dr. Balch of Stanford University. The optical model was developed in-house by SERI staff. In addition, the interface between the models is described. It allows easy and thorough characterization of membrane dish systems from the mechanics to the resulting optical performance. The models described herein have been and continue to be extremely useful to SERI, industry, and universities involved with the modeling and analysis of lightweight membrane concentrators for solar thermal applications.« less

  6. Thermal-structural modeling of polymer Bragg grating waveguides illuminated by a light emitting diode.

    PubMed

    Joon Kim, Kyoung; Bar-Cohen, Avram; Han, Bongtae

    2012-02-20

    This study reports both analytical and numerical thermal-structural models of polymer Bragg grating (PBG) waveguides illuminated by a light emitting diode (LED). A polymethyl methacrylate (PMMA) Bragg grating (BG) waveguide is chosen as an analysis vehicle to explore parametric effects of incident optical powers and substrate materials on the thermal-structural behavior of the BG. Analytical models are verified by comparing analytically predicted average excess temperatures, and thermally induced axial strains and stresses with numerical predictions. A parametric study demonstrates that the PMMA substrate induces more adverse effects, such as higher excess temperatures, complex axial temperature profiles, and greater and more complicated thermally induced strains in the BG compared with the Si substrate. © 2012 Optical Society of America

  7. Quasi-monolithic tunable optical resonator

    NASA Technical Reports Server (NTRS)

    Arbore, Mark (Inventor); Tapos, Francisc (Inventor)

    2003-01-01

    An optical resonator has a piezoelectric element attached to a quasi-monolithic structure. The quasi-monolithic structure defines an optical path. Mirrors attached to the structure deflect light along the optical path. The piezoelectric element controllably strains the quasi-monolithic structure to change a length of the optical path by about 1 micron. A first feedback loop coupled to the piezoelectric element provides fine control over the cavity length. The resonator may include a thermally actuated spacer attached to the cavity and a mirror attached to the spacer. The thermally actuated spacer adjusts the cavity length by up to about 20 microns. A second feedback loop coupled to the sensor and heater provides a coarse control over the cavity length. An alternative embodiment provides a quasi-monolithic optical parametric oscillator (OPO). This embodiment includes a non-linear optical element within the resonator cavity along the optical path. Such an OPO configuration is broadly tunable and capable of mode-hop free operation for periods of 24 hours or more.

  8. Synthesis of liquid crystal silane-functionalized gold nanoparticles and their effects on the optical and electro-optic properties of a structurally related nematic liquid crystal.

    PubMed

    Mirzaei, Javad; Urbanski, Martin; Kitzerow, Heinz-S; Hegmann, Torsten

    2014-05-19

    Chemically and thermally robust liquid crystal silane-functionalized gold nanoparticles (i.e. AuNP1-AuNP3) were synthesized through silane conjugation. Colloidal dispersions of these particles with mesogenic ligands that are structurally identical (as in AuNP1, AuNP2) or compatible (as in AuNP3) with molecules of the nematic liquid crystal (N-LC) host showed superior colloidal stability and dispersibility. The thermal, optical, and electro-optic behaviors of the N-LC composites at different concentrations of each gold nanoparticle were investigated. All dispersions showed lower values for the rotational viscosity and elastic constant, but only AuNP3 with a dissimilar structure between the nanoparticle ligand and the host displayed the most drastic thermal effects and overall strongest impact on the electro-optic properties of the host. The observed results were explained considering both the structure and the density of the surface ligands of each gold nanoparticle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Optimal design of a thermally stable composite optical bench

    NASA Technical Reports Server (NTRS)

    Gray, C. E., Jr.

    1985-01-01

    The Lidar Atmospheric Sensing Experiment will be performed aboard an ER-2 aircraft; the lidar system used will be mounted on a lightweight, thermally stable graphite/epoxy optical bench whose design is presently subjected to analytical study and experimental validation. Attention is given to analytical methods for the selection of such expected laminate properties as the thermal expansion coefficient, the apparent in-plane moduli, and ultimate strength. For a symmetric laminate in which one of the lamina angles remains variable, an optimal lamina angle is selected to produce a design laminate with a near-zero coefficient of thermal expansion. Finite elements are used to model the structural concept of the design, with a view to the optical bench's thermal structural response as well as the determination of the degree of success in meeting the experiment's alignment tolerances.

  10. Effect of thermal annealing on structure and optical band gap of Se{sub 66}Te{sub 25}In{sub 9} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, D. K.; Pathak, H. P.; Shukla, Nitesh

    2015-05-15

    Thin films of a-Se{sub 66}Te{sub 25}In{sub 9} have been deposited onto a chemically cleaned glass substrate by thermal evaporation technique under vacuum. Glassy nature of the films has been ascertained by X-ray diffraction pattern. The analysis of absorption spectra, measured at normal incidence, in the spectral range 400-1100 nm has been used for the optical characterization of thin films under investigation. The effect of thermal annealing on structure and optical band gap (E{sub g}) of a-Se{sub 66}Te{sub 25}In{sub 9} have been studied.

  11. Thermal and structural analysis of the GOES scan mirror's on orbit performance

    NASA Technical Reports Server (NTRS)

    Zurmehly, G. E.; Hookman, R. A.

    1991-01-01

    The on-orbit performance of the GOES satellite's scan mirror has been predicted by means of thermal, structural, and optical models. A simpler-than-conventional thermal model was used to reduce the time required to obtain orbital predictions, and the structural model was used to predict on-earth gravity sag and on-orbit distortions. The transfer of data from the thermal model to the structural model was automated for a given set of thermal nodes and structural grids.

  12. Thermal, Structural, and Optical Analysis of a Balloon-Based Imaging System

    NASA Astrophysics Data System (ADS)

    Borden, Michael; Lewis, Derek; Ochoa, Hared; Jones-Wilson, Laura; Susca, Sara; Porter, Michael; Massey, Richard; Clark, Paul; Netterfield, Barth

    2017-03-01

    The Subarcsecond Telescope And BaLloon Experiment, STABLE, is the fine stage of a guidance system for a high-altitude ballooning platform designed to demonstrate subarcsecond pointing stability over one minute using relatively dim guide stars in the visible spectrum. The STABLE system uses an attitude rate sensor and the motion of the guide star on a detector to control a Fast Steering Mirror to stabilize the image. The characteristics of the thermal-optical-mechanical elements in the system directly affect the quality of the point-spread function of the guide star on the detector, so a series of thermal, structural, and optical models were built to simulate system performance and ultimately inform the final pointing stability predictions. This paper describes the modeling techniques employed in each of these subsystems. The results from those models are discussed in detail, highlighting the development of the worst-case cold and hot cases, the optical metrics generated from the finite element model, and the expected STABLE residual wavefront error and decenter. Finally, the paper concludes with the predicted sensitivities in the STABLE system, which show that thermal deadbanding, structural pre-loading, and self-deflection under different loading conditions, and the speed of individual optical elements were particularly important to the resulting STABLE optical performance.

  13. Effect of thermal annealing on structural and optical properties of In{sub 2}S{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, Sonu, E-mail: sonuchoudhary1983@gmail.com

    2015-08-28

    There is a highly need of an alternate of toxic materials CdS for solar cell applications and indium sulfide is found the most suitable candidate to replace CdS due to its non-toxic and environmental friendly nature. In this paper, the effect of thermal annealing on the structural and optical properties of indium sulfide (In{sub 2}S{sub 3}) thin films is undertaken. The indium sulfide thin films of 121 nm were deposited on glass substrates employing thermal evaporation method. The films were subjected to the X-ray diffractometer and UV-Vis spectrophotometer respectively for structural and optical analysis. The XRD pattern show that themore » as-deposited thin film was amorphous in nature and crystallinity is found to be varied with annealing temperature. The optical analysis reveals that the optical band gap is varied with annealing. The optical parameters like absorption coefficient, extinction coefficient and refractive index were calculated. The results are in good agreement with available literature.« less

  14. Optical processing for semiconductor device fabrication

    NASA Technical Reports Server (NTRS)

    Sopori, Bhushan L.

    1994-01-01

    A new technique for semiconductor device processing is described that uses optical energy to produce local heating/melting in the vicinity of a preselected interface of the device. This process, called optical processing, invokes assistance of photons to enhance interface reactions such as diffusion and melting, as compared to the use of thermal heating alone. Optical processing is performed in a 'cold wall' furnace, and requires considerably lower energies than furnace or rapid thermal annealing. This technique can produce some device structures with unique properties that cannot be produced by conventional thermal processing. Some applications of optical processing involving semiconductor-metal interfaces are described.

  15. A simple method for characterizing and engineering thermal relaxation of an optical microcavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Weijian; Zhu, Jiangang; Özdemir, Şahin Kaya

    2016-08-08

    Thermal properties of a photonic resonator are determined not only by intrinsic properties of materials, such as thermo-optic coefficient, but also by the geometry and structure of the resonator. Techniques for characterization and measurement of thermal properties of individual photonic resonator will benefit numerous applications. In this work, we demonstrate a method to optically measure the thermal relaxation time and effective thermal conductance of a whispering gallery mode microcavity using optothermal effect. Two nearby optical modes within the cavity are optically probed, which allows us to quantify the thermal relaxation process of the cavity by analyzing changes in the transmissionmore » spectra induced by optothermal effect. We show that the effective thermal conductance can be experimentally deduced from the thermal relaxation measurement, and it can be tailored by changing the geometric parameters of the cavity. The experimental observations are in good agreement with the proposed analytical modeling. This method can be applied to various resonators in different forms.« less

  16. Cross-linked polyimides for integrated optics

    NASA Astrophysics Data System (ADS)

    Singer, Kenneth D.; Kowalczyk, Tony C.; Nguyen, Hung D.; Beuhler, Allyson J.; Wargowski, David A.

    1997-01-01

    We have investigated a promising class of polyimide materials for both passive and active electro-optic devices, namely crosslinkable polyimides. These fluorinated polyimides are soluble in the imidized form and are both thermally and photo-crosslinkable leading to easy processability into waveguide structures and the possibility of stable electro-optic properties. We have fabricated channel and slab waveguides and investigated the mechanism of optical propagation loss using photothermal deflection spectroscopy and waveguide loss spectroscopy, and found the losses to arise from residual absorption due to the formation of charge transfer states. The absorption is inhibited by fluorination leading to propagation losses as low as 0.3 dB/cm in the near infrared. Because of the ability to photocrosslink, channel waveguides are fabricated using a simple wet-etch process. Channel waveguides so formed are observed to have no excess loss over slab structures. Solubility followed by thermal cross-linking allows the formation of multilayer structures. We have produced electro-optic polymers by doping with the nonlinear optical chromophores, DCM and DADC; and a process of concurrent poling and thermal crosslinking. Multilayer structures have been investigated and poling fields optimized in the active layer by doping the cladding with an anti-static agent. The high glass-transition temperature and cross-linking leads to very stable electro-optic properties. We are currently building electro-optic modulators based on these materials. Progress and results in this area also are reported.

  17. Structural, optical and thermal characterization of PVC/SnO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Taha, T. A.; Ismail, Z.; Elhawary, M. M.

    2018-04-01

    The structural, optical, and thermal properties of PVC/SnO2 nanocomposites were investigated. XRD patterns were used to explore the structures of these prepared samples. Optical UV-Vis measurements were analyzed to calculate the spectroscopic optical constants of the prepared PVC/SnO2 nanocomposites. Both direct and indirect optical band gaps decreased with increasing SnO2 content. The refractive index, high frequency dielectric constant, plasma frequency, and optical conductivity values increased with SnO2. The single oscillator energy increased from 5.64 to 10.97 eV and the dispersion energy increased from 6.35 to 19.80 eV with the addition of SnO2. The other optical parameters such as optical moments, single oscillator strength, volume energy loss, and surface energy loss were calculated for different SnO2 concentrations. Raman spectra of the PVC/SnO2 nanocomposite films revealed the characteristic vibrational modes of PVC and surface phonon modes of SnO2. The thermal stability of PVC/SnO2 nanocomposite films was studied using DTA and thermogravimetric analysis. The glass transition ( T g) values abruptly changed from 46 °C for PVC to an average value of 59 °C for the polymer films doped with 2.0, 4.0, and 6.0 wt% SnO2. The weight loss decreased as the SnO2 concentration increased in the temperature range of 350-500 °C, corresponding to enhanced thermal stability.

  18. Augmented Method to Improve Thermal Data for the Figure Drift Thermal Distortion Predictions of the JWST OTIS Cryogenic Vacuum Test

    NASA Technical Reports Server (NTRS)

    Park, Sang C.; Carnahan, Timothy M.; Cohen, Lester M.; Congedo, Cherie B.; Eisenhower, Michael J.; Ousley, Wes; Weaver, Andrew; Yang, Kan

    2017-01-01

    The JWST Optical Telescope Element (OTE) assembly is the largest optically stable infrared-optimized telescope currently being manufactured and assembled, and is scheduled for launch in 2018. The JWST OTE, including the 18 segment primary mirror, secondary mirror, and the Aft Optics Subsystem (AOS) are designed to be passively cooled and operate near 45K. These optical elements are supported by a complex composite backplane structure. As a part of the structural distortion model validation efforts, a series of tests are planned during the cryogenic vacuum test of the fully integrated flight hardware at NASA JSC Chamber A. The successful ends to the thermal-distortion phases are heavily dependent on the accurate temperature knowledge of the OTE structural members. However, the current temperature sensor allocations during the cryo-vac test may not have sufficient fidelity to provide accurate knowledge of the temperature distributions within the composite structure. A method based on an inverse distance relationship among the sensors and thermal model nodes was developed to improve the thermal data provided for the nanometer scale WaveFront Error (WFE) predictions. The Linear Distance Weighted Interpolation (LDWI) method was developed to augment the thermal model predictions based on the sparse sensor information. This paper will encompass the development of the LDWI method using the test data from the earlier pathfinder cryo-vac tests, and the results of the notional and as tested WFE predictions from the structural finite element model cases to characterize the accuracies of this LDWI method.

  19. Crystal growth, thermal and optical studies of semiorganic nonlinear optical material: L-lysine hydrochloride dihydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalaiselvi, D.; Mohan Kumar, R.; Jayavel, R.

    2008-07-01

    Single crystals of L-lysine hydrochloride dihydrate (LLHCD), a nonlinear optical material, have been grown by slow cooling technique from its aqueous solution. LLHCD was found to be highly soluble in water. The grown crystals have been subjected to single crystal X-ray diffraction to confirm the structure and to estimate the lattice parameters. The vibrational structure of the molecule is elucidated from FTIR spectra. Thermal analysis revealed the thermal stability of the grown crystals. The optical transmittance spectrum shows that the material possesses good optical transparency in the entire visible region with a UV cut-off wavelength at 228 nm. The mechanicalmore » properties of the grown crystal have been studied using Vicker's microhardness test. The laser damage threshold of 52.25 MW/cm{sup 2} has been measured by irradiating Q-switched Nd:YAG laser (1064 nm)« less

  20. Highly optical transparency and thermally stable polyimides containing pyridine and phenyl pendant.

    PubMed

    Yao, Jianan; Wang, Chunbo; Tian, Chengshuo; Zhao, Xiaogang; Zhou, Hongwei; Wang, Daming; Chen, Chunhai

    2017-01-01

    In order to obtain highly optical transparency polyimides, two novel aromatic diamine monomers containing pyridine and kinky structures, 1,1-bis[4-(5-amino-2-pyridinoxy)phenyl]diphenylmethane (BAPDBP) and 1,1-bis[4-(5-amino-2-pyridinoxy)phenyl]-1-phenylethane (BAPDAP), were designed and synthesized. Polyimides based on BAPDBP, BAPDAP, 2,2-bis[4-(5-amino-2-pyridinoxy)phenyl]propane (BAPDP) with various commercial dianhydrides were prepared for comparison and structure-property relationships study. The structures of the polyimides were characterized by Fourier transform infrared (FT-IR) spectrometer, wide-angle X-ray diffractograms (XRD) and elemental analysis. Film properties including solubility, optical transparency, water uptake, thermal and mechanical properties were also evaluated. The introduction of pyridine and kinky structure into the backbones that polyimides presented good optical properties with 91-97% transparent at 500 nm and a low cut-off wavelength at 353-398 nm. Moreover, phenyl pendant groups of the polyimides showed high glass transition temperatures ( T g ) in the range of 257-281 °C. These results suggest that the incorporating pyridine, kinky and bulky substituents to polymer backbone can improve the optical transparency effectively without sacrificing the thermal properties.

  1. Modeling of structure and properties of thermo-optical converters for laser surgery

    NASA Astrophysics Data System (ADS)

    Belikov, Andrey V.; Skrypnik, Alexei V.; Kurnyshev, Vadim Y.

    2016-04-01

    Volumetric fiber-optic thermal converter (VFOTC) formed on the end of the quartz fiber as a result of two-stage conversion of quartz and carbon by medical diode laser radiation with a wavelength of 980 nm is investigated both experimentally and theoretically. The geometrical dimensions of the converter are defined and the internal structure of the converter is studied by optical microscopy. The dependence of VFOTC temperature on exposure time of diode laser radiation with a wavelength of 980 nm and power of 1.0+/-0.1 W is obtained experimentally. The structural, optical and thermal model of VFOTC is proposed. Good correlation between the experimental and modeling results of laser heating of the converter is demonstrated.

  2. Thermal/structural/optical integrated design for optical sensor mounted on unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Gaopeng; Yang, Hongtao; Mei, Chao; Wu, Dengshan; Shi, Kui

    2016-01-01

    With the rapid development of science and technology and the promotion of many local wars in the world, altitude optical sensor mounted on unmanned aerial vehicle is more widely applied in the airborne remote sensing, measurement and detection. In order to obtain high quality image of the aero optical remote sensor, it is important to analysis its thermal-optical performance on the condition of high speed and high altitude. Especially for the key imaging assembly, such as optical window, the temperature variation and temperature gradient can result in defocus and aberrations in optical system, which will lead to the poor quality image. In order to improve the optical performance of a high speed aerial camera optical window, the thermal/structural/optical integrated design method is developed. Firstly, the flight environment of optical window is analyzed. Based on the theory of aerodynamics and heat transfer, the convection heat transfer coefficient is calculated. The temperature distributing of optical window is simulated by the finite element analysis software. The maximum difference in temperature of the inside and outside of optical window is obtained. Then the deformation of optical window under the boundary condition of the maximum difference in temperature is calculated. The optical window surface deformation is fitted in Zernike polynomial as the interface, the calculated Zernike fitting coefficients is brought in and analyzed by CodeV Optical Software. At last, the transfer function diagrams of the optical system on temperature field are comparatively analyzed. By comparing and analyzing the result, it can be obtained that the optical path difference caused by thermal deformation of the optical window is 138.2 nm, which is under PV ≤1 4λ . The above study can be used as an important reference for other optical window designs.

  3. Optical and thermal performance of bladed receivers

    NASA Astrophysics Data System (ADS)

    Pye, John; Coventry, Joe; Ho, Clifford; Yellowhair, Julius; Nock, Ian; Wang, Ye; Abbasi, Ehsan; Christian, Joshua; Ortega, Jesus; Hughes, Graham

    2017-06-01

    Bladed receivers use conventional receiver tube-banks rearranged into bladed/finned structures, and offer better light trapping, reduced radiative and convective losses, and reduced tube mass, based on the presented optical and thermal analysis. Optimising for optical performance, deep blades emerge. Considering thermal losses leads to shallower blades. Horizontal blades perform better, in both windy and no-wind conditions, than vertical blades, at the scales considered so far. Air curtains offer options to further reduce convective losses; high flux on blade-tips is still a concern.

  4. Tunable organization of cellulose nanocrystals for controlled thermal and optical response

    NASA Astrophysics Data System (ADS)

    Diaz A., Jairo A.

    The biorenewable nature of cellulose nanocrystals (CNCs) has opened up new opportunities for cost-effective, sustainable materials design. By taking advantage of their distinctive structural properties and self-assembly, promising applications have started to nurture the fields of flexible electronics, biomaterials, and nanocomposites. CNCs exhibit two fundamental characteristics: rod-like morphology (5-20 nm wide, 50-500 nm long), and lyotropic behavior (i.e., liquid crystalline mesophases formed in solvents), which offer unique opportunities for structural control and fine tuning of thermal and optical properties based on a proper understanding of their individual behavior and interactions at different length scales. In the present work, we attempt to provide an integral description of the influence of single crystals in the thermal and optical response exhibited by nanostructured films. Our approach involved the connection of experimental evidence with predictions of molecular dynamics (MD) simulations. In order to assess the effect of CNC orientation in the bulk response, we produced cellulose nanostructured films under two different mechanisms, namely, self-organization and shear orientation. Self-organized nanostructured films exhibited the typical iridescent optical reflection generated by chiral nematic organization. Shear oriented films disrupted the cholesteric organization, generating highly aligned structures with high optical transparency. The resultant CNC organization present in all nanostructured films was estimated by a second order statistical orientational distribution based on two- dimensional XRD signals. A new method to determine the coefficient of thermal expansion (CTE) in a contact-free fashion was developed to properly characterize the thermal expansion of thin soft films by excluding other thermally activated phenomena. The method can be readily extended to other soft materials to accurately measure thermal strains in a non-destructive way. By evaluating the magnitude of film CTEs relative to those of individual CNC crystals, we highlighted the significant role played by crystalline interfaces. Likewise, after measuring the thermal conductivity of a single crystal and CNC films having multiple organizations, the interfacial thermal resistance arose as a governing factor for heat transport. We will offer further insights into the intricate connection of thermal and optical properties towards a future efficient manufacture and optimal CNC based-materials design.

  5. Systematic investigation of structural, electronic, optical and thermal properties of ternary MoAlB; an ab initio approach

    NASA Astrophysics Data System (ADS)

    Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.

    2018-02-01

    Structural, electronic, optical and thermal properties of molybdenum aluminum boride (MoAlB) have been analyzed systematically using the full potential linearized augmented plane wave method based on density functional theory at ambient condition as well as high pressure and high temperature. Density of states and band structure calculation reflect the metallic character of MoAlB. In addition to this, the electron charge density calculation reveals the strong covalent bonding, in between ‘B’ atoms as well as ‘Mo’ and ‘B’ atoms. Optical parameters exhibit anisotropic nature and MoAlB become transparent in ultraviolet region for the radiation of energy above 25 eV. The thermal properties were investigated by using the quasi-harmonic Debye model at high temperature and high pressure.

  6. Designing new classes of high-power, high-brightness VECSELs

    NASA Astrophysics Data System (ADS)

    Moloney, J. V.; Zakharian, A. R.; Hader, J.; Koch, Stephan W.

    2005-10-01

    Optically-pumped vertical external cavity semiconductor lasers offer the exciting possibility of designing kW-class solid state lasers that provide significant advantages over their doped YAG, thin-disk YAG and fiber counterparts. The basic VECSEL/OPSL (optically-pumped semiconductor laser) structure consists of a very thin (approximately 6 micron thick) active mirror consisting of a DBR high-reflectivity stack followed by a multiple quantum well resonant periodic (RPG) structure. An external mirror (reflectivity typically between 94%-98%) provides conventional optical feedback to the active semiconductor mirror chip. The "cold" cavity needs to be designed to take into account the semiconductor sub-cavity resonance shift with temperature and, importantly, the more rapid shift of the semiconductor material gain peak with temperature. Thermal management proves critical in optimizing the device for serious power scaling. We will describe a closed-loop procedure that begins with a design of the semiconductor active epi structure. This feeds into the sub-cavity optimization, optical and thermal transport within the active structure and thermal transport though the various heat sinking elements. Novel schemes for power scaling beyond current record performances will be discussed.

  7. Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating

    PubMed Central

    Said, Asmaa; Salah, Abeer; Abdel Fattah, Gamal

    2017-01-01

    Thermo-optical switches are of particular significance in communications networks where increasingly high switching speeds are required. Phase change materials (PCMs), in particular those based on paraffin wax, provide wealth of exciting applications with unusual thermally-induced switching properties, only limited by paraffin’s rather low thermal conductivity. In this paper, the use of different carbon fillers as thermal conductivity enhancers for paraffin has been investigated, and a novel structure based on spot of paraffin wax as a thermo-optic switch is presented. Thermo-optical switching parameters are enhanced with the addition of graphite and graphene, due to the extreme thermal conductivity of the carbon fillers. Differential Scanning Calorimetry (DSC) and Scanning electron microscope (SEM) are performed on paraffin wax composites, and specific heat capacities are calculated based on DSC measurements. Thermo-optical switching based on transmission is measured as a function of the host concentration under conventional electric heating and laser heating of paraffin-carbon fillers composites. Further enhancements in thermo-optical switching parameters are studied under Nd:YAG laser heating. This novel structure can be used in future networks with huge bandwidth requirements and electric noise free remote aerial laser switching applications. PMID:28772884

  8. Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating.

    PubMed

    Said, Asmaa; Salah, Abeer; Fattah, Gamal Abdel

    2017-05-12

    Thermo-optical switches are of particular significance in communications networks where increasingly high switching speeds are required. Phase change materials (PCMs), in particular those based on paraffin wax, provide wealth of exciting applications with unusual thermally-induced switching properties, only limited by paraffin's rather low thermal conductivity. In this paper, the use of different carbon fillers as thermal conductivity enhancers for paraffin has been investigated, and a novel structure based on spot of paraffin wax as a thermo-optic switch is presented. Thermo-optical switching parameters are enhanced with the addition of graphite and graphene, due to the extreme thermal conductivity of the carbon fillers. Differential Scanning Calorimetry (DSC) and Scanning electron microscope (SEM) are performed on paraffin wax composites, and specific heat capacities are calculated based on DSC measurements. Thermo-optical switching based on transmission is measured as a function of the host concentration under conventional electric heating and laser heating of paraffin-carbon fillers composites. Further enhancements in thermo-optical switching parameters are studied under Nd:YAG laser heating. This novel structure can be used in future networks with huge bandwidth requirements and electric noise free remote aerial laser switching applications.

  9. Characterization of Sodium Thermal Hydraulics with Optical Fiber Temperature Sensors

    NASA Astrophysics Data System (ADS)

    Weathered, Matthew Thomas

    The thermal hydraulic properties of liquid sodium make it an attractive coolant for use in Generation IV reactors. The liquid metal's high thermal conductivity and low Prandtl number increases efficiency in heat transfer at fuel rods and heat exchangers, but can also cause features such as high magnitude temperature oscillations and gradients in the coolant. Currently, there exists a knowledge gap in the mechanisms which may create these features and their effect on mechanical structures in a sodium fast reactor. Two of these mechanisms include thermal striping and thermal stratification. Thermal striping is the oscillating temperature field created by the turbulent mixing of non-isothermal flows. Usually this occurs at the reactor core outlet or in piping junctions and can cause thermal fatigue in mechanical structures. Meanwhile, thermal stratification results from large volumes of non-isothermal sodium in a pool type reactor, usually caused by a loss of coolant flow accident. This stratification creates buoyancy driven flow transients and high temperature gradients which can also lead to thermal fatigue in reactor structures. In order to study these phenomena in sodium, a novel method for the deployment of optical fiber temperature sensors was developed. This method promotes rapid thermal response time and high spatial temperature resolution in the fluid. The thermal striping and stratification behavior in sodium may be experimentally analyzed with these sensors with greater fidelity than ever before. Thermal striping behavior at a junction of non-isothermal sodium was fully characterized with optical fibers. An experimental vessel was hydrodynamically scaled to model thermal stratification in a prototypical sodium reactor pool. Novel auxiliary applications of the optical fiber temperature sensors were developed throughout the course of this work. One such application includes local convection coefficient determination in a vessel with the corollary application of level sensing. Other applications were cross correlation velocimetry to determine bulk sodium flow rate and the characterization of coherent vortical structures in sodium with temperature frequency data. The data harvested, instrumentation developed and techniques refined in this work will help in the design of more robust reactors as well as validate computational models for licensing sodium fast reactors.

  10. Optomechanical stability design of space optical mapping camera

    NASA Astrophysics Data System (ADS)

    Li, Fuqiang; Cai, Weijun; Zhang, Fengqin; Li, Na; Fan, Junjie

    2018-01-01

    According to the interior orientation elements and imaging quality requirements of mapping application to mapping camera and combined with off-axis three-mirror anastigmat(TMA) system, high optomechanical stability design of a space optical mapping camera is introduced in this paper. The configuration is a coaxial TMA system used in off-axis situation. Firstly, the overall optical arrangement is described., and an overview of the optomechanical packaging is provided. Zerodurglass, carbon fiber composite and carbon-fiber reinforced silicon carbon (C/SiC) are widely used in the optomechanical structure, because their low coefficient of thermal expansion (CTE) can reduce the thermal sensitivity of the mirrors and focal plane. Flexible and unloading support are used in reflector and camera supporting structure. Epoxy structural adhesives is used for bonding optics to metal structure is also introduced in this paper. The primary mirror is mounted by means of three-point ball joint flexures system, which is attach to the back of the mirror. Then, In order to predict flexural displacements due to gravity, static finite element analysis (FEA) is performed on the primary mirror. The optical performance peak-to-valley (PV) and root-mean-square (RMS) wavefront errors are detected before and after assemble. Also, the dynamic finite element analysis(FEA) of the whole optical arrangement is carried out as to investigate the performance of optomechanical. Finally, in order to evaluate the stability of the design, the thermal vacuum test and vibration test are carried out and the Modulation Transfer Function (MTF) and elements of interior orientation are presented as the evaluation index. Before and after the thermal vacuum test and vibration test, the MTF, focal distance and position of the principal point of optical system are measured and the result is as expected.

  11. Design of CMOS compatible and compact, thermally-compensated electro-optic modulator based on off-axis microring resonator for dense wavelength division multiplexing applications.

    PubMed

    Haldar, Raktim; Banik, Abhik D; Varshney, Shailendra K

    2014-09-22

    In this work, we propose and demonstrate the performance of silicon-on-insulator (SOI) off-axis microring resonator (MRR) as electro-optic modulator (EOM). Adding an extra off-axis inner-ring in conventional microring structure provides control to compensate thermal effects on EOM. It is shown that dynamically controlled bias-voltage applied to the outer ring has the potency to quell the thermal effects over a wide range of temperature. Thus, besides the appositely biased conventional microring, off-axis inner microring with pre-emphasized electrical input message signal enables our proposed structure suitable for high data-rate dense wavelength division multiplexing scheme of optical communication within a very compact device size.

  12. Dish concentrators for solar thermal energy: Status and technology development

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1982-01-01

    Point-focusing concentrators under consideration for solar thermal energy use are reviewed. These concentrators differ in such characteristics as optical configuration, optical materials, structure for support of the optical elements and of the receiver, mount, foundation, drive, controls and enclosure. Concentrator performance and cost are considered. Technology development is outlined, including wind loads and aerodynamics; precipitation, sand, and seismic considerations; and maintenance and cleaning.

  13. Investigation of the percentage and the compacting pressure effect on the structural, optical and thermal properties of alumina-zeolite mixture

    NASA Astrophysics Data System (ADS)

    Messaadi, C.; Ghrib, T.; Ghrib, M.; Al-Otaibi, A. L.; Glid, M.; Ezzaouia, H.

    2018-03-01

    This paper presents a detailed investigation of the correlation between micro-structural, optical and thermal properties of a mixture constituted of NaA zeolite and Al2O3 alumina with different portions at various compacting pressures. A comprehensive study was made by using SEM, EDX, XRD, PL and PTD analysis. Through this full characterization, it was demonstrated that a mixture of grain size ranging from 50 nm to 85 nm can be used as a red emitter of mean wave length λ = 650 μm in optical devices. This mixture also proved to be used as a thermoinsultor or a thermocondensor material; with a thermal conductivity of about 0.22-1.33 W·m-1·K-1 and a thermal diffusivity of about 0.070-0.174 cm2·s-1.

  14. Structural and optical properties of axial silicon-germanium nanowire heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.; Tsybeskov, L., E-mail: tsybesko@njit.edu; Kamins, T. I.

    2015-12-21

    Detailed studies of the structural and optical properties of axial silicon-germanium nanowire heterojunctions show that despite the 4.2% lattice mismatch between Si and Ge they can be grown without a significant density of structural defects. The lattice mismatch induced strain is partially relieved due to spontaneous SiGe intermixing at the heterointerface during growth and lateral expansion of the Ge segment of the nanowire. The mismatch in Ge and Si coefficients of thermal expansion and low thermal conductivity of Si/Ge nanowire heterojunctions are proposed to be responsible for the thermally induced stress detected under intense laser radiation in photoluminescence and Ramanmore » scattering measurements.« less

  15. Creation of the reduced-density region by a pulsing optical discharge in the supersonic air flow

    NASA Astrophysics Data System (ADS)

    Kiseleva, T. A.; Orishich, A. M.; Chirkashenko, V. F.; Yakovlev, V. I.

    2016-10-01

    As a result of optical and pneumometric measurements is defined the flow shock wave structure that is formed by the optical breakdown, due to focused repetitively pulsed CO2 laser radiation when entering perpendicular to a supersonic (M = 1.36, 1.9) air flow direction. The dynamics of the bow shock formation in front of the energy input area is shown, depending on the frequency of energy impulse sequence. A flow structure is defined in the thermal wake behind pulsing laser plasma as well as wake's length with low thermal heterogeneity. A three-dimensional configuration of the energy area is defined in accordance with pneumometric and optical measuring results. It is shown that Pitot pressure decreases in thermal wake at a substantially constant static pressure, averaged flow parameters weakly depend on the energy impulse's frequency in range of 45-150 kHz.

  16. Thermally-Resilient, Broadband Optical Absorber from UV-to-IR Derived from Carbon Nanostructures and Method of Making the Same

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor); Coles, James B. (Inventor)

    2015-01-01

    A monolithic optical absorber and methods of making same. The monolithic optical absorber uses an array of mutually aligned carbon nanotubes that are grown using a PECVD growth process and a structure that includes a conductive substrate, a refractory template layer and a nucleation layer. Monolithic optical absorbers made according to the described structure and method exhibit high absorptivity, high site densities (greater than 10.sup.9 nanotubes/cm.sup.2), very low reflectivity (below 1%), and high thermal stability in air (up to at least 400.degree. C.). The PECVD process allows the application of such absorbers in a wide variety of end uses.

  17. Thermal effects on an embedded grating sensor in an FRP structure

    NASA Astrophysics Data System (ADS)

    Lau, Kin-tak; Yuan, Libo; Zhou, Li-min

    2001-08-01

    Much research has been carried out in the field of using optical fibre sensors as internal strain and temperature measuring devices for advanced composite structures in recent years. The specific application is the use of embedded optical fibre sensors for smart composite reinforcement for strain monitoring in an innovative civil engineering structure, particularly for the structure after rehabilitation. Researchers have also paid attention to using the optical fibre sensor for monitoring the condition of composite materials during manufacturing and curing processes. However, heat induced in the curing process may influence the accuracy of measurement and eventuate in causing damage at the bond interface between the optical fibre and the surrounding matrix material because of the different thermal properties of silica fibre and composite materials. In this paper, a simple theoretical model is introduced to determine the interfacial properties of the embedded optical fibre system in composite laminates with different values of the coefficient of thermal expansion under different temperature environments. A finite-element method is used to compare the result from the theoretical prediction. The results show that the maximum shear stress in the coating layer decreases with increasing surrounding temperature when the optical fibre is embedded into carbon and Kevlar fibre composites. In contrast, increasing the temperature when the optical fibre is embedded into glass fibre composite results in the increase of maximum shear stress of the material. The compaction pressure distribution along the circumference of the coating layer also varies with temperature.

  18. Experimental research on thermal conductive fillers for CCD module in space borne optical remote sensor

    NASA Astrophysics Data System (ADS)

    Zeng, Yi; Han, Xue-bing; Yang, Dong-shang; Gui, Li-jia; Zhao, Xiao-xiang; Si, Fu-qi

    2016-03-01

    A space-borne differential optical absorption spectrometer is a high precision aerospace optical remote sensor. It obtains the hyper-spectral,high spatial resolution radiation information by using the spectrometer with CCD(Charge Coupled Device)array detectors. Since a few CCDs are used as the key detector, the performance of the entire instrument is greatly affected by working condition of CCDs. The temperature of CCD modules has a great impact on the instrument measurement accuracy. It requires strict temperature control. The selection of the thermal conductive filler sticking CCD to the radiator is important in the CCD thermal design. Besides,due tothe complex and compact structure, it needs to take into account the anti-pollution of the optical system. Therefore, it puts forward high requirements on the selection of the conductive filler. In this paper, according to the structure characteristics of the CCD modules and the distribution of heat consumption, the thermal analysis tool I-DEAS/TMG is utilized to compute and simulate the temperature level of the CCD modules, while filling in thermal grease and thermal pad respectively. The temperature distribution of CCD heat dissipation in typical operating conditions is obtained. In addition, the heat balance test was carried out under the condition of two kinds of thermal conductive fillers. The thermal control of CCD was tested under various conditions, and the results were compared with the results of thermal analysis. The results show that there are some differences in thermal performance between the two kinds of thermal conductive fillers. Although they both can meet the thermal performance requirements of the instrument, either would be chosen taking account of other conditions and requirements such as anti-pollution and insulation. The content and results of this paper will be a good reference for the thermal design of the CCD in the aerospace optical payload.

  19. Fiber Optic Thermographic Detection of Flaws in Composites

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.

    2009-01-01

    Optical fibers with multiple Bragg gratings bonded to surfaces of structures were used for thermographic detection of subsurface defects in structures. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The obtained data were analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with the simulation results.

  20. Structural design and analysis for an ultra low CTE optical bench for the Hubble Space Telescope corrective optics

    NASA Technical Reports Server (NTRS)

    Neam, Douglas C.; Gerber, John D.

    1992-01-01

    The stringent stability requirements of the Corrective Optics Space Telescope Axial Replacement (COSTAR) necessitates a Deployable Optical Bench (DOB) with both a low CTE and high resonant frequency. The DOB design consists of a monocoque thin shell structure which marries metallic machined parts with graphite epoxy formed structure. Structural analysis of the DOB has been integrated into the laminate design and optimization process. Also, the structural analytical results are compared with vibration and thermal test data to assess the reliability of the analysis.

  1. Assembly of DNA Architectures in a Non-Aqueous Solution

    DTIC Science & Technology

    2012-08-31

    environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical structure and thermal stability...transitioned to a non-aqueous environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical...techniques were first validated using a more widely studied DNA system, genomic salmon sperm DNA (saDNA) [19]. The saDNA samples were reacted with two

  2. Influence of post-deposition annealing on structural, morphological and optical properties of copper (II) acetylacetonate thin films.

    PubMed

    Abdel-Khalek, H; El-Samahi, M I; El-Mahalawy, Ahmed M

    2018-05-21

    In this study, the effect of thermal annealing under vacuum conditions on structural, morphological and optical properties of thermally evaporated copper (II) acetylacetonate, cu(acac) 2 , thin films were investigated. The copper (II) acetylacetonate thin films were deposited using thermal evaporation technique at vacuum pressure ~1 × 10 -5  mbar. The deposited films were thermally annealed at 323, 373, 423, and 473 K for 2 h in vacuum. The thermogravimetric analysis of cu(acac) 2 powder indicated a thermal stability of cu(acac) 2 up to 423 K. The effects of thermal annealing on the structural properties of cu(acac) 2 were evaluated employing X-ray diffraction method and the analysis showed a polycrystalline nature of the as-deposited and annealed films with a preferred orientation in [1¯01] direction. Fourier transformation infrared (FTIR) technique was used to negate the decomposition of copper (II) acetylacetonate during preparation or/and annealing up to 423 K. The surface morphology of the prepared films was characterized by means of field emission scanning electron microscopy (FESEM). A significant enhancement of the morphological properties of cu(acac) 2 thin films was obtained till the annealing temperature reaches 423 K. The variation of optical constants that estimated from spectrophotometric measurements of the prepared thin films was investigated as a function of annealing temperature. The annealing process presented significantly impacted the nonlinear optical properties such as third-order optical susceptibility χ (3) and nonlinear refractive index n 2 of cu(acac) 2 thin films. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Integrated multidisciplinary analysis of segmented reflector telescopes

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Needels, Laura

    1992-01-01

    The present multidisciplinary telescope-analysis approach, which encompasses thermal, structural, control and optical considerations, is illustrated for the case of an IR telescope in LEO; attention is given to end-to-end evaluations of the effects of mechanical disturbances and thermal gradients in measures of optical performance. Both geometric ray-tracing and surface-to-surface diffraction approximations are used in the telescope's optical model. Also noted is the role played by NASA-JPL's Integrated Modeling of Advanced Optical Systems computation tool, in view of numerical samples.

  4. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter.

    PubMed

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-09

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  5. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    PubMed Central

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-01-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics. PMID:28276500

  6. Novel Programmable Shape Memory Polystyrene Film: A Thermally Induced Beam-power Splitter

    NASA Astrophysics Data System (ADS)

    Li, Peng; Han, Yu; Wang, Wenxin; Liu, Yanju; Jin, Peng; Leng, Jinsong

    2017-03-01

    Micro/nanophotonic structures that are capable of optical wave-front shaping are implemented in optical waveguides and passive optical devices to alter the phase of the light propagating through them. The beam division directions and beam power distribution depend on the design of the micro/nanostructures. The ultimate potential of advanced micro/nanophotonic structures is limited by their structurally rigid, functional singleness and not tunable against external impact. Here, we propose a thermally induced optical beam-power splitter concept based on a shape memory polystyrene film with programmable micropatterns. The smooth film exhibits excellent transparency with a transmittance of 95% in the visible spectrum and optical stability during a continuous heating process up to 90 °C. By patterning double sided shape memory polystyrene film into erasable and switchable micro-groove gratings, the transmission light switches from one designed light divided directions and beam-power distribution to another because of the optical diffraction effect of the shape changing micro gratings during the whole thermal activated recovery process. The experimental and theoretical results demonstrate a proof-of-principle of the beam-power splitter. Our results can be adapted to further extend the applications of micro/nanophotonic devices and implement new features in the nanophotonics.

  7. Fiber Optic Thermal Health Monitoring of Composites

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.

    2010-01-01

    A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.

  8. Gravity and thermal deformation of large primary mirror in space telescope

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Jiang, Shouwang; Wan, Jinlong; Shu, Rong

    2016-10-01

    The technology of integrating mechanical FEA analysis with optical estimation is essential to simulate the gravity deformation of large main mirror and the thermal deformation such as static or temperature gradient of optical structure. We present the simulation results of FEA analysis, data processing, and image performance. Three kinds of support structure for large primary mirror which have the center holding structure, the edge glue fixation and back support, are designed and compared to get the optimal gravity deformation. Variable mirror materials Zerodur/SiC are chosen and analyzed to obtain the small thermal gradient distortion. The simulation accuracy is dependent on FEA mesh quality, the load definition of structure, the fitting error from discrete data to smooth surface. A main mirror with 1m diameter is designed as an example. The appropriate structure material to match mirror, the central supporting structure, and the key aspects of FEA simulation are optimized for space application.

  9. Effect of the addition of MgF2 and NaF on the thermal, optical and magnetic properties of fluoride glasses for sensing applications

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Wang, Shuangbao; Deng, Saifu; Liu, Jianting; Zhang, Jiahui

    2017-10-01

    Optical glass was very important for the development of optical fiber sensor. In this paper, a new type fluoride glass of ZrF4-BaF2-AlF3-NaF-MgF2(ZBANM) was synthesized for sensing application which has low loss and high magneto-optical coefficient, and it was found that the glass system had at least 60% transmittance from 3.5 μm to 7 μm and smallest verdet constant of 4.628E-5/(rad A-1) at 632.8 nm. The relationship among the compositions of sample glass with its thermal property, optical absorptivity and magnetic-optical coefficients was respectively studied with Thermal Gravimetric-Differential Thermal Analyzer, Fourier Transform infrared spectroscopy and a home-made magneto optical bench. The study indicated that transmittance of fluoride glass structure had been obviously improved after moderate content of Mg2+ and Na+ was doped. Simultaneously, with the molar ratio of alkaline-earth ions Mg increased, the Verdet constant of fluoride glass was increased. And the glass structure with composition of 48%ZrF4-24%BaF2-6%AlF3-8%NaF-14%MgF2 exhibited a small molar absorptivity and the largest Verdet constant of 2.853E-4/(rad A-1).

  10. Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method

    NASA Astrophysics Data System (ADS)

    Oueslati, H.; Rabeh, M. Ben; Kanzari, M.

    2018-02-01

    In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\\bar {4}2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm-1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.

  11. LDR structural experiment definition

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Gates, Richard M.

    1988-01-01

    A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment.

  12. Results from SIM's Thermo-Opto-Mechanical (TOM3) Testbed

    NASA Technical Reports Server (NTRS)

    Goullioud, Renaud; Lindensmith, C. A.; Hahn, I.

    2006-01-01

    Future space-based optical interferometers, such as the Space Interferometer Mission Planet Quest (SIM), require thermal stability of the optical wavefront to the level of picometers in order to produce astrometric data at the micro-arc-second level. In SIM, the internal path of the interferometer will be measured with a small metrology beam whereas the starlight fringe position is estimated from a large concentric annular beam. To achieve the micro-arc-second observation goal for SIM, it is necessary to maintain the optical path difference between the central and the outer annulus portions of the wavefront of the front-end telescope optics to a few tens of picometers. The Thermo-Opto-Mecha nical testbed (TOM3) was developed at the Jet Propulsion Laboratory to measure thermally induced optical deformations of a full-size flight-like beam compressor and siderostat, the two largest optics on SIM, in flight-like thermal environments. A Common Path Heterodyne Interferometer (COPHI) developed at JPL was used for the fine optical path difference measurement as the metrology sensor. The system was integrated inside a large vacuum chamber in order to mitigate the atmospheric and thermal disturbances. The siderostat was installed in a temperature-controlled thermal shroud inside the vacuum chamber, creating a flight-like thermal environment. Detailed thermal and structural models of the test articles (siderostat and compressor) were also developed for model prediction and correlation of the thermal deformations. Experimental data shows SIM required thermal stability of the test articles and good agreement with the model predictions.

  13. Development of in-orbit refocusing mechanism for SpaceEye-1 electro-optical payload

    NASA Astrophysics Data System (ADS)

    Lee, Minwoo; Kim, Jongun; Chang, Jin-Soo; Kang, Myung-Seok

    2016-09-01

    SpaceEye-1 earth observation satellite, developed by Satrec Initiative Co. Ltd., is a 300 kg scale spacecraft with high resolution electro-optical payload (EOS-D) which performs 1 m GSD, 12 km swath in low earth orbit. Metering structure of EOS-D is manufactured with Carbon Fiber Reinforced Plastic (CFRP). Due to the moisture emission from CFRP metering structure, this spaceborne electro-optical payload undergoes shrinkage after orbit insertion. The shrinkage of metering structure causes change of the distance between primary and secondary mirror. In order to compensate the moisture shrinkage effect, two types of thermal refocusing mechanism were developed, analyzed and applied to EOS-D. Thermal analysis simulating in-orbit thermal condition and thermo-elastic displacement analysis was conducted to calculate the performance of refocusing mechanism. For each EOS-D telescope, analytical refocusing range (displacement change between primary and secondary mirror) was 2.5 um and 3.6 um. Thus, the refocusing mechanism can compensate the dimensional instability of metering structure caused by moisture emission. Furthermore, modal, static and wavefront error analysis was conducted in order to evaluate natural frequency, structural stability and optical performance. As a result, it can be concluded that the refocusing system of EOS-D payload can perform its function in orbit.

  14. Laboratories | NREL

    Science.gov Websites

    | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced Thermal Laboratory Structural Testing Laboratory Surface Analysis Laboratory Systems Performance Laboratory T Thermal Storage Materials Laboratory Thermal Storage Process and Components Laboratory Thin-Film Deposition

  15. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  16. Polarization independent thermally tunable erbium-doped fiber amplifier gain equalizer using a cascaded Mach-Zehnder coupler.

    PubMed

    Sahu, P P

    2008-02-10

    A thermally tunable erbium-doped fiber amplifier (EDFA) gain equalizer filter based on compact point symmetric cascaded Mach-Zehnder (CMZ) coupler is presented with its mathematical model and is found to be polarization dependent due to stress anisotropy caused by local heating for thermo-optic phase change from its mathematical analysis. A thermo-optic delay line structure with a stress releasing groove is proposed and designed for the reduction of polarization dependent characteristics of the high index contrast point symmetric delay line structure of the device. It is found from thermal analysis by using an implicit finite difference method that temperature gradients of the proposed structure, which mainly causes the release of stress anisotropy, is approximately nine times more than that of the conventional structure. It is also seen that the EDFA gain equalized spectrum by using the point symmetric CMZ device based on the proposed structure is almost polarization independent.

  17. Ab initio studies of structural, electronic, optical, elastic and thermal properties of silver gallium dichalcogenides (AgGaX{sub 2}: X = S, Se, Te)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sheetal; Department of Physics, Panjab University, Chandigarh 160014; Verma, A.S., E-mail: ajay_phy@rediffmail.com

    2014-05-01

    Graphical abstract: - Highlights: • FP-LAPW method has been used to compute the solid state properties of AgGaX{sub 2} (X = S, Se, Te). • Electronic and optical properties reported with recently developed mBJ potential. • Thermal expansion, heat capacity, Debye temperature, entropy and Grüneisen parameter were evaluated. • Hardness was calculated for the first time at different temperature and pressure. - Abstract: We have performed ab initio calculations for the structural, electronic, optical, elastic and thermal properties of the silver gallium dichalcogenides (AgGaX{sub 2}: X = S, Se, Te). In this study, we have used the accurate full potentialmore » linearized augmented plane wave (FP-LAPW) method to find the equilibrium structural parameters and to compute the six elastic constants (C{sub 11}, C{sub 12}, C{sub 13}, C{sub 33}, C{sub 44} and C{sub 66}). We have reported electronic and optical properties with the recently developed density functional theory of Tran and Blaha, and this theory is used along with the Wu-Cohen generalized gradient approximation (WC-GGA) for the exchange-correlation potential. Furthermore, optical features such as dielectric functions, refractive indices, extinction coefficient, optical reflectivity, absorption coefficients and optical conductivities were calculated for photon energies up to 40 eV. The thermodynamical properties such as thermal expansion, heat capacity, debye temperature, entropy, Grüneisen parameter and bulk modulus were calculated employing the quasi-harmonic Debye model at different temperatures (0–900 K) and pressures (0–8 GPa) and the silent results were interpreted. Hardness of the materials was calculated for the first time at different temperatures and pressures.« less

  18. Terrestrial Planet Finder Coronagraph Optical Modeling

    NASA Technical Reports Server (NTRS)

    Basinger, Scott A.; Redding, David C.

    2004-01-01

    The Terrestrial Planet Finder Coronagraph will rely heavily on modeling and analysis throughout its mission lifecycle. Optical modeling is especially important, since the tolerances on the optics as well as scattered light suppression are critical for the mission's success. The high contrast imaging necessary to observe a planet orbiting a distant star requires new and innovative technologies to be developed and tested, and detailed optical modeling provides predictions for evaluating design decisions. It also provides a means to develop and test algorithms designed to actively suppress scattered light via deformable mirrors and other techniques. The optical models are used in conjunction with structural and thermal models to create fully integrated optical/structural/thermal models that are used to evaluate dynamic effects of disturbances on the overall performance of the coronagraph. The optical models we have developed have been verified on the High Contrast Imaging Testbed. Results of the optical modeling verification and the methods used to perform full three-dimensional near-field diffraction analysis are presented.

  19. A technique for the optical analysis of deformed telescope mirrors

    NASA Technical Reports Server (NTRS)

    Bolton, John F.

    1986-01-01

    The NASTRAN-ACCOS V programs' interface merges structural and optical analysis capabilities in order to characterize the performance of the NASA Goddard Space Flight Center's Solar Optical Telescope primary mirror, which has a large diameter/thickness ratio. The first step in the optical analysis is to use NASTRAN's FEM to model the primary mirror, simulating any distortions due to gravitation, thermal gradients, and coefficient of thermal expansion nonuniformities. NASTRAN outputs are then converted into an ACCOS V-acceptable form; ACCOS V generates the deformed optical surface on the basis of these inputs, and imaging qualities can be determined.

  20. Space telescope optical telescope assembly/scientific instruments. Phase B: -Preliminary design and program definition study; Volume 2A: Planetary camera report

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Development of the F/48, F/96 Planetary Camera for the Large Space Telescope is discussed. Instrument characteristics, optical design, and CCD camera submodule thermal design are considered along with structural subsystem and thermal control subsystem. Weight, electrical subsystem, and support equipment requirements are also included.

  1. Lattice thermal conductivity of monolayer AsP from first-principles molecular dynamics.

    PubMed

    Sun, Yajing; Shuai, Zhigang; Wang, Dong

    2018-05-23

    Few-layered arsenic-phosphorus alloys, AsxP(1-x), with a puckered structure have been recently synthesized and demonstrated with fully tunable band gaps and optical properties. It is predicted that the carrier mobility of monolayer AsP compounds is even higher than that of black phosphorene (b-P). The anisotropic and orthogonal electrical and thermal transport properties of the puckered group VA elements make them intriguing materials for thermoelectric applications. Herein, we investigated the thermal transport properties of AsP based on first-principles molecular dynamics and the Boltzmann transport equation. We reveal that monolayer AsP with three different chemical structures possesses thermal conductivities lower than b-P, but with increased anisotropy. Further, these structures behave profoundly different on heat conduction. This can be attributed to the distinct low-frequency optical modes associated with their bonding nature. Our results highlight the impact of atomic arrangement on the thermal conductivity of AsP, and the structure-property relationship established may guide the fabrication of thermoelectric materials via the engineered alloying method.

  2. COI Structural Analysis Presentation

    NASA Technical Reports Server (NTRS)

    Cline, Todd; Stahl, H. Philip (Technical Monitor)

    2001-01-01

    This report discusses the structural analysis of the Next Generation Space Telescope Mirror System Demonstrator (NMSD) developed by Composite Optics Incorporated (COI) in support of the Next Generation Space Telescope (NGST) project. The mirror was submitted to Marshall Space Flight Center (MSFC) for cryogenic testing and evaluation. Once at MSFC, the mirror was lowered to approximately 40 K and the optical surface distortions were measured. Alongside this experiment, an analytical model was developed and used to compare to the test results. A NASTRAN finite element model was provided by COI and a thermal model was developed from it. Using the thermal model, steady state nodal temperatures were calculated based on the predicted environment of the large cryogenic test chamber at MSFC. This temperature distribution was applied in the structural analysis to solve for the deflections of the optical surface. Finally, these deflections were submitted for optical analysis and comparison to the interferometer test data.

  3. Optical performance assessment under environmental and mechanical perturbations in large, deployable telescopes

    NASA Astrophysics Data System (ADS)

    Folley, Christopher; Bronowicki, Allen

    2005-09-01

    Prediction of optical performance for large, deployable telescopes under environmental conditions and mechanical disturbances is a crucial part of the design verification process of such instruments for all phases of design and operation: ground testing, commissioning, and on-orbit operation. A Structural-Thermal-Optical-Performance (STOP) analysis methodology is often created that integrates the output of one analysis with the input of another. The integration of thermal environment predictions with structural models is relatively well understood, while the integration of structural deformation results into optical analysis/design software is less straightforward. A Matlab toolbox has been created that effectively integrates the predictions of mechanical deformations on optical elements generated by, for example, finite element analysis, and computes optical path differences for the distorted prescription. The engine of the toolbox is the real ray-tracing algorithm that allows the optical surfaces to be defined in a single, global coordinate system thereby allowing automatic alignment of the mechanical coordinate system with the optical coordinate system. Therefore, the physical location of the optical surfaces is identical in the optical prescription and the finite element model. The application of rigid body displacements to optical surfaces, however, is more general than for use solely in STOP analysis, such as the analysis of misalignments during the commissioning process. Furthermore, all the functionality of Matlab is available for optimization and control. Since this is a new tool for use on flight programs, it has been verified against CODE V. The toolbox' functionality, to date, is described, verification results are presented, and, as an example of its utility, results of a thermal distortion analysis are presented using the James Webb Space Telescope (JWST) prescription.

  4. Crystal growth, structural, optical, spectral and thermal studies of tris( L-phenylalanine) L-phenylalaninium nitrate: A new organic nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Prakash, M.; Geetha, D.; Lydia Caroline, M.

    2011-10-01

    Tris( L-phenylalanine) L-phenylalaninium nitrate, C 9H 12NO 2+·NO 3-·3C 9H 11NO 2 (TPLPN), a new organic nonlinear optical material was grown from aqueous solution by slow evaporation solution growth at room temperature. The grown crystals were subjected to powder X-ray diffraction and single crystal X-ray diffraction studies to confirm the crystalline nature and crystal structure. The modes of vibration of different molecular groups present in TPLPN have been identified by FTIR spectral analysis. The presence of hydrogen and carbon in the grown crystal were confirmed by using proton and carbon nuclear magnetic resonance (NMR) spectral analyses. The optical transmission spectral study establishes good transmitting ability of the crystal in the entire visible region. The thermogravimetric (TG) and differential thermal analyses (DTA) were carried out to understand the thermal stability of the sample. The nonlinear optical property of the compound observed using Kurtz powder second harmonic generation test assets the suitability of the grown material for the frequency conversion of laser radiation of Nd:YAG.

  5. SiC lightweight telescopes for advanced space applications. II - Structures technology

    NASA Technical Reports Server (NTRS)

    Anapol, Michael I.; Hadfield, Peter; Tucker, Theodore

    1992-01-01

    A critical technology area for lightweight SiC-based telescope systems is the structural integrity and thermal stability over spaceborne environmental launch and thermal operating conditions. Note, it is highly desirable to have an inherently athermal design of both SiC mirrors and structure. SSG has developed an 8 inch diameter SiC telescope system for brassboard level optical and thermal testing. The brassboard telescope has demonstrated less than 0.2 waves P-V in the visible wavefront change over +50 C to -200 C temperature range. SSG has also fabricated a SiC truss structural assembly and successfully qualified this hardware at environmental levels greater than 3 times higher than normal Delta, Titan, and ARIES launch loads. SSG is currently developing two SiC telescopes; an 20 cm diameter off-axis 3 mirror re-imaging and a 60 cm aperture on-axis 3 mirror re-imager. Both hardware developments will be tested to flight level environmental, optical, and thermal specifications.

  6. Optical Coating Performance and Thermal Structure Design for Heat Reflectors of JWST Electronic Control Unit

    NASA Technical Reports Server (NTRS)

    Quijada, Manuel A.; Threat, Felix; Garrison, Matt; Perrygo, Chuck; Bousquet, Robert; Rashford, Robert

    2008-01-01

    The James Webb Space Telescope (JWST) consists of an infrared-optimized Optical Telescope Element (OTE) that is cooled down to 40 degrees Kelvin. A second adjacent component to the OTE is the Integrated Science Instrument Module, or ISIM. This module includes the electronic compartment, which provides the mounting surfaces and ambient thermally controlled environment for the instrument control electronics. Dissipating the 200 watts generated from the ISIM structure away from the OTE is of paramount importance so that the spacecraft's own heat does not interfere with the infrared light detected from distant cosmic sources. This technical challenge is overcome by a thermal subsystem unit that provides passive cooling to the ISIM control electronics. The proposed design of this thermal radiator consists of a lightweight structure made out of composite materials and low-emittance metal coatings. In this paper, we will present characterizations of the coating emittance, bidirectional reflectance, and mechanical structure design that will affect the performance of this passive cooling system.

  7. Study of Electronic Structure, Thermal Conductivity, Elastic and Optical Properties of α, β, γ-Graphyne

    PubMed Central

    Hou, Xun; Xie, Zhongjing; Li, Chunmei; Li, Guannan; Chen, Zhiqian

    2018-01-01

    In recent years, graphyne was found to be the only 2D carbon material that has both sp and sp2 hybridization. It has received significant attention because of its great potential in the field of optoelectronics, which arises due to its small band gap. In this study, the structural stability, electronic structure, elasticity, thermal conductivity and optical properties of α, β, γ-graphynes were investigated using density functional theory (DFT) systematically. γ-graphyne has the largest negative cohesive energy and thus the most stable structure, while the β-graphyne comes 2nd. Both β and γ-graphynes have sp-sp, sp-sp2 and sp2-sp2 hybridization bonds, of which γ-graphyne has shorter bond lengths and thus larger Young’s modulus. Due to the difference in acetylenic bond in the structure cell, the effect of strain on the electronic structure varies between graphynes: α-graphyne has no band gap and is insensitive to strain; β-graphyne’s band gap has a sharp up-turn at 10% strain, while γ-graphyne’s band gap goes up linearly with the strain. All the three graphynes exhibit large free carrier concentration and these free carriers have small effective mass, and both free carrier absorption and intrinsic absorption are found in the light absorption. Based on the effect of strain, optical properties of three structures are also analyzed. It is found that the strain has significant impacts on their optical properties. In summary, band gap, thermal conductivity, elasticity and optical properties of graphyne could all be tailored with adjustment on the amount of acetylenic bonds in the structure cell. PMID:29370070

  8. Study of Electronic Structure, Thermal Conductivity, Elastic and Optical Properties of α, β, γ-Graphyne.

    PubMed

    Hou, Xun; Xie, Zhongjing; Li, Chunmei; Li, Guannan; Chen, Zhiqian

    2018-01-25

    In recent years, graphyne was found to be the only 2D carbon material that has both sp and sp² hybridization. It has received significant attention because of its great potential in the field of optoelectronics, which arises due to its small band gap. In this study, the structural stability, electronic structure, elasticity, thermal conductivity and optical properties of α, β, γ-graphynes were investigated using density functional theory (DFT) systematically. γ-graphyne has the largest negative cohesive energy and thus the most stable structure, while the β-graphyne comes 2nd. Both β and γ-graphynes have sp-sp, sp-sp² and sp²-sp² hybridization bonds, of which γ-graphyne has shorter bond lengths and thus larger Young's modulus. Due to the difference in acetylenic bond in the structure cell, the effect of strain on the electronic structure varies between graphynes: α-graphyne has no band gap and is insensitive to strain; β-graphyne's band gap has a sharp up-turn at 10% strain, while γ-graphyne's band gap goes up linearly with the strain. All the three graphynes exhibit large free carrier concentration and these free carriers have small effective mass, and both free carrier absorption and intrinsic absorption are found in the light absorption. Based on the effect of strain, optical properties of three structures are also analyzed. It is found that the strain has significant impacts on their optical properties. In summary, band gap, thermal conductivity, elasticity and optical properties of graphyne could all be tailored with adjustment on the amount of acetylenic bonds in the structure cell.

  9. Growth, structural, optical, thermal and laser damage threshold studies of an organic single crystal: 1,3,5 – triphenylbenzene (TPB)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raja, R. Subramaniyan; Babu, G. Anandha; Ramasamy, P., E-mail: E-mail-ramasamyp@ssn.edu.in

    2016-05-23

    Good quality single crystals of pure hydrocarbon 1,3,5-Triphenylbenzene (TPB) have been successfully grown using toluene as a solvent using controlled slow cooling solution growth technique. TPB crystallizes in orthorhombic structure with the space group Pna2{sub 1}. The structural perfection of the grown crystal has been analysed by high resolution X-ray diffraction measurements. The range and percentage of the optical transmission are ascertained by recording the UV-vis spectrum. Thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study its thermal properties. Powder second harmonic generation studies were carried out to explore its NLO properties. Laser damage threshold valuemore » has been determined using Nd:YAG laser operating at 1064 nm.« less

  10. First-principles calculations of the structural, electronic, optical and thermal properties of the BNxAs1-x alloys

    NASA Astrophysics Data System (ADS)

    Hamioud, L.; Boumaza, A.; Touam, S.; Meradji, H.; Ghemid, S.; El Haj Hassan, F.; Khenata, R.; Omran, S. Bin

    2016-06-01

    The present paper aims to study the structural, electronic, optical and thermal properties of the boron nitride (BN) and BAs bulk materials as well as the BNxAs1-x ternary alloys by employing the full-potential-linearised augmented plane wave method within the density functional theory. The structural properties are determined using the Wu-Cohen generalised gradient approximation that is based on the optimisation of the total energy. For band structure calculations, both the Wu-Cohen generalised gradient approximation and the modified Becke-Johnson of the exchange-correlation energy and potential, respectively, are used. We investigated the effect of composition on the lattice constants, bulk modulus and band gap. Deviations of the lattice constants and the bulk modulus from the Vegard's law and the linear concentration dependence, respectively, were observed for the alloys where this result allows us to explain some specific behaviours in the electronic properties of the alloys. For the optical properties, the calculated refractive indices and the optical dielectric constants were found to vary nonlinearly with the N composition. Finally, the thermal effect on some of the macroscopic properties was predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.

  11. Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990

    NASA Astrophysics Data System (ADS)

    Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.

    Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.

  12. On the relationship between satellite-estimated bio-optical and thermal properties in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Jolliff, Jason K.; Kindle, John C.; Penta, Bradley; Helber, Robert; Lee, Zhongping; Shulman, Igor; Arnone, Robert; Rowley, Clark D.

    2008-03-01

    Three years of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) ocean color data were combined with three-dimensional thermal fields generated by the U.S. Navy's Modular Ocean Data Assimilation System (MODAS) in order to examine the interdependencies between bio-optical fields and their relationship to seasonal and mesoscale changes in upper ocean thermal structure. The combined data set suggests that the oceanic boundary layer within the Gulf of Mexico may be broadly defined by two seasonally occurring bio-thermal periods. A winter mixing period, characterized by net heat losses to the atmosphere, deepening of the isothermal layer depth, and annual maxima of satellite-estimated colored detrital matter (CDM) absorption coefficients and surface pigment concentration, was followed by a thermally stratified period characterized by net surface ocean heating, reduced isothermal layer depths, and annual minima in surface bio-optical fields. Variability in the interdependencies of ocean color products was used to diagnose an attendant shift in the size-structure of surface phytoplankton communities as well as identify CDM as the constituent responsible for the majority of blue-light absorption in Gulf of Mexico surface waters. The mesoscale circulation, as resolved by MODAS thermal fields into cold and warm-core eddies, appears to significantly modulate the seasonal bio-optical cycle of CDM absorption and surface pigment concentration. An empirical model was developed to describe CDM absorption as a function of upper ocean thermal energy. The model accounted for nearly half the variance in the satellite-estimate of this bio-optical variable. Large mismatches between the model and satellite data implied episodes of shelf water export to the deep Gulf of Mexico.

  13. Numerical analysis of high-power broad-area laser diode with improved heat sinking structure using epitaxial liftoff technique

    NASA Astrophysics Data System (ADS)

    Kim, Younghyun; Sung, Yunsu; Yang, Jung-Tack; Choi, Woo-Young

    2018-02-01

    The characteristics of high-power broad-area laser diodes with the improved heat sinking structure are numerically analyzed by a technology computer-aided design based self-consistent electro-thermal-optical simulation. The high-power laser diodes consist of a separate confinement heterostructure of a compressively strained InGaAsP quantum well and GaInP optical cavity layers, and a 100-μm-wide rib and a 2000-μm long cavity. In order to overcome the performance deteriorations of high-power laser diodes caused by self-heating such as thermal rollover and thermal blooming, we propose the high-power broad-area laser diode with improved heat-sinking structure, which another effective heat-sinking path toward the substrate side is added by removing a bulk substrate. It is possible to obtain by removing a 400-μm-thick GaAs substrate with an AlAs sacrificial layer utilizing well-known epitaxial liftoff techniques. In this study, we present the performance improvement of the high-power laser diode with the heat-sinking structure by suppressing thermal effects. It is found that the lateral far-field angle as well as quantum well temperature is expected to be improved by the proposed heat-sinking structure which is required for high beam quality and optical output power, respectively.

  14. Integrated Modeling Tools for Thermal Analysis and Applications

    NASA Technical Reports Server (NTRS)

    Milman, Mark H.; Needels, Laura; Papalexandris, Miltiadis

    1999-01-01

    Integrated modeling of spacecraft systems is a rapidly evolving area in which multidisciplinary models are developed to design and analyze spacecraft configurations. These models are especially important in the early design stages where rapid trades between subsystems can substantially impact design decisions. Integrated modeling is one of the cornerstones of two of NASA's planned missions in the Origins Program -- the Next Generation Space Telescope (NGST) and the Space Interferometry Mission (SIM). Common modeling tools for control design and opto-mechanical analysis have recently emerged and are becoming increasingly widely used. A discipline that has been somewhat less integrated, but is nevertheless of critical concern for high precision optical instruments, is thermal analysis and design. A major factor contributing to this mild estrangement is that the modeling philosophies and objectives for structural and thermal systems typically do not coincide. Consequently the tools that are used in these discplines suffer a degree of incompatibility, each having developed along their own evolutionary path. Although standard thermal tools have worked relatively well in the past. integration with other disciplines requires revisiting modeling assumptions and solution methods. Over the past several years we have been developing a MATLAB based integrated modeling tool called IMOS (Integrated Modeling of Optical Systems) which integrates many aspects of structural, optical, control and dynamical analysis disciplines. Recent efforts have included developing a thermal modeling and analysis capability, which is the subject of this article. Currently, the IMOS thermal suite contains steady state and transient heat equation solvers, and the ability to set up the linear conduction network from an IMOS finite element model. The IMOS code generates linear conduction elements associated with plates and beams/rods of the thermal network directly from the finite element structural model. Conductances for temperature varying materials are accommodated. This capability both streamlines the process of developing the thermal model from the finite element model, and also makes the structural and thermal models compatible in the sense that each structural node is associated with a thermal node. This is particularly useful when the purpose of the analysis is to predict structural deformations due to thermal loads. The steady state solver uses a restricted step size Newton method, and the transient solver is an adaptive step size implicit method applicable to general differential algebraic systems. Temperature dependent conductances and capacitances are accommodated by the solvers. In addition to discussing the modeling and solution methods. applications where the thermal modeling is "in the loop" with sensitivity analysis, optimization and optical performance drawn from our experiences with the Space Interferometry Mission (SIM), and the Next Generation Space Telescope (NGST) are presented.

  15. A study of the effect of gamma and laser irradiation on the thermal, optical and structural properties of CR-39 nuclear track detector

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Atta, M. R.; El-Melleegy, W. M.

    2004-08-01

    A comparative study of the effect of gamma and laser irradiation on the thermal, optical and structural properties of the CR-39 diglycol carbonate solid state nuclear track detector has been carried out. Samples from CR-39 polymer were classified into two main groups: the first group was irradiated by gamma rays with doses at levels between 20 and 300 kGy, whereas the second group was exposed to infrared laser radiation with energy fluences at levels between 0.71 and 8.53 J/cm(2). Non-isothermal studies were carried out using thermogravimetry, differential thermogravimetry and differential thermal analysis to obtain activation energy of decomposition and transition temperatures for the non-irradiated and all irradiated CR-39 samples. In addition, optical and structural property studies were performed on non-irradiated and irradiated CR-39 samples using refractive index and X-ray diffraction measurements. Variation in the onset temperature of decomposition T-o, activation energy of decomposition E-a, melting temperature T-m, refractive index n and the mass fraction of the amorphous phase after gamma and laser irradiation were studied. It was found that many changes in the thermal, optical and structural properties of the CR-39 polymer could be produced by gamma irradiation via degradation and cross-linking mechanisms. Also, the gamma dose has an advantage of increasing the correlation between thermal stability of the CR-39 polymer and bond formation created by the ionizing effect of gamma radiation. On the other hand, higher laser-energy fluences in the range 4.27-8.53 J/cm(2) decrease the melting temperature of the CR-39 polymer and this is most suitable for applications requiring molding of the polymer at lower temperatures.

  16. Investigation of Outer Length Scale In Optical Turbulence

    DTIC Science & Technology

    2003-12-01

    experimental situations. This thesis investigated three outer scales of turbulence using experimental data from two instruments: microthermal probes...represents the size of the velocity fluctuations and the boundary thermal convective cell size. The microthermal balloon data had excessive scatter...optical structure parameter C than the microthermal balloon data. The separation of daytime convective thermal plumes was found from the acoustic

  17. One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect

    NASA Astrophysics Data System (ADS)

    Nguyen, Dam Thuy Trang; Tong, Quang Cong; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-01-01

    In this work, local thermal effect induced by a continuous-wave laser has been investigated and exploited to optimize the low one-photon absorption (LOPA) direct laser writing (DLW) technique for fabrication of polymer-based microstructures. It was demonstrated that the temperature of excited SU8 photoresist at the focusing area increases to above 100 °C due to high excitation intensity and becomes stable at that temperature thanks to the use of a continuous-wave laser at 532 nm-wavelength. This optically induced thermal effect immediately completes the crosslinking process at the photopolymerized region, allowing obtain desired structures without using the conventional post-exposure bake (PEB) step, which is usually realized after the exposure. Theoretical calculation of the temperature distribution induced by local optical excitation using finite element method confirmed the experimental results. LOPA-based DLW technique combined with optically induced thermal effect (local PEB) shows great advantages over the traditional PEB, such as simple, short fabrication time, high resolution. In particular, it allowed the overcoming of the accumulation effect inherently existed in optical lithography by one-photon absorption process, resulting in small and uniform structures with very short lattice constant.

  18. Synthesis, structural, thermal and optical studies of 1-ethyl-2,6-dimethyl-4-hydroxy pyridinium halides.

    PubMed

    Dhanuskodi, S; Manivannan, S; Kirschbaum, K

    2006-05-15

    1-Ethyl-2,6-dimethyl-4-hydroxy pyridinium chloride dihydrate and bromide dihydrate salts have been synthesized and their single crystals were grown by the slow evaporation of aqueous solution at 30 degrees C. The grown crystals were characterized by elemental analysis, FT-NMR and FT-IR techniques to confirm the formation of the expected compound. Optical transmittance window in aqueous solution was found to be 275-1100 nm by UV-vis-NIR technique. Thermogravimetric and differential thermal analyses reveal thermal stability and the presence of two water molecules in the crystal lattices. The crystal structure of chloride salt was also determined by X-ray diffraction method.

  19. Synthesis, crystal structure, thermal and nonlinear optical properties of new metal-organic single crystal: Tetrabromo (piperazinium) zincate (II) (TBPZ)

    NASA Astrophysics Data System (ADS)

    Boopathi, K.; Babu, S. Moorthy; Ramasamy, P.

    2018-04-01

    Tetrabromo (piperazinium) zincate, a new metal-organic crystal has been synthesized and its single crystal grown by slow evaporation method. The grown crystal has characterized by structural, spectral, thermal, linear and nonlinear optical properties. Single crystal X-ray diffractions study reveals that grown crystal belongs to orthorhombic crystal system with space group P212121. The presence of functional groups is identified by FT-IR spectral analysis. Thermal stability of the crystal was ascertained by TG-DTA measurement. The second order harmonic generation efficiency was measured using Kurtz and Perry technique and it was found to be 1.5 times that of KDP.

  20. Structural, Thermal, and Optical Performance (STOP) Modeling and Results for the James Webb Space Telescope Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Gracey, Renee; Bartoszyk, Andrew; Cofie, Emmanuel; Comber, Brian; Hartig, George; Howard, Joseph; Sabatke, Derek; Wenzel, Greg; Ohl, Raymond

    2016-01-01

    The James Webb Space Telescope includes the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. We performed extensive structural, thermal, and optical performance(STOP) modeling in support of all phases of ISIM development. In this paper, we focus on modeling and results associated with test and verification. ISIMs test program is bound by ground environments, mostly notably the 1g and test chamber thermal environments. This paper describes STOP modeling used to predict ISIM system performance in 0g and at various on-orbit temperature environments. The predictions are used to project results obtained during testing to on-orbit performance.

  1. Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits.

    PubMed

    Goto, Taichi; Onbaşlı, Mehmet C; Ross, C A

    2012-12-17

    Thin films of polycrystalline cerium substituted yttrium iron garnet (CeYIG) were grown on an yttrium iron garnet (YIG) seed layer on Si and Si-on-insulator substrates by pulsed laser deposition, and their optical and magneto-optical properties in the near-IR region were measured. A YIG seed layer of ~30 nm thick processed by rapid thermal anneal at 800°C provided a virtual substrate to promote crystallization of the CeYIG. The effect of the thermal budget of the YIG/CeYIG growth process on the film structure, magnetic and magnetooptical properties was determined.

  2. Development and Ground-Test Validation of Fiber Optic Sensor Attachment Techniques for Hot Structures Applications

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony; Hudson, Larry D.; Richards, W. Lance

    2005-01-01

    Fiber Optic Strain Measurements: a) Successfully attached silica fiber optic sensors to both metallics and composites; b) Accomplished valid EFPI strain measurements to 1850 F; c) Successfully attached EFPI sensors to large scale hot-structures; and d) Attached and thermally validated FBG bond and epsilon(sub app). Future Development a) Improve characterization of sensors on C-C and C-SiC substrates; b) Apply application to other composites such as SiC-SiC; c) Assist development of interferometer based Sapphire sensor currently being conducted under a Phase II SBIR; and d) Complete combined thermal/mechanical testing of FBG on composite substrates in controlled laboratory environment.

  3. Solar steam generation by heat localization.

    PubMed

    Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie; Loomis, James; Yerci, Selcuk; Miljkovic, Nenad; Chen, Gang

    2014-07-21

    Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.

  4. Fiber Optic Thermal Detection of Composite Delaminations

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Winfree, William P.

    2011-01-01

    A recently developed technique is presented for thermographic detection of delaminations in composites by performing temperature measurements with fiber optic Bragg gratings. A single optical fiber with multiple Bragg gratings employed as surface temperature sensors was bonded to the surface of a composite with subsurface defects. The investigated structure was a 10-ply composite specimen with prefabricated delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared and found to be consistent with the calculations using numerical simulation techniques. Also discussed are methods including various heating sources and patterns, and their limitations for performing in-situ structural health monitoring.

  5. Final Shape of Precision Molded Optics: Part 2 - Validation and Sensitivity to Material Properties and Process Parameters

    DTIC Science & Technology

    2012-06-27

    of the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior...the critical contributors to deviation include structural relaxation of the glass, thermal expansion of the molds, TRS and viscoelastic behavior of the...data. In that article glass was modeled as purely viscous and thermal expansion was accounted for with a constant coefficient of thermal expansion (CTE

  6. Optical limiting in gelatin stabilized Cu-PVP nanocomposite colloidal suspension

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Thakare, N. B.; Talwatkar, S. S.; Sunatkari, A. L.; Muley, G. G.

    2018-05-01

    This article illustrates investigations on optical limiting properties of Cu-PVP nanocomposite colloidal suspension. Gelatin stabilized Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD), Ultraviolet-visible (UV-vis) spectroscopy, etc. for structural and linear optical studies. Optical limiting properties of Colloidal Cu-PVP nanocomposites have been investigated at 808 nm diode CW laser. Minimum optical limiting threshold was found for GCu3-PVP nanocomposites sample. The strong optical limiting is thermal in origin as CW laser is used and effects are attributed to thermal lensing effect.

  7. Solvent-free optical recording of structural colours on pre-imprinted photocrosslinkable nanostructures

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Rezaei, Mohamad; Abdolahi, Mahssa; Kaminska, Bozena

    2017-09-01

    Optical digital information storage media, despite their ever-increasing storage capacity and data transfer rate, are vulnerable to the potential risk of turning inaccessible. For this reason, long-term eye-readable full-colour optical archival storage is in high demand for preserving valuable information from cultural, intellectual, and scholarly resources. However, the concurrent requirements in recording colours inexpensively and precisely, and preserving colours for the very long term (for at least 100 years), have not yet been met by existing storage techniques. Structural colours hold the promise to overcome such challenges. However, there is still the lack of an inexpensive, rapid, reliable, and solvent-free optical patterning technique for recording structural colours. In this paper, we introduce an enabling technique based on optical and thermal patterning of nanoimprinted SU-8 nanocone arrays. Using photocrosslinking and thermoplastic flow of SU-8, diffractive structural colours of nanocone arrays are recorded using ultra-violet (UV) exposure followed by the thermal development and reshaping of nanocones. Different thermal treatment procedures in reshaping nanocones are investigated and compared, and two-step progressive baking is found to allow the controllable reshaping of nanocones. The height of the nanocones and brightness of diffractive colours are modulated by varying the UV exposure dose to enable grey-scale patterning. An example of recorded full-colour image through half-tone patterning is also demonstrated. The presented technique requires only low-power continuous-wave UV light and is very promising to be adopted for professional and consumer archival storage applications.

  8. Comment on the paper "Synthesis, growth, structural, spectral, thermal, chemical etching, linear and nonlinear optical and mechanical studies of an organic single crystal 4-chloro 4-nitrostilbene (CONS): a potential NLO material" by P.M. Dinakaran, S. Kalainathan [Spectrochim. Acta A 111 (2013) 123-130].

    PubMed

    Srinivasan, Bikshandarkoil R; Dhuri, Sunder N; Nadkarni, V S

    2014-01-03

    We argue that (trans)-4-chloro-4'-nitrostilbene is not a new organic nonlinear optical material as claimed by Dinakaran and Kalainathan [P.M. Dinakaran, S. Kalainathan, Synthesis, growth, structural, spectral, thermal, chemical etching, linear and nonlinear optical and mechanical studies of an organic single crystal 4-Chloro 4-Nitrostilbene (CONS): a potential NLO material, Spectrochim. Acta A 111 (2013) 123-130], but instead a well-known compound whose synthesis, spectral data, single crystal structure and second harmonic generation (SHG) efficiency are well documented in the literature. The title paper is completely erroneous. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Crystal growth, structural, optical, spectral and thermal studies of tris(L-phenylalanine)L-phenylalaninium nitrate: a new organic nonlinear optical material.

    PubMed

    Prakash, M; Geetha, D; Lydia Caroline, M

    2011-10-15

    Tris(L-phenylalanine)L-phenylalaninium nitrate, C(9)H(12)NO(2)(+)·NO(3)(-)·3C(9)H(11)NO(2) (TPLPN), a new organic nonlinear optical material was grown from aqueous solution by slow evaporation solution growth at room temperature. The grown crystals were subjected to powder X-ray diffraction and single crystal X-ray diffraction studies to confirm the crystalline nature and crystal structure. The modes of vibration of different molecular groups present in TPLPN have been identified by FTIR spectral analysis. The presence of hydrogen and carbon in the grown crystal were confirmed by using proton and carbon nuclear magnetic resonance (NMR) spectral analyses. The optical transmission spectral study establishes good transmitting ability of the crystal in the entire visible region. The thermogravimetric (TG) and differential thermal analyses (DTA) were carried out to understand the thermal stability of the sample. The nonlinear optical property of the compound observed using Kurtz powder second harmonic generation test assets the suitability of the grown material for the frequency conversion of laser radiation of Nd:YAG. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Nanoscopic imaging of thick heterogeneous soft-matter structures in aqueous solution

    PubMed Central

    Bartsch, Tobias F.; Kochanczyk, Martin D.; Lissek, Emanuel N.; Lange, Janina R.; Florin, Ernst-Ludwig

    2016-01-01

    Precise nanometre-scale imaging of soft structures at room temperature poses a major challenge to any type of microscopy because fast thermal fluctuations lead to significant motion blur if the position of the structure is measured with insufficient bandwidth. Moreover, precise localization is also affected by optical heterogeneities, which lead to deformations in the imaged local geometry, the severity depending on the sample and its thickness. Here we introduce quantitative thermal noise imaging, a three-dimensional scanning probe technique, as a method for imaging soft, optically heterogeneous and porous matter with submicroscopic spatial resolution in aqueous solution. By imaging both individual microtubules and collagen fibrils in a network, we demonstrate that structures can be localized with a precision of ∼10 nm and that their local dynamics can be quantified with 50 kHz bandwidth and subnanometre amplitudes. Furthermore, we show how image distortions caused by optically dense structures can be corrected for. PMID:27596919

  11. Thermal Design and Analysis of the Optical Telescope Assembly for the Gondola for High Altitude Planetary Science

    NASA Technical Reports Server (NTRS)

    O'Connor, Brian; Brooks, Thomas

    2017-01-01

    The NASA Gondola for High Altitude Planetary Science (GHAPS) project is an effort to design, build, and fly a balloon-borne platform for planetary science missions. GHAPS observations will be in the 300 nm to 5 micron wavelength region covering UV, visible, and near-mid IR. The primary element of the project is the Optical Telescope Assembly (OTA). It is a one meter aperture narrow-field-of-view telescope that contains the primary and secondary mirrors, the support system/metering structure, a secondary mirror focusing system, baffles, and insulation. This paper presents the thermal design and analysis that has been done to support the design of the OTA. A major part of the thermal analysis was bounding the flight environment for the six potential Columbia Scientific Balloon Facility launch sites. These analyses were used to give input into the Structural Thermal Optical Performance (STOP) analysis of the telescope. Also the analysis was used to select heater sizes for the few OTA associated electronic components. Currently the telescope is scheduled to have its first flight in 2019.

  12. Second harmonic generation and crystal growth of new chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Patil, P. S.; Dharmaprakash, S. M.; Ramakrishna, K.; Fun, Hoong-Kun; Sai Santosh Kumar, R.; Narayana Rao, D.

    2007-05-01

    We report on the synthesis, crystal structure and optical characterization of chalcone derivatives developed for second-order nonlinear optics. The investigation of a series of five chalcone derivatives with the second harmonic generation powder test according to Kurtz and Perry revealed that these chalcones show efficient second-order nonlinear activity. Among them, high-quality single crystals of 3-Br-4'-methoxychalcone (3BMC) were grown by solvent evaporation solution growth technique. Grown crystals were characterized by X-ray powder diffraction (XRD), laser damage threshold, UV-vis-NIR and refractive index measurement studies. Infrared spectroscopy, thermogravimetric analysis and differential thermal analysis measurements were performed to study the molecular vibration and thermal behavior of 3BMC crystal. Thermal analysis does not show any structural phase transition.

  13. Simulation and experimental results of optical and thermal modeling of gold nanoshells.

    PubMed

    Ghazanfari, Lida; Khosroshahi, Mohammad E

    2014-09-01

    This paper proposes a generalized method for optical and thermal modeling of synthesized magneto-optical nanoshells (MNSs) for biomedical applications. Superparamagnetic magnetite nanoparticles with diameter of 9.5 ± 1.4 nm are fabricated using co-precipitation method and subsequently covered by a thin layer of gold to obtain 15.8 ± 3.5 nm MNSs. In this paper, simulations and detailed analysis are carried out for different nanoshell geometry to achieve a maximum heat power. Structural, magnetic and optical properties of MNSs are assessed using vibrating sample magnetometer (VSM), X-ray diffraction (XRD), UV-VIS spectrophotometer, dynamic light scattering (DLS), and transmission electron microscope (TEM). Magnetic saturation of synthesized magnetite nanoparticles are reduced from 46.94 to 11.98 emu/g after coating with gold. The performance of the proposed optical-thermal modeling technique is verified by simulation and experimental results. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effects of rapid thermal annealing on the optical properties of strain-free quantum ring solar cells

    PubMed Central

    2013-01-01

    Strain-free GaAs/Al0.33Ga0.67As quantum rings are fabricated by droplet epitaxy. Both photoresponse and photoluminescence spectra confirm optical transitions in quantum rings, suggesting that droplet epitaxial nanomaterials are applicable to intermediate band solar cells. The effects of post-growth annealing on the quantum ring solar cells are investigated, and the optical properties of the solar cells with and without thermal treatment are characterized by photoluminescence technique. Rapid thermal annealing treatment has resulted in the significant improvement of material quality, which can be served as a standard process for quantum structure solar cells grown by droplet epitaxy. PMID:23281811

  15. Optical property degradation of anodic coatings in the Space Station low earth orbit

    NASA Technical Reports Server (NTRS)

    David, Kaia E.; Babel, Hank W.

    1992-01-01

    The anodic coatings and optical properties to be used for passive thermal control of the SSF are studied. Particular attention is given to the beginning-of-life optical properties for aluminum alloys suitable for structural and radiator applications, the statistical variation in the beginning-of-life properties, and estimates of the end-of-life properties of the alloys based on ultraviolet radiation testing and flight test results. It is concluded that anodic coatings can be used for thermal control of long life, low earth orbit spacecraft. Some use restrictions are defined for specific cases. Anodic coatings have been selected as baseline thermal control coating for large portions of the SSF.

  16. Conceptual design of a coherent optical system of modular imaging collectors (COSMIC). [telescope array deployed by space shuttle in 1990's

    NASA Technical Reports Server (NTRS)

    Nein, M. E.; Davis, B. G.

    1982-01-01

    The Coherent Optical System of Modular Imaging Collectors (COSMIC) is the design concept for a phase-coherent optical telescope array that may be placed in earth orbit by the Space Shuttle in the 1990s. The initial system module is a minimum redundancy array whose photon collecting area is three times larger than that of the Space Telescope, and possesses a one-dimensional resoution of better than 0.01 arcsec in the visible range. Thermal structural requirements are assessed. Although the coherent beam combination requirements will be met by an active control system, the COSMIC structural/thermal design must meet more stringent performance criteria than even those of the Space Telescope.

  17. Analysis of background irradiation in thermal IR hyper-spectral imaging systems

    NASA Astrophysics Data System (ADS)

    Xu, Weiming; Yuan, Liyin; Lin, Ying; He, Zhiping; Shu, Rong; Wang, Jianyu

    2010-04-01

    Our group designed a thermal IR hyper-spectral imaging system in this paper mounted in a vacuum encapsulated cavity with temperature controlling equipments. The spectral resolution is 80 nm; the spatial resolution is 1.0 mrad; the spectral channels are 32. By comparing and verifying the theoretical simulated calculation and experimental results for this system, we obtained the precise relationship between the temperature and background irradiation of optical and mechanical structures, and found the most significant components in the optic path for improving imaging quality that should be traded especially, also we had a conclusion that it should cool the imaging optics and structures to about 100K if we need utilize the full dynamic range and capture high quality of imagery.

  18. Thermal tuning the reversible optical band gap of self-assembled polystyrene photonic crystals

    NASA Astrophysics Data System (ADS)

    Vakili Tahami, S. H.; Pourmahdian, S.; Shirkavand Hadavand, B.; Azizi, Z. S.; Tehranchi, M. M.

    2016-11-01

    Nano-sized polymeric colloidal particles could undergo self-organization into three-dimensional structures to produce desired optical properties. In this research, a facile emulsifier-free emulsion polymerization method was employed to synthesize highly mono-disperse sub-micron polystyrene colloids. A high quality photonic crystal (PhC) structure was prepared by colloidal polystyrene. The reversible thermal tuning effect on photonic band gap position as well as the attenuation of the band gap was investigated in detail. The position of PBG can be tuned from 420 nm to 400 nm by varying the temperature of the PhC structure, reversibly. This reversible effect provides a reconfigurable PhC structure which could be used as thermo-responsive shape memory polymers.

  19. LDR structural experiment definition

    NASA Technical Reports Server (NTRS)

    Russell, R. A.

    1988-01-01

    A system study to develop the definition of a structural flight experiment for a large precision segmented reflector on the Space Station was accomplished by the Boeing Aerospace Company for NASA's Langley Research Center. The objective of the study was to use a Large Deployable Reflector (LDR) baseline configuration as the basis for focusing an experiment definition, so that the resulting accommodation requirements and interface constraints could be used as part of the mission requirements data base for Space Station. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of an optical bench, thermal shield and primary mirror segments, and alignment of the optical components, would occur on a second experiment. The structure would then be moved to the payload point system for pointing, optical control, and scientific optical measurement for a third experiment. Experiment 1 will deploy the primary support truss while it is attached to the instrument module structure. The ability to adjust the mirror attachment points and to attach several dummy primary mirror segments with a robotic system will also be demonstrated. Experiment 2 will be achieved by adding new components and equipment to experiment one. Experiment 3 will demonstrate advanced control strategies, active adjustment of the primary mirror alignment, and technologies associated with optical sensing.

  20. GeoCARB design maturity and geostationary heritage

    NASA Astrophysics Data System (ADS)

    Sawyer, Kevin; Clark, Charles; Katz, Noah; Kumar, Jack; Nast, Ted; Palmer, Alice

    2013-09-01

    Our companion paper `Progress in development of Tropospheric Infrared Mapping Spectrometers (TIMS): geostationary greenhouse gas (GHG) application' describes geoCARB performance and science. Here we describe a geoCARB instrument design study leading to near PDR maturity. It is based on heritage geostationary (AIA and HMI on SDO, SBIRS GEO-1 and upcoming GLM on GOES-R as examples) and other (IRIS and NIRcam) flight instrumentation. Heritage work includes experience and well developed specifications for near a-thermal carbon fiber honeycomb composite optical benches and optical element mounting design forms that utilize a "family" of mounts for nearly any type of optical element. The geoCARB approach utilizes composite optical benches and bipod flexures to kinematically mount optics. Tooling for alignment and staking of all elements is integral to the design and is "removed before flight" for mass minimization. GeoCARB requires a cryogenic region for focal planes and spectrometers but front end optics and main structure are designed to run much warmer. A star tracker is used for geoCARB posteriori geolocation including pseudo-diurnal thermal distortion characterization. It is kinematically mounted by low conductance thermal isolators directly on to the low expansion high stiffness composite bench that defines the master optical surfaces including the scanning mirrors. The thermal load from the camera heads is routed away from the bench heat pipes. Use of kinematic mounting is advantageous for low thermal conduction designs. Honeycomb composites enable the design's low thermal mechanical distortions.

  1. Borophene hydride: a stiff 2D material with high thermal conductivity and attractive optical and electronic properties.

    PubMed

    Mortazavi, Bohayra; Makaremi, Meysam; Shahrokhi, Masoud; Raeisi, Mostafa; Singh, Chandra Veer; Rabczuk, Timon; Pereira, Luiz Felipe C

    2018-02-22

    Two-dimensional (2D) structures of boron atoms, so-called borophene, have recently attracted remarkable attention. In a recent exciting experimental study, a hydrogenated borophene structure was realized. Motivated by this success, we conducted extensive first-principles calculations to explore the mechanical, thermal conduction, electronic and optical responses of borophene hydride. The mechanical response of borophene hydride was found to be anisotropic, with an elastic modulus of 131 N m -1 and a high tensile strength of 19.9 N m -1 along the armchair direction. Notably, it was shown that by applying mechanical loading the metallic electronic character of borophene hydride can be altered to direct band-gap semiconducting, very appealing for application in nanoelectronics. The absorption edge of the imaginary part of the dielectric function was found to occur in the visible range of light for parallel polarization. Finally, it was estimated that this novel 2D structure at room temperature can exhibit high thermal conductivities of 335 W mK -1 and 293 W mK -1 along the zigzag and armchair directions, respectively. Our study confirms that borophene hydride shows an outstanding combination of interesting mechanical, electronic, optical and thermal conduction properties, which are promising for the design of novel nanodevices.

  2. One-step fabrication of submicrostructures by low one-photon absorption direct laser writing technique with local thermal effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Dam Thuy Trang; Tong, Quang Cong; Ledoux-Rak, Isabelle

    In this work, local thermal effect induced by a continuous-wave laser has been investigated and exploited to optimize the low one-photon absorption (LOPA) direct laser writing (DLW) technique for fabrication of polymer-based microstructures. It was demonstrated that the temperature of excited SU8 photoresist at the focusing area increases to above 100 °C due to high excitation intensity and becomes stable at that temperature thanks to the use of a continuous-wave laser at 532 nm-wavelength. This optically induced thermal effect immediately completes the crosslinking process at the photopolymerized region, allowing obtain desired structures without using the conventional post-exposure bake (PEB) step, which ismore » usually realized after the exposure. Theoretical calculation of the temperature distribution induced by local optical excitation using finite element method confirmed the experimental results. LOPA-based DLW technique combined with optically induced thermal effect (local PEB) shows great advantages over the traditional PEB, such as simple, short fabrication time, high resolution. In particular, it allowed the overcoming of the accumulation effect inherently existed in optical lithography by one-photon absorption process, resulting in small and uniform structures with very short lattice constant.« less

  3. Optomechanical Design and Analysis Considerations on the Lunar Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Schmidt. Stephen; Mamakos, William; Matzinger, Elizabeth; Wall, Sheila

    2007-01-01

    This paper presents the mechanical design and analysis work completed on the Lunar Orbiter Laser Altimeter (LOLA). LOLA is one of six instruments on the Lunar Reconnaissance Orbiter (LRO), scheduled to launch in 2008. LOLA's main objective is to produce a high-resolution global lunar topographic model to aid in safe landings and enhance surface mobility in future exploration missions. LOLA will also look for evidence of ice water in the permanently shadowed regions around the lunar poles. Beryllium was chosen as the primary material for the LOLA Optical Transmitter Assembly to take advantage of the material's low mass density for light weight optical instrument design and for CTE matching of the refractive optical components. In addition, the thermal conductivity and specific heat of beryllium minimizes thermal gradients and thermal excursions. Special consideration must be made for the planning and preparation to fabricate beryllium components, as well as the preparation and cleaning of the components for gold plating. Assembly challenges include handling, precision cleaning and integration and testing. Structural analysis considerations include following General Environmental Verification Specification (GEVS) guidelines for GSFC payloads. The GEVS random environment for LOLA has an acceptance level of 10.0 Grms, which was analyzed for higher frequency transients. The low frequency transients were analyzed using a Mass Acceleration Curve to obtain an equivalent static loading. In addition, Structural-Thermal-Optical analysis, commonly referred to as STOP analysis, was completed to predict optical performance under the instrument's operational thermal environment. This included stress and distortion analysis on the receiver telescope lens.

  4. Analysis of the Effects of Thermal Environment on Optical Systems for Navigation Guidance and Control in Supersonic Aircraft Based on Empirical Equations

    PubMed Central

    Cheng, Xuemin; Yang, Yikang; Hao, Qun

    2016-01-01

    The thermal environment is an important factor in the design of optical systems. This study investigated the thermal analysis technology of optical systems for navigation guidance and control in supersonic aircraft by developing empirical equations for the front temperature gradient and rear thermal diffusion distance, and for basic factors such as flying parameters and the structure of the optical system. Finite element analysis (FEA) was used to study the relationship between flying and front dome parameters and the system temperature field. Systematic deduction was then conducted based on the effects of the temperature field on the physical geometry and ray tracing performance of the front dome and rear optical lenses, by deriving the relational expressions between the system temperature field and the spot size and positioning precision of the rear optical lens. The optical systems used for navigation guidance and control in supersonic aircraft when the flight speed is in the range of 1–5 Ma were analysed using the derived equations. Using this new method it was possible to control the precision within 10% when considering the light spot received by the four-quadrant detector, and computation time was reduced compared with the traditional method of separately analysing the temperature field of the front dome and rear optical lens using FEA. Thus, the method can effectively increase the efficiency of parameter analysis and computation in an airborne optical system, facilitating the systematic, effective and integrated thermal analysis of airborne optical systems for navigation guidance and control. PMID:27763515

  5. Analysis of the Effects of Thermal Environment on Optical Systems for Navigation Guidance and Control in Supersonic Aircraft Based on Empirical Equations.

    PubMed

    Cheng, Xuemin; Yang, Yikang; Hao, Qun

    2016-10-17

    The thermal environment is an important factor in the design of optical systems. This study investigated the thermal analysis technology of optical systems for navigation guidance and control in supersonic aircraft by developing empirical equations for the front temperature gradient and rear thermal diffusion distance, and for basic factors such as flying parameters and the structure of the optical system. Finite element analysis (FEA) was used to study the relationship between flying and front dome parameters and the system temperature field. Systematic deduction was then conducted based on the effects of the temperature field on the physical geometry and ray tracing performance of the front dome and rear optical lenses, by deriving the relational expressions between the system temperature field and the spot size and positioning precision of the rear optical lens. The optical systems used for navigation guidance and control in supersonic aircraft when the flight speed is in the range of 1-5 Ma were analysed using the derived equations. Using this new method it was possible to control the precision within 10% when considering the light spot received by the four-quadrant detector, and computation time was reduced compared with the traditional method of separately analysing the temperature field of the front dome and rear optical lens using FEA. Thus, the method can effectively increase the efficiency of parameter analysis and computation in an airborne optical system, facilitating the systematic, effective and integrated thermal analysis of airborne optical systems for navigation guidance and control.

  6. Nanocharacterization of the adhesion effect and bending stiffness in optical MEMS

    NASA Astrophysics Data System (ADS)

    Pustan, Marius; Birleanu, Corina; Dudescu, Cristian

    2017-11-01

    The scope of this paper is the reliability design and testing of flexible MEMS components as clamp-clamp beams for the out-of-plane displacement. The field of implementation of such structures is in optical relevant applications such as the optical microsensors or optical microswitches. Moreover these structures can be successfully implemented in RF switches or in the other MEMS applications. The research studies presented in this paper consider the analytical and numerical analysis follow by the experimental validation. The mechanical and tribological characteristics such as the sample static response under an applied force and the adhesion effect between the flexible structure and substrate are investigated. The samples under test are fabricated from a reflective material - gold. Experimental investigations are performed by atomic force microscopy in order to determine the response of the gold microbridges under an applied force. Moreover, to identify the proper geometry that is less sensitive to a thermal gradient, different geometrical configurations of microbridges are tested under different temperatures. An etalon structure is considered as a reference beam and it is compared with the other samples fabricated in the same geometrical dimensions but with some additional rectangular holes performed on the flexible plate. The scope of holes is to reduce the temperature influence on the mechanical behaviour of clamp-clamp beam from application where a thermal gradient occurs. During numerical analysis and experimental investigations, the temperature of samples is increased from 20 °C to 100 °C and the sample response is monitored. A comparison between numerical and experimental results is provided at the end of paper. The research results are useful for designers to predict the behaviour of material and structure from optical or thermal applications in order to improve the reliability and the MEMS lifetime.

  7. Isolation of Thermal and Strain Responses in Composites Using Embedded Fiber Bragg Grating Temperature Sensors

    DTIC Science & Technology

    2013-05-10

    13. SUPPLEMENTARY NOTES 14. ABSTRACT In this research, fiber Bragg grating ( FBG ) optical temperature sensors are used for structural health...surface of a composite structure. FBG sensors also respond to axial strain in the optical fiber, thus any structural strain experienced by the composite...features. First, a three-dimensional array of FBG temperature sensors has been embedded in a carbon/epoxy composite structure, consisting of both in

  8. Facile growth of barium oxide nanorods: structural and optical properties.

    PubMed

    Ahmad, Naushad; Wahab, Rizwan; Alam, Manawwer

    2014-07-01

    This paper reports a large-scale synthesis of barium oxide nanorods (BaO-NRs) by simple solution method at a very low-temperature of - 60 degrees C. The as-grown BaO-NRs were characterized in terms of their morphological, structural, compositional, optical and thermal properties. The morphological characterizations of as-synthesized nanorods were done by scanning electron microscopy (SEM) which confirmed that the synthesized products are rod shaped and grown in high density. The nanorods exhibits smooth and clean surfaces throughout their lengths. The crystalline property of the material was analyzed with X-ray diffraction pattern (XRD). The compositional and thermal properties of synthesized nanorods were observed via Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis which confirmed that the synthesized nanorods are pure BaO and showed good thermal stability. The nanorods exhibited good optical properties as was confirmed from the room-temperature UV-vis spectroscopy. Finally, a plausible mechanism for the formation of BaO-NRs is also discussed in this paper.

  9. Polymer based resonant waveguide grating photonic filter with on-chip thermal tuning

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Ritesh Ray; Enemuo, Amarachukwu N.; Song, Youngsik; Seo, Sang-Woo

    2018-07-01

    In this paper, we present the development of a multilayer polymer resonant waveguide grating (RWG)-based optical filter with an integrated microheater for on-chip thermal spectral tuning. RWG optical filter is fabricated using polymer-based materials. Therefore, its integration can be applied to different material platforms. Typical RWG structure is sensitive to back optical reflection from the structures below. To reduce the effect of back reflection from the metal heater and improve the quality of the integrated RWG filter output, an intermediate absorption layer was implemented utilizing an epoxy based carbon coating. This approach effectively suppresses the background noise in the RWG characteristics. The central wavelength of the reported filter was designed around 1550 nm. Experimentally, wavelength tuning of 21.96 nm was achieved for operating temperature range of 81 °C with approximately 150mW power consumption. Based on the layer-by-layer fabrication approach, the presented thermally tunable RWG filter on a chip has potential for use in low cost hybrid communication systems and spectral sensing applications.

  10. LED lamp or bulb with remote phosphor and diffuser configuration with enhanced scattering properties

    DOEpatents

    Tong, Tao; Le Toquin, Ronan; Keller, Bernd; Tarsa, Eric; Youmans, Mark; Lowes, Theodore; Medendorp, Jr., Nicholas W; Van De Ven, Antony; Negley, Gerald

    2014-11-11

    An LED lamp or bulb is disclosed that comprises a light source, a heat sink structure and an optical cavity. The optical cavity comprises a phosphor carrier having a conversions material and arranged over an opening to the cavity. The phosphor carrier comprises a thermally conductive transparent material and is thermally coupled to the heat sink structure. An LED based light source is mounted in the optical cavity remote to the phosphor carrier with light from the light source passing through the phosphor carrier. A diffuser dome is included that is mounted over the optical cavity, with light from the optical cavity passing through the diffuser dome. The properties of the diffuser, such as geometry, scattering properties of the scattering layer, surface roughness or smoothness, and spatial distribution of the scattering layer properties may be used to control various lamp properties such as color uniformity and light intensity distribution as a function of viewing angle.

  11. Fiber Optic Bragg Grating Sensors for Thermographic Detection of Subsurface Anomalies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Winfree, William P.; Wu, Meng-Chou

    2009-01-01

    Conventional thermography with an infrared imager has been shown to be an extremely viable technique for nondestructively detecting subsurface anomalies such as thickness variations due to corrosion. A recently developed technique using fiber optic sensors to measure temperature holds potential for performing similar inspections without requiring an infrared imager. The structure is heated using a heat source such as a quartz lamp with fiber Bragg grating (FBG) sensors at the surface of the structure to detect temperature. Investigated structures include a stainless steel plate with thickness variations simulated by small platelets attached to the back side using thermal grease. A relationship is shown between the FBG sensor thermal response and variations in material thickness. For comparison, finite element modeling was performed and found to agree closely with the fiber optic thermography results. This technique shows potential for applications where FBG sensors are already bonded to structures for Integrated Vehicle Health Monitoring (IVHM) strain measurements and can serve dual-use by also performing thermographic detection of subsurface anomalies.

  12. Dimensional stability performance of a CFRP sandwich optical bench for microsatellite payload

    NASA Astrophysics Data System (ADS)

    Desnoyers, N.; Goyette, P.; Leduc, B.; Boucher, M.-A.

    2017-09-01

    Microsatellite market requires high performance while minimizing mass, volume and cost. Telescopes are specifically targeted by these trade-offs. One of these is to use the optomechanical structure of the telescope to mount electronic devices that may dissipate heat. However, such approach may be problematic in terms of distortions due to the presence of high thermal gradients throughout the telescope structure. To prevent thermal distortions, Carbon Fiber Reinforced Polymer (CFRP) technology can be used for the optomechanical telescope material structure. CFRP is typically about 100 times less sensitive to thermal gradients and its coefficient of thermal expansion (CTE) is about 200 to 600 times lower than standard aluminum alloys according to inhouse measurements. Unfortunately, designing with CFRP material is not as straightforward as with metallic materials. There are many parameters to consider in order to reach the desired dimensional stability under thermal, moisture and vibration exposures. Designing optomechanical structures using CFRP involves many challenges such as interfacing with optics and sometimes dealing with high CTE mounting interface structures like aluminum spacecraft buses. INO has designed a CFRP sandwich telescope structure to demonstrate the achievable performances of such technology. Critical parameters have been optimized to maximize the dimensional stability while meeting the stringent environmental requirements that microsatellite payloads have to comply with. The telescope structure has been tested in vacuum from -40°C to +50°C and has shown a good fit with finite element analysis predictions.

  13. Wide-Field Infrared Survey Telescope (WFIRST) Integrated Modeling

    NASA Technical Reports Server (NTRS)

    Liu, Kuo-Chia; Blaurock, Carl

    2017-01-01

    Contents: introduction to WFIRST (Wide-Field Infrared Survey Telescope) and integrated modeling; WFIRST stability requirement summary; instability mitigation strategies; dynamic jitter results; STOP (structural-thermal-optical performance) (thermal distortion) results; STOP and jitter capability limitations; model validation philosophy.

  14. Dynamical thermal effects in InGaAsP microtubes at telecom wavelengths.

    PubMed

    Tian, Zhaobing; Bianucci, Pablo; Roche, Philip J R; Dastjerdi, M Hadi Tavakoli; Mi, Zetian; Poole, Philip J; Kirk, Andrew G; Plant, David V

    2012-07-01

    We report on the observation of a dynamical thermal effect in InGaAsP microtubes at telecom wavelengths. The microtubes are fabricated by releasing a strained semiconductor bilayer and are picked up by abruptly tapered optical fibers for subsequent coupling with adiabatically tapered optical fibers. As a result of absorption by InAs quantum dots embedded in the tube structure, these microtubes show dynamical thermal effects at wavelengths around 1525 nm and 1578 nm, while they are passive at longer wavelengths near 1634 nm. The photon absorption induced thermal effect is visualized by generating a pair of microbottles. The dynamical thermal effect can be avoided or exploited for passive or active applications by utilizing appropriate resonance wavelengths.

  15. Thermoelectric properties of V2O5 thin films deposited by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Santos, R.; Loureiro, J.; Nogueira, A.; Elangovan, E.; Pinto, J. V.; Veiga, J. P.; Busani, T.; Fortunato, E.; Martins, R.; Ferreira, I.

    2013-10-01

    This work reports the structural, optical, electrical and thermoelectric properties of vanadium pentoxide (V2O5) thin films deposited at room temperature by thermal evaporation on Corning glass substrates. A post-deposition thermal treatment up to 973 K under atmospheric conditions induces the crystallization of the as-deposited amorphous films with an orthorhombic V2O5 phase with grain sizes around 26 nm. As the annealing temperature rises up to 773 K the electrical conductivity increases. The films exhibit thermoelectric properties with a maximum Seebeck coefficient of -218 μV/K and electrical conductivity of 5.5 (Ω m)-1. All the films show NIR-Vis optical transmittance above 60% and optical band gap of 2.8 eV.

  16. Effect of amino acid dopants on the spectral, optical, mechanical and thermal properties of potassium acid phthalate crystals for possible optoelectronic and frequency doubling applications

    NASA Astrophysics Data System (ADS)

    Prakash, J. Thomas Joseph; Gnanaraj, J. Martin Sam; Dhavud, S. Shek; Ekadevasena, S.

    2015-09-01

    Undoped and amino acid (L-Arginine and L-Valine) doped KAP crystals were grown by slow evaporation solution growth technique. The changes in the structural, spectral, optical, mechanical and thermal properties were observed. The sharp prominent peaks in the indexed powder XRD pattern confirms the crystalline nature of the sample. Optical studies reveal that the crystal is transparent in the entire visible light region. Thermal stability was checked by TG/DTA analysis. The mechanical stability was evaluated from Vicker's microhardness test. The SHG efficiency for the title materials was tested with different particle sizes by the Kurtz and Perry powder method, which established the existence of phase matching.

  17. Photoinduced electro-optics measurements of biosilica transformation to cristobalite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, Ido; Aluma, Yaniv; Ilan, Micha

    2015-03-15

    In this paper we studied the photoinduced electro optics effects in the thermal transformation process of biosilica to cristobalite, at a relatively low temperature and ambient pressure. This process was characterized by a variety of standards techniques with emphasis on linear electro optic effect measurements. Overall we demonstrated that photoinduced electro optics measurements are very sensitive to the transformation from amorphous structure of silica in the natural sponge samples to laminar string morphology of cristobalite. With this technique we could probe the change in the samples chirality from achiral bio silica to chiral cristobalite structure. Furthermore it is shown thatmore » natural biosilica have photoinduced linear electro optics respond indicating the chiral natural of biosilica. - Graphical abstract: The phase transformation of biosilica from marine sponges to Cristobalite under thermal treatment was investigated using photoinduced electro optics measurements. The figure shows the changes of the electro-optic coefficient of cristobalite and biosilica. - Highlights: • We examine phase transformation of biosilica. • We report transition from amorphous biosilica to crystalline Cristobalite. • Biosilica transformation to Cristobalite at temperature of 850 °C. • Biosilica transformation is studied with photoinduced measurements. • We examine changes in the photoinduced linear electro optics properties.« less

  18. Plasmon-enhanced versatile optical nonlinearities in a Au-Ag-Au multi-segmental hybrid structure.

    PubMed

    Yao, Lin-Hua; Zhang, Jun-Pei; Dai, Hong-Wei; Wang, Ming-Shan; Zhang, Lu-Man; Wang, Xia; Han, Jun-Bo

    2018-06-27

    A Au-Ag-Au multi-segmental hybrid structure has been synthesized by using an electrodeposition method based on an anodic aluminum oxide (AAO) membrane. The third-order optical nonlinearities, second harmonic generation (SHG) and photoluminescence (PL) properties containing ultrafast supercontinuum generation and plasmon mediated thermal emission have been investigated. Significant optical enhancements have been obtained near surface plasmon resonance wavelength in all the abovementioned nonlinear processes. Comparative studies between the Au-Ag-Au multi-segmental hybrid structure and the corresponding single-component Au and Ag hybrid structures demonstrate that the Au-Ag-Au multi-segmental hybrid structure has much larger optical nonlinearities than its counterparts. These results demonstrate that the Au-Ag-Au hybrid structure is a promising candidate for applications in plasmonic devices and enhancement substrates.

  19. Structural and optical properties of CuS thin films deposited by Thermal co-evaporation

    NASA Astrophysics Data System (ADS)

    Sahoo, A. K.; Mohanta, P.; Bhattacharyya, A. S.

    2015-02-01

    Copper sulfide (CuS) thin films with thickness 100, 150 and 200 nm have been deposited on glass substrates by thermal co-evaporation of Copper and Sulphur. The effect of CuS film thickness on the structural and optical properties have investigated and discussed. Structural and optical investigations of the films were carried out by X-ray diffraction, atomic force microscopy, high-resolution transmission electron microscopy and UV spectroscopy. XRD and selected area electron diffraction conforms that polycrystalline in nature with hexagonal crystal structure. AFM studies revealed a smooth surface morphology with root mean-square roughness values increases from 24 nm to 42 nm as the film thickness increase from 100 nm to 200 nm. AFM image showed that grain size increases with thickness of film increases and good agreement with the calculated from full width half maximum of the X-ray diffraction peak using Scherrer's formula and Williamson-Hall plot. The absorbance of the thin films were absorbed decreases with wavelength through UV-visible regions but showed a increasing in the near-infrared regions. The reflectance spectra also showed lower reflectance peak (25% to 32%) in visible region and high reflectance peak (49 % to 54 %) in near-infrared region. These high absorbance films made them for photo-thermal conversion of solar energy.

  20. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    NASA Astrophysics Data System (ADS)

    Giang, Thanhkieu; Kim, Jinhwan

    2017-01-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature ( T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature ( T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  1. Conceptual design and structural analysis of the spectroscopy of the atmosphere using far infrared emission (SAFIRE) instrument

    NASA Technical Reports Server (NTRS)

    Moses, Robert W.; Averill, Robert D.

    1992-01-01

    The conceptual design and structural analysis for the Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Instrument are provided. SAFIRE, which is an international effort, is proposed for the Earth Observing Systems (EOS) program for atmospheric ozone studies. A concept was developed which meets mission requirements and is the product of numerous parametric studies and design/analysis iterations. Stiffness, thermal stability, and weight constraints led to a graphite/epoxy composite design for the optical bench and supporting struts. The structural configuration was determined by considering various mounting arrangements of the optical, cryo, and electronic components. Quasi-static, thermal, modal, and dynamic response analyses were performed, and the results are presented for the selected configuration.

  2. The effect of induced strains on photoluminescence properties of ZnO nanostructures grown by thermal evaporation method

    NASA Astrophysics Data System (ADS)

    Arjmand, Yaser; Eshghi, Hosein

    2016-03-01

    In this paper, ZnO nanostructures have been synthesized by thermal evaporation process using metallic zinc powder in the presence of oxygen on p-Si (100) at different distances from the boat. The structural and optical characterizations have been carried out. The morphological study shows various shape nanostructures. XRD data indicate that all samples have a polycrystalline wurtzite hexagonal structure in such a way that the closer sample has a preferred orientation along (101) while the ones farther are grown along (002) direction. From the structural and optical data analysis, we found that the induced strains are the main parameter controlling the UV/green peaks ratios in the PL spectra of the studied samples.

  3. Integrated modeling: a look back

    NASA Astrophysics Data System (ADS)

    Briggs, Clark

    2015-09-01

    This paper discusses applications and implementation approaches used for integrated modeling of structural systems with optics over the past 30 years. While much of the development work focused on control system design, significant contributions were made in system modeling and computer-aided design (CAD) environments. Early work appended handmade line-of-sight models to traditional finite element models, such as the optical spacecraft concept from the ACOSS program. The IDEAS2 computational environment built in support of Space Station collected a wider variety of existing tools around a parametric database. Later, IMOS supported interferometer and large telescope mission studies at JPL with MATLAB modeling of structural dynamics, thermal analysis, and geometric optics. IMOS's predecessor was a simple FORTRAN command line interpreter for LQG controller design with additional functions that built state-space finite element models. Specialized language systems such as CAESY were formulated and prototyped to provide more complex object-oriented functions suited to control-structure interaction. A more recent example of optical modeling directly in mechanical CAD is used to illustrate possible future directions. While the value of directly posing the optical metric in system dynamics terms is well understood today, the potential payoff is illustrated briefly via project-based examples. It is quite likely that integrated structure thermal optical performance (STOP) modeling could be accomplished in a commercial off-the-shelf (COTS) tool set. The work flow could be adopted, for example, by a team developing a small high-performance optical or radio frequency (RF) instrument.

  4. Growth, structural, optical, thermal and mechanical properties of ammonium pentaborate single crystal.

    PubMed

    Balakrishnan, T; Bhagavannarayana, G; Ramamurthi, K

    2008-11-15

    Nonlinear optical single crystals of ammonium pentaborate (APB) were grown by the slow cooling method from aqueous solution. Grown crystal was characterized by powder X-ray diffraction (PXRD) and FT-IR spectral analysis. Perfection of the grown crystal was evaluated by high-resolution X-ray diffractometry (HRXRD). The effect of nylon threading on the perfection of the grown bigger crystal was also studied by HRXRD. The range and percentage of optical transmission was ascertained by recording UV-vis-NIR spectrum. Thermal properties were investigated by TG-DTA and DSC analyses. Its mechanical hardness was estimated by Vickers microhardness tester.

  5. An ultra stable optical bench for the magnetic survey satellite

    NASA Technical Reports Server (NTRS)

    Wingate, C. A., Jr.; Coughlin, T. B.; Sullivan, R. M.

    1978-01-01

    The Magsat optical bench has been designed and built to hold the alignment of five optical elements to deflections of 1-2 arcsec during orbital operation. The bench has been designed to withstand alignment changes during the launch and prestabilization phases of the mission. Severe weight constraints, in conjunction with the thermal and structural requirements, led to the choice of graphite-fiber-reinforced epoxy egg crate core and face sheets for the bench construction. Active temperature control was necessary to meet thermal deflection objectives, and novel kinematic mountings were required to prevent spacecraft bending from deflecting the bench.

  6. Star-shaped azomethines based on tris(2-aminoethyl)amine. Characterization, thermal and optical study.

    PubMed

    Iwan, Agnieszka; Janeczek, Henryk; Kaczmarczyk, Bozena; Jarzabek, Bozena; Sobota, Michal; Rannou, Patrice

    2010-02-01

    The synthesis and detailed (physico)-chemical ((1)H/(13)C NMR, FTIR, UV-vis and elemental analysis) characterizations of new star-shaped compounds based on tris(2-aminoethyl)amine, including in their structure an azomethine function (HCN-) and alkoxysemiperfluorinated (-O-(CH(2))(3)-(CF(2))(7)-CF(3)), octadecyloxy aliphatic (-O-(CH(2))(17)-CH(3)) chain or two phenyl rings (-Ph-Ph-) as a terminal group, were reported. The mesomorphic behavior was investigated by means of differential scanning calorimetry (DSC), polarized optical microscopy (POM) and additionally by FTIR(T) and UV-vis(T) spectroscopy. Wide-angle X-ray diffraction (WAXD) technique was used to probe the structural properties of the azomethines. Moreover, the azomethine A1 was electro-spun to prepare fibers with poly(methyl methacrylate) (PMMA) and investigated by DSC and POM. Additionally, a film of the A1 with PMMA was cast from chloroform and the thermal properties of the film were compared with the thermal properties of the fiber and powder. It was showed that terminal groups dramatically influence the thermal and optical properties of the star-shaped azomethines. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  7. A novel structure of gel grown strontium cyanurate crystal and its structural, optical, electrical characterization

    NASA Astrophysics Data System (ADS)

    Divya, R.; Nair, Lekshmi P.; Bijini, B. R.; Nair, C. M. K.; Gopakumar, N.; Babu, K. Rajendra

    2017-12-01

    Strontium cyanurate crystals with novel structure and unique optical property like mechanoluminescence have been grown by conventional gel method. Transparent crystals were obtained. The single crystal X-ray diffraction analysis reveals the exquisite structure of the grown crystal. The crystal is centrosymmetric and has a three dimensional polymeric structure. The powder X ray diffraction analysis confirms its crystalline nature. The functional groups present in the crystal were identified by Fourier transform infrared spectroscopy. Elemental analysis confirmed the composition of the complex. A study of thermal properties was done by thermo gravimetric analysis and differential thermal analysis. The optical properties like band gap, refractive index and extinction coefficient were evaluated from the UV visible spectral analysis. The etching study was done to reveal the dislocations in the crystal which in turn explains mechanoluminescence emission. The mechanoluminescence property exhibited by the crystal makes it suitable for stress sensing applications. Besides being a centrosymmetric crystal, it also exhibits NLO behavior. Dielectric properties were studied and theoretical calculations of Fermi energy, valence electron plasma energy, penn gap and polarisability have been done.

  8. Metal clusters and nanoparticles in dielectric matrices: Formation and optical properties

    NASA Astrophysics Data System (ADS)

    Gladskikh, I. A.; Vartanyan, T. A.

    2016-12-01

    The optical properties of thin dielectric films with metal inclusions and their dependence on thermal and laser annealing are studied experimentally. Metal clusters (Ag, Au, and Cu) in dielectric materials (Al2O3 and SiO2) are obtained by simultaneous vacuum deposition of metal and dielectric on the surface of a corresponding dielectric substrate (sapphire and quartz). It is shown that, depending on the deposited dielectric material, on the weight ratio of deposited metal and dielectric, and on the subsequent thermal treatment, one can obtain different metal structures, from clusters with a small number of atoms to complex dendritic plasmonic structures.

  9. Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers

    PubMed Central

    Jens, Kobelke; Jörg, Bierlich; Katrin, Wondraczek; Claudia, Aichele; Zhiwen, Pan; Sonja, Unger; Kay, Schuster; Hartmut, Bartelt

    2014-01-01

    All-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters (e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-µm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process. PMID:28788219

  10. Diffusion and Interface Effects during Preparation of All-Solid Microstructured Fibers.

    PubMed

    Jens, Kobelke; Jörg, Bierlich; Katrin, Wondraczek; Claudia, Aichele; Zhiwen, Pan; Sonja, Unger; Kay, Schuster; Hartmut, Bartelt

    2014-09-25

    All-solid microstructured optical fibers (MOF) allow the realization of very flexible optical waveguide designs. They are prepared by stacking of doped silica rods or canes in complex arrangements. Typical dopants in silica matrices are germanium and phosphorus to increase the refractive index (RI), or boron and fluorine to decrease the RI. However, the direct interface contact of stacking elements often causes interrelated chemical reactions or evaporation during thermal processing. The obtained fiber structures after the final drawing step thus tend to deviate from the targeted structure risking degrading their favored optical functionality. Dopant profiles and design parameters (e.g., the RI homogeneity of the cladding) are controlled by the combination of diffusion and equilibrium conditions of evaporation reactions. We show simulation results of diffusion and thermal dissociation in germanium and fluorine doped silica rod arrangements according to the monitored geometrical disturbances in stretched canes or drawn fibers. The paper indicates geometrical limits of dopant structures in sub-µm-level depending on the dopant concentration and the thermal conditions during the drawing process. The presented results thus enable an optimized planning of the preform parameters avoiding unwanted alterations in dopant concentration profiles or in design parameters encountered during the drawing process.

  11. Molecular reorientation of a nematic liquid crystal by thermal expansion

    PubMed Central

    Kim, Young-Ki; Senyuk, Bohdan; Lavrentovich, Oleg D.

    2012-01-01

    A unique feature of nematic liquid crystals is orientational order of molecules that can be controlled by electromagnetic fields, surface modifications and pressure gradients. Here we demonstrate a new effect in which the orientation of nematic liquid crystal molecules is altered by thermal expansion. Thermal expansion (or contraction) causes the nematic liquid crystal to flow; the flow imposes a realigning torque on the nematic liquid crystal molecules and the optic axis. The optical and mechanical responses activated by a simple temperature change can be used in sensing, photonics, microfluidic, optofluidic and lab-on-a-chip applications as they do not require externally imposed gradients of temperature, pressure, surface realignment, nor electromagnetic fields. The effect has important ramifications for the current search of the biaxial nematic phase as the optical features of thermally induced structural changes in the uniaxial nematic liquid crystal mimic the features expected of the biaxial nematic liquid crystal. PMID:23072803

  12. Origami structures for tunable thermal expansion

    NASA Astrophysics Data System (ADS)

    Boatti, Elisa; Bertoldi, Katia

    Materials with engineered thermal expansion, capable of achieving targeted and extreme area/volume changes in response to variations in temperature, are important for a number of aerospace, optical, energy, and microelectronic applications. While most of the proposed structures with tunable coefficient of thermal expansion consist of bi-material 2D or 3D lattices, here we propose a periodic metastructure based on a bilayer Miura-Ori origami fold. We combine experiments and simulations to demonstrate that by tuning the geometrical and mechanical parameters an extremely broad range of thermal expansion coefficients can be obtained, spanning both negative and positive values. Additionally, the thermal properties along different directions can be adjusted independently. Differently from all previously reported systems, the proposed structure is non-porous.

  13. Design and Performance of the Terrestrial Planet Finder Coronagraph

    NASA Technical Reports Server (NTRS)

    White, Mary L.; Shaklan, Stuart; Lisman, P. Doulas; Ho, Timothy; Mouroulis, Pantazis; Basinger, Scott; Ledeboer, Bill; Kwack, Eug; Kissil, Andy; Mosier, Gary; hide

    2004-01-01

    Terrestrial Planet Finder Coronagraph, one of two potential architectures, is described. The telescope is designed to make a visible wavelength survey of the habitable zones of at least thirty stars in search of earth-like planets. The preliminary system requirements, optical parameters, mechanical and thermal design, operations scenario and predicted performance is presented. The 6-meter aperture telescope has a monolithic primary mirror, which along with the secondary tower, are being designed to meet the stringent optical tolerances of the planet-finding mission. Performance predictions include dynamic and thermal finite element analysis of the telescope optics and structure, which are used to make predictions of the optical performance of the system.

  14. Optomechanical performance of 3D-printed mirrors with embedded cooling channels and substructures

    NASA Astrophysics Data System (ADS)

    Mici, Joni; Rothenberg, Bradley; Brisson, Erik; Wicks, Sunny; Stubbs, David M.

    2015-09-01

    Advances in 3D printing technology allow for the manufacture of topologically complex parts not otherwise feasible through conventional manufacturing methods. Maturing metal and ceramic 3D printing technologies are becoming more adept at printing complex shapes, enabling topologically intricate mirror substrates. One application area that can benefit from additive manufacturing is reflective optics used in high energy laser (HEL) systems that require materials with a low coefficient of thermal expansion (CTE), high specific stiffness, and (most importantly) high thermal conductivity to effectively dissipate heat from the optical surface. Currently, the limits of conventional manufacturing dictate the topology of HEL optics to be monolithic structures that rely on passive cooling mechanisms and high reflectivity coatings to withstand laser damage. 3D printing enables the manufacture of embedded cooling channels in metallic mirror substrates to allow for (1) active cooling and (2) tunable structures. This paper describes the engineering and analysis of an actively cooled composite optical structure to demonstrate the potential of 3D printing on the improvement of optomechanical systems.

  15. Structural control of side-chain chromophores to achieve highly efficient electro-optic activity.

    PubMed

    Yang, Yuhui; Chen, Zhuo; Liu, Jialei; Xiao, Hongyan; Zhen, Zhen; Liu, Xinhou; Jiang, Guohua

    2017-05-10

    A series of chromophores J1-J4 have been synthesized based on julolidine donors modified with different rigid steric hindrance groups. Compared with the chromophore (J1) without the isolation group, chromophores J2, J3 and J4 show better stability. Structural analysis and photophysical property measurements were carried out to compare the molecular mobility and steric hindrance effect of the different donor-modified chromophores. All of these chromophores with isolation groups showed superb thermal stabilities with high thermal decomposition temperatures above 250 °C. Furthermore, with rigid steric hindrance, chromophores J3 and J4 showed more enhanced thermal stabilities with thermal decomposition temperatures of 269 °C and 275 °C, respectively. Density functional theory was used to calculate the hyperpolarizability (β), and the high molecular hyperpolarizability of these chromophores can be effectively translated into large electro-optic coefficients. The electro-optic coefficients of poled films containing 20 wt% of these new chromophores doped in amorphous polycarbonate were 127, 266 and 209 pm V -1 at 1310 nm for chromophores J1-J3, respectively, while the film containing chromophore J4 showed the largest r 33 value of only 97 pm V -1 at 25 wt%. These results indicated that the introduced isolation group can reduce intermolecular electrostatic interactions, thus enhancing the macroscopic electro-optic activity, while the size of the isolation group should be suitable.

  16. Advanced structural design for precision radial velocity instruments

    NASA Astrophysics Data System (ADS)

    Baldwin, Dan; Szentgyorgyi, Andrew; Barnes, Stuart; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, Jamie; Chun, Moo-Young; Conroy, Charlie; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Guzman, Dani; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andres; Kim, Jihun; Kim, Kang-Min; Mendes de Oliveira, Claudia; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Mueller, Mark; Oh, Jae Sok; Ordway, Mark; Park, Byeong-Gon; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Stark, Daniel; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam

    2016-07-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is an echelle spectrograph with precision radial velocity (PRV) capability that will be a first light instrument for the Giant Magellan Telescope (GMT). G-CLEF has a PRV precision goal of 40 cm/sec (10 cm/s for multiple measurements) to enable detection of Earth-like exoplanets in the habitable zones of sun-like stars1. This precision is a primary driver of G-CLEF's structural design. Extreme stability is necessary to minimize image motions at the CCD detectors. Minute changes in temperature, pressure, and acceleration environments cause structural deformations, inducing image motions which degrade PRV precision. The instrument's structural design will ensure that the PRV goal is achieved under the environments G-CLEF will be subjected to as installed on the GMT azimuth platform, including: Millikelvin (0.001 °K) thermal soaks and gradients 10 millibar changes in ambient pressure Changes in acceleration due to instrument tip/tilt and telescope slewing Carbon fiber/cyanate composite was selected for the optical bench structure in order to meet performance goals. Low coefficient of thermal expansion (CTE) and high stiffness-to-weight are key features of the composite optical bench design. Manufacturability and serviceability of the instrument are also drivers of the design. In this paper, we discuss analyses leading to technical choices made to minimize G-CLEF's sensitivity to changing environments. Finite element analysis (FEA) and image motion sensitivity studies were conducted to determine PRV performance under operational environments. We discuss the design of the optical bench structure to optimize stiffness-to-weight and minimize deformations due to inertial and pressure effects. We also discuss quasi-kinematic mounting of optical elements and assemblies, and optimization of these to ensure minimal image motion under thermal, pressure, and inertial loads expected during PRV observations.

  17. Micromachined optical microphone structures with low thermal-mechanical noise levels.

    PubMed

    Hall, Neal A; Okandan, Murat; Littrell, Robert; Bicen, Baris; Degertekin, F Levent

    2007-10-01

    Micromachined microphones with diffraction-based optical displacement detection have been introduced previously [Hall et al., J. Acoust. Soc. Am. 118, 3000-3009 (2005)]. The approach has the advantage of providing high displacement detection resolution of the microphone diaphragm independent of device size and capacitance-creating an unconstrained design space for the mechanical structure itself. Micromachined microphone structures with 1.5-mm-diam polysilicon diaphragms and monolithically integrated diffraction grating electrodes are presented in this work with backplate architectures that deviate substantially from traditional perforated plate designs. These structures have been designed for broadband frequency response and low thermal mechanical noise levels. Rigorous experimental characterization indicates a diaphragm displacement detection resolution of 20 fm radicalHz and a thermal mechanical induced diaphragm displacement noise density of 60 fm radicalHz, corresponding to an A-weighted sound pressure level detection limit of 24 dB(A) for these structures. Measured thermal mechanical displacement noise spectra are in excellent agreement with simulations based on system parameters derived from dynamic frequency response characterization measurements, which show a diaphragm resonance limited bandwidth of approximately 20 kHz. These designs are substantial improvements over initial prototypes presented previously. The high performance-to-size ratio achievable with this technology is expected to have an impact on a variety of instrumentation and hearing applications.

  18. Microstructured Optical Fiber Sensors Embedded in a Laminate Composite for Smart Material Applications

    PubMed Central

    Sonnenfeld, Camille; Sulejmani, Sanne; Geernaert, Thomas; Eve, Sophie; Lammens, Nicolas; Luyckx, Geert; Voet, Eli; Degrieck, Joris; Urbanczyk, Waclaw; Mergo, Pawel; Becker, Martin; Bartelt, Hartmut; Berghmans, Francis; Thienpont, Hugo

    2011-01-01

    Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures. PMID:22163755

  19. Thermal control requirements for large space structures

    NASA Technical Reports Server (NTRS)

    Manoff, M.

    1978-01-01

    Performance capabilities and weight requirements of large space structure systems will be significantly influenced by thermal response characteristics. Analyses have been performed to determine temperature levels and gradients for structural configurations and elemental concepts proposed for advanced system applications ranging from relatively small, low-power communication antennas to extremely large, high-power Satellite Power Systems (SPS). Results are presented for selected platform configurations, candidate strut elements, and potential mission environments. The analyses also incorporate material and surface optical property variation. The results illustrate many of the thermal problems which may be encountered in the development of three systems.

  20. Considerations in STS payload environmental verification

    NASA Technical Reports Server (NTRS)

    Keegan, W. B.

    1978-01-01

    Considerations regarding the Space Transportation System (STS) payload environmental verification are reviewed. It is noted that emphasis is placed on testing at the subassembly level and that the basic objective of structural dynamic payload verification is to ensure reliability in a cost-effective manner. Structural analyses consist of: (1) stress analysis for critical loading conditions, (2) model analysis for launch and orbital configurations, (3) flight loads analysis, (4) test simulation analysis to verify models, (5) kinematic analysis of deployment/retraction sequences, and (6) structural-thermal-optical program analysis. In addition to these approaches, payload verification programs are being developed in the thermal-vacuum area. These include the exposure to extreme temperatures, temperature cycling, thermal-balance testing and thermal-vacuum testing.

  1. Directional emissivity from two-dimensional infrared waveguide arrays

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce; Davids, Paul S.; Finnegan, Patrick S.; Figueiredo, Pedro N.; Ginn, James C.

    2015-09-01

    Fabrication and optical characterization of surfaces covered with open-ended metallic waveguides are presented along with numerical modeling of these structures. Both modeling and measurement of the structures indicate that the 2-D array of 3D metallic waveguides modify both the direction and spectral content of the emissivity, resulting in directionality normal to the surface due to the optical axis of the waveguides and spectrally narrow emissivity due to the lateral dimensions of the waveguides. Furthermore, the optical behavior of these structures is placed in the broader context of other structured emission/absorption surfaces such as organ pipe modes, surface plasmon modes, and coherent thermal emission from gratings.

  2. Fiber optic thermal/fast neutron and gamma ray scintillation detector

    DOEpatents

    Neal, John S.; Mihalczo, John T.

    2006-11-28

    A detector system that combines a .sup.6Li loaded glass fiber scintillation thermal neutron detector with a fast scintillation detector in a single layered structure. Detection of thermal and fast neutrons and ionizing electromagnetic radiation is achieved in the unified detector structure. The fast scintillator replaces the polyethelene moderator layer adjacent the .sup.6Li loaded glass fiber panel of the neutron detector and acts as the moderator for the glass fibers. Fast neutrons, x-rays and gamma rays are detected in the fast scintillator. Thermal neutrons, x-rays and gamma rays are detected in the glass fiber scintillator.

  3. LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.

    2017-08-01

    MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.

  4. Laser-induced phase transitions of Ge2Sb2Te5 thin films used in optical and electronic data storage and in thermal lithography.

    PubMed

    Chu, Cheng Hung; Shiue, Chiun Da; Cheng, Hsuen Wei; Tseng, Ming Lun; Chiang, Hai-Pang; Mansuripur, Masud; Tsai, Din Ping

    2010-08-16

    Amorphous thin films of Ge(2)Sb(2)Te(5), sputter-deposited on a ZnS-SiO(2) dielectric layer, are investigated for the purpose of understanding the structural phase-transitions that occur under the influence of tightly-focused laser beams. Selective chemical etching of recorded marks in conjunction with optical, atomic force, and electron microscopy as well as local electron diffraction analysis are used to discern the complex structural features created under a broad range of laser powers and pulse durations. Clarifying the nature of phase transitions associated with laser-recorded marks in chalcogenide Ge(2)Sb(2)Te(5) thin films provides useful information for reversible optical and electronic data storage, as well as for phase-change (thermal) lithography.

  5. Crystal growth, structural, optical, dielectric and thermal studies of an amino acid based organic NLO material: L-Phenylalanine L-phenylalaninium malonate

    NASA Astrophysics Data System (ADS)

    Prakash, M.; Geetha, D.; Lydia Caroline, M.; Ramesh, P. S.

    2011-12-01

    Good transparent single crystals of L-phenylalanine L-phenylalaninium malonate (LPPMA) have been grown successfully by slow evaporation technique from aqueous solution. Single crystal X-ray diffractometer was utilized to measure unit cell parameter and to confirm the crystal structure. The chemical structure of compound was established by FT-NMR technique. The vibrational modes of the molecules of elucidated from FTIR spectra. Its optical behaviour has been examined by UV-vis spectral analysis, which shows the absence of absorbance in the visible region. Thermal properties of the LPPMA crystal were carried out by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques, which indicate that the material does not decompose before melting. The melting point of grown crystal was observed as 180 °C by melting point apparatus. The NLO property was confirmed by the powder technique of Kurtz and Perry. The dielectric behaviour of the sample was also studied for the first time.

  6. Thermal oxidation of synthesized graphenes and their optical property characterization.

    PubMed

    Lee, Byeong-Joo; Jeong, Goo-Hwan

    2011-07-01

    The results of the thermal oxidation of synthesized graphenes and their optical property characterization using Raman spectroscopy are reported. Graphene was synthesized via thermal-chemical vapor deposition on Ni catalytic thin films deposited by electron beam deposition, and was successfully transferred onto three-dimensional trench substrates to obtain a suspended structure, which is the most appropriate template for use in probing the changes of physical properties of graphene by ignoring the substrate effects. The thermal oxidation was performed in a tube furnace at an elevated temperature of 500 degrees C under air, and Raman analysis was repeatedly carried out to investigate the oxidation effects. A drastic structural change of graphene was anticipated from the based on the dramatic changes in the Raman spectra. It is expected that controlled oxidation will help systematically decrease in the number of graphene layers, which will contribute to the successful development of graphene-based devices that are capable of operating under oxidative environments.

  7. Synthesis, structural, thermal and optical properties of TeO2-Bi2O3-GeO2-Li2O glasses

    NASA Astrophysics Data System (ADS)

    Dimowa, Louiza; Piroeva, Iskra; Atanasova-Vladimirova, S.; Petrova, Nadia; Ganev, Valentin; Titorenkova, Rositsa; Yankov, Georgi; Petrov, Todor; Shivachev, Boris L.

    2016-10-01

    In this study, synthesis and characterization of novel quaternary tellurite glass system TeO2-Bi2O3-GeO2-Li2O is presented. The compositions include TeO2 and GeO2 as glass formers while different proportion of Bi2O3 and Li2O act as network modifiers. Differential thermal analysis, X-ray diffraction, scanning electron microscopy energy dispersive X-ray spectroscopy, laser ablation inductively coupled plasma mass spectrometry, UV-Vis and Raman spectroscopy are applied to study the structural, thermal and optical properties of the studied glasses. Obtained glasses possess a relatively low glass transition temperature (around 300 °C) if compared to other tellurite glasses, show good thermal transparency in the visible and near infra-red (from 2.4 to 0.4 μm) and can double the frequency of laser light from its original wavelength of 1064 nm to its second-harmonic at 532 nm (i.e. second harmonic generation).

  8. Structural, vibrational, thermal and optical studies of organic single crystal: Benzotriazolium p-toluene sulfonate (BTPTS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, R. Ramesh; Sathya, P.; Gopalakrishnan, R., E-mail: krgkrishnan@yahoo.com

    Benzotriazolium p-toluene sulfonate (BTPTS) was grown by solution growth technique. The powder X-ray diffraction analysis was carried out to evaluate crystal system of the compound. LeBail Profile fitting analysis was performed to extract the individual peak intensities. FTIR spectrum analysis was recorded to study vibration frequencies of the prepared organic salt. Thermal studies were carried out using TG-DSC analysis. Optical absorption and energy band gap of the title compound was evaluated by UV-Vis spectral study.

  9. Evaluation of Microbolometer-Based Thermography for Gossamer Space Structures

    NASA Technical Reports Server (NTRS)

    Miles, Jonathan J.; Blandino, Joseph R.; Jenkins, Christopher H.; Pappa, Richard S.; Banik, Jeremy; Brown, Hunter; McEvoy, Kiley

    2005-01-01

    In August 2003, NASA's In-Space Propulsion Program contracted with our team to develop a prototype on-board Optical Diagnostics System (ODS) for solar sail flight tests. The ODS is intended to monitor sail deployment as well as structural and thermal behavior, and to validate computational models for use in designing future solar sail missions. This paper focuses on the thermography aspects of the ODS. A thermal model was developed to predict local sail temperature variations as a function of sail tilt to the sun, billow depth, and spectral optical properties of front and back sail surfaces. Temperature variations as small as 0.5 C can induce significant thermal strains that compare in magnitude to mechanical strains. These thermally induced strains may result in changes in shape and dynamics. The model also gave insight into the range and sensitivity required for in-flight thermal measurements and supported the development of an ABAQUS-coupled thermo-structural model. The paper also discusses three kinds of tests conducted to 1) determine the optical properties of candidate materials; 2) evaluate uncooled microbolometer-type infrared imagers; and 3) operate a prototype imager with the ODS baseline configuration. (Uncooled bolometers are less sensitive than cooled ones, but may be necessary because of restrictive ODS mass and power limits.) The team measured the spectral properties of several coated polymer samples at various angles of incidence. Two commercially available uncooled microbolometer imagers were compared, and it was found that reliable temperature measurements are feasible for both coated and uncoated sides of typical sail membrane materials.

  10. Photo- and thermally induced property change in Ag diffusion into Ag/As2Se3 thin films

    NASA Astrophysics Data System (ADS)

    Aparimita, Adyasha; Sripan, C.; Ganesan, R.; Naik, Ramakanta

    2018-03-01

    In the present report, we have prepared As2Se3 and bilayer Ag/As2Se3 chalcogenide thin films prepared by thermal evaporation process. The top Ag layer is being diffused into the bottom As2Se3 layer by 532 nm laser irradiation and thermal annealing process. The photo and thermal energy drives the Ag+ ions into the As2Se3 matrix that enhances the formation of As-Se-Ag solid solution which shows the changes of optical properties such as transmission, absorption power, refractive index, and optical band gap. The transmission power drastically decreased for the thermal-induced film than the laser induced one; and the reverse effect is seen for the absorption coefficient. The non-linear refractive index is found to be increased due to the Ag diffusion into As2Se3 film. The indirect allowed optical band gap is being reduced by a significant amount of 0.17 eV (thermal diffusion) and 0.03 eV (photo diffusion) from the Ag/As2Se3 film. The Ag diffusion creates chemical disorderness in the film observed from the two parameters which measures the degree of disorder such as Urbach energy and Tauc parameter. The structural change is not noticed in the studied film as seen from the X-ray diffraction pattern. Scanning electron microscopy and atomic force microscopy investigations showed that the surface morphology was influenced by the diffusion phenomena. The change in optical constants in such type of film can be used in optical waveguides and optical devices.

  11. An integrated modeling and design tool for advanced optical spacecraft

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.

    1992-01-01

    Consideration is given to the design and status of the Integrated Modeling of Optical Systems (IMOS) tool and to critical design issues. A multidisciplinary spacecraft design and analysis tool with support for structural dynamics, controls, thermal analysis, and optics, IMOS provides rapid and accurate end-to-end performance analysis, simulations, and optimization of advanced space-based optical systems. The requirements for IMOS-supported numerical arrays, user defined data structures, and a hierarchical data base are outlined, and initial experience with the tool is summarized. A simulation of a flexible telescope illustrates the integrated nature of the tools.

  12. Structural and optical study of tellurite-barium glasses

    NASA Astrophysics Data System (ADS)

    Grelowska, I.; Reben, M.; Burtan, B.; Sitarz, M.; Cisowski, J.; Yousef, El Sayed; Knapik, A.; Dudek, M.

    2016-12-01

    The goal of this work was to determine the effect of barium oxide on the structural, thermal and optical properties of the TeO2-BaO-Na2O (TBN) and TeO2-BaO-WO3 (TBW) glass systems. Raman spectra allow relating the glass structure and vibration properties (i.e. vibrational frequencies and Raman intensities) with the glass composition. Raman spectra show the presence of TeO4 and TeO3+1/TeO3 units that conform with the glass matrix. Differential thermal analysis DTA, XRD measurements have been considered in term of BaO addition. The spectral dependence of ellipsometric angles of the tellurite-barium glass has been studied. The optical measurements were conducted on Woollam M2000 spectroscopic ellipsometer in spectral range of 190-1700 nm. The reflectance and transmittance measurements have been done on spectrophotometer Perkin Elmer, Lambda 900 in the range of 200-2500 nm (UV-VIS-NIR). From the transmittance spectrum, the energy gap was determined.

  13. Comparative studies of structural, thermal, optical, and electrochemical properties of azines with different end groups with their azomethine analogues toward application in (opto)electronics.

    PubMed

    Sek, Danuta; Siwy, Mariola; Bijak, Katarzyna; Grucela-Zajac, Marzena; Malecki, Grzegorz; Smolarek, Karolina; Bujak, Lukasz; Mackowski, Sebastian; Schab-Balcerzak, Ewa

    2013-10-10

    Two series of azines and their azomethine analogues were prepared via condensation reaction of benzaldehyde, 2-hydroxybenzaldehyde, 4-pyridinecarboxaldehyde, 2-thiophenecarboxaldehyde, and 4-(diphenylamino)benzaldehyde with hydrazine monohydrate and 1,4-phenylenediamine, respectively. The structures of given compounds were characterized by FTIR, (1)H NMR, and (13)C NMR spectroscopy as well as elemental analysis. Optical, electrochemical, and thermal properties of all compounds were investigated by means of differential scanning calorimetry (DSC), UV-vis spectroscopy, stationary and time-resolved photoluminescence spectroscopy, and cycling voltammetry (CV). Additionally, the electronic properties, that is, orbital energies and resulting energy gap were calculated theoretically by density functional theory (DFT). Influence of chemical structure of the compounds on their properties was analyzed.

  14. The relationship between structural and optical properties of Se-Ge-As glasses

    NASA Astrophysics Data System (ADS)

    Ghayebloo, M.; Rezvani, M.; Tavoosi, M.

    2018-05-01

    In this study, the structural and optical characterization of bulk Se-Ge-As glasses has been investigated. In this regards, six different Se60Ge40-xAsx (0 ≤ x ≤ 25) glasses were prepared by conventional melt quenching technique in quartz ampoule. The produced samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, differential thermal analysis (DTA), ultraviolet-visible (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. The fundamental absorption edge for all the glasses was analyzed in terms of the theory proposed by Davis and Mott. According to achieved results, fully amorphous phase can easily form in different Se-Ge-As systems. The thermal and optical characteristic of Se60Ge40-xAsx glasses shows anomalous behavior at 5 mol% of As for the glass transition temperature, transmittance, absorption edge, optical energy gap and Urbach energy. The highest glass transition temperature, transmittance, optical energy gap and Urbach energy properties were achieved in Se60Ge35As5 glass as a result of the highest connectivity of cations and anions in glass network.

  15. X-ray diffraction, Raman, and photoacoustic studies of ZnTe nanocrystals

    NASA Astrophysics Data System (ADS)

    Ersching, K.; Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Souza, S. M.; da Silva, D. L.; Pizani, P. S.

    2009-06-01

    Nanocrystalline ZnTe was prepared by mechanical alloying. X-ray diffraction (XRD), energy dispersive spectroscopy, Raman spectroscopy, and photoacoustic absorption spectroscopy techniques were used to study the structural, chemical, optical, and thermal properties of the as-milled powder. An annealing of the mechanical alloyed sample at 590 °C for 6 h was done to investigate the optical properties in a defect-free sample (close to bulk form). The main crystalline phase formed was the zinc-blende ZnTe, but residual trigonal tellurium and hexagonal ZnO phases were also observed for both as-milled and annealed samples. The structural parameters, phase fractions, average crystallite sizes, and microstrains of all crystalline phases were obtained from Rietveld analyses of the X-ray patterns. Raman results corroborate the XRD results, showing the longitudinal optical phonons of ZnTe (even at third order) and those modes of trigonal Te. Nonradiative surface recombination and thermal bending heat transfer mechanisms were proposed from photoacoustic analysis. An increase in effective thermal diffusivity coefficient was observed after annealing and the carrier diffusion coefficient, the surface recombination velocity, and the recombination time parameters remained the same.

  16. First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, Michael J.; Lemmon, Mark T.; Spanovich, Nicole; Banfield, Don; Budney, Charles J.; Clancy, R. Todd; Ghosh, Amitabha; Landis, Geoffrey A.; Smith, Peter; hide

    2004-01-01

    Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.

  17. First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES.

    PubMed

    Smith, Michael D; Wolff, Michael J; Lemmon, Mark T; Spanovich, Nicole; Banfield, Don; Budney, Charles J; Clancy, R Todd; Ghosh, Amitabha; Landis, Geoffrey A; Smith, Peter; Whitney, Barbara; Christensen, Philip R; Squyres, Steven W

    2004-12-03

    Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.

  18. Active photo-thermal self-healing of shape memory polyurethanes

    NASA Astrophysics Data System (ADS)

    Kazemi-Lari, Mohammad A.; Malakooti, Mohammad H.; Sodano, Henry A.

    2017-05-01

    Structural health monitoring (SHM) has received significant interest over the past decade and has led to the development of a wide variety of sensors and signal processing techniques to determine the presence of changes or damage in a structural system. The topic has attracted significant attention due to the safety and performance enhancing benefits as well as the potential lifesaving capabilities offered by the technology. While the resulting systems are capable of sensing their surrounding structural and environmental conditions, few methods exist for using the information to autonomously react and repair or protect the system. One of the major challenges in the future implementation of SHM systems is their coupling with materials that can react to the damage to heal themselves and return to normal function. The coupling of self-healing materials with SHM has the potential to significantly prolong the lifetime of structural systems and extend the required inspection intervals. In the present study, an optical fiber based self-healing system composed of mendable polyurethanes based on the thermally reversible Diels-Alder (DA) reaction is developed. Inspired by health monitoring techniques, active photo-thermal sensing and actuation is achieved using infrared laser light passing through an optical fiber and a thermal power sensor to detect the presence of cracking in the structure. Healing is triggered as the crack propagates through the polymer and fractures the embedded optical fiber. Through a feedback loop, the detected power drop by the sensor is utilized as a signal to heat the cracked area and stimulate the shape memory effect of the polyurethane and the retro-DA reaction. The healing performance results indicate that this novel integrated system can be effectively employed to monitor the incidence of damage and actively heal a crack in the polymer.

  19. First-principle calculations of structural, electronic, optical, elastic and thermal properties of MgXAs2 (X=Si, Ge) compounds

    NASA Astrophysics Data System (ADS)

    Cheddadi, S.; Boubendira, K.; Meradji, H.; Ghemid, S.; Hassan, F. El Haj; Lakel, S.; Khenata, R.

    2017-12-01

    First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite MgXAs2 (X=Si, Ge) have been performed within the density functional theory (DFT) using the full-potential linearized augmented plane wave (FP-LAPW) method. The obtained equilibrium structural parameters are in good agreement with the available experimental data and theoretical results. The calculated band structures reveal a direct energy band gap for the interested compounds. The predicted band gaps using the modified Becke-Johnson (mBJ) exchange approximation are in fairly good agreement with the experimental data. The optical constants such as the dielectric function, refractive index, and the extinction coefficient are calculated and analysed. The independent elastic parameters namely, C_{11}, C_{12}, C_{13}, C_{33}, C_{44} and C_{66 } are evaluated. The effects of temperature and pressure on some macroscopic properties of MgSiAs2 and MgGeAs2 are predicted using the quasiharmonic Debye model in which the lattice vibrations are taken into account.

  20. Selection considerations between ZERODUR® and silicon carbide for dimensionally-stable spaceborne optical telescopes in two-earth-orbits

    NASA Astrophysics Data System (ADS)

    Hull, Tony; Westerhoff, Thomas; Weidmann, Gunter

    2015-09-01

    A key consideration in defining a space telescope mission is definition of the optical materials. This selection defines both the performance of the system and system complexity and cost. Optimal material selection for system stability must consider the thermal environment and its variation. Via numerical simulations, we compare the thermal and structural-mechanical behavior of ZERODUR® and SiC as mirror substrates for telescope assemblies in space. SiC has significantly larger CTE values then ZERODUR®, but also its thermal diffusivity k/(ρcp) is larger, and that helps to homogenize thermal gradients in the mirror. Therefore it is not obvious at first glance which material performs with better dimensional stability under realistic unsteady, inhomogeneous thermal loads. We specifically examine the telescope response to transient, gradient driving, thermal environments representative of low- and high-earth- orbits.

  1. Development and Implementation of a Generic Analysis Template for Structural-Thermal-Optical-Performance Modeling

    NASA Technical Reports Server (NTRS)

    Scola, Salvatore; Stavely, Rebecca; Jackson, Trevor; Boyer, Charlie; Osmundsen, Jim; Turczynski, Craig; Stimson, Chad

    2016-01-01

    Performance-related effects of system level temperature changes can be a key consideration in the design of many types of optical instruments. This is especially true for space-based imagers, which may require complex thermal control systems to maintain alignment of the optical components. Structural-Thermal-Optical-Performance (STOP) analysis is a multi-disciplinary process that can be used to assess the performance of these optical systems when subjected to the expected design environment. This type of analysis can be very time consuming, which makes it difficult to use as a trade study tool early in the project life cycle. In many cases, only one or two iterations can be performed over the course of a project. This limits the design space to best practices since it may be too difficult, or take too long, to test new concepts analytically. In order to overcome this challenge, automation, and a standard procedure for performing these studies is essential. A methodology was developed within the framework of the Comet software tool that captures the basic inputs, outputs, and processes used in most STOP analyses. This resulted in a generic, reusable analysis template that can be used for design trades for a variety of optical systems. The template captures much of the upfront setup such as meshing, boundary conditions, data transfer, naming conventions, and post-processing, and therefore saves time for each subsequent project. A description of the methodology and the analysis template is presented, and results are described for a simple telescope optical system.

  2. Development and implementation of a generic analysis template for structural-thermal-optical-performance modeling

    NASA Astrophysics Data System (ADS)

    Scola, Salvatore; Stavely, Rebecca; Jackson, Trevor; Boyer, Charlie; Osmundsen, Jim; Turczynski, Craig; Stimson, Chad

    2016-09-01

    Performance-related effects of system level temperature changes can be a key consideration in the design of many types of optical instruments. This is especially true for space-based imagers, which may require complex thermal control systems to maintain alignment of the optical components. Structural-Thermal-Optical-Performance (STOP) analysis is a multi-disciplinary process that can be used to assess the performance of these optical systems when subjected to the expected design environment. This type of analysis can be very time consuming, which makes it difficult to use as a trade study tool early in the project life cycle. In many cases, only one or two iterations can be performed over the course of a project. This limits the design space to best practices since it may be too difficult, or take too long, to test new concepts analytically. In order to overcome this challenge, automation, and a standard procedure for performing these studies is essential. A methodology was developed within the framework of the Comet software tool that captures the basic inputs, outputs, and processes used in most STOP analyses. This resulted in a generic, reusable analysis template that can be used for design trades for a variety of optical systems. The template captures much of the upfront setup such as meshing, boundary conditions, data transfer, naming conventions, and post-processing, and therefore saves time for each subsequent project. A description of the methodology and the analysis template is presented, and results are described for a simple telescope optical system.

  3. Giant Phonon Anharmonicity and Anomalous Pressure Dependence of Lattice Thermal Conductivity in Y2Si2O7 silicate

    PubMed Central

    Luo, Yixiu; Wang, Jiemin; Li, Yiran; Wang, Jingyang

    2016-01-01

    Modification of lattice thermal conductivity (κL) of a solid by means of hydrostatic pressure (P) has been a crucially interesting approach that targets a broad range of advanced materials from thermoelectrics and thermal insulators to minerals in mantle. Although it is well documented knowledge that thermal conductivity of bulk materials normally increase upon hydrostatic pressure, such positive relationship is seriously challenged when it comes to ceramics with complex crystal structure and heterogeneous chemical bonds. In this paper, we predict an abnormally negative trend dκL/dP < 0 in Y2Si2O7 silicate using density functional theoretical calculations. The mechanism is disclosed as combined effects of slightly decreased group velocity and significantly augmented scattering of heat-carrying acoustic phonons in pressured lattice, which is originated from pressure-induced downward shift of low-lying optic and acoustic phonons. The structural origin of low-lying optic phonons as well as the induced phonon anharmonicity is also qualitatively elucidated with respect to intrinsic bonding heterogeneity of Y2Si2O7. The present results are expected to bring deeper insights for phonon engineering and modulation of thermal conductivity in complex solids with diverging structural flexibility, enormous bonding heterogeneity, and giant phonon anharmonicity. PMID:27430670

  4. Electro thermal analysis of rotary type micro thermal actuator

    NASA Astrophysics Data System (ADS)

    Anwar, M. Arefin; Packirisamy, Muthukumaran; Ahmed, A. K. Waiz

    2005-09-01

    In micro domain, thermal actuators are favored because it provides higher force and deflection than others. This paper presents a new type of micro thermal actuator that provides rotary motion of the circular disc shaped cold arm, which can be used in various optical applications, such as, switching, attenuation, diffraction, etc. The device has been fabricated in MUMPS technology. In this new design, the hot arms are arranged with the cold disc in such a way that thermal expansion of the hot arms due to Joule heating, will make the cold disc to rotate and the rotation is unidirectional on loading. The dominant heat transfer modes in the operating temperature zone are through the anchor and the air between the structure and the substrate because of the very low gap provided by MUMPS. A mathematical model was used for predicting steady state temperature profile along the actuator length and rotational behavior of the cold disc under different applied voltages. A 3-D coupled field finite element analysis (FEM) for the device is also presented. A FEM analysis was done by defining an air volume around the structure and substrate below the structure. Results obtained from the mathematical model, was compared with that of the finite element analysis. The presented results confirm the applicability of this novel rotary type thermal actuator for many optical MEMS applications.

  5. Large space telescope, phase A. Volume 3: Optical telescope assembly

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the optical telescope assembly for the Large Space Telescope are discussed. The systems considerations are based on mission-related parameters and optical equipment requirements. Information is included on: (1) structural design and analysis, (2) thermal design, (3) stabilization and control, (4) alignment, focus, and figure control, (5) electronic subsystem, and (6) scientific instrument design.

  6. Large space telescope engineering scale model optical design

    NASA Technical Reports Server (NTRS)

    Facey, T. A.

    1973-01-01

    The objective is to develop the detailed design and tolerance data for the LST engineering scale model optical system. This will enable MSFC to move forward to the optical element procurement phase and also to evaluate tolerances, manufacturing requirements, assembly/checkout procedures, reliability, operational complexity, stability requirements of the structure and thermal system, and the flexibility to change and grow.

  7. Stable Optical Phase Modulation With Micromirrors

    DTIC Science & Technology

    2012-01-27

    Stable optical phase modulation with micromirrors Caleb Knoernschild, Taehyun Kim, Peter Maunz, Stephen G. Crain, and Jungsang Kim∗ Fitzpatrick...position stability of the micromirror is dominated by the thermal mechanical noise of the structure. With this level of stability, we utilize the... micromirror to realize an optical phase modulator by simply reflecting light off the mirror and modulating its position. The resonant frequency of the

  8. Optical and structural studies of films grown thermally on zirconium surfaces

    NASA Astrophysics Data System (ADS)

    Morgan, J. M.; McNatt, J. S.; Shepard, M. J.; Farkas, N.; Ramsier, R. D.

    2002-06-01

    Variable angle IR reflection spectroscopy and atomic force microscopy are used to determine the thickness and morphology of films grown thermally on Zr surfaces in air. The density and homogeneity of these films increases with temperature in the range studied (773-873 K) and growth at the highest temperature follows cubic rate law kinetics. We demonstrate a structure-property relationship for these thermally grown films and suggest the application of IR reflectivity as an inspection method during the growth of environmentally passive films on industrial Zr components.

  9. Metamaterial Receivers for High Efficiency Concentrated Solar Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yellowhair, Julius E.; Kwon, Hoyeong; Alu, Andrea

    Operation of concentrated solar power receivers at higher temperatures (>700°C) would enable supercritical carbon dioxide (sCO 2) power cycles for improved power cycle efficiencies (>50%) and cost-effective solar thermal power. Unfortunately, radiative losses at higher temperatures in conventional receivers can negatively impact the system efficiency gains. One approach to improve receiver thermal efficiency is to utilize selective coatings that enhance absorption across the visible solar spectrum while minimizing emission in the infrared to reduce radiative losses. Existing coatings, however, tend to degrade rapidly at elevated temperatures. In this report, we report on the initial designs and fabrication of spectrally selectivemore » metamaterial-based absorbers for high-temperature, high-thermal flux environments important for solarized sCO 2 power cycles. Metamaterials are structured media whose optical properties are determined by sub-wavelength structural features instead of bulk material properties, providing unique solutions by decoupling the optical absorption spectrum from thermal stability requirements. The key enabling innovative concept proposed is the use of structured surfaces with spectral responses that can be tailored to optimize the absorption and retention of solar energy for a given temperature range. In this initial study through the Academic Alliance partnership with University of Texas at Austin, we use Tungsten for its stability in expected harsh environments, compatibility with microfabrication techniques, and required optical performance. Our goal is to tailor the optical properties for high (near unity) absorptivity across the majority of the solar spectrum and over a broad range of incidence angles, and at the same time achieve negligible absorptivity in the near infrared to optimize the energy absorbed and retained. To this goal, we apply the recently developed concept of plasmonic Brewster angle to suitably designed nanostructured Tungsten surfaces. We predict that this will improve the receiver thermal efficiencies by at least 10% over current solar receivers.« less

  10. Nanostructured Diamond Device for Biomedical Applications.

    PubMed

    Fijalkowski, M; Karczemska, A; Lysko, J M; Zybala, R; KozaneckI, M; Filipczak, P; Ralchenko, V; Walock, M; Stanishevsky, A; Mitura, S

    2015-02-01

    Diamond is increasingly used in biomedical applications because of its unique properties such as the highest thermal conductivity, good optical properties, high electrical breakdown voltage as well as excellent biocompatibility and chemical resistance. Diamond has also been introduced as an excellent substrate to make the functional microchip structures for electrophoresis, which is the most popular separation technique for the determination of analytes. In this investigation, a diamond electrophoretic chip was manufactured by a replica method using a silicon mold. A polycrystalline 300 micron-thick diamond layer was grown by the microwave plasma-assisted CVD (MPCVD) technique onto a patterned silicon substrate followed by the removal of the substrate. The geometry of microstructure, chemical composition, thermal and optical properties of the resulting free-standing diamond electrophoretic microchip structure were examined by CLSM, SFE, UV-Vis, Raman, XRD and X-ray Photoelectron Spectroscopy, and by a modified laser flash method for thermal property measurements.

  11. Physical properties of molybdenum monoboride: Ab-initio study

    NASA Astrophysics Data System (ADS)

    Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.

    2018-02-01

    The Ab initio investigations on structural, electronic, optical and thermal properties of MoB have been reported using full potential linearised-augmented plane wave method within the framework of density functional theory. The exchange and correlation potentials were calculated using the Perdew-Burke-Ernzerhof-Sol generalised gradient approximation. The calculated equilibrium lattice constants and cell volume are in excellent agreement with the experimental results as compared to the available theoretical data. Electronic band structure shows that MoB is metallic in nature. From the partial densities of states of MoB it has been found that major contribution on the Fermi level is due to Mo-4d states. Among the reported optical parameters the large value of reflectivity at low energy shows that MoB can be used as a coating material in IR region. Maximum absorption in extreme UV region shows that it can be used in production of electricity through solar power in space vehicles. Various thermal properties have been calculated in a wide temperature range at high pressures. Change in thermal expansion coefficient with respect to temperature shows that anharmonic effect in MoB is very weak at high temperature. The optical and thermal properties of MoB are presented for the first time in this work.

  12. Thermo-optic devices on polymer platform

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyang; Keil, Norbert

    2016-03-01

    Optical polymers possess in general relatively high thermo-optic coefficients and at the same time low thermal conductivity, both of which make them attractive material candidates for realizing highly efficient thermally tunable devices. Over the years, various thermo-optic components have been demonstrated on polymer platform, covering (1) tunable reflectors and filters as part of a laser cavity, (2) variable optical attenuators (VOAs) as light amplitude regulators in e.g. a coherent receiver, and (3) thermo-optic switches (TOSs) allowing multi-flow control in the photonic integrated circuits (PICs). This work attempts to review the recent progress on the above mentioned three component branches, including linearly and differentially tunable filters, VOAs based on 1×1 multimode interference structure (MMI) and Mach-Zehnder interferometer (MZI), and 1×2 TOS based on waveguide Y-branch, driven by a pair of sidelong placed heater electrodes. These thermo-optic components can well be integrated into larger PICs: the dual-polarization switchable tunable laser and the colorless optical 90° hybrid are presented in the end as examples.

  13. Structural, optical, and thermal properties of MAX-phase Cr2AlB2

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Cui, Hong-Ling; Zhang, Rui-Zhou

    2018-04-01

    First-principles calculations of the structural, optical, and thermal properties of Cr2AlB2 are performed using the pseudopotential plane-wave method within the generalized gradient approximation (GGA). Calculation of the elastic constant and phonon dispersion indicates that Cr2AlB2 is mechanically and thermodynamically stable. Analysis of the band structure and density of states indicates that Cr2AlB2 is metallic. The thermal properties under increasing temperature and pressure are investigated using the quasi-harmonic Debye model. The results show that anharmonic effects on Cr2AlB2 are important at low temperature and high pressure. The calculated equilibrium primitive cell volume is 95.91 Å3 at T = 300 K, P = 0 GPa. The ability of Cr2AlB2 to resist volume changes becomes weaker with increasing temperature and stronger with increasing pressure. Analysis of optical properties of Cr2AlB2 shows that the static dielectric function of Cr2AlB2 is 53.1, and the refractive index n 0 is 7.3. If the incident light has a frequency exceeding 16.09 eV, which is the plasma frequency of Cr2AlB2, Cr2AlB2 changes from metallic to dielectric material.

  14. Effect of rapid thermal annealing on nanocrystalline TiO2 thin films synthesized by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Thakurdesai, Madhavi; Kanjilal, D.; Bhattacharyya, Varsha

    2012-08-01

    Irradiation by swift heavy ions (SHI) is unique tool to synthesize nanocrystalline thin films. We have reported transformation of 100 nm thick amorphous films into nanocrystalline film due to irradiation by 100 MeV Ag ion beam. Oblate shaped nanoparticles having anatase phase of TiO2 were formed on the surface of the irradiated films. In the present investigation, these films are annealed at 350 °C for 2 min in oxygen atmosphere by Rapid Thermal Annealing (RTA) method. During RTA processing, the temperature rises abruptly and this thermal instability is expected to alter surface morphology, structural and optical properties of nanocrystalline TiO2 thin films. Thus in the present work, effect of RTA on SHI induced nanocrystalline thin films of TiO2 is studied. The effect of RTA processing on the shape and size of TiO2 nanoparticles is studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Glancing Angle X-ray Diffraction (GAXRD) studies are carried to investigate structural changes induced by RTA processing. Optical characterization is carried out by UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The changes observed in structural and optical properties of nanocrystalline TiO2 thin films after RTA processing are attributed to the annihilation of SHI induced defects.

  15. Optical stress generator and detector

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J

    2001-01-01

    Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.

  16. Optical stress generator and detector

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J.

    1998-01-01

    Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.

  17. Optical stress generator and detector

    DOEpatents

    Maris, H.J.; Stoner, R.J.

    1998-05-05

    Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects. 32 figs.

  18. Optical stress generator and detector

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J

    2002-01-01

    Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.

  19. Optical stress generator and detector

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J

    1999-01-01

    Disclosed is a system for the characterization of thin films and interfaces between thin films through measurements of their mechanical and thermal properties. In the system light is absorbed in a thin film or in a structure made up of several thin films, and the change in optical transmission or reflection is measured and analyzed. The change in reflection or transmission is used to give information about the ultrasonic waves that are produced in the structure. The information that is obtained from the use of the measurement methods and apparatus of this invention can include: (a) a determination of the thickness of thin films with a speed and accuracy that is improved compared to earlier methods; (b) a determination of the thermal, elastic, and optical properties of thin films; (c) a determination of the stress in thin films; and (d) a characterization of the properties of interfaces, including the presence of roughness and defects.

  20. Structural and thermal response of 30 cm diameter ion thruster optics

    NASA Technical Reports Server (NTRS)

    Macrae, G. S.; Zavesky, R. J.; Gooder, S. T.

    1989-01-01

    Tabular and graphical data are presented which are intended for use in calibrating and validating structural and thermal models of ion thruster optics. A 30 cm diameter, two electrode, mercury ion thruster was operated using two different electrode assembly designs. With no beam extraction, the transient and steady state temperature profiles and center electrode gaps were measured for three discharge powers. The data showed that the electrode mount design had little effect on the temperatures, but significantly impacted the motion of the electrode center. Equilibrium electrode gaps increased with one design and decreased with the other. Equilibrium displacements in excess of 0.5 mm and gap changes of 0.08 mm were measured at 450 W discharge power. Variations in equilibrium gaps were also found among assemblies of the same design. The presented data illustrate the necessity for high fidelity ion optics models and development of experimental techniques to allow their validation.

  1. Thermal radiation scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    de Wilde, Yannick; Formanek, Florian; Carminati, Rémi; Gralak, Boris; Lemoine, Paul-Arthur; Joulain, Karl; Mulet, Jean-Philippe; Chen, Yong; Greffet, Jean-Jacques

    2006-12-01

    In standard near-field scanning optical microscopy (NSOM), a subwavelength probe acts as an optical `stethoscope' to map the near field produced at the sample surface by external illumination. This technique has been applied using visible, infrared, terahertz and gigahertz radiation to illuminate the sample, providing a resolution well beyond the diffraction limit. NSOM is well suited to study surface waves such as surface plasmons or surface-phonon polaritons. Using an aperture NSOM with visible laser illumination, a near-field interference pattern around a corral structure has been observed, whose features were similar to the scanning tunnelling microscope image of the electronic waves in a quantum corral. Here we describe an infrared NSOM that operates without any external illumination: it is a near-field analogue of a night-vision camera, making use of the thermal infrared evanescent fields emitted by the surface, and behaves as an optical scanning tunnelling microscope. We therefore term this instrument a `thermal radiation scanning tunnelling microscope' (TRSTM). We show the first TRSTM images of thermally excited surface plasmons, and demonstrate spatial coherence effects in near-field thermal emission.

  2. Combining Passive Thermography and Acoustic Emission for Large Area Fatigue Damage Growth Assessment of a Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.

    2016-01-01

    Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography

  3. Thermal investigation on high power dfb broad area lasers at 975 nm, with 60% efficiency

    NASA Astrophysics Data System (ADS)

    Mostallino, R.; Garcia, M.; Deshayes, Y.; Larrue, A.; Robert, Y.; Vinet, E.; Bechou, L.; Lecomte, M.; Parillaud, O.; Krakowski, M.

    2016-03-01

    The demand of high power diode lasers in the range of 910-980nm is regularly growing. This kind of device for many applications, such as fiber laser pumping [1], material processing [1], solid-state laser pumping [1], defense and medical/dental. The key role of this device lies in the efficiency (𝜂𝐸) of converting input electrical power into output optical power. The high value of 𝜂𝐸 allows high power level and reduces the need in heat dissipation. The requirement of wavelength stabilization with temperature is more obvious in the case of multimode 975nm diode lasers used for pumping Yb, Er and Yb/Er co-doped solid-state lasers, due to the narrow absorption line close to this wavelength. Such spectral width property (<1 nm), combined with wavelength thermal stabilization (0.07 𝑛𝑚 • °𝐶-1), provided by a uniform distributed feedback grating (DFB) introduced by etching and re-growth process techniques, is achievable in high power diode lasers using optical feedback. This paper reports on the development of the diode laser structure and the process techniques required to write the gratings taking into account of the thermal dissipation and optical performances. Performances are particularly determined in terms of experimental electro-optical characterizations. One of the main objectives is to determine the thermal resistance of the complete assembly to ensure the mastering of the diode laser temperature for operating condition. The classical approach to determine junction temperature is based on the infrared thermal camera, the spectral measurement and the pulse electrical method. In our case, we base our measurement on the spectral measurement but this approach is not well adapted to the high power diodes laser studied. We develop a new measurement based on the pulse electrical method and using the T3STERequipment. This method is well known for electronic devices and LEDs but is weakly developed for the high power diodes laser. This crucial measurement compared to spectral one is critical for understand the thermal management of diode laser device and improve the structure based on design for reliability. To have a perfect relation between structure, and their modification, and temperature, FEM simulations are performed using COMSOL software. In this case, we can understand the impact of structure on the isothermal distribution and then reveal the sensitive zones in the diode laser. To validate the simulation, we compare the simulation results to the experimental one and develop an analytical model to determine the different contributions of the thermal heating. This paper reports on the development laser structure and the process techniques required to write the gratings. Performances are particularly characterized in terms of experimental electro-optical characterization and spectral response. The extraction of thermal resistance (Rth) is particularly difficult, because of the implicit low value (Rth ≈ 2𝐾/𝑊) and the multimodal nature of the diode laser. In such a context, thermal resistance has been measured using a dedicated equipment namely T3STER©. The results have been compared with those given by the well-known technique achieved from the spectrum of the diode laser (central wavelength variations vs temperature) that is more difficult to apply for multimodal diodes laser. The last section deals with thermal simulations based on finite elements method (FEM) modeling in order to estimate junction temperature . This study represent a significant part of the general Design for Reliability (DfR) effort carried out on such devices to produce efficient and reliable high power devices at the industrial level.

  4. Designing optimized ultra-lightweighted mirror structures made of Cesic for space and ground based applications

    NASA Astrophysics Data System (ADS)

    Hofbauer, Peter; Krödel, Matthias R.

    2010-07-01

    Today's space applications increasingly utilize lightweighted construction concepts, motivated by the demands of manufacturing and functionality, and by economics. Particularly for space optics, mirror stability and stiffness need to be maximized, while mass needs to be minimized. Therefore, mirror materials must possess, besides high material strength and manufacturing versatility, high thermal conductivity combined with low heat capacity and long-term stability against varying thermal loads. Additionally, optical surfaces need to be compatible with reflective coating materials. In order to achieve these requirements, the interplay between material properties and mirror design on one hand, and budgetary constraints on the other must be considered. In this paper, we address these issues by presenting an FEM design study of open and closed-back mirror structures with extremely thin reinforcing ribs, with the goal of obtaining optimal physical and optical characteristics. Furthermore, we show that ECM's carbon-fiber reinforced SiC composite, Cesic®, and its newly developed, HB-Cesic® , with their low CTE, low density, and high stiffness, are not only excellent mirror materials, but allow the rapid manufacturing of complex monolithic optical structures at reasonable cost.

  5. Advanced thermal control for spacecraft applications

    NASA Astrophysics Data System (ADS)

    Hardesty, Robert; Parker, Kelsey

    2015-09-01

    In optical systems just like any other space borne system, thermal control plays an important role. In fact, most advanced designs are plagued with volume constraints that further complicate the thermal control challenges for even the most experienced systems engineers. Peregrine will present advances in satellite thermal control based upon passive heat transfer technologies to dissipate large thermal loads. This will address the use of 700 W/m K and higher conducting products that are five times better than aluminum on a specific basis providing enabling thermal control while maintaining structural support.

  6. Growth and dielectric, mechanical, thermal and etching studies of an organic nonlinear optical L-arginine trifluoroacetate (LATF) single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arjunan, S.; Department of Physics, Presidency College, Chennai 600005; Mohan Kumar, R.

    2008-08-04

    L-arginine trifluoroacetate, an organic nonlinear optical material, has been synthesized from aqueous solution. Bulk single crystal of dimension 57 mm x 5 mm x 3 mm has been grown by temperature lowering technique. Powder X-ray diffraction studies confirmed the monoclinic structure of the grown L-arginine trifluoroacetate crystal. Linear optical property of the grown crystal has been studied by UV-vis spectrum. Dielectric response of the L-arginine trifluoroacetate crystal was analysed for different frequencies and temperatures in detail. Microhardness study on the sample reveals that the crystal possesses relatively higher hardness compared to many organic crystals. Thermal analyses confirmed that the L-argininemore » trifluoroacetate material is thermally stable upto 212 deg. C. The etching studies have been performed to assess the perfection of the L-arginine trifluoroacetate crystal. Kurtz powder second harmonic generation test confirms the nonlinear optical properties of the as-grown L-arginine trifluoroacetate crystal.« less

  7. Thermal, spectroscopic and laser properties of Nd3+ in gadolinium scandium gallium garnet crystal produced by optical floating zone method

    NASA Astrophysics Data System (ADS)

    Tian, Li; Wang, Shuxian; Wu, Kui; Wang, Baolin; Yu, Haohai; Zhang, Huaijin; Cai, Huaqiang; Huang, Hui

    2013-12-01

    A neodymium-doped gadolinium scandium gallium garnet (Nd:GSGG) single crystal with dimensions of Φ 5 × 20 mm2 has been grown by means of optical floating zone (OFZ). X-ray powder diffraction (XRPD) result shows that the as-grown Nd:GSGG crystal possesses a cubic structure with space group Ia3d and a cell parameter of a = 1.2561 nm. Effective elemental segregation coefficients of the Nd:GSGG as-grown crystal were calculated by using X-ray fluorescence (XRF). The thermal properties of the Nd:GSGG crystal were systematically studied by measuring the specific heat, thermal expansion and thermal diffusion coefficient, and the thermal conductivity of this crystal was calculated. The absorption and luminescence spectra of Nd:GSGG were measured at room temperature (RT). By using the Judd-Ofelt (J-O) theory, the theoretical radiative lifetime was calculated and compared with the experimental result. Continuous wave (CW) laser performance was achieved with the Nd:GSGG at the wavelength of 1062 nm when it was pumped by a laser diode (LD). A maximum output power of 0.792 W at 1062 nm was obtained with a slope efficiency of 11.89% under a pump power of 7.36 W, and an optical-optical conversion efficiency of 11.72%.

  8. Structural, thermal, optical and nonlinear optical properties of ethylenediaminium picrate single crystals

    NASA Astrophysics Data System (ADS)

    Indumathi, C.; T. C., Sabari Girisun; Anitha, K.; Alfred Cecil Raj, S.

    2017-07-01

    A new organic optical limiting material, ethylenediaminium picrate (EDAPA) was synthesized through acid base reaction and grown as single crystals by solvent evaporation method. Single crystal XRD analysis showed that EDAPA crystallizes in orthorhombic system with Cmca as space group. The formation of charge transfer complex during the reaction of ethylenediamine and picric acid was strongly evident through the recorded Fourier Transform Infra Red (FTIR), Raman and Nuclear Magnetic Resonance (NMR) spectrum. Thermal (TG-DTA and DSC) curves indicated that the material possesses high thermal stability with decomposition temperature at 243 °C. Optical (UV-Visible-NIR) analysis showed that the grown crystal was found to be transparent in the entire visible and NIR region. Z-scan studies with intense short pulse (532 nm, 5 ns, 100 μJ) excitations, revealed that EDAPA exhibited two photon absorption behaviour and the nonlinear absorption coefficient was found to be two orders of magnitude higher than some of the known optical limiter like Cu nano glasses. EDAPA exhibited a strong optical limiting action with low limiting threshold which make them a potential candidate for eye and photosensitive component protection against intense short pulse lasers.

  9. Optically imprinted reconfigurable photonic elements in a VO{sub 2} nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jostmeier, Thorben; Betz, Markus; Zimmer, Johannes

    We investigate the optical and thermal hysteresis of single-domain vanadium dioxide nanocrystals fabricated by ion beam synthesis in a fused silica matrix. The nanocrystals exhibit a giant hysteresis, which permits to optically generate a long-time stable supercooled metallic phase persistent down to practically room temperature. Spatial patterns of supercooled and insulating nanocrystals feature a large dielectric contrast, in particular, for telecom wavelengths. We utilize this contrast to optically imprint reconfigurable photonic elements comprising diffraction gratings as well as on- and off-axis zone plates. The structures allow for highly repetitive (>10{sup 4}) cycling through the phase transition without structural damage.

  10. ZnS thin films deposition by thermal evaporation for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Benyahia, K.; Benhaya, A.; Aida, M. S.

    2015-10-01

    ZnS thin films were deposited on glass substrates by thermal evaporation from millimetric crystals of ZnS. The structural, compositional and optical properties of the films are studied by X-ray diffraction, SEM microscopy, and UV-VIS spectroscopy. The obtained results show that the films are pin hole free and have a cubic zinc blend structure with (111) preferential orientation. The estimated optical band gap is 3.5 eV and the refractive index in the visible wavelength ranges from 2.5 to 1.8. The good cubic structure obtained for thin layers enabled us to conclude that the prepared ZnS films may have application as buffer layer in replacement of the harmful CdS in CIGS thin film solar cells or as an antireflection coating in silicon-based solar cells.

  11. Design of plate directional heat transmission structure based on layered thermal metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, L. K.; Yu, Z. F.; Huang, J., E-mail: slk-0-1999@163.com

    2016-02-15

    Invisibility cloaks based on transformation optics are often closed structures; however, such a structure limits the kinds of objects that can be placed in the cloak. In this work, we adopt a transformation thermodynamics approach to design an “open cloak”, called a plate directional heat transmission structure, which is capable of guiding heat fluxes to the flank region of the metamaterial device. The most fascinating and unique feature of the device is that the lower surface can remain at a lower temperature compared with the SiO{sub 2} aerogel thermal insulation material. Our results are expected to markedly enhance capabilities inmore » thermal protection, thermal-energy utilization, and domains beyond. In addition to the theoretical analysis, the present design is demonstrated in numerical simulations based on finite element calculations.« less

  12. Solar heating of GaAs nanowire solar cells.

    PubMed

    Wu, Shao-Hua; Povinelli, Michelle L

    2015-11-30

    We use a coupled thermal-optical approach to model the operating temperature rise in GaAs nanowire solar cells. We find that despite more highly concentrated light absorption and lower thermal conductivity, the overall temperature rise in a nanowire structure is no higher than in a planar structure. Moreover, coating the nanowires with a transparent polymer can increase the radiative cooling power by 2.2 times, lowering the operating temperature by nearly 7 K.

  13. Solar heating of GaAs nanowire solar cells

    DOE PAGES

    Wu, Shao-Hua; Povinelli, Michelle L.

    2015-09-25

    We use a coupled thermal-optical approach to model the operating temperature rise in GaAs nanowire solar cells. Our findings show that despite more highly concentrated light absorption and lower thermal conductivity, the overall temperature rise in a nanowire structure is no higher than in a planar structure. Moreover, coating the nanowires with a transparent polymer can increase the radiative cooling power by 2.2 times, lowering the operating temperature by nearly 7 K.

  14. Studies on the growth aspects, structural, thermal, dielectric and third order nonlinear optical properties of solution grown 4-methylpyridinium p-nitrophenolate single crystal

    NASA Astrophysics Data System (ADS)

    Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan

    2016-11-01

    An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.

  15. Direct laser writing of polymeric nanostructures via optically induced local thermal effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Quang Cong; Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, 10000 Hanoi; Nguyen, Dam Thuy Trang

    We demonstrate the fabrication of desired structures with feature size below the diffraction limit by use of a positive photoresist. The direct laser writing technique employing a continuous-wave laser was used to optically induce a local thermal effect in a positive photoresist, which then allowed the formation of solid nanostructures. This technique enabled us to realize multi-dimensional sub-microstructures by use of a positive photoresist, with a feature size down to 57 nm. This mechanism acting on positive photoresists opens a simple and low-cost way for nanofabrication.

  16. Thermal annealing and single-domain preparation in tetragonal Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystal for electro-optic and non-linear optical applications

    NASA Astrophysics Data System (ADS)

    Zhao, Ye; Wang, Sanhong; Fu, Xiaotian; Zhuang, Yongyong; Yang, Rui; Yang, Zhi; Li, Zhenrong; Xu, Zhuo; Wei, Xiaoyong

    2018-02-01

    The relaxor-PbTiO3 single crystal has attracted extensive attention in ultrasound transducers, sensors, actuators, and optoelectronics devices due to its excellent piezoelectric response and electro-optic properties. Preparation of a single-domain crystal as a critical process for application in electro-optic and non-linear optical devices suffers from serious and inevitable cracking. Therefore, a pre-poling thermal annealing process was suggested to release residual stress from crystal growth and the ferroelectric-paraelectric phase transition, which significantly reduced the chance of cracking. The effect of thermal annealing on dielectric properties, strain behavior, and domain structure were investigated. As a result, a significant increase of the dielectric constant near room temperature was obtained after annealing, which is close to the dielectric constant of the a-oriented domain. The annealed single crystal showed a lower and sharper strain peak at the coercive electric field compared with the unannealed sample, and the 90° domain walls completely vanished, which was verified by optical microscopy. The crack-free single-domain crystal showed excellent optical quality, with high transmittance of approximately 70% in the visible and near-infrared regions, which indicates that this crystal is a promising candidate for applications in electro-optic and non-linear optical devices.

  17. Structural, thermal and optical properties of a semiorganic nonlinear optical single crystal: glycine zinc sulphate.

    PubMed

    Balakrishnan, T; Ramamurthi, K

    2007-10-01

    Glycine zinc sulphate salt was synthesized and the solubility and metastable zonewidth were estimated from the aqueous solution. Single crystals of glycine zinc sulphate were grown by solvent evaporation method from aqueous solution. Grown crystals were characterized by X-ray diffraction and FT-IR spectral analyses. The range and percentage of optical transmission was ascertained by recording UV-vis-NIR spectrum. Thermal properties of the crystal were investigated by thermogravimetric analysis. Microhardness study was carried out on (01-1) face of the grown crystal. Its powder second harmonic generation efficiency was measured using Nd:YAG laser and the value was observed to be 0.7 times that of potassium dihydrogen orthophosphate.

  18. Fast neutron irradiation induced changes in the optical and thermal properties of modified polyvinyl chloride

    NASA Astrophysics Data System (ADS)

    Abou Taleb, W. M.; Madi, N. K.; Kassem, M. E.; El-Khatib, A. M.

    1996-05-01

    The effect of both dopant and neutron radiation on the optical and thermal properties of polyvinyl chloride (PVC) has been studied. The doped samples with Pb and Cd were irradiated with a 14 MeV-neutron fluence in the range 7-28.8 × 10 9 n/cm 2. The optical energy gap Eop exhibits a significant dependence on the type of additive and the neutron irradiation fluence. The specific heat at constant pressure Cp showed a nonmonotonical change with radiation fluence. The results of this study show that PVC:Pb behaves as a crystalline structure which is only slightly affected by neutron irradiation, while PVC:Cd is highly affected.

  19. Structural, optical and field emission properties of urchin-shaped ZnO nanostructures.

    PubMed

    Al-Heniti, Saleh; Umar, Ahmad

    2013-01-01

    In this work, well-crystallized urchin-shaped ZnO structures were synthesized on silicon substrate by simple non-catalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen as source materials for zinc and oxygen, respectively. The synthesized ZnO structures were characterized in detail in terms of their morphological, structural, optical and field emission properties. The detailed morphological investigations revealed that the synthesized structures possess urchin-shape and grown in high-density over the substrate surface. The detailed structural and optical characterizations revealed that the synthesized urchin-shaped ZnO structures are well-crystallized and exhibiting good optical properties. The field emission analysis for urchin-shaped ZnO structures exhibits a turn-on field of 4.6 V/microm. The emission current density reached to 0.056 mA/cm2 at an applied electrical field of 6.4 V/microm and shows no saturation. The calculated field enhancement factor 'beta', from the F-N plot, was found to be approximately 2.2 x 10(3).

  20. Synthesis, growth, structural, thermal and optical studies of pyrrolidinium-2-carboxylate-4-nitrophenol single crystals.

    PubMed

    Swarna Sowmya, N; Sampathkrishnan, S; Vidyalakshmi, Y; Sudhahar, S; Mohan Kumar, R

    2015-06-15

    Organic nonlinear optical material, pyrrolidinium-2-carboxylate-4-nitrophenol (PCN) was synthesized and single crystals were grown by slow evaporation solution growth method. Single crystal X-ray diffraction analysis confirmed the structure and lattice parameters of PCN crystals. Infrared, Raman and NMR spectral analyses were used to elucidate the functional groups present in the compound. The thermal behavior of synthesized compound was studied by thermogravimetric and differential scanning calorimetry (TG-DSC) analyses. The photoluminescence property was studied by exciting the crystal at 360 nm. The relative second harmonic generation (SHG) efficiency of grown crystal was estimated by using Nd:YAG laser with fundamental wavelength of 1,064 nm. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Growth, structural, spectral, optical, and thermal studies on amino acid based new NLO single crystal: L-phenylalanine-4-nitrophenol.

    PubMed

    Prakash, M; Lydia Caroline, M; Geetha, D

    2013-05-01

    A new organic nonlinear optical single crystal, L-phenylalanine-4-nitrophenol (LPAPN) belonging to the amino acid group has been successfully grown by slow evaporation technique. The lattice parameters of the grown crystal have been determined by X-ray diffraction studies. FT-IR spectrum was recorded to identify the presence of functional group and molecular structure was confirmed by NMR spectrum. Thermal strength of the grown crystal has been studied using TG-DTA analyses. The grown crystals were found to be transparent in the entire visible region. The existence of second harmonic generation signals was observed using Nd:YAG laser with fundamental wavelength of 1064 nm. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Structural and optical properties of copper-coated substrates for solar thermal absorbers

    NASA Astrophysics Data System (ADS)

    Pratesi, Stefano; De Lucia, Maurizio; Meucci, Marco; Sani, Elisa

    2016-10-01

    Spectral selectivity, i.e. merging a high absorbance at sunlight wavelengths to a low emittance at the wavelengths of thermal spectrum, is a key characteristics for materials to be used for solar thermal receivers. It is known that spectrally selective absorbers can raise the receiver efficiency for all solar thermal technologies. Tubular sunlight receivers for parabolic trough collector (PTC) systems can be improved by the use of spectrally selective coatings. Their absorbance is increased by deposing black films, while the thermal emittance is minimized by the use of properly-prepared substrates. In this work we describe the intermediate step in the fabrication of black-chrome coated solar absorbers, namely the fabrication and characterization of copper coatings on previously nickel-plated stainless steel substrates. We investigate the copper surface features and optical properties, correlating them to the coating thickness and to the deposition process, in the perspective to assess optimal conditions for solar absorber applications.

  3. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing.

    PubMed

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-19

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson-Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm(-1) K(-2)), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance.

  4. Space environmental effects on spacecraft: LEO materials selection guide, part 2

    NASA Astrophysics Data System (ADS)

    Silverman, Edward M.

    1995-08-01

    This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.

  5. Space environmental effects on spacecraft: LEO materials selection guide, part 2

    NASA Technical Reports Server (NTRS)

    Silverman, Edward M.

    1995-01-01

    This document provides performance properties on major spacecraft materials and subsystems that have been exposed to the low-Earth orbit (LEO) space environment. Spacecraft materials include metals, polymers, composites, white and black paints, thermal-control blankets, adhesives, and lubricants. Spacecraft subsystems include optical components, solar cells, and electronics. Information has been compiled from LEO short-term spaceflight experiments (e.g., space shuttle) and from retrieved satellites of longer mission durations (e.g., Long Duration Exposure Facility). Major space environment effects include atomic oxygen (AO), ultraviolet radiation, micrometeoroids and debris, contamination, and particle radiation. The main objective of this document is to provide a decision tool to designers for designing spacecraft and structures. This document identifies the space environments that will affect the performance of materials and components, e.g., thermal-optical property changes of paints due to UV exposures, AO-induced surface erosion of composites, dimensional changes due to thermal cycling, vacuum-induced moisture outgassing, and surface optical changes due to AO/UV exposures. Where appropriate, relationships between the space environment and the attendant material/system effects are identified. Part 2 covers thermal control systems, power systems, optical components, electronic systems, and applications.

  6. Fabrication and Characterization of Large-Area Unpatterned and Patterned Plasmonic Gold Nanostructures

    NASA Astrophysics Data System (ADS)

    Do, Minh Thanh; Tong, Quang Cong; Luong, Mai Hoang; Lidiak, Alexander; Ledoux-Rak, Isabelle; Lai, Ngoc Diep

    2016-05-01

    We report fabrication of Au nanoisland films on different substrates by thermally annealing a sputtered Au nanolayer and investigation of their structure, morphology, and optical properties. It was found that high-temperature annealing leads to transformation of the initial, continuous film into the forms of hillock and isolated island film. The final nanoisland films exhibit remarkably enhanced and localized plasmon resonance spectra with respect to the original sputtered film. The strong dependence of the resonance band spectra of the resulting structures on the annealing temperature and supporting substrate is presented and analyzed, suggesting that both of these factors could be used to tune the optical spectroscopic properties of such structures. Moreover, we propose and demonstrate a novel and effective approach for fabrication of patterned Au structures by thermally annealing the Au layer deposited onto modulated-surface substrates. The experimental results indicate that this method could become a promising approach for manufacturing plasmonic array structures, which have been extensively investigated and widely applied in many fields.

  7. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    NASA Technical Reports Server (NTRS)

    Page, Arthur T.

    2001-01-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(TM), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(TM) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(TM) generates the SINDA input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment, conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  8. Thermal Analysis of a Finite Element Model in a Radiation Dominated Environment

    NASA Technical Reports Server (NTRS)

    Page, Arhur T.

    1999-01-01

    This paper presents a brief overview of thermal analysis, evaluating the University of Arizona mirror design, for the Next Generation Space Telescope (NGST) Pre-Phase A vehicle concept. Model building begins using Thermal Desktop(Tm), by Cullimore and Ring Technologies, to import a NASTRAN bulk data file from the structural model of the mirror assembly. Using AutoCAD(R) capabilities, additional surfaces are added to simulate the thermal aspects of the problem which, for due reason, are not part of the structural model. Surfaces are then available to accept thermophysical and thermo-optical properties. Thermal Desktop(Tm) calculates radiation conductors using Monte Carlo simulations. Then Thermal Desktop(Tm) generates the SINDA/Fluint input file having a one-to-one correspondence with the NASTRAN node and element definitions. A model is now available to evaluate the mirror design in the radiation dominated environment conduct parametric trade studies of the thermal design, and provide temperatures to the finite element structural model.

  9. Additivity of the coefficient of thermal expansion in silicate optical fibers.

    PubMed

    Cavillon, M; Dragic, P D; Ballato, J

    2017-09-15

    A model that predicts the material additivity of the thermal expansion coefficient in the binary silicate glasses most commonly used for present (GeO 2 -SiO 2 , P 2 O 5 -SiO 2 , B 2 O 3 -SiO 2 , and Al 2 O 3 -SiO 2 ) and emerging (BaO-SiO 2 ) optical fibers is proposed. This model is based on a derivation of the expression for the coefficient of thermal expansion in isotropic solids, and gives direct insight on the parameters that govern its additivity in silicate glasses. Furthermore, a consideration of the local structural environment of the glass system is necessary to fully describe its additivity behavior in the investigated systems. This Letter is important for better characterizing and understanding of the impact of temperature and internal stresses on the behavior of optical fibers.

  10. Crystal growth, structural, spectral, thermal, dielectric, linear and nonlinear optical characteristics of a new organic acentric material: L-Methionine-Succinic acid (2/1)

    NASA Astrophysics Data System (ADS)

    Nageshwari, M.; Kumari, C. Rathika Thaya; Vinitha, G.; Mohamed, M. Peer; Sudha, S.; Caroline, M. Lydia

    2018-03-01

    L-Methionine-Succinic acid (2/1) (LMSA), 2C5H11NO2S·C4H6O4, a novel nonlinear optical material which belongs to the class of organic category was grown-up for the first time by the technique of slow evaporation. Purity of LMSA was improved using repetitive recrystallization. LMSA was analyzed by single crystal and powder X-ray diffraction investigation to affirm the crystal structure and crystalline character. The single crystal XRD revealed that LMSA corresponds to the crystal system of triclinic with P1 as space group showing the asymmetric unit consists of a neutral succinic acid molecule and two methionine residues which are crystallographically independent existing in zwitterionic form. The functional groups existing in LMSA was accomplished using Fourier transform infrared spectroscopy. The optical transparency and the band gap energy were identified utilizing UV-Visible spectrum. The optical constants specifically reflectance and extinction coefficient clearly indicate the elevated transparency of LMSA. The thermal analyses affirmed its thermal stability. The luminescence behavior of LMSA has been analyzed by Photoluminescence (PL) spectral study. The mechanical, laser damage threshold and dielectric investigation of LMSA was done to suggest the material for practical applications. The second and third harmonic generation efficacy was confirmed by means of Kurtz-Perry and Z-scan procedure which attest its potentiality in the domain of nonlinear optics.

  11. Benchmarking surface selective vacuum ultraviolet and thermal postprocessing of thermoplastics for ultrasmooth 3-D-printed micro-optics

    NASA Astrophysics Data System (ADS)

    Kirchner, Robert; Chidambaram, Nachiappan; Schift, Helmut

    2018-04-01

    State-of-the-art, polymeric, refractive micro-optics simultaneously require an ultrasmooth three-dimensional (3-D) surface and a precise geometry for excellent optical performance with minimal stray light. In earlier work, we have established a surface finishing process for thermoplastic polymer master structures that is only effective on the surface and does not affect the designed optical geometry, thus enabling polishing without touching. Therewith, the high curvature corners of a 50-μm-tall optical diffuser device were maintained while the surface roughness was reduced to about 10-nm root mean square. For this, 3-D master structures were first fabricated by direct write laser-lithography with two-photon polymerization. The master structures were replicated into poly(methyl methacrylate) through a poly(dimethyl siloxane) intermediate replication stamp. Finally, all structures were surface-polished by selective high-energy photon exposure and thermal postprocessing. In this work, we focus on the comparison of the surface smoothening using either postprocessing or dedicated direct writing strategies. For this comparison, strategies for modifying the exposed voxel size and the writing discretization being the primary source of roughness were tested by sweeping the laser exposure dose for two different resist materials and objectives. In conclusion, the postprocessing smoothening resulted in a lower roughness compared to a direct writing strategy-even when 50-nm vertical discretization steps were used-and still enabled 10 times shorter writing times.

  12. Analysis, compensation, and correction of temperature effects on FBG strain sensors

    NASA Astrophysics Data System (ADS)

    Haber, T. C.; Ferguson, S.; Guthrie, D.; Graver, T. W.; Soller, B. J.; Mendez, Alexis

    2013-05-01

    One of the most common fiber optic sensor (FOS) types used are fiber Bragg gratings (FBG), and the most frequently measured parameter is strain. Hence, FBG strain sensors are one of the most prevalent FOS devices in use today in structural sensing and monitoring in civil engineering, aerospace, marine, oil and gas, composites and smart structure applications. However, since FBGs are simultaneously sensitive to both temperature and strain, it becomes essential to utilize sensors that are either fully temperature insensitive or, alternatively, properly temperature compensated to avoid erroneous measurements. In this paper, we introduce the concept of measured "total strain", which is inherent and unique to optical strain sensors. We review and analyze the temperature and strain sensitivities of FBG strain sensors and decompose the total measured strain into thermal and non-thermal components. We explore the differences between substrate CTE and System Thermal Response Coefficients, which govern the type and quality of thermal strain decomposition analysis. Finally, we present specific guidelines to achieve proper temperature-insensitive strain measurements by combining adequate installation, sensor packaging and data correction techniques.

  13. Crystal growth, structural, optical, dielectric and thermal studies of an amino acid based organic NLO material: L-phenylalanine L-phenylalaninium malonate.

    PubMed

    Prakash, M; Geetha, D; Caroline, M Lydia; Ramesh, P S

    2011-12-01

    Good transparent single crystals of L-phenylalanine L-phenylalaninium malonate (LPPMA) have been grown successfully by slow evaporation technique from aqueous solution. Single crystal X-ray diffractometer was utilized to measure unit cell parameter and to confirm the crystal structure. The chemical structure of compound was established by FT-NMR technique. The vibrational modes of the molecules of elucidated from FTIR spectra. Its optical behaviour has been examined by UV-vis spectral analysis, which shows the absence of absorbance in the visible region. Thermal properties of the LPPMA crystal were carried out by thermo gravimetric analysis (TGA) and differential thermal analysis (DTA) techniques, which indicate that the material does not decompose before melting. The melting point of grown crystal was observed as 180°C by melting point apparatus. The NLO property was confirmed by the powder technique of Kurtz and Perry. The dielectric behaviour of the sample was also studied for the first time. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Localized Surface Plasmon Resonance in Au Nanoparticles Embedded dc Sputtered ZnO Thin Films.

    PubMed

    Patra, Anuradha; Balasubrahmaniyam, M; Lahal, Ranjit; Malar, P; Osipowicz, T; Manivannan, A; Kasiviswanathan, S

    2015-02-01

    The plasmonic behavior of metallic nanoparticles is explicitly dependent on their shape, size and the surrounding dielectric space. This study encompasses the influence of ZnO matrix, morphology of Au nanoparticles (AuNPs) and their organization on the optical behavior of ZnO/AuNPs-ZnO/ZnO/GP structures (GP: glass plate). These structures have been grown by a multiple-step physical process, which includes dc sputtering, thermal evaporation and thermal annealing. Different analytical techniques such as scanning electron microscopy, glancing angle X-ray diffraction, Rutherford backscattering spectrometry and optical absorption have been used to study the structures. In-situ rapid thermal treatment during dc sputtering of ZnO film has been found to induce subtle changes in the morphology of AuNPs, thereby altering the profile of the plasmon band in the absorption spectra. The results have been contrasted with a recent study on the spectral response of dc magnetron sputtered ZnO films embedded with AuNPs. Initial simulation results indicate that AuNPs-ZnO/Au/GP structure reflects/absorbs UV and infrared radiations, and therefore can serve as window coatings.

  15. Effect of Zn doping on structural, optical and thermal properties of CeO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ramasamy, V.; Vijayalakshmi, G.

    2015-09-01

    The undoped and Zn doped CeO2 nanoparticles were synthesized by chemical precipitation method at room temperature. The undoped and Zn doped CeO2 nanoparticles have been characterized by X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), ultraviolet visible and photoluminescence (PL) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and thermogravimetry and differential thermal analysis (TG-DTA). The cubic fluorite structures of the CeO2 nanoparticles were determined by XRD. The influence of particle size on structural parameters such as lattice parameter (a), inter planar distance (d), dislocation density (δ), microstrain (ε), lattice strain (η) and texture co-efficient (TC) were also determined. The lattice strains were determined by Williamson-Hall plot method. The effect of Zn doping with shifting of the bands were observed by UV-Vis spectroscopy and also their optical band gap were determined. The emission spectra and energy band diagram of the undoped and Zn doped samples were derived from PL spectroscopy. The structural bond vibrations of undoped and Zn doped CeO2 nanoparticles were analyzed by FTIR spectroscopy. The thermal property (weight loss and decomposition) of the sample is observed by TG-DTA curve.

  16. Micro-Structured Two-Component 3D Metamaterials with Negative Thermal-Expansion Coefficient from Positive Constituents

    PubMed Central

    Qu, Jingyuan; Kadic, Muamer; Naber, Andreas; Wegener, Martin

    2017-01-01

    Controlling the thermal expansion of materials is of great technological importance. Uncontrolled thermal expansion can lead to failure or irreversible destruction of structures and devices. In ordinary crystals, thermal expansion is governed by the asymmetry of the microscopic binding potential, which cannot be adjusted easily. In artificial crystals called metamaterials, thermal expansion can be controlled by structure. Here, following previous theoretical work, we fabricate three-dimensional (3D) two-component polymer micro-lattices by using gray-tone laser lithography. We perform cross-correlation analysis of optical microscopy images taken at different sample temperatures. The derived displacement-vector field reveals that the thermal expansion and resulting bending of the bi-material beams leads to a rotation of the 3D chiral crosses arranged onto a 3D checkerboard pattern within one metamaterial unit cell. These rotations can compensate the expansion of the all positive constituents, leading to an effectively near-zero thermal length-expansion coefficient, or over-compensate the expansion, leading to an effectively negative thermal length-expansion coefficient. This evidences a striking level of thermal-expansion control. PMID:28079161

  17. Fractal-Like Materials Design with Optimized Radiative Properties for High-Efficiency Solar Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Clifford K.; Ortega, Jesus D.; Christian, Joshua Mark

    Novel designs to increase light trapping and thermal efficiency of concentrating solar receivers at multiple length scales have been conceived, designed, and tested. The fractal-like geometries and features are introduced at both macro (meters) and meso (millimeters to centimeters) scales. Advantages include increased solar absorptance, reduced thermal emittance, and increased thermal efficiency. Radial and linear structures at the meso (tube shape and geometry) and macro (total receiver geometry and configuration) scales redirect reflected solar radiation toward the interior of the receiver for increased absorptance. Hotter regions within the interior of the receiver can reduce thermal emittance due to reduced localmore » view factors to the environment, and higher concentration ratios can be employed with similar surface irradiances to reduce the effective optical aperture, footprint, and thermal losses. Coupled optical/fluid/thermal models have been developed to evaluate the performance of these designs relative to conventional designs. Modeling results showed that fractal-like structures and geometries can increase the effective solar absorptance by 5 – 20% and the thermal efficiency by several percentage points at both the meso and macro scales, depending on factors such as intrinsic absorptance. Meso-scale prototypes were fabricated using additive manufacturing techniques, and a macro-scale bladed receiver design was fabricated using Inconel 625 tubes. On-sun tests were performed using the solar furnace and solar tower at the National Solar Thermal Test facility. The test results demonstrated enhanced solar absorptance and thermal efficiency of the fractal-like designs.« less

  18. Noninvasive imaging analysis of biological tissue associated with laser thermal injury.

    PubMed

    Chang, Cheng-Jen; Yu, De-Yi; Hsiao, Yen-Chang; Ho, Kuang-Hua

    2017-04-01

    The purpose of our study is to use a noninvasive tomographic imaging technique with high spatial resolution to characterize and monitor biological tissue responses associated with laser thermal injury. Optical doppler tomography (ODT) combines laser doppler flowmetry (LDF) with optical coherence tomography (OCT) to obtain high resolution tomographic velocity and structural images of static and moving constituents in highly scattering biological tissues. A SurgiLase XJ150 carbon dioxide (CO 2 ) laser using a continuous mode of 3 watts (W) was used to create first, second or third degree burns on anesthetized Sprague-Dawley rats. Additional parameters for laser thermal injury were assessed as well. The rationale for using ODT in the evaluation of laser thermal injury offers a means of constructing a high resolution tomographic image of the structure and perfusion of laser damaged skin. In the velocity images, the blood flow is coded at 1300 μm/s and 0 velocity, 1000 μm/s and 0 velocity, 700 μm/s and 0 velocity adjacent to the first, second, and third degree injuries, respectively. ODT produces exceptional spatial resolution while having a non-invasive way of measurement, therefore, ODT is an accurate measuring method for high-resolution fluid flow velocity and structural images for biological tissue with laser thermal injury. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  19. Temperature driven evolution of thermal, electrical, and optical properties of Ti-Al-N coatings.

    PubMed

    Rachbauer, Richard; Gengler, Jamie J; Voevodin, Andrey A; Resch, Katharina; Mayrhofer, Paul H

    2012-03-01

    Monolithic single phase cubic (c) Ti 1- x Al x N thin films are used in various industrial applications due to their high thermal stability, which beneficially effects lifetime and performance of cutting and milling tools, but also find increasing utilization in electronic and optical devices. The present study elucidates the temperature-driven evolution of heat conductivity, electrical resistivity and optical reflectance from room temperature up to 1400 °C and links them to structural and chemical changes in Ti 1- x Al x N coatings. It is shown that various decomposition phenomena, involving recovery and spinodal decomposition (known to account for the age hardening phenomenon in c-Ti 1- x Al x N), as well as the cubic to wurtzite phase transformation of spinodally formed AlN-enriched domains, effectively increase the thermal conductivity of the coatings from ∼3.8 W m -1  K -1 by a factor of three, while the electrical resistivity is reduced by one order of magnitude. A change in the coating color from metallic grey after deposition to reddish-golden after annealing to 1400 °C is related to the film structure and discussed in terms of film reflectivity.

  20. Structural, thermal, spectroscopic, and spectral dispersion studies of nanocrystalline methyl red thin films

    NASA Astrophysics Data System (ADS)

    Makhlouf, Mohamed M.; El-Denglawey, Adel

    2018-04-01

    Methyl red (MR) powder is polycrystalline structure as-purchased. The uniform, homogeneous and no cracks nano MR thin films are successfully prepared using thermal evaporation technique. The structural investigation for the pristine, annealed and UV irradiated MR films shows nanorods spread in amorphous medium. The part of as-prepared films exposed to UV light irradiation of wavelength 254 nm and intensity of 2000 µW/cm2 for 1 h, while the other part of films was treated by the annealing temperature at 178 °C for 1 h. The optical properties of MR thin films were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence in the spectral range 200-2000 nm. The optical constants, dispersion parameters, and energy loss and dielectric functions of MR thin films were calculated and showed remarkable dependence on UV irradiation and annealing temperature upon the films of MR. The dependence of absorption coefficient on the photon energy were analyzed and the results showed that MR films undergo direct allowed optical transition for pristine, annealed and irradiated MR films.

  1. Synthesis, growth, structural, spectroscopic and optical studies of a semiorganic NLO crystal: zinc guanidinium phosphate.

    PubMed

    Suvitha, A; Murugakoothan, P

    2012-02-01

    The semi-organic nonlinear optical (NLO) crystal, zinc guanidinium phosphate (ZGuP) has been grown through synthesis between zinc sulphate, guanidine carbonate and orthophosphoric acid from its aqueous solution by slow solvent evaporation technique. Solubility of the synthesized material has been determined for various temperatures using water as solvent. The grown crystal has been characterized by powder X-ray diffraction to confirm the crystal structure. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by Fourier transform infrared spectroscopy technique. (1)H and (13)C FT-NMR have been recorded to elucidate the molecular structure. The optical absorption study confirms the suitability of the crystal for device applications. The second harmonic generation (SHG) efficiency of ZGuP is found to be 1.825 times that of potassium dihydrogen phosphate (KDP). Thermal behavior of the grown crystals has been studied by thermogravimetric and differential thermal analysis. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Design, analysis, and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A.; Minning, C.

    1981-01-01

    Thermal, optical, structural, and electrical isolation analyses are decribed. Major factors in the design of terrestrial photovoltaic modules are discussed. Mechanical defects in the different layers of an encapsulation system, it was found, would strongly influence the minimum pottant thickness required for electrical isolation. Structural, optical, and electrical properties, a literature survey indicated, are hevily influenced by the presence of moisture. These items, identified as technology voids, are discussed. Analyses were based upon a 1.2 meter square module using 10.2 cm (4-inch) square cells placed 1.3 mm apart as shown in Figure 2-2. Sizing of the structural support member of a module was determined for a uniform, normal pressure load of 50 psf, corresponding to the pressure difference generated between the front and back surface of a module by a 100 mph wind. Thermal and optical calculations were performed for a wind velocity of 1 meter/sec parallel to the ground and for module tilt (relative to the local horizontal) of 37 deg. Placement of a module in a typical array field is illustrated.

  3. Design, analysis, and test verification of advanced encapsulation systems

    NASA Astrophysics Data System (ADS)

    Garcia, A.; Minning, C.

    1981-11-01

    Thermal, optical, structural, and electrical isolation analyses are decribed. Major factors in the design of terrestrial photovoltaic modules are discussed. Mechanical defects in the different layers of an encapsulation system, it was found, would strongly influence the minimum pottant thickness required for electrical isolation. Structural, optical, and electrical properties, a literature survey indicated, are hevily influenced by the presence of moisture. These items, identified as technology voids, are discussed. Analyses were based upon a 1.2 meter square module using 10.2 cm (4-inch) square cells placed 1.3 mm apart as shown in Figure 2-2. Sizing of the structural support member of a module was determined for a uniform, normal pressure load of 50 psf, corresponding to the pressure difference generated between the front and back surface of a module by a 100 mph wind. Thermal and optical calculations were performed for a wind velocity of 1 meter/sec parallel to the ground and for module tilt (relative to the local horizontal) of 37 deg. Placement of a module in a typical array field is illustrated.

  4. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition.

    PubMed

    Wu, Jingjin; Zhao, Yinchao; Zhao, Ce Zhou; Yang, Li; Lu, Qifeng; Zhang, Qian; Smith, Jeremy; Zhao, Yongming

    2016-08-13

    The 4 at. % zirconium-doped zinc oxide (ZnO:Zr) films grown by atomic layer deposition (ALD) were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA) treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV-vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350-550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition.

  5. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition

    PubMed Central

    Wu, Jingjin; Zhao, Yinchao; Zhao, Ce Zhou; Yang, Li; Lu, Qifeng; Zhang, Qian; Smith, Jeremy; Zhao, Yongming

    2016-01-01

    The 4 at. % zirconium-doped zinc oxide (ZnO:Zr) films grown by atomic layer deposition (ALD) were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA) treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV–vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350–550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition. PMID:28773816

  6. Optical mounts for harsh environments

    NASA Astrophysics Data System (ADS)

    Mimovich, Mark E.; Griffee, Jonathan C.; Goodding, James C.

    2009-08-01

    Development and testing of a lightweight-kinematic optical mount with integrated passive vibration-and-shock mitigation technologies and simple / robust optical alignment functionality is presented. Traditionally, optical mounts are designed for use in laboratory environments where the thermal-mechanical environments are carefully controlled to preserve beam path conditions and background disturbances are minimized to facilitate precise optically based measurements. Today's weapon and surveillance systems, however, have optical sensor suites where static and dynamic alignment performance in the presence of harsh operating environments is required to nearly the same precision and where the system cannot afford the mass of laboratory-grade stabilized mounting systems. Jitter and alignment stability is particularly challenging for larger optics operating within moving vehicles and aircraft where high shock and significant temperature excursions occur. The design intent is to have the mount be suitable for integration into existing defense and security optical systems while also targeting new commercial and military components for improved structural dynamic and thermal distortion performance. A mount suitable for moderate-sized optics and an integrated disturbance-optical metrology system are described. The mount design has performance enhancements derived from the integration of proven aerospace mechanical vibration and shock mitigation technologies (i.e. multi-axis passive isolation and integral damping), precision alignment adjustment and lock-out functionality, high dimensional stability materials and design practices which provide benign optical surface figure errors under harsh thermal-mechanical loading. Optical jitter, alignment, and wave-front performance testing of an eight-inch-aperture optical mount based on this design approach are presented to validate predicted performance improvements over an existing commercial off-the-shelf (COTS) design.

  7. Integrated structural and optical modeling of the orbiting stellar interferometer

    NASA Astrophysics Data System (ADS)

    Shaklan, Stuart B.; Yu, Jeffrey W.; Briggs, Hugh C.

    1993-11-01

    The Integrated Modeling of Optical Systems (IMOS) Integration Workbench at JPL has been used to model the effects of structural perturbations on the optics in the proposed Orbiting Stellar Interferometer (OSI). OSI consists of 3 pairs of interferometers and delay lines attached to a 7.5 meter truss. They are interferometrically monitored from a separate boom by a laser metrology system. The spatially distributed nature of the science instrument calls for a high level of integration between the optics and support structure. Because OSI is designed to achieve micro-arcsecond astrometry, many of its alignment, stability, and knowledge tolerances are in the submicron regime. The spacecraft will be subject to vibrations caused by reaction wheels and on-board equipment, as well as thermal strain due to solar and terrestrial heating. These perturbations affect optical parameters such as optical path differences and beam co-parallelism which are critical to instrument performance. IMOS provides an environment that allows one to design and perturb the structure, attach optics to structural or non-structural nodes, trace rays, and analyze the impact of mechanical perturbations on optical performance. This tool makes it simple to change the structure and immediately see performance enhancement/degradation. We have employed IMOS to analyze the effect of reaction wheel disturbances on the optical path difference in both the science and metrology interferometers.

  8. Fabrication of Gold-coated 3-D Woodpile Structures for Mid-IR Thermal Emitters

    NASA Astrophysics Data System (ADS)

    Li, Shengkai; Moridani, Amir; Kothari, Rohit; Lee, Jae-Hwang; Watkins, James

    3-D metallic woodpile nanostructures possess enhancements in thermal radiation that are both wavelength and polarization specific and are promising for thermal-optical devices for various applications including thermal photovoltaics, self-cooling devices, and chemical and bio-sensors. However, current fabrication techniques for such structures are limited by slow speed, small area capability, the need for expensive facilities and, in general, are not suitable for high-throughput mass production. Here we demonstrate a new strategy for the fabrication of 3D metallic woodpile structures. Well-defined TiO2 woodpile structures were fabricated using a layer-by-layer nanoimprint method using TiO2 nanoparticle ink dispersions. The TiO2 woodpile was then coated with a high purity, conformal gold film via reactive deposition in supercritical carbon dioxide. The final gold-coated woodpile structures exhibit strong spectral and polarization specific thermal emission enhancements. The fabrication method demonstrated here is promising for high-throughput, low-cost preparation of 3D metallic woodpile structures and other 3D nanostructures. Center for Hierarchical Manufacturing, NSF.

  9. Partial Synchronization of Stochastic Oscillators through Hydrodynamic Coupling

    NASA Astrophysics Data System (ADS)

    Curran, Arran; Lee, Michael P.; Padgett, Miles J.; Cooper, Jonathan M.; Di Leonardo, Roberto

    2012-06-01

    Holographic optical tweezers are used to construct a static bistable optical potential energy landscape where a Brownian particle experiences restoring forces from two nearby optical traps and undergoes thermally activated transitions between the two energy minima. Hydrodynamic coupling between two such systems results in their partial synchronization. This is interpreted as an emergence of higher mobility pathways, along which it is easier to overcome barriers to structural rearrangement.

  10. Integrated Optical Design Analysis (IODA): New Test Data and Modeling Features

    NASA Technical Reports Server (NTRS)

    Moore, Jim; Troy, Ed; Patrick, Brian

    2003-01-01

    A general overview of the capabilities of the IODA ("Integrated Optical Design Analysis") exchange of data and modeling results between thermal, structures, optical design, and testing engineering disciplines. This presentation focuses on new features added to the software that allow measured test data to be imported into the IODA environment for post processing or comparisons with pretest model predictions. software is presented. IODA promotes efficient

  11. Integrated analysis of large space systems

    NASA Technical Reports Server (NTRS)

    Young, J. P.

    1980-01-01

    Based on the belief that actual flight hardware development of large space systems will necessitate a formalized method of integrating the various engineering discipline analyses, an efficient highly user oriented software system capable of performing interdisciplinary design analyses with tolerable solution turnaround time is planned Specific analysis capability goals were set forth with initial emphasis given to sequential and quasi-static thermal/structural analysis and fully coupled structural/control system analysis. Subsequently, the IAC would be expanded to include a fully coupled thermal/structural/control system, electromagnetic radiation, and optical performance analyses.

  12. Non-equilibrium Green's function calculation for GaN-based terahertz-quantum cascade laser structures

    NASA Astrophysics Data System (ADS)

    Yasuda, H.; Kubis, T.; Hosako, I.; Hirakawa, K.

    2012-04-01

    We theoretically investigated GaN-based resonant phonon terahertz-quantum cascade laser (QCL) structures for possible high-temperature operation by using the non-equilibrium Green's function method. It was found that the GaN-based THz-QCL structures do not necessarily have a gain sufficient for lasing, even though the thermal backfilling and the thermally activated phonon scattering are effectively suppressed. The main reason for this is the broadening of the subband levels caused by a very strong interaction between electrons and longitudinal optical (LO) phonons in GaN.

  13. Two-dimensional modeling of density and thermal structure of dense circumstellar outflowing disks

    NASA Astrophysics Data System (ADS)

    Kurfürst, P.; Feldmeier, A.; Krtička, J.

    2018-06-01

    Context. Evolution of massive stars is affected by a significant loss of mass either via (nearly) spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely the outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around massive stars is still under debate. It is also unclear how various forming physical mechanisms of the circumstellar environment affect its shape and density, as well as its kinematic and thermal structure. Aims: We study the hydrodynamic and thermal structure of optically thick, dense parts of outflowing circumstellar disks that may be formed around various types of critically rotating massive stars, for example, Be stars, B[e] supergiant (sgB[e]) stars or Pop III stars. We calculate self-consistent time-dependent models of temperature and density structure in the disk's inner dense region that is strongly affected by irradiation from a rotationally oblate central star and by viscous heating. Methods: Using the method of short characteristics, we specify the optical depth of the disk along the line-of-sight from stellar poles. Within the optically thick dense region with an optical depth of τ > 2/3 we calculate the vertical disk thermal structure using the diffusion approximation while for the optically thin outer layers we assume a local thermodynamic equilibrium with the impinging stellar irradiation. For time-dependent hydrodynamic modeling, we use two of our own types of hydrodynamic codes: two-dimensional operator-split numerical code based on an explicit Eulerian finite volume scheme on a staggered grid, and unsplit code based on the Roe's method, both including full second-order Navier-Stokes shear viscosity. Results: Our models show the geometric distribution and contribution of viscous heating that begins to dominate in the central part of the disk for mass-loss rates higher than Ṁ ≳ 10-10 M⊙ yr-1. In the models of dense viscous disks with Ṁ > 10-8 M⊙ yr-1, the viscosity increases the central temperature up to several tens of thousands of Kelvins, however the temperature rapidly drops with radius and with distance from the disk midplane. The high mass-loss rates and high viscosity lead to instabilities with significant waves or bumps in density and temperature in the very inner disk region. Conclusions: The two-dimensional radial-vertical models of dense outflowing disks including the full Navier-Stokes viscosity terms show very high temperatures that are however limited to only the central disk cores inside the optically thick area, while near the edge of the optically thick region the temperature may be low enough for the existence of neutral hydrogen, for example.

  14. Design and analysis on thermal adaptive clamping device for PPMgLN crystal used in solid state laser

    NASA Astrophysics Data System (ADS)

    Yan, Conglin; Chen, Yongliang; Zhang, Wei

    2015-02-01

    The quality of clamping device for PPMgLN crystal has a vital influence on the optical property of solid-state laser. It has highly requirements of work stability and environmental adaptation ability, especially the thermal adaptation under high temperature differences. To achieve thermal adaptation, structural stiffness will be unavoidably weakened. How to keep both enough stiffness and thermal adaptation as far as possible is the key design point and also difficult point. In this paper, a kind of flexible thermal release unit which can work permanent under 130+/-10°C is studied. Thermal compensation principle and flexible thermal release theory are applied. Analysis results indicate that this device can effectively decreased the thermal stress of the crystal from 85MPa to 0.66MPa. The results of the vibration resistance test on the optical axis direction of the crystal indicate that the device can provide at least 5.62N to resistant 57.2g impact vibration and 18.5g impact vibration in the side direction, well satisfied the requirements of ability to resistant 6g impact vibration.

  15. 3D microstructuring inside glass by ultrafast laser

    NASA Astrophysics Data System (ADS)

    Sugioka, Koji; Hanada, Yasutaka; Midorikawa, Katsumi; Kawano, Hiroyuki; Ishikawa, Ikuko S.; Miyawaki, Atsushi

    2012-01-01

    We demonstrate three-dimensional (3D) microstructuring inside glass by ultrafast laser to fabricate microfluidic chips integrated with some functional microcomponents such as optical attenuators and optical waveguides. The fabricated microchips are applied to understand phenomena and functions of microorganisms and cyanobacteria. Ultrafast laser irradiation followed by thermal treatment and wet etching in dilute hydrofluoric acid solution resulted in fabrication of 3D microfludic structures embedded in a photosensitive glass. The embedded microfludic structures enabled us to easily and efficiently observe Phormidium gliding to the seedling root, which accelerates growth of the vegetable. In addition, integration of optical attenuators and optical waveguides into the microfluidic structures clarified the mechanism of the gliding movement of Phormidium. We termed such integrated microchips nanoaquariums, realizing the highly efficient and functional observation and analysis of various microorganisms.

  16. Porous silicon based micro-opto-electro-mechanical-systems (MOEMS) components for free space optical interconnects

    NASA Astrophysics Data System (ADS)

    Song, Da

    2008-02-01

    One of the major challenges confronting the current integrated circuits (IC) industry is the metal "interconnect bottleneck". To overcome this obstacle, free space optical interconnects (FSOIs) can be used to address the demand for high speed data transmission, multi-functionality and multi-dimensional integration for the next generation IC. One of the crucial elements in FSOIs system is to develop a high performance and flexible optical network to transform the incoming optical signal into a distributed set of optical signals whose direction, alignment and power can be independently controlled. Among all the optical materials for the realization of FSOI components, porous silicon (PSi) is one of the most promising candidates because of its unique optical properties, flexible fabrication methods and integration with conventional IC material sets. PSi-based Distributed Bragg Reflector (DBR) and Fabry-Perot (F-P) structures with unique optical properties are realized by electrochemical etching of silicon. By incorporating PSi optical structures with Micro-Opto-Electro-Mechanical-Systems (MOEMS), several components required for FSOI have been developed. The first type of component is the out-of-plane freestanding optical switch. Implementing a PSi DBR structure as an optically active region, the device can realize channel selection by changing the tilting angle of the micromirror supported by the thermal bimorph actuator. All the fabricated optical switches have reached kHz working frequency and life time of millions of cycles. The second type of component is the in-plane tunable optical filter. By introducing PSi F-P structure into the in-plane PSi film, a thermally tunable optical filter with a sensitivity of 7.9nm/V has been realized for add/drop optical signal selection. Also, for the first time, a new type of PSi based reconfigurable diffractive optical element (DOE) has been developed. By using patterned photoresist as a protective mask for electrochemical etching, the freestanding PSi-based MOEMS DOE has been created as a beam splitter to redistribute the incoming optical signal with onto desired detector arrays. All the developed devices are realized in array fashion and can be addressed and controlled individually. The combination of PSi and MOEMS opens the door for a new generation of silicon compatible optical interconnects.

  17. Hybrid structure of biotemplate-zinc-tin oxide for better optical, morphological and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Karpuraranjith, M.; Thambidurai, S.

    2017-03-01

    A new chitosan (as biotemplate)-zinc-tin oxide hybrid structure was successfully synthesized by a chemical precipitation method and annealed at 500 °C. We studied the structural changes, optical, thermal and photo catalytic properties. The chemical bonding of the Zn-O and Sn-O-Sn functional groups were confirmed by FT-IR absorption peaks appearing at 538 and 635 cm-1. The different ratio of ZnO to SnO2 particles on the biotemplate matrix altered the morphology of the hybrids from an agglomerated state to a microcrystalline form confirmed by HR-SEM and TEM analysis. The formation of a Zn0.15Sn0.85O hybrid structure was observed in the visible light region, with an energy band gap of ˜3.19 eV and higher surface area of 98 m2 g-1. The thermal property shows that CS-Zn0.15Sn0.85O has a higher thermal stability than a CS-Zn0.25Sn0.75O hybrid structure. The results demonstrate that the biotemplate-zinc-tin oxide hybrid structure has a reinforced effect compared to the other components. Therefore, a biotemplate-based zinc-tin oxide hybrid structure could be a promising material for better dye removal efficiency, which was obtained for ˜100 and 96% with MB and RY-15 dyes.

  18. Instrumentation by accelerometers and distributed optical fiber sensors of a real ballastless track structure

    NASA Astrophysics Data System (ADS)

    Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Cailliau, Joël; Gueguen, Ivan; Dumoulin, Jean

    2015-04-01

    While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. Firstly, they are built quickly since the slabs can be cast in place in an automated fashion by a slipform paver. Secondly, with its service life of at least 60 years, they requires little maintenance and hence they offers great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. In the framework of a FUI project (n° 072906053), a new ballastless track structure based on concrete slabs was designed and its thermal-mechanical behavior in fatigue under selected mechanical and thermal conditions was tested on a real scale mockup in our laboratory [1,2]. By applying to the slabs both together mechanical stresses and thermal gradients, finite elements simulation and experimental results show that the weather conditions influence significantly the concrete slabs curvatures and by the way, the contact conditions with the underlaying layers. So it is absolutely necessary to take into account this effect in the design of the ballastless track structures in order to guarantee a long target life of at least of 50 years. After design and experimental tests in laboratory, a real ballastless track structure of 1km was built in France at the beginning of year 2013. This structure has 2 tracks on which several trains circulate every day since the beginning of year 2014. Before the construction, it was decided to monitor this structure to verify that the mechanical behavior is conform to the simulations. One part of the instrumentation is dedicated to monitor quasi-continuously the evolution of the curvature of a concrete slab. For this, 2 accelerometers were fixed on the slab under the track. One was placed on the edge and the other in the middle of the slab. The acquisition of the signals by a nano computer (called Pegase and developed at Ifsttar for data acquisition [3]) were performed automatically every time that a threshold is exceeded due to the passage of a train. These data are then send to a web server via a 3G Wireless Network. Many data was thus stored daily for several months. Moreover, several thermocouples were embedded at different depths in order to measure thermal gradients into the track slab. From the accelerometers signals, the deflection of the track slab are then obtained and compared to the measurements of thermal gradients. This comparison show clearly the daily evolution of the curvature with the thermal gradient changes as estimated by the simulation. This result was confirmed indirectly by strain profile measurements obtained by the Rayleigh fiber optic sensing technique. Two fiber optics embedded in the upper and lower part of the foundation slab show that contact conditions between the foundation slab and the track slab change with thermal gradient. 1 - X. Chapeleau, T. Sedran, L.-M. Cottineau, J. Cailliau, F. Taillade, I. Gueguen, J.-M. Henault. Study of ballastless track structure monitoring by distributed optical fiber sensors on a real-scale mockup in laboratory. Engineering Structures, 2013, 56, pp. 1751-1757. 2 - X. Chapeleau, L.-M. Cottineau, T. Sedran, J. Cailliau, I. Gueguen. Instrumentation by distributed optical fiber sensors of a new ballastless track structure. EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-8946 3 - V. Le Cam, L. Lemarchand, L-M. Cottineau and F. Bourquin. Design of a generic smart and wireless sensors network - benefits of emerging technologies. Structural Health Monitoring 2008, 1(1), pp. 598-605.

  19. Integrated Modeling of Optical Systems (IMOS): An Assessment and Future Directions

    NASA Technical Reports Server (NTRS)

    Moore, Gregory; Broduer, Steve (Technical Monitor)

    2001-01-01

    Integrated Modeling of Optical Systems (IMOS) is a finite element-based code combining structural, thermal, and optical ray-tracing capabilities in a single environment for analysis of space-based optical systems. We'll present some recent examples of IMOS usage and discuss future development directions. Due to increasing model sizes and a greater emphasis on multidisciplinary analysis and design, much of the anticipated future work will be in the areas of improved architecture, numerics, and overall performance and analysis integration.

  20. Requirements and Design Reference Mission for the WFIRST-AFTA Coronagraph Instrument

    NASA Technical Reports Server (NTRS)

    Demers, Richard T.; Dekens, Frank; Calvet, Rob; Chang, Zensheu; Effinger, Robert; Ek, Eric; Hovland, Larry; Jones, Laura; Loc, Anthony; Nemati, Bijan; hide

    2015-01-01

    The WFIRST-AFTA coronagraph instrument take s advantage of AFTA s 2.4 -meter aperture to provide novel exoplanet imaging science at approximately the same instrument cost as an Explorer mission. The AFTA coronagraph also matures direct imaging technologies to high TRL for an Exo-Earth Imager in the next decade. The coronagraph Design Reference Mission (DRM) optical design is based on the highly successful High Contrast Imaging Testbed (HCIT), with modifications to accommodate the AFTA telescope design, service-ability, volume constraints, and the addition of an Integral Field Spectrograph (IFS). In order to optimally satisfy the three science objectives of planet imaging, planet spectral characterization and dust debris imaging, the coronagraph is designed to operate in two different modes : Hybrid Lyot Coronagraph or Shaped Pupil Coronagraph. Active mechanisms change pupil masks, focal plane masks, yot masks, and bandpass filters to shift between modes. A single optical beam train can thus operate alternatively as two different coronagraph architecture s. Structural Thermal Optical Performance (STOP) analysis predict s the instrument contrast with the Low Order Wave Front Control loop closed. The STOP analysis was also used to verify that the optical/structural/thermal design provides the extreme stability required for planet characterization in the presence of thermal disturbances expected in a typical observing scenario. This paper describes the instrument design and the flow down from science requirements to high level engineering requirements.

  1. Mechanical and thermal disturbances of the PSR Moderate Focus-Mission Structure

    NASA Technical Reports Server (NTRS)

    Shih, Choon-Foo; Lou, Michael C.

    1991-01-01

    The primary objective of this paper is to evaluate the optical pointing performance of the PSR Moderate Focus-Mission Structure when subjected to both mechanical and thermal disturbances. The mechanical disturbances are based on secondary mirror chopping. Results indicate that dynamic responses of the primary reflector and the secondary reflector subjected to chopping disturbances of the secondary reflector about its center of mass are within the figure maintenance control capabilities. The effects of modal damping, truss-type secondary support, interface boundary constraints, and alternate configurations, are also evaluated in the analysis. Thermal distortions of the structure were also evaluated based on the on-orbit temperature profiles derived from the submillimeter telescope missions. Results from thermal deformation analysis indicate that figure initialization control is needed for the PSR Moderate Focus-Mission. However, a figure maintenance system may not be required if adequate thermal isolation is incorporated into the support truss design for the PSR Moderate Focus-Mission Structure.

  2. Structural, electronic, mechanical, thermal and optical properties of B(P,As)1-xNx; (x = 0, 0.25, 0.5, 0.75, 1) alloys and hardness of B(P,As) under compression using DFT calculations

    NASA Astrophysics Data System (ADS)

    Viswanathan, E.; Sundareswari, M.; Jayalakshmi, D. S.; Manjula, M.; Krishnaveni, S.

    2017-09-01

    First principles calculations are carried out in order to analyze the structural, electronic, mechanical, thermal and optical properties of BP and BAs compounds by ternary alloying with nitrogen namely B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys at ambient condition. Thereby we report the mechanical and thermal properties of B(P,As)1-xNx (x = 0.25, 0.5, 0.75) alloys namely bulk modulus, shear modulus, Young's modulus, hardness, ductile-brittle nature, elastic wave velocity, Debye temperature, melting point, etc.; optical properties of B(P)1-xNx (x = 0.25, 0.5, 0.75) and B(As)1-xNx (x = 0.25, 0.75) alloys namely the dielectric function of real and imaginary part, refractive index, extinction coefficient and reflectivity and the hardness profile of the parent compounds BP and BAs under compression. The charge density plot, density of states histograms and band structures are plotted and discussed for all the ternary alloys of the present study. The calculated results agree very well with the available literature. Analysis of the present study reveals that the ternary alloy combinations namely BP.25N.75 and BAs.25N.75 could be superhard materials; hardness of BP and BAs increases with compression.

  3. Room temperature synthesis of Cu₂O nanospheres: optical properties and thermal behavior.

    PubMed

    Nunes, Daniela; Santos, Lídia; Duarte, Paulo; Pimentel, Ana; Pinto, Joana V; Barquinha, Pedro; Carvalho, Patrícia A; Fortunato, Elvira; Martins, Rodrigo

    2015-02-01

    The present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals.

  4. Computational investigations of the band structure, and thermodynamic and optical features of thorium-based oxide ThGeO4 using the full-potential linearized augmented plane-wave plus local orbital approach

    NASA Astrophysics Data System (ADS)

    Chiker, F.; Khachai, H.; Mathieu, C.; Bin-Omran, S.; Kada, Belkacem; Sun, Xiao-Wei; Sandeep; Rai, D. P.; Khenata, R.

    2018-05-01

    In this study, first-principles investigations were performed using the full-potential linearized augmented plane-wave method of the structural and optoelectronic properties of thorium germinate (ThGeO4), a high-K dielectric material. Under ambient conditions, the structural properties calculated for ThGeO4 in the zircon phase were in excellent agreement with the available experimental data. Furthermore, using the modified Becke -Johnson correction method, the calculated band gaps and optical constants accurately described this compound. Finally, the thermal properties were predicted over a temperature range of 0-700 K and pressures up to 11 GPa using the quasi-harmonic Debye model, where the variations in the heat capacity, primitive cell volume, and thermal expansion coefficients were determined successfully.

  5. Structural rearrangements in chloroplast thylakoid membranes revealed by differential scanning calorimetry and circular dichroism spectroscopy. Thermo-optic effect.

    PubMed

    Dobrikova, Anelia G; Várkonyi, Zsuzsanna; Krumova, Sashka B; Kovács, László; Kostov, Georgi K; Todinova, Svetla J; Busheva, Mira C; Taneva, Stefka G; Garab, Gyozo

    2003-09-30

    The thermo-optic mechanism in thylakoid membranes was earlier identified by measuring the thermal and light stabilities of pigment arrays with different levels of structural complexity [Cseh, Z., et al. (2000) Biochemistry 39, 15250-15257]. (According to the thermo-optic mechanism, fast local thermal transients, arising from the dissipation of excess, photosynthetically not used, excitation energy, induce elementary structural changes due to the "built-in" thermal instabilities of the given structural units.) The same mechanism was found to be responsible for the light-induced trimer-to-monomer transition in LHCII, the main chlorophyll a/b light-harvesting antenna of photosystem II (PSII) [Garab, G., et al. (2002) Biochemistry 41, 15121-15129]. In this paper, differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy on thylakoid membranes of barley and pea are used to correlate the thermo-optically inducible structural changes with well-discernible calorimetric transitions. The thylakoid membranes exhibited six major DSC bands, with maxima between about 43 and 87 degrees C. The heat sorption curves were analyzed both by mathematical deconvolution of the overall endotherm and by a successive annealing procedure; these yielded similar thermodynamic parameters, transition temperature and calorimetric enthalpy. A systematic comparison of the DSC and CD data on samples with different levels of complexity revealed that the heat-induced disassembly of chirally organized macrodomains contributes profoundly to the first endothermic event, a weak and broad DSC band between 43 and 48 degrees C. Similarly to the main macrodomain-associated CD signals, this low enthalpy band could be diminished by prolonged photoinhibitory preillumination, the extent of which depended on the temperature of preillumination. By means of nondenaturing, "green" gel electrophoresis and CD fingerprinting, it is shown that the second main endotherm, around 60 degrees C, originates to a large extent from the monomerization of LHCII trimers. The main DSC band, around 70 degrees C, which exhibits the highest enthalpy change, and another band around 75-77 degrees C relate to the dismantling of LHCII and other pigment-protein complexes, which under physiologically relevant conditions cannot be induced by light. The currently available data suggest the following sequence of events of thermo-optically inducible changes: (i) unstacking of membranes, followed by (ii) lateral disassembly of the chiral macrodomains and (iii) monomerization of LHCII trimers. We propose that thermo-optical structural reorganizations provide a structural flexibility, which is proportional to the intensity of the excess excitation, while for their localized nature, the structural stability of the system can be retained.

  6. Anti-iridescent colloidal photonic nanostructure from thermal gradients and polymeric brush effects

    NASA Astrophysics Data System (ADS)

    Lee, Seung Yeol; Kim, Hyoungsoo; Kim, Shin-Hyun; Stone, Howard

    2017-11-01

    Colloidal nanostructures induced by self-assembly are important in reflective displays, plasmonic or photonic sensors, and color pigments. During the evaporation of droplets of colloidal suspension, due to the non-uniform evaporation rate along the droplet interface, a radially outward flow is created and it carries colloidal particles to the pinned contact line of the droplet. We document that the packing at the contact line is a face-center-cubic (fcc) colloidal nanostructure in a ring shape. The fcc structure of the colloidal nanoparticles exhibits angle-dependent color. In particular, we introduce a novel method to suppress the familiar coffee-ring effect and modify colloidal nanostructures to exhibit angle-independent optical properties. A suspension of polyethylene oxide (PEO)-coated silica nanoparticles dispersed in ethanol-water mixture is prepared. The droplet containing the nanoparticles dries on a heated substrate, which creates a thermal gradient along the interface of the droplet. This thermal gradient induces thermal-Marangoni stresses that suppress the coffee-ring effects. PEO adsorbed on the surface of silica nanoparticles produces an additional interaction between colloidal nanoparticles, which makes the final structure disordered. The disordered photonic nanostructures in our experiments exhibit angle-independent structural color. This technique can be applied to printing or optical filtering systems.

  7. Self-visualization of transparent microscopic objects in optical glasses under the conditions of the thermal self-action of an illuminating laser beam

    NASA Astrophysics Data System (ADS)

    Bubis, E. L.; Palashov, O. V.; Kuz'min, I. V.; Snetkov, I. L.; Gusev, S. A.

    2017-03-01

    We demonstrate the process of adaptive self-visualization of small-scale transparent objects and structures in weakly absorbing optical glasses (a glass plate made of K8 and an NS-1 neutral density filter) placed in the Fourier plane of the optical system under the conditions of thermal self-action of the illuminating laser beam. The process is based on the ideology of the classical Zernike phase contrast method. The process is implemented at the level of power of radiation of the illuminated object varying from several milliwatts to tens of watts in the visible and IR spectral ranges. The conducted experiments indicate that the visualization takes place in all glasses and optical elements fabricated from them at an appropriate level of the radiation power.

  8. Synthesis, structural, thermal and optical studies of inorganic-organic hybrid semiconductors, R-PbI4

    NASA Astrophysics Data System (ADS)

    Pradeesh, K.; Nageswara Rao, K.; Vijaya Prakash, G.

    2013-02-01

    Wide varieties of naturally self-assembled two-dimensional inorganic-organic (IO) hybrid semiconductors, (4-ClC6H4NH3)2PbI4, (C6H9C2H4NH3)2PbI4, (CnH2n+1NH3)2PbI4 (where n = 12, 16, 18), (CnH2n-1NH3)2PbI4 (where n = 3, 4, 5), (C6H5C2H4NH3)2PbI4, NH3(CH2)12NH3PbI4, and (C4H3SC2H4NH3)2PbI4, were fabricated by intercalating structurally diverse organic guest moieties into lead iodide perovskite structure. The crystal packing of all these fabricated IO-hybrids comprises of well-ordered organic and inorganic layers, stacked-up alternately along c-axis. Almost all these hybrids are thermally stable upto 200 °C and show strong room-temperature exciton absorption and photoluminescence features. These strongly confined optical excitons are highly influenced by structural deformation of PbI matrix due to the conformation of organic moiety. A systematic correlation of optical exciton behavior of IO-hybrids with the organic/inorganic layer thicknesses, intercalating organic moieties, and various structural disorders were discussed. This systematic study clearly suggests that the PbI layer crumpling is directly responsible for the tunability of optical exciton energy.

  9. Electrical, thermal, catalytic and magnetic properties of nano-structured materials and their applications

    NASA Astrophysics Data System (ADS)

    Liu, Zuwei

    Nanotechnology is a subject that studies the fabrication, properties, and applications of materials on the nanometer-scale. Top-down and bottom-up approaches are commonly used in nano-structure fabrication. The top-down approach is used to fabricate nano-structures from bulk materials by lithography, etching, and polishing etc. It is commonly used in mechanical, electronic, and photonic devices. Bottom-up approaches fabricate nano-structures from atoms or molecules by chemical synthesis, self-assembly, and deposition, such as sol-gel processing, molecular beam epitaxy (MBE), focused ion beam (FIB) milling/deposition, chemical vapor deposition (CVD), and electro-deposition etc. Nano-structures can have several different dimensionalities, including zero-dimensional nano-structures, such as fullerenes, nano-particles, quantum dots, nano-sized clusters; one-dimensional nano-structures, such as carbon nanotubes, metallic and semiconducting nanowires; two-dimensional nano-structures, such as graphene, super lattice, thin films; and three-dimensional nano-structures, such as photonic structures, anodic aluminum oxide, and molecular sieves. These nano-structured materials exhibit unique electrical, thermal, optical, mechanical, chemical, and magnetic properties in the quantum mechanical regime. Various techniques can be used to study these properties, such as scanning probe microscopy (SPM), scanning/transmission electron microscopy (SEM/TEM), micro Raman spectroscopy, etc. These unique properties have important applications in modern technologies, such as random access memories, display, solar energy conversion, chemical sensing, and bio-medical devices. This thesis includes four main topics in the broad area of nanoscience: magnetic properties of ferro-magnetic cobalt nanowires, plasmonic properties of metallic nano-particles, photocatalytic properties of titanium dioxide nanotubes, and electro-thermal-optical properties of carbon nanotubes. These materials and their properties are briefly reviewed in Chapter One, including the concepts of ferro-magnetism, plasmonics, photocatalysis, thermal emission, and Raman spectra of carbon nanotubes. In Chapter Two, we focus on the magnetic properties of ferro-magnetic cobalt nanowires with high crystalline quality synthesized via a low voltage electro-deposition method. The crystal structure of these Co nanowires is characterized by high resolution transmission electron microscopy and X-ray diffraction. The magnetic properties of individual nanowires and nanowire arrays are investigated by magnetic force microscope (MFM) and superconducting quantum interference device (SQUID) measurements. A theoretical model is developed to explain these experimental observations. In Chapter Three, we exploit the strong plasmon resonance of gold nanoparticles. We also demonstrate a new method for patterning SERS (surface enhanced Raman spectroscopy) aggregates of gold nanoparticles by using a focused laser beam to optically trap the nanoparticles in a water suspension. Raman spectroscopy is used to estimate the temperature in the laser spot during the in-situ aggregation, by measuring the Raman peak of the hydroxyl bond of water. In Chapter Four, we demonstrate plasmonic enhancement of photocatalytic water splitting under visible illumination by integrating strongly plasmonic Au nanoparticles with strongly catalytic TiO2. Electromagnetic simulations indicate that the near-field optical enhancement increases the electron-hole pair generation rate at the surface of the TiO2, thus increasing the amount of photo-generated charge contributing to catalysis. Our results suggest that enhancement factors many times larger than this are possible if this mechanism can be optimized. In Chapter Five, we study the Raman spectra and thermal emission spectra of individual suspended carbon nanotubes induced by electrical heating. Semiconducting and metallic devices exhibit different spectra, based on their distinctive band structures. Raman spectra and the blackbody emission background are used to fit the device temperature. In addition to the blackbody emission background, polarized peaks along the nanotube direction are observed in different ranges of the thermal emission spectra for metallic and semiconducting devices. These peaks are attributed to the transitions between Van Hove singularities that are thermally driven under these high applied bias voltages. A theoretical model is developed to calculate the thermal emission spectra based on this conclusion. In Chapter Six, we present some data of single crystal zinc oxide (ZnO) nanowires synthesized by the CVD method, including magneto-resistance measurements, optical-resistance measurements, and scanning-gate measurements. In Chapter Seven, we discuss some future work related to photocatalysis and carbon nanotubes.

  10. Magnetic and thermal behavior of a family of compositionally related zero-dimensional fluorides

    NASA Astrophysics Data System (ADS)

    Felder, Justin B.; Smith, Mark D.; Sefat, Athena; zur Loye, Hans-Conrad

    2018-07-01

    The mild hydrothermal crystal growth technique has been leveraged to synthesize four new zero-dimensional transition metal fluorides. Their structures were determined by single crystal X-ray diffraction and confirmed by powder X-ray diffraction. The thermal, optical, and magnetic properties were investigated and the presence of thermal polymorphism and antiferromagnetism were observed. In addition, the potential application of these materials as precursors for advanced functional materials was explored.

  11. 2016 International Workshop on Nitride Semiconductors (IWN 2016)

    DTIC Science & Technology

    2017-01-01

    Doping Structure & Photoluminescence Properties of Flower-Like Spiral AIN Micro-Crystal Array Thermal Conductivity of Bulk AIN Direct Determination of...5.03 Optical and Electronic Properties HVPE GaN Wafers with Improved Crystallinity 5:00pm Michael Slomski 01.5.04 Thermal Conductivity of Bulk GaN...Broad-Band Emission Effect of lnter1ayers on the Vertical Electrical Conductivity of Si-Doped AIN/GaN DBRs Grown by PA-MBE Thermal Analys is of

  12. Minimum mass design of large-scale space trusses subjected to thermal gradients

    NASA Technical Reports Server (NTRS)

    Williams, R. Brett; Agnes, Gregory S.

    2006-01-01

    Lightweight, deployable trusses are commonly used to support space-borne instruments including RF reflectors, radar panels, and telescope optics. While in orbit, these support structures are subjected to thermal gradients that vary with altitude, location in orbit, and self-shadowing. Since these instruments have tight dimensional-stability requirements, their truss members are often covered with multi-layer insulation (MLI) blankets to minimize thermal distortions. This paper develops a radiation heat transfer model to predict the thermal gradient experienced by a triangular truss supporting a long, linear radar panel in Medium Earth Orbit (MEO). The influence of self-shadowing effects of the radar panel are included in the analysis, and the influence of both MLI thickness and outer covers/coatings on the magnitude of the thermal gradient are formed into a simple, two-dimensional analysis. This thermal model is then used to size and estimate the structural mass of a triangular truss that meets a given set of structural requirements.

  13. Dish concentrators for solar thermal energy - Status and technology development

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1981-01-01

    Comparisons are presented of point-focusing, or 'dish' solar concentrator system features, development status, and performance levels demonstrated to date. In addition to the requirements of good optical efficiency and high geometric concentration ratios, the most important future consideration in solar thermal energy dish concentrator design will be the reduction of installed and lifetime costs, as well as the materials and labor costs of production. It is determined that technology development initiatives are needed in such areas as optical materials, design wind speeds and wind loads, structural configuration and materials resistance to prolonged exposure, and the maintenance of optical surfaces. The testing of complete concentrator systems, with energy-converting receivers and controls, is also necessary. Both reflector and Fresnel lens concentrator systems are considered.

  14. Growth, structural, optical and thermal properties of gamma-glycine crystal.

    PubMed

    Balakrishnan, T; Babu, R Ramesh; Ramamurthi, K

    2008-04-01

    Single crystals of gamma-glycine were grown from a mixture of glycine, water and lithium bromide. Single crystal X-ray diffraction analysis confirmed the growth of gamma-glycine phase. Presence of various functional groups of gamma-glycine was identified by FTIR spectrum. Optical absorbance spectrum recorded in the wavelength range of UV-vis-NIR revealed that this crystal has good optical transparency in the range 250-1500 nm. Vickers microhardness values were estimated on the prominent (100) face. Thermogravimetric and differential scanning calorimetric analyses were carried out to study the thermal properties of gamma-glycine. Second harmonic generation efficiency of the crystal measured by Kurtz's powder method using Nd:YAG laser is about three times that of KDP.

  15. Structural and Thermal Disorder of Solution-Processed CH3NH3PbBr3 Hybrid Perovskite Thin Films.

    PubMed

    Wolf, Christoph; Kim, Joo-Sung; Lee, Tae-Woo

    2017-03-29

    We extracted the electronic disorder energy of the organic-inorganic lead-halide hybrid perovskite CH 3 NH 3 PbBr 3 from temperature-dependent absorption data. We showed that the disorder at room temperature is ∼30 meV and is due to strong electron-phonon coupling with the longitudinal-optical mode of energy 16 meV. This mode can be attributed to longitudinal-optical phonons of the inorganic PbBr 6 frame; this conclusion highlights the polaronic nature of electronic excitations in CH 3 NH 3 PbBr 3 . We showed that structural disorder is of the same impact as thermal disorder. A temperature-dependence of the exciton binding energy was observed close to the orthorhombic-to-tetragonal phase-transition temperature.

  16. Thermal, optical, and dielectric properties of fluoride Rb2TaF7

    NASA Astrophysics Data System (ADS)

    Pogorel'tsev, E. I.; Mel'nikova, S. V.; Kartashev, A. V.; Gorev, M. V.; Flerov, I. N.; Laptash, N. M.

    2017-05-01

    The thermal, optical, and dielectric properties of fluoride Rb2TaF7 were investigated. It was observed that the variation in chemical pressure in fluorides A 2 +TaF7 caused by the cation substitution of rubidium for ammonium does not affect the ferroelastic nature of structural distortions, but leads to stabilization of the high- and low-temperature phases and enhancement of birefringence. The entropy of the phase transition P4/nmm ↔ Cmma is typical of the shift transformations, which is consistent with a model of the initial and distorted phase structures. The anisotropy of chemical pressure causes the change of signs of the anomalous strain and baric coefficient dT/ dp of Rb2TaF7 as compared with the values for its ammonium analog.

  17. A multiple functional connector for high-resolution optical satellites

    NASA Astrophysics Data System (ADS)

    She, Fengke; Zheng, Gangtie

    2017-11-01

    For earth observation satellites, perturbations from actuators, such as CMGs and momentum wheels, and thermal loadings from support structures often have significant impact on the image quality of an optical. Therefore, vibration isolators and thermal deformation releasing devices nowadays often become important parts of an image satellite. However, all these devices will weak the connection stiffness between the optical instrument and the satellite bus structure. This will cause concern of the attitude control system design for worrying about possible negative effect on the attitude control. Therefore, a connection design satisfying all three requirements is a challenge of advanced image satellites. Chinese scientists have proposed a large aperture high-resolution satellite for earth observation. To meet all these requirements and ensure image quality, specified multiple function connectors are designed to meet these challenging requirements, which are: isolating vibration, releasing thermal deformation and ensuring whole satellite dynamic properties [1]. In this paper, a parallel spring guide flexure is developed for both vibration isolation and thermal deformation releasing. The stiffness of the flexure is designed to meet the vibration isolation requirement. To attenuate vibration, and more importantly to satisfy the stability requirement of the attitude control system, metal damping, which has many merits for space applications, are applied in this connecter to provide a high damping ratio and nonlinear stiffness. The capability of the connecter for vibration isolation and attenuation is validated through numerical simulation and experiments. Connecter parameter optimization is also conducted to meet both requirements of thermal deformation releasing and attitude control. Analysis results show that the in-orbit attitude control requirement is satisfied while the thermal releasing performance is optimized. The design methods and analysis results are also provided in the present paper.

  18. Control of optical systems

    NASA Technical Reports Server (NTRS)

    Founds, D.

    1988-01-01

    Some of the current and planned activities at the Air Force Systems Command in structures and controls for optical-type systems are summarized. Many of the activities are contracted to industry; one task is an in-house program which includes a hardware test program. The objective of the in-house program, referred to as the Aluminum Beam Expander Structure (ABES), is to address issues involved in on-orbit system identification. The structure, which appears similar to the LDR backup structure, is about 35 feet tall. The activity to date has been limited to acquisition of about 250 hours of test data. About 30 hours of data per excitation force is gathered in order to obtain sufficient data for a good statistical estimate of the structural parameters. The development of an Integrated Structural Modeling (ISM) computer program is being done by Boeing Aerospace Company. The objective of the contracted effort is to develop a combined optics, structures, thermal, controls, and multibody dynamics simulation code.

  19. Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination.

    PubMed

    Liu, Keng-Ku; Jiang, Qisheng; Tadepalli, Sirimuvva; Raliya, Ramesh; Biswas, Pratim; Naik, Rajesh R; Singamaneni, Srikanth

    2017-03-01

    Solar steam generation is a highly promising technology for harvesting solar energy, desalination and water purification. We introduce a novel bilayered structure composed of wood and graphene oxide (GO) for highly efficient solar steam generation. The GO layer deposited on the microporous wood provides broad optical absorption and high photothermal conversion resulting in rapid increase in the temperature at the liquid surface. On the other hand, wood serves as a thermal insulator to confine the photothermal heat to the evaporative surface and to facilitate the efficient transport of water from the bulk to the photothermally active space. Owing to the tailored bilayer structure and the optimal thermo-optical properties of the individual components, the wood-GO composite structure exhibited a solar thermal efficiency of ∼83% under simulated solar excitation at a power density of 12 kW/m 2 . The novel composite structure demonstrated here is highly scalable and cost-efficient, making it an attractive material for various applications involving large light absorption, photothermal conversion and heat localization.

  20. Structural, chemical and physical properties of pure and La3+ doped L-Threonine acetate crystals

    NASA Astrophysics Data System (ADS)

    Senthamizhan, A.; Sambathkumar, K.; Nithiyanantham, S.; Venkatachalapathy, M.; Rajkamal, N.

    2017-12-01

    The pure and La3+ doped L- Threonine crystals can be grown by slow evaporation techniques. The crystal structure were examined through X-Ray diffraction (XRD) analysis, confirmed the P212121 system. The quantitative nature of dopant can be analyzed with Inductively Coupled Plasma (ICP) study. The Fourier Transform Infra-Red (FTIR) and Fourier Transform (FT- Raman) investigations yields the possible stretching/bonding with their functional groups and the qualitative/quantitative nature of both crystals is analyzed. The optical behavior of crystals can be studied through Ultra Violet (UV) - Visible spectrometer. The mechanical, thermal and decomposition studies can be carried out through Vickers hardness test, Thermo Gravometric Analysis (TGA) and Differential Thermal Analysis (DTA). The Non Linear Optical (NLO) properties are found more than Potassium Phosphate (KDP) through Kurtz powders technique. The dielectric and optical absorption studies for both pure and L-doped crystals were studied and interpreted all the properties. The La3+ dopant increases the properties are investigated.

  1. Synthesis, structural, optical, thermal and dielectric studies on new organic nonlinear optical crystal by solution growth technique.

    PubMed

    Prakash, M; Geetha, D; Lydia Caroline, M

    2013-04-15

    Single crystals of L-phenylalanine-benzoic acid (LPBA) were successfully grown from aqueous solution by solvent evaporation technique. Purity of the crystals was increased by the method of recrystallization. The XRD analysis confirms that the crystal belongs to the monoclinic system with noncentrosymmetric space group P21. The chemical structure of compound was established by FT-NMR technique. The presence of functional groups was estimated qualitatively by Fourier transform infrared analysis (FT-IR). Ultraviolet-visible spectral analyses showed that the crystal has low UV cut-off at 254 nm combined with very good transparency of 90% in a wide range. The optical band gap was estimated to be 6.91 eV. Thermal behavior has been studied with TGA/DTA analyses. The existence of second harmonic generation (SHG) efficiency was found to be 0.56 times the value of KDP. The dielectric behavior of the sample was also studied for the first time. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Structural and optical properties of annealed and illuminated (Ag3AsS3)0.6(As2S3)0.4 thin films

    NASA Astrophysics Data System (ADS)

    Studenyak, I. P.; Neimet, Yu. Yu.; Rati, Y. Y.; Stanko, D.; Kranjčec, M.; Kökényesi, S.; Daróci, L.; Bohdan, R.

    2014-11-01

    (Ag3AsS3)0.6(As2S3)0.4 thin films were deposited upon a quartz substrate by rapid thermal evaporation. Structural studies of the as-deposited, annealed and illuminated films were performed using XRD, scanning electron and atomic force microscopies. Surfaces of all the films were found to be covered with Ag-rich crystalline micrometer sized cones. Thermal annealing leads to mechanical deformation of part of the cones and their detachment from the base film surface while the laser illumination leads to the new formations appearance on the surface of thin films. The spectroscopic studies of optical transmission spectra for as-deposited, annealed and illuminated thin films were carried out. The optical absorption spectra in the region of its exponential behaviour were analysed, the dispersion dependences of refractive index as well as their variation after annealing and illumination were investigated.

  3. High Precision Thermal, Structural and Optical Analysis of an External Occulter Using a Common Model and the General Purpose Multi-Physics Analysis Tool Cielo

    NASA Technical Reports Server (NTRS)

    Hoff, Claus; Cady, Eric; Chainyk, Mike; Kissil, Andrew; Levine, Marie; Moore, Greg

    2011-01-01

    The efficient simulation of multidisciplinary thermo-opto-mechanical effects in precision deployable systems has for years been limited by numerical toolsets that do not necessarily share the same finite element basis, level of mesh discretization, data formats, or compute platforms. Cielo, a general purpose integrated modeling tool funded by the Jet Propulsion Laboratory and the Exoplanet Exploration Program, addresses shortcomings in the current state of the art via features that enable the use of a single, common model for thermal, structural and optical aberration analysis, producing results of greater accuracy, without the need for results interpolation or mapping. This paper will highlight some of these advances, and will demonstrate them within the context of detailed external occulter analyses, focusing on in-plane deformations of the petal edges for both steady-state and transient conditions, with subsequent optical performance metrics including intensity distributions at the pupil and image plane.

  4. Optical Measurement Technique for Space Column Characterization

    NASA Technical Reports Server (NTRS)

    Barrows, Danny A.; Watson, Judith J.; Burner, Alpheus W.; Phelps, James E.

    2004-01-01

    A simple optical technique for the structural characterization of lightweight space columns is presented. The technique is useful for determining the coefficient of thermal expansion during cool down as well as the induced strain during tension and compression testing. The technique is based upon object-to-image plane scaling and does not require any photogrammetric calibrations or computations. Examples of the measurement of the coefficient of thermal expansion are presented for several lightweight space columns. Examples of strain measured during tension and compression testing are presented along with comparisons to results obtained with Linear Variable Differential Transformer (LVDT) position transducers.

  5. Thermal annealing induced the tunable optical properties of silver thin films with linear variable thickness

    NASA Astrophysics Data System (ADS)

    Hong, Ruijin; Shao, Wen; Ji, Jialin; Tao, Chunxian; Zhang, Dawei

    2018-06-01

    Silver thin films with linear variable thickness were deposited at room temperature. The corresponding tunability of optical properties and Raman scattering intensity were realized by thermal annealing process. With the thickness increasing, the topography of as-annealed silver thin films was observed to develop from discontinued nanospheres into continuous structure with a redshift of the surface plasmon resonance wavelength in visible region. Both the various nanosphere sizes and states of aggregation of as-annealed silver thin films contributed to significantly increasing the sensitivity of surface enhanced Raman scattering (SERS).

  6. Optical shock waves in silica aerogel.

    PubMed

    Gentilini, S; Ghajeri, F; Ghofraniha, N; Di Falco, A; Conti, C

    2014-01-27

    Silica aerogels are materials well suited for high power nonlinear optical applications. In such regime, the non-trivial thermal properties may give rise to the generation of optical shock waves, which are also affected by the structural disorder due to the porous solid-state gel. Here we report on an experimental investigation in terms of beam waist and input power, and identify various regimes of the generation of wave-breaking phenomena in silica aerogels.

  7. Modeling of Surface Thermodynamics and Damage Thresholds in the IR and THz Regime

    DTIC Science & Technology

    2007-01-01

    Conference on Optical Interactions with Tissue and Cells [18th] Held in San Jose, California on January 22-24, 2007 To order the complete compilation report...United States; c Air Force Reasearch Lab, Human Effectivness Directorate Optical Branch, 2624 Louis Bauer Drive, San Antonio, TX, United States...equation (radial and axial) in a biological system construct. Tissues are represented as multi-layer structures, with optical and thermal properties

  8. Coupling and Switching in Optically Resonant Periodic Electrode Structures

    NASA Astrophysics Data System (ADS)

    Bieber, Amy Erica

    This thesis describes coupling and switching of optical radiation using metal-semiconductor-metal (MSM) structures, specifically in a metal-on-silicon waveguide configuration. The structures which are the subject of this research have the special advantage of being VLSI -compatible; this is very important for the ultimate acceptance of any integrated optoelectronics technology by the mainstream semiconductor community. To date, research efforts in VLSI electronics, MSM detectors, metal devices, and optical switching have existed as separate entities with decidedly different goals. This work attempts to unite these specialties; an interdigitated array of metal fingers on a silicon waveguide allows for (1) fabrication processes which are well-understood and compatible with current or next-generation semiconductor manufacturing standards, (2) electrical bias capability which can potentially provide modulation, tuning, and enhanced speed, and (3) potentially efficient waveguide coupling which takes advantage of TM coupling. The latter two items are made possible by the use of metallic gratings, which sets this work apart from previous optical switching results. This MSM structure represents an important step in uniting four vital technologies which, taken together, can lead to switching performance and operational flexibility which could substantially advance the capabilities of current optoelectronic devices. Three different designs were successfully used to examine modulation and optical switching based upon nonlinear interactions in the silicon waveguide. First, a traditional Bragg reflector design with input and output couplers on either side was used to observe switching of nanosecond-regime Nd:YAG pulses. This structure was thermally tuned to obtain a variety of switching dynamics. Next, a phase-shift was incorporated into the Bragg reflector, and again thermally-tunable switching dynamics were observed, but with the added advantage of a reduction in the energy requirements for optical switching. Finally, the roles of the coupler and Bragg reflector were combined in a normal -incidence structure which exhibited nonlinear reflectivity modulation. This has not only been the first experimental demonstration of optical switching in a metal-semiconductor waveguide structure, but, to our knowledge, one of the first such demonstrations using a nonlinear phase-shifted or normal incidence grating of any kind.

  9. Development of fiber optic sensing interrogators for launchers

    NASA Astrophysics Data System (ADS)

    Plattner, M. P.; Buck, T. C.; Eder, B.; Reutlinger, A.; McKenzie, I.

    2017-11-01

    We present our work about the development of two complementary interrogation schemes based on fiber optic sensing for the use of structural and thermal monitoring of Ariane launchers. The advantages of fiber optic sensing in particular light-weight, immunity to electromagnetic interferences and the possibility of sensor distribution along optical fibers are driving factors for utilization of this technology in space crafts [1]. The edge-filter (EF) and scanning-laser (SL) interrogators for determination of the mean wavelength of fiber Bragg grating (FBG) sensors have been implemented as two separate demonstrators. Within this paper we describe the functional principles of both interrogators. Furthermore we present test results where the developed systems have been used for readout of FBG sensors which are implemented in an Ariane structural demonstrator during thermal, thermal-vacuum and vibration tests. Functionality of both systems is demonstrated and their potential for further development towards space qualified systems is shown. Since the performance characteristics of the two systems are different from each other, they are dedicated for different sensing applications on a launcher. The EF sensor interrogator provides a sample rate of 20 kHz at a number of 4 connected sensors and supports parallel readout and aliasing free operation. Therefore it is best suited for high priority measurement. Structural monitoring which requires the acquisition of real time sensor information in order to support control of the launcher is one operation area for a future EF system. The SL interrogator provides an overall measurement rate of 1 kHz at a number of 24 connected sensors distributed on three sensor channels. It can be adapted to any sensors that have design wavelengths lying within the output spectrum of the laser diode. Furthermore the number of overall sensors to be read out with this system can be adapted easily. Thermal mapping of satellite panels is one possible future application for the SL interrogator.

  10. Optical systems engineering - A tutorial

    NASA Technical Reports Server (NTRS)

    Wyman, C. L.

    1979-01-01

    The paper examines the use of the systems engineering approach in the design of optical systems, noting that the use of such an approach which involves an integrated interdisciplinary approach to the development of systems is most appropriate for optics. It is shown that the high precision character of optics leads to complex and subtle effects on optical system performance, resulting from structural, thermal dynamical, control system, and manufacturing and assembly considerations. Attention is given to communication problems that often occur among users and optical engineers due to the unique factors of optical systems. It is concluded that it is essential that the optics community provide leadership to resolve communication problems and fully formalize the field of optical systems engineering.

  11. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A., III; Kallis, J. M.; Trucker, D. C.

    1983-01-01

    Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. From these analyses several candidate encapsulation systems were selected for qualification testing.

  12. Development of mechanical structure for the compact space IR camera MIRIS

    NASA Astrophysics Data System (ADS)

    Moon, Bongkon; Jeong, Woong-Seob; Cha, Sang-Mok; Park, Youngsik; Ree, Chang-Hee; Lee, Dae-Hee; Park, Sung-Joon; Nam, Uk-Won; Park, Jang-Hyun; Ka, Nung Hyun; Lee, Mi Hyun; Lee, Duk-Hang; Pyo, Jeonghyun; Rhee, Seung-Woo; Park, Jong-Oh; Lee, Hyung-Mok; Matsumoto, Toshio; Yang, Sun Choel; Han, Wonyong

    2010-07-01

    MIRIS is a compact near-infrared camera with a wide field of view of 3.67°×3.67° in the Korea Science and Technology Satellite 3 (STSAT-3). MIRIS will be launched warm and cool the telescope optics below 200K by pointing to the deep space on Sun-synchronous orbit. In order to realize the passive cooling, the mechanical structure was designed to consider thermal analysis results on orbit. Structural analysis was also conducted to ensure safety and stability in launching environments. To achieve structural and thermal requirements, we fabricated the thermal shielding parts such as Glass Fiber Reinforced Plastic (GFRP) pipe supports, a Winston cone baffle, aluminum-shield plates, a sunshade, a radiator and 30 layers of Multi Layer Insulation (MLI). These structures prevent the heat load from the spacecraft and the earth effectively, and maintain the temperature of the telescope optics within operating range. A micro cooler was installed in a cold box including a PICNIC detector and a filter-wheel, and cooled the detector down to a operating temperature range. We tested the passive cooling in the simulated space environment and confirmed that the required temperature of telescope can be achieved. Driving mechanism of the filter-wheel and the cold box structure were also developed for the compact space IR camera. Finally, we present the assembly procedures and the test result for the mechanical parts of MIRIS.

  13. All optical reconfiguration of optomechanical filters.

    PubMed

    Deotare, Parag B; Bulu, Irfan; Frank, Ian W; Quan, Qimin; Zhang, Yinan; Ilic, Rob; Loncar, Marko

    2012-05-22

    Reconfigurable optical filters are of great importance for applications in optical communication and information processing. Of particular interest are tuning techniques that take advantage of mechanical deformation of the devices, as they offer wider tuning range. Here we demonstrate reconfiguration of coupled photonic crystal nanobeam cavities by using optical gradient force induced mechanical actuation. Propagating waveguide modes that exist over a wide wavelength range are used to actuate the structures and control the resonance of localized cavity modes. Using this all-optical approach, more than 18 linewidths of tuning range is demonstrated. Using an on-chip temperature self-referencing method, we determine that 20% of the total tuning was due to optomechanical reconfiguration and the rest due to thermo-optic effects. By operating the device at frequencies higher than the thermal cutoff, we show high-speed operation dominated by just optomechanical effects. Independent control of mechanical and optical resonances of our structures is also demonstrated.

  14. Luminescence and related properties of nanocrystalline porous silicon

    NASA Astrophysics Data System (ADS)

    Koshida, N.

    This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses luminescence and related properties of nanocrystalline porous silicon. Topics include an overview of nanostructured silicon, its fabrication technology, and properties of nanocrystalline porous silicon such as confinement effects, photoluminescence, electroluminesce, carrier charging effects, ballistic transport and emission, and thermally induced acoustic emission.

  15. Optical and structural properties of colloidal zirconia nanoparticles prepared by arc discharge in liquid

    NASA Astrophysics Data System (ADS)

    Peymani forooshani, Reza; Poursalehi, Reza; Yourdkhani, Amin

    2018-01-01

    Zirconia is one of the important ceramic materials with unique properties such as high melting point, high ionic conductivity, high mechanical properties and low thermal conductivity. Therefore, zirconia is one of the useful materials in refractories, thermal barriers, cutting tools, oxygen sensors electrolytes, catalysis, catalyst supports and solid oxide fuel cells. Recently, direct current (DC) arc discharge is extensively employed to synthesis of metal oxide nanostructures in liquid environments. The aim of this work is the synthesis of colloidal zirconia nanoparticles by DC arc discharge method in water as a medium. Arc discharge was ignited between two pure zirconium electrodes in water. Optical and structural properties of prepared colloidal nanoparticles were investigated. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and UV-visible spectroscopy, were employed for characterization of particle size, morphology, crystal structure and optical properties, respectively. SEM images demonstrate that the nanoparticles are spherical in shape with an average size lower than 38 nm. The XRD patterns of the nanoparticles were consistent with tetragonal and monoclinic zirconia crystal structures. The optical transmission spectra of the colloidal solution show optical characteristic of zirconia nanoparticles as a wide band gap semiconductor with no absorption peak in visible wavelength with the considerable amount of oxygen deficiency. Oxidation of colloidal nanoparticles in water could be explained via reaction with either dissociated oxygen from water in hot plasma region or with dissolved oxygen in water. The results provide a simple and flexible method for preparation of zirconia nanoparticles with a capability of mass production without environmental footprints.

  16. Infrared Active Sm1-xndxnio3 Based Nano-Switchings For High Powers Laser Sources

    NASA Astrophysics Data System (ADS)

    Ngom, B. D.; Kana, J. B. Kana; Nemraoui, O.; Manyala, N.; Maaza, M.; Mdjoe, R.; Beye, A. C.

    2008-09-01

    This contribution was targeted to engineer novel thermochromic infrared nano-structured photonics. These smart optically tuneable materials are based on rare earth nickelates in the form of ReNiO3 where Re is bi-solution of rare earth metals of Samarium "Sm" and Neodynium "Nd." In addition to their Metal-Insulator tuneable transition temperature (MIT), these MIT oxide family exhibit a specific thermal stability and thus could be ideal to an ultimate optical limiting and other Non-Linear Optical properties for high power laser sources. This MIT thermochomic ReNiO3 system is novel in its nano-structured form and has not been investigated from nonlinear optical viewpoint. This contribution reports on the optimization of the synthesis of Sm1-xNdxNiO3 Nano-structures and investigation of their corresponding MIT electron dynamics.

  17. Maneuvering thermal conductivity of magnetic nanofluids by tunable magnetic fields

    NASA Astrophysics Data System (ADS)

    Patel, Jaykumar; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-01

    We report an experimental investigation of magnetic field dependent thermal conductivity of a transformer oil base magnetic fluid as a function of volume fractions. In the absence of magnetic field, thermal conductivity increases linearly with an increase in volume fraction, and magnitude of thermal conductivity thus obtained is lower than that predicted by Maxwell's theory. This reveals the presence of clusters/oligomers in the system. On application of magnetic field, it exhibits a non-monotonous increase in thermal conductivity. The results are interpreted using the concept of a two-step homogenization method (which is based on differential effective medium theory). The results show a transformation of particle cluster configuration from long chain like prolate shape to the aggregated drop-like structure with increasing concentration as well as a magnetic field. The aggregated drop-like structure for concentrated system is supported by optical microscopic images. This shape change of clusters reduces thermal conductivity enhancement. Moreover, this structure formation is observed as a dynamic phenomenon, and at 226 mT field, the length of the structure extends with time, becomes maximum, and then reduces. This change results in the increase or decrease of thermal conductivity.

  18. Design, analysis and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Garcia, A.; Minning, C.

    1982-01-01

    Analytical models were developed to perform optical, thermal, electrical and structural analyses on candidate encapsulation systems. Qualification testing, specimens of various types, and a finalized optimum design are projected.

  19. The James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Nowak, Maria; Eichorn, William; Hill, Michael; Hylan, Jason; Marsh, James; Ohl, Raymond; Sampler, Henry; Wright, Geraldine; Crane, Allen; Herrera, Acey; hide

    2007-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approx.40K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The ISIM optical metering structure is a roughly 2.2x1.7x2.2mY, asymmetric frame that is composed of carbon fiber and resin tubes bonded to invar end fittings and composite gussets and clips. The structure supports the SIs, isolates the SIs from the OTE, and supports thermal and electrical subsystems. The structure is attached to the OTE structure via strut-like kinematic mounts. The ISM structure must meet its requirements at the approx.40K cryogenic operating temperature. The SIs are aligned to the structure s coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISM structure is thermally cycled for stress relief and in order to measure temperature-induced mechanical, structural changes. These ambient-to-cryogenic changes in the alignment of SI and OTE-related interfaces are an important component in the JWST Observatory alignment plan and must be verified.

  20. Thermal and high magnetic field treatment of materials and associated apparatus

    DOEpatents

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2010-06-29

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  1. Thermal and high magnetic field treatment of materials and associated apparatus

    DOEpatents

    Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

    2007-01-09

    An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

  2. Modeling the thermal conductivities of the zinc antimonides ZnSb and Zn4Sb3

    NASA Astrophysics Data System (ADS)

    Bjerg, Lasse; Iversen, Bo B.; Madsen, Georg K. H.

    2014-01-01

    ZnSb and Zn4Sb3 are interesting as thermoelectric materials because of their low cost and low thermal conductivity. We introduce a model of the lattice thermal conductivity which is independent of fitting parameters and takes the full phonon dispersions into account. The model is found to give thermal conductivities with the correct relative magnitudes and in reasonable quantitative agreement with experiment for a number of semiconductor structures. The thermal conductivities of the zinc antimonides are reviewed and the relatively large effect of nanostructuring on the zinc antimonides is rationalized in terms of the mean free paths of the heat carrying phonons. The very low thermal conductivity of Zn4Sb3 is found to be intrinsic to the structure. However, the low-lying optical modes are observed in both Zn-Sb structures and involve both Zn and Sb vibrations, thereby strongly questioning dumbbell rattling. A mechanism for the very low thermal conductivity observed in Zn4Sb3 is identified. The large Grüneisen parameter of this compound is traced to the Sb atoms which coordinate only Zn atoms.

  3. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal

    NASA Astrophysics Data System (ADS)

    Tavakoli, Mohammad Hossein; Renani, Elahe Kabiri; Honarmandnia, Mohtaram; Ezheiyan, Mahdi

    2018-02-01

    In this paper, a set of numerical simulations of fluid flow, temperature gradient, thermal stress and dislocation density for a Czochralski setup used to grow IR optical-grade Ge single crystal have been done for different stages of the growth process. A two-dimensional steady state finite element method has been applied for all calculations. The obtained numerical results reveal that the thermal field, thermal stress and dislocation structure are mainly dependent on the crystal height, heat radiation and gas flow in the growth system.

  4. Effect of thermal annealing on the structural, optical and dielectrical properties of P3HT:PC{sub 70}BM nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aloui, Walid, E-mail: alouiwalid26@yahoo.fr; Adhikari, Tham; Nunzi, Jean-Michel

    2016-06-15

    Highlights: • A typical structure of ITO/PEDOT: PSS/P3HT: PC{sub 70}BM/Al was fabricated. • Charge carrier diffusion and recombination have been calculated. • AFM and optical results show that thermal annealing promotes the phase separation. • The annealing process improves the transport of charges. - Abstract: The effect of thermal annealing on the optical, structural and the dielectric properties of P3HT:PC{sub 70}BM blended films were investigated. By means of atomic force microscopy, we observed the morphology evolution of the annealed P3HT:PC{sub 70}BM nanocomposites. Raman spectroscopy showed a substantial ordering in the polymer film after annealing. The absorption spectra of the annealedmore » P3HT:PC{sub 70}BM films were improved and red shifted than un-annealed samples. The results indicate that the P3HT in the nanocomposite becomes an ordered structure with annealing. The ordered P3HT facilitates the charge transport. From the photoluminescence measurements, the formation of polymer crystallites was observed upon annealing. Thus, the device efficiency reaches 2.2% after annealing at 150 °C. Impedance spectroscopy shows the classical complex plan curves; the low frequency is related to the effective lifetime of charge carriers and the high frequency corresponds to the diffusion time of these carriers. Global mobilities are in the range 3.8–4.6 × 10{sup −3} cm{sup 2} V{sup −1} s{sup −1}.« less

  5. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm.

    PubMed

    Wang, Wenhui; Wu, Nan; Tian, Ye; Niezrecki, Christopher; Wang, Xingwei

    2010-04-26

    This paper presents an all-silica miniature optical fiber pressure/acoustic sensor based on the Fabry-Perot (FP) interferometric principle. The endface of the etched optical fiber tip and silica thin diaphragm on it form the FP structure. The uniform and thin silica diaphragm was fabricated by etching away the silicon substrate from a commercial silicon wafer that has a thermal oxide layer. The thin film was directly thermally bonded to the endface of the optical fiber thus creating the Fabry-Perot cavity. Thin films with a thickness from 1microm to 3microm have been bonded successfully. The sensor shows good linearity and hysteresis during measurement. A sensor with 0.75 microm-thick diaphragm thinned by post silica etching was demonstrated to have a sensitivity of 11 nm/kPa. The new sensor has great potential to be used as a non-intrusive pressure sensor in a variety of sensing applications.

  6. Synthesis, crystal structure and growth of a new inorganic- organic hybrid compound for nonlinear optical applications: Aquadiiodo (3-aminopropanoic acid) cadmium (II)

    NASA Astrophysics Data System (ADS)

    Boopathi, K.; Babu, S. Moorthy; Jagan, R.; Ramasamy, P.

    2017-12-01

    The new inorganic-organic hybrid material aquadiiodo (3-aminopropanoic acid) cadmium (II) [ADI (3-AP) Cd] has been successfully synthesized and good quality crystals have been grown by slow evaporation solution technique. The structure was determined by single crystal X-ray diffraction at room temperature. The compound crystallizes in monoclinic crystal system with centro symmetric space group P21/c and four molecules in the unit cell. The structure of the title compound was further confirmed by 1H and 13C nuclear magnetic resonance spectral analysis. FT-IR spectroscopy was used to confirm the presence of various functional groups in the compound. The transmittance and optical parameters of the crystal were studied by UV- Visible-NIR spectroscopy. The thermal stability of the grown crystal was evaluated using thermogravimetric and differential thermal analyses. Mechanical hardness has been identified by Vickers micro hardness study and work hardening coefficient was calculated. Dielectric measurement was carried out as a function of frequency and results are discussed. The growth mechanism of the crystal was assessed by chemical etching studies. The third-order nonlinear optical susceptibility of [ADI (3-AP) Cd] was derived using the Z-scan technique, and it was 3.24955 × 10-8 esu. The positive nonlinear refractive index 2.48505 × 10-11 m2/W, is an indication of self-defocusing optical nonlinearity of the sample. It is believed that the [ADI (3-AP) Cd] is a promising new candidate for developing efficient nonlinear optical and optical power limiting devices.

  7. Spatial modulation of the Fermi level by coherent illumination of undoped GaAs

    NASA Astrophysics Data System (ADS)

    Nolte, D. D.; Olson, D. H.; Glass, A. M.

    1989-11-01

    The Fermi level in undoped GaAs has been modulated spatially by optically quenching EL2 defects. The spatial gradient of the Fermi level produces internal electric fields that are much larger than fields generated by thermal diffusion alone. The resulting band structure is equivalent to a periodic modulation-doped p-i-p structure of alternating insulating and p-type layers. The internal fields are detected via the electro-optic effect by the diffraction of a probe laser in a four-wave mixing geometry. The direct control of the Fermi level distinguishes this phenomenon from normal photorefractive behavior and introduces a novel nonlinear optical process.

  8. Evaluations of Silica Aerogel-Based Flexible Blanket as Passive Thermal Control Element for Spacecraft Applications

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammed Adnan; Rashmi, S.; Esther, A. Carmel Mary; Bhavanisankar, Prudhivi Yashwantkumar; Sherikar, Baburao N.; Sridhara, N.; Dey, Arjun

    2018-03-01

    The feasibility of utilizing commercially available silica aerogel-based flexible composite blankets as passive thermal control element in applications such as extraterrestrial environments is investigated. Differential scanning calorimetry showed that aerogel blanket was thermally stable over - 150 to 126 °C. The outgassing behavior, e.g., total mass loss, collected volatile condensable materials, water vapor regained and recovered mass loss, was within acceptable range recommended for the space applications. ASTM tension and tear tests confirmed the material's mechanical integrity. The thermo-optical properties remained nearly unaltered in simulated space environmental tests such as relative humidity, thermal cycling and thermo-vacuum tests and confirmed the space worthiness of the aerogel. Aluminized Kapton stitched or anchored to the blanket could be used to control the optical transparency of the aerogel. These outcomes highlight the potential of commercial aerogel composite blankets as passive thermal control element in spacecraft. Structural and chemical characterization of the material was also done using scanning electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy.

  9. Spectral mapping of thermal conductivity through nanoscale ballistic transport

    NASA Astrophysics Data System (ADS)

    Hu, Yongjie; Zeng, Lingping; Minnich, Austin J.; Dresselhaus, Mildred S.; Chen, Gang

    2015-08-01

    Controlling thermal properties is central to many applications, such as thermoelectric energy conversion and the thermal management of integrated circuits. Progress has been made over the past decade by structuring materials at different length scales, but a clear relationship between structure size and thermal properties remains to be established. The main challenge comes from the unknown intrinsic spectral distribution of energy among heat carriers. Here, we experimentally measure this spectral distribution by probing quasi-ballistic transport near nanostructured heaters down to 30 nm using ultrafast optical spectroscopy. Our approach allows us to quantify up to 95% of the total spectral contribution to thermal conductivity from all phonon modes. The measurement agrees well with multiscale and first-principles-based simulations. We further demonstrate the direct construction of mean free path distributions. Our results provide a new fundamental understanding of thermal transport and will enable materials design in a rational way to achieve high performance.

  10. Low-strain laser-based solder joining of mounted lenses

    NASA Astrophysics Data System (ADS)

    Burkhardt, Thomas; Hornaff, Marcel; Kamm, Andreas; Burkhardt, Diana; Schmidt, Erik; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas

    2015-09-01

    A novel laser-based soldering technique - Solderjet Bumping - using liquid solder droplets in a flux-free process with only localized heating is presented. We demonstrate an all inorganic, adhesive free bonding of optical components and support structures suitable for optical assemblies and instruments under harsh environmental conditions. Low strain bonding suitable for a following high-precision adjustment turning process is presented, addressing components and subsystems for objectives for high power and short wavelengths. The discussed case study shows large aperture transmissive optics (diameter approx. 74 mm and 50 mm) made of fused silica and LAK9G15, a radiation resistant glass, bonded to thermally matched metallic mounts. The process chain of Solderjet Bumping - cleaning, solderable metallization, handling, bonding and inspection - is discussed. This multi-material approach requires numerical modelling for dimensioning according to thermal and mechanical loads. The findings of numerical modelling, process parametrization and environmental testing (thermal and vibrational loads) are presented. Stress and strain introduced into optical components as well as deformation of optical surfaces can significantly deteriorate the wave front of passing light and therefore reduce system performance significantly. The optical performance with respect to stress/strain and surface deformation during bonding and environmental testing were evaluated using noncontact and nondestructive optical techniques: polarimetry and interferometry, respectively. Stress induced surface deformation of less than 100 nm and changes in optical path difference below 5 nm were achieved. Bond strengths of about 55 MPa are reported using tin-silver-copper soft solder alloy.

  11. Sparse Reconstruction for Temperature Distribution Using DTS Fiber Optic Sensors with Applications in Electrical Generator Stator Monitoring.

    PubMed

    Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2016-09-07

    This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure.

  12. MOD Tool (Microwave Optics Design Tool)

    NASA Technical Reports Server (NTRS)

    Katz, Daniel S.; Borgioli, Andrea; Cwik, Tom; Fu, Chuigang; Imbriale, William A.; Jamnejad, Vahraz; Springer, Paul L.

    1999-01-01

    The Jet Propulsion Laboratory (JPL) is currently designing and building a number of instruments that operate in the microwave and millimeter-wave bands. These include MIRO (Microwave Instrument for the Rosetta Orbiter), MLS (Microwave Limb Sounder), and IMAS (Integrated Multispectral Atmospheric Sounder). These instruments must be designed and built to meet key design criteria (e.g., beamwidth, gain, pointing) obtained from the scientific goals for the instrument. These criteria are frequently functions of the operating environment (both thermal and mechanical). To design and build instruments which meet these criteria, it is essential to be able to model the instrument in its environments. Currently, a number of modeling tools exist. Commonly used tools at JPL include: FEMAP (meshing), NASTRAN (structural modeling), TRASYS and SINDA (thermal modeling), MACOS/IMOS (optical modeling), and POPO (physical optics modeling). Each of these tools is used by an analyst, who models the instrument in one discipline. The analyst then provides the results of this modeling to another analyst, who continues the overall modeling in another discipline. There is a large reengineering task in place at JPL to automate and speed-up the structural and thermal modeling disciplines, which does not include MOD Tool. The focus of MOD Tool (and of this paper) is in the fields unique to microwave and millimeter-wave instrument design. These include initial design and analysis of the instrument without thermal or structural loads, the automation of the transfer of this design to a high-end CAD tool, and the analysis of the structurally deformed instrument (due to structural and/or thermal loads). MOD Tool is a distributed tool, with a database of design information residing on a server, physical optics analysis being performed on a variety of supercomputer platforms, and a graphical user interface (GUI) residing on the user's desktop computer. The MOD Tool client is being developed using Tcl/Tk, which allows the user to work on a choice of platforms (PC, Mac, or Unix) after downloading the Tcl/Tk binary, which is readily available on the web. The MOD Tool server is written using Expect, and it resides on a Sun workstation. Client/server communications are performed over a socket, where upon a connection from a client to the server, the server spawns a child which is be dedicated to communicating with that client. The server communicates with other machines, such as supercomputers using Expect with the username and password being provided by the user on the client.

  13. Crystal structure, optical and thermal studies of a new organic nonlinear optical material: L-Histidinium maleate 1.5-hydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonsago, C. Alosious; Albert, Helen Merina; Karthikeyan, J.

    2012-07-15

    Highlights: ► L-Histidinium maleate 1.5-hydrate, a new organic crystal has been grown for the first time. ► The crystal structure is reported for the first time (CCDC 845975). ► The crystal belongs to monoclinic system with space group P2{sub 1}, Z = 4, a = 11.4656(7) Å, b = 8.0530(5) Å, c = 14.9705(9) Å and β = 101.657(2)°. ► The optical absorption study substantiates the complete transparency of the crystal. ► Kurtz powder SHG test confirms the nonlinear property of the crystal. -- Abstract: A new organic nonlinear optical material L-histidinium maleate 1.5-hydrate (LHM) with the molecular formula C{submore » 10}H{sub 16}N{sub 3}O{sub 7.5} has been successfully synthesized from aqueous solution by slow solvent evaporation method. The structural characterization of the grown crystal was carried out by single crystal X-ray diffraction at 293(2) K. In the crystal, molecules are linked through inter and intramolecular N-H⋯O and O-H⋯O hydrogen bonds, generate edge fused ring motif. The hydrogen bonded motifs are linked to each other to form a three dimensional network. The FT-IR spectroscopy was used to identify the functional groups of the synthesized compound. The optical behavior of the grown crystal was examined by UV–visible spectral analysis, which shows that the optical absorption is almost negligible in the wavelength range 280–1300 nm. The nonlinear optical property was confirmed by the powder technique of Kurtz and Perry. The thermal behavior of the grown crystal was analyzed by thermogravimetric analysis.« less

  14. A rigid and thermally stable all ceramic optical support bench assembly for the LSST Camera

    NASA Astrophysics Data System (ADS)

    Kroedel, Matthias; Langton, J. Brian; Wahl, Bill

    2017-09-01

    This paper will present the ceramic design, fabrication and metrology results and assembly plan of the LSST camera optical bench structure which is using the unique manufacturing features of the HB-Cesic technology. The optical bench assembly consists of a rigid "Grid" fabrication supporting individual raft plates mounting sensor assemblies by way of a rigid kinematic support system to meet extreme stringent requirements for focal plane planarity and stability.

  15. Evidence of phase transition in Nd3+ doped phosphate glass determined by thermal lens spectrometry.

    PubMed

    Andrade, Acácio A; Lourenço, Sidney A; Pilla, Viviane; Silva, Anielle C Almeida; Dantas, Noelio O

    2014-01-28

    Thermal lens spectroscopy (TLS), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) techniques were applied to the thermo-optical property analysis of a new phosphate glass matrix PANK with nominal composition 40P2O5·20Al2O3·35Na2O·5K2O (mol%), doped with different Nd(3+) compositions. This glass system, synthesized by the fusion protocol, presents high transparency from UV to the near infrared, excellent thermo-optical properties at room temperature and high fluorescence quantum efficiency. Thermal lens phase shift parameters, thermal diffusivity and the DSC signal present pronounced changes at about 61 °C for the PANK glass system. This anomalous behavior was associated with a phase transition in the nanostructured glass materials. The FTIR signal confirms the presence of isolated PO4 tetrahedron groups connected to different cations in PANK glass. As a main result, our experimental data suggest that these tetrahedron groups present a structural phase transition, paraelectric-ferroelectric phase transition, similar to that in potassium dihydrogen phosphate, KH2PO4, nanocrystals and which TLS technique can be used as a sensitive method to investigate changes in the structural level of nanostructured materials.

  16. Temperature driven evolution of thermal, electrical, and optical properties of Ti–Al–N coatings

    PubMed Central

    Rachbauer, Richard; Gengler, Jamie J.; Voevodin, Andrey A.; Resch, Katharina; Mayrhofer, Paul H.

    2012-01-01

    Monolithic single phase cubic (c) Ti1−xAlxN thin films are used in various industrial applications due to their high thermal stability, which beneficially effects lifetime and performance of cutting and milling tools, but also find increasing utilization in electronic and optical devices. The present study elucidates the temperature-driven evolution of heat conductivity, electrical resistivity and optical reflectance from room temperature up to 1400 °C and links them to structural and chemical changes in Ti1−xAlxN coatings. It is shown that various decomposition phenomena, involving recovery and spinodal decomposition (known to account for the age hardening phenomenon in c-Ti1−xAlxN), as well as the cubic to wurtzite phase transformation of spinodally formed AlN-enriched domains, effectively increase the thermal conductivity of the coatings from ∼3.8 W m−1 K−1 by a factor of three, while the electrical resistivity is reduced by one order of magnitude. A change in the coating color from metallic grey after deposition to reddish-golden after annealing to 1400 °C is related to the film structure and discussed in terms of film reflectivity. PMID:23482424

  17. Nanostructured refractory thin films for solar applications

    NASA Astrophysics Data System (ADS)

    Ollier, E.; Dunoyer, N.; Dellea, O.; Szambolics, H.

    2014-08-01

    Selective solar absorbers are key elements of all solar thermal systems. Solar thermal panels and Concentrated Solar Power (CSP) systems aim respectively at producing heat and electricity. In both cases, a surface receives the solar radiation and is designed to have the highest optical absorption (lowest optical reflectivity) of the solar radiation in the visible wavelength range where the solar intensity is the highest. It also has a low emissivity in the infrared (IR) range in order to avoid radiative thermal losses. Current solutions in the state of the art usually consist in deposited interferential thin films or in cermets [1]. Structured surfaces have been proposed and have been simulated because they are supposed to be more efficient when the solar radiation is not normal to the receiving surface and because they could potentially be fabricated with refractory materials able to sustain high operating temperatures. This work presents a new method to fabricate micro/nanostructured surfaces on molybdenum (refractory metal with a melting temperature of 2623°C). This method now allows obtaining a refractory selective surface with an excellent optical selectivity and a very high absorption in the visible range. This high absorption performance was obtained by achieving a double structuration at micro and nano scales thanks to an innovative process flow.

  18. Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties

    NASA Astrophysics Data System (ADS)

    Greenlee, Jordan D.; Feigelson, Boris N.; Anderson, Travis J.; Tadjer, Marko J.; Hite, Jennifer K.; Mastro, Michael A.; Eddy, Charles R.; Hobart, Karl D.; Kub, Francis J.

    2014-08-01

    The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N2 overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at half maximums of the E2 and A1 (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.

  19. Structural, thermal and optical absorption features of heavy metal oxides doped tellurite rich glasses

    NASA Astrophysics Data System (ADS)

    Kaky, Kawa M.; Lakshminarayana, G.; Baki, S. O.; Kityk, I. V.; Taufiq-Yap, Y. H.; Mahdi, M. A.

    In order to improve tellurite glass stability to be applicable for optical fiber amplifier applications, glasses with the composition of (70 - x)TeO2. (10)ZnO. (10)WO3. (5)Na2O. (5)TiO2. (x)Bi2O3 (x = 1, 2, 3, 4, and 5 mol%) have been produced and characterized using the related methods. Structural properties were investigated using X-ray diffraction (XRD) which confirms the non-crystalline structure and scanning electron microscopy (SEM) micrographs also confirm the XRD results. The energy dispersive X-ray (EDX) analysis profiles show that all the mentioned elements are present in the prepared glasses. Following the IR spectra, all the tellurium bonds such as stretching vibrations of TeO4 tbp and TeO3/TeO3+1 unit are revealed. Raman spectra confirm the presence of different functional groups, actually, it shows bands mainly in four spectral regions: R1 (65-150) cm-1, R2 (280-550) cm-1, R3 (880-950) cm-1 and R4 (916-926) cm-1 and the identified bands are assigned to respective molecular groups. The thermal study was carried out using Differential scanning calorimetry (DSC) which indicates good thermal stability of the synthesized glasses with increasing Bi concentration. From the optical absorption spectra, we evaluated cut-off edge wavelengths and found increasing cutoff wavelength with an increase in Bi2O3 concentration. In the UV-Visible region, optical band gap energy and allowed transitions were investigated using three methods; direct, indirect, and absorption spectrum fitting (ASF), and band gaps from indirect and ASF were matched.

  20. Variation of microstructural and optical properties in SILAR grown ZnO thin films by thermal treatment.

    PubMed

    Valanarasu, S; Dhanasekaran, V; Chandramohan, R; Kulandaisamy, I; Sakthivelu, A; Mahalingam, T

    2013-08-01

    The influence of thermal treatment on the structural and morphological properties of the ZnO films deposited by double dip Successive ionic layer by adsorption reaction is presented. The effect of annealing temperature and time in air ambient is presented in detail. The deposited films were annealed from 200 to 400 degrees C in air and the structural properties were determined as a function of annealing temperature by XRD. The studies revealed that films were exhibiting preferential orientation along (002) plane. The other structural parameters like the crystallite size (D), micro strain (epsilon), dislocation density (delta) and stacking fault (alpha) of as-deposited and annealed ZnO films were evaluated and reported. The optical properties were also studied and the band gap of the ZnO thins films varied from 3.27 to 3.04 eV with the annealing temperature. SEM studies revealed that the hexagonal shaped grains with uniformly distributed morphology in annealed ZnO thin films. It has been envisaged using EDX analysis that the near stoichiometric composition of the film can be attained by thermal treatment during which microstructural changes do occur.

  1. Transparent layered YAG ceramics with structured Yb doping produced via tape casting

    NASA Astrophysics Data System (ADS)

    Hostaša, Jan; Piancastelli, Andreana; Toci, Guido; Vannini, Matteo; Biasini, Valentina

    2017-03-01

    The flexibility of the ceramic production process, in particular in terms of shaping and spatial control of distribution of active ions, is one of the strong points in favor of transparent ceramics. In high power lasers in particular, where thermal management is a critical issue, the finely controlled design of spatial distribution of the doping ions within the laser gain media can reduce undesired thermally induced effects and large temperature gradients, and thus enhance the efficiency and laser beam quality especially under increased thermal load. In the present work transparent structured YAG ceramics with Yb doping were produced by tape casting followed by thermal compression of assembled tapes and sintered under high vacuum. The thermal compression of variously doped tape cast layers is a very promising method because it allows a high precision and good control over dopant distribution in the sintered material. After sintering, the distribution of Yb across the layers was characterized by SEM-EDX and the thickness of Yb diffusion zones between the layers with different Yb content was measured. Optical homogeneity was assessed by means of optical transmittance mapping of the samples and by 2D scanning of laser output. The effect of structured dopant distribution on laser performance was measured in quasi-CW and CW regime with different duty factors. Slope efficiency values higher than 50% were measured both in quasi-CW and in CW lasing conditions. The results are in good agreement with previously calculated predictions, confirming the beneficial effect of structured doping on laser performances and enlightening the impact of the residual scattering losses. Compared to other processing methods, such as the pressing of granulated powders, tape casting followed by thermal compression leads to straight and narrow interfaces between layers with different composition and allows to build structures composed of extremely thin layers with defined dopant content.

  2. Study on structural, morphological, optical and thermal properties of guanidine carbonate doped nickel sulfate hexahydrate crystal.

    PubMed

    Silambarasan, A; Rajesh, P; Ramasamy, P

    2015-01-05

    The single crystal of guanidine carbonate doped nickel sulfate hexahydrate was grown from solution for ultraviolet filters. The single crystal XRD confirms that the grown single crystal belongs to the tetragonal system with the space group of P4₁2₁2. The crystallinity of the grown crystal was estimated by powder X-ray diffraction studies. The optical transmission and thermal stability of as-grown guanidine carbonate doped nickel sulfate single crystals have been studied. The optical transmission spectrum demonstrates the characteristics of ultraviolet filters. The TG/DTA studies confirm the thermal properties of grown crystals. Thermo-gravimetric analysis showed that the dehydration temperature of the guanidine carbonate doped nickel sulfate crystal is about 100 °C, which is much higher than that of pure nickel sulfate hexahydrate (NSH) crystals which is 72 °C. The growth behaviors and dislocation density were detected under the high resolution XRD and etching studies respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Magnetic, thermal, and optical properties of single-crystalline CoTa2O6 and FeTa2O6 and their anisotropic magnetocaloric effect.

    PubMed

    Christian, A B; Schye, A T; White, K O; Neumeier, J J

    2018-05-16

    The magnetic, thermal, and optical properties of single-crystalline CoTa 2 O 6 and FeTa 2 O 6 are reported. Optical dichroism was observed in CoTa 2 O 6 . Magnetic susceptibility χ(T) measurements reveal long-range antiferromagnetic order with Néel temperatures [Formula: see text] K and 8.11(5) K, respectively, and anisotropy in χ. The thermal expansion coefficients exhibit significant anisotropy and the influence of the magnetic ions and long-range order. A structural phase transition to orthorhombic occurs below T N for FeTa 2 O 6 . Magnetic field H lowers T N with its affect largest when H is directed along either [1 1 0] or [1 [Formula: see text] 0], and smallest when directed along [0 0 1]. This leads to an anisotropic magnetocaloric effect that is investigated through measurements of the specific heat and magnetization in applied magnetic field.

  4. Magnetic, thermal, and optical properties of single-crystalline CoTa2O6 and FeTa2O6 and their anisotropic magnetocaloric effect

    NASA Astrophysics Data System (ADS)

    Christian, A. B.; Schye, A. T.; White, K. O.; Neumeier, J. J.

    2018-05-01

    The magnetic, thermal, and optical properties of single-crystalline CoTa2O6 and FeTa2O6 are reported. Optical dichroism was observed in CoTa2O6. Magnetic susceptibility χ(T) measurements reveal long-range antiferromagnetic order with Néel temperatures K and 8.11(5) K, respectively, and anisotropy in χ. The thermal expansion coefficients exhibit significant anisotropy and the influence of the magnetic ions and long-range order. A structural phase transition to orthorhombic occurs below T N for FeTa2O6. Magnetic field H lowers T N with its affect largest when H is directed along either [1 1 0] or [1  0], and smallest when directed along [0 0 1]. This leads to an anisotropic magnetocaloric effect that is investigated through measurements of the specific heat and magnetization in applied magnetic field.

  5. Optical, mechanical and thermal behaviors of Nitrilotriacetic acid single crystal

    NASA Astrophysics Data System (ADS)

    Deepa, B.; Philominathan, P.

    2017-11-01

    An organic nonlinear single crystal of Nitrilotriacetic acid (NTAA) was grown for the first time by employing a simple slow evaporation technique. Single crystal X-ray diffraction (XRD) analysis reveals that the grown crystal belongs to the monoclinic system with noncentrosymmetric space group CC. Fourier transform infrared (FTIR) spectral study ascertains the presence of functional groups in NTAA. The molecular structure of the grown crystal was confirmed by Nuclear Magnetic Resonance (NMR) spectral analysis. The optical parameters such as transmittance, absorption coefficient and band gap were calculated from UV-Visible and fluorescence studies. Dielectric measurements were carried out for different frequency and temperature. The mechanical strength of the grown crystal was measured using Vickers microhardness test. The high thermal stability and the melting point of the grown crystal were also estimated using thermogravimetric (TGA) and differential thermal analyses (DTA). The confirmation of the grown crystals belonging to nonlinear optical crystals was performed by Kurtz-Perry technique and found as suitable candidate for optoelectronics applications.

  6. Mechanical Design of Carbon Ion Optics

    NASA Technical Reports Server (NTRS)

    Haag, Thomas

    2005-01-01

    Carbon Ion Optics are expected to provide much longer thruster life due to their resistance to sputter erosion. There are a number of different forms of carbon that have been used for fabricating ion thruster optics. The mechanical behavior of carbon is much different than that of most metals, and poses unique design challenges. In order to minimize mission risk, the behavior of carbon must be well understood, and components designed within material limitations. Thermal expansion of the thruster structure must be compatible with thermal expansion of the carbon ion optics. Specially designed interfaces may be needed so that grid gap and aperture alignment are not adversely affected by dissimilar material properties within the thruster. The assembled thruster must be robust and tolerant of launch vibration. The following paper lists some of the characteristics of various carbon materials. Several past ion optics designs are discussed, identifying strengths and weaknesses. Electrostatics and material science are not emphasized so much as the mechanical behavior and integration of grid electrodes into an ion thruster.

  7. The opto-mechanical design of the GMT-consortium large earth finder (G-CLEF)

    NASA Astrophysics Data System (ADS)

    Mueller, Mark; Baldwin, Daniel; Bean, Jacob; Bergner, Henry; Bigelow, Bruce; Chun, Moo-Young; Crane, Jeffrey; Foster, Jeff; Fżrész, Gabor; Gauron, Thomas; Guzman, Dani; Hertz, Edward; Jordán, Andrés.; Kim, Kang-Min; McCracken, Kenneth; Norton, Timothy; Ordway, Mark; Park, Chan; Park, Sang; Podgorski, William A.; Szentgyorgyi, Andrew; Uomoto, Alan; Yuk, In-Soo

    2014-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is a fiber fed, optical echelle spectrograph that has been selected as a first light instrument for the Giant Magellan Telescope (GMT) currently under construction at the Las Campanas Observatory in Chile's Atacama desert region. We designed G-CLEF as a general-purpose echelle spectrograph with precision radial velocity (PRV) capability used for exoplanet detection. The radial velocity (RV) precision goal of GCLEF is 10 cm/sec, necessary for detection of Earth-sized planets orbiting stars like our Sun in the habitable zone. This goal imposes challenging stability requirements on the optical mounts and the overall spectrograph support structures. Stability in instruments of this type is typically affected by changes in temperature, orientation, and air pressure as well as vibrations caused by telescope tracking. For these reasons, we have chosen to enclose G-CLEF's spectrograph in a thermally insulated, vibration isolated vacuum chamber and place it at a gravity invariant location on GMT's azimuth platform. Additional design constraints posed by the GMT telescope include: a limited space envelope, a thermal emission ceiling, and a maximum weight allowance. Other factors, such as manufacturability, serviceability, available technology and budget are also significant design drivers. All of the previously listed considerations must be managed while ensuring that performance requirements are achieved. In this paper, we discuss the design of G-CLEF's optical mounts and support structures including technical choices made to minimize the system's sensitivity to thermal gradients. A more general treatment of the properties of G-CLEF can be found elsewhere in these proceedings1. We discuss the design of the vacuum chamber which houses the irregularly shaped optical bench and optics while conforming to a challenging space envelope on GMT's azimuth platform. We also discuss the design of G-CLEF's insulated enclosure and thermal control systems which maintain the spectrograph at milli-Kelvin level stability while simultaneously limiting the maximum thermal emission into the telescope dome environment. Finally, we discuss G-CLEF's front-end assembly and fiber-feed system as well as other interface challenges presented by the telescope, enclosure and neighboring instrumentation.

  8. Influence of amines as surfactant on the optical, thermal, and structural properties of nanostructured ZnO

    NASA Astrophysics Data System (ADS)

    Sehgal, Preeti; Narula, A. K.

    2015-06-01

    Zinc oxide nanoparticles were synthesized by precipitation method using triethanolamine (TEA) and hexamine (HA) as capping agents, and their effects on the optical, thermal, and morphological properties were analyzed. We have also analyzed the role of solvents on the aforementioned properties of ZnO nanoparticles. The optical properties of capped zinc oxide nanoparticles were investigated by UV-visible and fluorescent techniques. The HA@ZnO and TEA@ZnO that showed blueshift in comparison with ZnO without surfactant revealed the role of surfactant in reducing the trap sites by forming defect-free nanoparticles. TG-DTA curves indicated that optimum annealing temperature for ZnO nanoparticles was in the range of 360-469 °C depending upon the surfactant and solvent; no weight loss was observed above 469 °C. Synthesized ZnO nanoparticles had pure wurtzite structure as elucidated by X-ray diffraction studies (XRD). Scanning electron microscope revealed that the ZnO synthesized in isopropyl alcohol had spherical morphology, whereas ZnO nanoparticles synthesized in methanol had agglomerate sheet-like structure. The average size of the nanocrystal was estimated around 85-169 nm for ZnO.

  9. Structural, Optical, Electrical and Photoelectrical Properties of 2-Amino-4-(5-bromothiophen-2-yl)-5,6-dihydro-6-methyl-5-oxo-4 H-pyrano[3,2-c] quinoline-3-carbonitrile Films

    NASA Astrophysics Data System (ADS)

    Mansour, A. M.; El-Taweel, F. M. A.; Abu El-Enein, R. A. N.; El-Menyawy, E. M.

    2017-12-01

    2-Amino-4-(5-bromothiophen-2-yl)-5,6-dihydro-6-methyl-5-oxo-4 H-pyrano[3,2-c] quinoline-3-carbonitrile (ABDQC) powder was synthesized and showed thermal stability up to 535 K. ABDQC films were successfully prepared using thermal evaporation. X-ray diffraction showed that the prepared ABDQC powder had a polycrystalline structure, whereas the deposited film had an amorphous structure. The surface morphology of the films was characterized by using a transmission electron microscope. Optical absorption properties of ABDQC films were investigated by spectrophotometric measurements of the transmittance and reflectance in the wavelength range 200-2500 nm. The films were found to have indirect allowed optical band gap of 2.5 eV. Current-voltage characteristics of Au/ABDQC/ p-Si/Al were measured at different temperatures (300-420 K) in which the temperature dependence of the diode parameters has been discussed. Under illumination, the device showed open-circuit voltage and short-circuit current of 0.09 V and 3.26 × 10-4 A, respectively.

  10. The Multi-Spectral Solar Telescope Array (MSSTA)

    NASA Technical Reports Server (NTRS)

    Walker, A. B. C., Jr.; Barbee, Troy W., Jr.; Hoover, Richard B.

    1997-01-01

    In 1987, our consortium pioneered the application of normal incidence multilayer X-ray optics to solar physics by obtaining the first high resolution narrow band, "thermally differentiated" images of the corona', using the emissions of the Fe IX/Fe X complex at ((lambda)lambda) approx. 171 A to 175 A, and He II Lyman (beta) at 256 A. Subsequently, we developed a rocket borne solar observatory, the Multi Spectral Solar Telescope Array (MSSTA) that pioneered multi-thermal imaging of the solar atmosphere, using high resolution narrow band X-ray, EUV and FUV optical systems. Analysis of MSSTA observations has resulted in four significant insights into the structure of the solar atmosphere: (1) the diameter of coronal loops is essentially constant along their length; (2) models of the thermal and density structure of polar plumes based on MSSTA observations have been shown to be consistent with the thesis that they are the source of high speed solar wind streams; (3) the magnetic structure of the footpoints of polar plumes is monopolar, and their thermal structure is consistent with the thesis that the chromosphere at their footpoints is heated by conduction from above; (4) coronal bright points are small loops, typically 3,500 - 20,000 km long (5 sec - 30 sec); their footpoints are located at the poles of bipolar magnetic structures that are are distinguished from other network elements by having a brighter Lyman a signature. Loop models derived for 26 bright points are consistent with the thesis that the chromosphere at their footpoints is heated by conduction from the corona.

  11. Update on Integrated Optical Design Analyzer

    NASA Technical Reports Server (NTRS)

    Moore, James D., Jr.; Troy, Ed

    2003-01-01

    Updated information on the Integrated Optical Design Analyzer (IODA) computer program has become available. IODA was described in Software for Multidisciplinary Concurrent Optical Design (MFS-31452), NASA Tech Briefs, Vol. 25, No. 10 (October 2001), page 8a. To recapitulate: IODA facilitates multidisciplinary concurrent engineering of highly precise optical instruments. The architecture of IODA was developed by reviewing design processes and software in an effort to automate design procedures. IODA significantly reduces design iteration cycle time and eliminates many potential sources of error. IODA integrates the modeling efforts of a team of experts in different disciplines (e.g., optics, structural analysis, and heat transfer) working at different locations and provides seamless fusion of data among thermal, structural, and optical models used to design an instrument. IODA is compatible with data files generated by the NASTRAN structural-analysis program and the Code V (Registered Trademark) optical-analysis program, and can be used to couple analyses performed by these two programs. IODA supports multiple-load-case analysis for quickly accomplishing trade studies. IODA can also model the transient response of an instrument under the influence of dynamic loads and disturbances.

  12. High photon-to-heat conversion efficiency in the wavelength region of 250–1200 nm based on a thermoelectric Bi2Te3 film structure

    PubMed Central

    Hu, Er-Tao; Yao, Yuan; Zang, Kai-Yan; Liu, Xin-Xing; Jiang, An-Qing; Zheng, Jia-Jin; Yu, Ke-Han; Wei, Wei; Zheng, Yu-Xiang; Zhang, Rong-Jun; Wang, Song-You; Zhao, Hai-Bin; Yoshie, Osamu; Lee, Young-Pak; Wang, Cai-Zhuang; Lynch, David W.; Guo, Jun-Peng; Chen, Liang-Yao

    2017-01-01

    In this work, 4-layered SiO2/Bi2Te3/SiO2/Cu film structures were designed and fabricated and the optical properties investigated in the wavelength region of 250–1200 nm for their promising applications for direct solar-thermal-electric conversion. A typical 4-layered film sample with the structure SiO2 (66.6 nm)/Bi2Te3 (7.0 nm)/SiO2 (67.0 nm)/Cu (>100.0 nm) was deposited on a Si or K9-glass substrate by magnetron sputtering. The experimental results agree well with the simulated ones showing an average optical absorption of 96.5%, except in the shorter wavelength region, 250–500 nm, which demonstrates the superior absorption property of the 4-layered film due to the randomly rough surface of the Cu layer resulting from the higher deposition power. The high reflectance of the film structure in the long wavelength region of 2–20 μm will result in a low thermal emittance, 0.064 at 600 K. The simpler 4-layered structure with the thermoelectric Bi2Te3 used as the absorption layer may provide a straightforward way to obtain solar-thermal-electric conversion more efficiently through future study. PMID:28300178

  13. Probing Atomic Dynamics and Structures Using Optical Patterns

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2015-05-01

    Pattern formation is a widely studied phenomenon that can provide fundamental insights into nonlinear systems. Emergent patterns in cold atoms are of particular interest in condensed matter physics and quantum information science because one can relate optical patterns to spatial structures in the atoms. In our experimental system, we study multimode optical patterns generated from a sample of cold, thermal atoms. We observe this nonlinear optical phenomenon at record low input powers due to the highly nonlinear nature of the spatial bunching of atoms in an optical lattice. We present a detailed study of the dynamics of these bunched atoms during optical pattern formation. We show how small changes in the atomic density distribution affect the symmetry of the generated patterns as well as the nature of the nonlinearity that describes the light-atom interaction. We gratefully acknowledge the financial support of the National Science Foundation through Grant #PHY-1206040.

  14. Nonlinear Optical Properties of High-Temperature Organic Structures

    NASA Astrophysics Data System (ADS)

    Shi, Rui-Fang

    In this thesis, we report the discovery of a new class of electro-optic organic structures, 1,8-naphthoylene -benzimidazoles, developed with computer aided molecular design combined with actual syntheses. These structures are similar to polyimide repeat units and possess high thermal, chemical and photo stabilities. Thermal analysis shows that the new class retains its linear and nonlinear optical properties well above 300^circ C in both pure forms and guest/host polyimide systems. Importantly, side group substitutions not only increase the second-order optical responses but also enhance the thermal stability. The origin of the relatively large second order optical responses of the new class is revealed by quantum many-electron calculations that explicitly take electron -electron correlations into consideration. Contour diagrams indicate that electrons are decreased on the benzimidazole -donor-substituted side and increased on the naphthoylene side upon virtual excitations, illustrating the fact that the naphthoylene group acts both as an electron acceptor and a pi-bridge that provides the necessary electron delocalization. Results for most structures show that the most dominant virtual excitation process to beta_{ijk}(-omega _3;omega_1,omega_2) involves the ground (S_0) and first excited (S_1) pi -electronic states. Importantly, increasing the electron donor strength increase the electric dipole moments and transition moments, therefore second order optical responses are enhanced. Interestingly, it is found that the position of a donor group in the new class has a significant effect on second order optical responses. DC-induced second harmonic generation (DCSHG) dispersion measurements characterize the nonlinear optical properties of the new class, using both nanosecond and picosecond tunable laser sources ranging from 1400 to 2148 nm in wavelength. Comparison between theory and experiment demonstrates that there is good agreement between them over a wide nonresonant photon energy region, illustrating the great success of our understanding of the nonlinear optical responses even in these relatively complicated organic structures. In addition, it is found that these chromophores have large beta_{ijk }: for SY177 in solution with 1,4-dioxane, mu_{x}beta_ {x}(-2omega;omega,omega) + < gamma(-2omega;omega,omega,0) > 5kT = 418 times 10 ^{-48} esu and beta _{x}(-2omega;omega,omega ) 92 times 10^ {-30} esu at hbaromega = 0.65 eV. For SY215 in solution with CH _2Cl_2, mu_ {x}beta_{x}(-2omega; omega,omega) + < gamma( -2omega;omega,omega,0) > 5kT = 1468 times 10^{-48} esu and beta_{x}(-2omega; omega,omega) = 268 times 10^{-30} esu at hbaromega = 0.65 eV. The discovery and characterization of the new high temperature class represents a critical step in the development of new materials that are suitable for practical device applications. Work is underway to optimize these structures and incorporate them into waveguide devices.

  15. Nanocomposites for high-speed optical modulators and plasmonic thermal mid-infrared emitters

    NASA Astrophysics Data System (ADS)

    Demir, Veysi

    Demand for high-speed optical modulators and narrow-bandwidth infrared thermal emitters for numerous applications continues to rise and new optical devices are needed to deal with massive data flows, processing powers, and fabrication costs. Conventional techniques are usually hindered by material limitations or electronic interconnects and advances in organic nanocomposite materials and their integration into photonic integrated circuits (PICs) have been acknowledged as a promising alternative to single crystal techniques. The work presented in this thesis uses plasmonic and magneto-optic effects towards the development of novel optical devices for harnessing light and generating high bandwidth signals (>40GHz) at room and cryogenic temperatures (4.2°K). Several publications have resulted from these efforts and are listed at the end of the abstract. In our first published research we developed a narrow-bandwidth mid-infrared thermal emitter using an Ag/dielectric/Ag thin film structure arranged in hexagonal planar lattice structures. PECVD produced nanoamorphous carbon (NAC) is used as a dielectric layer. Spectrally tunable (>2 mum) and narrow bandwidth (<0.5 mum) emission peaks in the range of 4-7 mum were demonstrated by decreasing the resistivity of NAC from 1012 and 109 O.cm with an MoSi2 dopant and increasing the emitter lattice constant from 4 to 7 mum. This technique offers excellent flexibility for developing cost-effective mid-IR sources as compared to costly fiber and quantum cascade lasers (QCLs). Next, the effect of temperature on the Verdet constant for cobalt-ferrite polymer nanocomposites was measured for a series of temperatures ranging from 40 to 200°K with a Faraday rotation polarimeter. No visual change was observed in the films during thermal cycling, and ˜4x improvement was achieved at 40°K. The results are promising and further analysis is merited at 4.2°K to assess the performance of this material for cryogenic magneto-optic modulators for supercomputers. Finally, the dielectric constant and loss tangent of MAPTMS sol-gel films were measured over a wide range of microwave frequencies. The test structures were prepared by spin-coating sol-gel films onto metallized glass substrates. The dielectric properties of the sol-gel were probed with several different sets of coplanar waveguides (CPWs) electroplated onto sol-gel films. The dielectric constant and loss-tangent of these films were determined to be ˜3.1 and 3 x 10-3 at 35GHz. These results are very promising indicating that sol-gels are viable cladding materials for high-speed electro-optic polymer modulators (>40GHz).

  16. Structural, optical, opto-thermal and thermal properties of ZnS-PVA nanofluids synthesized through a radiolytic approach.

    PubMed

    Kharazmi, Alireza; Faraji, Nastaran; Mat Hussin, Roslina; Saion, Elias; Yunus, W Mahmood Mat; Behzad, Kasra

    2015-01-01

    This work describes a fast, clean and low-cost approach to synthesize ZnS-PVA nanofluids consisting of ZnS nanoparticles homogeneously distributed in a PVA solution. The ZnS nanoparticles were formed by the electrostatic force between zinc and sulfur ions induced by gamma irradiation at a dose range from 10 to 50 kGy. Several experimental characterizations were conducted to investigate the physical and chemical properties of the samples. Fourier transform infrared spectroscopy (FTIR) was used to determine the chemical structure and bonding conditions of the final products, transmission electron microscopy (TEM) for determining the shape morphology and average particle size, powder X-ray diffraction (XRD) for confirming the formation and crystalline structure of ZnS nanoparticles, UV-visible spectroscopy for measuring the electronic absorption characteristics, transient hot wire (THW) and photoacoustic measurements for measuring the thermal conductivity and thermal effusivity of the samples, from which, for the first time, the values of specific heat and thermal diffusivity of the samples were then calculated.

  17. ANALYSIS OF CARBONACEOUS AEROSOLS USING THE THERMAL OPTICAL TRANSMITTANCE AND THERMAL OPTICAL REFLECTANCE METHODS

    EPA Science Inventory

    Carbonaceous particulate typically represents a large fraction of PM2.5 (20 - 40%). Two primary techniques presently used for the analysis of particulate carbon are Thermal Optical Transmission (TOT - NIOSH Method 5040) and Thermal Optical Reflectance (TOR). These two methods b...

  18. Thermal stress prediction in mirror and multilayer coatings.

    PubMed

    Cheng, Xianchao; Zhang, Lin; Morawe, Christian; Sanchez Del Rio, Manuel

    2015-03-01

    Multilayer optics for X-rays typically consist of hundreds of periods of two types of alternating sub-layers which are coated on a silicon substrate. The thickness of the coating is well below 1 µm (tens or hundreds of nanometers). The high aspect ratio (∼10(7)) between the size of the optics and the thickness of the multilayer can lead to a huge number of elements (∼10(16)) for the numerical simulation (by finite-element analysis using ANSYS code). In this work, the finite-element model for thermal-structural analysis of multilayer optics has been implemented using the ANSYS layer-functioned elements. The number of meshed elements is considerably reduced and the number of sub-layers feasible for the present computers is increased significantly. Based on this technique, single-layer coated mirrors and multilayer monochromators cooled by water or liquid nitrogen are studied with typical parameters of heat-load, cooling and geometry. The effects of cooling-down of the optics and heating of the X-ray beam are described. It is shown that the influences from the coating on temperature and deformation are negligible. However, large stresses are induced in the layers due to the different thermal expansion coefficients between the layer and the substrate materials, which is the critical issue for the survival of the optics. This is particularly true for the liquid-nitrogen cooling condition. The material properties of thin multilayer films are applied in the simulation to predict the layer thermal stresses with more precision.

  19. Evaluation and Selection of Replacement Thermal Control Materials for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Townsend, Jacqueline A.; Hansen, Patricia A.; McClendon, Mark W.; Dever, Joyce A.; Triolo, Jack J.

    1998-01-01

    The mechanical and optical properties of the metallized Teflon(Registered Trademark) FEP thermal control materials on the Hubble Space Telescope (HST) have degraded over the nearly seven years the telescope has been in orbit. Given the damage to the outer layer of the multi-layer insulation (MLI) that was apparent during the second servicing mission (SM2), the decision was made to replace the outer layer during subsequent servicing missions. A Failure Review Board was established to investigate the damage to the MLI and identify a replacement material. The replacement material had to meet the stringent thermal requirements of the spacecraft and maintain structural integrity for at least ten years. Ten candidate materials were selected and exposed to ten-year HST-equivalent doses of simulated orbital environments. Samples of the candidates were exposed sequentially to low and high energy electrons and protons, atomic oxygen, x-ray radiation, ultraviolet radiation and thermal cycling. Following the exposures, the mechanical integrity and optical properties of the candidates were investigated using Optical Microscopy, Scanning Electron Microscopy (SEM), and a Laboratory Portable Spectroreflectometer (LPSR). Based on the results of these simulations and analyses, the FRB selected a replacement material and two alternates that showed the highest likelihood of providing the requisite thermal properties and surviving for ten years in orbit.q

  20. An 8 Meter Monolithic UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc

    2008-01-01

    The planned Ares V launch vehicle with its 10 meter fairing and at least 55,600 kg capacity to Earth Sun L2 enables entirely new classes of space telescopes. A consortium from NASA, Space Telescope Science Institute, and aerospace industry are studying an 8-meter monolithic primary mirror UV/optical/NIR space telescope to enable new astrophysical research that is not feasible with existing or near-term missions, either space or ground. This paper briefly reviews the science case for such a mission and presents the results of an on-going technical feasibility study, including: optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; operations & servicing; mass budget and cost.

  1. Tunable optical switching in the near-infrared spectral regime by employing plasmonic nanoantennas containing phase change materials.

    PubMed

    Savaliya, Priten B; Thomas, Arun; Dua, Rishi; Dhawan, Anuj

    2017-10-02

    We propose the design of switchable plasmonic nanoantennas (SPNs) that can be employed for optical switching in the near-infrared regime. The proposed SPNs consist of nanoantenna structures made up of a plasmonic metal (gold) such that these nanoantennas are filled with a switchable material (vanadium dioxide). We compare the results of these SPNs with inverted SPN structures that consist of gold nanoantenna structures surrounded by a layer of vanadium dioxide (VO 2 ) on their outer surface. These nanoantennas demonstrate switching of electric-field intensity enhancement (EFIE) between two states (On and Off states), which can be induced thermally, optically or electrically. The On and Off states of the nanoantennas correspond to the metallic and semiconductor states, respectively of the VO 2 film inside or around the nanoantennas, as the VO 2 film exhibits phase transition from its semiconductor state to the metallic state upon application of thermal, optical, or electrical energy. We employ finite-difference time-domain (FDTD) simulations to demonstrate switching in the EFIE for four different SPN geometries - nanorod-dipole, bowtie, planar trapezoidal toothed log-periodic, and rod-disk - and compare their near-field distributions for the On and Off states of the SPNs. We also demonstrate that the resonance wavelength of the EFIE spectra gets substantially modified when these SPNs switch between the two states.

  2. Thermally induced distortion of a high-average-power laser system by an optical transport system

    NASA Astrophysics Data System (ADS)

    Chow, Robert; Ault, Linda E.; Taylor, John R.; Jedlovec, Don

    1999-11-01

    The atomic vapor laser isotope separation process uses high- average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics. The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural- optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions will be reported on optics made from fused silica and Zerodur substrate materials.

  3. Synthesis, Structure, Te Alloying, and Physical Properties of CuSbS 2

    DOE PAGES

    Hobbis, Dean; Wei, Kaya; Wang, Hsin; ...

    2017-10-30

    Materials with very low thermal conductivities continue to be of interest for a variety of applications. In this paper, we synthesized CuSbS 2 employing a mechanical alloying technique in order to investigate its physical properties. The trigonal pyramid arrangement of the S atoms around the Sb atoms allows for lone-pair electron formation that results in very low thermal conductivity. Finally, in addition to thermal properties, the structural, electrical, and optical properties, as well as compositional stability measurements, are also discussed. CuSbS 1.8Te 0.2 was similarly synthesized and characterized in order to compare its structural and transport properties with that ofmore » CuSbS 2, in addition to investigating the effect of Te alloying on these properties.« less

  4. Design, analysis, and test verification of advanced encapsulation systems

    NASA Technical Reports Server (NTRS)

    Mardesich, N.; Minning, C.

    1982-01-01

    Design sensitivities are established for the development of photovoltaic module criteria and the definition of needed research tasks. The program consists of three phases. In Phase I, analytical models were developed to perform optical, thermal, electrical, and structural analyses on candidate encapsulation systems. From these analyses several candidate systems will be selected for qualification testing during Phase II. Additionally, during Phase II, test specimens of various types will be constructed and tested to determine the validity of the analysis methodology developed in Phase I. In Phse III, a finalized optimum design based on knowledge gained in Phase I and II will be developed. All verification testing was completed during this period. Preliminary results and observations are discussed. Descriptions of the thermal, thermal structural, and structural deflection test setups are included.

  5. Synthesis, Structure, Te Alloying, and Physical Properties of CuSbS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbis, Dean; Wei, Kaya; Wang, Hsin

    Materials with very low thermal conductivities continue to be of interest for a variety of applications. In this paper, we synthesized CuSbS 2 employing a mechanical alloying technique in order to investigate its physical properties. The trigonal pyramid arrangement of the S atoms around the Sb atoms allows for lone-pair electron formation that results in very low thermal conductivity. Finally, in addition to thermal properties, the structural, electrical, and optical properties, as well as compositional stability measurements, are also discussed. CuSbS 1.8Te 0.2 was similarly synthesized and characterized in order to compare its structural and transport properties with that ofmore » CuSbS 2, in addition to investigating the effect of Te alloying on these properties.« less

  6. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions

    NASA Astrophysics Data System (ADS)

    Dyachenko, P. N.; Molesky, S.; Petrov, A. Yu; Störmer, M.; Krekeler, T.; Lang, S.; Ritter, M.; Jacob, Z.; Eich, M.

    2016-06-01

    Control of thermal radiation at high temperatures is vital for waste heat recovery and for high-efficiency thermophotovoltaic (TPV) conversion. Previously, structural resonances utilizing gratings, thin film resonances, metasurfaces and photonic crystals were used to spectrally control thermal emission, often requiring lithographic structuring of the surface and causing significant angle dependence. In contrast, here, we demonstrate a refractory W-HfO2 metamaterial, which controls thermal emission through an engineered dielectric response function. The epsilon-near-zero frequency of a metamaterial and the connected optical topological transition (OTT) are adjusted to selectively enhance and suppress the thermal emission in the near-infrared spectrum, crucial for improved TPV efficiency. The near-omnidirectional and spectrally selective emitter is obtained as the emission changes due to material properties and not due to resonances or interference effects, marking a paradigm shift in thermal engineering approaches. We experimentally demonstrate the OTT in a thermally stable metamaterial at high temperatures of 1,000 °C.

  7. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions

    PubMed Central

    Dyachenko, P. N.; Molesky, S.; Petrov, A. Yu; Störmer, M.; Krekeler, T.; Lang, S.; Ritter, M.; Jacob, Z.; Eich, M.

    2016-01-01

    Control of thermal radiation at high temperatures is vital for waste heat recovery and for high-efficiency thermophotovoltaic (TPV) conversion. Previously, structural resonances utilizing gratings, thin film resonances, metasurfaces and photonic crystals were used to spectrally control thermal emission, often requiring lithographic structuring of the surface and causing significant angle dependence. In contrast, here, we demonstrate a refractory W-HfO2 metamaterial, which controls thermal emission through an engineered dielectric response function. The epsilon-near-zero frequency of a metamaterial and the connected optical topological transition (OTT) are adjusted to selectively enhance and suppress the thermal emission in the near-infrared spectrum, crucial for improved TPV efficiency. The near-omnidirectional and spectrally selective emitter is obtained as the emission changes due to material properties and not due to resonances or interference effects, marking a paradigm shift in thermal engineering approaches. We experimentally demonstrate the OTT in a thermally stable metamaterial at high temperatures of 1,000 °C. PMID:27263653

  8. Oxygen absorption in free-standing porous silicon: a structural, optical and kinetic analysis.

    PubMed

    Cisneros, Rodolfo; Pfeiffer, Heriberto; Wang, Chumin

    2010-01-16

    Porous silicon (PSi) is a nanostructured material possessing a huge surface area per unit volume. In consequence, the adsorption and diffusion of oxygen in PSi are particularly important phenomena and frequently cause significant changes in its properties. In this paper, we study the thermal oxidation of p+-type free-standing PSi fabricated by anodic electrochemical etching. These free-standing samples were characterized by nitrogen adsorption, thermogravimetry, atomic force microscopy and powder X-ray diffraction. The results show a structural phase transition from crystalline silicon to a combination of cristobalite and quartz, passing through amorphous silicon and amorphous silicon-oxide structures, when the thermal oxidation temperature increases from 400 to 900 °C. Moreover, we observe some evidence of a sinterization at 400 °C and an optimal oxygen-absorption temperature about 700 °C. Finally, the UV/Visible spectrophotometry reveals a red and a blue shift of the optical transmittance spectra for samples with oxidation temperatures lower and higher than 700 °C, respectively.

  9. Electronic Structure, Optical and Transport Properties of Double Perovskite La2NbMnO6: A Theoretical Understanding from DFT Calculations

    NASA Astrophysics Data System (ADS)

    Parrey, Khursheed Ahmad; Khandy, Shakeel Ahmad; Islam, Ishtihadah; Laref, Amel; Gupta, Dinesh C.; Niazi, Asad; Aziz, Anver; Ansari, S. G.; Khenata, R.; Rubab, Seemin

    2018-03-01

    Double perovskite La2NbMnO6 was systematically studied using the first-principles calculations. The structural, electronic, optical and transport properties of this compound were calculated. Spin resolved band structure predicted this material as a half-metal with an energy gap of 3.75 eV in spin down state. The optical coefficients including optical conductivity, reflectivity and electron energy loss are calculated for photon energy up to 30.00 eV to understand the optical response of this perovskite. The strong absorption of all the ultraviolet and infrared frequencies of the spectrum by this material may suggest the potential application of this material for the optoelectronic devices in ultraviolet and infra-red region. Also, the thermoelectric properties with a speculation from the half-metallic electronic structure are reported. Subsequently, the Seebeck coefficient, electrical and thermal conductivity coefficients are calculated to predict the thermoelectric figure of merit (zT), the maximum of which is found out to be 0.14 at 800 K.

  10. Long-range transverse spin Seebeck effect in permalloy stripes using Sagnac interferometer microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Haoliang; McLaughlin, Ryan; Sun, Dali; Valy Vardeny, Z.

    2018-04-01

    Coupling of spins and phonons in ferromagnets (FM) may persist up to mm length scale, thus generating macroscopic spatially distributed spin accumulation along the direction of an applied thermal gradient to an FM slab. This typical feature of transverse spin Seebeck effect (TSSE) has been demonstrated so far using electrical detection methods in FM films, in particular in a patterned structure, in which FM stripes grown onto a substrate perpendicular to the applied thermal gradient direction are electrically and magnetically isolated. Here we report optically detected TSSE response in isolated FM stripes based on permalloy deposited on SiN substrate, upon the application of a thermal gradient. For these measurements we used the magneto-optic Kerr effect measured by an ultrasensitive Sagnac interferometer microscope that is immune to thermo-electrics artefacts. We found that the optical TSSE coefficient in the NiFe stripes geometry is about one order of magnitude smaller than that in the continuous NiFe film, which is due to the limited phonons path in the FM stripes along the thermal gradient direction. Our results further confirm the existence of TSSE response in conducting FM compounds.

  11. Study of variation in thermal width of nematic and induced smectic ordering phase of citric acid (CA) and 4-heptyloxybenzoic acid (7OBA) hydrogen bonded liquid crystal complexes

    NASA Astrophysics Data System (ADS)

    Sundaram, S.; Jayaprakasam, R.; Praveena, R.; Rajasekaran, T. R.; Senthil, T. S.; Vijayakumar, V. N.

    2018-01-01

    Hydrogen-bonded liquid crystals (HBLCs) have been derived from nonmesogenic citric acid (CA) and mesogenic 4-heptyloxybenzoic acid (7OBA) yielding a highly ordered smectic C (Sm C) phase along with the new smectic X (Sm X) phase which has been identified as fingerprint-type texture. Optical (polarizing optical microscopy), thermal (differential scanning calorimetry) and structural (Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy) properties are studied. A noteworthy observation is that the intermolecular H-bond (between CA and 7OBA) influences on its melting point and clearing temperature of the HBLCs which exhibits lower value than those of the individual compounds. A typical extended mesophase region has been observed in the present complex while varying the mixture ratio (1:1 to 1:3) than those of individual compounds. The change in the ratio of the mesogenic compound in the mixture alters thermal properties such as enthalpy value and thermal span width in nematic (N) region of HBLC complex. Optical tilt angle measurement of CA+7OBA in Sm C phase has been discussed to identify the molecular position in the mesophase.

  12. Fluctuations of pulsed laser radiation in the case of thermal self-defocusing under conditions of atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Vorob'ev, V. V.; Krasil'Nikova, T. G.; Tikhonova, N. S.

    1989-09-01

    The spectra and structure functions of log-amplitude and phase fluctuations of laser radiation under thermal blooming are calculated on the basis of a smooth perturbation method. The spectrum dynamics is investigated in a wide range of spatial frequencies. The applicability of geometrical-optics and diffraction asymptotics to the calculation of the fluctuations is studied.

  13. Structural and thermal testing of lightweight reflector panels

    NASA Technical Reports Server (NTRS)

    Mcgregor, J.; Helms, R.; Hill, T.

    1992-01-01

    The paper describes the test facility developed for testing large lightweight reflective panels with very accurate and stable surfaces, such as the mirror panels of composite construction developed for the NASA's Precision Segmented Reflector (PSR). Special attention is given to the panel construction and the special problems posed by the characteristics of these panels; the design of the Optical/Thermal Vacuum test facility for structural and thermal testing, developed at the U.S. AFPL; and the testing procedure. The results of the PSR panel test program to date are presented. The test data showed that the analytical approaches used for the panel design and for the prediction of the on-orbit panel behavior were adequate.

  14. Fabrication of resonant patterns using thermal nano-imprint lithography for thin-film photovoltaic applications.

    PubMed

    Khaleque, Tanzina; Svavarsson, Halldor Gudfinnur; Magnusson, Robert

    2013-07-01

    A single-step, low-cost fabrication method to generate resonant nano-grating patterns on poly-methyl-methacrylate (PMMA; plexiglas) substrates using thermal nano-imprint lithography is reported. A guided-mode resonant structure is obtained by subsequent deposition of thin films of transparent conductive oxide and amorphous silicon on the imprinted area. Referenced to equivalent planar structures, around 25% and 45% integrated optical absorbance enhancement is observed over the 450-nm to 900-nm wavelength range in one- and two-dimensional patterned samples, respectively. The fabricated elements provided have 300-nm periods. Thermally imprinted thermoplastic substrates hold potential for low-cost fabrication of nano-patterned thin-film solar cells for efficient light management.

  15. Structural and optical properties of Na-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Akcan, D.; Gungor, A.; Arda, L.

    2018-06-01

    Zn1-xNaxO (x = 0.0-0.05) solutions have been synthesized by the sol-gel technique using Zinc acetate dihydrate and Sodium acetate which were dissolved into solvent and chelating agent. Na-doped ZnO nanoparticles were obtained from solutions to find phase and crystal structure. Na-doped ZnO films have been deposited onto glass substrate by using sol-gel dip coating system. The effects of dopant concentration on the structure, morphology, and optical properties of Na-doped ZnO thin films deposited on glass substrate are investigated. Characterization of Zn1-xNaxO nanoparticles and thin films are examined using differential thermal analysis (DTA)/thermogravimetric analysis (TGA), Scanning electron microscope (SEM) and X-Ray diffractometer (XRD). Optical properties of Zn1-xNaxO thin films were obtained by using PG Instruments UV-Vis-NIR spectrophotometer in 190-1100 nm range. The structure, morphology, and optical properties of thin films are presented.

  16. Phonon spectra and the one-phonon and two-phonon densities of states of UO2 and PuO2

    NASA Astrophysics Data System (ADS)

    Poplavnoi, A. S.; Fedorova, T. P.; Fedorov, I. A.

    2017-04-01

    The vibrational spectra of uranium dioxide UO2 and plutonium dioxide PuO2, as well as the one-phonon densities of states and thermal occupation number weighted two-phonon densities of states, have been calculated within the framework of the phenomenological rigid ion model. It has been shown that the acoustic and optical branches of the spectra are predominantly determined by vibrations of the metal and oxygen atoms, respectively, because the atomic masses of the metal and oxygen differ from each other by an order of magnitude. On this basis, the vibrational spectra can be represented in two Brillouin zones, i.e., in the Brillouin zone of the crystal and the Brillouin zone of the oxygen sublattice. In this case, the number of optical branches decreases by a factor of two. The two-phonon densities of states consist of two broad structured peaks. The temperature dependences of the upper peak exhibit a thermal broadening of the phonon lines L01 and L02 in the upper part of the optical branches. The lower peak is responsible for the thermal broadening of the lowest two optical (T02, T01) and acoustic (LA, TA) branches.

  17. Tailoring density and optical and thermal behavior of gold surfaces and nanoparticles exploiting aromatic dithiols.

    PubMed

    Bruno, Giovanni; Babudri, Francesco; Operamolla, Alessandra; Bianco, Giuseppe V; Losurdo, Maria; Giangregorio, Maria M; Hassan Omar, Omar; Mavelli, Fabio; Farinola, Gianluca M; Capezzuto, Pio; Naso, Francesco

    2010-06-01

    Self-assembled monolayers (SAMs) derived of 4-methoxy-terphenyl-3'',5''-dimethanethiol (TPDMT) and 4-methoxyterphenyl-4''-methanethiol (TPMT) have been prepared by chemisorption from solution onto gold thin films and nanoparticles. The SAMs have been characterized by spectroscopic ellipsometry, Raman spectroscopy and atomic force microscopy to determine their optical properties, namely the refractive index and extinction coefficient, in an extended spectral range of 0.75-6.5 eV. From the analysis of the optical data, information on SAMs structural organization has been inferred. Comparison of SAMs generated from the above aromatic thiols to well-known SAMs generated from the alkanethiol dodecanethiol revealed that the former aromatic SAMs are densely packed and highly vertically oriented, with a slightly higher packing density and a absence of molecular inclination in TPMT/Au. The thermal behavior of SAMs has also been monitored using ellipsometry in the temperature range 25-500 degrees C. Gold nanoparticles functionalized by the same aromatic thiols have also been discussed for surface enhanced Raman spectroscopy applications. This study represents a step forward tailoring the optical and thermal behavior of surfaces as well as nanoparticles.

  18. Infrared Fibers for Use in Space-Based Smart Structures

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Infrared optical fibers are finding a number of applications including laser surgery, remote sensing, and nuclear radiation resistant links. Utilizing these fibers in space-based structures is another application, which can be exploited. Acoustic and thermal sensing are two areas in which these fibers could be utilized. In particular, fibers could be embedded in IM7/8552 toughened epoxy and incorporated into space structures both external and internal. ZBLAN optical fibers are a candidate, which have been studied extensively over the past 20 years for terrestrial applications. For the past seven years the effects of gravity on the crystallization behavior of ZBLAN optical fiber has been studied. It has been found that ZBLAN crystallization is suppressed in microgravity. This lack of crystallization leads to a fiber with better transmission characteristics than its terrestrial counterpart.

  19. Tunable multiband plasmonic response of indium antimonide touching microrings in the terahertz range.

    PubMed

    Moridsadat, Maryam; Golmohammadi, Saeed; Baghban, Hamed

    2018-06-01

    In this paper, we propose a terahertz (THz) plasmonic structure that supports three resonance modes, including the charge transfer plasmon (CTP), the bonding dipole-dipole plasmon, and the antibonding dipole-dipole plasmon, which can be strongly tuned by geometrical parameters, passively, and the temperature, actively. The structure exhibits a considerable thermal sensitivity of more than 0.01 THz/K. The introduced multiband and tunable THz plasmonic structures offer important applications in thermal switches, thermo-optical modulators, broadband filters, design of multifunctional molecules originating from the multiband specification of the proposed structure, and improvement in plasmonic sensor applications stemming from a detailed study of the CTP mode.

  20. A new multicomponent salt of imidazole and tetrabromoterepthalic acid: structural, optical, thermal, electrical transport properties and antibacterial activity along with Hirshfeld surface analysis.

    PubMed

    Dey, Sanjoy Kumar; Saha, Rajat; Singha, Soumen; Biswas, Susobhan; Layek, Animesh; Middya, Somnath; Ray, Partha Pratim; Bandhyopadhyay, Debasis; Kumar, Sanjay

    2015-06-05

    Herein, we report the structural, optical, thermal and electrical transport properties of a new multicomponent salt (TBTA(2-))·2(IM(+))·(water) [TBTA-IM] of tetrabromoterepthalic acid (TBTA) with imidazole (IM). The crystal structure of TBTA-IM is determined by both the single crystal and powder X-ray diffraction techniques. The structural analysis has revealed that the supramolecular charge assisted O(-)⋯HN(+) hydrogen bonding and Br⋯π interactions play the most vital role in formation of this multicomponent supramolecular assembly. The Hirshfeld surface analysis has been carried out to investigate supramolecular interactions and associated 2D fingerprint plots reveal the relative contribution of these interactions in the crystal structure quantitatively. According to theoretical analysis the HOMO-LUMO energy gap of the salt is 2.92 eV. The salt has been characterized by IR, UV-vis and photoluminescence spectroscopic studies. It shows direct optical transition with band gaps of 4.1 eV, which indicates that the salt is insulating in nature. The photoluminescence spectrum of the salt is significantly different from that of TBTA. Further, a comparative study on the antibacterial activity of the salt with respect to imidazole, Gatifloxacin and Ciprofloxacin has been performed. Moreover, the current-voltage (I-V) characteristic of ITO/TBTA-IM/Al sandwich structure exhibits good rectifying property and the electron tunneling process governs the electrical transport mechanism of the device. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. An advanced optical system for laser ablation propulsion in space

    NASA Astrophysics Data System (ADS)

    Bergstue, Grant; Fork, Richard; Reardon, Patrick

    2014-03-01

    We propose a novel space-based ablation driven propulsion engine concept utilizing transmitted energy in the form of a series of ultra-short optical pulses. Key differences are generating the pulses at the transmitting spacecraft and the safe delivery of that energy to the receiving spacecraft for propulsion. By expanding the beam diameter during transmission in space, the energy can propagate at relatively low intensity and then be refocused and redistributed to create an array of ablation sites at the receiver. The ablation array strategy allows greater control over flight dynamics and eases thermal management. Research efforts for this transmission and reception of ultra-short optical pulses include: (1) optical system design; (2) electrical system requirements; (3) thermal management; (4) structured energy transmission safety. Research has also been focused on developing an optical switch concept for the multiplexing of the ultra-short pulses. This optical switch strategy implements multiple reflectors polished into a rotating momentum wheel device to combine the pulses from different laser sources. The optical system design must minimize the thermal load on any one optical element. Initial specifications and modeling for the optical system are being produced using geometrical ray-tracing software to give a better understanding of the optical requirements. In regards to safety, we have advanced the retro-reflective beam locking strategy to include look-ahead capabilities for long propagation distances. Additional applications and missions utilizing multiplexed pulse transmission are also presented. Because the research is in early development, it provides an opportunity for new and valuable advances in the area of transmitted energy for propulsion as well as encourages joint international efforts. Researchers from different countries can cooperate in order to find constructive and safe uses of ordered pulse transmission for propulsion in future space-based missions.

  2. Integrated-optical directional coupler biosensor

    NASA Astrophysics Data System (ADS)

    Luff, B. J.; Harris, R. D.; Wilkinson, J. S.; Wilson, R.; Schiffrin, D. J.

    1996-04-01

    We present measurements of biomolecular binding reactions, using a new type of integrated-optical biosensor based on a planar directional coupler structure. The device is fabricated by Ag+ - Na+ ion exchange in glass, and definition of the sensing region is achieved by use of transparent fluoropolymer isolation layers formed by thermal evaporation. The suitability of the sensor for application to the detection of environmental pollutants is considered.

  3. Optical and mechanical behaviors of glassy silicone networks derived from linear siloxane precursors

    NASA Astrophysics Data System (ADS)

    Jang, Heejun; Seo, Wooram; Kim, Hyungsun; Lee, Yoonjoo; Kim, Younghee

    2016-01-01

    Silicon-based inorganic polymers are promising materials as matrix materials for glass fiber composites because of their good process ability, transparency, and thermal property. In this study, for utilization as a matrix precursor for a glass-fiber-reinforced composite, glassy silicone networks were prepared via hydrosilylation of linear/pendant Si-H polysiloxanes and the C=C bonds of viny-lterminated linear/cyclic polysiloxanes. 13C nuclear magnetic resonance spectroscopy was used to determine the structure of the cross-linked states, and a thermal analysis was performed. To assess the mechanical properties of the glassy silicone networks, we performed nanoindentation and 4-point bending tests. Cross-linked networks derived from siloxane polymers are thermally and optically more stable at high temperatures. Different cross-linking agents led to final networks with different properties due to differences in the molecular weights and structures. After stepped postcuring, the Young's modulus and the hardness of the glassy silicone networks increased; however, the brittleness also increased. The characteristics of the cross-linking agent played an important role in the functional glassy silicone networks.

  4. Effect of Gd3+ Ions on the Thermal Behavior, Optical, Electrical and Magnetic Properties of PbS Thin Films

    NASA Astrophysics Data System (ADS)

    Ravishankar, S.; Balu, A. R.; Nagarethinam, V. S.

    2018-02-01

    This paper reports the effect of Gd doping concentration on the thermal behavior, structural, morphological, optical, electrical and magnetic properties of PbS thin films. Gd doping concentration in PbS was varied as 0 wt.%, 1 wt.%, 2 wt.%, 3 wt.% and 4 wt.%, respectively. Thermogravimetric-Differential Thermal Analysis curves confirm that both the undoped and doped films become well crystallized above 354°C and 342°C, respectively. X-ray diffraction studies confirm that all the films exhibit face-centered cubic crystal structure with a strong (2 0 0) preferential growth. Undoped films exhibit triangular-shaped grains which modify to small cuboids with Gd doping. Energy dispersive x-ray spectra confirm the presence of Gd in the doped films. Transmission electron microscopy images confirm the presence of nanosized grains for both the undoped and doped films. The doped films showed increased transparency and improved magnetic behaviour. The results obtained confirm that Gd3+, a rare earth ion, strongly influences the physical properties of PbS thin films to a large extent.

  5. Magnetic and thermal properties of amorphous TbFeCo alloy films

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Dong, Shuo; Huang, Ya; Qiu, Yuzhen

    2017-07-01

    Amorphous TbFeCo material with perpendicular magnetic anisotropy is currently attracting more attention for potential applications in spintronic devices and logic memories. We systematically investigate magnetic, structural, thermal, optical and electrical properties of TbFeCo alloy films. It shows out-of-plane easy axis of the films turns into in-plane orientation after annealing. Significant increase in saturation magnetization in the temperature range between 400 and 450 °C is revealed by thermomagnetic measurements. The occurrence of crystallization and oxidation at high temperatures is confirmed by X-ray diffraction measurements. Pronounced changes in optical reflectance and sheet resistance are observed with temperature, in line with structural relaxation and change. The activation barriers for crystallization and oxidation are determined to be 1.01 eV and 0.83 eV, respectively, for FeCo-rich and Tb-rich samples. Better thermal stability against crystallization and oxidation is demonstrated in the FeCo-rich sample than the Tb-rich type. Our results provide some useful information for the alloy used in device fabrication.

  6. Unusual phonon behavior and ultra-low thermal conductance of monolayer InSe.

    PubMed

    Zhou, Hangbo; Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2017-12-21

    Monolayer indium selenide (InSe) possesses numerous fascinating properties, such as high electron mobility, quantum Hall effect and anomalous optical response. However, its phonon properties, thermal transport properties and the origin of its structural stability remain unexplored. Using first-principles calculations, we show that the atoms in InSe are highly polarized and such polarization causes strong long-range dipole-dipole interaction (DDI). For acoustic modes, DDI is essential for maintaining its structural stability. For optical modes, DDI causes a significant frequency shift of its out-of-phase vibrations. Surprisingly, we observed that there were two isolated frequency regimes, which were completely separated from other frequency regimes with large frequency gaps. Within each frequency regime, only a single phonon mode exists. We further reveal that InSe possesses the lowest thermal conductance among the known two-dimensional materials due to the low cut-off frequency, low phonon group velocities and the presence of large frequency gaps. These unique behaviors of monolayer InSe can enable the fabrication of novel devices, such as thermoelectric module, single-mode phonon channel and phononic laser.

  7. The Effect of Microgravity on the Growth of Silica Nanostructures

    NASA Technical Reports Server (NTRS)

    Smith, D. D.; Sibille, L.; Cronise, R.; Oldenburg, S. J.; Wolfe, D.; Halas, N. J.

    2001-01-01

    The process of the formation of structures from coagulating ensembles is fundamentally important since the collective behavior of the constituents often results in dramatically improved or unusual mechanical, thermal, chemical, and optical properties. In this study we examine the effect of microgravity on the formation of silica structures, specifically particles and gels.

  8. Thermal emergence of laser-induced spin dynamics for a Ni4 cluster

    NASA Astrophysics Data System (ADS)

    Sold, S.; Lefkidis, G.; Kamble, B.; Berakdar, J.; Hübner, W.

    2018-05-01

    We investigate the thermodynamic behavior of laser-induced spin dynamics of a perfect and a distorted Ni4 square in combination with an external thermal bath, by using the Lindblad-superoperator formalism. The energies of the planar molecules are determined with highly correlated ab initio quantum-chemistry calculations. When the distorted structure couples to the thermal bath a unique spin dynamics, i.e., a spin flip, emerges, due to the interplay of optically and thermally induced electronic transitions. The charge and spin relaxation times in dependence on the coupling strength and the bath temperature are determined and compared.

  9. Variation in the structure and optical properties of gamma-irradiated Vanadyl 2,3-naphthalocyanine (VONc) nanostructure films

    NASA Astrophysics Data System (ADS)

    Darwish, A. A. A.; Issa, Shams A. M.

    2018-07-01

    Naphthalocyanines have an important optical and electrical property, made it eligible to be a key utilitarian materials for a couple of special applications. Therefore, this study focused on the influence of gamma rays irradiation on the structure and optical properties of Vanadyl 2,3-naphthalocyanine (VONc) films. The VONc films have been prepared using the thermal evaporating technique. The investigated films were irradiated with gamma-rays 20, 40 and 60 kGy doses. X-ray diffraction exhibited that the as-deposited VONc films have nanostructure nature, which changed to the amorphous structure with gamma-rays radiation dosage. The optical results indicate that the optical absorption mechanism complied with the indirect allowed transition. It was observed also, there were no prominent changes found in the energy gap values when VONc films were exposed to gamma radiation. However, the optical conductivity rises with additional amounts of gamma-ray dose. This behavior may be attributed to the addition of electrons which freed by the incident photon energy because of a few changes in the film structure caused by the gamma-ray radiation. These outcomes illustrated that VONc films own the characteristics to be utilized in the field of optoelectronic applications.

  10. Structural and optical study on antimony-silicate glasses doped with thulium ions.

    PubMed

    Dorosz, D; Zmojda, J; Kochanowicz, M; Miluski, P; Jelen, P; Sitarz, M

    2015-01-05

    Structural, spectroscopic and thermal properties of SiO₂-Al₂O₃-Sb₂O₃-Na₂O glass system doped with 0.2 mol% Tm₂O₃ have been presented. Synthesis of antimony-silicate glasses with relatively low phonon energy (600 cm(-1), which implicates a small non-radiative decay rate) was performed by conventional high-temperature melt-quenching methods. The effect of SiO₂/Sb₂O₃ ratio in fabricated Tm(3+) doped glass on thermal, structural and luminescence properties was investigated. On the basis of structural investigations decomposition of absorption bands in the infrared FTIR region was performed, thus determining that antimony ions are the only glass-forming ions, setting up the lattice of fabricated glasses. Luminescence band at the wavelength of 1.8 μm corresponding to (3)F₄→(3)H₆ transition in thulium ions was obtained under 795 nm laser pumping. It was observed that combination of relatively low phonon energy and greater separation of optically active centers in the fabricated glasses influenced in decreasing the luminescence intensity at 1800 nm. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Twisting phonons in complex crystals with quasi-one-dimensional substructures [Twisting Phonons in Higher Manganese Silicides with a Complex Nowotny Chimney Ladder Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain themore » low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.« less

  12. Twisting phonons in complex crystals with quasi-one-dimensional substructures [Twisting Phonons in Higher Manganese Silicides with a Complex Nowotny Chimney Ladder Structure

    DOE PAGES

    Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang; ...

    2015-04-15

    A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain themore » low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.« less

  13. Syntheses, crystal and band structures, and optical properties of a selenidoantimonate and an iron polyselenide

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Ning; Zhu, Wen-Juan; Zhang, Ming-Jian; Xu, Bo; Liu, Qi-Sheng; Zhang, Zhen-Wei; Li, Cuncheng

    2014-10-01

    A new selenidoantimonate (CH3NH4)[Mn(phen)2](SbSe4)·phen (1, phen=1,10-phenanthroline) and an iron polyselenide [Fe(phen)2](Se4) (2) were obtained under hydro(solvo)thermal conditions. Compound 1 represents the first example of a selenidoantimonate anion as a ligand to a transition-metal π-conjugated ligand complex cation. Compound 2 containing a κ2Se1,Se4 chelating tetraselenide ligand, represents the only example of a tetraselenide ligand to a Fe complex cation. Compounds 1 and 2 exhibit optical gaps of 1.71 and 1.20 eV, respectively and their thermal stabilities have been investigated by thermogravimetric analyses. The electronic band structure along with the density of states calculated by the DFT method indicate that the optical absorptions mainly originate from the charge transitions from the Se 4p and Mn 3d states to the phen p-π* orbital for 1 and the Se 4p and Fe 3d states to the phen p-π* orbital for 2.

  14. Growth and characterization of new nonlinear optical 1-phenyl-3-(4-dimethylamino phenyl) prop-2-en-1-one (PDAC) single crystals

    NASA Astrophysics Data System (ADS)

    Ravindraswami, K.; Janardhana, K.; Gowda, Jayaprakash; Moolya, B. Narayana

    2018-04-01

    Non linear optical 1-phenyl-3-(4-dimethylamino phenyl) prop-2-en-1-one (PDAC) was synthesized using Claisen - Schmidt condensation method and studied for optical nonlinearity with an emphasis on structure-property relationship. The structural confirmation studies were carried out using 1H-NMR, FT-IR and single crystal XRD techniques. The nonlinear absorption and nonlinear refraction parameters in z-scan with nano second laser pulses were obtained by measuring the profile of propagated beam through the samples. The real and imaginary parts of third-order bulk susceptibility χ(3) were evaluated. Thermo gravimetric analysis is carried out to investigate the thermal stability.

  15. A Review of Tunable Wavelength Selectivity of Metamaterials in Near-Field and Far-Field Radiative Thermal Transport

    PubMed Central

    Tian, Yanpei; Ricci, Matt; Hyde, Mikhail; Gregory, Otto; Zheng, Yi

    2018-01-01

    Radiative thermal transport of metamaterials has begun to play a significant role in thermal science and has great engineering applications. When the key features of structures become comparable to the thermal wavelength at a particular temperature, a narrowband or wideband of wavelengths can be created or shifted in both the emission and reflection spectrum of nanoscale metamaterials. Due to the near-field effect, the phenomena of radiative wavelength selectivity become significant. These effects show strong promise for applications in thermophotovoltaic energy harvesting, nanoscale biosensing, and increased energy efficiency through radiative cooling in the near future. This review paper summarizes the recent progress and outlook of both near-field and far-field radiative heat transfer, different design structures of metamaterials, applications of unique thermal and optical properties, and focuses especially on exploration of the tunable radiative wavelength selectivity of nano-metamaterials. PMID:29786650

  16. Design Study of 8 Meter Monolithic Mirror UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2008-01-01

    The planned Ares V launch vehicle with its 10 meter fairing shroud and 55,000 kg capacity to the Sun Earth L2 point enables entirely new classes of space telescopes. NASA MSFC has conducted a preliminary study that demonstrates the feasibility of launching a 6 to 8 meter class monolithic primary mirror telescope to Sun-Earth L2 using an Ares V. Specific technical areas studied included optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; launch vehicle performance and trajectory; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; operations and servicing; mass and power budgets; and system cost.

  17. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: manufacturing corrective optical elements for high-power laser applications.

    PubMed

    Menapace, Joseph A; Ehrmann, Paul E; Bayramian, Andrew J; Bullington, Amber; Di Nicola, Jean-Michel G; Haefner, Constantin; Jarboe, Jeffrey; Marshall, Christopher; Schaffers, Kathleen I; Smith, Cal

    2016-07-01

    Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry, is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique's capabilities. This high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.

  18. Imprinting high-gradient topographical structures onto optical surfaces using magnetorheological finishing: Manufacturing corrective optical elements for high-power laser applications

    DOE PAGES

    Menapace, Joseph A.; Ehrmann, Paul E.; Bayramian, Andrew J.; ...

    2016-03-15

    Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry,more » is discussed. The results of MRF imprinting a 23 μm deep structure containing gradients over 1.6 μm / mm onto a fused-silica window are presented as an example of the technique’s capabilities. As a result, this high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.« less

  19. Radiative engineering with refractory epsilon-near-zero metamaterials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dyachenko, Pavel N.; Molesky, Sean; Petrov, Alexander Y.; Störmer, Michael; Krekeler, Tobias; Lang, Slawa; Ritter, Martin; Jacob, Zubin; Eich, Manfred

    2016-04-01

    Improvement in high-temperature stable spectrally selective absorbers and emitters is integral for the further development of thermophotovoltaic (TPV), lighting and solar thermal applications. However, the high operational temperatures (T>1000oC) required for efficient energy conversion, along with application specific criteria such as the operational range of low bandgap semiconductors, greatly restrict what can be accomplished with natural materials. Motivated by this challenge, we demonstrate the first example of high temperature thermal radiation engineering with metamaterials. By employing the naturally selective thermal excitation of radiative modes that occurs near topological transitions, we show that thermally stable highly selective emissivity features are achieved for temperatures up to 1000°C with low angular dependence in a sub-micron thick refractory tungsten/hafnium dioxide epsilon-near-zero (ENZ) metamaterial. We also investigate the main mechanisms of thermal degradation of the fabricated refractory metamaterial both in terms of optical performance and structural stability using spectral analysis and energy-dispersive X-ray spectroscopy (EDS) techniques. Importantly, we observe chemical stability of the constituent materials for temperatures up to 1000°C and structural stability beyond 1100°C. The scalable fabrication, requiring magnetron sputtering, and thermally robust optical properties of this metamaterial approach are ideally suited to high temperature emitter applications such as lighting or TPV. Our findings provide a first concrete proof of radiative engineering with high temperature topological transition in ENZ metamaterials, and establish a clear path for implementation in TPV energy harvesting applications.

  20. Thermodynamical study of boron doped CeX{sub 3} (X=Pd, Rh)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Ramesh; Dwivedi, Shalini; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com

    2016-05-06

    The structural, electronic, thermal, and optical properties of cubic non magnetic CeX{sub 3}(X=Pd, Rh) compounds which crystallize in the Au{sub 3}Cu structure have been studied using the projected augmented wave (PAW) method within the density functional theory (DFT) with generalized gradient approximation (GGA) for exchange correlation potential. In this paper we have calculated the band structure which are interpreted using the density of states. The optical properties such as extinction coefficients clearly illustrate the changes in CeX{sub 3} due to intercalation of boron. Lattice instability is observed in CePd{sub 3}B from the calculated dynamical properties.

  1. A Thermo-Optic Propagation Modeling Capability.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrader, Karl; Akau, Ron

    2014-10-01

    A new theoretical basis is derived for tracing optical rays within a finite-element (FE) volume. The ray-trajectory equations are cast into the local element coordinate frame and the full finite-element interpolation is used to determine instantaneous index gradient for the ray-path integral equation. The FE methodology (FEM) is also used to interpolate local surface deformations and the surface normal vector for computing the refraction angle when launching rays into the volume, and again when rays exit the medium. The method is implemented in the Matlab(TM) environment and compared to closed- form gradient index models. A software architecture is also developedmore » for implementing the algorithms in the Zemax(TM) commercial ray-trace application. A controlled thermal environment was constructed in the laboratory, and measured data was collected to validate the structural, thermal, and optical modeling methods.« less

  2. No Photon Left Behind: Advanced Optics at ARPA-E for Buildings and Solar Energy

    NASA Astrophysics Data System (ADS)

    Branz, Howard M.

    2015-04-01

    Key technology challenges in building efficiency and solar energy utilization require transformational optics, plasmonics and photonics technologies. We describe advanced optical technologies funded by the Advanced Research Projects Agency - Energy. Buildings technologies include a passive daytime photonic cooler, infra-red computer vision mapping for energy audit, and dual-band electrochromic windows based on plasmonic absorption. Solar technologies include novel hybrid energy converters that combine high-efficiency photovoltaics with concentrating solar thermal collection and storage. Because the marginal cost of thermal energy storage is low, these systems enable generation of inexpensive and dispatchable solar energy that can be deployed when the sun doesn't shine. The solar technologies under development include nanoparticle plasmonic spectrum splitting, Rugate filter interference structures and photovoltaic cells that can operate efficiently at over 400° C.

  3. Synthesis and characterization of barium fluoride substituted zinc tellurite glasses

    NASA Astrophysics Data System (ADS)

    Aishwarya, K.; Vinitha, G.; Varma, G. Sreevidya; Asokan, S.; Manikandan, N.

    2017-12-01

    Glasses in the TeO2-ZnO-BaF2 system were prepared by standard melt quenching technique and were characterized for their thermal, optical and structural properties. Samples were found to show good thermal stability with values ranging above 100 °C for all the compositions. Optical bandgap and refractive index values were calculated from linear optical measurements using UV-Vis spectroscopy. Infrared spectra showed the presence of hydroxyl groups in the glasses indicating that the effect of fluorine was negligible in removing the hydroxyl impurities for the experimental conditions and compositions used. Raman measurements showed the modification occurring in the glass network due to addition of barium fluoride in terms of increase in the formation of non-bridging oxygen atoms compared to strong Te-O-Te linkages in the glass matrix.

  4. Evaluation of the Mechanism of the Gold Cluster Growth during Heating of the Composite Gold-Polytetrafluoroethylene Thin Film.

    PubMed

    Grytsenko, Konstantin; Lozovski, Valeri; Strilchuk, Galyna; Schrader, Sigurd

    2012-11-07

    Nanocomposite films consisting of gold inclusions in the polytetrafluoroethylene (PTFE) matrix were obtained by thermal vacuum deposition. Annealing of the obtained films with different temperatures was used to measure varying of film morphologies. The dependence of optical properties of the films on their morphology was studied. It was established that absorption and profile of the nanocomposite film obtained by thermal vacuum deposition can be changed with annealing owing to the fact that different annealing temperatures lead to different average particle sizes. A method to calculate the optical properties of nanocomposite thin films with inclusions of different sizes was proposed. Thus, comparison of experimental optical spectra with the spectra obtained during the simulation enables estimating average sizes of inclusions. The calculations give the possibility of understanding morphological changes in the structures.

  5. Optical characteristics of bismuth sulfide (Bi2S3) thin films.

    NASA Astrophysics Data System (ADS)

    Mahmoud, S.; Eid, A. H.; Omar, H.

    Thin films of bismuth sulfide (Bi2S3) were grown by two deposition techniques, by thermal evaporation and by chemical deposition. The thermally deposited reactions consisted in depositing the individual elements, namely bismuth and sulfur, sequentially from a tungsten boat source and allowing the layers to interdiffuse to form the compound during the heat-treatment. The chemical deposition was based on the reaction between the triethanolamine compex of Bi3+ ions and thiourea in basic media. Scanning electron microscope and X-ray diffraction analysis were made on as-deposited and on annealed films to determine their structure. The different electronic transitions and the optical constants are determined from the transmision and reflection data of these thin films for normal incidence. The optical gaps of Bi2S3 films show a remarkable dependence on the preparation method.

  6. Structural, vibrational and thermal studies of a new nonlinear optical material: L-asparagine-L-tartaric acid.

    PubMed

    Moovendaran, K; Srinivasan, Bikshandarkoil R; Kalyana Sundar, J; Martin Britto Dhas, S A; Natarajan, S

    2012-06-15

    Crystals of a new nonlinear optical (NLO) material, viz., L-asparagine-L-tartaric acid (LALT) (1) were grown by slow evaporation of an aqueous solution containing equimolar concentrations of L-asparagine and L-tartaric acid. The structure of the title compound which crystallizes in the non-centrosymmetric monoclinic space group P2(1) consists of a molecule of L-asparagine and a molecule of free l-tartaric acid both of which are interlinked by three varieties of H-bonding interactions namely O-H···O, N-H···O and C-H···O. The UV-Vis-NIR spectrum of 1 reveals its transparent nature while the vibrational spectra confirm the presence of the functional groups in 1. The thermal stability and second harmonic generation (SHG) conversion efficiency of 1 were investigated. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. System concept for a moderate cost Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Swanson, P. N.; Breckinridge, J. B.; Diner, A.; Freeland, R. E.; Irace, W. R.; Mcelroy, P. M.; Meinel, A. B.; Tolivar, A. F.

    1986-01-01

    A study was carried out at JPL during the first quarter of 1985 to develop a system concept for NASA's LDR. Major features of the concept are a four-mirror, two-stage optical system; a lightweight structural composite segmented primary reflector; and a deployable truss backup structure with integral thermal shield. The two-stage optics uses active figure control at the quaternary reflector located at the primary reflector exit pupil, allowing the large primary to be passive. The lightweight composite reflector panels limit the short-wavelength operation to approximately 30 microns but reduce the total primary reflector weight by a factor of 3 to 4 over competing technologies. On-orbit thermal analysis indicates a primary reflector equilibrium temperature of less than 200 K with a maximum gradient of about 5 C across the 20-m aperture. Weight and volume estimates are consistent with a single Shuttle launch, and are based on Space Station assembly and checkout.

  8. LDEF active optical system components experiment

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1992-01-01

    A preliminary report on the Active Optical System Components Experiment is presented. This experiment contained 136 components in a six inch deep tray including lasers, infrared detectors and arrays, ultraviolet light detectors, light-emitting diodes, a light modulator, flash lamps, optical filters, glasses, and samples of surface finishes. Thermal, mechanical, and structural considerations leading to the design of the tray hardware are discussed. In general, changes in the retested component characteristics appear as much related to the passage of time as to the effects of the space environment, but organic materials, multilayer optical interference filters, and extreme-infrared reflectivity of black paints show unexpected changes.

  9. Optical design for SOFIA

    NASA Technical Reports Server (NTRS)

    Davis, Paul K.; Maa, Scott S.; Rajan, N.

    1989-01-01

    A preliminary first-order optical design for the Stratospheric Observatory for Infrared Astronomy (SOFIA) is presented. This is a Cassegrain design with a 3 meter diameter, approximately f/1 primary mirror. Phenomena limiting the image quality of the telescope are divided into 'seeing', optics, and guidance. An error budget is presented for these categories and specific effects contributing to each. The seeing effects from the shear layer between the telescope cavity and the external air are expected to be dominant. Results are presented on the necessary thermal, optical, structural and guidance requirements to maintain contributions of these phenomena below that of the shear-layer seeing.

  10. Nanomechanical Optical Fiber with Embedded Electrodes Actuated by Joule Heating.

    PubMed

    Lian, Zhenggang; Segura, Martha; Podoliak, Nina; Feng, Xian; White, Nicholas; Horak, Peter

    2014-07-31

    Nanomechanical optical fibers with metal electrodes embedded in the jacket were fabricated by a multi-material co-draw technique. At the center of the fibers, two glass cores suspended by thin membranes and surrounded by air form a directional coupler that is highly temperature-dependent. We demonstrate optical switching between the two fiber cores by Joule heating of the electrodes with as little as 0.4 W electrical power, thereby demonstrating an electrically actuated all-fiber microelectromechanical system (MEMS). Simulations show that the main mechanism for optical switching is the transverse thermal expansion of the fiber structure.

  11. Simulation of Thin-Film Damping and Thermal Mechanical Noise Spectra for Advanced Micromachined Microphone Structures.

    PubMed

    Hall, Neal A; Okandan, Murat; Littrell, Robert; Bicen, Baris; Degertekin, F Levent

    2008-06-01

    In many micromachined sensors the thin (2-10 μm thick) air film between a compliant diaphragm and backplate electrode plays a dominant role in shaping both the dynamic and thermal noise characteristics of the device. Silicon microphone structures used in grating-based optical-interference microphones have recently been introduced that employ backplates with minimal area to achieve low damping and low thermal noise levels. Finite-element based modeling procedures based on 2-D discretization of the governing Reynolds equation are ideally suited for studying thin-film dynamics in such structures which utilize relatively complex backplate geometries. In this paper, the dynamic properties of both the diaphragm and thin air film are studied using a modal projection procedure in a commonly used finite element software and the results are used to simulate the dynamic frequency response of the coupled structure to internally generated electrostatic actuation pressure. The model is also extended to simulate thermal mechanical noise spectra of these advanced sensing structures. In all cases simulations are compared with measured data and show excellent agreement-demonstrating 0.8 pN/√Hz and 1.8 μPa/√Hz thermal force and thermal pressure noise levels, respectively, for the 1.5 mm diameter structures under study which have a fundamental diaphragm resonance-limited bandwidth near 20 kHz.

  12. Passive Thermal Compensation of the Optical Bench of the Galaxy Evolution Explorer

    NASA Technical Reports Server (NTRS)

    Ford, Virginia; Parks, Rick; Coleman, Michelle

    2004-01-01

    The Galaxy Evolution Explorer is an orbiting space telescope that will collect information on star formation by observing galaxies and stars in ultraviolet wavelengths. The optical bench supporting detectors and related optical components used an interesting and unusual passive thermal compensation technique to accommodate thermally-induced focal length changes in the optical system. The proposed paper will describe the optical bench thermal compensation design including concept, analysis, assembly and testing results.

  13. Synthesis, nucleation, growth, structural, spectral, thermal, linear and nonlinear optical studies of novel organic NLO crystal: 4-fluoro 4-nitrostilbene (FONS).

    PubMed

    Dinakaran, Paul M; Kalainathan, S

    2013-03-15

    A novel organic nonlinear optical material 4-fluoro 4-nitrostilbene (FONS), with molecular formula (C(14)H(10)FNO(2)) has been synthesized. Using ethyl methyl ketone as solvent, the synthesized material has been repeatedly recrystallized to minimize the impurities and good optical quality single crystals were harvested by slow evaporation method. Single crystal X-ray diffraction analysis reveals that the grown FONS crystal belongs to monoclinic system with noncentrosymmetric space group "P2(1)". The powder X-ray diffraction pattern of FONS has been recorded. Functional groups of the title compound were confirmed by FTIR and the molecular structure was confirmed by (1)HNMR. The UV-vis-NIR absorption study reveals no absorption in the visible region and the cut-off wavelength was found to be at 408 nm. Optical band gap (E(g)) of the grown crystal was found to be 3.27 eV and also the optical constants were determined. Thermal behaviour of the FONS has been studied by TGA/DTA analyses. From the mass spectrum, the ratio of compound formation of FONS was analyzed. The NLO property has been confirmed by Kurtz and Perry powder SHG technique and the SHG efficiency of FONS (262 mV) crystal was found to be 12 times greater than that of KDP (21.7 mV). Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Impact of additional sulphur on structure, morphology and optical properties of SnS thin films by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Banotra, Arun; Padha, Naresh; Kumar, Shiv; Kapoor, Ashok K.

    2018-05-01

    Thin films of SnS have been obtained from Sn and S powders which were mixed up using ball mill technique with and without evaporating additional sulphur prior to annealing at 523K. The obtained samples were taken for structural, optical, chemical and morphological studies. The X-ray diffraction reveals the formation of SnS phase on annealing in vacuum having S/Sn ratio of 0.67 obtained from EDAX. This deficit in `S' is removed by supplementing additional `S' of 200nm prior to annealing which results in the S/Sn ratio of 1.01. The optical transmission recorded from spectrophotometer used to study different optical parameters. Morphological results corroborate well with the XRD, EDAX and optical study. The obtained stoichiometric films were also tested for Ag/p-SnS Schottky diodes on In coated glass substrates using current voltage measurements.

  15. Sub-arcsecond, differential deflectometry to measure thermally induced distortions of the Swift optical bench

    NASA Astrophysics Data System (ADS)

    Leviton, Douglas B.; Frey, Brad J.; Madison, Larry E.; Parker, James A.; Sheinman, Oren E.

    2003-03-01

    The Swift optical bench is a roughly 2.7 m diameter, 0.1 m thick composite structure carrying the Burst Alert Telescope (BAT), X-ray Telescope (XRT), and the Ultraviolet Optical Telescope (UVOT) as well as various attitude control instrumentation for the spacecraft. A high precision test of the optical bench using multi-aperture optical deflectometry was developed to verify that the relative boresights of the XRT and UVOT instruments would not change by more than several arcseconds when a worst case on-orbit temperature gradient is imposed through the thickness of the bench. Results of validation tests in a laminar flow cleanroom environment without vibration isolation demonstrated a differential measurement capability with 0.2 arcsecond sensitivity and 0.5 arcsecond accuracy per day. The technique is easily adaptable to similar deflection monitoring requirements for other large spacecraft structures.

  16. A study on micro-structural and optical parameters of InxSe1-x thin film

    NASA Astrophysics Data System (ADS)

    Patel, P. B.; Desai, H. N.; Dhimmar, J. M.; Modi, B. P.

    2018-04-01

    Thin film of Indium Selenide (InSe) has been deposited by thermal evaporation technique onto pre cleaned glass substrate under high vacuum condition. The micro-structural and optical properties of InxSe1-x (x = 0.6, 1-x = 0.4) thin film have been characterized by X-ray diffractrometer (XRD) and UV-Visible spectrophotometer. The XRD spectra showed that InSe thin film has single phase hexagonal structure with preferred orientation along (1 1 0) direction. The micro-structural parameters (crystallite size, lattice strain, dislocation density, domain population) for InSe thin film have been calculated using XRD spectra. The optical parameters (absorption, transmittance, reflectance, energy band gap, Urbach energy) of InSe thin film have been evaluated from absorption spectra. The direct energy band gap and Urbach energy of InSe thin film is found to be 1.90 eV and 235 meV respectively.

  17. Substrate temperature effect on structural and optical properties of Bi2Te3 thin films

    NASA Astrophysics Data System (ADS)

    Jariwala, B. S.; Shah, D. V.; Kheraj, Vipul

    2012-06-01

    Structural and optical properties of Bi2Te3 thin films, thermally evaporated on well-cleaned glass substrates at different substrate temperatures, are reported here. X-ray diffraction was carried out for the structural characterization. XRD patterns of the films exhibit preferential orientation along the [0 1 5] direction for the films deposited at all the substrate temperatures together with other supported planes [2 0 5] & [1 1 0]. All other deposition conditions like thickness, deposition rate and pressure were maintained same throughout the experiment. X-ray diffraction lines confirm that the grown films are polycrystalline in nature with hexagonal crystal structure. The effect of substrate temperature on lattice constants, grain size, micro strain, number of crystallites and dislocation density have been investigated and reported in this paper. Also the substrate temperature effect on the optical property has been also investigated using the FTIR spectroscopy.

  18. STOP Analysis and Optimization of a Very-Low-Distortion Space Instrument: HST WFC3 Case Study

    NASA Technical Reports Server (NTRS)

    Kunt, Cengiz; Broduer, Steve (Technical Monitor)

    2001-01-01

    New generation optical instruments with very demanding stability requirements are being proposed and developed for space applications. STOP (Structural-Thermal-Optical Performance) analysis and optimization is crucial in meeting the very tight distortion budgets of these instruments. This presentation outlines STOP analysis and optimization approach in the context of WFC3 (Wide-Field Camera 3), which is a radial instrument designed to replace the Wide-Field Planetary Camera 2 (WFPC2) of the Hubble Space Telescope (HST). WFC3 houses two separate channels, UVIS and IR, and will have greater throughput and sensitivity than WFPC2. WFC3 line-of-sight alignment budget for the UVIS and IR channels are as small as 10 and 20 milli-arcsec, respectively. Its optical bench is the most critical subsystem effecting the optical stability of WFC3 hence our effort concentrates on the design and analysis of the bench and its interfaces. Structural analysis has accompanied the mechanical design of the bench since the initial concept study. A high fidelity structural Finite Element Model (FEM) of the bench has been developed and used for minimizing its thermally induced distortions as well as sizing it to meet the stiffness and strength requirements of a Shuttle launch. The bench is a composite honeycomb panel box structure with a very low planar Coefficient of Thermal Expansion (CTE) of approximately 0.1 ppm/C. Optic components are mounted to super-INVAR inserts bonded into the panels. The bench is kinematically supported on three HST latches via interface struts, which are tailored to exhibit negative CTE to cancel out the thermal motions of the latches. The interface struts also incorporate flexure elements to minimize the mechanical distortions coming into the bench from its enclosure. Bench FEM is coupled with the enclosure FEM to quantify these effects. Short term or on-orbit STOP analysis includes distortion due to the temperature variations of the bench, the struts, and the enclosure. Long term or ground-to-orbit STOP analysis includes distortional effects of gravity release, desorption, and assembly in addition to the ground-to-orbit temperature variations. A rigorous testing program has been implemented for verifying the material properties and the analysis predictions. STOP analysis results demonstrate that both the short-term and the long-term alignment budgets will be met. Presentation will cover design and analysis details that are critical to a successful implementation of the STOP analysis and optimization process.

  19. Thermal and Optical Modulation of the Carrier Mobility in OTFTs Based on an Azo-anthracene Liquid Crystal Organic Semiconductor.

    PubMed

    Chen, Yantong; Li, Chao; Xu, Xiuru; Liu, Ming; He, Yaowu; Murtaza, Imran; Zhang, Dongwei; Yao, Chao; Wang, Yongfeng; Meng, Hong

    2017-03-01

    One of the most striking features of organic semiconductors compared with their corresponding inorganic counterparts is their molecular diversity. The major challenge in organic semiconductor material technology is creating molecular structural motifs to develop multifunctional materials in order to achieve the desired functionalities yet to optimize the specific device performance. Azo-compounds, because of their special photoresponsive property, have attracted extensive interest in photonic and optoelectronic applications; if incorporated wisely in the organic semiconductor groups, they can be innovatively utilized in advanced smart electronic applications, where thermal and photo modulation is applied to tune the electronic properties. On the basis of this aspiration, a novel azo-functionalized liquid crystal semiconductor material, (E)-1-(4-(anthracen-2-yl)phenyl)-2-(4-(decyloxy)phenyl)diazene (APDPD), is designed and synthesized for application in organic thin-film transistors (OTFTs). The UV-vis spectra of APDPD exhibit reversible photoisomerizaton upon photoexcitation, and the thin films of APDPD show a long-range orientational order based on its liquid crystal phase. The performance of OTFTs based on this material as well as the effects of thermal treatment and UV-irradiation on mobility are investigated. The molecular structure, stability of the material, and morphology of the thin films are characterized by thermal gravimetric analysis (TGA), polarizing optical microscopy (POM), (differential scanning calorimetry (DSC), UV-vis spectroscopy, atomic force microscopy (AFM), and scanning tunneling microscopy (STM). This study reveals that our new material has the potential to be applied in optical sensors, memories, logic circuits, and functional switches.

  20. Design verification of large time constant thermal shields for optical reference cavities.

    PubMed

    Zhang, J; Wu, W; Shi, X H; Zeng, X Y; Deng, K; Lu, Z H

    2016-02-01

    In order to achieve high frequency stability in ultra-stable lasers, the Fabry-Pérot reference cavities shall be put inside vacuum chambers with large thermal time constants to reduce the sensitivity to external temperature fluctuations. Currently, the determination of thermal time constants of vacuum chambers is based either on theoretical calculation or time-consuming experiments. The first method can only apply to simple system, while the second method will take a lot of time to try out different designs. To overcome these limitations, we present thermal time constant simulation using finite element analysis (FEA) based on complete vacuum chamber models and verify the results with measured time constants. We measure the thermal time constants using ultrastable laser systems and a frequency comb. The thermal expansion coefficients of optical reference cavities are precisely measured to reduce the measurement error of time constants. The simulation results and the experimental results agree very well. With this knowledge, we simulate several simplified design models using FEA to obtain larger vacuum thermal time constants at room temperature, taking into account vacuum pressure, shielding layers, and support structure. We adopt the Taguchi method for shielding layer optimization and demonstrate that layer material and layer number dominate the contributions to the thermal time constant, compared with layer thickness and layer spacing.

  1. Soft phonon modes driven huge difference on lattice thermal conductivity between topological semimetal WC and WN

    NASA Astrophysics Data System (ADS)

    Guo, San-Dong; Chen, Peng

    2018-04-01

    Topological semimetals are currently attracting increasing interest due to their potential applications in topological qubits and low-power electronics, which are closely related to their thermal transport properties. Recently, the triply degenerate nodal points near the Fermi level of WC are observed by using angle-resolved photoemission spectroscopy. In this work, by solving the Boltzmann transport equation based on first-principles calculations, we systematically investigate the phonon transport properties of topological semimetals WC and WN. The predicted room-temperature lattice thermal conductivities of WC (WN) along the a and c directions are 1140.64 (7.47) W m-1 K-1 and 1214.69 (5.39) W m-1 K-1. Considering the similar crystal structure of WC and WN, it is quite interesting to find that the thermal conductivity of WC is more than two orders of magnitude higher than that of WN. It is found that, different from WN, the large acoustic-optical (a-o) gap prohibits the acoustic+acoustic → optical (aao) scattering, which gives rise to very long phonon lifetimes, leading to ultrahigh lattice thermal conductivity in WC. For WN, the lack of an a-o gap is due to soft phonon modes in optical branches, which can provide more scattering channels for aao scattering, producing very short phonon lifetimes. Further deep insight can be attained from their different electronic structures. Distinctly different from that in WC, the density of states of WN at the Fermi level becomes very sharp, which leads to destabilization of WN, producing soft phonon modes. It is found that the small shear modulus G and C44 limit the stability of WN, compared with WC. Our studies provide valuable information for phonon transports in WC and WN, and motivate further experimental studies to study their lattice thermal conductivities.

  2. Optical, Structural, and Thermal Properties of Cerium-Doped Zinc Borophosphate Glasses.

    PubMed

    Choi, Su-Yeon; Ryu, Bong-Ki

    2015-11-01

    In this study, we verify the relationship between the optical properties and structure of cerium-doped zinc borophosphate glasses that have concurrence of non-bridging oxygen (NBO) and bridging oxygen (BO), Ce3+ and Ce4+, and BO3 structure and BO4 structure. We prepared cerium-doped zinc borophosphate glass with various compositions, given by xCeO2-(100-x)[50ZnO-10B2O3 -40P2O5] (x = 1 mol% to 6 mol%), and analyzed their optical band energy, glass transition temperature, crystallization temperature, density, and molar volume. Some of the techniques used for analysis were Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). In the investigated glasses, the optical band gap energy decreased from 3.28 eV to 1.73 eV. From these results, we can deduce the changes when transitions occur from BO to NBO, from Ce3+ to Ce4+, and from the BO3 structure to the BO4 structure with increasing CeO2 content using FT-IR and XPS analysis. We also verified the changes in structural and physical properties from quantitative properties such as glass transition temperature, crystallization temperature, density, and molar volume.

  3. Hydrothermal synthesis, structural elucidation, spectroscopic studies, thermal behavior and luminescence properties of a new 3-d compound: FeAlF2(C10H8N2)(HPO4)2(H2O)

    NASA Astrophysics Data System (ADS)

    Bouzidia, Nabaa; Salah, Najet; Hamdi, Besma; Ben Salah, Abdelhamid

    2017-04-01

    The study of metal phosphate has been a proactive field of research thanks to its applied and scientific importance, especially in terms of the development of optical devices such as solid state lasers as well as optical fibers. The present paper seeks to investigate the synthesis, crystal structure, elemental analysis and properties of FeAlF2(C10H8N2)(HPO4)2(H2O) compound investigated by spectroscopic studies (FT-IR and FT-Raman), thermal behavior and luminescence. The Hirshfeld surface analysis and 2-D fingerprint plot have been performed to explore the behavior of these weak interactions and crystal cohesion. This investigation shows that the molecules are connected by hydrogen bonds of the type Osbnd H⋯O and Osbnd H⋯F. In addition, the 2,2'‒bipyridine ligand plays a significant role in the construction of 3-D supramolecular framework via π‒π stacking. FT‒IR and FT‒Raman spectra were used so as to ease the responsibilities of the vibration modes of the title compound. The thermal analysis (TGA) study shows a mass loss evolution as a temperature function. Finally, the optical properties were evaluated by photoluminescence spectroscopy.

  4. Multicycle rapid thermal annealing optimization of Mg-implanted GaN: Evolution of surface, optical, and structural properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenlee, Jordan D., E-mail: jordan.greenlee.ctr@nrl.navy.mil; Feigelson, Boris N.; Anderson, Travis J.

    2014-08-14

    The first step of a multi-cycle rapid thermal annealing process was systematically studied. The surface, structure, and optical properties of Mg implanted GaN thin films annealed at temperatures ranging from 900 to 1200 °C were investigated by Raman spectroscopy, photoluminescence, UV-visible spectroscopy, atomic force microscopy, and Nomarski microscopy. The GaN thin films are capped with two layers of in-situ metal organic chemical vapor deposition -grown AlN and annealed in 24 bar of N{sub 2} overpressure to avoid GaN decomposition. The crystal quality of the GaN improves with increasing annealing temperature as confirmed by UV-visible spectroscopy and the full widths at halfmore » maximums of the E{sub 2} and A{sub 1} (LO) Raman modes. The crystal quality of films annealed above 1100 °C exceeds the quality of the as-grown films. At 1200 °C, Mg is optically activated, which is determined by photoluminescence measurements. However, at 1200 °C, the GaN begins to decompose as evidenced by pit formation on the surface of the samples. Therefore, it was determined that the optimal temperature for the first step in a multi-cycle rapid thermal anneal process should be conducted at 1150 °C due to crystal quality and surface morphology considerations.« less

  5. Optical Constants of Crystallized TiO2 Coatings Prepared by Sol-Gel Process

    PubMed Central

    Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun

    2013-01-01

    Titanium oxide coatings have been deposited by the sol-gel dip-coating method. Crystallization of titanium oxide coatings was then achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by micro-Raman spectroscopy and atomic force microscopy, respectively. Characterization technique, based on least-square fitting to the measured reflectance and transmittance spectra, is used to determine the refractive indices of the crystallized TiO2 coatings. The stability of the synthesized sol was also investigated by dynamic light scattering particle size analyzer. The influence of the thermal annealing on the optical properties was then discussed. The increase in refractive index with high temperature thermal annealing process was observed, obtaining refractive index values from 1.98 to 2.57 at He-Ne laser wavelength of 633 nm. The Raman spectroscopy and atomic force microscopy studies indicate that the index variation is due to the changes in crystalline phase, density, and morphology during thermal annealing. PMID:28811410

  6. Optical Constants of Crystallized TiO₂ Coatings Prepared by Sol-Gel Process.

    PubMed

    Wang, Xiaodong; Wu, Guangming; Zhou, Bin; Shen, Jun

    2013-07-12

    Titanium oxide coatings have been deposited by the sol-gel dip-coating method. Crystallization of titanium oxide coatings was then achieved through thermal annealing at temperatures above 400 °C. The structural properties and surface morphology of the crystallized coatings were studied by micro-Raman spectroscopy and atomic force microscopy, respectively. Characterization technique, based on least-square fitting to the measured reflectance and transmittance spectra, is used to determine the refractive indices of the crystallized TiO₂ coatings. The stability of the synthesized sol was also investigated by dynamic light scattering particle size analyzer. The influence of the thermal annealing on the optical properties was then discussed. The increase in refractive index with high temperature thermal annealing process was observed, obtaining refractive index values from 1.98 to 2.57 at He-Ne laser wavelength of 633 nm. The Raman spectroscopy and atomic force microscopy studies indicate that the index variation is due to the changes in crystalline phase, density, and morphology during thermal annealing.

  7. Sparse Reconstruction for Temperature Distribution Using DTS Fiber Optic Sensors with Applications in Electrical Generator Stator Monitoring

    PubMed Central

    Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2016-01-01

    This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure. PMID:27618040

  8. Effect of tungsten on the phase-change properties of Ge8Sb2Te11 thin films for the phase-change device

    NASA Astrophysics Data System (ADS)

    Park, Cheol-Jin; Kong, Heon; Lee, Hyun-Yong; Yeo, Jong-Bin

    2017-07-01

    In this study, the electrical, optical, and structural properties of tungsten (W)-doped Ge8Sb2Te11 thin films were investigated. Previously, GeSbTe alloys were doped with various materials in an attempt to improve the thermal stability. Ge8Sb2Te11 and W-doped Ge8Sb2Te11 films with a thickness of 200 nm were fabricated by using an RF magnetron reactive co-sputtering system at room temperature on Si ( p-type, 100) and glass substrate. The fabricated thin films were annealed in a furnace in the 0 - 400 ° C temperature range. The optical properties were analyzed using a UV-Vis-IR spectrophotometer, and by using Beer's Law equation, the optical-energy band gap ( E op ), slope B 1/2, and slope 1/ F were calculated. For the crystalline materials, an increase in the slope B 1/2 and 1/ F was observed, exhibiting a good effect on the thermal stability in the amorphous state after the phase change. The structural properties were analyzed by X-ray diffraction, and the result showed that the W-doped Ge8Sb2Te11 had a face-centered-cubic (fcc) crystalline structure increased crystallization temperature ( T c ). An increase in the T c increased the thermal stability in the amorphous state. The electrical properties were analyzed using a 4-point probe, exhibiting an increase in the sheet resistance ( R s ) in the amorphous and the crystalline states indicating a reduced programming current in the memory device.

  9. Comparative thermal analysis of the Space Station Freedom photovoltaic deployable boom structure using TRASYS, NEVADA, and SINDA programs

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.; Beach, Duane E.; Armand, Sasan C.

    1989-01-01

    The proposed Space Station Photovoltaic Deployable Boom was analyzed for operating temperatures. The boom glass/epoxy structure design needs protective shielding from environmental degradation. The protective shielding optical properties (solar absorptivity and emissivity) dictate the operating temperatures of the boom components. The Space Station Boom protective shielding must also withstand the effects of the extendible/retractable coiling acting within the mast canister. A thermal analysis method was developed for the Space Station Deployable Boom to predict transient temperatures for a variety of surface properties. The modeling procedures used to evaluate temperatures within the boom structure incorporated the TRASYS, NEVADA, and SINDA thermal analysis programs. Use of these programs led to a comparison between TRASYS and NEVADA analysis methods. Comparing TRASYS and NEVADA results exposed differences in the environmental solar flux predictions.

  10. Comparative thermal analysis of the space station Freedom photovoltaic deployable boom structure using TRASYS, NEVADA, and SINDA programs

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.; Beach, Duane E.; Armand, Sasan C.

    1989-01-01

    The proposed Space Station Photovoltaic Deployable Boom was analyzed for operating temperatures. The boom glass/epoxy structure design needs protective shielding from environmental degradation. The protective shielding optical properties (solar absorptivity and emissivity) dictate the operating temperatures of the boom components. The Space Station Boom protective shielding must also withstand the effects of the extendible/retractable coiling action within the mast canister. A thermal analysis method was developed for the Space Station Deployable Boom to predict transient temperatures for a variety of surface properties. The modeling procedures used to evaluate temperatures within the boom structure incorporated the TRASYS, NEVADA, and SINDA thermal analysis programs. Use of these programs led to a comparison between TRASYS and NEVADA analysis methods. Comparing TRASYS and NEVADA results exposed differences in the environmental solar flux predictions.

  11. Characterization of structure and thermophysical properties of three ESR slags

    NASA Astrophysics Data System (ADS)

    Plotkowski, A.; deBarbadillo, J.; Krane, Matthew J. M.

    2016-07-01

    The structure and properties of electroslag remelting (ESR) slags were characterized. Slags samples of three compositions were obtained from industrial remelting processes at Special Metals Corporation and from casting in a laboratory vacuum induction melter. The structure of the slag samples was observed using optical and electron microscopy, and phases were identified and their relative amounts quantified using X-ray diffraction. Laser flash thermal diffusivity, density, and differential scanning calorimetry measurements for specific heat were performed to determine the bulk thermal conductivity of the samples. Sample porosity was measured as a function of depth using a serial sectioning technique, and a onedimensional computational model was developed to estimate the thermal conductivity of the fully dense slags. These results are discussed in context with previous studies, and opportunities for future research are identified. AFRL Case Number: 88ABW-2015-1871.

  12. Invited review article: Photopyroelectric calorimeter for the simultaneous thermal, optical, and structural characterization of samples over phase transitions.

    PubMed

    Zammit, U; Marinelli, M; Mercuri, F; Paoloni, S; Scudieri, F

    2011-12-01

    The study of thermophysical properties is of great importance in several scientific fields. Among them, the heat capacity, for example, is related to the microscopic structure of condensed matter and plays an important role in monitoring the changes in the energy content of a system. Calorimetric techniques are thus of fundamental importance for characterizing physical systems, particularly in the vicinity of phase transitions where energy fluctuations can play an important role. In this work, the ability of the Photopyroelctric calorimetry to study the versus temperature behaviour of the specific heat and of the other thermal parameters in the vicinity of phase transitions is outlined. The working principle, the theoretical basis, the experimental configurations, and the advantages of this technique, with respect to the more conventional ones, have been described and discussed in detail. The integrations in the calorimetric setup giving the possibility to perform, simultaneously with the calorimetric studies, complementary kind of characterizations of optical, structural, and electrical properties are also described. A review of the results obtained with this technique, in all its possible configurations, for the high temperature resolution studies of the thermal parameters over several kinds of phase transitions occurring in different systems is presented and discussed.

  13. Structural and optical properties of thermal decomposition assisted Gd2O3:Ho(3+)/Yb(3+) upconversion phosphor annealed at different temperatures.

    PubMed

    Kumar, A; Tiwari, S P; Kumar, K; Rai, V K

    2016-10-05

    The infrared to visible upconversion fluorescent nanoparticles of Ho(3+)/Yb(3+) codoped Gd2O3 phosphor is synthesized via thermal decomposition route. The as-synthesized sample was annealed at 800, 1000 and 1200°C for 3h and then structural and optical properties were studied. The Rietveld refinement of X-ray diffraction (XRD) data was analyzed to probe the effect of Ho(3+)/Yb(3+) dopant on the structural parameters of Gd2O3 host. The upconversion emission spectra of as-synthesized and annealed samples are compared using 980nm diode laser excitation and five emission bands noticed at 490, 539, 550, 667 and 757nm corresponding to the (5)F3→(5)I8, (5)F4→(5)I8, (5)S2→(5)I8,(5)F5→(5)I8 and (5)I4→(5)I8 manifolds, respectively. The local temperature induced by laser light is also calculated. The fluorescence intensity ratio (FIR) of two thermally coupled transitions (5)F4→(5)I8 and (5)S2→(5)I8 is plotted against the sample temperature and sensor sensitivity of sample is calculated. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A series of new copper iodobismuthates: structural relationships, optical band gaps affected by dimensionality, and distinct thermal stabilities.

    PubMed

    Chai, Wen-Xiang; Wu, Li-Ming; Li, Jun-Qian; Chen, Ling

    2007-10-15

    Three new copper iodobismuthates, red tetranuclear [n-Bu(4)N][Cu(2)(CH(3)CN)(2)Bi(2)I(10)] (1), dark-red infinite linear [Et(4)N](2n)[Cu(2)Bi(2)I(10)](n) (2), and black polymeric ladderlike [Cu(CH(3)CN)(4)](2n)[Cu(2)Bi(2)I(10)](n) (3), crystallize from solutions of BiI3 and CuI in the presence of different cations. A regular structural relationship from 0-D (1) to 1-D linear anion chains (2) to 1-D ladderlike anion chains (3) is observed. The self-assembly of the basic building unit Cu(2)Bi(2)I(10) as altered by different cations is proposed to be the driving force for their formation. The optical band gaps exhibit a structure-related decrease from 1 to 2/3, in agreement with their color changes and the density functional theory (DFT) calculation results. The electronic structures and the relationship with corresponding monobismuth analogues and the Ag-Bi isotypes are discussed on the basis of DFT calculations. In spite of their structural similarities, the compounds are distinctive thermally: 2 is stable to 230 degrees C, 1 undergoes a solvent loss at 85 degrees C to form a new phase that is thermally stable to 230 degrees C, and 3 releases a solvent molecule and decomposes at 80 degrees C into BiI(3) and CuI. The essential reasons for these differences are discussed.

  15. Phonon transport properties of two-dimensional group-IV materials from ab initio calculations

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Zhang, Hao; Shao, Hezhu; Xu, Yuanfeng; Ni, Gang; Zhang, Rongjun; Zhu, Heyuan

    2016-12-01

    It has been argued that stanene has lowest lattice thermal conductivity among two-dimensional (2D) group-IV materials because of its largest atomic mass, weakest interatomic bonding, and enhanced ZA phonon scattering due to the breaking of an out-of-plane symmetry selection rule. However, we show that, although the lattice thermal conductivity κ for graphene, silicene, and germanene decreases monotonically with decreasing Debye temperature, unexpected higher κ is observed in stanene. By enforcing all the invariance conditions in 2D materials and including Ge 3 d and Sn 4 d electrons as valence electrons for germanene and stanene, respectively, the lattice dynamics in these materials are accurately described. A large acoustic-optical gap and the bunching of the acoustic-phonon branches significantly reduce phonon scattering in stanene, leading to higher thermal conductivity than germanene. The vibrational origin of the acoustic-optical gap can be attributed to the buckled structure. Interestingly, a buckled system has two competing influences on phonon transport: the breaking of the symmetry selection rule leads to reduced thermal conductivity, and the enlarging of the acoustic-optical gap results in enhanced thermal conductivity. The size dependence of thermal conductivity is investigated as well. In nanoribbons, the κ of silicene, germanene, and stanene is much less sensitive to size effect due to their short intrinsic phonon mean-free paths. This work sheds light on the nature of phonon transport in buckled 2D materials.

  16. Structural, thermal and optical characterization of a Schiff base as a new organic material for nonlinear optical crystals and films with reversible noncentrosymmetry.

    PubMed

    Rodríguez, Mario; Ramos-Ortíz, Gabriel; Maldonado, José Luis; Herrera-Ambriz, Víctor M; Domínguez, Oscar; Santillan, Rosa; Farfán, Norberto; Nakatani, Keitaro

    2011-09-01

    Macroscopic single crystals of (E)-5-(diethylamino)-2-((3,5-dinitrophenylimino)methyl)phenol (DNP) were obtained from slow cooling of chloroform or dichlorometane saturated solutions at controlled temperature. X-ray diffraction analysis showed that this compound crystallizes in a noncentrosymmetric space group (P2(1)2(1)2(1)). Thermal analysis was performed and indicated that the crystals are stable until 260 °C. Second-order nonlinear optical properties of DNP were experimentally investigated in solution through EFISH technique and in solid state through the Kurtz-Perry powder technique. Crystals of compound DNP exhibited a second-harmonic signals 39 times larger than of the technologically useful potassium dihydrogenphosphate (KDP) under excitation at infrared wavelengths. In addition, the second-order nonlinear optical properties of DNP were also studied at visible wavelengths through the photorefractive effect and applied to demonstrate dynamic holographic reconstruction. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Polycrystalline La1-xSrxMnO3 films on silicon: Influence of post-Deposition annealing on structural, (Magneto-)Optical, and (Magneto-)Electrical properties

    NASA Astrophysics Data System (ADS)

    Thoma, Patrick; Monecke, Manuel; Buja, Oana-Maria; Solonenko, Dmytro; Dudric, Roxana; Ciubotariu, Oana-Tereza; Albrecht, Manfred; Deac, Iosif G.; Tetean, Romulus; Zahn, Dietrich R. T.; Salvan, Georgeta

    2018-01-01

    The integration of La1-xSrxMnO3 (LSMO) thin film technology into established industrial silicon processes is regarded as challenging due to lattice mismatch, thermal expansion, and chemical reactions at the interface of LSMO and silicon. In this work, we investigated the physical properties of thin La0.73Sr0.27MnO3 films deposited by magnetron sputtering on silicon without a lattice matching buffer layer. The influence of a post-deposition annealing treatment on the structural, (magneto-)optical, and (magneto-)electrical properties was investigated by a variety of techniques. Using Rutherford backscattering spectroscopy, atomic force microscopy, Raman spectroscopy, and X-ray diffraction we could show that the thin films exhibit a polycrystalline, rhombohedral structure after a post-deposition annealing of at least 700 °C. The dielectric tensor in the spectral range from 1.7 eV to 5 eV determined from spectroscopic ellipsometry in combination with magneto-optical Kerr effect spectroscopy was found to be comparable to that of lattice matched films on single crystal substrates reported in literature [1]. The values of the metal-isolator transition temperature and temperature-dependent resistivities also reflect a high degree of crystalline quality of the thermally treated films.

  18. Passive thermo-optic feedback for robust athermal photonic systems

    DOEpatents

    Rakich, Peter T.; Watts, Michael R.; Nielson, Gregory N.

    2015-06-23

    Thermal control devices, photonic systems and methods of stabilizing a temperature of a photonic system are provided. A thermal control device thermally coupled to a substrate includes a waveguide for receiving light, an absorption element optically coupled to the waveguide for converting the received light to heat and an optical filter. The optical filter is optically coupled to the waveguide and thermally coupled to the absorption element. An operating point of the optical filter is tuned responsive to the heat from the absorption element. When the operating point is less than a predetermined temperature, the received light is passed to the absorption element via the optical filter. When the operating point is greater than or equal to the predetermined temperature, the received light is transmitted out of the thermal control device via the optical filter, without being passed to the absorption element.

  19. A Bottom-Up Engineered Broadband Optical Nanoabsorber for Radiometry and Energy Harnessing Applications

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Coles, James B.; Megerian, Krikor G.; Eastwood, Michael; Green, Robert O.; Bandaru, Prabhakar R.

    2013-01-01

    Optical absorbers based on vertically aligned multi-walled carbon nanotubes (MWCNTs), synthesized using electric-field assisted growth, are described here that show an ultra-low reflectance, 100X lower compared to Au-black from wavelength lamba approximately 350 nm - 2.5 micron. A bi-metallic Co/Ti layer was shown to catalyze a high site density of MWCNTs on metallic substrates and the optical properties of the absorbers were engineered by controlling the bottom-up synthesis conditions using dc plasma-enhanced chemical vapor deposition (PECVD). Reflectance measurements on the MWCNT absorbers after heating them in air to 400deg showed negligible changes in reflectance which was still low, approximately 0.022 % at lamba approximately 2 micron. In contrast, the percolated structure of the reference Au-black samples collapsed completely after heating, causing the optical response to degrade at temperatures as low as 200deg. The high optical absorption efficiency of the MWCNT absorbers, synthesized on metallic substrates, over a broad spectral range, coupled with their thermal ruggedness, suggests they have promise in solar energy harnessing applications, as well as thermal detectors for radiometry.

  20. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Francis, Robert W.

    1987-01-01

    Thermal stress cycling was performed on gallium arsenide solar cells to investigate their electrical, mechanical, and structural integrity. Cells were cycled under low Earth orbit (LEO) simulated temperature conditions in vacuum. Cell evaluations consisted of power output values, spectral response, optical microscopy and ion microprobe mass analysis, and depth profiles on both front surface inter-grid areas and metallization contact grid lines. Cells were examined for degradation after 500, 5,000, 10,000 and 15,245 thermal cycles. No indication of performance degradation was found for any vendor's cell lot.

  1. Thermal emission and absorption of radiation in finite inverted-opal photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florescu, Marian; Stimpson, Andrew J.; Lee, Hwang

    We study theoretically the optical properties of a finite inverted-opal photonic crystal. The light-matter interaction is strongly affected by the presence of the three-dimensional photonic crystal and the alterations of the light emission and absorption processes can be used to suppress or enhance the thermal emissivity and absorptivity of the dielectric structure. We investigate the influence of the absorption present in the system on the relevant band edge frequencies that control the optical response of the photonic crystal. Our study reveals that the absorption processes cause spectral broadening and shifting of the band edge optical resonances, and determine a strongmore » reduction of the photonic band gap spectral range. Using the angular and spectral dependence of the band edge frequencies for stop bands along different directions, we argue that by matching the blackbody emission spectrum peak with a prescribed maximum of the absorption coefficient, it is possible to achieve an angle-sensitive enhancement of the thermal emission/absorption of radiation. This result opens a way to realize a frequency-sensitive and angle-sensitive photonic crystal absorbers/emitters.« less

  2. Structural, thermal and optical characterization of an organic NLO material--benzaldehyde thiosemicarbazone monohydrate single crystals.

    PubMed

    Santhakumari, R; Ramamurthi, K

    2011-02-01

    Single crystals of the organic NLO material, benzaldehyde thiosemicarbazone (BTSC) monohydrate, were grown by slow evaporation method. Solubility of BTSC monohydrate was determined in ethanol at different temperatures. The grown crystals were characterized by single crystal X-ray diffraction analysis to determine the cell parameters and by FT-IR technique to study the presence of the functional groups. Thermogravimetric and differential thermal analyses reveal the thermal stability of the crystal. UV-vis-NIR spectrum shows excellent transmission in the region of 200-1100 nm. Theoretical calculations were carried out to determine the linear optical constants such as extinction coefficient and refractive index. Further the optical nonlinearities of BTSC have been investigated by Z-scan technique with He-Ne laser radiation of wavelength 632.8 nm. Mechanical properties of the grown crystal were studied using Vickers microhardness tester. Second harmonic generation efficiency of the powdered BTSC monohydrate was tested using Nd:YAG laser and it is found to be ∼5.3 times that of potassium dihydrogen orthophosphate. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Use of thermal sieve to allow optical testing of cryogenic optical systems.

    PubMed

    Kim, Dae Wook; Cai, Wenrui; Burge, James H

    2012-05-21

    Full aperture testing of large cryogenic optical systems has been impractical due to the difficulty of operating a large collimator at cryogenic temperatures. The Thermal Sieve solves this problem by acting as a thermal barrier between an ambient temperature collimator and the cryogenic system under test. The Thermal Sieve uses a set of thermally controlled baffles with array of holes that are lined up to pass the light from the collimator without degrading the wavefront, while attenuating the thermal background by nearly 4 orders of magnitude. This paper provides the theory behind the Thermal Sieve system, evaluates the optimization for its optical and thermal performance, and presents the design and analysis for a specific system.

  4. Institute for Science and Engineering Simulation (ISES)

    DTIC Science & Technology

    2015-12-18

    performance and other functionalities such as electrical , magnetic, optical, thermal, biological, chemical, and so forth. Structural integrity...transmission electron microscopy (HRSTEM) and three-dimensional atom probe (3DAP) tomography , the true atomic scale structure and change in chemical...atom probe tomography (3DAP) techniques, has permitted characterizing and quantifying the multimodal size distribution of different generations of γ

  5. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. North polar region

    NASA Technical Reports Server (NTRS)

    Paige, David A.; Bachman, Jennifer E.; Keegan, Kenneth D.

    1994-01-01

    We present the first maps of the apparent thermal inertia and albedo of the north polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking orbiters over a 50-day period in 1978 during the Martian early northern summer season. The maps cover the region from 60 deg N to the north pole at a spatial resolution of 1/2 deg of latitude. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmospphere for a wide range of assumptions concerning aerosol optical properties and aerosol optical depths. The results of these calculations show that the effects of the Martian atmosphere on remote determinations of surface thermal inertia are more significant than have been indicated in previous studies. The maps of apparent thermal inertia and albedo show a great deal of spatial structure that is well correlated with surface features.

  6. Quantitative examination of demineralized and remineralized dental lesions using photothermal radiometry and modulated luminescence

    NASA Astrophysics Data System (ADS)

    Hellen, Adam; Mandelis, Andreas; Finer, Yoav; Amaechi, Bennett

    2010-02-01

    The development of photothermal techniques to detect thermal waves in biological tissue has occurred with a concomitant advancement in the extraction of material thermophysical properties and knowledge regarding the internal structure of a medium. Human molars (n=37) were subjected to demineralization in acid gel (pH 4.5, 10 days), followed by incubation in different fluoride-containing remineralization solutions. PTR-LUM frequency scans (1 Hz - 1 kHz) were performed prior to and during demineralization and remineralization treatments. Transverse Micro-Radiography (TMR) analysis followed at treatment conclusion. A coupled diffuse-photon-density-wave and thermal-wave theoretical model was used to quantitatively evaluate changes in thermal and optical properties of sound, demineralized and remineralized enamel. Amplitude increase and phase lag decrease in demineralized samples were consistent with higher scatter of the diffuse-photon density field and thermal wave confinement to near-surface regions. A remineralized sample illustrates a complex interplay between surface and subsurface processes, confining the thermal-wave centroid toward the dominating layer. PTR-LUM sensitivity to changes in tooth mineralization coupled with optical and thermal property extraction illustrates the technique's potential for non-destructive evaluation of multi-layered turbid media.

  7. Filament cooling and condensation in a sheared magnetic field

    NASA Technical Reports Server (NTRS)

    Van Hoven, Gerard

    1990-01-01

    Thermal instability driven by optically thin radiation in the corona is believed to initiate the formation of solar filaments. The fact that filaments are observed generally to separate regions of opposite, line-of-sight, magnetic polarity in the differentially rotating photosphere suggests that filament formation requires the presence of a highly sheared magnetic field. The coupled energetics and dynamics of the most important condensation modes, those due to perpendicular thermal conduction at short wavelengths are discussed. Linear structure in the sheared field and their growth rates is described, and 2D, nonlinear, MHD simulations of the evolution of these modes in a force-free field are conducted. The simulations achieve the fine thermal structures, minimum temperatures and maximum densities characteristic of observed solar filaments.

  8. A thermal sensor and switch based on a plasma polymer/ZnO suspended nanobelt bimorph structure

    NASA Astrophysics Data System (ADS)

    He, -Hau, Jr.; Singamaneni, Srikanth; Ho, Chih H.; Lin, Yen-Hsi; McConney, Michael E.; Tsukruk, Vladimir V.

    2009-02-01

    The combination of design and subsequent fabrication of organic/inorganic nanostructures creates an effective way to combine the favorable traits of both to achieve a desired device performance. We demonstrate a miniature electrical read-out, and a sensitive temperature sensor/switch, based on a ZnO nanobelt/plasma-polymerized benzonitrile bimorph structure. A new read-out technique based on the change in the electric current flowing through the bimorph and the contact pad has been employed, replacing the conventional cumbersome piezoresistive method or tedious optical alignment. The thermal sensor demonstrated here has great prospects for thermal switching and triggered detection owing to the relative ease in the fabrication of arrays and the direct electrical read-out.

  9. Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach

    PubMed Central

    Faraji, Nastaran; Mat Hussin, Roslina; Saion, Elias; Yunus, W Mahmood Mat; Behzad, Kasra

    2015-01-01

    Summary This work describes a fast, clean and low-cost approach to synthesize ZnS–PVA nanofluids consisting of ZnS nanoparticles homogeneously distributed in a PVA solution. The ZnS nanoparticles were formed by the electrostatic force between zinc and sulfur ions induced by gamma irradiation at a dose range from 10 to 50 kGy. Several experimental characterizations were conducted to investigate the physical and chemical properties of the samples. Fourier transform infrared spectroscopy (FTIR) was used to determine the chemical structure and bonding conditions of the final products, transmission electron microscopy (TEM) for determining the shape morphology and average particle size, powder X-ray diffraction (XRD) for confirming the formation and crystalline structure of ZnS nanoparticles, UV–visible spectroscopy for measuring the electronic absorption characteristics, transient hot wire (THW) and photoacoustic measurements for measuring the thermal conductivity and thermal effusivity of the samples, from which, for the first time, the values of specific heat and thermal diffusivity of the samples were then calculated. PMID:25821695

  10. High performace silicon 2x2 optical switch based on a thermo-optically tunable multimode interference coupler and efficient electrodes.

    PubMed

    Rosa, Álvaro; Gutiérrez, Ana; Brimont, Antoine; Griol, Amadeu; Sanchis, Pablo

    2016-01-11

    Optical switches based on tunable multimode interference (MMI) couplers can simultaneously reduce the footprint and increase the tolerance against fabrication deviations. Here, a compact 2x2 silicon switch based on a thermo-optically tunable MMI structure with a footprint of only 0.005 mm(2) is proposed and demonstrated. The MMI structure has been optimized using a silica trench acting as a thermal isolator without introducing any substantial loss penalty or crosstalk degradation. Furthermore, the electrodes performance have significantly been improved via engineering the heater geometry and using two metallization steps. Thereby, a drastic power consumption reduction of around 90% has been demonstrated yielding to values as low as 24.9 mW. Furthermore, very fast switching times of only 1.19 µs have also been achieved.

  11. Large Area Nondestructive Evaluation of a Fatigue Loaded Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Madaras, Eric I.

    2016-01-01

    Large area nondestructive evaluation (NDE) inspections are required for fatigue testing of composite structures to track damage initiation and growth. Of particular interest is the progression of damage leading to ultimate failure to validate damage progression models. In this work, passive thermography and acoustic emission NDE were used to track damage growth up to failure of a composite three-stringer panel. Fourteen acoustic emission sensors were placed on the composite panel. The signals from the array were acquired simultaneously and allowed for acoustic emission location. In addition, real time thermal data of the composite structure were acquired during loading. Details are presented on the mapping of the acoustic emission locations directly onto the thermal imagery to confirm areas of damage growth leading to ultimate failure. This required synchronizing the acoustic emission and thermal data with the applied loading. In addition, processing of the thermal imagery which included contrast enhancement, removal of optical barrel distortion and correction of angular rotation before mapping the acoustic event locations are discussed.

  12. Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankari, R. Siva, E-mail: sivasankari.sh@act.edu.in; Perumal, Rajesh Narayana

    2014-04-24

    Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

  13. ATLAST-8 Mission Concept Study for 8-Meter Monolithic UV/Optical Space Telescope

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Postman, Marc; Arnold, William R., Sr.; Hopkins, Randall C.; Hornsby, Linda; Mosier, Gary E.; Pasquale, Bert A.

    2010-01-01

    ATLAST-8m is an 8-meter monolithic UV/optical/NIR space observatory which could be placed in orbit at Sun-Earth L2 by a heavily lift launch vehicle. Two development study cycles have resulted in a detailed concept including a dual foci optical design; several primary mirror launch support and secondary mirror support structural designs; spacecraft propulsion, power and pointing control design; and thermal design. ATLAST-8m is designed to yield never before achieved performance to obtain fundamental astronomical breakthroughs

  14. Microstructure related properties of gadolinium fluoride films deposited by molybdenum boat evaporation

    NASA Astrophysics Data System (ADS)

    Chang, Y. H.; Wang, C. Y.; Qi, L. Q.; Liu, H.

    2017-08-01

    In order to optimize the performance of fluoride thin films in wavelength of Deep Ultraviolet (DUV), GdF3 single layers are prepared by thermal evaporation at different deposition temperatures on Fused Silica. Optical and structure properties of each sample are characterized. The results that the refrac-tive index increased gradually and the crystallization status becomes stronger with the temperature rising, the inhomogeneous of the thin films present linearity. The decrease total optical loss with deposited temper-ature is attributed to the higher packing density and lower optical absorption.

  15. Fiber optics in composite materials: materials with nerves of glass

    NASA Astrophysics Data System (ADS)

    Measures, Raymond M.

    1990-08-01

    A Fiber Optic BasedSmart Structure wiipossess a structurally integrated optical microsensor system for determining its state. This built-in sensor system should, in real-time, be able to: evaluate the strain or deformation of a structure, monitor if its vibrating or subject to excessive loads, check its temperature and warn of the appearance of any hot spots. In addition a Smart Structure should maintain a vigilant survelliance over its structural integrity. The successful development of Smart StructureTechnolgy could lead to: aircraft that are safer, lighter, more efficient, easier to maintain and to service; pipelines, pressure vessels and storage tanks that constantly monitor their structuralintegrity and immediately issue an alert ifany problem is detected; space platforms that check forpressure leaks, unwanted vibration, excess thermal buildup, and deviation from some preassigned shape.This technology is particularly appropriate for composite materials where internal damage generated by: impacts, manufacturing flaws, excessive loading or fatigue could be detected and assessed. In service monitoring of structural loads, especially in regions like wing roots of aircraft, could be ofconsiderable benefit in helping to avoid structural overdesign and reduce weight. Structurally imbedded optical fibers sensors might also serve to monitor the cure state of composite thermosets during their fabrication and thereby contribute to improved quality control of these products.

  16. Thermally induced distortion of high average power laser system by an optical transport system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ault, L; Chow, R; Taylor, Jedlovec, D

    1999-03-31

    The atomic vapor laser isotope separation process uses high-average power lasers that have the commercial potential to enrich uranium for the electric power utilities. The transport of the laser beam through the laser system to the separation chambers requires high performance optical components, most of which have either fused silica or Zerodur as the substrate material. One of the requirements of the optical components is to preserve the wavefront quality of the laser beam that propagate over long distances. Full aperture tests with the high power process lasers and finite element analysis (FEA) have been performed on the transport optics.more » The wavefront distortions of the various sections of the transport path were measured with diagnostic Hartmann sensor packages. The FEA results were derived from an in-house thermal-structural-optical code which is linked to the commercially available CodeV program. In comparing the measured and predicted results, the bulk absorptance of fused silica was estimated to about 50 ppm/cm in the visible wavelength regime. Wavefront distortions are reported on optics made from fused silica and Zerodur substrate materials.« less

  17. Unusual structural phase transition in [N(C2H5)4][N(CH3)4][ZnBr4

    NASA Astrophysics Data System (ADS)

    Krawczyk, Monika K.; Ingram, Adam; Cach, Ryszard; Czapla, Zbigniew; Czupiński, Olaf; Dacko, Sławomir; Staniorowski, Piotr

    2018-04-01

    The new hybrid organic-inorganic crystal [N(C2H5)4][N(CH3)4][ZnBr4] was grown and its physical properties and structural phase transition are presented. On the basis of thermal analysis (DSC (differential scanning calorimetry), DTA (differential thermal analysis), DTG), X-ray structural, dilatometric and dielectric studies as well as optical observation, the reversible first-order phase transition at 490/488 K on heating and cooling run, respectively, has been found. An appearance of domain structure of ferroelastic type gives evidence for an untypical lowering of crystal symmetry during the phase transition. At room temperature, the satisfying crystal structure solution was found in the tetragonal system, in the P?21m space group.

  18. Analysis of structural and optical properties of annealed fullerene thin films

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.; Gadallah, A.-S.; Atta Khedr, M.; Afify, H. A.

    2015-08-01

    Fullerene thin films were thermally deposited onto different substrates. The films annealed at 523 K for 10 h. X-ray diffraction technique was used to examine the structure of the films. The morphology of films was examined by field emission scanning electron microscopy. Fourier transform infrared spectra were recorded in wavenumber range 400-2000 cm-1. The optical characteristics were analyzed using UV- Vis-NIR spectrophotometric measurements in the spectral range 200-2500 nm. The refractive index and extinction coefficient were determined. Some dispersion parameters were calculated such as single oscillator energy, dispersion energy, dielectric constant at high frequency and lattice dielectric constant. As well as, the nonlinear optical susceptibility χ(3) and nonlinear refractive index n2 were determined.

  19. Nano-structured wild moth cocoon fibers as radiative cooling and waveguiding optical materials

    NASA Astrophysics Data System (ADS)

    Shi, Norman Nan; Tsai, Cheng-Chia; Bernard, Gary D.; Craig, Catherine; Yu, Nanfang

    2017-09-01

    The study shows that comet moth cocoon fibers exhibit radiative cooing properties with enhanced solar reflectivity and thermal emissivity. Nanostructured voids inside the cocoon fiber enables the cocoons to exhibit strong scattering in the visible and near-infrared. These structures also allow the fibers to exhibit strong shape birefringence and directional reflectivity. Optical waveguiding due to transverse Anderson localization is observed in these natural fibers, where the invariance and large concentration of the voids in the longitudinal direction allow the fiber to confine light in the transverse direction. To mimic the optical effects generated by these natural silk fibers, nanostructured voids are introduced into regenerated silk fibers through wet spinning to enhance reflectivity in the solar spectrum.

  20. Toward athermal silicon-on-insulator (de)multiplexers in the O-band.

    PubMed

    Hassan, Karim; Sciancalepore, Corrado; Harduin, Julie; Ferrotti, Thomas; Menezo, Sylvie; Ben Bakir, Badhise

    2015-06-01

    We report on the design, fabrication, and characterization of a 1×4 silicon-on-insulator (SOI) demultiplexer exhibiting a significant reduction of its thermo-optical sensitivity in the O-band. The optical filtering is achieved by cascading several Mach-Zehnder interferometers (MZIs) fabricated on a 300-nm-thick SOI platform. Owing to an asymmetric design of the confinement for each MZIs, we found an athermal criterium that satisfies the spectral requirements. The thermal sensitivity of the structure is analyzed by a semi-analytical model in order to create an athermal multiplexer. Fiber-to-fiber thermo-optical testing reveals a thermal sensitivity of around 17  pm/°C reduced by 75% compared to the standard devices with promising performances for both the crosstalk (15 dB), the insertion losses (4 dB), and absolute lambda registration (<0.25  nm).

  1. Optical and infrared properties of glancing angle-deposited nanostructured tungsten films.

    PubMed

    Ungaro, Craig; Shah, Ankit; Kravchenko, Ivan; Hensley, Dale K; Gray, Stephen K; Gupta, Mool C

    2015-02-15

    Nanotextured tungsten thin films were obtained on a stainless steel (SS) substrate using the glancing-angle-deposition (GLAD) method. It was found that the optical absorption and thermal emittance of the SS substrate can be controlled by varying the parameters used during deposition. Finite-difference time-domain (FDTD) simulations were used to predict the optical absorption and infrared (IR) reflectance spectra of the fabricated samples, and good agreement was found between simulated and measured data. FDTD simulations were also used to predict the effect of changes in the height and periodicity of the nanotextures. These simulations show that good control over the absorption can be achieved by altering the height and periodicity of the nanostructure. These nanostructures were shown to be temperature stable up to 500°C with the addition of a protective HfO2 layer. Applications for this structure are explored, including a promising application for solar thermal energy systems.

  2. Optical radiation in modern medicine

    PubMed Central

    Sowa, Paweł; Rutkowska-Talipska, Joanna; Rutkowski, Krzysztof; Kosztyła-Hojna, Bożena

    2013-01-01

    Optical radiation extends between microwaves and X-rays of the electromagnetic radiation and includes ultraviolet (UV), visible light (VL) and infrared (IR) components. The dose of radiation that reaches the skin is influenced by the ozone layer, position of the Sun, latitude, altitude, cloud cover and ground reflections. The photobiological effects of UV, VL and IR bands depend on their wavelength, frequency and mechanism of action. They are modified by the thickness, structure, vasculature and pigmentation of skin's stratum corneum, epidermis and dermis. Following absorption, IR affects the body mainly through transfer of thermal energy to tissues. Visible light and skin interact either thermally or photochemically, whereas UV acts mainly photochemically. Optical radiation in the form of sunlight therapy had been used already in ancient times. Nowadays IR, VL and UV are widely applied in the therapy of allergic, dermatological, cardiovascular, respiratory, rheumatic, neonatal, pediatric and psychiatric disorders. PMID:24278082

  3. Optical, thermal and dielectric studies in linear hydrogen bonded liquid crystal homologous series

    NASA Astrophysics Data System (ADS)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2011-08-01

    A novel series of hydrogen bonded liquid crystals (HBLC) have been isolated with hydrogen bond forming between fluoro benzoic acid and various alkyloxy benzoic acids respectively. Phase diagram is constructed from the transition temperatures obtained by Differential Scanning Calorimetry (DSC) and Polarizing Optical Microscopic (POM) studies. A new Smectic ordering which is referred as Smectic R is characterized which exhibits a ribbon like phase. Declinations are observed on these ribbons manifesting the presence of the helicoidal structure. Another interesting feature is the observation of optical shuttering action in some of the complexes with the application of external stimulus in the entire thermal range of Nematic phase. Further this phenomenon is reversible in the sense that when the applied stimulus is withdrawn original texture of Nematic is restored. Unwinding of the helix coupled with molecular dipolar reorientation with the application of external field is supposed to be the major reasons for the observed phenomenon.

  4. Millimeter Wave Atmospheric Radiometry Observations.

    DTIC Science & Technology

    1981-03-27

    structure of the atmosphere would be very important. Rufton [20] combined thermal sensor technology for microthermal measurements with radiosonde...fromT2 h n relationships with CT(h) at least for optical effects. Bufton obtained the mean-square temperature difference between two microthermal probes

  5. Cryogenic Optical Performance of a Light-weight Mirror Assembly for Future Space Astronomical Telescopes: Optical Test Results and Thermal Optical Model

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Arnold, William; Baker, Markus A.; Bevan, Ryan M.; Carpenter, James R.; Effinger, Michael R.; Gaddy, Darrell E.; Goode, Brian K.; Kegley, Jeffrey R.; Hogue, William D.; hide

    2013-01-01

    A 40 cm diameter mirror assembly was interferometrically tested at room temperature down to 250 degrees Kelvin for thermal deformation. The 2.5 m radius of curvature spherical mirror assembly was constructed by low temperature fusing three abrasive waterjet core sections between two face sheets. The 93% lightweighted Corning ULE mirror assembly represents the current state of the art for future UV, optical, near IR space telescopes. During the multiple thermal test cycles, test results of interferometric test, thermal IR images of the front face were recorded in order to validate thermal optical model.

  6. Fiber Optic Sensors for Health Monitoring of Morphing Aircraft

    NASA Technical Reports Server (NTRS)

    Brown, Timothy; Wood, Karen; Childers, Brooks; Cano, Roberto; Jensen, Brian; Rogowski, Robert

    2001-01-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors. These sensors will measure load and vibration signatures that will be used to infer structural integrity. Sine the aircraft morphing program assumes that future aircraft will be aerodynamically reconfigurable there is also a requirement for pressure, flow and shape sensors. In some cases a single fiber may be used for measuring several different parameters. The objective of the current program is to develop techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service structural integrity of the composite structure. Graphite-epoxy panels were fabricated with integrated optical fibers of various types. The panels were mechanically and thermally tested to evaluate composite strength and sensor durability. Finally the performance of the fiber optic sensors was determined. Experimental results are presented evaluating the performance of embedded and surface mounted optical fibers for measuring strain, temperature and chemical composition. The performance of the fiber optic sensors was determined by direct comparison with results from more conventional instrumentation. The facilities for fabricating optical fiber and associated sensors and methods of demodulating Bragg gratings for strain measurement will be described.

  7. Growth, optical, luminescence, thermal and mechanical behavior of an organic single crystal: 3-Acetyl-2-methyl-4-phenylquinolin-1-ium chloride.

    PubMed

    Nirosha, M; Kalainathan, S; Sarveswari, S; Vijayakumar, V

    2014-04-05

    A single crystal of 3-acetyl-2-methyl-4-phenylquinolin-1-ium chloride has grown by slow evaporation solution growth technique using ethanol as solvent. The structural, thermal, optical and mechanical property has studied for the grown crystal. Single crystal XRD revealed that the crystal belongs to monoclinic system with space group P21/c. The presences of Functional groups in the crystallized material have confirmed using the FTIR vibrational spectrum. The optical absorbance spectrum recorded from 190 to 1100nm shows the cut-off wavelength occurs at 371nm. The material shows its transparency in the entire region of the visible spectrum. The photoluminescence spectrum shows the ultraviolet and blue emission in the crystal. Thermogravimetric and differential thermal analysis reveal the thermal stability of the grown crystal. Etching study shows the grown mechanism and surface features of the crystal. Vickers microhardness studies have carried out on the (01-1) plane to understand the mechanical properties of the grown crystal. The hardness of the title compound increases on increasing the load. The Meyer's index number (n), and the stiffness constants for different loads has calculated and reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The opto-mechanical design of the GMT-Consortium Large Earth Finder (G-CLEF)

    NASA Astrophysics Data System (ADS)

    Mueller, Mark; Szentgyorgyi, Andrew; Baldwin, Daniel; Bean, Jacob; Ben-Ami, Sagi; Brennan, Patricia; Budynkiewicz, J.; Chun, Moo-Yung; Crane, Jeffrey D.; Epps, Harland; Evans, Ian; Evans, Janet; Foster, Jeff; Frebel, Anna; Gauron, Thomas; Glenday, Alex; Hare, Tyson; Jang, Bi-Ho; Jang, Jeong-Gyun; Jordan, Andreas; Kim, Jihun; Kim, Kang-Min; Mendes de Oliveira, Claudia; Lopez-Morales, Mercedes; McCracken, Kenneth; McMuldroch, Stuart; Miller, Joseph; Oh, Jae Sok; Onyuksel, Cem; Ordway, Mark; Park, Chan; Park, Sung-Joon; Paxson, Charles; Phillips, David; Plummer, David; Podgorski, William; Seifahrt, Andreas; Steiner, Joao; Uomoto, Alan; Walsworth, Ronald; Yu, Young-Sam

    2016-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is a fiber-fed, optical echelle spectrograph selected as the first light instrument for the Giant Magellan Telescope (GMT) now under construction at the Las Campanas Observatory in Chile. G-CLEF has been designed to be a general-purpose echelle spectrograph with precision radial velocity (PRV) capability for exoplanet detection. The radial velocity (RV) precision goal of G-CLEF is 10 cm/sec, necessary for detection of Earth-sized exoplanets. This goal imposes challenging stability requirements on the optical mounts and the overall spectrograph support structures especially when considering the instrument's operational environment. The accuracy of G-CLEF's PRV measurements will be influenced by minute changes in temperature and ambient air pressure as well as vibrations and micro gravity-vector variations caused by normal telescope slewing. For these reasons we have chosen to enclose G-CLEF's spectrograph in a well-insulated, vibration isolated vacuum chamber in a gravity invariant location on GMT's azimuth platform. Additional design constraints posed by the GMT telescope include: a limited space envelope, a thermal emission ceiling, and a maximum weight allowance. Other factors, such as manufacturability, serviceability, available technology and budget are also significant design drivers. All of the above considerations must be managed while ensuring performance requirements are achieved. In this paper, we discuss the design of G-CLEF's optical mounts and support structures including the choice of a low coefficient of thermal expansion (CTE) carbon-fiber optical bench to minimize the system's sensitivity to thermal soaks and gradients. We discuss design choices made to the vacuum chamber geared towards minimize the influence of daily ambient pressure variations on image motion during observation. We discuss the design of G-CLEF's insulated enclosure and thermal control systems which will maintain the spectrograph at milli-Kelvin level stability while simultaneously limiting thermal emissions into the telescope dome. Also discussed are micro gravity-vector variations caused by normal telescope slewing, their uncorrected influence on image motion, and how they are dealt with in the design. Finally, we discuss G-CLEF's front-end assembly and fiber-feed system as well as other interface challenges presented by the telescope, enclosure and neighboring instrumentation.

  9. The IRAS galaxy 0421+040P06: An active spiral (?) galaxy with extended radio lobes

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Wynn-Williams, C. G.; Lonsdale, C. J.; Persson, S. E.; Heasley, J. N.; Miley, G. K.; Soifer, B. T.; Neugebauer, G.; Becklin, E. E.; Houck, J. R.

    1984-01-01

    The infrared bright galaxy 0421+040P06 detected by IRAS at 25 and 60 microns was studied at optical, infrared, and radio wavelength. It is a luminous galaxy with apparent spiral structure emitting 4 x 10 to the 37th power from far-infrared to optical wavelengths. Optical spectroscopy reveals a Seyfert 2 emission line spectrum, making 0421+040P06 the first active galaxy selected from an unbiased infrared survey of galaxies. The fact that this galaxy shows a flatter energy distribution with more 25 micron emission than other galaxies in the infrared sample may be related to the presence of an intense active nucleus. The radio observations reveal the presence of a non-thermal source that, at 6 cm, shows a prominent double lobed structure 20 to 30 kpc in size extending beyond the optical confines of the galaxy. The radio source is three to ten times larger than structures previously seen in spiral galaxies.

  10. Synthesis, growth, structural characterization, Hirshfeld analysis and nonlinear optical studies of a methyl substituted chalcone

    NASA Astrophysics Data System (ADS)

    Prabhu, Shobha R.; Jayarama, A.; Chandrasekharan, K.; Upadhyaya, V.; Ng, Seik Weng

    2017-05-01

    A new chalcone compound (2E)-3-(3-methylphenyl)-1-(4-nitrophenyl)prop-2-en-1-one (3MPNP) with molecular formula C16H13NO3 has been synthesized and crystallized by slow solvent evaporation technique. The Fourier transform infrared, Fourier transform Raman and nuclear magnetic resonance techniques were used for structural characterization. UV-visible absorption studies were carried out to study the transparency of the crystal in the visible region. Differential scanning calorimetry study shows thermal stability of crystals up to temperature 122 °C. Single crystal X-ray diffraction and powder X-ray diffraction techniques were used to study crystal structure and cell parameters. The Hirshfeld surface and 2-D fingerprint analysis were performed to study the nature of interactions and their quantitative contributions towards the crystal packing. The third order non-linear optical properties have been studied using single beam Z-scan technique and the results show that the material is a potential candidate for optical device applications such as optical limiters and optical switches.

  11. All-optical switching of silicon disk resonator based on photothermal effect in metal-insulator-metal absorber.

    PubMed

    Shi, Yuechun; Chen, Xi; Lou, Fei; Chen, Yiting; Yan, Min; Wosinski, Lech; Qiu, Min

    2014-08-01

    Efficient narrowband light absorption by a metal-insulator-metal (MIM) structure can lead to high-speed light-to-heat conversion at a micro- or nanoscale. Such a MIM structure can serve as a heater for achieving all-optical light control based on the thermo-optical (TO) effect. Here we experimentally fabricated and characterized a novel all-optical switch based on a silicon microdisk integrated with a MIM light absorber. Direct integration of the absorber on top of the microdisk reduces the thermal capacity of the whole device, leading to high-speed TO switching of the microdisk resonance. The measurement result exhibits a rise time of 2.0 μs and a fall time of 2.6 μs with switching power as low as 0.5 mW; the product of switching power and response time is only about 1.3  mW·μs. Since no auxiliary elements are required for the heater, the switch is structurally compact, and its fabrication is rather easy. The device potentially can be deployed for new kinds of all-optical applications.

  12. Electrical transport and optical band gap of NiFe2Ox thin films

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Panagiota; Manos, Orestis; Klewe, Christoph; Meier, Daniel; Teichert, Niclas; Schmalhorst, Jan-Michael; Kuschel, Timo; Reiss, Günter

    2017-12-01

    We fabricated NiFe2Ox thin films on MgAl2O4(001) by reactive dc magnetron co-sputtering varying the oxygen partial pressure. The fabrication of a material with a variable oxygen deficiency leads to controllable electrical and optical properties which are beneficial for the investigations of the transport phenomena and could, therefore, promote the use of such materials in spintronic and spin caloritronic applications. We used several characterization techniques to investigate the film properties, focusing on their structural, magnetic, electrical, and optical properties. From the electrical resistivity, we obtained the conduction mechanisms that govern the systems in the high and low temperature regimes. We further extracted low thermal activation energies which unveil extrinsic transport mechanisms. The thermal activation energy decreases in the less oxidized samples revealing the pronounced contribution of a large amount of electronic states localized in the band gap to the electrical conductivity. The Hall coefficient is negative and decreases with increasing conductivity as expected for n-type conduction, while the Hall- and the drift mobilities show a large difference. The optical band gaps were determined via ultraviolet-visible spectroscopy. They follow a similar trend as the thermal activation energies, with lower band gap values in the less oxidized samples.

  13. Thermal effects in the Input Optics of the Enhanced Laser Interferometer Gravitational-Wave Observatory interferometers.

    PubMed

    Dooley, Katherine L; Arain, Muzammil A; Feldbaum, David; Frolov, Valery V; Heintze, Matthew; Hoak, Daniel; Khazanov, Efim A; Lucianetti, Antonio; Martin, Rodica M; Mueller, Guido; Palashov, Oleg; Quetschke, Volker; Reitze, David H; Savage, R L; Tanner, D B; Williams, Luke F; Wu, Wan

    2012-03-01

    We present the design and performance of the LIGO Input Optics subsystem as implemented for the sixth science run of the LIGO interferometers. The Initial LIGO Input Optics experienced thermal side effects when operating with 7 W input power. We designed, built, and implemented improved versions of the Input Optics for Enhanced LIGO, an incremental upgrade to the Initial LIGO interferometers, designed to run with 30 W input power. At four times the power of Initial LIGO, the Enhanced LIGO Input Optics demonstrated improved performance including better optical isolation, less thermal drift, minimal thermal lensing, and higher optical efficiency. The success of the Input Optics design fosters confidence for its ability to perform well in Advanced LIGO.

  14. Porous silicon-VO{sub 2} based hybrids as possible optical temperature sensor: Wavelength-dependent optical switching from visible to near-infrared range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.

    Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching withmore » temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.« less

  15. General MACOS Interface for Modeling and Analysis for Controlled Optical Systems

    NASA Technical Reports Server (NTRS)

    Sigrist, Norbert; Basinger, Scott A.; Redding, David C.

    2012-01-01

    The General MACOS Interface (GMI) for Modeling and Analysis for Controlled Optical Systems (MACOS) enables the use of MATLAB as a front-end for JPL s critical optical modeling package, MACOS. MACOS is JPL s in-house optical modeling software, which has proven to be a superb tool for advanced systems engineering of optical systems. GMI, coupled with MACOS, allows for seamless interfacing with modeling tools from other disciplines to make possible integration of dynamics, structures, and thermal models with the addition of control systems for deformable optics and other actuated optics. This software package is designed as a tool for analysts to quickly and easily use MACOS without needing to be an expert at programming MACOS. The strength of MACOS is its ability to interface with various modeling/development platforms, allowing evaluation of system performance with thermal, mechanical, and optical modeling parameter variations. GMI provides an improved means for accessing selected key MACOS functionalities. The main objective of GMI is to marry the vast mathematical and graphical capabilities of MATLAB with the powerful optical analysis engine of MACOS, thereby providing a useful tool to anyone who can program in MATLAB. GMI also improves modeling efficiency by eliminating the need to write an interface function for each task/project, reducing error sources, speeding up user/modeling tasks, and making MACOS well suited for fast prototyping.

  16. Model of optical phantoms thermal response upon irradiation with 975 nm dermatological laser

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Bashkatov, A. N.; Yakunin, A. N.; Avetisyan, Yu. A.; Genina, E. A.; Galla, S.; Sekowska, A.; Truchanowicz, D.; Cenian, A.; Jedrzejewska-Szczerska, M.; Tuchin, V. V.

    2018-04-01

    We have developed a numerical model describing the optical and thermal behavior of optical tissue phantoms upon laser irradiation. According to our previous studies, the phantoms can be used as substitute of real skin from the optical, as well as thermal point of view. However, the thermal parameters are not entirely similar to those of real tissues thus there is a need to develop mathematical model, describing the thermal and optical response of such materials. This will facilitate the correction factors, which would be invaluable in translation between measurements on skin phantom to real tissues, and gave a good representation of a real case application. Here, we present the model dependent on the data of our optical phantoms fabricated and measured in our previous preliminary study. The ambiguity between the modeling and the thermal measurements depend on lack of accurate knowledge of material's thermal properties and some exact parameters of the laser beam. Those parameters were varied in the simulation, to provide an overview of possible parameters' ranges and the magnitude of thermal response.

  17. Role of IAC in large space systems thermal analysis

    NASA Technical Reports Server (NTRS)

    Jones, G. K.; Skladany, J. T.; Young, J. P.

    1982-01-01

    Computer analysis programs to evaluate critical coupling effects that can significantly influence spacecraft system performance are described. These coupling effects arise from the varied parameters of the spacecraft systems, environments, and forcing functions associated with disciplines such as thermal, structures, and controls. Adverse effects can be expected to significantly impact system design aspects such as structural integrity, controllability, and mission performance. One such needed design analysis capability is a software system that can integrate individual discipline computer codes into a highly user-oriented/interactive-graphics-based analysis capability. The integrated analysis capability (IAC) system can be viewed as: a core framework system which serves as an integrating base whereby users can readily add desired analysis modules and as a self-contained interdisciplinary system analysis capability having a specific set of fully integrated multidisciplinary analysis programs that deal with the coupling of thermal, structures, controls, antenna radiation performance, and instrument optical performance disciplines.

  18. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Janousek, B. K.; Francis, R. W.; Wendt, J. P.

    1985-01-01

    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance.

  19. Changes in optical properties during heating of ex vivo liver tissues

    NASA Astrophysics Data System (ADS)

    Nagarajan, Vivek Krishna; Gogineni, Venkateshwara R.; White, Sarah B.; Yu, Bing

    2017-02-01

    Thermal ablation is the use of heat to induce cell death through coagulative necrosis. Ideally, complete ablation of tumor cells with no damage to surrounding critical structures such as blood vessels, nerves or even organs is desired. Ablation monitoring techniques are often employed to ensure optimal tumor ablation. In thermal tissue ablation, tissue damage is known to be dependent on the temperature and time of exposure. Aptly, current methods for monitoring ablation rely profoundly on local tissue temperature and duration of heating to predict the degree of tissue damage. However, such methods do not take into account the microstructural and physiological changes in tissues as a result of thermocoagulation. Light propagation within biological tissues is known to be dependent on the tissue microstructure and physiology. During tissue denaturation, changes in tissue structure alter light propagations in tissue which could be used to directly assess the extent of thermal tissue damage. We report the use of a spectroscopic system for monitoring the tissue optical properties during heating of ex vivo liver tissues. We observed that during tissue denaturation, continuous changes in wavelength-averaged μa(λ) and μ's(λ) followed a sigmoidal trend and are correlated with damage predicted by Arrhenius model.

  20. Optically transparent/colorless polyimides

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Stclair, T. L.; Slemp, W.; Ezzell, K. S.

    1985-01-01

    Several series of linear aromatic polyimide films have been synthesized and characterized with the objective of obtaining maximum optical transparency. Two approaches have been used as part of this structure-property relationship study. The first approach is to vary the molecular structure so as to separate chromophoric centers and reduce electronic interactions between polymer chains to lower the intensity of color in the resulting polymer films. A second and concurrent approach is to perform polymerizations with highly purified monomers. Glass transition temperatures of thermally cured polyimide films are obtained by thermomechanical analysis and thermal decomposition temperatures are determined by thermogravimetric analysis. Transmittance UV-visible spectra of the polyimide films are compared to that of a commercial polyimide film. Fully imidized films are tested for solubility in common organic solvents. The more transparent films prepared in this study are evaluated for use on second-surface mirror thermal control coating systems. Lightly colored to colorless films are characterized by UV-visible spectroscopy before and after exposure to 300 equivalent solar hours UV irradiation and varying doses of 1 MeV electron irradiation. The effects of monomer purity, casting solvent and cure atmosphere on polyimide film transparency are also investigated.

  1. Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method.

    PubMed

    Gharibshahi, Leila; Saion, Elias; Gharibshahi, Elham; Shaari, Abdul Halim; Matori, Khamirul Amin

    2017-04-12

    The modified thermal treatment method via alternate oxygen and nitrogen flow was successfully employed to synthesize very narrow and pure Ag nanoparticles. The structural and optical properties of the obtained metal nanoparticles at different calcination temperatures between 400 and 800 °C were studied using various techniques. The FTIR and EDX confirmed the formation of Ag nanoparticles without a trace of impurities. The XRD spectra revealed that the amorphous sample at 30 °C had transformed into the cubic crystalline nanostructures at the calcination temperature of 400 °C and higher. The TEM images showed the formation of spherical Ag nanoparticles in which the average particle size decreased with increasing calcination temperature from 7.88 nm at 400 °C to 3.29 nm at 800 °C. The optical properties were determined by UV-vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing calcination temperature from 2.75 eV at 400 °C to 3.04 eV at 800 °C. This was due to less attraction between conduction electrons and metal ions as the particle size decreases in corresponding to fewer numbers of atoms that made up the metal nanoparticles.

  2. Structural and Optical Properties of Ag Nanoparticles Synthesized by Thermal Treatment Method

    PubMed Central

    Gharibshahi, Leila; Saion, Elias; Gharibshahi, Elham; Shaari, Abdul Halim; Matori, Khamirul Amin

    2017-01-01

    The modified thermal treatment method via alternate oxygen and nitrogen flow was successfully employed to synthesize very narrow and pure Ag nanoparticles. The structural and optical properties of the obtained metal nanoparticles at different calcination temperatures between 400 and 800 °C were studied using various techniques. The FTIR and EDX confirmed the formation of Ag nanoparticles without a trace of impurities. The XRD spectra revealed that the amorphous sample at 30 °C had transformed into the cubic crystalline nanostructures at the calcination temperature of 400 °C and higher. The TEM images showed the formation of spherical Ag nanoparticles in which the average particle size decreased with increasing calcination temperature from 7.88 nm at 400 °C to 3.29 nm at 800 °C. The optical properties were determined by UV-vis absorption spectrophotometer, which showed an increase in the conduction band of Ag nanoparticles with increasing calcination temperature from 2.75 eV at 400 °C to 3.04 eV at 800 °C. This was due to less attraction between conduction electrons and metal ions as the particle size decreases in corresponding to fewer numbers of atoms that made up the metal nanoparticles. PMID:28772762

  3. Optical sensor platform based on cellulose nanocrystals (CNC) - 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films.

    PubMed

    Santos, Moliria V; Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Napoli, Mariana; Nalin, Marcelo; Ribeiro, Sidney J L

    2017-07-15

    The preparation of composite materials has gained tremendous attention due to the potential synergy of the combined materials. Here we fabricate novel thermal/electrical responsive photonic composite films combining cellulose nanocrystals (CNC) with a low molecular weight nematic liquid crystal (NLC), 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC). The obtained composite material combines both intense structural coloration of photonic cellulose and thermal and conductive properties of NLC. Scanning electron microscopy (SEM) results confirmed that liquid crystals coated CNC films maintain chiral nematic structure characteristic of CNC film and simultaneously, transversal cross-section scanning electron microscopy images indicated penetration of liquid crystals through the CNC layers. Investigated composite film maintain NLC optical properties being switchable as a function of temperature during heating/cooling cycles. The relationship between the morphology and thermoresponsive in the micro/nanostructured materials was investigated by using transmission optical microscopy (TOM). Conductive response of the composite films was proved by Electrostatic force microscopy (EFM) measurement. Designed thermo- and electro-responsive materials open novel simple pathway of fabrication of CNC-based materials with tunable properties. Copyright © 2017. Published by Elsevier Ltd.

  4. Measurement of the optical fiber numeric aperture exposed to thermal and radiation aging

    NASA Astrophysics Data System (ADS)

    Vanderka, Ales; Bednarek, Lukas; Hajek, Lukas; Latal, Jan; Poboril, Radek; Zavodny, Petr; Vasinek, Vladimir

    2016-12-01

    This paper deals with the aging of optical fibers influenced by temperature and radiation. There are analyzed changes in the structure of the optical fiber, related to the propagation of light in the fiber structure. In this case for numerical aperture. For experimental measurement was used MM fiber OM1 with core diameter 62.5 μm, cladding diameter 125 μm in 2.8 mm secondary coating. Aging of the optical fiber was achieved with dry heat and radiation. For this purpose, we were using a temperature chamber with a stable temperature of 105 °C where the cables after two months. Cables were then irradiated with gamma radiation 60Co in doses of 1.5 kGy and then 60 kGy. These conditions simulated 50 years aging process of optical cables. According to European Standard EN 60793-1-43:2015 was created the automatic device for angular scan working with LabVIEW software interface. Numerical aperture was tested at a wavelength of 850 nm, with an output power 1 mW. Scanning angle was set to 50° with step 0.25°. Numerical aperture was calculated from the position where power has fallen from maximal power at e2 power. The measurement of each sample was performed 10 hours after thermal and radiation aging. The samples were subsequently tested after six months from the last irradiation. In conclusion, the results of the experiment were analyzed and compared.

  5. Cryogenic Optical Performance of a Lightweighted Mirror Assembly for Future Space Astronomical Telescopes: Correlating Optical Test Results and Thermal Optical Model

    NASA Technical Reports Server (NTRS)

    Eng, Ron; Arnold, William R.; Baker, Marcus A.; Bevan, Ryan M.; Burdick, Gregory; Effinger, Michael R.; Gaddy, Darrell E.; Goode, Brian K.; Hanson, Craig; Hogue, William D.; hide

    2013-01-01

    A 43cm diameter stacked core mirror demonstrator was interferometrically tested at room temperature down to 250 degrees Kelvin for thermal deformation. The 2.5m radius of curvature spherical mirror assembly was constructed by low temperature fusing three abrasive waterjet core sections between two CNC pocket milled face sheets. The 93% lightweighted Corning ULE® mirror assembly represents the current state of the art for future UV, optical, near IR space telescopes. During the multiple thermal test cycles, test results of interferometric test, thermal IR images of the front face were recorded in order to validate thermal optical model.

  6. Photo- and Thermo-Induced Changes in Optical Constants and Structure of Thin Films from GeSe2-GeTe-ZnTe System

    NASA Astrophysics Data System (ADS)

    Petkov, Kiril; Todorov, Rossen; Vassilev, Venceslav; Aljihmani, Lilia

    We examined the condition of preparation of thin films from GeSe2-GeTe-ZnTe system by thermal evaporation and changes in their optical properties after exposure to light and thermal annealing. The results for composition analysis of thin films showed absence of Zn independently of the composition of the bulk glass. By X-ray diffraction (XRD) analysis it was found that a reduction of ZnTe in ZnSe in bulk materials takes of place during the film deposition. A residual from ZnSe was observed in the boat after thin film deposition. Optical constants (refractive index, n and absorption coefficient, α) and thickness, d as well as the optical band gap, Eg, depending of the content of Te in ternary Ge-Se-Te system are determined from specrophotometric measurements in the spectral range 400-2500 nm applying the Swanepoel's envelope method and Tauc's procedure. With the increase of Te content in the layers the absorption edge is shifted to the longer wavelengths, refractive index increases while the optical band gap decreases from 2.02 eV for GeSe2 to 1.26 eV for Ge34Se42Te24. The values of the refractive index decrease after annealing of all composition and Eg increase, respectively. Thin films with composition of Ge27Se47Te9Zn17 and Ge28Se49Te10Zn13 were prepared by co-evaporation of (GeSe2)78(GeTe)22 and Zn from a boat and a crucible and their optical properties, surface morphology and structure were investigated. The existence of a correlation between the optical band gap and the copostion of thin films from the system studied was demonstrated.

  7. Effects of annealing temperature on shape transformation and optical properties of germanium quantum dots

    NASA Astrophysics Data System (ADS)

    Alireza, Samavati; Othaman, Z.; K. Ghoshal, S.; K. Mustafa, M.

    2015-02-01

    The influences of thermal annealing on the structural and optical features of radio frequency (rf) magnetron sputtered self-assembled Ge quantum dots (QDs) on Si (100) are investigated. Preferentially oriented structures of Ge along the (220) and (111) directions together with peak shift and reduced strain (4.9% to 2.7%) due to post-annealing at 650 °C are discerned from x-ray differaction (XRD) measurement. Atomic force microscopy (AFM) images for both pre-annealed and post-annealed (650 °C) samples reveal pyramidal-shaped QDs (density ˜ 0.26× 1011 cm-2) and dome-shape morphologies with relatively high density ˜ 0.92 × 1011 cm-2, respectively. This shape transformation is attributed to the mechanism of inter-diffusion of Si in Ge interfacial intermixing and strain non-uniformity. The annealing temperature assisted QDs structural evolution is explained using the theory of nucleation and growth kinetics where free energy minimization plays a pivotal role. The observed red-shift ˜ 0.05 eV in addition to the narrowing of the photoluminescence peaks results from thermal annealing, and is related to the effect of quantum confinement. Furthermore, the appearance of a blue-violet emission peak is ascribed to the recombination of the localized electrons in the Ge-QDs/SiO2 or GeOx and holes in the ground state of Ge dots. Raman spectra of both samples exhibit an intense Ge-Ge optical phonon mode which shifts towards higher frequency compared with those of the bulk counterpart. An experimental Raman profile is fitted to the models of phonon confinement and size distribution combined with phonon confinement to estimate the mean dot sizes. A correlation between thermal annealing and modifications of the structural and optical behavior of Ge QDs is established. Tunable growth of Ge QDs with superior properties suitable for optoelectronic applications is demonstrated. Project supported by Ibnu Sina Institute for Fundamental Science Study, Universiti Teknologi Malaysia through Vote Q.J130000.2526.02H94, O5 and Postdoctoral Research Grant.

  8. Effect of different surfactants on structural and optical properties of Ce3+ and Tb3+ co-doped BiPO4 nanostructures

    NASA Astrophysics Data System (ADS)

    Lakshminarayana, G.; Dao, T. D.; Chen, K.; Sharma, Manoj; Takeda, T.; Brik, M. G.; Kityk, I. V.; Singh, Sarabjot; Nagao, T.

    2015-01-01

    In this paper we report on the Ce3+ and Tb3+ ions co-doped bismuth phosphate (BiPO4) nanostructures that were synthesized by a simple precipitation method using different surfactants such as glycerol/H2O, glycerol/ethylene glycol, oleic acid, and ethylene glycol. The structural (X-ray diffraction, scanning electron microscopy, tunneling electron microscopy), functional groups analysis (Fourier transform infrared and Raman spectroscopy), thermal (thermogravimetry and differential thermal analysis), and optical (photoluminescence, photoluminescence-excitation) properties were investigated. The structural and morphological analysis confirms the pure hexagonal crystal structure of the synthesized nanostructures. From the measured Fourier transform infrared (FTIR) and Raman spectra various functional groups such as υ3 stretching vibration of the PO4 group, and δ(O-P-O) and υ4 (PO4) vibrations including the υ2 and υ1 bending modes of the PO4 units are identified. Based on the thermal analysis, for all the studied samples an exothermic peak between 680 °C and 700 °C was observed due to phase transition from hexagonal to high temperature monoclinic. The Ce3+and Tb3+ codoped samples show spectrally broad 5d → 4f luminescence in the blue (centered at 459 nm) wavelength region under the direct optical excitation of Ce3+ at 417 nm. Similarly, Tb3+ has revealed four main emission bands (5D4 → 7F6, 5, 4 and 3) at 490 nm, 545 nm, 585 nm and 621 nm with 378 nm (7F6 → 5G6) as the excitation wavelength, including three more weak emission bands at 647 nm, 669 nm, and 681 nm which could be assigned to 5D4 → 7F2, 1, 0 emission transitions. Among them, 545 nm (5D4 → 7F5) has shown bright green emission. The Ce3+ and Tb3+ codoped sample synthesized with pure oleic acid have shown relatively high green emission intensity for Tb3+, and relatively weak blue emission intensity for Ce3+ under their respective optical excitation wavelengths.

  9. Qualitative photoluminescence study of defect activation in telecommunication fibers and Bragg gratings in hydrogen-loaded fibers

    NASA Astrophysics Data System (ADS)

    Bastola, B.; Fischer, B.; Roths, J.; Ruediger, A.

    2018-07-01

    Despite the relevance of glass fibers and integrated optical circuits for an increasing number of cutting-edge applications ranging from telecommunication to sensing and quantum photonics, the knowledge about their structural and chemical properties is still in its infancy. Optical spectroscopy techniques are challenged due to the intrinsically low cross-sections for inelastic processes. Our approach is to detect these properties along the core, extending the interaction to the fiber length. We report on in-situ temperature-dependent photoluminescence (PL) measurements in transmission geometry of a) pristine optical glass fibers (standard commercial telecom grade and different types of photosensitive fibers) and b) type I fiber Bragg grating (FBG) in hydrogen-loaded fibers of the same type. A laser with 473 nm wavelength and TEM 00 mode is coupled to an optical spectrometer through different fibers. The fibers are thermally cycled between room temperature and 950° Celsius. As a first observation, we detect a clearly visible red emission from the uncoated fibers at the location of the fiber Bragg grating. Fitting the luminescence spectra with a single Gaussian and monitoring the intensity as a function of temperature reveals an irreversible, thermally activated degradation of the luminescence associated to the fiber Bragg gratings. A closer inspection of pristine glass fibers without FBG revealed a faint, yet thermally stable luminescence with similar spectral characteristics. Analyzing qualitative data for two consecutive heating cycles confirmed two distinct activation energies. This may be due to several reasons such as different defects at the basis of this emission or different structural or chemical environments for the same defect. Further experiment will be carried out in the future to investigate the main reason of two distinct activation energies.

  10. XMM-Newton studies of the supernova remnant G350.0-2.0

    NASA Astrophysics Data System (ADS)

    Karpova, A.; Shternin, P.; Zyuzin, D.; Danilenko, A.; Shibanov, Yu.

    2016-11-01

    We report the results of XMM-Newton observations of the Galactic mixed-morphology supernova remnant G350.0-2.0. Diffuse thermal X-ray emission fills the north-western part of the remnant surrounded by radio shell-like structures. We did not detect any X-ray counterpart of the latter structures, but found several bright blobs within the diffuse emission. The X-ray spectrum of the most part of the remnant can be described by a collisionally ionized plasma model VAPEC with solar abundances and a temperature of ≈0.8 keV. The solar abundances of plasma indicate that the X-ray emission comes from the shocked interstellar material. The overabundance of Fe was found in some of the bright blobs. We also analysed the brightest point-like X-ray source 1RXS J172653.4-382157 projected on the extended emission. Its spectrum is well described by the two-temperature optically thin thermal plasma model MEKAL typical for cataclysmic variable stars. The cataclysmic variable source nature is supported by the presence of a faint (g ≈ 21) optical source with non-stellar spectral energy distribution at the X-ray position of 1RXS J172653.4-382157. It was detected with the XMM-Newton optical/UV monitor in the U filter and was also found in the archival Hα and optical/near-infrared broad-band sky survey images. On the other hand, the X-ray spectrum is also described by the power law plus thermal component model typical for a rotation powered pulsar. Therefore, the pulsar interpretation of the source cannot be excluded. For this source, we derived the upper limit for the pulsed fraction of 27 per cent.

  11. Thermal annealing induced structural and optical properties of Se{sub 72}Te{sub 25}In{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathak, H. P.; Dwivedi, D. K., E-mail: todkdwivedi@gmail.com; Shukla, Nitesh

    2016-05-06

    Thin films of a- Se{sub 72}Te{sub 25}In{sub 3} were prepared by vacuum evaporation technique in a base pressure of 10{sup -6} Torr on to well cleaned glass substrate. a-Se{sub 72}Te{sub 25}In{sub 3} thin films were annealed at different temperatures below their crystallization temperatures for 2h. The structural analysis of the films has been investigated using X-ray diffraction technique. The optical absorption spectra of these films were measured in the wavelength range 400-1100 nm in order to derive the absorption coefficient of these films. The optical band gap of as prepared and annealed films as a function of photon energy hasmore » been studied. It has been found that the optical band gap decreases with increasing annealing temperatures in the present system.« less

  12. Space Environmentally Stable Polyimides and Copolyimides

    NASA Technical Reports Server (NTRS)

    Watson, Kent A.; Connell, John W.

    2000-01-01

    Polyimides with a unique combination of properties including low color in thin films, atomic oxygen (AO), ultra-violet (UV) radiation resistance, solubility in organic solvents in the imide form, high glass transition (T(sub g)) temperatures and high thermal stability have been prepared and characterized. The polymers were prepared by reacting a novel aromatic diamine with aromatic dianhydrides in a polar aprotic solvent. The solubility of the polymers in the imide form as well as the color density of thin films were dependent upon the chemical structure of the dianhydride. Several thin films (25-50 mm thick) prepared by solution casting of amide acid or imide solutions exhibited very low color and high optical transparency (approximately 90%) as determined by UV/visible spectroscopy. The polymers exhibited T(sub g)s >200 C depending upon the structure of the dianhydride and temperatures of 5% weight loss approximately 500C in air as determined by dynamic thermogravimetric analysis. Thin films coated with silver/inconel were exposed to a high fluence of AO and 1000 equivalent solar hours of UV radiation. The effects of these exposures on optical properties were minor. These space environmentally durable polymers are potentially useful in a variety of applications on spacecraft such as thin film membranes on antennas, second-surface mirrors, thermal/optical coatings and multi-layer thermal insulation (MLI) blanket materials. The chemistry, physical and mechanical properties of the polymers as well as their responses to AO and UV exposure will be discussed.

  13. Optical and optomechanical ultralightweight C/SiC components

    NASA Astrophysics Data System (ADS)

    Papenburg, Ulrich; Pfrang, Wilhelm; Kutter, G. S.; Mueller, Claus E.; Kunkel, Bernd P.; Deyerler, Michael; Bauereisen, Stefan

    1999-11-01

    Optical and optomechanical structures based on silicon carbide (SiC) ceramics are becoming increasingly important for ultra- lightweight optical systems that must work in adverse environments. At IABG and Dornier Satellite Systems (DSS) in Munich, a special form of SiC ceramics carbon fiber reinforced silicon carbide (C/SiCR) has been developed partly under ESA and NASA contracts. C/SiCR is a light-weight, high- strength engineering material that features tunable mechanical and thermal properties. It offers exceptional design freedom due to its reduced brittleness and negligible volume shrinkage during processing in comparison to traditional, powder-based ceramics. Furthermore, its rapid fabrication process produces near-net-shape components using conventional NC machining/milling equipment and, thus, provides substantial schedule, cost, and risk savings. These characteristics allow C/SiCR to overcome many of the problems associated with more traditional optical materials. To date, C/SiCR has been used to produce ultra-lightweight mirrors and reflectors, antennas, optical benches, and monolithic and integrated reference structures for a variety of space and terrestrial applications. This paper describes the material properties, optical system and structural design aspects, the forming and manufacturing process including high-temperature joining technology, precision grinding and cladding techniques, and the performance results of a number of C/SiCR optical components we have built.

  14. Thermally stimulated nonlinear refraction in gelatin stabilized Cu-PVP nanocomposite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamgadge, Y. S., E-mail: ystamgadge@gmail.com; Atkare, D. V.; Pahurkar, V. G.

    2016-05-06

    This article illustrates investigations on thermally stimulated third order nonlinear refraction of Cu-PVP nanocomposite thin films. Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD) and Ultraviolet-visible (UV-vis) spectroscopyfor structural and linear optical studies. Third order nonlinear refraction studies have been performed using closed aperture z-scan technique under continuous wave (CW) He-Ne laser. Cu-PVP nanocomposites are found to exhibit strong nonlinear refractive index stimulated by thermal lensing effect.

  15. Characterization, optical properties and laser ablation behavior of epoxy resin coatings reinforced with high reflectivity ceramic particles

    NASA Astrophysics Data System (ADS)

    Li, Wenzhi; Kong, Jing; Wu, Taotao; Gao, Lihong; Ma, Zhuang; Liu, Yanbo; Wang, Fuchi; Wei, Chenghua; Wang, Lijun

    2018-04-01

    Thermal damage induced by high power energy, especially high power laser, significantly affects the lifetime and performance of equipment. High-reflectance coating/film has attracted considerable attention due to its good performance in the damage protection. Preparing a high-reflectance coating with high reaction endothermal enthalpy will effectively consume a large amount of incident energy and in turn protect the substrate from thermal damage. In this study, a low temperature process was used to prepare coatings onto substrate with complex shape and avoid thermal effect during molding. An advanced high reflection ceramic powder, La1‑xSrxTiO3+δ , was added in the epoxy adhesive matrix to improve the reflectivity of coating. The optical properties and laser ablation behaviors of coatings with different ceramic additive ratio of La1‑xSrxTiO3+δ and modified epoxy-La1‑xSrxTiO3+δ with ammonium polyphosphate coatings were investigated, respectively. We found that the reflectivity of coatings is extremely high due to mixed high-reflection La1‑xSrxTiO3+δ particles, up to 96% at 1070 nm, which can significantly improve the laser resistance. In addition, the ammonium polyphosphate modifies the residual carbon structure of epoxy resin from discontinuous fine particles structure to continuous and porous structure, which greatly enhances the thermal-insulation property of coating. Furthermore, the laser ablation threshold is improved obviously, which is from 800 W cm‑2 to 1000 W cm‑2.

  16. Synthesis, characterization and thermal decomposition of tetramethylammonium rare earth double selenates

    NASA Astrophysics Data System (ADS)

    Divekar, Sandesh K.; Achary, S. Nagabhusan; Ajgaonkar, Vishnu R.

    2018-06-01

    A series of double selenates, as (CH3)4NLn(SeO4)2rad 4H2O (Ln = Rare earth ion like La, Pr, Nd, Sm, Gd, Tb, Dy) was crystallized from mixed solution and characterized in detail for their structure, vibrational and optical properties as well as thermal stabilities. The crystal structure of the praseodymium compound was obtained by single crystal X-ray diffraction (XRD) and revealed a monoclinic (C2/c) lattice with chains formed by PrO8 and SeO4 units. The chains with compositions [Pr(SeO4)4(H2O)4]- are stacked in three dimensions and the (CH3)4N+ ions located in between them provide charge neutrality to the structure. The characterization of other compounds were carried out from powder XRD data and revealed that they all are isostructural to Pr-compound. All the functional groups were identified by Raman and IR spectroscopic studies. Solid state 77Se NMR revealed noticeable changes in selenium environment in these compounds. The optical absorption studies on the compounds show strong band edge absorptions in UV region. Thermal stabilities of the compounds, as investigated by simultaneous TG-DTA techniques indicate their sequential decompositions due to loss of H2O, (CH3)4N+ group, SeO2 and finally leaving their corresponding rare earth oxides.

  17. Theoretical analysis for scaling law of thermal blooming based on optical phase deference

    NASA Astrophysics Data System (ADS)

    Sun, Yunqiang; Huang, Zhilong; Ren, Zebin; Chen, Zhiqiang; Guo, Longde; Xi, Fengjie

    2016-10-01

    In order to explore the laser propagation influence of thermal blooming effect of pipe flow and to analysis the influencing factors, scaling law theoretical analysis of the thermal blooming effects in pipe flow are carry out in detail based on the optical path difference caused by thermal blooming effects in pipe flow. Firstly, by solving the energy coupling equation of laser beam propagation, the temperature of the flow is obtained, and then the optical path difference caused by the thermal blooming is deduced. Through the analysis of the influence of pipe size, flow field and laser parameters on the optical path difference, energy scaling parameters Ne=nTαLPR2/(ρɛCpπR02) and geometric scaling parameters Nc=νR2/(ɛL) of thermal blooming for the pipe flow are derived. Secondly, for the direct solution method, the energy coupled equations have analytic solutions only for the straight tube with Gauss beam. Considering the limitation of directly solving the coupled equations, the dimensionless analysis method is adopted, the analysis is also based on the change of optical path difference, same scaling parameters for the pipe flow thermal blooming are derived, which makes energy scaling parameters Ne and geometric scaling parameters Nc have good universality. The research results indicate that when the laser power and the laser beam diameter are changed, thermal blooming effects of the pipeline axial flow caused by optical path difference will not change, as long as you keep energy scaling parameters constant. When diameter or length of the pipe changes, just keep the geometric scaling parameters constant, the pipeline axial flow gas thermal blooming effects caused by optical path difference distribution will not change. That is to say, when the pipe size and laser parameters change, if keeping two scaling parameters with constant, the pipeline axial flow thermal blooming effects caused by the optical path difference will not change. Therefore, the energy scaling parameters and the geometric scaling parameters can really describe the gas thermal blooming effect in the axial pipe flow. These conclusions can give a good reference for the construction of the thermal blooming test system of laser system. Contrasted with the thermal blooming scaling parameters of the Bradley-Hermann distortion number ND and Fresnel number NF, which were derived based on the change of far field beam intensity distortion, the scaling parameters of pipe flow thermal blooming deduced from the optical path deference variation are very suitable for the optical system with short laser propagation distance, large Fresnel number and obviously changed optical path deference.

  18. HabEx Optical Telescope Concepts: Design and Performance Analysis

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; NASA MSFC HabEx Telescope Design Team

    2018-01-01

    The Habitable-Exoplanet Imaging Mission (HabEx) engineering study team has been tasked by NASA with developing a compelling and feasible exoplanet direct imaging concept as part of the 2020 Decadal Survey. This paper summarizes design concepts for two off-axis unobscured telescope concepts: a 4-meter monolithic aperture and a 6-meter segmented aperutre. HabEx telescopes are designed for launch vehicle accommodation. Analysis includes prediction of on-orbit dynamic structural and thermal optical performance.

  19. JPRS Report, Science and Technology: China.

    DTIC Science & Technology

    1989-03-17

    Optical Absorption Property of TiO -Doped Vycor Glass [Ling Ping, et al.; WULI XUEBAO, No 11, Nov 88] ......... 81 Generation of Short Pulse of 30 fs...et al.; YINGYONG JIGUANG, No 6, Dec 88] 94 High-Resolution TeO2 Acousto-Optic Deflector for mm-Wave Radio Spectrometer [Xu Binghuo, et al.; YINGYONG...Nov 88] ......... 159 Study of Structural Relaxation of Metallic Glass (Feo. 8 5Nio.15)84 B1 6 by Measuring Thermal Expansion, Resistance Under Zero

  20. Structural design considerations for the beam transmission optical system

    NASA Technical Reports Server (NTRS)

    Macneal, Paul D.; Lou, Michael C.

    1993-01-01

    The paper describes the JPL study leading to a baseline design of the Beam Transmission Optical System (BTOS), designed for the delivery of laser energy from earth to space targets. The study identified the driving environmental and functional requirements; developed a conceptual design of the BTOS telescope; and performed static, thermal distortion, and model analyses to verify that these requirements are met. The study also identified major areas of concern which should be investigated further.

  1. Effect of thermal annealing on structure and optical band gap of amorphous Se{sub 72}Te{sub 25}Sb{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, D. K., E-mail: dwivedidkphys@rediffmail.com; Pathak, H. P., E-mail: dwivedidkphys@rediffmail.com; Shukla, Nitesh

    2014-04-24

    Thin films of a−Se{sub 72}Te{sub 25}Sb{sub 3} were prepared by vacuum evaporation technique in a base pressure of 10{sup −6} Torr on to well cleaned glass substrate. a−Se{sub 72}Te{sub 25}Sb{sub 3} thin films were annealed at different temperatures below their crystallization temperatures for 2h. The structural analysis of the films has been investigated using X-ray diffraction technique. The optical band gap of as prepared and annealed films as a function of photon energy in the wavelength range 400–1100 nm has been studied. It has been found that the optical band gap decreases with increasing annealing temperatures in the present system.

  2. Synthesis, growth, structural and optical studies of a new organic three dimensional framework: 4-(aminocarbonyl)pyridine 4-(aminocarbonyl)pyridinium hydrogen L-malate

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, A.; Vidyavathy, B.; Peramaiyan, G.; Vinitha, G.

    2017-02-01

    4-(aminocarbonyl)pyridine 4-(aminocarbonyl)pyridinium hydrogen L-malate [(4ACP)(4ACP).(LM)] a new organic nonlinear optical (NLO) crystal was grown by the slow evaporation method. Single crystal X-ray diffraction analysis revealed that the [(4ACP)(4ACP).(LM)] crystal belongs to monoclinic crystal system, space group P21/n, with a three dimensional network. Thermogravimetry (TG) and differential thermal (DT) analyses showed that [(4ACP)(4ACP).(LM)] is thermally stable up to 165 °C. The optical transmittance window and the lower cut-off wavelength of [(4ACP)(4ACP).(LM)] were found out by UV-vis-NIR spectral study. The molecular structure of [(4ACP)(4ACP).(LM)] was further confirmed by FTIR spectral studies. The relative dielectric permittivity and dielectric loss were determined as function of frequency and temperature. The third order nonlinear optical property of [(4ACP)(4ACP).(LM)] was studied by the Z-scan technique using a 532 nm diode pumped CW Nd:YAG laser. Nonlinear refractive index, nonlinear absorption coefficient and third order nonlinear susceptibility of the grown crystal were found to be 7.38×10-8 cm2/W, 0.08×10-4 cm/W and 5.36×10-6 esu, respectively. The laser damage threshold value is found to be 1.75 GW/cm2

  3. Fluorescence microscopy for the characterization of structural integrity

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Leonhardt, Todd A.

    1991-01-01

    The absorption characteristics of light and the optical technique of fluorescence microscopy for enhancing metallographic interpretation are presented. Characterization of thermally sprayed coatings by optical microscopy suffers because of the tendency for misidentification of the microstructure produced by metallographic preparation. Gray scale, in bright field microscopy, is frequently the only means of differentiating the actual structural details of porosity, cracking, and debonding of coatings. Fluorescence microscopy is a technique that helps to distinguish the artifacts of metallographic preparation (pullout, cracking, debonding) from the microstructure of the specimen by color contrasting structural differences. Alternative instrumentation and the use of other dye systems are also discussed. The combination of epoxy vacuum infiltration with fluorescence microscopy to verify microstructural defects is an effective means to characterize advanced materials and to assess structural integrity.

  4. Optical coherence tomography monitoring of vocal fold femtosecond laser microsurgery

    NASA Astrophysics Data System (ADS)

    Wisweh, Henning; Merkel, Ulrich; Hüller, Ann-Kristin; Lüerßen, Kathrin; Lubatschowski, Holger

    2007-07-01

    Surgery of benign pathological alterations of the vocal folds results in permanent disphonia if the bounderies of the vocal fold layers are disregarded. Precise cutting with a femtosecond laser (fs-laser) combined with simultanous imaging of the layered structure enables accurate resections with respect to the layer boundaries. Earlier works demonstrated the capability of optical coherence tomography (OCT) for utilization on vocal folds. The layered structure can be imaged with a spatial resolution of 10-20μm up to a depth of 1.5mm. The performance of fs-laser cutting was analyzed on extracted porcine vocal folds with OCT monitoring. Histopathological sections of the same processed samples could be well correlated with the OCT images. With adequate laser parameters thermal effects induced only negligable damage to the processed tissue. The dimensions of the thermal necrosis were determined to be smaller than 1μm. OCT contolled fs-laser cutting of porcine vocal fold tissue in the μm range with minimal tissue damage is presented.

  5. Studies on synthesis, growth, structural, thermal, linear and nonlinear optical properties of organic picolinium maleate single crystals.

    PubMed

    Pandi, P; Peramaiyan, G; Sudhahar, S; Chakkaravarthi, G; Mohan Kumar, R; Bhagavannarayana, G; Jayavel, R

    2012-12-01

    Picolinium maleate (PM), an organic material has been synthesised and single crystals were grown by slow evaporation technique. The structure of the grown crystal was elucidated by using single crystal X-ray diffraction analysis. PM crystal belongs to the monoclinic crystallographic system with space group P2(1)/c. The crystalline perfection of the grown crystals was analyzed by high-resolution X-ray diffraction rocking curve measurements. The presence of functional groups in PM was identified by FTIR and FT-NMR spectral analyses. Thermal behaviour and stability of picolinium maleate were studied by TGA/DTA analyses. UV-Vis spectral studies reveal that PM crystals are transparent in the wavelength region 327-1100 nm. The laser damage threshold value of PM crystal was found to be 4.3 GW/cm(2) using Nd:YAG laser. The Kurtz and Perry powder second harmonic generation technique confirms the nonlinear optical property of the grown crystal. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Influence of Fe ions on structural, optical and thermal properties of SnO{sub 2} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Ateeq, E-mail: ateeqamu124@gmail.com; Tripathi, P.; Khan, Wasi

    2016-05-23

    In the present work, Fe doped SnO{sub 2} nanoparticles with the composition Sn{sub 1-x}Fe{sub x}O{sub 2} (x = 0, 0.02, 0.04 and 0.06) have been successfully synthesized using sol-gel auto combustion technique. The samples are characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDAX), Ultraviolet (UV-Visible) absorption spectroscopy and thermal gravimetric analysis (TGA). The XRD study shows that all the samples have been found in tetragonal rutile structure without any extra phase and average crystallite size which lies in the range of 6-17 nm. The EDAX spectrum confirmed the doping of Fe ion into tin oxidemore » nanomaterial. The optical band gap of doped SnO{sub 2} is found to decrease with increasing Fe ion concentration, which is due to the formation of donor energy levels in the actual band gap of SnO{sub 2}.« less

  7. Tuning oxidation level, electrical conductance and band gap structure on graphene sheets by cyclic atomic layer reduction technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Si-Yong; Hsieh, Chien-Te; Lin, Tzu-Wei

    The present work develops an atomic layer reduction (ALR) method to accurately tune oxidation level, electrical conductance, band-gap structure, and photoluminescence (PL) response of graphene oxide (GO) sheets. The ALR route is carried out at 200 °C within ALR cycle number of 10–100. The ALR treatment is capable of striping surface functionalities (e.g., hydroxyl, carbonyl, and carboxylic groups), producing thermally-reduced GO sheets. The ALR cycle number serves as a controlling factor in adjusting the crystalline, surface chemistry, electrical, optical properties of GO sheets. With increasing the ALR cycle number, ALR-GO sheets display a high crystallinity, a low oxidation level, anmore » improved electrical conductivity, a narrow band gap, and a tunable PL response. Finally, on the basis of the results, the ALR technique offers a great potential for accurately tune electrical and optical properties of carbon materials through the cyclic removal of oxygen functionalities, without any complicated thermal and chemical desorption processes.« less

  8. Microstructural parameters and high third order nonlinear absorption characteristics of Mn-doped PbS/PVA nanocomposite films

    NASA Astrophysics Data System (ADS)

    Ramezanpour, B.; Mahmoudi Chenari, Hossein; Sadigh, M. Khadem

    2017-11-01

    In this work, undoped and Mn-doped PbS/PVA nanocomposite films have been successfully fabricated using the simple solution-casting method. Their crystalline structure was examined by X-ray powder diffraction (XRD). XRD pattern show the formation of cubic structure of PbS for Mn-doped PbS in PVA matrix. Microstructure parameters of Mn-doped PbS/PVA nanocomposite films were obtained through the size-strain plot (SSP) method. The thermal stability of the nanocomposite film was determined using Thermogravimetric analysis (TGA). Furthermore, Z-scan technique was used to investigate the optical nonlinearity of nanocomposite films by a continuous-wave laser irradiation at the wavelength of 655 nm. This experimental results show that undoped PbS/PVA nanocomposite films indicate high nonlinear absorption characteristics. Moreover, the nanocomposite films with easy preparation characteristics, high thermal stability and nonlinear absorption properties can be used as an active element in optics and photonic devices.

  9. Tuning oxidation level, electrical conductance and band gap structure on graphene sheets by cyclic atomic layer reduction technique

    DOE PAGES

    Gu, Si-Yong; Hsieh, Chien-Te; Lin, Tzu-Wei; ...

    2018-05-12

    The present work develops an atomic layer reduction (ALR) method to accurately tune oxidation level, electrical conductance, band-gap structure, and photoluminescence (PL) response of graphene oxide (GO) sheets. The ALR route is carried out at 200 °C within ALR cycle number of 10–100. The ALR treatment is capable of striping surface functionalities (e.g., hydroxyl, carbonyl, and carboxylic groups), producing thermally-reduced GO sheets. The ALR cycle number serves as a controlling factor in adjusting the crystalline, surface chemistry, electrical, optical properties of GO sheets. With increasing the ALR cycle number, ALR-GO sheets display a high crystallinity, a low oxidation level, anmore » improved electrical conductivity, a narrow band gap, and a tunable PL response. Finally, on the basis of the results, the ALR technique offers a great potential for accurately tune electrical and optical properties of carbon materials through the cyclic removal of oxygen functionalities, without any complicated thermal and chemical desorption processes.« less

  10. Design and Simulation of Optically Actuated Bistable MEMS

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas; Moiseeva, Evgeniya; Harnett, Cindy

    2012-02-01

    In this project, bistable three-dimensional MEMS actuators are designed to be optically switched between stable states for biological research applications. The structure is a strained rectangular frame created with stress-mismatched metal-oxide bilayers. The devices curl into an arc in one of two directions tangent to the substrate, and can switch orientation when regions are selectively heated. The heating is powered by infrared laser, and localized with patterned infrared-resonant gold nanoparticles on critical regions. The enhanced energy absorption on selected areas provides switching control and heightened response to narrow-band infrared light. Coventorware has been used for finite element analysis of the system. The numerical simulations indicate that it has two local minimum states with extremely rapid transition time (<<0.1 s) when the structure is thermally deformed. Actuation at laser power and thermal limits compatible with physiological applications will enable microfluidic pumping elements and fundamental studies of tissue response to three-dimensional mechanical stimuli, artificial-muscle based pumps and other biomedical devices triggered by tissue-permeant infrared light.

  11. Growth, structural, optical, thermal and dielectric properties of lanthanum chloride—thiourea—L tartaric acid coordinated complex

    NASA Astrophysics Data System (ADS)

    Slathia, Goldy; Bamzai, K. K.

    2017-11-01

    Lanthanum chloride—thiourea—l tartaric acid coordinated complex was grown in the form of single crystal by slow evaporation of supersaturated solutions at room temperature. This coordinated complex crystallizes in orthorhombic crystal system having space group P nma. The crystallinity and purity was tested by powder x-ray diffraction. Fourier transform infra red and Raman spectroscopy analysis provide the evidences on structure and mode of coordination. The scanning electron microscopy (SEM) analysis shows the morphology evolution as brought by the increase in composition of lanthanum chloride. The band transitions due to C=O and C=S chromophores remain active in grown complexes and are recorded in the UV-vis optical spectrum. The thermal effects such as dehydration, melting and decomposition were observed by the thermogravimetric and differential thermo analytical (TGA/DTA) analysis. Electrical properties were studied by dielectric analysis in frequency range 100-30 MHz at various temperatures. Increase in values of dielectric constant was observed with change in lanthanum concentration in the coordinated complex.

  12. Photothermal deflection technique investigation of annealing temperature and time effects on optical and thermal conductivity of V/V2O5 alternating layers structure

    NASA Astrophysics Data System (ADS)

    Khalfaoui, A.; Ilahi, S.; Abdel-Rahman, M.; Zia, M. F.; Alduraibi, M.; Ilahi, B.; Yacoubi, N.

    2017-10-01

    The VxOy material is fabricated by alternating multilayer of V/V2O5. Two sets of VxOy are presented annealed at 300 °C and 400 °C for 20, 30 and 40 min. We have determined optical absorption spectra of the two sets by comparison between experimental and theoretical PDS amplitude signal. In fact, a variation of the bandgap energy from 2.34eV to 2.49 eV has found for both set annealed at 300 °C and 400 °C for various annealing time. The variation of bandgap energy is discussed testifying a structural and compositional change. Moreover, thermal conductivity of the set annealed at 400 °C showed a variation from 1.96 W/m K to 6.2 W/m K noting a decrease up to 2.89 W/m K for that annealed for 30 min.

  13. Synthesis and characterization of thermally evaporated Cu2SnSe3 ternary semiconductor

    NASA Astrophysics Data System (ADS)

    Hamdani, K.; Chaouche, M.; Benabdeslem, M.; Bechiri, L.; Benslim, N.; Amara, A.; Portier, X.; Bououdina, M.; Otmani, A.; Marie, P.

    2014-11-01

    Copper Tin Selenide (CuSnSe) powder was mechanically alloyed by high energy planetary ball milling, starting from elemental powders. Synthesis time and velocity have been optimized to produce Cu2SnSe3 materials. Thin films were prepared by thermal evaporation on Corning glass substrate at Ts = 300 °C. The structural, compositional, morphological and optical properties of the synthesized semiconductor have been analyzed by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and transmission electron microscopy. The analyzed powder exhibited a cubic crystal structure, with the presence of Cu2Se as a secondary phase. On the other hand, the deposited films showed a cubic Cu2SnSe3 ternary phase and extra peaks belonging to some binary compounds. Furthermore, optical measurements showed that the deposited layers have a relatively high absorption coefficient of 105 cm-1 and present a band gap of 0.94 eV.

  14. Optical analysis of high power free electron laser resonators

    NASA Astrophysics Data System (ADS)

    Knapp, C. E.; Viswanathan, V. K.; Appert, Q. D.; Bender, S. C.; McVey, B. D.

    1987-06-01

    The first part of this paper briefly describes the optics code used at Los Alamos National Laboratory to do optical analyses of various components of a free electron laser. The body of the paper then discusses the recent results in modeling low frequency gratings and ripple on the surfaces of liquid-cooled mirrors. The ripple is caused by structural/thermal effects in the mirror surface due to heating by optical absorption in high power resonators. Of interest is how much ripple can be permitted before diffractive losses or optical mode distortions become unacceptable. Preliminary work is presented involving classical diffraction problems to support the ripple study. The limitations of the techniques are discussed and the results are compared to experimental results where available.

  15. Investigation on thermally-induced optical nonlinearity of alcohols

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Cheng, Xuemei; He, Bo; Ren, Zhaoyu; Zhang, Ying; Chen, Haowei; Bai, Jintao

    2018-06-01

    In this work, we studied the thermally-induced optical nonlinearity of alcohols by analyzing the far-filed diffraction rings patterns, which are generated when the alcohols are illuminated by a laser beam resonant to their overtones. We deduced the nonlinear refractive index coefficient n2 generated by thermal nonlinear optical effect to be - (20.53 ± 00.03) ×10-8cm2 /W , which is much higher than that of Kerr effect (7.7 ×10-16cm2 /W). The results also demonstrated that the thermally-induced optical nonlinearity increased with the laser power and sample concentration increasing. The notable nonlinearity suggests that thermal effect has potentials in many applications such as optical spatial modulation, and trapping and guiding of atoms.

  16. Using a two-lens afocal compensator for thermal defocus correction of catadioptric system

    NASA Astrophysics Data System (ADS)

    Ivanov, S. E.; Romanova, G. E.; Bakholdin, A. V.

    2017-08-01

    The work associates with the catadioptric systems with two-component afocal achromatic compensator. The most catadioptric systems with afocal compensator have the power mirror part and the correctional lens part. The correctional lens part can be in parallel, in convergent beam or in both. One of the problems of such systems design is the thermal defocus by reason of the thermal aberration and the housing thermal expansion. We introduce the technique of thermal defocus compensation by choosing the optical material of the afocal compensator components. The components should be made from the optical materials with thermo-optical characteristics so after temperature changing the compensator should become non-afocal with the optical power enough to compensate the image plane thermal shift. Abbe numbers of the components should also have certain values for correction chromatic aberrations that reduces essentially the applicable optical materials quantity. The catalogues of the most vendors of optical materials in visible spectral range are studied for the purpose of finding the suitable couples for the technique. As a result, the advantages and possibilities of the plastic materials application in combination with optical glasses are shown. The examples of the optical design are given.

  17. The Thermal and Microstructural Effect of Plasticizing HMX-Nitrocellulose Composites

    DOE PAGES

    Yeager, John David; Watkins, Erik Benjamin; Duque, Amanda Lynn; ...

    2017-03-15

    Thermal ignition via self-heating (cook-off) of cyclotetramethylene-tetranitramine (HMX)-containing plastic-bonded explosives (PBXs) is driven by the β → δ phase transition in the HMX, which is affected if not dominated by microstructure. Here, we studied the HMX-binder interface and phase transition for several variations of PBX 9404 (HMX with plasticized nitrocellulose [NC] binder). Neutron reflectometry was used to examine the interface under several conditions—pristine, after aging, and after thermal treatment. The initial interfacial structure depended on the plasticizer, but the interface homogenized over time. Thermal and optical analyses showed that all formulated materials had higher transition temperatures than neat HMX. Thismore » effect increased with NC content.« less

  18. The Thermal and Microstructural Effect of Plasticizing HMX-Nitrocellulose Composites

    NASA Astrophysics Data System (ADS)

    Yeager, John D.; Watkins, Erik B.; Higginbotham Duque, Amanda L.; Majewski, Jaroslaw

    2018-01-01

    Thermal ignition via self-heating (cook-off) of cyclotetramethylene-tetranitramine (HMX)-containing plastic-bonded explosives (PBXs) is driven by the β → δ phase transition in the HMX, which is affected if not dominated by microstructure. Here, the HMX-binder interface and phase transition were studied for several variations of PBX 9404 (HMX with plasticized nitrocellulose [NC] binder). Neutron reflectometry was used to examine the interface under several conditions-pristine, after aging, and after thermal treatment. The initial interfacial structure depended on the plasticizer, but the interface homogenized over time. Thermal and optical analyses showed that all formulated materials had higher transition temperatures than neat HMX. This effect increased with NC content.

  19. Spectral, thermal and optical-electrical properties of the layer-by-layer deposited thin film of nano Zn(II)-8-hydroxy-5-nitrosoquinolate complex.

    PubMed

    Haggag, Sawsan M S; Farag, A A M; Abdelrafea, Mohamed

    2013-06-01

    Zinc(II)-8-hydroxy-5-nitrosoquinolate, [Zn(II)-(HNOQ)2], was synthesized and assembled as a deposited thin film of nano-metal complex by a rapid, direct, simple and efficient procedure based on layer-by-layer chemical deposition technique. Stoichiometric identification and structural characterization of [Zn(II)-(HNOQ)2] were confirmed by electron impact mass spectrometry (EI-MS) and Fourier Transform infrared spectroscopy (FT-IR). Surface morphology was studied by using a scanning electron microscope imaging (SEM) and the particle size was found to be in the range of 23-49 nm. Thermal stability of [Zn(II)-(HNOQ)2] was studied and the thermal parameters were evaluated using thermal gravimetric analysis (TGA). The current density-voltage measurements showed that the current flow is dominated by a space charge limited and influenced by traps under high bias. The optical properties of [Zn(II)-(HNOQ)2] thin films were found to exhibit two direct allowed transitions at 2.4 and 1.0 eV, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Thermal Response Analysis of Phospholipid Bilayers Using Ellipsometric Techniques.

    PubMed

    González-Henríquez, Carmen M; Villegas-Opazo, Vanessa A; Sagredo-Oyarce, Dallits H; Sarabia-Vallejos, Mauricio A; Terraza, Claudio A

    2017-08-18

    Biomimetic planar artificial membranes have been widely studied due to their multiple applications in several research fields. Their humectation and thermal response are crucial for reaching stability; these characteristics are related to the molecular organization inside the bilayer, which is affected by the aliphatic chain length, saturations, and molecule polarity, among others. Bilayer stability becomes a fundamental factor when technological devices are developed-like biosensors-based on those systems. Thermal studies were performed for different types of phosphatidylcholine (PC) molecules: two pure PC bilayers and four binary PC mixtures. These analyses were carried out through the detection of slight changes in their optical and structural parameters via Ellipsometry and Surface Plasmon Resonance (SPR) techniques. Phospholipid bilayers were prepared by Langmuir-Blodgett technique and deposited over a hydrophilic silicon wafer. Their molecular inclination degree, mobility, and stability of the different phases were detected and analyzed through bilayer thickness changes and their optical phase-amplitude response. Results show that certain binary lipid mixtures-with differences in its aliphatic chain length-present a co-existence of two thermal responses due to non-ideal mixing.

Top